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Coordinating Editor's Remarks 

The Virginia Mathematics and Science Coalition appointed a task force to study how 

inquiry-based teaching and explicit nature of science instruction will improve student learning in 

science. In 2010, the Coalition endorsed the "Scientific Inquiry and the Nature of Science Task 

Force Report." The Report provides working definitions for both scientific inquiry and the nature 

of science, describes the rationale for teaching about these important aspects of science, and 

outlines how scientific inquiry and the nature of science may be effectively addressed in K-12 

classrooms. This Report is available here and on the Coalition website (www.vamsc.org). 

Numerous national reports from the National Science Education Standards (National 

Research Council, 1996) to A Framework for K-12 Science Education: Practices, Crosscutting 

Concepts, and Core Ideas (National Research Council, 2012) call for inquiry-based science 

teaching and learning. This Special Issue on Scientific Inquiry and the Nature of Science in The 

Journal of Mathematics and Science: Collaborative Explorations describes creative instructional 

approaches for inquiry in the science classroom and practical help for teachers as they conduct 

inquiry-based teaching and learning. 

Teaching students to inquire, think critically, and understand the nature of science are 

among the most important things we do as science teachers. The ability to inquire, using logical 

reasoning and critical analysis, is a crucial skill for all citizens. This Special Issue explores 

inquiry-based teaching strategics and classroom activities that help students develop the skills 

needed for the twenty-first century. 

The Report and these articles address the following questions: How do you define 

inquiry? What are essential features and principles of inquiry? Are there different kinds or levels 

of inquiry? How do learners engage in scientifically-oriented questions of public significance 

and-utilizing available community resources-give priority to evidence in responding to 

questions, formulate explanations based on evidence, connect explanations to scientific 

knowledge, and communicate and justify explanations with their peers and the larger public 

domain? What evidence is there of successful teaching of science inquiry skills and of students 

having been successful in learning these skills? 



The articles are practical applications of inquiry, reviews of literature, theoretical, and 

policy oriented. Inquiry activities, the theoretical base, student responses, challenges faced, 

methods of research, research outcomes, and lessons learned are described. We believe that the 

publication in this Special Issue on Scientific Inquiry and the Nature of Science in The Journal of 

Mathematics and Science: Collaborative Explorations of refereed papers describing work in 

progress and preliminary research findings will have great value to the field. 

Advisory Panel 

Donna R. Sterling, Professor of Science Education, George Mason University 

Eric Rhoades, Director of Office of Science & Health Education, Virginia Department of 

Education 

Wendy M. Frazier, Associate Professor of Science Education, George Mason University 

Reuben Farley, Professor of Mathematics Emeritus, Virginia Commonwealth University 
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EXECUTIVE SUMMARY-TEACHING ABOUT SCIENTIFIC INQUIRY AND 
THE NATURE OF SCIENCE 

VIRGINIA MATHEMATICS AND SCIENCE COALITION 
TASK FORCE 

May 11, 2010 

Science education reform efforts emphasize teaching science for all Americans, and 

identify scientific literacy as a principal goal of science education. However, developing 

scientific literacy requires a broader view of science that includes three principal components: 

the knowledge of science, the methods of science, and the nature of science. 

• Scientific knowledge includes all of the scientific facts, definitions, laws, theories, and 

concepts we commonly associate with science instruction. 

• The methods of science refer to the varied procedures that scientists use to generate 

scientific knowledge. 

• The nature of science depicts science as an important way to understand and explain 

what we experience in the natural world, and acknowledges the values and beliefs 

inherent to the development of scientific knowledge. 

Since scientific knowledge is thoroughly covered in the Virginia Science Standards of 

Learning (Virginia Department of Education, 2010) and Curriculum Framework for the Virginia 

Standards of Learning (Virginia Department of Education), the purpose of this Task Force Report 

is to more clearly define scientific inquiry as a method of science and the nature of science. 

The National Science Education Standards (NRC, 1996) provide guidelines for what 

students need to understand about and engage in scientific inquiry. Note that there are two 

facets to scientific inquiry. First, students should be able to understand about the nature of 

scientific inquiry as well as the attitudes and abilities they should develop by actively engaging in 

inquiry. Inquiry also refers to the instructional approaches that enable teachers to teach science 

concepts through inquiry. When evaluating whether an activity involves students in scientific 

inquiry, two questions are relevant: 

1) Docs the activity include a research question? 
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2 VIRGINIA MATHEMATICS AND SCIENCE COALITION TASK FORCE 

2) Do students engage in data analysis to answer the research question? 

Effective science teaching also requires teaching about the nature of science. Research 

has provided a clear picture of the appropriate aspects of the nature of science which should be 

taught in the K-12 setting: 

1) Scientific knowledge is empirically based. 

2) Scientific knowledge is both reliable and tentative. 

3) Scientific knowledge is the product of observation and inference. 

4) Scientific knowledge is the product of creative thinking. 

5) Scientific laws and theories are different kinds of knowledge. 

6) Scientists use many methods to develop knowledge. 

7) Scientific knowledge is, to a degree, subjective. 

Providing an accurate understanding of the nature of science helps students identify the 

strengths and limitations of scientific knowledge, develop accurate views of how science differs 

from other ways of knowing, and helps students delineate the types of questions science can and 

cannot answer. Research indicates that effective nature of science instruction is explicit, set 

within a meaningful context, and linked to relevant process skills. Furthermore, teaching the 

nature of science and inquiry in tandem with scientific knowledge encourages students to 

develop scientific habits of mind that will enable them to be effective decision-makers beyond the 

classroom. 



SCIENTIFIC INQUIRY AND THE NATURE OF SCIENCE TASK FORCE 
REPORT 

VIRGINIA MATHEMATICS AND SCIENCE COALITION 
TASK FORCE 

PREFACE 

Charge from VMSC - On October 6, 2009, the Virginia Mathematics and Science Coalition 

directed the science committee to establish a task force to write a report to present to local 

education agencies (LEA), Department of Education (DOE), Board of Education (BOE), and 

policymakers on how inquiry-based teaching and explicit nature of science instruction will 

improve student learning in science. This Report includes, but is not limited to, what scientific 

inquiry and the nature of science are, why teach them, and how to teach them effectively. 
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TEACHING ABOUT SCIENTIFIC INQUIRY AND THE NATURE OF SCIENCE: 
TOWARD A MORE COMPLETE VIEW OF SCIENCE 

Science education reform efforts emphasize teaching science for all Americans, and 

identify scientific literacy as a principal goal of science education [l, 2]. Scientific literacy has 

been defined in many ways, but generally refers to the ability to read and understand media 

accounts of science and scientific issues [3]. Additionally, scientific literacy involves the ability 

to make informed decisions on socio-scientific issues. Ultimately, scientific literacy addresses 

the need for citizens to actively participate in a technologically advanced democracy [4]. 

Achieving scientific literacy requires more than teaching and learning science as a body 

of knowledge. Rather, developing scientific literacy requires a broader view of science that 

includes three principal components: the knowledge of science, the methods of science, and the 

nature of science (see Figure 1 ). Scientific knowledge, the most familiar component of scientific 

literacy, includes all of the scientific facts, definitions, laws, theories, and concepts we commonly 

associate with science instruction. The methods of science refer to the varied procedures that 

scientists use to generate scientific knowledge. While these methods can be very complex, K-12 

science instruction typically focuses on the more basic inquiry skills, including observing, 

inferring, predicting, measuring, and experimenting. Additionally, scientific inquiry refers to a 

specific instructional approach in which students answer research questions through data analysis. 

The nature of science is the most abstract and least familiar of the three components of scientific 

literacy. The nature of science addresses the characteristics of scientific knowledge itself and is 

perhaps easier described than defined. It depicts science as an important way to understand and 

explain what we experience in the natural world, and acknowledges the values and beliefs 

inherent to the development of scientific knowledge [5]. These three essential components of 

scientific literacy are highly interrelated and K-12 science instruction should reflect the synergy 

that exists among scientific knowledge, methods of science, and the nature of science. Finally, a 

basic understanding of mathematics and the nature of mathematics is one additional, necessary 

component to develop scientific literacy among students [6]. 

The Virginia Science Standards of Learning address each of the three principal 

components of scientific literacy [7]. The majority of standards in each content area focus on 

scientific knowledge. Science methods and process skills are primarily addressed in SOL X. l of 
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6 VMSC TASK FORCE 

each content area or grade level. These methods and process skills in combination with scientific 

knowledge are used to perform scientific inquiry, where students investigate aspects of the world 

around them and use their observations to construct reasonable explanations. Standards of 

Learning X. l also briefly refers to the nature of science. However, to understand more 

specifically what should be taught about the nature of science, one must refer to the Curriculum 

Framework for the Virginia Standards of Learning [8]. 

The purpose of this Task Force Report is to provide working definitions for both 

scientific inquiry and the nature of science, describe the rationale for teaching about these 

important aspects of science, and outline how scientific inquiry and the nature of science may be 

effectively addressed in K-12 classrooms. 

/ 
The Methods 

of Science 

Observing 

Measuring 

Inferring 

Predicting 

Classifying 

Hypothesizing 

Experimenting 
rnnrh,tiino 

The Knowledge 

of Science 

.. 
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Etc. 

The Nature 

of Science 

Scientific knowledge is 
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Scientific knowledge can 

change over time. 

Creativity plays an 

important role in 

science. 

Figure 1. Three components of scientific literacy. 
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What Is Scientific Inquiry and Why Teach It? 

Inquiry is at the heart of the scientific enterprise and, as such, demands a prominent 

position in science teaching and learning. The National Science Education Standards (NSES) 

refer to two important aspects of inquiry that arc important to science instruction: 

Scientific inquiry refers to the ways in which scientists study the natural world 

and propose explanations based on evidence derived from their work. Inquiry 

also refers to the activities of students in which they develop knowledge and 

understanding of scientific ideas, as well as an understanding of how scientists 

study the natural world [2]. 

Engaging students in scientific inquiry is an important component of science instruction that 

helps students develop scientific literacy and provides them with the opportunity to practice 

important science process skills in addition to critical thinking and problem solving skills. 

Furthermore, research suggests that engaging students in scientific inquiry can lead to 

achievement gains in science content understanding, and critical thinking and problem solving 

skills [9]. 

The NSES describe both the essential understandings students should have about inquiry 

and the essential abilities necessary for students to do scientific inquiry [2]. According to the 

NSES, students should understand the following: 

• scientists use many methods to conduct a wide variety of investigations; 

• scientists rely on technology and mathematics; and, 

• scientific explanations must be logically consistent, abide by rules of evidence, be 

open to questions and modification, and be consistent with current scientific 

knowledge [2]. 

In order to engage in scientific inquiry, the NSES propose that students should do the following: 

• design and conduct scientific investigations; 

• use technology and mathematics; 

• formulate and offer explanations using logic and evidence; and, 

• communicate and defend a scientific argument [2]. 

One way to think about inquiry is of a coin with two distinct sides. On one side is the 

content that students need to learn, including what students should be able to understand about the 
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nature of scientific inquiry, as well as the attitudes and abilities they should develop by actively 

engaging in inquiry. Standard X. l of the Virginia Science Standards of Learning focuses on this 

aspect of inquiry [7]. On the other side of the coin are the teaching approaches and learning 

strategies that enable teachers to teach science concepts through inquiry. While it is very 

important for teachers to be familiar with and incorporate Standard 1 in their instruction, they also 

need practical strategies for evaluating curriculum materials that are inquiry oriented and 

strategies for revising those that are not. Therefore, at its core, inquiry instruction can be defined 

simply as "an active learning process in which students answer a research question through data 

analysis" [10]. 

Teaching Scientific Inquiry 

Far too often, teachers equate inquiry instruction with hands-on activities. While inquiry 

instruction is student-centered in that students are actively engaged, not all hands-on activities 

promote inquiry. Conversely, not all inquiry activities must be hands-on. It is possible for 

students to engage in inquiry through analyzing existing data, without the need for hands-on data 

collection. Many teachers believe that, in order for students to engage in inquiry-oriented 

activities, they must design investigations and carry them out on their own. This perception is too 

narrow. Students cannot be expected to design and carry out valid investigations without 

substantial support and instruction. Therefore, teachers should scaffold inquiry instruction to 

enable students to develop their inquiry abilities and understandings to the point where they can 

confidently design and conduct their own investigations from start to finish [ 11]. Further, 

instructional objectives should play a significant role in the design of an inquiry-based activity for 

a particular lesson. Luft, Bell, and Gess-Newsome provide content-specific examples of inquiry 

lessons that provide varied levels of support by teachers and are appropriately aligned with 

instructional objectives [12]. In some lessons, it might be best for students to learn a science 

concept inductively through inquiry-based experiences. For other lessons, the focus may be on 

developing specific inquiry skills, such as measuring and using lab equipment to collect data. 

Is It Inquiry? - The primary question to consider when determining whether an activity is 

inquiry-based is: Are students answering a scientific question through data analysis? Many 

worthwhile hands-on activities traditionally performed in science classrooms do not involve 

students in these essential components of inquiry. For example, constructing a model of the 

atom, organizing a leaf collection, or building a soda-bottle water rocket can all be excellent 

instructional activities. However, unless these activities involve research questions and the 

opportunity to analyze data, they do not qualify as inquiry activities. 
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Thus, when evaluating whether an activity involves students in scientific inquiry, the first 

question for teachers to ask is: Does the activity include a research question? Specifically, does 

the activity include a research question that can be answered through a scientific investigation? 

Appropriate research questions include the following examples: 

• Does the moon rise and set at the same time every night? 

• How does concentration influence the rate of a particular reaction? 

• What effect does the intensity of light have on plant growth? 

Each of these questions can be answered through analysis of observational or experimental data. 

Note that scientific questions may be posed by the teacher or students, depending on the specific 

goals of the lesson and abilities of the students. 

The second critical question in evaluating whether an activity supports inquiry is: Do 

students engage in data analysis to answer the research question? Activities in which students are 

simply gathering information from secondary sources via the Internet or library research are not 

inquiry activities. Students must analyze data themselves. Note, however, that students do not 

necessarily need to collect their own data in order to satisfy this condition. Data can be presented 

by the teacher to students for analysis or obtained from other sources, such as the Internet or a 

simulation. At the heart of this question is "Are students doing their own data analysis to draw 

conclusions and answer the research question?" It is essential to note that activities engaging 

students in pure observation may be inquiry-based if they meet the above criteria. It is not 

necessary for students to design and carry out experiments in order to do inquiry. 

Scaffolding Inquiry Activities - When considering activities that fit the two conditions for 

inquiry, it is important to realize that not all inquiry activities are equivalent. Herron identified 

four levels of openness for inquiry in science activities [13]. Based partly on Herron's work, 

Rezba, Auldridge, and Rhea developed a four-level model of inquiry instruction, which was 

subsequently modified by Bell, Smetana, and Binns [10, 14]. This model of inquiry instruction 

illustrates how inquiry-based activities can range from highly teacher-directed to highly student

directed, based on the amount of information provided to the student (see Figure 2). 
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How much information is given to the 
student? 

Level of Inquiry Question? Methods? Solution? 

Teacher-Directed 1- Confirmation ,/ ,/ ,/ 

I 2- Structured ,/ ,/ 

3- Guided ,/ 

Student-Directed 4- Open 

Figure 2. Four-level model of inquiry (10]. 

Level 1 and Level 2 activities are characterized as "low level" inquiry activities. They 

are often referred to as "cookbook labs," in that the procedure is typically laid out for students in 

a step-by-step sequence. Level 1 inquiry activities provide students with the research question 

and the method through which the research question can be answered. Additionally, the expected 

answer to the research question is known in advance. In these activities, students are confirming 

what is already known. Level 2 inquiry activities, referred to as structured inquiry, are those in 

which students are given a research question and the prescribed procedure, but the answer to the 

research question is not known in advance. Note that a Level 1 activity can easily be changed to 

a Level 2 activity by changing when students do the activity with respect to instruction. For 

example, if students are taught a concept that provides them with the expected results of an 

inquiry activity before they perform it, the activity would be considered a Level 1. However, if 

the inquiry activity is completed prior to learning the concept such that students do not know the 

expected outcome, it would be considered a Level 2 activity. 

Level 3 and Level 4 inquiry activities arc characterized as "high level" inquiry activities, 

as they require significant cognitive demand on the part of the student. In Level 3 inquiry 

activities, students are presented with a teacher-posed research question, but students devise their 

own methods and solutions to answer the question. In this "guided inquiry," students practice 

research design. A Level 1 or Level 2 inquiry activity can be transformed into a Level 3 activity 

by having students develop their own, teacher-approved method to answer the research question. 
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Level 4 inquiry activities are those in which students are responsible for choosing the research 

question, designing their own procedure for answering the question, and developing their own 

solutions to the research question. Only after students have completed activities at the first three 

levels are they prepared to tackle the open inquiry of Level 4. 

By varying the amount of information provided to students, teachers can scaffold inquiry 

activities for their students over the course of the academic year. T eachcrs can model the process 

of scientific inquiry for students by beginning the year with Level 1 and Level 2 activities, 

eventually introducing Level 3 activities and Level 4 activities. By gradually transferring the 

amount of ownership and responsibility of inquiry activities to students, teachers can reduce the 

support provided to students during inquiry instruction to the point where students are ready to 

successfully design and conduct their own scientific investigations [10]. Appendix A 

provides a list of resources for inquiry activities, including examples of inquiry activities 

at each of these levels. 

What Is the Nature of Science? 

Understanding and actively engaging in scientific inquiry is only part of the picture when 

it comes to developing scientific literacy. Equally important is an understanding of the nature of 

science, or "science as a way of knowing." The nature of science has been defined in a variety of 

ways, and these definitions are hotly debated among philosophers and sociologists of science 

[15]. Some science educators have defined the nature of science as "the values and assumptions 

inherent to the development of scientific knowledge" [16]. One assumption central to the 

scientific enterprise is that the universe is knowable. Many of the assumptions and values related 

to the scientific endeavor are too abstract and esoteric to be meaningful to K-12 students [ 17]. 

