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Despite the attention that inquiry has received in science education research and policy, a coherent 

means for implementing inquiry in the classroom has been missing [1]. In recent research, scientific 

argumentation has received increasing attention for its role in science and in science education [2]. In 

this article, we propose that organizing a unit of instruction around building a scientific argument can 

bring inquiry practices together in the classroom in a coherent way. We outline a framework for 

argumentation, focusing on arguments that are central to science-arguments for the best explanation. 

We then use this framework as the basis for a set of design principles for developing a sequence of 

inquiry-based learning activities that support students in the construction of a scientific argument. We 

show that careful analysis of the argument that students are expected to build provides designers with a 

foundation for selecting resources and designing supports for scientific inquiry. Furthermore, we show 

that creating multiple opportunities for students to critique and refine their explanations through 

evidence-based argumentation fosters opportunities for critical thinking, while building science 

knowledge and knowledge of the nature of science. 

Introduction 

Science education plays a critical role in preparing students for multiple aspects of their 

future lives: thinking logically and critically, making decisions involving scientific information 

both personally and as active citizens and, for some, making science a vocation [3, 4]. In order to 

educate students with these goals in mind, a special emphasis has been placed on students' 

learning through scientific inquiry. Leaming through inquiry involves the skills needed to ask 

questions, generate data, interpret evidence from first-hand investigations and from text, and 

make evidence-based explanations [ 5]. Enacted well, inquiry demands critical thinking to 

identify assumptions and to weigh alternative explanations, which requires an understanding of 

the nature of science [5, 6]. 

The ongoing challenge for educators lies in designing instruction that accomplishes what 

are sometimes competing goals. Science instruction must authentically engage students in the 

multiple components of science inquiry in a coherent way [7]. At the same time, it must support 

students' developing understanding of accepted science content and scientific ways of knowing 
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[8]. In recent years, there has been increasing attention paid to the role that argumentation plays 

in science and the role it could play in science education [2, 9-11]. We argue that instruction 

should be designed to support students in building a scientific argument for an explanation of a 

carefully selected phenomenon. Working toward better explanations through argumentation 

creates coherent opportunities for students to engage in multiple aspects of scientific inquiry 

while building science knowledge. Science knowledge has been described as a social 

construction that is the result of the inquiry process and communication with the scientific 

community, that is, through the process of argumentation [12]. By participating in 

argumentation, students are provided with a context and a rationale for the process skills of 

inquiry. In addition, due to the nature of argumentation, students necessarily practice the critical 

thinking skills that are vital to inquiry, as they need to evaluate evidence and critique alternative 

explanations. As students engage in the process of critique, reasoning based on evidence and 

communicating and justifying explanations play a central role, emphasizing key aspects of the 

nature of science. 

In this article, we propose a set of design principles for using scientific argumentation as 

a focus for the backward design of inquiry-based science learning activities, grounded in the 

theoretical and empirical literature on argumentation and science education [ 13]. In the first part 

of this article, we will outline a conceptual framework for thinking about important aspects of 

argumentation across disciplines, and then narrow the focus to argumentation in science. We will 

concentrate on a type of argumentation that is central to science, argumentation for the best 

explanation, and outline the general structure of an argument for a particular explanation. In the 

second part of the article, we will map this structure to a set of principles for designing a 

sequence of inquiry-based learning activities that build toward students constructing a scientific 

argument. 

The Nature of Argumentation across Disciplines-Argumentation Is a Dialogue about 

Alternative Positions within a Particular Community 

Argumentation and argumentation in science have been studied in multiple ways from a 

variety of theoretical perspectives [14, 15]. As the subject of ongoing study and development, 

there is not a consensus definition of argumentation across scholarly communities. In this article, 

we draw from several theoretical perspectives to construct a definition of argumentation that is 

consistent with arguments in science research, and affords opportunities for argumentation to 

serve as a tool for students to engage in joint knowledge construction and critical thinking as they 

conduct science inquiry activities. 
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We define argumentation in general as the process of communal dialogue that determines 

the merits of alternative positions in relation to the available information marshaled in support of 

each position. There are two important aspects of argumentation to be examined. The first is the 

structure of argumentation that allows a particular position to be supported, examined, and 

critiqued. The second is the social nature of argumentation, which pertains to the characteristics 

of argumentation that arise from its taking place through interaction between people. 

The Structure of Argumentation 

Defining argumentation as a dialogic process presents an immediate challenge-where 

can it be said that an argument starts, and where does it end? Whether for the purposes of study 

or instruction, we need to identify a bounded unit that can be constructed and examined on its 

own. We propose a unit that has utility for thinking about argumentation: a line of argument. 

A line of argument consists of several interrelated components: a claim, the position 

taken in relation to a particular topic, question, or issue; the grounds, the information submitted as 

support for the claim; and, the justification, 1 the rationale for how or why the grounds provide 

support for the claim [16]. A line of argument can also, but does not need to, include a rebuttal, 

an acknowledgment of possible exceptions to the claim. A counterargument is a line of argument 

that establishes a competing claim to one previously established, with corresponding grounds and 

justification. In the interest of a manageable level of complexity, we will limit our focus to 

claims, grounds, and justification. Figure 1 is a diagrammatic representation of the basic 

components of a line of argument and their relations to each other. The grounds lead to the claim, 

and their relation is supported by the justification. 

Groun,Clalm 

Justfflcatfon 

Figure 1. Diagrammatic representation of a line of argument. 

1 While Toulmin generally refers to this component of argument as "warrant," he describes its function as 
one of justification. Given that justification is likely to be a more widely understood term, we have 
employed it here. 
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A simple example of a line of argument might be as follows: I claim that smoking should 

be made illegal on the grounds that smokers are more likely to die of cancer than non-smokers, 

death by cancer has multiple negative impacts, and laws should prevent negative outcomes. My 

justification for the grounds supporting my claim is that my claim is consistent with the grounds 

that I offer: a law banning smoking would prevent negative outcomes-death and its 

repercussions. I also offer a rebuttal to acknowledge a possible exception. If denying people 

their freedom of choice in deciding whether or not to smoke is determined to be a greater 

negative outcome, then smoking should not be made illegal. 

The Social Nature of Argumentation 

The second aspect of argumentation that we submit as important to consider for the 

purposes of design is the social nature of argumentation; i.e., the fact that argumentation occurs 

through interaction between people. Without at least one person to take a position, and at least 

one other to evaluate and/or contest it, there can be no argumentation. This does not suggest that 

an individual cannot engage in argumentation alone. However, the focus for and criteria applied 

in evaluating a given line of argument do not exist a priori, but are derived from the standards of 

particular communities, and thus are social in origin. In developing a line of argument, a scientist 

does so with a specific audience in mind. This social nature has multiple important implications 

for how argumentation is conducted. 

