RIGHT TRIANGLES OF GIAN FRANCESCO MALFATTI

J. Boyd

St. Christopher's School
Richmond, VA 23226

Introduction.

Every triangle circumscribes a unique triple of circles, each of which is tangent to the other two. Figure 1 shows a right triangle which circumscribes three circles as described.
B

Figure 1. Right triangle with its circles.
Such circles are named Malfatti circles to honor the Italian mathematician Gian Francesco Malfatti who, in 1803, wrongly conjectured that the greatest area that can be bounded by three circles drawn within any triangular region is the area contained by the three Malfatti circles of the triangle. Using the search engine Google ${ }^{\mathrm{TM}}$ to search for " 3 circles in a triangle" produced an enormous amount of information about the geometry of triangles and their Malfatti circles. Thus, it should be clear that no startling contributions to the subject are to follow.

Motivation

To this mathematics teacher, the most interesting problems are those that arise naturally from the material that he is teaching, that are easy to pose, and that quickly lead from the familiar to mathematical places new to him. So it was that the teacher (i. e., the author of this article)
wondered how to write a program with Mathematica to create a figure like the one above. It was obvious that he needed to locate his triangle in the $x y$-plane and then to find the coordinates of the centers and the lengths of the radii of the three circles. Figure 2 shows the triangle above with the addition of the centers of the circles and the radii to the points of tangency between the circles and the sides of the triangle.

Figure 2. Right triangle with its Malfatti circles.

Facts from Grade 9 Geometry

The notation used in the statements that follow is derived from Figure 2. Although summer will remove many of these statements from the rising grade 10 memory, the facts and ideas with which the statements are concerned were once current and familiar in grade 9 geometry class. The centers of the three circles are $\mathrm{O}_{1}, \mathrm{O}_{2}$, and O_{3} and the corresponding radii are r1, r2, and r3.

1) Tangent segments AA_{1} and AA_{2} have the same length. In this case, $\mathrm{AA}_{1}=\mathrm{AA}_{2}=\mathrm{p}$. Also $\mathrm{BB}_{1}=$ $\mathrm{BB}_{2}=\mathrm{q}$ and $\mathrm{CC}_{1}=\mathrm{CC}_{2}=\mathrm{rl}$. Note that CC_{1} and CC_{2} will also have the same length, but that length is the same as radius rl only because angle ACB is a right angle.
2) Rays $\mathrm{AO}_{2}, \mathrm{BO}_{3}$, and CO_{1} bisect their angles $\mathrm{BAC}, \mathrm{ABC}$, and BCA , respectively.
3) $B_{1} C_{1}, A_{1} C_{2}$, and $A_{2} B_{2}$ are common external tangents for their circles and have lengths $2 \sqrt{r 1 * r 3}, 2 \sqrt{r 1 * r 2}$, and $2 \sqrt{r 2 * r 3}$, respectively.

If one starts with a correctly given triple of parts that determines the congruence of triangles, one (in theory) ought to be able to compute the radii and the coordinates of the centers of the Malfatti circles of a triangle. If a triangle is a right triangle as shown in Figure 6, one can write five equations which, when solved, will supply the information needed to write the program to create the figure. Under the assumption that triangle ABC of Figure 2 is a right triangle with all sides and angles known, these five equations hold true:

$$
\begin{gathered}
\mathrm{p}+\mathrm{q}+2 \sqrt{r 2 * r 3}=\mathrm{AB} \\
\mathrm{r} 1+\mathrm{p}+2 \sqrt{r 1 * r 2}=\mathrm{AC} \\
\mathrm{r} 1+\mathrm{q}+2 \sqrt{r 1 * r 3}=\mathrm{BC}, \\
\tan (\angle \mathrm{~A} / 2)=\mathrm{r} 2 / \mathrm{p}, \text { and } \tan (\angle \mathrm{B} / 2)=\mathrm{r} 3 / \mathrm{q}
\end{gathered}
$$

If the triangle is taken to represent the general case, six equations are required and an enormous amount of algebra is necessary to achieve a solution. Goldilocks might have said, "The general triangle is too hard and the equilateral triangle is too easy. The right triangle is just right."

Malfatti Circles in Right Triangles

Grade 9 geometers at the top of their game should understand the thinking that went into the five equations above. Even though the difficulty of the Malfatti circles in a right triangle is "just right", the algebra involved in solving the five equations is still quite challenging. However, Mathematica can do the algebra as well as draw the figures.