Therefore, the major science education organizations have delineated the nature of science 

concepts that should be addressed in K-12 classrooms [1, 2, 18]. These documents paint a 

consistent picture of the nature of science that is most appropriate for developing scientific 

literacy among students, and there is little debate over these key components of the nature of 

science appropriate for K-12 instruction [19, 20]. The following is a brief description of seven 

key characteristics of the nature of science. 

1) Scientific knowledge is empirically based-"Empirical" refers to knowledge 

claims based upon observations of the natural world. While some scientific ideas 

are theoretical and are derived from logic and reasoning, all scientific ideas must 
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ultimately conform to observational or experimental data. Empirical evidence, in 

the form of quantitative and qualitative data, forms the foundation for scientific 

knowledge. 

2) Scientific knowledge is both reliable and tentative-Scientific knowledge 

should not be viewed as absolute, but tentative and revisionary. For example, 

many scientific ideas have remained largely unchanged over long periods of 

time; however, scientific knowledge can change in light of new evidence and 

new ways of thinking. New scientific ideas are subject to skepticism, especially 

if they challenge well-established scientific ideas. Once generally accepted by 

the scientific community, scientific knowledge is durable. Therefore, it is 

reasonable to have confidence in scientific knowledge while still recognizing that 

new evidence may result in changes in the future. Related to the tentative nature 

of science is the idea that regardless of the amount of empirical evidence 

supporting a scientific idea (even a law), it is impossible to prove that the idea 

holds for every instance and under every condition. Einstein's modifications to 

the well-established Newtonian Laws are a classic case in point. Thus, "Truth" 

in the absolute sense lies outside the scope of science [21]. Scientific laws do not 

provide absolutely true generalizations; rather, they hold under very specific 

conditions [22, 23]. Scientific laws are our best attempts to describe patterns and 

principles observed in the natural world. As human constructs, these laws should 

not be viewed as infallible. Rather, they provide useful generalizations for 

describing and predicting behavior under specific circumstances. 

3) Scientific knowledge is the product of observation and inference-Scientific 

knowledge is developed from a combination of both observations and inferences. 

Observations are made from information gathered with the five senses, often 

augmented with technology. Inferences are logical interpretations derived from a 

combination of observation and prior knowledge. Together, they form the basis 

of all scientific ideas. An example of the interplay of observation and inference 

is the manner in which we determine the distances to stars. Stars are so far away 

that only a relatively small fraction of star distances can be measured through 

direct observation and the application of geometry. For the rest of the stars and 

other distant celestial objects, a complex combination of observations and 
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inferences must be employed (see Murphy and Bell, 2005 for a more complete 

description of how astronomers determine distances to stars) [24]. 

4) Scientific knowledge is the product of creative thinking-Scientists do not 

rely solely on logic and rationality. In fact, creativity is a major source of 

inspiration and innovation in science. Scientists often use creative methods and 

procedures throughout investigations, bound only by the limitation that they must 

be able to justify their approaches to the satisfaction of their peers. Within the 

limits of peer review, creativity permeates the ways scientists design their 

investigations, how they choose appropriate tools and models to gather data, and 

how they analyze and interpret their results. Creativity is clearly evident in 

Darwin's synthesis of the theory of natural selection from a wide variety of data 

and ideas, including observations from his voyage on the HMS. Beagle, his 

understanding of the geologic principles of Lyell, and even Malthus' theory of 

populations. Although known as a careful and methodical observer, Darwin's 

recognized genius stems from his creative work of synthesizing a powerful 

scientific explanation from a variety of sources and clues. 

5) Scientific laws and theories are different kinds of scientific knowledge-A 

scientific law is a description of a generalized relationship or pattern, based on 

many observations. Scientific laws describe what happens in the natural world 

and are often (but not always) expressed in mathematical terms. Scientific laws 

are simply descriptive-they provide no explanation for why a phenomenon 

occurs. For example, under relatively normal conditions, close to room 

temperature and pressure, Boyle's law describes the relationship between the 

pressure and volume of a gas. Boyle's law states that at constant temperature, the 

pressure of a gas is inversely proportional to its volume. The law expresses a 

relationship that describes what happens under specific conditions, but offers no 

explanation for why it happens. Explanations for why this relationship exists 

require theory. Scientific theories are well-supported explanations for scientific 

phenomena. Theories offer explanations for why a phenomenon occurs. For 

example, the kinetic molecular theory explains the relationship expressed by 

Boyle's law in terms of the inherent motion of the molecular particles that make 

up gases. Scientific theories and laws are similar in that both require substantial 

evidence before they are generally accepted by scientists. Additionally, either 

13 
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can change with new evidence. However, since theories and laws constitute two 

different types of scientific knowledge, one cannot change into the other. 

6) Scientists use many methods to develop scientific knowledge---There exists no 

single "scientific method" used by all scientists. Rather, scientists use a variety 

of approaches to develop and test ideas, and to answer research questions. These 

include descriptive studies, experimentation, correlation, epidemiological studies, 

and serendipitous discovery. What many refer to as the "the scientific method" 

(testing a hypothesis through controlling and manipulating variables) is really a 

basic description of how experiments are done. As such, it should be seen as an 

important way, but not the only way, that scientists conduct investigations, as 

scientists can make meaning of the natural world using a variety of 

methodologies. 

7) Science is a social activity that possesses inherent subjectivity-Science is a 

human endeavor and, as such, it is open to subjectivity. For example, the 

scientific questions considered worth pursuing, the observations that count as 

data, and even the conclusions drawn by scientists are influenced to some extent 

by subjective factors. Such factors as the existing scientific knowledge, social 

and cultural contexts, external funding sources, and the researchers' experiences 

and expectations can influence how they collect and analyze data, and how they 

draw conclusions from these data. While subjectivity cannot be totally removed 

from scientific endeavors, scientists strive to increase objectivity through peer 

review and other self-checking mechanisms. 

These seven tenets of the nature of science present a more appropriate view of scientific 

knowledge and address the major misconceptions about science documented by science educators 

[19, 25]. Taken as a whole, they serve as reminders that a principal strength of scientific 

knowledge is that it can change as needed and is required to better fit existing data. However, it 

is important to realize that change in science is not arbitrary. Scientific knowledge changes only 

as a result of further inquiry, debate, collaboration, and evidence. Thus, changes in science move 

our understandings toward important "truths" about the natural world. Although these truths 

should not be viewed as absolute or final, they are among the most reliable that we have at any 

given point in time. No other means of inquiry has proven more successful or trustworthy. One 
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need only consider the advances in science-related fields, such as medicine, agriculture, and 

engineering, for verification that science works. 

Why Teach the Nature of Science? 

Science educators and researchers have presented a variety of rationales for teaching 

about the nature of science. Perhaps the most straightforward justification is that an accurate 

understanding of the nature of science helps students identify the strengths and limitations of 

scientific knowledge, develop accurate views of how science differs from other ways of knowing, 

and helps students delineate the types of questions science can and cannot answer [26]. 

Additionally, research suggests that teaching students the nature of science can enhance their 

content knowledge and increase student achievement [27-29]. Furthermore, an appropriate 

understanding of the nature of science is essential to understanding the relationship between 

science and religion, the controversy over "creation science" and "intelligent design," and the 

essential differences between scientific and non-scientific disciplines [30]. Additionally, teaching 

the nature of science helps increase awareness of the influence of scientific knowledge on society 

[31-33]. Research also indicates that teaching the nature of science may increase student interest 

in science by making instruction more engaging and meaningful [32, 33]. Most importantly, 

developing appropriate conceptions of the nature of science is cited as a critical aspect of 

scientific literacy and, as such, is central to national standards documents and the SOL [l, 2]. 

Examples of the SOL that address each of the seven aspects of the nature of science presented in 

the previous section are included in see Appendix B. 

Effective Nature of Science Instruction 

Science instruction should help students develop meaningful understandings about the 

foundational and somewhat abstract concepts that constitute the nature of science. Research 

indicates that explicitly teaching students the nature of science, allowing students to experience 

the nature of science in a meaningful context, and linking the nature of science to process skills 

instruction are three specific ways educators can make instruction about the nature of science 

effective and engaging for students. 

A large body of research indicates that the most effective way to teach nature of science 

concepts is through explicit instruction [15, 34, 35]. Explicit refers to making the nature of 

science a specific goal of instruction, with lesson objectives, activities, and assessments all 

including specific aspects of the nature of science when it is appropriate to do so. While nature of 

science instruction should be explicit, this does not mean that it must be didactic. Students arc 
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not likely to glean a meaningful understanding of the nature of science merely from having 

someone tell them that science is empirically based or that theories cannot become laws. Rather, 

particular aspects of the nature of science should be illustrated to students within the context of 

inquiry activities, exploration of socio-scientific issues, and discussions of key episodes in 

science history. Learning in a meaningful context can help students assimilate the abstract 

elements of the nature of science more deeply than memorizing a list of the key concepts. 

Engaging students in hands-on science activities alone will not likely lead them to 

appropriate understandings of the nature of science and the scientific enterprise [34]. Rather, 

students must engage in purposive discussion and reflection about the nature of science in order 

to learn about the nature of science: 

Leaming about the nature of science requires explicit discussion and reflection 

on the characteristics of scientific knowledge and the scientific enterprise

activities students are not apt to engage in on their own, even when conducting 

experiments. Students need someone to guide them through the process of 

learning about science as they do science [26]. 

Thus, effective nature of science instruction requires students both to engage in science and to 

reflect on what they learned about the scientific enterprise. To this end, linking nature of science 

concepts to process skills instruction has been shown to be effective [36]. In this approach, 

students learn about the nature of science and the scientific enterprise as they develop the skills 

necessary to do science. The teacher explicitly links nature of science concepts to activity-based 

lessons incorporating science process skills, such as observing, inferring, predicting, measuring, 

and classifying. Bell provides dozens of activities that utilize this process skills-based approach 

to nature of science instruction [26]. Additional resources for teaching the nature of science are 

provided in Appendix A. 

Research has demonstrated that effective nature of science instruction does not come 

naturally for most teachers. Some confuse teaching the nature of science with inquiry and 

process skills [ I 7]. Others do not consider the nature of science to be a necessary component of 

the science curriculum [37, 38]. Still others may possess the same misconceptions about science 

as their students [15]. Including the nature of science in the Virginia Science Standards of 

Learning is an important first step toward legitimizing nature of science instruction and 

delineating what teachers should teach [7]. However, knowing what to teach and actually 
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teaching it are not the same. Implementing nature of science instruction requires specific 

professional development that includes instruction on what the nature of science is and how to 

teach it, as well as support for teachers as they begin to integrate the nature of science into their 

own instruction [37, 39, 40]. 

Conclusion 

Science is more than a body of knowledge and a way of developing and validating that 

knowledge. Science is a social activity that reflects human values, including curiosity, creativity, 

integrity, and skepticism. Developing scientific literacy requires meaningful, engaging 

instruction that integrates the knowledge of science, the methods of science, and the nature of 

science. Scientific inquiry as both content and as a process for learning provides opportunities for 

students to develop inquiry skills, use critical thinking, and deepen their understanding of science 

content. Furthermore, research strongly supports our experience that students enjoy the 

challenges of scientific inquiry when given appropriate support, and that they are enthusiastic 

participants in learning about the nature of science and how we know what we know. Teaching 

the nature of science and inquiry encourages students to develop scientific habits of mind that 

will enable them to be effective decision makers beyond the classroom. 
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AppendixB 
Nature of Science in the Virginia Standards of Learning Curriculum Framework 

NOS Tenet 

Scientific 

knowledge is 

empirically 

based. 

Scientific 

knowledge is 

tentative. 

Scientific 

knowledge is 

the product of 

observation 

and inference. 

SOL/Curriculum Framework Examples 

K. l Observation is an important way to learn about the world. Through 

observation one can learn to compare, contrast, and note similarities and 

differences. 

4.1 Accurate observations and evidence are necessary to draw realistic and 

plausible conclusions. 

B10.1 The analysis of evidence and data is essential in order to make 

sense of the content of science. 

PS. l The analysis of data from a systematic investigation may provide the 

researcher with a basis to reach a reasonable conclusion. Conclusions 

should not go beyond the evidence that supports them. Additional 

scientific research may yield new information that affects previous 

conclusions. 

B10.2 The scientific establishment sometimes rejects new ideas, and new 

discoveries often spring from unexpected findings. 

CH. l Constant reevaluation in the light of new data is essential to keeping 

scientific knowledge current. In this fashion, all forms of scientific 

knowledge remain flexible and may be revised as new data and new ways 

oflooking at existing data become available. 

4.1 An iriference is a conclusion based on evidence about events that have 

already occurred. Accurate observations and evidence are necessary to 

draw realistic and plausible conclusions. 

4.1 To communicate an observation accurately, one must provide a clear 

description of exactly what 1s observed and nothing more. Those 

conducting investigations need to understand the difference between what 

is seen and what inferences, conclusions, or interpretations can be drawn 

from the observation. 
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Scientific 

knowledge is 

the product of 

creative 

thinking. 

Scientific 

laws and 

theories are 

different 

kinds of 

scientific 

knowledge. 

Scientists use 

many 

methods to 

develop 

scientific 

knowledge. 

Scientific 

knowledge is 

subjective and 

culturally 

influenced. 
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5 .1 Scientific conclusions are based both on verifiable observations 

(science is empirical) and on inferences. 

PS. I Scientists rely on creativity and imagination during all stages of their 

investigations. 

PH.3 Science is a human endeavor relying on human qualities, such as 

reasoning, insight, energy, skill, and creativity as well as intellectual 

honesty, tolerance of ambiguity, skepticism, and openness to new ideas. 

ES. I Scientific laws are generalizations of observational data that describe 

patterns and relationships. Laws may change as new data become 

available. 

ES. I Scientific theories are systematic sets of concepts that offer 

explanations for observed patterns in nature. Theories provide frameworks 

for relating data and guiding future research. Theories may change as new 

data become available. 

LS .1 Investigations can be classified as observational (descriptive), studies 

(intended to generate hypotheses), or experimental studies (intended to test 

hypotheses). 

LS. I Experimental studies sometimes follow a sequence of steps known as 

the Scientific Method: stating the problem, forming a hypothesis, testing 

the hypothesis, recording and analyzing data, stating a conclusion. 

However, there is no single scientific method. Science requires different 

abilities and procedures depending on such factors as the field of study and 

type of investigation. 

PS. I Different kinds of problems and questions reqmre differing 

approaches and research. Scientific methodology almost always begins 

with a question, is based on observation and evidence, and requires logic 

and reasoning. Not all systematic investigations are experimental. 

PS. I Investigation not only involves the careful application of systematic 

(scientific) methodology, but also includes the review and analysis of prior 

research related to the topic. Numerous sources of information are 

available from print and electronic sources, and the researcher needs to 

judge the authority and credibility of the sources. 

BIO. I It is typical for scientists to disagree with one another about the 

interpretation of evidence or a theory being considered. This is partly a 
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result of the unique background (social, educational, etc.) that individual 

scientists bring to their research. Because of this inherent subjectivity, 

scientific inquiry involves evaluating the results and conclusions proposed 

by other scientists. 
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Despite the attention that inquiry has received in science education research and policy, a coherent 

means for implementing inquiry in the classroom has been missing [1]. In recent research, scientific 

argumentation has received increasing attention for its role in science and in science education [2]. In 

this article, we propose that organizing a unit of instruction around building a scientific argument can 

bring inquiry practices together in the classroom in a coherent way. We outline a framework for 

argumentation, focusing on arguments that are central to science-arguments for the best explanation. 

We then use this framework as the basis for a set of design principles for developing a sequence of 

inquiry-based learning activities that support students in the construction of a scientific argument. We 

show that careful analysis of the argument that students are expected to build provides designers with a 

foundation for selecting resources and designing supports for scientific inquiry. Furthermore, we show 

that creating multiple opportunities for students to critique and refine their explanations through 

evidence-based argumentation fosters opportunities for critical thinking, while building science 

knowledge and knowledge of the nature of science. 

Introduction 

Science education plays a critical role in preparing students for multiple aspects of their 

future lives: thinking logically and critically, making decisions involving scientific information 

both personally and as active citizens and, for some, making science a vocation [3, 4]. In order to 

educate students with these goals in mind, a special emphasis has been placed on students' 

learning through scientific inquiry. Leaming through inquiry involves the skills needed to ask 

questions, generate data, interpret evidence from first-hand investigations and from text, and 

make evidence-based explanations [ 5]. Enacted well, inquiry demands critical thinking to 

identify assumptions and to weigh alternative explanations, which requires an understanding of 

the nature of science [5, 6]. 

The ongoing challenge for educators lies in designing instruction that accomplishes what 

are sometimes competing goals. Science instruction must authentically engage students in the 

multiple components of science inquiry in a coherent way [7]. At the same time, it must support 

students' developing understanding of accepted science content and scientific ways of knowing 
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[8]. In recent years, there has been increasing attention paid to the role that argumentation plays 

in science and the role it could play in science education [2, 9-11]. We argue that instruction 

should be designed to support students in building a scientific argument for an explanation of a 

carefully selected phenomenon. Working toward better explanations through argumentation 

creates coherent opportunities for students to engage in multiple aspects of scientific inquiry 

while building science knowledge. Science knowledge has been described as a social 

construction that is the result of the inquiry process and communication with the scientific 

community, that is, through the process of argumentation [12]. By participating in 

argumentation, students are provided with a context and a rationale for the process skills of 

inquiry. In addition, due to the nature of argumentation, students necessarily practice the critical 

thinking skills that are vital to inquiry, as they need to evaluate evidence and critique alternative 

explanations. As students engage in the process of critique, reasoning based on evidence and 

communicating and justifying explanations play a central role, emphasizing key aspects of the 

nature of science. 

In this article, we propose a set of design principles for using scientific argumentation as 

a focus for the backward design of inquiry-based science learning activities, grounded in the 

theoretical and empirical literature on argumentation and science education [13]. In the first part 

of this article, we will outline a conceptual framework for thinking about important aspects of 

argumentation across disciplines, and then narrow the focus to argumentation in science. We will 

concentrate on a type of argumentation that is central to science, argumentation for the best 

explanation, and outline the general structure of an argument for a particular explanation. In the 

second part of the article, we will map this structure to a set of principles for designing a 

sequence of inquiry-based learning activities that build toward students constructing a scientific 

argument. 