Argumentation Depends on Socially Established Criteria 

To be productive, it is not enough for argumentation simply to take place between people. 

It must take place between members of a particular community-a community that has implicit or 

explicit collective criteria for what is worth arguing about, and how a case intended to support a 

particular position is established and evaluated [15]. Without these collective criteria, 

participants could be left arguing about apples and oranges, and proposing positions that are not 

comparable, based on support that is not considered mutually acceptable. 

The criteria for argumentation within a community can be subdivided based on their 

application to the various structural components of a line of argument: claim, grounds, and 

justification. First, criteria are required for what constitutes an appropriate claim to argue about 

within the community, as well as what makes one claim superior to another (given equivalent 

support). For example, in the scientific community it is appropriate to make a claim about the 

best way to explain how a particular natural phenomenon occurs (e.g., the lengthy process that 

creates fragile cave formations), but not a claim about how people should be required to behave 
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m relation to that phenomenon ( e.g., human access to the caves should be restricted). 

Argumentation regarding claims about whether to restrict human access might take place within a 

political policy community. 

Second, criteria are required to determine what counts as legitimate grounds (the 

information submitted to support a position), as some kinds of information may not be admissible 

at all. For example, personal beliefs or decrees by persons in positions of political or religious 

authority are never admissible as grounds in argumentation in natural science. Another set of 

criteria is used to evaluate what counts as more or less credible information to support a position. 

In other words, once information is determined to be admissible, its quality still must be 

evaluated. For example, in science, recorded measurements that were collected through 

imprecise or unreliable methods might be admissible in form, but considered of low quality and 

unlikely to be credible. 

Finally, if an appropriate claim is made, and the grounds are determined to be legitimate 

and acceptably credible, another set of criteria is used to evaluate the justification of the relative 

merits of the claim in relation to the following: 1) the grounds that are offered, and 2) any other 

information that is available and determined to be relevant. This set includes both criteria used to 

evaluate a line of argument by itself ( e.g., whether its grounds reasonably support its claim), and 

criteria used to evaluate two lines of argument in relation to each other in order to determine 

which is superior. For example, if a line of argument proposes and supports a particular 

explanation with data, that explanation may reasonably account for all of the data submitted as 

grounds for that line of argument. However, it may ultimately be judged inferior to a 

counterargument proposing another explanation that accounts for the same data, as well as 

additional data for which the first explanation cannot account. 

The Nature of Argumentation in Science--Scientific Argumentation Is Used to Develop 

Increasingly Better Explanations for the Workings of the Natural World 

As previously stated, the goals of argumentation depend on the goals of the community 

that is engaging in it, and it can focus on any of an array of contested or contestable outcomes. 

These outcomes could include an individual's guilt or innocence, the policy that would most 

benefit a society, or the best decision or course of action [16, 17]. In science and science 

education, the primary focus of argumentation is to develop, consider, and determine the best of a 
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proposed set of alternative explanations that account for observable phenomena in the natural 

world [2, 3, 18]. An explanation in science is a causal story that describes how or why a 

particular phenomenon comes to be or behave as it does. What makes an explanation distinct 

from a line of argument is that by itself, an explanation does not require support or justification. 

It is through argumentation that an explanation's quality, its ability to account for the 

phenomenon in a satisfactory manner, is determined [2]. In this section, we will outline and 

describe the components of an argument for an explanation in science, drawing on the elements 

of the conceptual framework established in the previous section. Wherever possible, we will 

illustrate these components by drawing from a single example of a seminal argument in science: 

Watson and Crick's postulation of the molecular structure of DNA [19, 20]. 

The Anatomy of an Argument for an Explanation in Science 

The Question about the Explanandum - Implicitly or explicitly, any argument begins with a 

question about which of multiple possible positions (which themselves may not yet have been 

articulated) is the best one. In science, the central arguments are motivated by a question about 

some aspect of the natural world, and the best explanation for it [2]. For example, in their 

research, Watson and Crick were immediately arguing for a particular answer to the question, 

"How are the molecules that make up DNA arranged?" This was part of a larger ongoing line of 

inquiry into the question, "Why do successive generations of organisms have similar 

characteristics?" This initial question is the clearest link between scientific argumentation and 

inquiry. If inquiry is the process of asking and investigating a question [6], then a line of 

argument is the end product of those investigations, a tentative but supported explanation that 

seeks to answer that question. 

The focus of the question is the explanandum, the phenomenon that is to be explained. 

The most important characteristic of the explanandum in scientific argumentation is that it is not 

in doubt within the community engaging in argument [2]. At the time of Watson and Crick's 

publications, the scientific community did not disagree that DNA existed, or that characteristics 

reappeared in successive generations. The explanation for the phenomenon, the account of how 

or why it happens the way it docs, is what is uncertain and therefore is subject to argumentation. 

The question that is to be answered through argumentation is therefore slightly different than the 

question about the mechanism underlying the phenomenon itself. For Watson and Crick, that 

question would be, "What is the best explanation for how the molecules that make up DNA are 

arranged?" 
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The Claim: The Superiority of a Particular Explanation - A line of argument includes a claim, a 

tentative position that is taken and supported. In argumentation around a scientific explanation, 

the claim consists of two components: the explanation itself, which must be explicitly stated, and 

the position that the explanation provided is the best account available for the explanandum. 

Watson and Crick explicitly suggested their structure was a better alternative to others already 

proposed by colleagues, which consisted of three strands, or situated the bases on the outside of 

the strand, and which they described as ''unsatisfactory" [20]. 

All explanations for phenomena are efforts to develop a more coherent causal story 

describing the mechanisms that result in the phenomenon as it is observed. Telling this story 

requires the creation or use of a cast of protagonists, entities with particular characteristics that 

interact with one another to bring about the explanandum as it exists [21]. These protagonists 

range from the observably material, such as a rolling ball, to the purely conceptual, such as the 

kinetic energy of the ball as it rolls. What science requires of these entities, regardless of whether 

they are ever observed, is that they have the same characteristics and behavior across the 

explanations in which they play a role [21]. While energy is never directly observable, it can be 

quantified across the contexts between which it is transferred, and that quantity remains ever the 

same [22]. 

Crick and Watson use van der Waals forces (weak intermolecular forces) as protagonists 

in multiple parts of their explanation of the structure of DNA [19]. The van der Waals forces 

account for why a particular configuration is or is not possible, depending on whether or not it 

violates the distance that the weak repelling forces between molecules would permit. While these 

forces and the molecules that give rise to them are not directly observable, they are important 

conceptual actors in the explanation, and the explanation depends on their consistent behavior in 

permitting only limited proximity. In their discussion, Crick and Watson foreshadowed the use of 

DNA with the structure they suggest as a protagonist in future explanations of the replication of 

genetic material, explanations that depend on the complementary strands that they proposed. 