Here are two examples to argue the richness of the blend of analytic geometry and technology in problems on Malfatti circles.

Example 1. Find the radii and centers of the Malfatti circles in a $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle with sides of lengths $5,5 \sqrt{3}$, and 10 units. Then, draw the triangle with its circles.

Solution. Since a figure is needed in explaining the solution, it makes sense to place the cart before the horse in this instance. So here is $\triangle \mathrm{ABC}$ with right $\angle \mathrm{C}$ in Figure 3; the program for creating the figure will follow.

Figure 3. $A \mathbf{3 0}^{\circ}-\mathbf{6 0}^{\circ}-\mathbf{9 0}^{\circ}$ right triangle.
In $\triangle \mathrm{ABC}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{B}=60^{\circ}$, and $\angle \mathrm{C}=90^{\circ}$ with $\mathrm{AB}=10, \mathrm{AC}=5 \sqrt{3}$, and $\mathrm{BC}=5$. The five equations written in the symbols developed above are:

$$
\begin{aligned}
& \mathrm{p}+\mathrm{q}+2 \sqrt{r 2 * r 3}=10 \\
& \mathrm{r} 1+\mathrm{p}+2 \sqrt{r 1 * r 2}=5 \sqrt{3} \\
& \mathrm{r} 1+\mathrm{q}+2 \sqrt{r 1 * r 3}=5, \\
& \tan (\angle \mathrm{~A} / 2)=\tan \left(30^{\circ} / 2\right)=\mathrm{r} 2 / \mathrm{p}=2-\sqrt{3}, \text { and } \\
& \tan (\angle \mathrm{B} / 2)=\tan \left(60^{\circ} / 2\right)=\mathrm{r} 3 / \mathrm{q}=1 / \sqrt{3} .
\end{aligned}
$$

The last two equations may be rewritten as $\mathrm{p}=(2+\sqrt{3}) \mathrm{r} 2$ and $\mathrm{q}=\sqrt{3} \mathrm{r} 3$. Substitution of these expressions for p and q in other equations leaves only the following three equation to be solved for the radii:

$$
\begin{aligned}
& (2+\sqrt{3}) \mathrm{r} 2+\sqrt{3} \mathrm{r} 3+2 \sqrt{r 2 * r 3}=10, \\
& \mathrm{r} 1+(2+\sqrt{3}) \mathrm{r} 2+2 \sqrt{r 1 * r 2}=5 \sqrt{3}, \text { and } \\
& \mathrm{r} 1+\sqrt{3} \mathrm{r} 3+2 \sqrt{r 1 * r 2}=5
\end{aligned}
$$

Mathematica gives the speedy numerical solution $\mathrm{r} 1=0.928434$, $\mathrm{r} 2=1.44996, \mathrm{r} 3=$ 1.15499. Figure 4 lists the instructions which lead to the solution. It follows that $p=(2+\sqrt{3}) r 2=$ 5.41131 and $\mathrm{q}=\sqrt{3} \mathrm{r} 3=2.0005$.

```
NSolve \([\{(2+\sqrt{3}) \mathrm{r} 2+\sqrt{3} \mathrm{r} 3+2 \sqrt{\mathrm{r} 2 * \mathrm{r} 3}==10\),
    \(\mathrm{r} 1+(2+\sqrt{3}) \mathrm{r} 2+2 \sqrt{\mathrm{r} 1 * \mathrm{r} 2}==5 \sqrt{3}, \mathrm{r} 1+\sqrt{3} \mathrm{r} 3+2 \sqrt{\mathrm{r} 1 * \mathrm{r} 3}==5\}\),
\{r1,r2, r3\}]
\(\{\{r 1 \rightarrow 0.928434, \quad r 2 \rightarrow 1.44996, \quad r 3 \rightarrow 1.15499\}\}\)
```

Figure 4. Instructions for finding the three radii with Mathematica.