The Nature of Argumentation across Disciplines-Argumentation Is a Dialogue about 

Alternative Positions within a Particular Community 

Argumentation and argumentation in science have been studied in multiple ways from a 

variety of theoretical perspectives [14, 15]. As the subject of ongoing study and development, 

there is not a consensus definition of argumentation across scholarly communities. In this article, 

we draw from several theoretical perspectives to construct a definition of argumentation that is 

consistent with arguments in science research, and affords opportunities for argumentation to 

serve as a tool for students to engage in joint knowledge construction and critical thinking as they 

conduct science inquiry activities. 
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We define argumentation in general as the process of communal dialogue that determines 

the merits of alternative positions in relation to the available information marshaled in support of 

each position. There are two important aspects of argumentation to be examined. The first is the 

structure of argumentation that allows a particular position to be supported, examined, and 

critiqued. The second is the social nature of argumentation, which pertains to the characteristics 

of argumentation that arise from its taking place through interaction between people. 

The Structure of Argumentation 

Defining argumentation as a dialogic process presents an immediate challenge-where 

can it be said that an argument starts, and where does it end? Whether for the purposes of study 

or instruction, we need to identify a bounded unit that can be constructed and examined on its 

own. We propose a unit that has utility for thinking about argumentation: a line of argument. 

A line of argument consists of several interrelated components: a claim, the position 

taken in relation to a particular topic, question, or issue; the grounds, the information submitted as 

support for the claim; and, the justification, 1 the rationale for how or why the grounds provide 

support for the claim [16]. A line of argument can also, but does not need to, include a rebuttal, 

an acknowledgment of possible exceptions to the claim. A counterargument is a line of argument 

that establishes a competing claim to one previously established, with corresponding grounds and 

justification. In the interest of a manageable level of complexity, we will limit our focus to 

claims, grounds, and justification. Figure 1 is a diagrammatic representation of the basic 

components of a line of argument and their relations to each other. The grounds lead to the claim, 

and their relation is supported by the justification. 

Groun,Clalm 

Justfflcatfon 

Figure 1. Diagrammatic representation of a line of argument. 

1 While Toulmin generally refers to this component of argument as "warrant," he describes its function as 
one of justification. Given that justification is likely to be a more widely understood term, we have 
employed it here. 
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A simple example of a line of argument might be as follows: I claim that smoking should 

be made illegal on the grounds that smokers are more likely to die of cancer than non-smokers, 

death by cancer has multiple negative impacts, and laws should prevent negative outcomes. My 

justification for the grounds supporting my claim is that my claim is consistent with the grounds 

that I offer: a law banning smoking would prevent negative outcomes-death and its 

repercussions. I also offer a rebuttal to acknowledge a possible exception. If denying people 

their freedom of choice in deciding whether or not to smoke is determined to be a greater 

negative outcome, then smoking should not be made illegal. 

The Social Nature of Argumentation 

The second aspect of argumentation that we submit as important to consider for the 

purposes of design is the social nature of argumentation; i.e., the fact that argumentation occurs 

through interaction between people. Without at least one person to take a position, and at least 

one other to evaluate and/or contest it, there can be no argumentation. This does not suggest that 

an individual cannot engage in argumentation alone. However, the focus for and criteria applied 

in evaluating a given line of argument do not exist a priori, but are derived from the standards of 

particular communities, and thus are social in origin. In developing a line of argument, a scientist 

does so with a specific audience in mind. This social nature has multiple important implications 

for how argumentation is conducted. 

Argumentation Depends on Socially Established Criteria 

To be productive, it is not enough for argumentation simply to take place between people. 

It must take place between members of a particular community-a community that has implicit or 

explicit collective criteria for what is worth arguing about, and how a case intended to support a 

particular position is established and evaluated [15]. Without these collective criteria, 

participants could be left arguing about apples and oranges, and proposing positions that are not 

comparable, based on support that is not considered mutually acceptable. 

The criteria for argumentation within a community can be subdivided based on their 

application to the various structural components of a line of argument: claim, grounds, and 

justification. First, criteria are required for what constitutes an appropriate claim to argue about 

within the community, as well as what makes one claim superior to another (given equivalent 

support). For example, in the scientific community it is appropriate to make a claim about the 

best way to explain how a particular natural phenomenon occurs ( e.g., the lengthy process that 

creates fragile cave formations), but not a claim about how people should be required to behave 
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m relation to that phenomenon ( e.g., human access to the caves should be restricted). 

Argumentation regarding claims about whether to restrict human access might take place within a 

political policy community. 

Second, criteria are required to determine what counts as legitimate grounds (the 

information submitted to support a position), as some kinds of information may not be admissible 

at all. For example, personal beliefs or decrees by persons in positions of political or religious 

authority are never admissible as grounds in argumentation in natural science. Another set of 

criteria is used to evaluate what counts as more or less credible information to support a position. 

In other words, once information is determined to be admissible, its quality still must be 

evaluated. For example, in science, recorded measurements that were collected through 

imprecise or unreliable methods might be admissible in form, but considered of low quality and 

unlikely to be credible. 

Finally, if an appropriate claim is made, and the grounds are determined to be legitimate 

and acceptably credible, another set of criteria is used to evaluate the justification of the relative 

merits of the claim in relation to the following: 1) the grounds that are offered, and 2) any other 

information that is available and determined to be relevant. This set includes both criteria used to 

evaluate a line of argument by itself ( e.g., whether its grounds reasonably support its claim), and 

criteria used to evaluate two lines of argument in relation to each other in order to determine 

which is superior. For example, if a line of argument proposes and supports a particular 

explanation with data, that explanation may reasonably account for all of the data submitted as 

grounds for that line of argument. However, it may ultimately be judged inferior to a 

counterargument proposing another explanation that accounts for the same data, as well as 

additional data for which the first explanation cannot account. 

The Nature of Argumentation in Science--Scientific Argumentation Is Used to Develop 

Increasingly Better Explanations for the Workings of the Natural World 

As previously stated, the goals of argumentation depend on the goals of the community 

that is engaging in it, and it can focus on any of an array of contested or contestable outcomes. 

These outcomes could include an individual's guilt or innocence, the policy that would most 

benefit a society, or the best decision or course of action [16, 17]. In science and science 

education, the primary focus of argumentation is to develop, consider, and determine the best of a 
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proposed set of alternative explanations that account for observable phenomena in the natural 

world [2, 3, 18]. An explanation in science is a causal story that describes how or why a 

particular phenomenon comes to be or behave as it does. What makes an explanation distinct 

from a line of argument is that by itself, an explanation does not require support or justification. 

It is through argumentation that an explanation's quality, its ability to account for the 

phenomenon in a satisfactory manner, is determined [2]. In this section, we will outline and 

describe the components of an argument for an explanation in science, drawing on the elements 

of the conceptual framework established in the previous section. Wherever possible, we will 

illustrate these components by drawing from a single example of a seminal argument in science: 

Watson and Crick's postulation of the molecular structure of DNA [19, 20]. 

The Anatomy of an Argument for an Explanation in Science 

The Question about the Explanandum - Implicitly or explicitly, any argument begins with a 

question about which of multiple possible positions (which themselves may not yet have been 

articulated) is the best one. In science, the central arguments are motivated by a question about 

some aspect of the natural world, and the best explanation for it [2]. For example, in their 

research, Watson and Crick were immediately arguing for a particular answer to the question, 

"How are the molecules that make up DNA arranged?" This was part of a larger ongoing line of 

inquiry into the question, "Why do successive generations of organisms have similar 

characteristics?" This initial question is the clearest link between scientific argumentation and 

inquiry. If inquiry is the process of asking and investigating a question [6], then a line of 

argument is the end product of those investigations, a tentative but supported explanation that 

seeks to answer that question. 

The focus of the question is the explanandum, the phenomenon that is to be explained. 

The most important characteristic of the explanandum in scientific argumentation is that it is not 

in doubt within the community engaging in argument [2]. At the time of Watson and Crick's 

publications, the scientific community did not disagree that DNA existed, or that characteristics 

reappeared in successive generations. The explanation for the phenomenon, the account of how 

or why it happens the way it docs, is what is uncertain and therefore is subject to argumentation. 

The question that is to be answered through argumentation is therefore slightly different than the 

question about the mechanism underlying the phenomenon itself. For Watson and Crick, that 

question would be, "What is the best explanation for how the molecules that make up DNA are 

arranged?" 
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The Claim: The Superiority of a Particular Explanation - A line of argument includes a claim, a 

tentative position that is taken and supported. In argumentation around a scientific explanation, 

the claim consists of two components: the explanation itself, which must be explicitly stated, and 

the position that the explanation provided is the best account available for the explanandum. 

Watson and Crick explicitly suggested their structure was a better alternative to others already 

proposed by colleagues, which consisted of three strands, or situated the bases on the outside of 

the strand, and which they described as ''unsatisfactory" [20]. 

All explanations for phenomena are efforts to develop a more coherent causal story 

describing the mechanisms that result in the phenomenon as it is observed. Telling this story 

requires the creation or use of a cast of protagonists, entities with particular characteristics that 

interact with one another to bring about the explanandum as it exists [21]. These protagonists 

range from the observably material, such as a rolling ball, to the purely conceptual, such as the 

kinetic energy of the ball as it rolls. What science requires of these entities, regardless of whether 

they are ever observed, is that they have the same characteristics and behavior across the 

explanations in which they play a role [21]. While energy is never directly observable, it can be 

quantified across the contexts between which it is transferred, and that quantity remains ever the 

same [22]. 

Crick and Watson use van der Waals forces (weak intermolecular forces) as protagonists 

in multiple parts of their explanation of the structure of DNA [19]. The van der Waals forces 

account for why a particular configuration is or is not possible, depending on whether or not it 

violates the distance that the weak repelling forces between molecules would permit. While these 

forces and the molecules that give rise to them are not directly observable, they are important 

conceptual actors in the explanation, and the explanation depends on their consistent behavior in 

permitting only limited proximity. In their discussion, Crick and Watson foreshadowed the use of 

DNA with the structure they suggest as a protagonist in future explanations of the replication of 

genetic material, explanations that depend on the complementary strands that they proposed. 

Science is replete with these conceptual actors-gravity, electrons, energy, tectonic plate 

boundaries, charge, fields, spherical planetoids-which may not have directly observable material 

existence, but which play critical and consistent roles in explanations of what we can observe. 

Moreover, while many explanatory protagonists have maintained their utility and presence in 

scientific explanations, others have come and gone. Phlogiston, once thought by many scientists 

to play a critical role in combustion, has since vanished from their explanations. Moreover, 
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Michelson and Morley showed that the luminiferous ether was an unnecessary protagonist in 

explaining the propagation of light [23]. 

The way that Watson and Crick's explanation suggests a causal mechanism for the 

reproduction of genetic material illustrates another important aspect of explanations: progress 

toward causality. Braaten and Windschitl provided a useful analysis of the forms of explanation 

in science based on scholarship in the philosophy of science, and offer a framework for working 

toward increasingly causal explanations in a science education setting that provides initial criteria 

for evaluating the quality of claims [24]. In general, scientific explanations should work toward 

an increasingly complete causal story for the mechanisms that lead to the explanandum as it is 

observed. To do so, they should use unobservable or theoretical protagonists and powerful 

science ideas (e.g., kinetic molecular theory) to account for the observable event. In progressing 

toward this level of causality, explanations may describe patterns in observable variables, or 

propose relations between variables without addressing underlying mechanisms or incorporating 

unseen protagonists. The authors acknowledge that there is a range of forms and standards for 

explanation across the scientific disciplines and the scholarship that has examined them. 

However, based on their work with students and pre-service teachers, they advocate and report 

initial success with a framework for explanation that presses for a progression from description of 

observable patterns toward the explication of increasingly unified underlying causes for 

observable phenomena. 

The Grounds: Data and Existing Science Ideas - A line of argument also includes grounds, the 

information used to support the claim. Where scientific arguments are concerned, we will refer to 

grounds as evidence. In scientific argumentation, evidence includes some combination of new 

data, previously existing data, and existing science ideas. Data are systematic and recorded 

observations or measurements of some aspect of the natural world [3]. A line of argument may 

include new data that was gathered for the purpose of constructing the proposed explanation, 

and/or existing data; i.e., data that is not being used as part of an argument for the explanandum 

for the first time. Evidence also includes existing science ideas, which are themselves condensed 

representations of previously gathered data. 

Research on both the nature of science and in science education support this perspective 

of ideas as evidence originally derived from data. In his analysis of the elements that distinguish 

the modern scientific culture, Latour advocates a shift in focus away from changes in ways of 

thinking or economic infrastructure [25]. Instead, he emphasizes the developments in the means 
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by which symbolic inscriptions are produced based on empirical study, reproduced, compared, 

discarded or compiled, and synthesized. He follows the process of "the transformation of rats and 

chemicals into paper," and the process by which the resulting inscriptions are taken up and 

reproduced by scientific colleagues. His description provides a clear picture of how the 

representation of a science idea is the end product of this process of inscriptional distillation that 

began with the recording of empirical data. Similarly, in their development of the Evidence

Based Reasoning framework for science education, Brown, Furtak, Timms, Nagashima, and 

Wilson draw on Duschl to show how students analyze and interpret specific data to develop rules, 

more general statements that can be applied to other relevant circumstances though argument [26, 

27]. In the next section, we draw on their framework for developing and applying rules m 

defining reasoning in scientific argumentation. 

In their argument for the double-helical structure of DNA, Crick and Watson employ two 

kinds of evidence [19]. They use existing data, such as the x-ray images of DNA produced by 

their colleagues and the ratios of the four bases in samples of DNA from different organisms [28]. 

They also use existing ideas, such as the 3-dimensional structure of adenine, as inferred by 

Broomhead through calculations using measurements of x-ray reflection through crystalline 

samples of adenine hydrochloride [29]. They coordinate this evidence to strategically build a line 

of argument for the structure they propose as the best in relation to alternatives that have been or 

might be proposed. 

As we stated previously, information provided as grounds is subject to evaluation by the 

audience to determine whether it is legitimate and credible, and therefore acceptable as grounds 

to support a position. In order for the audience to evaluate data, the presenter must provide 

sufficient information about the methods by which it was gathered ( e.g., what specifically was 

observed or measured, what methods were used to achieve validity and reliability, and how any 

records depict or represent what was observed). In order for the audience to evaluate science 

ideas, they need information about the source of the ideas and how they were developed. If the 

ideas are drawn from sources outside the immediate experience of the audience and are subject to 

question, the audience will require more information about the source of the ideas. This could 

include either a description of the process of inference from more direct observation by which 

they were constructed, or some assurance that the people who developed them used methods that 

would be considered acceptable by the audience ( e.g., in science, the audience of a peer-reviewed 

journal relies on these assurances). For example, Crick and Watson do not describe the methods 

Broomhead used to infer the molecular structure of adenine, but provide sufficient reference 
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information that a skeptical reader could obtain a description of those methods from the original 

work [19]. Some ideas, however, are so well established within a given community that they arc 

used as a taken-as-given fact. Crick and Watson repeatedly use density as an idea to support their 

arguments about the structure of DNA, but never define it [19]. They reasonably assume that 

their audience likewise accepts and understands density as an established fact. 

Reasoning: Connecting Data, Ideas, and Explanation - Establishing the connections between 

the data, the ideas, and the explanation (or some component ofit) requires one of several kinds of 

reasoning, which is the presumption of particular conclusions based on the relevant grounds. 

Reasoning can be further subdivided into generalization and application: generalization is the 

construction of a general rule based on analysis and interpretation of a set of specific instances 

(data), while application uses that general rule to draw a conclusion about a specific circumstance 

determined to be relevant [26]. Each form of reasoning can involve one of several kinds of 

general rules: patterns, the consistent occurrence or variation of some observable characteristic; 

causal relationships, the identification of a causal link between two variable factors; or, causal 

mechanisms, a description of the means by which one factor affects another. 

As a simple example, Crick and Watson reason that because a) tests for the presence of 

adenine in DNA have been positive and b) that adenine in samples of adenine hydrochloride has 

been inferred to have a particular structure, then the adenine found in DNA must also have that 

structure [19]. Their argument for the structure of DNA involving the pairing of specific bases 

(i.e., adenine and thymine) is in part dependent on this reasoning being valid. Table 1 

summarizes these different forms of reasoning, and provides a brief example in a single context 

(the relationship between latitude and average temperature) to illustrate each. 
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Table 1 
Types of Reasonin2 with Examples 

Pattern Causal Relationship Causal Mechanism 
Inferring that a pattern more Inferring that factors are Inferring an underlying 
generally holds true, based causally related, based on a mechanism for an identified 
on a specific set of instances. correlation or a single aspect causal relationship. 

01) of disagreement (a controlled = E.g., Average temperatures E.g., Average temperatures ..... comparison). N are high in Mexico City, are lower in locations where ..... -= medium in Kansas City, and E.g., Average temperatures the Earth is more steeply lo. 
~ 

= low in Winnepeg; therefore, are lower in locations where curved; the greater 
~ 

C, temperatures are lower the Earth is more steeply distribution of direct sunlight 
further north from the curved; therefore, in steeper areas results in 
equator. temperature is causally less energy input and lower 

related to the Earth 's curve. avera<,!e temperatures. 
Inferring that a general Inferring the presence of a Inferring initial conditions, 
pattern extends to a specific known associated causal processes, or results, based 
relevant instance or context. factor, based on the presence on the implications of a 

E.g., Vancouver is further 
of the other. particular mechanism. 

01) 

= north than San Francisco, E.g., Reykjavic has low E.g., Minneapolis is in a ..... 
.Q and temperatures are lower average temperatures, and location that is more steeply 
i::i. further north from the temperature is causally curved during February 
~ equator; therefore related to the Earth's curve; compared with July, and 

Vancouver has lower therefore, Reykjavic is at a more steeply curved areas 
average temperatures than steeply curved location on receive less direct sunlight; 
San Francisco. the Earth. therefore, Minneapolis is 

colder in February. 