Science is replete with these conceptual actors-gravity, electrons, energy, tectonic plate 

boundaries, charge, fields, spherical planetoids-which may not have directly observable material 

existence, but which play critical and consistent roles in explanations of what we can observe. 

Moreover, while many explanatory protagonists have maintained their utility and presence in 

scientific explanations, others have come and gone. Phlogiston, once thought by many scientists 

to play a critical role in combustion, has since vanished from their explanations. Moreover, 
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Michelson and Morley showed that the luminiferous ether was an unnecessary protagonist in 

explaining the propagation oflight [23]. 

The way that Watson and Crick's explanation suggests a causal mechanism for the 

reproduction of genetic material illustrates another important aspect of explanations: progress 

toward causality. Braaten and Windschitl provided a useful analysis of the forms of explanation 

in science based on scholarship in the philosophy of science, and offer a framework for working 

toward increasingly causal explanations in a science education setting that provides initial criteria 

for evaluating the quality of claims [24]. In general, scientific explanations should work toward 

an increasingly complete causal story for the mechanisms that lead to the explanandum as it is 

observed. To do so, they should use unobservable or theoretical protagonists and powerful 

science ideas (e.g., kinetic molecular theory) to account for the observable event. In progressing 

toward this level of causality, explanations may describe patterns in observable variables, or 

propose relations between variables without addressing underlying mechanisms or incorporating 

unseen protagonists. The authors acknowledge that there is a range of forms and standards for 

explanation across the scientific disciplines and the scholarship that has examined them. 

However, based on their work with students and pre-service teachers, they advocate and report 

initial success with a framework for explanation that presses for a progression from description of 

observable patterns toward the explication of increasingly unified underlying causes for 

observable phenomena. 

The Grounds: Data and Existing Science Ideas - A line of argument also includes grounds, the 

information used to support the claim. Where scientific arguments are concerned, we will refer to 

grounds as evidence. In scientific argumentation, evidence includes some combination of new 

data, previously existing data, and existing science ideas. Data are systematic and recorded 

observations or measurements of some aspect of the natural world [3]. A line of argument may 

include new data that was gathered for the purpose of constructing the proposed explanation, 

and/or existing data; i.e., data that is not being used as part of an argument for the explanandum 

for the first time. Evidence also includes existing science ideas, which are themselves condensed 

representations of previously gathered data. 

Research on both the nature of science and in science education support this perspective 

of ideas as evidence originally derived from data. In his analysis of the elements that distinguish 

the modem scientific culture, Latour advocates a shift in focus away from changes in ways of 

thinking or economic infrastructure [25]. Instead, he emphasizes the developments in the means 



SCIENTIFIC ARGUMENTATION AS A FOUNDATION ... 35 

by which symbolic inscriptions are produced based on empirical study, reproduced, compared, 

discarded or compiled, and synthesized. He follows the process of "the transformation of rats and 

chemicals into paper," and the process by which the resulting inscriptions are taken up and 

reproduced by scientific colleagues. His description provides a clear picture of how the 

representation of a science idea is the end product of this process of inscriptional distillation that 

began with the recording of empirical data. Similarly, in their development of the Evidence

Based Reasoning framework for science education, Brown, Furtak, Timms, Nagashima, and 

Wilson draw on Duschl to show how students analyze and interpret specific data to develop rules, 

more general statements that can be applied to other relevant circumstances though argument [26, 

27]. In the next section, we draw on their framework for developing and applying rules in 

defining reasoning in scientific argumentation. 

In their argument for the double-helical structure of DNA, Crick and Watson employ two 

kinds of evidence [19]. They use existing data, such as the x-ray images of DNA produced by 

their colleagues and the ratios of the four bases in samples of DNA from different organisms [28]. 

They also use existing ideas, such as the 3-dimensional structure of adenine, as inferred by 

Broomhead through calculations using measurements of x-ray reflection through crystalline 

samples of adenine hydrochloride [29]. They coordinate this evidence to strategically build a line 

of argument for the structure they propose as the best in relation to alternatives that have been or 

might be proposed. 

As we stated previously, information provided as grounds is subject to evaluation by the 

audience to determine whether it is legitimate and credible, and therefore acceptable as grounds 

to support a position. In order for the audience to evaluate data, the presenter must provide 

sufficient information about the methods by which it was gathered ( e.g., what specifically was 

observed or measured, what methods were used to achieve validity and reliability, and how any 

records depict or represent what was observed). In order for the audience to evaluate science 

ideas, they need information about the source of the ideas and how they were developed. If the 

ideas are drawn from sources outside the immediate experience of the audience and are subject to 

question, the audience will require more information about the source of the ideas. This could 

include either a description of the process of inference from more direct observation by which 

they were constructed, or some assurance that the people who developed them used methods that 

would be considered acceptable by the audience ( e.g., in science, the audience of a peer-reviewed 

journal relies on these assurances). For example, Crick and Watson do not describe the methods 

Broomhead used to infer the molecular structure of adenine, but provide sufficient reference 
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information that a skeptical reader could obtain a description of those methods from the original 

work [19). Some ideas, however, are so well established within a given community that they arc 

used as a taken-as-given fact. Crick and Watson repeatedly use density as an idea to support their 

arguments about the structure of DNA, but never define it [19). They reasonably assume that 

their audience likewise accepts and understands density as an established fact. 

Reasoning: Connecting Data, Ideas, and Explanation - Establishing the connections between 

the data, the ideas, and the explanation (or some component ofit) requires one of several kinds of 

reasoning, which is the presumption of particular conclusions based on the relevant grounds. 

Reasoning can be further subdivided into generalization and application: generalization is the 

construction of a general rule based on analysis and interpretation of a set of specific instances 

(data), while application uses that general rule to draw a conclusion about a specific circumstance 

determined to be relevant [26). Each form of reasoning can involve one of several kinds of 

general rules: patterns, the consistent occurrence or variation of some observable characteristic; 

causal relationships, the identification of a causal link between two variable factors; or, causal 

mechanisms, a description of the means by which one factor affects another. 

As a simple example, Crick and Watson reason that because a) tests for the presence of 

adenine in DNA have been positive and b) that adenine in samples of adenine hydrochloride has 

been inferred to have a particular structure, then the adenine found in DNA must also have that 

structure [19). Their argument for the structure of DNA involving the pairing of specific bases 

(i.e., adenine and thymine) is in part dependent on this reasoning being valid. Table 1 

summarizes these different forms of reasoning, and provides a brief example in a single context 

(the relationship between latitude and average temperature) to illustrate each. 
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Table 1 
Types of Reasonin2 with Examples 

Pattern Causal Relationship Causal Mechanism 
Inferring that a pattern more Inferring that factors are Inferring an underlying 
generally holds true, based causally related, based on a mechanism for an identified 
on a specific set of instances. correlation or a single aspect causal relationship. 