If the coordinates of the vertices of the triangle are taken to be $(5 \sqrt{3}, 0)$ for $\mathrm{A},(0,5)$ for B , and $(0$, 0) for C , reference to Figure 3 will reveal the coordinates of the centers of the circles. The coordinates of O_{1} are $(\mathrm{r} 1, \mathrm{r} 1)=(0.928434,0.928434)$, the coordinates of O_{2} are $(5 \sqrt{3}-\mathrm{p}, \mathrm{r} 2)=$ (3.24894, 1.44996), and the coordinates of O_{3} are $(\mathrm{r} 3,5-\mathrm{q})=(1.15499,2.9995)$. Now that the coordinates of the centers and radii of the three circles have been computed, all input information needed for Mathematica to draw the $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle with its Malfatti circles is available. Here is the program that produced Figure 3:

```
r1 =0.928434; r2 = 1.44996; r3 = 1.15499;
q}=\sqrt{}{3}1.154987993848040
2.0005
5-q
2.9995
p}=(2+\sqrt{}{3})*1.4499565896914
5.41131
5\sqrt{}{3}}-\textrm{P
3.24894
list1 ={{0,0},{5\sqrt{}{3},0},{0,5},{0,0}};
plot1 = ListPlot[list1, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel [0], Axes }->\mathrm{ False];
list2 = {{r1, 0}, {r1, r1}, {0, rl}, {0, 0}, {r1, rl}};
plot3 = ListPlot[list2, PlotJoined }->\mathrm{ True,
        AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel[0], Axes }->\mathrm{ False];
```

list3 $=\{\{0,5-q\},\{r 3,5-q\},\{r 3(1+1 / 2), 5-q+r 3 * \sqrt{3} / 2\}\} ;$
plot4 $=$ ListPlot[list3, PlotJoined \rightarrow True,
AspectRatio \rightarrow Automatic, PlotStyle \rightarrow GrayLevel[0], Axes \rightarrow False];
plot5 $=$ ListPlot $[\{\{0,5\},\{r 3,5-q\}\}$, PlotJoined \rightarrow True,
AspectRatio \rightarrow Automatic, PlotStyle \rightarrow GrayLevel[0], Axes \rightarrow False];
plot6 $=$ ListPlot $[\{\{5 \sqrt{3}-p, r 2\},\{5 \sqrt{3}, 0\}\}$, PlotJoined \rightarrow True,
AspectRatio \rightarrow Automatic, PlotStyle \rightarrow Graylevel [0], Axes \rightarrow False];
list4 $=\{\{5 \sqrt{3}-p, 0\},\{5 \sqrt{3}-p, r 2\},\{(5 \sqrt{3}-p)+r 2 / 2, r 2(1+\sqrt{3} / 2)\}\} ;$
plot7 $=$ ListPlot[list4, PlotJoined \rightarrow True,
AspectRatio \rightarrow Automatic, PlotStyle \rightarrow GrayLevel[0], Axes \rightarrow False];
plot2 $=$ ParametricPlot [$\{\{.928434(1+\operatorname{Cos}[t]), .928434(1+\operatorname{Sin}[t])\},\{3.24894+1.44996 \operatorname{Cos}[t]$,
$1.449969(1+\operatorname{Sin}[t])\},\{1.15499(1+\operatorname{Cos}[t]), 2.9995+1.15499 \operatorname{Sin}[t]\}\}$,
$\{t, 0,2 \pi\}$, PlotStyle \rightarrow GrayLevel [0], Axes \rightarrow False];
Show[plot1, plot2, plot3, plot4, plot5, plot6, plot7]

Figure 5. Program for the $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle.
Here is the second example. Since it involves an isosceles right triangle, it is quite a bit simpler than the first example.

Example 2. Find the radii and centers of the Malfatti circles in a $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle with sides of lengths 10,10 , and $10 \sqrt{2}$. Then, draw the triangle with its circles.

Solution. Here is $\triangle \mathrm{ABC}$ with right angle at C as shown below in Figure 6. The notation is the same as that in Figure 3, but the symmetry of the isosceles triangle offers significant simplifications. Thus, $\mathrm{AC}=\mathrm{BC}=10, \mathrm{AB}=10 \sqrt{2}, \angle \mathrm{~A}=\angle \mathrm{B}=45^{\circ}$, and $\angle \mathrm{C}=90^{\circ}$. Also, $\mathrm{AA}_{1}=$ $\mathrm{AA}_{2}=\mathrm{BB}_{1}=\mathrm{BB}_{2}=\mathrm{p}$ and $\tan (\angle \mathrm{A} / 2)=\tan (\angle \mathrm{B} / 2)=\tan 22.5^{\circ}=\sqrt{2}-1$.