Like the other components of a scientific argument, the reasoning that is presented is 

subject to critique by the audience. Generalization and application are each critiqued by different 

criteria. Generalization is examined for whether the rule that was inferred from specific data is 

plausible, based on the following: a) the number of specific instances examined (i.e., the sample 

size); b) the similarity between the specific instances and the categories included in the rule ( e.g., 

generalizing a rule about all mammals based on the study of rats); and, c) the existence of 

plausible alternative rules that might be generalized from the same instances. Application is 

examined for whether the rule that was used can be described in the following ways: a) relevant 

to the specific instance to which it was applied; b) was applied in a way that draws valid 

conclusions based on the rule; and, c) is accurate, in that it is consistent with accepted science 

ideas. 
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Justification: Making a Case for the Superiority of the Explanation Based on the Grounds -

Finally, a line of argument in science must provide justification for its claim that the explanation 

it provides is superior to any alternatives, based on the socially established criteria specific to the 

scientific community. These criteria can be usefully represented as critical questions that can be 

asked about a given argument for an explanation, and asked about the following: a) the argument 

in relation to other information that could be included as evidence for or against the explanation, 

b) alternative explanations that could be proposed, or c) counterarguments that have been made to 

support an alternative explanation [30]. Explicit justification included in the argument would 

take the form of responses to these questions. 

While there arc no doubt a variety of criteria that might be considered, we will focus on 

three that we suggest are central to science, and useful for science instruction. The first criterion 

is refutation, an aspect of science emphasized by philosopher of science Karl Popper, and 

represented as the critical question, "Is there evidence ( data or ideas) that conflicts with the 

explanation?" [31] The second is coherence, which is similar to the emphasis placed by 

philosophers of science on unification-the capacity of a scientific explanation to unify a range of 

related observations or ideas [32]. It is represented by the critical question, "How consistent is 

the explanation with available relevant data and accepted science ideas?" Coherence includes 

validity, whether the reasoning employed generalizes or applies rules in appropriate ways, and 

completeness, the degree to which the explanation accounts for all data or ideas that could be 

considered relevant. The third is causal depth: "How does the explanation further develop the 

causal storyline by adding elements to or relationships between the factors that underlie the 

phenomenon?" [24] Providing examples of all three criteria, Watson and Crick justify their claim 

that their explanation is superior to their colleagues' for the following reasons: la) it has greater 

causal depth-it provides a clear mechanism that holds the structure together, while their 

colleagues' docs not; 1 b) it is more nearly complete-it is consistent with existing ideas about the 

repelling forces of negative charges; and, 2) it is not refutable-it does not conflict with ideas 

about the limits of van der Waals distances [20]. 2 

It is difficult to visualize the multiple components and interrelations we've described. 

The diagram below (see Figure 2) is a representation of a portion of Watson and Crick's 

argument, in order to illustrate the specific components and their relations to each other in this 

2 The numbering scheme reflects the numbers included by the authors, but we sub-divide their 
first point as reflective of two criteria. 
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example. Given the complexity of the argument the authors presented, we had to simplify our 

descriptions of some of the evidence and relevant ideas, but we believe the essence of the 

argument is intact. Their reasoning is represented by the arrows connecting the evidence and the 

sub-components of the explanation. 

the x-ray pattem ol DNA is 
the same IOI all sources of 

DNA (lli111s to mammal) 

the rnlio of different 
nucteoures varies from one 
source o! DNA lo anottwr 

DNA is pseudo-hexagonal in 
cross-s~ based on x-my 

images 

there rue 24 nucioolides in 
every 30 A of DNA 

lhe1e me about 2.4 A 
between nucioolides oo a 

single slJand of DNA 

all DNA samples haV<1 equal 
amounts of adenine and 

thymine. and of guanine and 
cytosine 

adenine and l!iymine. and 
guanine and cytosine haV<1 

complementary slmctures for 
hydrogen bonding 

a helical anangement would 
atld~ make nucleotides 

interchangeable wflile and_,.. 
maintaining overnH structure ,__ lhereiore 

I 
- meiewte 

and --1 a helix produces a pserrdo-

I hexagonal cmss-sectioo 

the numbe, of strands can 

ID!d--,,.. 
Ile calculated by dividing the 
numbe, o! Iola! nucleOtides 3012.4 = 12 

and- in a length of DNA by !lie 24112=2 
number of nucleotides oo a 
single strand ol Iha! !e<lg1h 

whefl objects exist in pairs, 
!here are equal amounts o! 

each object regamleSS of !lie - thet ,.,. __ _ 
numbe1 of total pairs a,..,." 

I 
1t,efewre _ -I hydrogen - can hold r 

. molecules together . 

~-------------------- Evidence 

DNA is shaped like 
a helix 

DNA Is made up at 
IWostrands 

, 

Hydrogentxmds 
hold pairs of bases 

together 

' ,---------

' 

The best explanation IOI !he 
3-dimensiooal struc!Ufe ol 

DNA is l!iat it has two helical 
stra<ros, connected t,y 

hydrogen bonds between 
base pai1s. 

....._ _______ _,, 

C~m----------------' 
,-----,f;"'rns""'"--exp[ana-..,.--tion"'".-is-lhe-bes--t e_x_"pla_n_a_tion_f_compa __ n_ed_lo_pr,_e_vious__, .. )_because ______ -------- Justificalion 

1 - n is more causally deep: !he hydrogen bonding provides a mechanism tl1at holds the strands together. 
2 - It is consis!enl wiU1 the data: ii ptoposes two strands {ralher tllan three), Which is conSisten! will! 
structural measurements. 
3 - It is consistent wiU1 existing ideas: all of tile distances between molecules in this structure are permitted 
b van der Waals limits 

Figure 2. 
Diagrammatic representation of a portion of Watson and Crick's argument. 
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The Implications of Science Argumentation for the Design of Inquiry Activities 

If constructing better explanations for phenomena is the primary goal of scientific 

inquiry, and argumentation around alternative explanations is the means by which scientists work 

toward better explanations, then supporting students in arriving at better explanations through 

argumentation should be a high-priority goal of inquiry-based science education. Using the 

features of argumentation described thus far, we propose a set of design principles to guide 

curriculum developers and teachers in their creation of inquiry-based science learning activities 

that will strategically engage students in argumentation toward causal explanations. We will 

illustrate these principles by developing a single example drawn from our grade 6 earth science 

unit focused on the major factors that influence regional climate. A preview of the principles and 

their alignment with the features we've described is outlined in Table 2. 

Designers Should Organize Science Inquiry Learning Activities around Developing 

Increasingly Better Explanations of an Intentionally Selected Focal Phenomenon 

First, to align with the primary work of science, a significant portion of students' science 

learning and activity should be organized around developing better explanations of a launching 

focal and puzzling phenomenon and/or class of phenomena. This approach provides a specific 

explanandum that can serve as the focus of students' investigative activities and learning [33]. 

For example, in our curriculum, we use photographs and narrative to introduce students to the 

Atacama Desert, a region in South America, as presenting a puzzle. It is literally the driest place 

on Earth, receiving no annual rainfall, but is not far from the Amazon jungle, one of the world's 

wettest places. How is it that the two regions can be so close to one another, yet have such 

drastically different climates? 

While scientists can spend entire careers focused on constructing knowledge of a 

relatively narrow set of phenomena, science education aims to develop students' integrated 

understanding of the more general, broadly applicable ideas in science [3]. In learning to explain 

the Atacama Desert, it is our goal that students develop more broadly applicable ideas about 

ocean currents, prevailing winds, differential heating, evaporation and condensation, local 

topography, and their relations to regional climate. If the puzzling phenomenon provides a focus 

for students' learning, the guiding question provides the broader outer bounds. 
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Table 2 

Alignment of the Core Features of Science Argumentation and Corresponding Design 
Principles for Science Inquiry Activities 

Feature of 
Science 

Ar2umentation 
Argumentation in 
science 1s m 
response to a 
question about an 
explanandum 

A line of argument 
makes a claim for 
a particular 
explanation of the 
explanandum 

A line of argument 
uses data and ideas 
as evidence in 
support of the 
explanation 

A line of argument 
. . 

reqmres reasomng 
that connect the 
evidence to the 
explanation 
A line of argument 
provides 
justification for the 
claim of the 
superiority of the 
explanation, based 
on: 
• Absence of 

refuting 
evidence 

Design Principles 

Students' science learning and activity should be organized around 
their developing increasingly better explanations of a launching focal 
and puzzling phenomenon and/or class of phenomena. 

Designers should construct and analyze a target explanation for the 
explanandum that is appropriate to what is expected of students at that 
grade level. 

The guiding question / explanandum I target explanation should require 
core science ideas, align with grade-level content standards, and 
connect with students' experience. 
Designers should determine the data related to the explanandum that 
students will need in order to construct the target explanation, and 
provide them as students can identify them as necessary. 

For each of the rules and the protagonists that were identified in 
analyzing the explanation, designers should identify the sources of 
evidence-both first-hand experiences and texts-that will provide a 
basis for students to infer the relevant rules, and understand the 
characteristics of the protagonists. 
Designers should identify the kinds of reasoning students will need to 
use in constructing rules and the target explanation, and create 
scaffolds to support their developing thinking. 

Students should be provided with opportunities during the unit to 
consider and critique multiple explanations ( of the focal phenomenon, 
or as part of sub-investigations) for their relative merits in relation to 
each other. 

Leaming activities should be sequenced in order to help students 
develop explanations with increasing causal depth. 

41 
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• Coherence of 
explanation with 
available data 
and ideas 

• Causal depth of 
explanation 

Designers should provide students with periodic opportunities to 
Argumentation is a engage in more and less formally structured argumentation over the 
dialogic process course of the unit in order to work toward increasingly better 

explanations. 
Argumentation Designers should provide students with opportunities and support for 
uses socially evaluating the quality of information that might be used as evidence. 
defined criteria to Designers should provide students with opportunities during the unit to 
evaluate the merits 
of evidence, 

consider and critique multiple explanations for their relative merits in 
relation to each other, either of the focal phenomenon, or as part of 

explanations, and sub-investigations. 
lines of argument 

The guiding question is a question posed in student-accessible language that guides their inquiry 

into the mechanisms underlying the larger class of phenomena represented by the focal puzzling 

phenomenon. In the case of the Atacama Desert, an appropriate guiding question is "Why do 

different places have different weather patterns?" 

It can be easy for someone, teacher or curriculum designer, who is familiar with the ideas 

underlying a phenomenon to move quickly to incorporating those ideas into questions or 

discussion. We advocate introducing and incorporating those ideas slowly and cautiously, in a 

kind of "slow reveal" of the explanation and its protagonists. If students do not already have a 

command of the relevant underlying ideas ( e.g., the role of currents in climate), the initial focus 

should be on what is observable and most familiar (e.g., precipitation, experienced humidity). 

Just as scientists begin only with their pre-existing ideas and the observable characteristics and 

patterns relevant to a phenomenon, so should students. This ensures that students are not being 

expected to take up ideas that are unfamiliar to them before they have the opportunity to construct 

those ideas using appropriate resources. When students are incorporating these ideas into their 

explanations, they have sources and shared knowledge to draw on as they do so. 

Selecting an appropriate puzzling phenomenon and associated guiding question requires 

careful thought. The guiding question, explanandum, and corresponding explanation should 
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require core science ideas, align with grade-level content standards, and connect with students' 

experience. The phenomenon should be something that requires the use of powerful science 

ideas to adequately explain, ideas that provide a foundation for future learning, or can be applied 

to a variety of contexts. The science content required in the explanation should also be aligned 

with local and/or national science content standards so that students learn required content in the 

process of developing explanations through argument. 

The phenomenon should also be selected to serve as a source of motivation to learn. It 

should connect to authentic experiences or questions in students' everyday lives, such that they 

can reasonably be expected to already have some ideas about and investment in it. Alternately, it 

should be presentable in a classroom setting using first-hand experience or secondary 

documentation, and be sufficiently potentially puzzling, creating cognitive dissonance for 

students [34]. The Atacama Desert by itself ( or deserts more generally) is not particularly 

familiar to students, but photographs of it and the Amazon rainforest can provide some sense of 

their striking contrast, and students can help to "populate" the class of phenomena by providing 

their own examples of and questions about places with different weather patterns. In selecting 

and developing a puzzling phenomenon, designers should ask themselves the following question: 

"How can the phenomenon be directly or indirectly presented to provide students with sufficient 

information to support their understanding of the context and motivation to seek an explanation 

for it?" 

The focal phenomenon not only provides a focus for instruction, it affords an initial 

opportunity for assessment. After students are introduced to the phenomenon for the first time, 

they should be invited to explain it as best they are able based on their incoming ideas, creating 

representations of their explanations. These representations generate records of the prior 

knowledge that students see as relevant to the focal phenomenon, and can also provide impetus 

and material for subsequent investigation and argumentation. For example, in their initial 

explanations of the Atacama, students might variously attribute the difference in precipitation as 

due to differences in local winds, or differences in temperature. These initial ideas could be the 

impetus for seeking data that would support one position or the other, and create an opportunity 

for students to engage in argument around their respective positions. 

Organizing instruction and learning around questions about a focal phenomenon and a 

related class of phenomena aligns it with authentic science inquiry. Inquiry is initiated by asking 

questions, and in science it is asking questions about the workings of the natural world. The focal 
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phenomenon grounds the inquiry process in the natural world, while inviting students to pose 

their own questions in relation to it or a similar phenomenon. Choosing a phenomenon of 

scientific significance and of interest to students creates opportunities for them to learn core 

content and incorporate their own ideas and life experiences. Eliciting students' initial 

explanations supports a focus on explaining the mechanisms underlying the natural world, and 

makes their ideas a substantive part of the inquiry process from the beginning. 

Designers Should Analyze and Identify the Components of the Target Explanation 

A scientific argument supports an explanation: designers should construct and analyze a 

target explanation for the explanandum that is appropriate to the knowledge and understanding 

expected of students at that grade level. It therefore will incorporate some, but not all, of the 

potentially relevant science ideas, at an appropriate depth and level of sophistication. A given 

phenomenon could serve as the explanandum at multiple grade levels; what would vary is the 

sophistication and depth of the explanation that is set as a goal. We expect students to be able to 

explain that the Atacama Desert is as dry as it is for two primary reasons. First, prevailing 

winds blow air that contains a lot of water vapor that evaporated from the waters of the warm 

currents off the eastern coast of South America, most of which falls as rain as the wind carries it 

over the Amazon rainforest. The remainder falls on the windward side of the mountains before 

the air reaches Atacama (the rain shadow effect). Second, the waters of the cold currents on the 

western coast evaporate very little water vapor into the air above them. The water vapor that 

does evaporate is carried away by prevailing winds, or does not reach the Atacama due to a 

similar rain shadow effect. If we expected greater detail or causal depth, however, we might 

also ask students to explain the role of energy and molecular movement in the differing rates of 

evaporation or the rain shadow effect. 

A scientific explanation is not monolithic; it includes a variety of protagonists, and a 

senes of events or interactions that involve them. For example, an early component of the 

Atacama Desert explanation is liquid water evaporating at a relatively high rate from the water of 

a warm Atlantic current, to become water vapor suspended in the air. This component idea is 

only a fragment of the full explanation, but by itself represents a complex process. Students will 

have to come to understand the protagonists and their characteristics (e.g., currents, temperature, 

water vapor, evaporation) and what rules describe their interactions ( e.g., at the higher 

temperatures of warm currents, more water becomes water vapor through evaporation). To 

design learning activities that will lead to students successfully constructing and supporting the 
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target explanation, designers should deconstruct the explanation into its component ideas in order 

to analyze them. 

For each of the component ideas that make up the target explanation, designers should 

determine what protagonists and rules are involved, and what resources students will use to build 

an understanding of them. First, the designer should identify the protagonists, the actors involved 

in the target explanation. Referring back to our summary of the Atacama target explanation, the 

primary protagonists are highlighted in bold. Next, the designer should identify any rules that 

students will need to infer by reasoning from the data provided related to the focal phenomenon. 

For example, although they do not do so during the unit, students need to recognize that annual 

precipitation in South American cities decreases from east to west toward the Atacama, and infer 

that this means the amount of water vapor in the air is moving as the prevailing wind is 

decreasing. Finally, the designer should identify the rules that students will need to apply in 

constructing the explanation because they arc relevant to the circumstances, such as the 

relationship between temperature and evaporation rate. These rules will be the foci of 

instructional activities (the intermediate learning goals) as students work toward a complete 

explanation. 

Designers Should Identify Sources of Evidence for the Explanation and Relevant Rules 

A scientific argument typically uses specific data to support the explanation offered as 

being the best available. Designers should determine the data related to the explanandum that 

students will need in order to construct the target explanation, and provide them as students can 

identify them as necessary. For example, for students to explain the primary factors affecting the 

climate of the Atacama Desert, they would need data representations for South America's 

precipitation, temperature, topography, prevailing winds, and local ocean surface current 

movement and temperature. Just as science ideas should not be introduced or incorporated until 

students have need of them as they construct the explanation, the different types of data should 

not be introduced until students are in a position to identify them as relevant. For example, until 

students are familiar with the idea that a given region has prevailing winds that reliably blow in a 

particular direction, they will have difficulty interpreting a map representing them, or understand 

its significance. 

Another important possibility to consider is providing students with more data than is 

necessary or immediately relevant to explaining the focal phenomenon, either by including 

superfluous data points in the representations of relevant data ( e.g., the annual precipitation of a 
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city far from the Atacama, and not aligned with the prevailing winds), or representations of data 

that might be seductive but is irrelevant to constructing the explanation (e.g., the population 

density of South America). Providing these kinds of data will likely increase the cognitive 

demand on students in constructing their arguments, but it also creates opportunities for them to 

develop and demonstrate important science practices in identifying relevant data to use as 

evidence [18]. Grounding any final explanation of the focal phenomenon in data emphasizes 

important aspects of science inquiry; it gives priority to evidence as students construct their 

explanations, and provides a culminating opportunity for them to analyze and interpret data 

relevant to the unit focus. 