01) of disagreement (a controlled = E.g., Average temperatures E.g., Average temperatures ..... comparison). N are high in Mexico City, are lower in locations where ..... -= medium in Kansas City, and E.g., Average temperatures the Earth is more steeply lo. 
~ 

= low in Winnepeg; therefore, are lower in locations where curved; the greater 
~ 

C, temperatures are lower the Earth is more steeply distribution of direct sunlight 
further north from the curved; therefore, in steeper areas results in 
equator. temperature is causally less energy input and lower 

related to the Earth 's curve. averaS<e temperatures. 
Inferring that a general Inferring the presence of a Inferring initial conditions, 
pattern extends to a specific known associated causal processes, or results, based 
relevant instance or context. factor, based on the presence on the implications of a 

E.g., Vancouver is further 
of the other. particular mechanism. 

01) 

= north than San Francisco, E.g., Reykjavic has low E.g., Minneapolis is in a ..... 
.Q and temperatures are lower average temperatures, and location that is more steeply 
i::i. further north from the temperature is causally curved during February 
~ equator; therefore related to the Earth's curve; compared with July, and 

Vancouver has lower therefore, Reykjavic is at a more steeply curved areas 
average temperatures than steeply curved location on receive less direct sunlight; 
San Francisco. the Earth. therefore, Minneapolis is 

colder in February. 

Like the other components of a scientific argument, the reasoning that is presented is 

subject to critique by the audience. Generalization and application are each critiqued by different 

criteria. Generalization is examined for whether the rule that was inferred from specific data is 

plausible, based on the following: a) the number of specific instances examined (i.e., the sample 

size); b) the similarity between the specific instances and the categories included in the rule ( e.g., 

generalizing a rule about all mammals based on the study of rats); and, c) the existence of 

plausible alternative rules that might be generalized from the same instances. Application is 

examined for whether the rule that was used can be described in the following ways: a) relevant 

to the specific instance to which it was applied; b) was applied in a way that draws valid 

conclusions based on the rule; and, c) is accurate, in that it is consistent with accepted science 

ideas. 
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Justification: Making a Case for the Superiority of the Explanation Based on the Grounds -

Finally, a line of argument in science must provide justification for its claim that the explanation 

it provides is superior to any alternatives, based on the socially established criteria specific to the 

scientific community. These criteria can be usefully represented as critical questions that can be 

asked about a given argument for an explanation, and asked about the following: a) the argument 

in relation to other information that could be included as evidence for or against the explanation, 

b) alternative explanations that could be proposed, or c) counterarguments that have been made to 

support an alternative explanation [30]. Explicit justification included in the argument would 

take the form of responses to these questions. 

While there arc no doubt a variety of criteria that might be considered, we will focus on 

three that we suggest are central to science, and useful for science instruction. The first criterion 

is refutation, an aspect of science emphasized by philosopher of science Karl Popper, and 

represented as the critical question, "Is there evidence ( data or ideas) that conflicts with the 

explanation?" [31] The second is coherence, which is similar to the emphasis placed by 

philosophers of science on unification-the capacity of a scientific explanation to unify a range of 

related observations or ideas [32]. It is represented by the critical question, "How consistent is 

the explanation with available relevant data and accepted science ideas?" Coherence includes 

validity, whether the reasoning employed generalizes or applies rules in appropriate ways, and 

completeness, the degree to which the explanation accounts for all data or ideas that could be 

considered relevant. The third is causal depth: "How does the explanation further develop the 

causal storyline by adding elements to or relationships between the factors that underlie the 

phenomenon?" [24] Providing examples of all three criteria, Watson and Crick justify their claim 

that their explanation is superior to their colleagues' for the following reasons: la) it has greater 

causal depth-it provides a clear mechanism that holds the structure together, while their 

colleagues' docs not; 1 b) it is more nearly complete-it is consistent with existing ideas about the 

repelling forces of negative charges; and, 2) it is not refutable-it does not conflict with ideas 

about the limits of van der Waals distances [20]. 2 

It is difficult to visualize the multiple components and interrelations we've described. 

The diagram below (see Figure 2) is a representation of a portion of Watson and Crick's 

argument, in order to illustrate the specific components and their relations to each other in this 

2 The numbering scheme reflects the numbers included by the authors, but we sub-divide their 
first point as reflective of two criteria. 
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example. Given the complexity of the argument the authors presented, we had to simplify our 

descriptions of some of the evidence and relevant ideas, but we believe the essence of the 

argument is intact. Their reasoning is represented by the arrows connecting the evidence and the 

sub-components of the explanation. 

the x-ray pattern of DNA is 
Ille same for all sources of 

DNA (vims to mammal) 

the ratio of different 
nucleotides vanes from one 
source ol DNA lo ano!ller 

DNA is pseudo-hexagonal in 
cross-S!)ciioo based on x-,ay 

images 

then, rue 24 nucieoli<les in 
eve,y 30 A of DNA 

!here rue abolll 2-4 A 
between nucleotides on a 

single strand of DNA 

all DNA samples ha~ equal 
amounts of adenine and 

thymine, and of guanine and 
cytosine 

adenine ood lllymine, and 
guanine and cytosine have 

complementary structures !or 

a helical arrangement would 
all(j -,),, make nucleotides 

intercllangeoole while 
maintaining ove-rati stnsci:ure I"- lheretore 

I 
~------------ tt,ete1o!

8 

and -I a helix produces a pseudo- I 
. hexagonal cross-section . 

and-

the number of strands can 
be calculaled by dividing the 
number ol !olal nucleotides 

in a length o! DNA by the 
number o! nucleolides on a 
single strand of Iha! length 

when objects exist in pairs, 
there rue equal amounts of 

30/24= 12 
24112= 2 

each oqect rega,dless of Ille - !hereto 
number of total pairs re 

I 
1h0{e1oia 

and -I hydrogen bonds can hold r 
. molecules logelhel' . 

hydmgen bonding 

l':::::==::::==:::====::::'...----------- Evidence 

DNA is shaped like 
"helix 

DNA Is ma<Je up of 
llroslrands 

, 

' 

Hydrogen bonds 
hold pairs ot ooses I 

together i 

,---------

, 

The best explanation for Ille 
3-<limells!onal sliucitlfe of 

DNA is that ii has two helical 
sbands, connected oy 

hydmgen bonds between 
base pairs. 