Figure 6. Isosceles right triangle.

Symmetry requires that $\mathrm{r} 2=\mathrm{r} 3$ and reduces the five equations of the first example to only three in this case. The three equations to be solved are:

$$
\begin{aligned}
& \mathrm{p}=(\sqrt{2}+1) \mathrm{r} 2, \\
& 2 \mathrm{p}+2 \mathrm{r} 2=10 \sqrt{2}, \text { and } \\
& \mathrm{r} 1+\mathrm{p}+2 \sqrt{r 1 * r 2}=10 .
\end{aligned}
$$

Then, Mathematica wastes little time in solving for r 1 , r 2 , and p .

```
Clear[r1, r2, p]
```

NSolve $[\{p=(\sqrt{2}+1) r 2, p+r 2=5 \sqrt{2}, r 1+p+2 \sqrt{r 1 * r 2}=10\},\{r 1, r 2, p\}]$
$\{\{r 1 \rightarrow 1.48847, r 2 \rightarrow 2.07107, p \rightarrow 5\}$.

Figure 7. Solution of the three equations with Mathematica.

It follows that the radii of circles $\mathrm{O}_{1}, \mathrm{O}_{2}$, and O_{3} are $\mathrm{r} 1=1.48847, \mathrm{r} 2=2.07107$, and $\mathrm{r} 3=$ 2.07107, respectively. Reference to Figure 6 reveals that the coordinates of O_{1} are $(\mathrm{rl}, \mathrm{rl})=$ (1.48847, 1.48847), the coordinates of O_{2} are $(10-\mathrm{p}, \mathrm{r} 2)=(5,2.07107)$, and the coordinates of O_{3} are $(\mathrm{r} 3,10-\mathrm{p})=(\mathrm{r} 2,10-\mathrm{p})=(2.07107,5)$. The program which produced Figure 6 is listed below.

```
Clear[r1, r2, p]
p = 5; r1 = 1.48847; r2 = 2.07207;
list3 = {{0, 0}, {10, 0}, {0, 10}, {0, 0}};
list4 = {{0, rl}, {r1, r1}, {r1, 0}};
plot5 = ListPlot[list4, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel[0], Axes }->\mathrm{ False];
plot3 = ListPlot[list3, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel[0], Axes }->\mathrm{ False];
plot6 = ListPlot[{{0, 0}, {r1, rl}}, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel [0], Axes }->\mathrm{ False];
plot7 = ListPlot[{{0, 10}, {r2, 5}}, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel[0], Axes }->\mathrm{ False];
list5 ={{0, 5},{r2, 5},{(1+1/\sqrt{}{2})r2,5+(1/\sqrt{}{2})=2}};
plot8 = ListPlot[list5, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel[0], Axes }->\mathrm{ False];
plot9 = ListPlot[{{10, 0}, {5, r2}}, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel[0], Axes }->\mathrm{ False];
list6 ={{5,0},{5, r2},{5+r2/\sqrt{}{2},r2(1+1/\sqrt{}{2})}};
plot10 = ListPlot[list6, PlotJoined }->\mathrm{ True,
    AspectRatio }->\mathrm{ Automatic, PlotStyle }->\mathrm{ GrayLevel[0], Axes }->\mathrm{ False];
plot4 = ParametricPlot[{{1.48846 (1 + Cos[t]), 1.48846 (1 + Sin[t])},
    {5+2.07107 Cos[t], 2.07107 (1+Sin[t])}, {2.07107 (1 + Cos[t]), 5 + 2.07107 Sin[t]}},
    {t, 0, 2\pi}, PlotStyle }->\mathrm{ GrayLevel [0], Axes }->\mathrm{ False];
Show[plot3, plot4, plot5, plot6, plot7, plot8, plot9, plot10]
```


Figure 8. Program for the $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle.

Suggestions for Other Problems.

One good thing about teaching geometry is that fun and work often overlap. Such was the case with the circles and triangles of Gian Francesco Malfatti. The summer's assigned work was to use the Internet to seek enrichment material for the geometry class of 2011-12. The fun was learning more geometry (new to this teacher, old to many others), and then using the computing power of Mathematica to achieve the results described above. Should there be readers who found these ideas to be of interest, more fun awaits them in the 3-4-5 right triangle and in isosceles triangles with nice integer sides.