For each of the rules and the protagonists identified in analyzing the explanation, 

designers should identify the sources of evidence-both first-hand experiences and texts-that 

will provide a basis for students to infer the relevant rules, and understand the characteristics of 

the protagonists. Some rules can reasonably be generalized based on hands-on investigations in 

the classroom setting. Of these, some can be constructed using data gathered through direct 

investigation in the classroom setting; these activities afford students the opportunity to design 

and conduct first-hand investigations themselves, an important aspect of science inquiry. For 

example, to generalize a rule about the relationship between water temperature and evaporation 

rate, students could measure the surface level in containers of water kept at different 

temperatures, observing that the level decreased more in containers kept at higher temperatures. 

An important consideration for these activities will be the tools and techniques that students will 

require to gather data. If sophisticated methods are required, designers should build in 

opportunities for students to become familiar with them. Some methods, whether procedural or 

analytical, can be introduced through model texts, which describe scientists using the methods for 

authentic purposes [34]. 

Other rules will be generalizable based on physical models that function similarly to 

corresponding real-world phenomena. Students can infer rules from hands-on investigation of 

these models, but will need support in analyzing how the model is similar and different in 

comparison to what it is modeling. Any rules they infer should only be based on aspects that are 

similar. For example, when students learn about the factors that influence the movement of 

surface ocean currents, they model the currents in a small tank of water, creating "wind" by 

blowing through straws and observing the water movement in and around foil "continents." 

Students can conclude that wind and continent shape influence surface currents, but also need 
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support in recognizing that the winds do not blow in arbitrary directions-there are prevailing 

patterns in winds that in tum create patterns in surface currents. 

Not all questions are directly investigable in a classroom setting, and students can learn 

important content and practices by analyzing and critiquing secondary data [35]. Designers 

should identify rules that arc best inferred though second-hand investigation using texts that 

provide data and describe the methods used to gather it [34]. This includes rules that are derived 

from contexts that are inaccessible or use methods that are not feasible. For example, when 

students learn about evaporation and ocean currents, they analyze maps that show evaporation 

rates and the movement of surface currents of different temperatures. They identify patterns 

across the maps, and infer a general rule about the relationship between current temperature and 

evaporation rate. The maps summarize authentic data that would never be feasible for students to 

collect themselves, and allow them to engage in an analysis of the data and derive an accurate 

general earth science principle in context. 

A common misinterpretation of constructivist learning theory is that students must 

discover all science knowledge for themselves, essentially inferring all of the rules and 

protagonists that make up currently accepted science knowledge [36]. It is hardly pragmatic for 

students to do so, and such an approach would not prepare them to make sense of science texts 

presenting abstract ideas, which will be common in their future experiences as learners and 

citizens. Designers should determine which protagonists or rules need to be introduced to 

students through expository text or other representations, because they are not directly observable 

and will be difficult to infer. They can then select texts and design activities to support students 

in making sense of the text, integrating the protagonists into the rules and explanations, and 

applying the rules to specific scenarios. For example, we decided that molecular interactions in 

evaporation and condensation are too much for students to infer on their own, and introduce them 

through a set of texts and animations. Students are then prompted to incorporate these new 

protagonists into predictions and explanations that involve phase changes of water, drawing on 

the information sources as appropriate. Drawing from a variety of sources of data, generated 

through first-hand investigation and interpreted from text, reflects the view of inquiry as a diverse 

set of practices [5]. 

Designers Should Identify Reasoning and Design Scaffolds to Support It 

Finally, having analyzed the explanation, the data supporting it, and the means by which 

students will construct the rules they need to understand to explain the focal phenomenon, 
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designers should identify the kinds of reasoning students will need to use in constructing rules 

and the target explanation, and create scaffolds to support their developing thinking. Reasoning 

in the construction of evidence-based explanations is a vital part of inquiry that can be 

particularly challenging for students [3 7]. Designers should identify the reasoning that students 

will need to use in generalizing the rules that they will ultimately use in their explanation. For 

example, students observe and record the behavior of balloons filled with water of different 

temperatures and salinities when placed in a tank of room temperature fresh water. From this 

data, they need to infer the general patterns that colder water sinks in warmer water, and saltier 

water sinks in fresher water. They are then introduced to the protagonist density and the relative 

densities of the different types of water, and must incorporate density with the patterns to 

construct a causal relationship. Designers should also identify the kinds of reasoning students 

will need to use in applying rules to construct the target explanation. For example, students need 

to apply the rain shadow effect to explain the lack of precipitation in the Atacama Desert, 

attending to the mountain range bordering the Desert, and the prevailing winds that blow 

perpendicularly to it. 

Having identified the reasoning that will be required, designers should create scaffolds 

that will be provided and faded to support students in reasoning in the ways identified and in 

articulating their reasoning clearly. For example, once students have learned about the rain 

shadow effect, they examine several hypothetical situations, determining whether or not the effect 

is likely to be responsible for a particular dry region. In doing so, they are practicing identifying 

situations in which the rule is applicable. When writing arguments, they are provided with 

sentence stems that structure explicit articulation of reasoning: "We know that the rain shadow 

effect occurs when ... We can see from the data that ... Therefore ... " In addition, when first 

using a reasoning in a particular way, the teacher explicitly names that kind of thinking, and 

encourages students to name it thereafter. "We are looking at each situation to decide whether or 

not the rain shadow effect can help us explain why the area is so dry. In science, we call using an 

idea to conclude something about a relevant situation application of that idea." 

Designers Should Provide Students with Opportunities to Learn about and Practice 

Evaluating Lines of Argument in Science Using Explicit Criteria 

Because the quality of a line of argument ultimately rests on the quality of its grounds, 

designers should provide students with opportunities and support for evaluating the quality of 

information that might be used as evidence. These opportunities can take multiple forms as 

students develop understanding and facility. Students should first be provided with models of the 
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thinking involved in evaluating sources, including the teacher explicitly modeling the process 

with a source used by the class, and/or model texts that show scientists engaged in evaluating 

information-procedures, data, or informational text-for legitimacy and credibility. Students 

can then be provided with opportunities to evaluate and choose between sources of evidence to 

use to answer an explanatory question, where the sources differ in quality. Furthermore, students 

should have opportunities to critique provided arguments based on the credibility of information 

that is used as evidence, or the transparency regarding the source ( or lack thereof) that allows for 

critique. 

Designers should also provide students with opportunities during the unit to consider and 

critique multiple explanations for their relative merits in relation to each other, either of the focal 

phenomenon, or as part of sub-investigations. The teacher should have access to multiple 

explanations that could be introduced to and evaluated by students, but also be in a position to 

capitalize on different explanations generated by students. We mentioned previously that having 

students represent their initial explanations of the focal phenomenon can provide multiple 

explanations for comparison. Any provided explanations should vary in ways that allow one to 

be identified as superior, based on the criteria for justification. They could differ in causal depth, 

with one explanation extending further than the other. They could differ in refutability, where 

one explanation conflicts with some available evidence. They could differ in coherence, with one 

explanation accounting for more of the available evidence than the other. Also, they could differ 

in the credibility of the evidence, with one explanation drawing on evidence that is more credible 

in some way (this is similar to students' critique of arguments we described in the previous 

paragraph). 

Comparing multiple explanations presents an opportunity to specifically confront 

alternative conceptions held by students that can be resolved through argumentation; these 

explanations could be developed based on alternative conceptions reported in the literature or 

from common ideas that have been generated by students in other classes [38]. It is important, 

however, that these explanations be refutable based on evidence that the class has or could obtain. 

If students don't already have access to the information necessary to refute it, deciding between 

multiple explanations might require a return to investigation to gather relevant data. For example, 

one explanation students might offer for the sinking of a saltwater balloon is because it is denser 

than a freshwater balloon. Another explanation could be because the saltwater balloon weighs 

more. If students have read an expository text about density and sinking and floating, they could 

critique the second explanation based on consistency with available information. If they have yet 
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to read such a text, they could return to investigation, comparing a smaller saltwater balloon that 

weighs less to a freshwater balloon that weighs more-which could then motivate the reading of 

the expository text to introduce density as a protagonist. 

Designers Should Create Iterative Opportunities for Students to Engage in Argumentation 

to Develop and Refine Their Explanations of the Focal Phenomenon 

Leaming to critique sources of evidence and explanations prepares students to construct 

and critique lines of argument in more holistic and iterative ways. To emphasize the dialogic 

nature of argumentation, designers should provide students with periodic opportunities to engage 

in more and less formally structured argumentation over the course of the unit in order to work 

toward increasingly better explanations. These opportunities can include the following: casual 

discussions about how newly constructed rules or newly acquired data support or suggest 

revisions to current explanations; structured discussions for which students have time to prepare a 

particular explanation and marshal evidence for it before talking with their peers in small or 

whole-group settings; or, a scaffolded process in which students create and critique written 

arguments with their peers. Supporting these kinds of interaction require cultivating a classroom 

community that treats each argument as a collaborative effort to work toward the best explanation 

by testing multiple possibilities against evidence and criteria. This perspective on argumentation 

differs from many students' everyday perspectives on argumentation, which often view it as an 

emotionally loaded situation in which individuals feel hesitant to risk being attacked or being 

wrong [15]. 

To support students' re-conceptualization of argumentation, designers should include 

regular opportunities for students to revisit and revise their arguments about the focal 

phenomenon. Students may revise their arguments in multiple ways, and should have support for 

all that might be relevant at a particular point in the unit. They may revise their explanation to be 

consistent with any relevant rules that they have developed since their previous explanation. New 

rules may also prompt students to identify data that they require that is relevant to the 

explanation; designers should anticipate when students might do so, and ensure that the data is 

available in resources already available to them, or can be provided by the teacher. Moreover, 

students should justify explicitly how and why a new explanation is better than previous and/or 

alternative explanations. The process of revisiting and revising their arguments provides students 

(and teachers) with evidence of their developing understanding of the focal phenomenon, as well 

as experience using an explicit set of criteria to assess and improve that understanding. 
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Designers should determine a sequence of learning activities that will afford 

opportunities for students to improve and refine their explanations of the focal phenomenon 

through a connected series of investigations. While there are no doubt multiple ways to achieve 

this, we suggest that learning activities should be sequenced in order to help students develop 

explanations with increasing causal depth. This means beginning with the focal phenomenon 

and moving "backward," using the answer to one question to generate the next, extending the 

causal story, or identifying new relationships between protagonists. For example, presenting the 

contrast between the Atacama and the Amazon prompts the question "Why is one area drier than 

the other?" A brief analysis of precipitation data might then prompt the question "Where does the 

rain come from?" which in turn leads to "Where docs water vapor come from?" Mapping back 

through the causal story in this way corresponds to the way in which findings often generate new 

questions in science [7]. 

An approach that organizes instruction around opportunities for students to work toward 

better explanations of a focal phenomenon through guided inquiry and argumentation offers dual 

benefits. It not only creates opportunities for students to develop an understanding of core 

science ideas, but it does so by their engaging in and developing facility with the fundamental 

practices of inquiry science. Students ask and pursue answers to questions about the workings of 

the natural world. Students conduct investigations and analyze texts in order to generate new data 

and identify relevant credible information. They analyze the data and ideas to use as evidence in 

supporting or revising their explanations based on a critique using common criteria and, in doing 

so, develop new science knowledge which in turn leads to new questions. We recognize that 

there are other practices that can and should be incorporated into students' learning, such as 

engineering and design, but we propose that explanation and argumentation should be a dominant 

focus, as multiple practices fundamental to inquiry ( questioning, investigating, gathering and 

analyzing data, modeling, critiquing and interpreting texts) can all be incorporated as authentic 

tools in arguing toward better explanations [18]. 

Conclusion 

If inquiry is important for the critical thinking skills it teaches, the training of citizens in a 

democracy for making evidence-based decisions, and for preparing some students to make 

science a vocation, then finding a way to coherently embed inquiry in school science is essential. 

Designing units around a scientific argument connects the practices of inquiry to the content and 

to each other in a meaningful way. By focusing on the construction of a scientific argument, 

students will not be learning just procedures or discrete facts, but will be practicing critical 
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thinking skills as they address a question, and seek and evaluate evidence to construct 

increasingly complex explanations. It is this type of critical thinking that is needed to make 

choices outside of the classroom as well. Throughout a unit of argumentation, the role of the 

student will be to question assumptions and to think not just about finding a right answer, but 

about finding the best answer that relies on the best available evidence. Leaming to critique and 

to weigh alternatives are invaluable skills that are applicable well beyond the science class. 

Finally, by participating in the co-construction of these classroom explanations, students will 

have a better appreciation for the nature of scientific knowledge. Understanding the process of 

communal knowledge construction practiced by scientists will provide students with real 

preparation for pursuing a career in science, and will better equip them to evaluate the science 

they encounter as they make decisions in their lives. 

While these design principles are grounded in a coherent conception of scientific 

argumentation and provide initial guidance in constructing learning activities, continued 

empirical testing with students is a critical next step. As students attempt to explain focal 

phenomena using the data they gather and ideas they have derived from interpretation of text, 

new opportunities and challenges will become evident. Analysis of how students work to take up 

the practices and values of science in their efforts to explain the natural world will reveal areas of 

unexpected promise and difficulty. 
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Inquiry teaching based on constructivist learning theory has been an emphasis in pre-service 

education for over a decade. In general, a developmental teaching perspective supports inquiry-based 

instruction where teachers view learners as constructors of knowledge and teaching as providing 

questions, problems, and challenges that form a bridge from the learners' prior knowledge to a new, 

more sophisticated form of reasoning. Since teaching perspectives influence student learning, teacher 

effectiveness, and teacher attrition, challenging pre-service teachers to overcome experience-based 

convictions of a transmission perspective is necessary in teacher education. In this study, we examined 

the teaching perspectives of secondary, pre-service methods students at the midpoint of an inquiry

focused program. Our findings suggest that, despite being introduced to a variety of teaching 

perspectives, overcoming preconceptions of "good teaching" and considering a perspective counter to 

one's disciplinary major presents a dilemma for pre-service teachers. 

Introduction 

The work of psychological theorists like Piaget, Bruner, and Vygotsky underpins the 

development of constructivist learning theory and the basis of educational reforms toward the end 

of the twentieth century, which promote a shift from discipline-based, teacher-directed instruction 

to constructivist-based, student-centered instruction [l). In general, constructivist teaching 

involves the facilitation of students actively exploring ideas through inquiry [2). The National 

Research Council (NRC) published standards that emphasize developing student abilities of 

inquiry, learning subject matter disciplines in context of inquiry, and implementing inquiry as 

instructional strategies, abilities, and ideas to be learned [3). Most states follow suit by 

identifying inquiry as a standard to be taught in the curriculum. Thus, the majority of teacher 

education programs in the twentieth century adopt a constructivist-based inquiry approach to 
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teaching. Further, the integration of inquiry in secondary science instruction is one of the only 

topics that the majority of pre-service teaching programs focus on worldwide [4]. 

For most, the concept of a teacher develops from a variety of experiences and 

interactions to create a schema for characterizing effective and ineffective teaching, with pre

service teachers not being an exception [5]. Pre-service teachers spend their formative school 

years observing the practices of and interacting with teachers, thereby creating memories that can 

act as a filter for beliefs and acceptable practices that may or may not be supported by educational 

theories (5-11]. Since these preconceptions are based on many years of experience, they can be 

hard to overcome, even though various research suggests some pre-service teachers' beliefs are 

amenable to change through reflection and teaching (12-18]. Varma, Volkmann, and Hanusci 

provide evidence indicating that pre-service elementary teachers experiencing inquiry-based 

pedagogy in a science methods and field experience course develop conceptions of constructivist 

science teaching [ 19]. Furthermore, the prospective teachers acquired a comfort with inquiry 

methodology and an intention to teach via this method. In a similar study, Bleicher and Lindgren 

found that reflection, discussion, and experience with inquiry-based methods improved pre

service teachers' self-efficacy, scientific conceptual understanding, and intention to use reform

based methods as a classroom teacher (20]. Both studies indicate a change in teacher self

efficacy with implementing inquiry-based pedagogy, but neither presented data to indicate the 

change in views beyond the methods course. 

Despite over a decade of emphasis in pre-service education on inquiry teaching, teachers 

continue to indicate a comfort preference with didactic teaching methods (3, 21-25]. Parker and 

Brindley found that graduate pre-service teachers were more likely than undergraduate pre

service teachers to indicate the intention to use reform-based teaching methods, possibly a result 

of professional experiences; however, their naive understanding of the high stakes within the 

current educational context allows an unrealistic idealism that undergraduates do not have 

because they experienced accountability as a student (26]. Even though teacher preparation 

programs typically focus on reform-based pedagogy, these ideals can be incompatible with the 

schema pre-service teachers have created before entering the program [27]. Research studies 

have indicated that pre-service teachers' beliefs become their actions and behaviors as teachers 

[28, 29]. 

Since teaching methods and perspectives influence student learning, teacher effectiveness, 

and teacher attrition, challenging pre-service teachers to overcome narve, experience-based 
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convictions and base their teaching on best practices rather than episodic conceptions of good 

teaching is necessary in teacher education. Exploring pre-service teachers' teaching perspectives 

allows teacher educators to gauge students' internal teaching models based on beliefs, intentions, 

and actions. The purpose of this study was to examine the teaching perspectives of secondary, 

pre-service methods students in an inquiry-focused program. Since education students' teaching 

perspectives are influenced by their prior experiences in the classroom, many students often 

exhibit a transmission perspective [23]. The program's inquiry-focused conceptual framework 

aligns to a more developmental or constructivist approach to teaching, thus providing an obstacle 

for students to overcome. The intent of this article is to share the results of students' teaching 

perspectives and thoughts when confronted with different views of effective teaching. The 

rationale for researching pre-service teachers' thoughts on being challenged to consider different 

views of teaching is to provide insight into their conceptions of effective teaching. Further, 

understanding prospective teachers' challenges to consider different perspectives of teaching 

provides insight into the possibility of broadening pre-service teachers' methods of instruction. 