-------------

C~m--------------__,. 
,,-----,This"""'' -ex-'plnna.,..--oon"'"· ---,is-.lhe---:boo-t_e_x_pla-,-n-alia""--n-('""compa--n-ed-,-to_,x_e_lflOIJS,---1 .. )..,.because ___ : ________ Jusl:ifical:ion 

1 - It is more causally deep: !he hydrogen boooing provides a mechanism tllat holds the strands together. 
2 - It is coosislent wilh the data: it proposes two strands (ralher tllan tnreej, which is conSisten! witll 
structural measurements. 
3 - It is consistent wilh existlng ideas: all of !he distances between molecules in this structure are permitted 
b van der Waals limits 

Figure 2. 
Diagrammatic representation of a portion of Watson and Crick's argument. 
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The Implications of Science Argumentation for the Design of Inquiry Activities 

If constructing better explanations for phenomena is the primary goal of scientific 

inquiry, and argumentation around alternative explanations is the means by which scientists work 

toward better explanations, then supporting students in arriving at better explanations through 

argumentation should be a high-priority goal of inquiry-based science education. Using the 

features of argumentation described thus far, we propose a set of design principles to guide 

curriculum developers and teachers in their creation of inquiry-based science learning activities 

that will strategically engage students in argumentation toward causal explanations. We will 

illustrate these principles by developing a single example drawn from our grade 6 earth science 

unit focused on the major factors that influence regional climate. A preview of the principles and 

their alignment with the features we've described is outlined in Table 2. 

Designers Should Organize Science Inquiry Learning Activities around Developing 

Increasingly Better Explanations of an Intentionally Selected Focal Phenomenon 

First, to align with the primary work of science, a significant portion of students' science 

learning and activity should be organized around developing better explanations of a launching 

focal and puzzling phenomenon and/or class of phenomena. This approach provides a specific 

explanandum that can serve as the focus of students' investigative activities and learning [33]. 

For example, in our curriculum, we use photographs and narrative to introduce students to the 

Atacama Desert, a region in South America, as presenting a puzzle. It is literally the driest place 

on Earth, receiving no annual rainfall, but is not far from the Amazon jungle, one of the world's 

wettest places. How is it that the two regions can be so close to one another, yet have such 

drastically different climates? 

While scientists can spend entire careers focused on constructing knowledge of a 

relatively narrow set of phenomena, science education aims to develop students' integrated 

understanding of the more general, broadly applicable ideas in science [3]. In learning to explain 

the Atacama Desert, it is our goal that students develop more broadly applicable ideas about 

ocean currents, prevailing winds, differential heating, evaporation and condensation, local 

topography, and their relations to regional climate. If the puzzling phenomenon provides a focus 

for students' learning, the guiding question provides the broader outer bounds. 



SCIENTIFIC ARGUMENTATION AS A FOUNDATION ... 

Table 2 

Alignment of the Core Features of Science Argumentation and Corresponding Design 
Principles for Science Inquiry Activities 

Feature of 
Science 

Areumentation 
Argumentation in 
science 1s m 
response to a 
question about an 
explanandum 

A line of argument 
makes a claim for 
a particular 
explanation of the 
explanandum 

A line of argument 
uses data and ideas 
as evidence in 
support of the 
explanation 

A line of argument 
. . 

reqmres reasomng 
that connect the 
evidence to the 
explanation 
A line of argument 
provides 
justification for the 
claim of the 
superiority of the 
explanation, based 
on: 
• Absence of 

refuting 
evidence 

Design Principles 

Students' science learning and activity should be organized around 
their developing increasingly better explanations of a launching focal 
and puzzling phenomenon and/or class of phenomena. 

Designers should construct and analyze a target explanation for the 
explanandum that is appropriate to what is expected of students at that 
grade level. 

The guiding question / explanandum I target explanation should require 
core science ideas, align with grade-level content standards, and 
connect with students' experience. 
Designers should determine the data related to the explanandum that 
students will need in order to construct the target explanation, and 
provide them as students can identify them as necessary. 

For each of the rules and the protagonists that were identified in 
analyzing the explanation, designers should identify the sources of 
evidence-both first-hand experiences and texts-that will provide a 
basis for students to infer the relevant rules, and understand the 
characteristics of the protagonists. 
Designers should identify the kinds of reasoning students will need to 
use in constructing rules and the target explanation, and create 
scaffolds to support their developing thinking. 

Students should be provided with opportunities during the unit to 
consider and critique multiple explanations ( of the focal phenomenon, 
or as part of sub-investigations) for their relative merits in relation to 
each other. 

Leaming activities should be sequenced in order to help students 
develop explanations with increasing causal depth. 

41 



42 A. FALK and L. BRODSKY 

• Coherence of 
explanation with 
available data 
and ideas 

• Causal depth of 
explanation 

Designers should provide students with periodic opportunities to 
Argumentation is a engage in more and less formally structured argumentation over the 
dialogic process course of the unit in order to work toward increasingly better 

explanations. 
Argumentation Designers should provide students with opportunities and support for 
uses socially evaluating the quality of information that might be used as evidence. 
defined criteria to Designers should provide students with opportunities during the unit to 
evaluate the merits 
of evidence, 

consider and critique multiple explanations for their relative merits in 
relation to each other, either of the focal phenomenon, or as part of 

explanations, and sub-investigations. 
lines of argument 

The guiding question is a question posed in student-accessible language that guides their inquiry 

into the mechanisms underlying the larger class of phenomena represented by the focal puzzling 

phenomenon. In the case of the Atacama Desert, an appropriate guiding question is "Why do 

different places have different weather patterns?" 

It can be easy for someone, teacher or curriculum designer, who is familiar with the ideas 

underlying a phenomenon to move quickly to incorporating those ideas into questions or 

discussion. We advocate introducing and incorporating those ideas slowly and cautiously, in a 

kind of "slow reveal" of the explanation and its protagonists. If students do not already have a 

command of the relevant underlying ideas ( e.g., the role of currents in climate), the initial focus 

should be on what is observable and most familiar (e.g., precipitation, experienced humidity). 

Just as scientists begin only with their pre-existing ideas and the observable characteristics and 

patterns relevant to a phenomenon, so should students. This ensures that students are not being 

expected to take up ideas that are unfamiliar to them before they have the opportunity to construct 

those ideas using appropriate resources. When students are incorporating these ideas into their 

explanations, they have sources and shared knowledge to draw on as they do so. 

Selecting an appropriate puzzling phenomenon and associated guiding question requires 

careful thought. The guiding question, explanandum, and corresponding explanation should 
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require core science ideas, align with grade-level content standards, and connect with students' 

experience. The phenomenon should be something that requires the use of powerful science 

ideas to adequately explain, ideas that provide a foundation for future learning, or can be applied 

to a variety of contexts. The science content required in the explanation should also be aligned 

with local and/or national science content standards so that students learn required content in the 

process of developing explanations through argument. 