Theoretical Framework 

Teaching is a complex and multifaceted endeavor and, accordingly, systematic 

differences exist in the way teachers view their roles and responsibilities. According to Pratt, a 

teacher's point of view or perspective "is an expression of personal beliefs and values related to 

learning and teaching" which is influenced by experiences and reflection [30]. After reviewing 

thirteen studies conducted between 1983 and 1996 investigating conceptions of teaching, Kember 

identified five appreciably different views of teaching [31]. Rather than presenting perspectives 

of teaching on a continuum, Pratt legitimizes each of the five perspectives as a compilation of 

actions and beliefs [30). Teaching perspectives are an interrelated set of beliefs and intentions 

that direct and justify teacher actions, and therefore, provide a lens through which to examine 

teaching and learning. 

Actions, intentions, and beliefs are used as indicators of commitment to a particular 

perspective on teaching. Actions arc the ways in which a teacher helps students to learn the 

subject content, and are best understood when viewed in terms of intentions or what a teacher is 

trying to accomplish, and beliefs or why a teacher thinks it is important. Intentions are what 

gives meaning to actions and, as such, are a direct statement of commitment. Perhaps the most 

crucial indicator is beliefs because they are central to teachers' core values. Beliefs about 

knowledge and learning are the most unyielding and least flexible indicator of commitment. 
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The five perspectives on teaching are transmission, apprenticeship, developmental, 

nurturing, and social reform. Pratt and Collins provide an overall profile for each perspective 

based on the many representative people interviewed during their research [32]. While each 

perspective varies in views of knowledge, learning, and teaching, some overlap of actions, 

intentions, and beliefs exists. Regardless of some similarities, individual perspectives are 

fundamentally different in terms of the elements and relationships that dominate in Pratt's general 

model of teaching (see Figure 1). 

Figure 1. General model of teaching [30]. 

Transmission Perspective 

Teachers with transmission as their dominant perspective think effective teaching 

involves having mastery over the content and exhibit a commitment to the subject matter. They 

view knowledge as existing outside the learner, either in texts or with the teacher. It is the 

teacher's role to provide a common body of knowledge to the learner efficiently and accurately. 

Effective teachers lead learners to authorized or legitimate forms of content mastery by 

systematically taking them through a set of tasks. These teachers provide clear objectives, adjust 

the pace of lecturing, use class time efficiently, answer questions, correct errors, summarize 

presentations, and provide reviews [33]. By conveying their enthusiasm about their content to 

their students, they arc typically memorable presenters. Referring to the general model of 

teaching, the dominant elements for the transmission perspective are teacher and context, and the 

dominant relationship is line z, which represents the teacher's concern for and authority over 

learners [30]. 
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Apprenticeship Perspective 

Teachers with apprenticeship as their dominant perspective think effective teaching 

involves being skillful and having expertise in the subject matter. They view learning as a 

sequential process from simple to complex in an environment of authentic tasks in real settings. 

T caching is a process of enculturation, whereby students come to understand social norms and 

ways of working by observing and then doing. Effective teachers engage students within their 

"zone of development," and know when students can work on their own and when more guidance 

and direction is necessary. Over time, teachers provide less direction and give more 

responsibility to the student helping them to progress from dependent learners to independent 

workers. Referring to the general model of teaching, the dominant elements are teacher, content, 

and context, with the teacher and content inseparable within context [30]. 

Developmental Perspective 

Teachers with developmental as their dominant perspective think the learner's point of 

view takes precedence when planning and conducting lessons. They view learners as 

constructors of knowledge using what they know to interpret new information. It is the teacher's 

role to provide questions, problems, and challenges that form a bridge from the learner's previous 

way of thinking and reasoning to a new, more sophisticated form of reasoning and problem 

solving. Referring to the general model of teaching, the dominant element for the developing 

perspective is learners, and the dominant relationship is line x which represents learners 

expanding their ways of knowing the content [30]. 

Nurturing Perspective 

Teachers with nurturing as their dominant perspective think effective teaching involves 

respecting the learner's self-concept and self-efficacy. They view learners as more productive in 

a supportive environment free from failure. Central to this view is a commitment to the whole 

learner and not just their intellectual development. Effective teachers balance promoting a 

climate of caring, challenging students to do their best while setting clear expectations. Referring 

to the general model of teaching, the dominant elements for the nurturing perspective are teacher 

and learner, and the dominant relationship is line y, which represents the teacher-student 

relationship [30]. 

Social Reform Perspective 

Teachers with social reform as their dominant perspective think effective teaching 

involves pursuing social change in substantive ways. They view teaching as exciting students to 
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the values and ideologies embedded within the subject matter. Effective teachers are clear and 

articulate about changes that must take place in society. They focus class discussions of readings 

on what is and is not said, what is included and excluded, and who is represented and omitted. 

Students are empowered to take a critical stance and improve their lives. Referring to the general 

model of teaching, ideas emerge as a prominent element and overshadow all other elements and 

relationships for the social reform perspective [30]. 

Research Approach-Program Description 

The four-year teacher education program admits undergraduate mathematics and science 

majors interested in obtaining secondary certification. As part of the degree program, students 

take a series of field-based experience courses. During the first two credits of introductory 

education courses, students observe experienced teachers in both elementary and middle schools. 

They then work in pairs to teach inquiry-based lessons from an age-appropriate science kit. The 

third course in the program sequence is a three-credit, non-field based educational psychology 

course where students learn how constructivist learning theory supports an inquiry approach to 

instruction. After taking these prerequisites, students continue their coursework with two 

methods courses. During the first methods course, students observe a high school classroom and 

later design and teach a one-day, interactive lecture-based lesson and a three-day, inquiry-based 

lesson. Students taking the second methods course observe at a project-based learning school, 

and design and teach a mini-unit by coherently sequencing four lessons using a project-based 

approach. 

Participants in this study were taking the first methods course, which is centered on a 

close examination of the interplay between teachers, K-12 students and content, and how these 

types of interactions enable students to develop deep conceptual understanding. The course 

builds on the educational psychology course, moving students from a focus on thinking and 

learning to a focus on teaching and learning. Participants are taught how content and pedagogy 

combine to make effective teaching. During the course, participants work in teams of two or 

three to design and teach one-day and three-day lessons. Also in this course, students take Pratt 

and Collins' Teaching Perspectives Inventory (TPI). The inventory is used to help students to 

understand different teaching perspectives before challenging them to consider the advantages of 

each perspective and how they support different educational standards. 

During the first four weeks of the course, students explore the interplay between teachers 

and content by unpacking the standards and developing content learning progressions. The next 
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four weeks arc dedicated to the relationship of K-12 students to content. Participants consider 

their understandings from educational psychology, and reflect on additional readings about how 

people learn. By the midpoint of the course, participants design and teach a one-day, Madelyn 

Hunter model lesson using best practices from a transmission perspective. The third four weeks 

investigates the interplay between teachers and K-12 students. During the last four weeks of class, 

students are challenged to design and teach an inquiry-based lesson incorporating best practices 

from a developing teaching perspective using a SE (Engage, Explore, Explain, Elaborate, 

Evaluate) inquiry-model. 

Research Approach--Participants 

Twenty students who were enrolled in an inquiry-focused methods course consented to 

participate in this study. After providing the results of the 45-question TPI, four case study 

participants ("Jess," "Quanda," "Kristina," and "Valerie") who best represented the different 

mean values of the various students' teaching perspectives agreed to provide additional 

qualitative data. Jess co-planned with "Andrea" and "Mandy," but partnered only with Andrea to 

teach their chemistry lessons during the course. Quanda did not have a partner to design and 

implement her mathematics lessons. Jess and Quanda's self-reported TPI was representative of 

the majority (45%) of the participants. "Kristina" paired with "Marcus" to design and teach 

biology lessons. Kristina's self-reported TPI was representative of about 30% of the participants. 

Valerie partnered with "Emily" to design and implement their biology lessons. Valerie's self

reported TPI was representative of 10% of the participants. 

Research Approach--Data Collection 

A sequential exploratory, mixed-methods strategy informed the design of this study [34]. 

Drawing on teaching perspectives as our framework, we first collected and analyzed the 

quantitative TPI data to determine participants' teaching perspectives. This data informed the 

selection of the three representative case study participants from which to collect and analyze 

qualitative data. Qualitative data consisted of students' lesson plans, blog postings, and 

individual interviews. Both authors first met to create start codes for analyzing lesson plans, and 

then independently examined the data for characteristics of best practices within the five teaching 

perspectives: transmission, apprenticeship, developmental, nurturing, and social reform. The 

coders then met again to compare their findings [35]. 

After teaching their sequenced, inquiry-based lesson, participants responded on a blog to 

the following questions: 
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• After finding out your dominant and recessive teaching perspectives m addition to 

learning about the six different perspectives, did it challenge your views on teaching? 

• When designing your lesson plan, did you consider trying to integrate any characteristics 

of any teaching perspective? If yes, what perspective and why? 

• Reflecting on your teaching experience, do you feel you taught using your dominant 

perspective? 

• Do you feel you taught using your recessive perspective? 

• What influenced your teaching perspective? 

Responses to the questions helped to inform the degree to which participants may have been 

challenged to consider teaching perspectives when designing and teaching. 

Analysis of blog post responses helped with designing personalized, semi-structured 

interview questions. The following starter questions were used to guide case study participant 

interviews: 

• How do you interpret your preferred teaching perspective? 

• What aspects of your lesson showcased this perspective? 

• What are the differences in the way you taught the one-day and the three-day teach, if 

any? 

• Why did you include or not include social reform perspective in the lesson you taught? 

• What do you think influences your teaching perspective? 

Participant responses to these questions provided further insight into the development and 

challenge of teaching perspectives. 

Findings-Teaching Perspectives Inventory Data 

The TPI is a 45-item, 5-point Likert survey containing fifteen statements each on beliefs, 

actions, and intentions. After taking the on-line survey, participants submitted a report presenting 

their global perspective scores for each of the five teaching perspectives. Perspectives with 

scores one or more standard deviations above the mean of the five are considered dominant, and 

perspectives with one or more standard deviations below the mean of the five are considered 

recessive [23]. According to student-reported TPI data, 55% of the participants did not have a 

dominant teaching perspective and about 30% of the participants showed a dominant teaching 

perspective of nurturing. Eighty-five percent of the participants, including all case study 
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participants, revealed a recessive teaching perspective of social reform. Tables 1 and 2 present 

participants' overall TPI results. 

Table 1 
Descriptive Statistics and Teachin2 Perspectives of Participants (n=20) 

Perspective Transmission Apprenticeship Developmental Nurturing Social None 
Reform 

Mean 35.28 37.22 36.33 38.22 29.78 
Std. Dev. 2.987 4.052 5.520 4.319 3.228 

Range 26 - 39 29-42 25 -44 33 - 45 25 - 36 
Dominant 0 1 2 6 0 11 
Recessive 0 0 2 0 17 1 

In Table 1, descriptive statistics are presented for each participant's survey results with 

respect to each of the five teaching perspectives. Dominant and recessive provides the total 

number out of the twenty participants with a dominant or recessive teaching perspective for each 

category as identified by the TPI. 

Table 2 
T h. P cac mg f f p ti . t crspec 1ves o ar c1pan s 

Dominant Perspective Recessive Percent of Case Study 
Perspective participants Participants and 

Partners 
No significant dominant perspective Social reform 45 Jess, Quanda, 

Emily 
Nurturing Social reform 30 Kristina, Andrea 
Developmental Social reform 10 Valerie 
Apprenticeship Social reform 5 Mandy 
No significant dominant perspective Developmental 10 Marcus 

In Table 2, Jess, Quanda, and Emily arc representative of 45% of study participants who 

held no dominant perspective and a social reform recessive perspective. Kristina and Andrea are 

representative of 30% of study participants with a nurturing dominant perspective and a social 

reform recessive perspective. With a developmental dominant perspective and a social reform 

recessive perspective, Valerie is representative of 10% of study participants. Mandy represents 

5% of study participants with an apprenticeship dominant perspective and a social reform 

recessive perspective. Marcus is representative of 10% of study participants with no dominant 
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perspective and a developmental recessive perspective. 

The scores of participants in this study are consistent with the findings of Jarvis-Selinger, 

Collins, and Pratt on students seeking secondary-school certification in mathematics or science 

[23]. The mean score for nurturing perspective of participants is highest while the mean score for 

social reform perspective is lowest. Theoretically, participants' scores on the five TPI scales are 

a 36-point range from nine to forty-five. Scores for participants in this study ranged from twenty

four to forty-four, which is also consistent with the findings of the study by Jarvis-Selinger, 

Collins, and Pratt [23]. According to the TPI analysis, the participants in this study have actions, 

beliefs, and intentions consistent with similar pre-service students seeking secondary certification 

in mathematics or science. 

Qualitative Case Studies-Jess 

Jess self-reported no dominant, but a recessive social reform teaching perspective. Her 

partner, Andrea, reported a dominant nurturing and a recessive social reform teaching perspective. 

While Mandy taught her lesson separately, she co-planned with Jess and Andrea. Mandy 

reported a dominant apprenticeship and a recessive social reform teaching perspective. An 

analysis of their 5E lesson p Ian on states of matter revealed best practices for both a transmission 

and developing orientation. They provided students with exploratory stations and opportunities 

to discover content while she related the activities to real-life meaningful examples. However, it 

appears that Jess and her co-planners maintained control of the classroom and activities via 

transmission strategies. For example, they provided clear objectives by having students "follow 

directions for activities," and correcting errors by "clarifying student 

misconceptions/misunderstandings." Elements of developmental best practices included bridging 

knowledge by "asking probing questions" throughout the activities and "relating back to 

example" of a real-world application. 

After teaching the lesson, Jess blogged that learning about teaching perspectives did not 

change her views on teaching. At this point in her coursework, she isn't comfortable changing 

her perspective. While the different teaching perspectives made her "more aware of the different 

styles," she stated, "I would not purposefully try to change my perspective just because a 

different one looks or sounds better." Her blog also revealed a misunderstanding she has about 

her own teaching perspective being apprenticeship. While her self-reported highest teaching 

perspective was apprenticeship, she in fact had no dominant perspective because transmission, 

developing, and nurturing were statistically equally as high. According to Jess, the inquiry-
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learning focus of the program fits best with apprenticeship teaching and that her coursework to 

date have influenced her perspective greatly. Jess failed to recognize that inquiry-based strategies 

align best with a developmental teaching perspective. 

Jess's interview revealed apprenticeship perspective as being "caring nurturing towards 

the kids, but like you kind of scaffold them the entire way and it works well with like science and 

math." She views apprenticeship as "inquiry-based," and that this was showcased by "starting the 

lesson without really telling the students anything, doing mini-labs, giving worksheets and having 

them work together and discuss with each other about what they were learning ... we [Jess and 

Andrea] helped them along." When asked about not including social reform perspective in her 

lesson, Jess responded that "social reform isn't something I think about a lot and it's nothing I've 

ever had in my classroom experience that I know of, so it's not something that I think about like, 

'oh let me add this to my lesson plan because it will help the students social,' like, it's never been 

a priority of mine." According to Jess, "our one-day teach was just 'this is how you do it, now go 

ahead and do it.' [For the three-day teach] we reversed it: 'do this and now what did you find?"' 

Qualitative Case Studies-Quanda 

Quanda, like Jess, self-reported no dominant, but a recessive social reform teaching 

perspective. Unlike the other participants in this study, Quanda planned and taught her lesson 

alone. An analysis of her SE, inquiry-based lesson plan on exponential graphs and functions 

revealed a majority of her best practices aligning to a transmission approach. For example, she 

provided clear objectives when beginning the lesson by "explaining to the class that they will be 

exploring exponential graphs." She sequenced tasks to lead learners to content mastery beginning 

by initially demonstrating the lab experiment to the class, and modeling so students' work would 

"look similar to the teacher's example." Quanda included a developmental approach of bridging 

knowledge when commenting on how exponential graphs "happen in everyday life." 

While the majority of the ideas Quanda presented in her lesson plan were transmission 

oriented, she blogged about not believing that she "taught this way [transmission oriented] 

because it does not really go well with the SE method of teaching." She also explained that 

discovering her teaching perspectives, "didn't challenge [my] views on teaching as much as it did 

clarify [my] ideas," and made her conscious of the ideas of teaching she wants to use. 

Furthermore, she mentioned that her "previous teachers in high school" and "teaching role 

models" impacted how she wants to act as a teacher. In her interview she confirmed this, 

explaining that her "teaching perspective was more representative of the teachers I liked in high 
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school" and "it would be kind of what I want to be." In explaining why she thinks her social 

reform score is so low, she remarks that she is "not trying to change the world," and though she 

"would like to see change," she does not think as a teacher she has the power to do so. Moreover, 

she explains that the coded lesson plan had more inquiry elements and an earlier lesson plan that 

was more transmission oriented was "so much easier" and she "got to stick to the lesson plan," 

which made her enjoy that experience more. 

Qualitative Case Studies-Kristina 

Kristina self-reported a dominant nurturing and a recessive social reform teaching 

perspective. Her partner, Marcus, self-reported no dominant perspective, but being recessive in 

the developing teaching perspective. An analysis of their 5E, inquiry lesson plan on classification 

of organisms revealed best practices more aligned with a transmission-oriented teaching approach. 

Their lesson included delivering content accurately and effectively by asking students to "follow 

along, take notes, and answer various questions as the teacher discusses the different 

classifications of organisms." Kristina and Marcus also included tasks that led to content mastery 

by "providing a set of questions that asks students to compare organisms" and having students 

"describe characteristics and to classify seven organisms into correct categories." By "going over 

answers with students and reviewing the material" to close the lesson, they provided timely 

feedback. Additionally, they provided clear objectives during the lesson when "introducing the 

major objectives and concepts" and "going over the discussions for the activity." 

Also in the lesson were a few examples of best practices from a nurturing perspective. 

Kristina and Marcus provided encouragement and support when "going around the room to help 

students with questions" multiple times during the lesson, and making an explicit point to both 

greet and encourage students. Included in the lesson plan were two specific instances of best 

practices from a developing perspective. First, they provided an opportunity for learners to think 

and reason when asking students to respond with "why they chose the answer they chose" and 

second, an occasion for bridging knowledge by providing meaningful examples, such as 

including examples students "might encounter daily or have previous knowledge about." 