The phenomenon should also be selected to serve as a source of motivation to learn. It 

should connect to authentic experiences or questions in students' everyday lives, such that they 

can reasonably be expected to already have some ideas about and investment in it. Alternately, it 

should be presentable in a classroom setting using first-hand experience or secondary 

documentation, and be sufficiently potentially puzzling, creating cognitive dissonance for 

students [34]. The Atacama Desert by itself ( or deserts more generally) is not particularly 

familiar to students, but photographs of it and the Amazon rainforest can provide some sense of 

their striking contrast, and students can help to "populate" the class of phenomena by providing 

their own examples of and questions about places with different weather patterns. In selecting 

and developing a puzzling phenomenon, designers should ask themselves the following question: 

"How can the phenomenon be directly or indirectly presented to provide students with sufficient 

information to support their understanding of the context and motivation to seek an explanation 

for it?" 

The focal phenomenon not only provides a focus for instruction, it affords an initial 

opportunity for assessment. After students are introduced to the phenomenon for the first time, 

they should be invited to explain it as best they are able based on their incoming ideas, creating 

representations of their explanations. These representations generate records of the prior 

knowledge that students see as relevant to the focal phenomenon, and can also provide impetus 

and material for subsequent investigation and argumentation. For example, in their initial 

explanations of the Atacama, students might variously attribute the difference in precipitation as 

due to differences in local winds, or differences in temperature. These initial ideas could be the 

impetus for seeking data that would support one position or the other, and create an opportunity 

for students to engage in argument around their respective positions. 

Organizing instruction and learning around questions about a focal phenomenon and a 

related class of phenomena aligns it with authentic science inquiry. Inquiry is initiated by asking 

questions, and in science it is asking questions about the workings of the natural world. The focal 
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phenomenon grounds the inquiry process in the natural world, while inviting students to pose 

their own questions in relation to it or a similar phenomenon. Choosing a phenomenon of 

scientific significance and of interest to students creates opportunities for them to learn core 

content and incorporate their own ideas and life experiences. Eliciting students' initial 

explanations supports a focus on explaining the mechanisms underlying the natural world, and 

makes their ideas a substantive part of the inquiry process from the beginning. 

Designers Should Analyze and Identify the Components of the Target Explanation 

A scientific argument supports an explanation: designers should construct and analyze a 

target explanation for the explanandum that is appropriate to the knowledge and understanding 

expected of students at that grade level. It therefore will incorporate some, but not all, of the 

potentially relevant science ideas, at an appropriate depth and level of sophistication. A given 

phenomenon could serve as the explanandum at multiple grade levels; what would vary is the 

sophistication and depth of the explanation that is set as a goal. We expect students to be able to 

explain that the Atacama Desert is as dry as it is for two primary reasons. First, prevailing 

winds blow air that contains a lot of water vapor that evaporated from the waters of the warm 

currents off the eastern coast of South America, most of which falls as rain as the wind carries it 

over the Amazon rainforest. The remainder falls on the windward side of the mountains before 

the air reaches Atacama (the rain shadow effect). Second, the waters of the cold currents on the 

western coast evaporate very little water vapor into the air above them. The water vapor that 

does evaporate is carried away by prevailing winds, or does not reach the Atacama due to a 

similar rain shadow effect. If we expected greater detail or causal depth, however, we might 

also ask students to explain the role of energy and molecular movement in the differing rates of 

evaporation or the rain shadow effect. 

A scientific explanation is not monolithic; it includes a variety of protagonists, and a 

senes of events or interactions that involve them. For example, an early component of the 

Atacama Desert explanation is liquid water evaporating at a relatively high rate from the water of 

a warm Atlantic current, to become water vapor suspended in the air. This component idea is 

only a fragment of the full explanation, but by itself represents a complex process. Students will 

have to come to understand the protagonists and their characteristics (e.g., currents, temperature, 

water vapor, evaporation) and what rules describe their interactions ( e.g., at the higher 

temperatures of warm currents, more water becomes water vapor through evaporation). To 

design learning activities that will lead to students successfully constructing and supporting the 
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target explanation, designers should deconstruct the explanation into its component ideas in order 

to analyze them. 

For each of the component ideas that make up the target explanation, designers should 

determine what protagonists and rules are involved, and what resources students will use to build 

an understanding of them. First, the designer should identify the protagonists, the actors involved 

in the target explanation. Referring back to our summary of the Atacama target explanation, the 

primary protagonists are highlighted in bold. Next, the designer should identify any rules that 

students will need to infer by reasoning from the data provided related to the focal phenomenon. 

For example, although they do not do so during the unit, students need to recognize that annual 

precipitation in South American cities decreases from east to west toward the Atacama, and infer 

that this means the amount of water vapor in the air is moving as the prevailing wind is 

decreasing. Finally, the designer should identify the rules that students will need to apply in 

constructing the explanation because they arc relevant to the circumstances, such as the 

relationship between temperature and evaporation rate. These rules will be the foci of 

instructional activities (the intermediate learning goals) as students work toward a complete 

explanation. 

Designers Should Identify Sources of Evidence for the Explanation and Relevant Rules 

A scientific argument typically uses specific data to support the explanation offered as 

being the best available. Designers should determine the data related to the explanandum that 

students will need in order to construct the target explanation, and provide them as students can 

identify them as necessary. For example, for students to explain the primary factors affecting the 

climate of the Atacama Desert, they would need data representations for South America's 

precipitation, temperature, topography, prevailing winds, and local ocean surface current 

movement and temperature. Just as science ideas should not be introduced or incorporated until 

students have need of them as they construct the explanation, the different types of data should 

not be introduced until students are in a position to identify them as relevant. For example, until 

students are familiar with the idea that a given region has prevailing winds that reliably blow in a 

particular direction, they will have difficulty interpreting a map representing them, or understand 

its significance. 

Another important possibility to consider is providing students with more data than is 

necessary or immediately relevant to explaining the focal phenomenon, either by including 

superfluous data points in the representations of relevant data ( e.g., the annual precipitation of a 
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city far from the Atacama, and not aligned with the prevailing winds), or representations of data 

that might be seductive but is irrelevant to constructing the explanation (e.g., the population 

density of South America). Providing these kinds of data will likely increase the cognitive 

demand on students in constructing their arguments, but it also creates opportunities for them to 

develop and demonstrate important science practices in identifying relevant data to use as 

evidence [18]. Grounding any final explanation of the focal phenomenon in data emphasizes 

important aspects of science inquiry; it gives priority to evidence as students construct their 

explanations, and provides a culminating opportunity for them to analyze and interpret data 

relevant to the unit focus. 