Kristina blogged, after teaching the lessons, that teaching perspectives challenged her 

views to an extent, believing that all "views are important to incorporate when teaching because 

they are all important at different times in the classroom." She did not "consider trying to 

integrate any characteristics of any teaching perspective," stating that if any view was integrated 

"it would be transmission because our main focus was just trying to 'transmit' the information to 
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students through PowerPoint presentations and other activities." Kristina also provided a 

rationale for not using her dominant perspective, which was nurturing, commenting that she "did 

not know the students enough to be able to give them the 'nurturing' environment." According to 

Kristina, a nurturing environment requires a teacher to personally know her students. 

During Kristina's interview, she commented that "inquiry-based is more student-centered 

and transmission is more teacher-centered." Her inquiry-based lesson was on classification and 

she "felt like we really couldn't make that student-centered too much without the teacher first 

giving them all the information first ... using Power Point and stuff like that." She stated, "It 

would be more difficult with the time allotted to have [it be] more student-centered, I felt it would 

be easier to just kind of like give them information." Thus, Kristina believes that teaching from a 

transmission perspective is easier and more efficient. Kristina defines her dominant perspective, 

nurturing, as creating a "caring environment letting the student know that they can always come 

to the teacher," and, "the nurturing teacher makes it so the students can raise their hands at all 

times, come to the teacher after class, and a very caring environment." Kristina commented that 

to create a more nurturing environment in her three-day teach she would "have tried to let the 

students know us [her and Marcus] more so they could feel free to talk to us one-on-one." 

Kristina acknowledged that "the one-day teach was supposed to be more direct teach and the 

three-day teach more inquiry-based," but, "we wound up teaching the three-day teach very 

similar to the one-day teach using Power Point; it was very similar." 

Qualitative Case Studies-Valerie 

Valerie self-reported a dominant developmental and a recessive social reform teaching 

perspective. Her partner, Emily, self-reported no dominant, but a recessive social reform 

teaching perspective. An analysis of their SE, inquiry lesson plan on evolution revealed best 

practices mostly matching a transmission-oriented teaching approach. Several examples of 

delivering content accurately and effectively included having students "listen, take notes, and 

discuss," explaining "Darwin's observations," mentioning "artificial selection is when humans 

choose who mates with whom," and providing answers to students' questions. Also in the lesson 

were tasks that led to content mastery, such as looking at projected pictures and discussing 

questions in small groups, think-pair-share about textbook terms, a brainstorm of how animals 

have changed over time, class discussion of dominant traits, and a "short film on natural 

selection." 
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Valerie and Emily also included several best practices from a developing perspective. 

They helped students to develop increasingly complex cognitive structures for comprehending the 

content by asking students to "draw conclusions from observations," picturing similar bacteria 

with varying genetic makeup, and "assessing how well students have understood and can apply 

the material." In addition, Valerie and Emily incorporated two examples of bridging knowledge 

through providing meaningful examples by relating material to the real-world environment and 

including "how traits that were not favored in society died off" A few best practices included in 

the lesson from a nurturing perspective were not sacrificing self-esteem for achievement through 

encouragement and asking students unable to answer a question to give an example instead. 

Another involved assessing individual growth, as well as absolute achievement, by using a ticket

out-the-door asking students to "write one thing they did not understand, they would like us to 

elaborate on the next day, or a question they have that we can address the next day." 

Valerie blogged that teaching perspectives challenged her views by making her think 

more as she taught her three-day lesson. As an example, she stated, "when my partner and I 

taught antibiotic resistance, I tried to put myself in the students' place and see how they 

understood it. It also led me to ask them a couple more questions about a topic they may have 

had misconceptions about." Valerie insightfully mentioned that she tried to become her dominant 

perspective, but believed incorporating other perspectives was also important. According to 

Valerie, her past experiences, as well as experiences she never had, attributed to her teaching 

perspective. She states that she "tried to entertain the students ... and teach the students by 

showing enthusiasm about the topic because the most influential teachers were the ones who 

loved what they were doing and teaching." Clearly, Valerie believes that her high school teachers 

greatly influence her practice. 

Summary 

Participants of this study overwhelmingly held social reform as a recessive teaching 

perspective and the majority reported a dominant teaching perspective of either none or nurturing. 

In comparing the lesson plans of all four case study participants, social reform was not 

incorporated in any of their lesson plans. As a rationale, Jess didn't consider social reform 

anything she thought about and not a priority. Quanda was not trying to change the world and did 

not think teachers had the power to do so. While most participants held no dominant teaching 

perspective, nurturing, on average, was participants' highest self-reported teaching perspective. 

Despite designing lessons using a 5E inquiry template intended to be more consistent 
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with a developmental perspective, participants' instructional plans mostly maintained elements of 

best practices from a transmission orientation. Some participants, like Kristina and Valerie, 

incorporated multiple teaching perspectives into their lessons contrary to their preferred teaching 

perspective. Some participants, like Kristina and Quanda, reverted to a preferred one when the 

lesson was not succeeding. Both Kristina and Quanda commented that teaching from a 

transmission perspective was easier and, Kristina added, more efficient. Valerie considered 

incorporating multiple perspectives to be valuable. 

Case study participants suggested an awareness of different teaching perspectives and a 

resistance toward challenging their preferred transmission perspective. Valerie stated best what 

appears to influence participants most as being both past experience and lack of experience with 

different teaching perspectives. Participants considered former high school teachers as prominent 

in their development, emulating lessons after teachers they liked. Jess added that the inquiry

based focus of the program has had the greatest impact on her. 

Summary-Discussions 

Collins and Pratt found through a decade of studies using the teaching perspectives 

inventory that nurturing is the most common dominant teaching perspective and social reform is 

the most common recessive perspective when considering all instructional levels worldwide [36]. 

Participants in this study were representative of mathematics and science teachers, in that social 

reform was overwhelmingly their lowest teaching perspective score, yet many did not have a 

dominant teaching perspective score [23, 36]. This is similar to a finding of Deggs, Machtmes, 

and Johnson [37]. According to Pratt, the teacher's views of knowledge, learning, and teaching 

are what determine each fundamentally different perspective [38]. For this reason, 90% of over 

two thousand teachers who have to take the TPI report one or two perspectives as their dominant 

view of teaching. Pratt cautions teachers who suggest using multiple perspectives at different 

times. He contends that many methods of instruction are common within each perspective and 

what is important is the intent behind the method. 

In this study, we attempted to challenge participants to deliver a SE, instructional lesson 

sequence using best practices from a developmental perspective. However, participants mostly 

taught lessons from a transmission orientation. Participants' schema for the qualities of effective 

teaching were primarily based on previous experiences as learners, even though they 

acknowledged being taught alternative ways of presenting curriculum. Fajet, Bello, Leftwich, 

Mesler, and Shaver found similar results when surveying and interviewing students about the 
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features of effective and inadequate teachers [6]. Our pre-service mathematics and science 

teachers struggled with reconciling an inquiry-focused course with their view of teaching 

perspectives within the discipline. Despite being introduced to a variety of teaching perspectives, 

overcoming preconceptions of "good teaching" and considering a perspective counter to one's 

disciplinary major presents a dilemma. 

This study confirms the importance of prior learning experiences in determining views on 

teaching [6, 8-11]. Providing early field experiences and reflection opportunities with caring 

elementary teachers may have contributed to nurturing as the most dominant teaching perspective 

of study participants. However, university field experience supervisors comment on the difficulty 

in providing cooperating teachers that model inquiry-based practices during the first three field

based courses, which includes the course involving this study. The second 3-credit course in our 

inquiry-focused program introduces project-based learning (PBL) where participants' field-based 

experiences occur in PBL schools with experienced inquiry-based, cooperating teachers. During 

this course, participants are challenged to prepare and teach a mini-unit that includes best 

practices from a developmental perspective and are encouraged to incorporate aspects of a social 

reform perspective. By definition, PBL is an inquiry-based teaching approach to provide 

questions, problems, or challenges that form a bridge from the learner's previous way of thinking 

and reasoning to a new more sophisticated form of reasoning and problem solving; precisely how 

Pratt defines developmental perspective [30]. Further research is needed to determine if an entire 

sequence of pedagogical courses can expand perceptions of effective teaching. 

Inquiry learning from a developmental perspective has been a consistent emphasis in 

science education programs. However, transmission teaching continues to be a prevailing 

viewpoint among mathematics and science teachers, especially in secondary and vocational 

teaching environments [23, 36]. The time to challenge perspectives on teaching is during pre

service teacher education programs before they continue to use the pedagogy they felt was 

effective as a student. To best serve potential teachers, teacher educators must be aware that 

broadening teaching perspectives is a difficult task. While the reflection within our study did 

make students consider their perspectives on a deeper level, a more intensive reflection process, 

perhaps on a weekly basis, could better challenge pre-service teachers' teaching perspectives [39, 

40]. Melville, Fazio, Bartley, and Jones provided data to suggest that experience with and 

reflection of inquiry-based pedagogy help pre-service teachers identify and cope with potential 

implementation challenges, rather than eliminate inquiry pedagogy due to commonly conceived 

misconceptions [41]. Further, they posit that without actual experiences with inquiry teaching, 
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reflection is undermined and without reflection, identifying areas of weakness and solution to 

problems is difficult, which leads to a much greater challenge with nontraditional teaching 

perspectives. In helping pre-service and in-service teachers move from traditional pedagogy to an 

inquiry-based practice, current perspectives, which can be a limiting factor, must be considered. 

Considering alternative perspectives of teaching can be a difficult shift because reform-based 

pedagogy can conflict with current perspectives and therefore require rigorous and continuous 

professional development, or teachers may revert to traditional instructional methods when 

reform-based methods are difficult to implement [42, 43]. 
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HOW DOES LEADERSHIP MATTER? DEVELOPING AND TEACHING A 
DEFINITION OF HANDS-ON SCIENCE, A PREREQUISITE FOR EFFECTIVE 
INQUIRY TEACHING 

Abstract 

D.R. STERLING 
College of Education and Human Development, George Mason University 

Fairfax, VA 22030 

This descriptive case study describes leadership skills and planning for setting clear directions by 

program leaders for a statewide professional development initiative to extend improvement in science 

teaching and learning. For science teachers and leaders in Virginia, a critical part of setting clear goals 

that everyone can understand is defining key science terms. One of the four key terms, "hands-on 

science," is defined here. Materials to develop teachers' understanding of the term for effective 

implementation of classroom inquiry activities are shared, along with a rubric for evaluation by and for 

teachers. Understanding of the term "hands-on science" is necessary before inquiry-based science 

teaching can be fully implemented. Authentic science materials, when safe, are necessary for doing 

authentic, inquiry-based science teaching in a way similar to how a scientist investigates science. 

Leadership 

Science education reform in the United States is dynamic and messy, as educators 

grapple with emerging challenges and demands. Leadership matters at all levels whether local, 

state, or national. Leaders in science education reform provide clear directions, are data driven, 

and influence policy and effective practice in science education. Their contributions arc crucial 

to initiatives aimed at improving student learning and future workforce development [1]. 

Effective education leadership makes a difference in improving teacher and student 

learning. What is less clear is how leadership matters, what the essential ingredients of successful 

leadership are, and how to promote the learning of all students. Greater attention and investment 

in effective leadership is a pathway sought by many for large-scale education improvement. How 

do high-quality leaders achieve this impact? According to research, they use the following 

methods: 

• Set directions - chart a clear course that everyone understands; 

• Establish high expectations - use data to track progress and performance; and, 

• Develop people - provide teachers and others with the necessary support and training to 

succeed [2]. 
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Leaders are able to influence teaching and learning through the contributions they make 

to positive feelings of efficacy. According to Bandura, one's belief in one's self and others 

determines the likelihood of setting a direction and achieving a goal. Self-efficacy is belief in 

one's own ability, whereas collective efficacy is belief in one's colleagues to perform a task or 

achieve a goal. Strong efficacy beliefs are key to leaders' ability to get things done [3]. They 

affect the choices leaders make and they affect coping efforts [4, 5]. The stronger the feeling of 

collective and self-efficacy is, the greater the persistence for a goal. The sense of collective 

efficacy for leaders at all levels, whether teachers, principals, science coordinators, or 

superintendents, is central to undertaking and persisting in school improvement for teaching and 

learning [6]. 

The report, The Three Essentials: Improving Schools Requires District Vision, District 

and State Support, and Principal Leadership, identified three critical aspects of leadership for 

school improvement based on a study by the Southern Regional Education Board of seven very 

different school districts [7]. They found that states and school districts must develop and 

communicate a clear coherent vision and a collaborative framework of support in order for 

school improvement to become a reality. In addition, they found that the most significant 

change was the mindset of district staff which includes holding themselves responsible for 

results. 

If teachers and leaders are going to hold themselves responsible for results, they need to 

develop an understanding of what the results will look like, thus the necessity of defining 

relevant terms. According to the National Assessment for Educational Progress report released 

in June 2012, students doing hands-on projects in class score higher more frequently on student 

assessment tests, with students doing hands-on science almost every day scoring the highest [8]. 

Thus, if we want our students to score well on achievement tests, there is a need to understand 

the term "hands-on." 

Two publications from the National Science Teachers Association (NST A), Position 

Statement: Leadership in Science Education and Position Statement: National Science 

Education Standards, support the importance of leadership with a clear coherent vision of 

effective science teaching and learning and a collaborative plan for reform [9, 10]. The NSTA 

Position Statements also focus on the following: the importance of sustained professional 

development for teachers and leaders; the alignment of curriculum, instruction, and assessment; 

and, data-driven decision making. Effective professional development expands knowledge of 
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content and pedagogical content, challenges the beliefs of teachers and leaders, and is 

transformative over time [11]. For sustained professional development impact, Horizon 

Research found in their study, Lessons from a Decade ofMathematics and Science Reform: A 

Capstone Report for the Local Systemic Change through Teacher Enhancement Initiative, that 

long-term sustained effort and support by district and local leaders is essential when 

implementing new instructional strategies and materials [12]. 

VISTA Program Description 

The Virginia Initiative for Science Teaching and Achievement (VISTA) is a partnership 

among sixty-five school districts, six universities, and the Virginia Department of Education to 

build an infrastructure to provide sustained, intensive science teacher professional development to 

increase student achievement. The goal of VISTA is to improve science teaching and student 

learning, especially in high-need (high-poverty, high-minority) schools, as well as for limited 

English proficient students, rural students, and students with disabilities. 

Through a validation study of previous targeted efforts, the programs arc being extended 

across multiple school divisions. The initiative is funded by the United States Department of 

Education through the Investing in Innovation (i3) program, part of the American Recovery and 

Reinvestment Act. In conjunction with validating prior program research efforts, the grant

funded project has been designed to build leadership and shape policy, and practice through four 

intensive professional development programs: 1) upper elementary teachers (grades 4-6) receive 

professional development for one year in problem-based learning (PBL) science instruction, 

working in teams as they plan and teach PBL lessons; 2) first- or second-year secondary science 

teachers (grades 6-12) are provided just-in-time coaching and "big picture," research-based 

science teaching coursework for two years; 3) school district science coordinators focus on 

strategic planning for effective science teaching, data-driven decision making, and leadership; 

and, 4) university science education faculty members investigate new science teaching, and 

learning research and reform practices. 

Research Questions 

All four professional development programs require a common vocabulary. This study 

investigated the following questions: 1) What key words need to be defined? 2) What are the 

definitions of these words? 3) What learning materials help participants grapple with the 

meaning of these words? 4) What rubrics arc helpful for assessment of implementation? This 

article focuses on "hands-on science," the first of the four terms introduced. 
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Methods 

This descriptive case study describes how defining a critical term, "hands-on science," 

aided in developing a clear, common understanding by all constituencies across the 

Commonwealth of Virginia. The overall purpose of defining key science teaching pedagogy is to 

support the statewide infrastructure necessary to bring improvement to classroom instruction and 

student achievement. 

Methods-Participants 

This study chronicles the experiences of multiple participants at three stages of designing 

and testing definitions. Participants included the principal investigator (Caucasian, female), nine 

VISTA staff members from three universities (8 Caucasian, 1 African-American; 8 female, 1 

male), thirteen school division science coordinators (8 Caucasian, 2 African-American, 1 Asian, 2 

unknown; 10 female, 3 male), and eight science education university faculty (6 Caucasian, 2 

African-American; 4 female, 4 male) from seven other universities for a total of ten universities. 

This article is based on the perspectives of the program implementers regarding challenges they 

encountered for the overall program as it was being created and implemented at the three program 

delivery sites for validation purposes. 

Methods-Research Design 

From the pilot studies, the researchers knew that common science pedagogical terms such 

as "hands-on" were used in different ways. Therefore, they were aware that definitions needed to 

be established for the program to successfully expand throughout Virginia. The researchers 

collected qualitative data concurrently from key program implementers throughout the 

Commonwealth as the program was initially being created and implemented. 

Data collection consisted of participants' responses to surveys, observations, interviews, 

focus/working groups, and reflections. The surveys contained open-ended items and were 

administered pre-/post-professional development. The surveys were designed to elicit 

participants' perceptions of the effectiveness of the professional development and key objectives 

of the professional development regarding four pedagogical terms: hands-on science, inquiry, 

problem-based learning (PBL), and nature of science (NOS) instruction. Validity for the 

definitions and training materials developed was supported by review by a panel of experts with 

backgrounds in science education and research evaluation. The panel's revisions were 
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incorporated into the final version of the instrument, a process which resulted in consensus on the 

face and content validity of the instruments. 

Methods-Data Analysis 

Qualitative data were analyzed using the constant comparative process of grounded 

theory [13, 14]. Grounded theory drove the determination of themes/categories. A comparison 

of themes occurred, which allowed preliminary answers to the study questions [15]. Analyses 

were reviewed by the research team in order to reach consensus. 

Results-Four Science Teaching Definitions 

An emergent theme was the discovery that teachers had multiple meanings for the same 

pedagogical phrase. In order to clarify the goals of VISTA and establish a common language and 

unity across the Commonwealth, four key phrases were identified and defined: hands-on science, 

inquiry-based teaching, problem-based learning (PBL), and nature of science (NOS). Only 

"hands-on science" will be defined in this article, including the process used to develop the 

definitions, the materials used with the teachers to establish common understanding, and the 

assessment materials to gauge progress. 