For each of the rules and the protagonists identified in analyzing the explanation, 

designers should identify the sources of evidence-both first-hand experiences and texts-that 

will provide a basis for students to infer the relevant rules, and understand the characteristics of 

the protagonists. Some rules can reasonably be generalized based on hands-on investigations in 

the classroom setting. Of these, some can be constructed using data gathered through direct 

investigation in the classroom setting; these activities afford students the opportunity to design 

and conduct first-hand investigations themselves, an important aspect of science inquiry. For 

example, to generalize a rule about the relationship between water temperature and evaporation 

rate, students could measure the surface level in containers of water kept at different 

temperatures, observing that the level decreased more in containers kept at higher temperatures. 

An important consideration for these activities will be the tools and techniques that students will 

require to gather data. If sophisticated methods are required, designers should build in 

opportunities for students to become familiar with them. Some methods, whether procedural or 

analytical, can be introduced through model texts, which describe scientists using the methods for 

authentic purposes [34]. 

Other rules will be generalizable based on physical models that function similarly to 

corresponding real-world phenomena. Students can infer rules from hands-on investigation of 

these models, but will need support in analyzing how the model is similar and different in 

comparison to what it is modeling. Any rules they infer should only be based on aspects that are 

similar. For example, when students learn about the factors that influence the movement of 

surface ocean currents, they model the currents in a small tank of water, creating "wind" by 

blowing through straws and observing the water movement in and around foil "continents." 

Students can conclude that wind and continent shape influence surface currents, but also need 
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support in recognizing that the winds do not blow in arbitrary directions-there are prevailing 

patterns in winds that in tum create patterns in surface currents. 

Not all questions are directly investigable in a classroom setting, and students can learn 

important content and practices by analyzing and critiquing secondary data [35]. Designers 

should identify rules that arc best inferred though second-hand investigation using texts that 

provide data and describe the methods used to gather it [34]. This includes rules that are derived 

from contexts that are inaccessible or use methods that are not feasible. For example, when 

students learn about evaporation and ocean currents, they analyze maps that show evaporation 

rates and the movement of surface currents of different temperatures. They identify patterns 

across the maps, and infer a general rule about the relationship between current temperature and 

evaporation rate. The maps summarize authentic data that would never be feasible for students to 

collect themselves, and allow them to engage in an analysis of the data and derive an accurate 

general earth science principle in context. 

A common misinterpretation of constructivist learning theory is that students must 

discover all science knowledge for themselves, essentially inferring all of the rules and 

protagonists that make up currently accepted science knowledge [36]. It is hardly pragmatic for 

students to do so, and such an approach would not prepare them to make sense of science texts 

presenting abstract ideas, which will be common in their future experiences as learners and 

citizens. Designers should determine which protagonists or rules need to be introduced to 

students through expository text or other representations, because they are not directly observable 

and will be difficult to infer. They can then select texts and design activities to support students 

in making sense of the text, integrating the protagonists into the rules and explanations, and 

applying the rules to specific scenarios. For example, we decided that molecular interactions in 

evaporation and condensation are too much for students to infer on their own, and introduce them 

through a set of texts and animations. Students are then prompted to incorporate these new 

protagonists into predictions and explanations that involve phase changes of water, drawing on 

the information sources as appropriate. Drawing from a variety of sources of data, generated 

through first-hand investigation and interpreted from text, reflects the view of inquiry as a diverse 

set of practices [5]. 

Designers Should Identify Reasoning and Design Scaffolds to Support It 

Finally, having analyzed the explanation, the data supporting it, and the means by which 

students will construct the rules they need to understand to explain the focal phenomenon, 
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designers should identify the kinds of reasoning students will need to use in constructing rules 

and the target explanation, and create scaffolds to support their developing thinking. Reasoning 

in the construction of evidence-based explanations is a vital part of inquiry that can be 

particularly challenging for students [3 7]. Designers should identify the reasoning that students 

will need to use in generalizing the rules that they will ultimately use in their explanation. For 

example, students observe and record the behavior of balloons filled with water of different 

temperatures and salinities when placed in a tank of room temperature fresh water. From this 

data, they need to infer the general patterns that colder water sinks in warmer water, and saltier 

water sinks in fresher water. They are then introduced to the protagonist density and the relative 

densities of the different types of water, and must incorporate density with the patterns to 

construct a causal relationship. Designers should also identify the kinds of reasoning students 

will need to use in applying rules to construct the target explanation. For example, students need 

to apply the rain shadow effect to explain the lack of precipitation in the Atacama Desert, 

attending to the mountain range bordering the Desert, and the prevailing winds that blow 

perpendicularly to it. 

Having identified the reasoning that will be required, designers should create scaffolds 

that will be provided and faded to support students in reasoning in the ways identified and in 

articulating their reasoning clearly. For example, once students have learned about the rain 

shadow effect, they examine several hypothetical situations, determining whether or not the effect 

is likely to be responsible for a particular dry region. In doing so, they are practicing identifying 

situations in which the rule is applicable. When writing arguments, they are provided with 

sentence stems that structure explicit articulation of reasoning: "We know that the rain shadow 

effect occurs when ... We can see from the data that ... Therefore ... " In addition, when first 

using a reasoning in a particular way, the teacher explicitly names that kind of thinking, and 

encourages students to name it thereafter. "We are looking at each situation to decide whether or 

not the rain shadow effect can help us explain why the area is so dry. In science, we call using an 

idea to conclude something about a relevant situation application of that idea." 

Designers Should Provide Students with Opportunities to Learn about and Practice 

Evaluating Lines of Argument in Science Using Explicit Criteria 

Because the quality of a line of argument ultimately rests on the quality of its grounds, 

designers should provide students with opportunities and support for evaluating the quality of 

information that might be used as evidence. These opportunities can take multiple forms as 

students develop understanding and facility. Students should first be provided with models of the 
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thinking involved in evaluating sources, including the teacher explicitly modeling the process 

with a source used by the class, and/or model texts that show scientists engaged in evaluating 

information-procedures, data, or informational text-for legitimacy and credibility. Students 

can then be provided with opportunities to evaluate and choose between sources of evidence to 

use to answer an explanatory question, where the sources differ in quality. Furthermore, students 

should have opportunities to critique provided arguments based on the credibility of information 

that is used as evidence, or the transparency regarding the source ( or lack thereof) that allows for 

critique. 

Designers should also provide students with opportunities during the unit to consider and 

critique multiple explanations for their relative merits in relation to each other, either of the focal 

phenomenon, or as part of sub-investigations. The teacher should have access to multiple 

explanations that could be introduced to and evaluated by students, but also be in a position to 

capitalize on different explanations generated by students. We mentioned previously that having 

students represent their initial explanations of the focal phenomenon can provide multiple 

explanations for comparison. Any provided explanations should vary in ways that allow one to 

be identified as superior, based on the criteria for justification. They could differ in causal depth, 

with one explanation extending further than the other. They could differ in refutability, where 

one explanation conflicts with some available evidence. They could differ in coherence, with one 

explanation accounting for more of the available evidence than the other. Also, they could differ 

in the credibility of the evidence, with one explanation drawing on evidence that is more credible 

in some way (this is similar to students' critique of arguments we described in the previous 

paragraph). 

Comparing multiple explanations presents an opportunity to specifically confront 

alternative conceptions held by students that can be resolved through argumentation; these 

explanations could be developed based on alternative conceptions reported in the literature or 

from common ideas that have been generated by students in other classes [38]. It is important, 

however, that these explanations be refutable based on evidence that the class has or could obtain. 

If students don't already have access to the information necessary to refute it, deciding between 

multiple explanations might require a return to investigation to gather relevant data. For example, 

one explanation students might offer for the sinking of a saltwater balloon is because it is denser 

than a freshwater balloon. Another explanation could be because the saltwater balloon weighs 

more. If students have read an expository text about density and sinking and floating, they could 

critique the second explanation based on consistency with available information. If they have yet 
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to read such a text, they could return to investigation, comparing a smaller saltwater balloon that 

weighs less to a freshwater balloon that weighs more-which could then motivate the reading of 

the expository text to introduce density as a protagonist. 

Designers Should Create Iterative Opportunities for Students to Engage in Argumentation 

to Develop and Refine Their Explanations of the Focal Phenomenon 

Leaming to critique sources of evidence and explanations prepares students to construct 

and critique lines of argument in more holistic and iterative ways. To emphasize the dialogic 

nature of argumentation, designers should provide students with periodic opportunities to engage 

in more and less formally structured argumentation over the course of the unit in order to work 

toward increasingly better explanations. These opportunities can include the following: casual 

discussions about how newly constructed rules or newly acquired data support or suggest 

revisions to current explanations; structured discussions for which students have time to prepare a 

particular explanation and marshal evidence for it before talking with their peers in small or 

whole-group settings; or, a scaffolded process in which students create and critique written 

arguments with their peers. Supporting these kinds of interaction require cultivating a classroom 

community that treats each argument as a collaborative effort to work toward the best explanation 

by testing multiple possibilities against evidence and criteria. This perspective on argumentation 

differs from many students' everyday perspectives on argumentation, which often view it as an 

emotionally loaded situation in which individuals feel hesitant to risk being attacked or being 

wrong [15]. 

To support students' re-conceptualization of argumentation, designers should include 

regular opportunities for students to revisit and revise their arguments about the focal 

phenomenon. Students may revise their arguments in multiple ways, and should have support for 

all that might be relevant at a particular point in the unit. They may revise their explanation to be 

consistent with any relevant rules that they have developed since their previous explanation. New 

rules may also prompt students to identify data that they require that is relevant to the 

explanation; designers should anticipate when students might do so, and ensure that the data is 

available in resources already available to them, or can be provided by the teacher. Moreover, 

students should justify explicitly how and why a new explanation is better than previous and/or 

alternative explanations. The process of revisiting and revising their arguments provides students 

( and teachers) with evidence of their developing understanding of the focal phenomenon, as well 

as experience using an explicit set of criteria to assess and improve that understanding. 
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Designers should determine a sequence of learning activities that will afford 

opportunities for students to improve and refine their explanations of the focal phenomenon 

through a connected series of investigations. While there are no doubt multiple ways to achieve 

this, we suggest that learning activities should be sequenced in order to help students develop 

explanations with increasing causal depth. This means beginning with the focal phenomenon 

and moving "backward," using the answer to one question to generate the next, extending the 

causal story, or identifying new relationships between protagonists. For example, presenting the 

contrast between the Atacama and the Amazon prompts the question "Why is one area drier than 

the other?" A brief analysis of precipitation data might then prompt the question "Where does the 

rain come from?" which in turn leads to "Where docs water vapor come from?" Mapping back 

through the causal story in this way corresponds to the way in which findings often generate new 

questions in science [7]. 

An approach that organizes instruction around opportunities for students to work toward 

better explanations of a focal phenomenon through guided inquiry and argumentation offers dual 

benefits. It not only creates opportunities for students to develop an understanding of core 

science ideas, but it does so by their engaging in and developing facility with the fundamental 

practices of inquiry science. Students ask and pursue answers to questions about the workings of 

the natural world. Students conduct investigations and analyze texts in order to generate new data 

and identify relevant credible information. They analyze the data and ideas to use as evidence in 

supporting or revising their explanations based on a critique using common criteria and, in doing 

so, develop new science knowledge which in turn leads to new questions. We recognize that 

there are other practices that can and should be incorporated into students' learning, such as 

engineering and design, but we propose that explanation and argumentation should be a dominant 

focus, as multiple practices fundamental to inquiry ( questioning, investigating, gathering and 

analyzing data, modeling, critiquing and interpreting texts) can all be incorporated as authentic 

tools in arguing toward better explanations [18]. 

Conclusion 

If inquiry is important for the critical thinking skills it teaches, the training of citizens in a 

democracy for making evidence-based decisions, and for preparing some students to make 

science a vocation, then finding a way to coherently embed inquiry in school science is essential. 

Designing units around a scientific argument connects the practices of inquiry to the content and 

to each other in a meaningful way. By focusing on the construction of a scientific argument, 

students will not be learning just procedures or discrete facts, but will be practicing critical 
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thinking skills as they address a question, and seek and evaluate evidence to construct 

increasingly complex explanations. It is this type of critical thinking that is needed to make 

choices outside of the classroom as well. Throughout a unit of argumentation, the role of the 

student will be to question assumptions and to think not just about finding a right answer, but 

about finding the best answer that relies on the best available evidence. Leaming to critique and 

to weigh alternatives are invaluable skills that are applicable well beyond the science class. 

Finally, by participating in the co-construction of these classroom explanations, students will 

have a better appreciation for the nature of scientific knowledge. Understanding the process of 

communal knowledge construction practiced by scientists will provide students with real 

preparation for pursuing a career in science, and will better equip them to evaluate the science 

they encounter as they make decisions in their lives. 

While these design principles are grounded in a coherent conception of scientific 

argumentation and provide initial guidance in constructing learning activities, continued 

empirical testing with students is a critical next step. As students attempt to explain focal 

phenomena using the data they gather and ideas they have derived from interpretation of text, 

new opportunities and challenges will become evident. Analysis of how students work to take up 

the practices and values of science in their efforts to explain the natural world will reveal areas of 

unexpected promise and difficulty. 
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