Results-The Definition and Acceptance 

The definition for hands-on science is, "Students purposefully manipulating real science 

materials when safe and appropriate in a way similar to a scientist." The definition has the 

following five parts: 

1) students 

2) purposefully manipulating 

3) real science materials 

4) when safe and appropriate 

5) in a way similar to a scientist. 

The definition was developed over time in a three-step refinement process: 

1) The initial definition of hands-on science was developed and refined by the author and 

used over approximately five years in her science methods courses for pre-service 

teachers and science leadership courses for in-service teachers. 

2) Before adopting this and the other definitions, the definitions were reviewed and 

discussed with nine VISTA leaders at the six universities participating in VISTA. The 
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hands-on science definition was not changed by the VISTA leadership, whereas the other 

definitions were expanded. 

3) Lastly, the definitions were reviewed by eight additional university science education 

faculty and thirteen school division science coordinators from across Virginia who were 

participating in the VISTA leadership academies. At this point, the word "purposefully" 

was added to the definition. 

Results-Clarifying Examples and Non-Examples 

Before clarifying examples were discussed during professional development, the teachers 

or leaders were asked: What percentage of time should be spent by students doing hands-on 

science? After thinking individually, the participants discussed this in small groups of four, and 

then shared with the whole group. Subsequently, the initial NSTA recommendation that students 

should be engaged in hands-on learning at least 50% of the time was shared. Now, NSTA is 

moving toward describing more what the laboratory investigations should look like on a weekly 

basis than a particular percentage of time. However, NSTA explicitly states that middle school 

teachers should "engage students in laboratory investigations a minimum of 80% of the science 

instruction time" [ 16]. 

To refine the teachers' understanding of hands-on science, we found it is necessary for 

them to classify a series of examples and non-examples of hands-on science. To describe the 

progression of examples, we use a PowerPoint presentation with pictures (see Table 1 ). For each 

example, the teachers are asked to evaluate and defend their answer to the question: Is this 

hands-on science? They do this analysis (see Figures 1 and 2) individually, and then discuss in a 

small group before sharing with the whole class. Lastly, when teachers have trouble giving up 

their favorite activities when they don't meet the definition of hands-on science, we come back to 

the NST A recommendation which is that less than 100% needs to be hands-on science. This 

allows them to do their favorite activity, but not count it as hands-on science. 

Table 1 
Is This Hands-on Science? 

Example Analysis Hands-on 
Science 

Using silk flowers to study Not real science materials. No 
plants Not in a way similar to a scientist. 
Using paper models to Not real science materials. No 
represent the parts of a cell, Not in a way similar to a scientist. 
the layers of the earth, DNA, 
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etc. 
Using a computer simulated Not real science materials. No 
pendulum lab A string and a mass is easy to obtain and 

use. 
Students remember what makes a 

difference with real materials, not 
on computer. 

Not in a way similar to a scientist. 
Using a computer to analyze Real computer images of planets are real Yes 
images of celestial objects science materials. 

Scientists study planets using real pictures, 
since they can't go there. 

GI) Evaluate and defend 
,. Using a computer to analyze images of 

celestial objects 

Figure 1. Presentation slide showing an example of hands-on science. 
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® Students purposely·································· .. ··-,,..················ f 

science materials when 
::::::::.,r:..::::::::, •• ::::::::c;;:....:...!2'.= in a way similar to a scientist. 

" Real computer images of planets are real 
science materials. 

® Scientists study planets using real pictures, 
since they cannot go there. 

® Therefore hands-on science. 

Figure 2. Presentation slide showing explanation for computer planet example. 

Hands-on Science Demonstration 

The apple lab strongly makes the point that using real science materials when they are 

available helps the students learn more. In this lab, participants observe three images/models of 

an apple, and then compare what they can observe from each image. First, the participants are 

given a picture of a real red apple and asked to write down everything they can observe about it 

(see Figure 3). Second, the participants are given a realistic model of a red apple and asked to 

write down everything they can observe about the apple. Third, the participants are given a real 

red apple and a plastic knife, and asked to write down everything they can observe about the 

apple. Each time, the list of observations gets longer (see Table 2). The lab is concluded by 

having a discussion about which form of the apple provided the most information. The 

participants should easily recognize that their lists were longer as they progressed from the 

picture, to the model, to the real apple and therefore, their lists were more detailed for the real 

apple. Thus, the teachers conclude that students should use real science materials as much as 

possible because the amount of learning is significantly greater. 
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Figure 3. Picture of a real red apple. 

Table 2 
Observations of Three Different Depictions of an Apple 

Aoole Observations 
Picture of a real red Red 
apple Round 

One brown long thing sticking out 
Model ofa real red All above plus: 
apple Sphere 

Red all over 
One brown toothpick-like long thing sticking out about 2 cm 
Balances on one side (bottom) 

A real red apple All above plus: 
Red all over with slight red variations 
Light colored yellowish dots all over the outside skin 
Brown stem 
Smells sweet 
White inside 
Tastes sweet 
Juicy 
Small dark seeds in the middle 
Clear hard flexible pieces surrounding seeds 
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As needed during the apple observation activity, the difference between an observation 

and an inference is discussed. It is typical for students to make inferences for which they have no 

direct observations. For example, you can't observe the apple is white inside until you have the 

real apple and cut into it. In the picture or model, it is an inference that it is white inside, not an 

observation. 

Assessing Instruction 

A rubric was developed to assess a teacher's implementation of hands-on science in 

teaching (see Table 3). The rubric was designed to assess the five parts of the definition. 

Initially, the rubric was used by a teacher to assess another teacher's lesson for hands-on science 

teaching. This approach helped the teacher become more familiar and proficient about the 

nuances of each aspect of the rubric. Then, the rubric was used by other program participants on 

each other. This way, the teachers each grew in their proficiency of interpreting each aspect of 

the definition of hands-on science. A unique aspect of using the rubric was for the teacher to use 

the rubric on others before it was used on them. This enabled them to use their growing 

understanding of hands-on science before they designed a hands-on lesson that was critiqued by 

others using the rubric. 

0 

0 

0 

Table 3 
Hands-on Science Rubric 

2 

1 2 

2 

Often 
Observed 

3 

3 

3 

Evidence 

4 

4 

4 
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Discussion 

Leaders are most effective when working collaboratively toward clear, common goals. It 

takes leadership skills and planning to build a common language for all participants in a teaching 

reform program. Identifying and defining key terms is a crucial, but messy process as consensus 

is built across the developing learning communities and program. This article outlines a key 

term, "hands-on science," needed in one statewide program in Virginia for the improvement of 

science teaching and student learning. This article shares the definition, the definition 

development process, the teaching materials created to develop understanding, and the 

assessment of actual classroom practice. Expectations and accountability measures emerged as 

key leadership foci. 

The school division science coordinators and university science education faculty who 

participated in the above hands-on science activities as learners not only felt that they developed a 

deeper and consensus understanding of the term themselves, but that they were also able to use 

the activities with their pre-service or in-service teachers to develop these teachers' 

understanding. In addition, the science coordinators and faculty indicated that they had used the 

definition and activities for creating a new vision of effective science teaching and for strategic 

planning. Setting clear expectations and common understanding leads to clearly focused goals 

for the program and appear to be linked to higher student achievement. 

Our findings are consistent with the research on the importance of leadership for setting 

directions and expectations, and developing teachers' skills as cited earlier [2, 9, 10]. In general, 

leaders found that instructionally helpful leadership practices: focused on clear school teaching 

goals; provided professional development for teachers and leaders aimed at understanding the 

goals; and, created structures and opportunities for teachers and leaders to collaborate to meet the 
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goals. Clearly defining five parts of the definition for hands-on science clarified important 

nuances, such as real science materials and using them in a way similar to a scientist. Following 

this with examples and non-examples focused the teachers and leaders on essential aspects of the 

definition and provided a platform to discuss and defend explanations, thus building greater 

understanding. Since implementing effective science teaching in the classroom was a program 

goal, clearly defining materials to use for learning focused teachers on critical aspects of actually 

implementing inquiry-based teaching and problem-based learning. 

Implications for Policy and Practice 

Two implications for policy and practice emerged for leaders from the development of 

definitions in our study: 

1) Program and district leaders need to establish clear expectations across multiple 

dimensions of improvement activities as the bases for increasing coherence, 

coordination, and synergy in the effectiveness of statewide and district improvement 

efforts over time; and, 

2) Program and district leaders should combine a common core of communications and 

support for efforts to implement district expectations with differentiated support 

aligned to the needs of individuals and programs. 

By developing differentiated support for using an explicit definition for hands-on science, 

program and district leaders, as well as teachers, established a common language for expressing 

what hands-on science is and is not across the program which increased program coherence and 

synergy for students to meaningfully investigate science. 
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This article outlines the results of a collaborative study of the effects of infusing problem-based 

learning (PBL) into K-12 science methods courses across four universities in Virginia. Changes in pre

service teachers' attitudes surrounding science teaching were measured before and after completing a 

science methods course in which they experienced PBL first-hand as participants, and then practiced 

designing their own PBL units for use in their future classrooms. The results indicate that exposure to 

PBL enhances pre-service teachers' knowledge of inquiry methods and self-efficacy in teaching science. 

Introduction: Why Incorporate Problem-Based Learning into Science Methods Courses? 

A growing number of students in the United States find it difficult to connect science 

content and skills to real-world scenarios, indicating a true lack of understanding. The most 

recent Program for International Student Assessment revealed that fifteen-year-olds in the United 

States could not apply scientific knowledge and skills to real-world issues as well as their peers in 

sixteen of twenty-nine countries [l]. Data on science achievement in higher education are 

similarly concerning. The United States now ranks 2?1h among industrialized countries for the 

number of students who receive bachelor's degrees in science or engineering [2]. 

Regardless of the reasons, it is clear that science is not engaging many students. Rising 

Above the Gathering Storm Revisited focused on mathematics, science, and engineering not only 

because they are essential to job creation, but also because the committee concluded that "these 
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are the disciplines in which American education is failing most convincingly" [2]. These data, 

combined with other performance indicators, led the committee to assert "for the first time in 

history, America's younger generation is less well-educated than its parents" [2]. 

Based on indicators of students' poor performance in science, it comes as little surprise 

that research reveals students view school science as neither popular nor pertinent [3]. Science 

education must do a better job of engaging students. Science is no longer just for "future 

scientists." Today, every student needs a strong foundation in scientific content and process 

skills. While not all students will go into science fields, all are members of a global society. 

Individuals can no longer be unaware of how their actions or inactions impact others near and far. 

The goal of science education must be that of producing scientifically literate citizens. Such 

citizens would be able to actively participate in decisions on issues that impact their lives, such 

as: waste disposal, experimental medical treatments, water quality, and other issues of personal 

health and safety (socio-scientific issues). To do this, they need to have the skills to examine 

problems, ask important questions, develop plans for collecting evidence, analyze data, 

communicate and work with others as they propose solutions, and think critically to reflect on 

choices made. 

Jobs in Science, Technology, Engineering, and Mathematics (STEM) are projected to be 

the most abundant careers of the foreseeable future [4]. Science educators in Virginia especially 

need to focus on equipping students with STEM skills because in 2005, 40% of STEM jobs were 

located in Virginia and five other states [5]. In addition to anticipated job growth in these fields, 

workers will also be needed to replace those retiring from STEM careers. These jobs would 

require workers to apply content and skills to real-world problems, the very knowledge and skills 

on which U.S. fifteen-year-olds students scored so poorly in 2009. 

Scientific process skills, much like the skills of a professional athlete, are acquired 

through sustained and targeted practice, not by sitting behind a desk. Instead of telling students 

how they will use the information one day, science educators must provide experiences that allow 

students to apply it now in a meaningful way. For many, this requires a paradigm shift in the way 

science is taught. This is why inquiry and problem-based learning (PBL) are essential. 

Literature Review-What Is PBL? 

Problem-based learning (PBL) can be traced back to Dewey's emphasis on learning by 

doing and thinking [6]. He argued that learning "should give students something to do ... and the 
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doing is of such a nature as to demand thinking or intentional connections" [6]. As early as 1965, 

Gagne noted PBL's effectiveness in developing science concepts [7]. McMaster University's 

medical school implemented PBL because of concern over the limited application skills of many 

of their recent graduates [8]. 

Implementation of PBL in the K-12 setting has recently gained international attention as 

a way to provide creative inquiry that fosters critical thinking and is aligned with students' 

interests and abilities [9]. It is a learning approach that allows for individual flexibility in 

learning and the social construction of knowledge. Aligned with Vygotsky's theory of 

constructivism, PBL pushes students to connect prior knowledge with a current problem and 

solve it in their own way. The American Association for the Advancement of Science (AAAS), 

the National Research Council (NRC), and the Virginia Mathematics and Science Coalition's 

(VMSC) visions of inquiry-based and student-centered science is supported by PBL [10-12]. 

Virginia Initiative for Science Teaching and Achievement (VISTA) researchers define 

problem-based learning (PBL) as "students solving a complex problem with multiple solutions 

over time like a scientist in a real-world-context" [13]. They further state the problem must be 

meaningful to students and is typically embedded in a course of study from one to five weeks in 

duration [13]. Through PBL, students ask scientific questions relevant to their lives, collect 

evidence, and develop explanations based on the evidence obtained. This type of inquiry 

provides students with the highest level of investigative control, unlike traditional teacher-led 

explorations [14]. Students use "The Problem-Solving Cycle," which was created by Sterling in 

2005 as a roadmap throughout their PBL investigations [13]. Contrary to the lockstep myth of 

"The Scientific Method," The Problem-Solving Cycle allows students the flexibility to move 

forward or retrace their steps in the investigation as needed. This enables student researchers to 

backtrack in response to new information gained and better represents the way scientists work to 

find solutions in their profession. 

Literature Review-Research Findings on PBL 

Much of the early research on PBL implementation pertains to medical school students. 

More recent research examines the impact of PBL in the K-12 and post-secondary settings, yet 

research in this area is still in the early stages [15]. The current study seeks to identify the 

potential benefits of PBL on pre-service teachers and their future practice so the following 

literature review focuses on research relevant to this study. 
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Benefits to Students: Affective - Culturally responsive pedagogy, such as PBL, allows students 

the flexibility to customize their own learning. Sterling reported students (grades 4-6) involved in 

a PBL camp showed an increase in positive attitudes toward science on pre- and post-attitudinal 

surveys [16]. Students indicated that the opportunity to shape the inquiry to meet their abilities 

and interests made them feel more empowered [16]. Increased confidence may change the way 

students think of science and a possible career in science as evidenced by findings from Sterling, 

Matkins, Frazier, and Logerwell who reported greater interest and more positive views of science 

among PBL participants [17]. Similarly, PBL was found to positively impact post-secondary 

students' attitudes toward the learning environment relative to peers in a traditional program [18]. 

Osborne and Collins found that students want more experience in authentic work, longer 

inquiries, and more time to discuss these experiences, all components of PBL [3]. Their research 

with nine- to fourteen-year-olds concluded that school science lacks "relevance and greater 

autonomy" [3]. Relevance and autonomy have been linked to motivation [19]. Research with 

students of varying ages trained in PBL found that students had increased motivation [16, 20-21]. 

Benefits to Students: Elementary/Middle Cognitive - More recently, Frazier and Sterling 

conducted a mixed-methods study on their PBL summer camps for students aged nine to twelve 

[22]. The camps were offered across a three-year period and included 116 participants designated 

as at-risk by their schools. The researchers examined student artifacts, teaching curriculum, and 

students' performance on pre- and post-science content assessments. They found students 

"experienced significant growth in their science content knowledge and skills" [22]. Further 

research with elementary students support Frazier and Sterling's findings [15, 23-24]. Drake and 

Long also determined that PBL students were better able to create problem-solving strategies than 

students in a comparison group [ 15]. 

Benefits to Students: Middle and Secondary Cognitive- Studies provide conflicting reports of 

the degree of student academic performance related to PBL implementation. Results of PBL 

implementation in a grade 11 chemistry class revealed PBL positively impacted students' 

achievement and helped address misconceptions in a significant way [20]. Additionally, PBL 

was found to promote test success in science among twelve- and thirteen-year-olds according to 

Wong and Day [21]. Research documents evidence of academic success of students in other 

content areas taught through PBL [25]. Gallagher and Stepien found students in American 

studies performed at least as well on multiple choice tests as students taught traditionally [25]. 
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Benefits to Students: Post-Secondary/Professional Cognitive - An analysis of the performance 

of biochemistry students taught through PBL revealed a greater depth of understanding of the 

material than those in a traditional program [26]. Pre-service teachers taught in a PBL methods 

course showed increases in pedagogical content knowledge about modeling activities [27]. 

Etherington's work with pre-service teachers demonstrated that PBL fosters academic risk taking 

and resulted in intellectual gains in science [28]. 

Benefits to Students: Social - Interviews were conducted with chemistry PBL students to 

determine their beliefs according to PBL activity. The findings, according to the interviews, 

revealed that students in the PBL class were more motivated, self-confident, willing to problem 

solve and share knowledge, and were more active in cooperative group activities than students of 

traditional instruction [20]. 

Benefits to Teachers: Time on Task - Students in the PBL experimental classroom spent 4.27 

more minutes on task of each 45-minutc class period relative to the comparison group. The 

cumulative effect of this daily increase in time on task equates to 21.35 minutes of science 

engagement per week, and 12.80 hours of science over the course of the school year [15]. 

Benefits to Teachers: Professional Confidence - Teachers who lack confidence and comfort 

with a student-centered approach tend to fall back on traditional modes of teaching, leading to 

marginal learning [29]. Teachers who were trained in PBL and provided with ongoing coaching 

showed improved confidence in their ability to use problem-based instruction [28]. 

Benefits to Teachers: Student Behavior - Self-determination theory states that students have 

three academic needs: competence, relatedness to others, and autonomy. In PBL, teachers serve 

as facilitators who enhance student autonomy and engagement [30]. Perceived autonomy is a 

major predictor of engagement in learning and school achievement [31]. Engaged students are 

intrinsically motivated and less likely to become classroom management problems. 

Literature Review--Obstacles to PBL Implementation 

Leaming and utilizing PBL requires time and commitment from teachers and students. 

Wong and Day reported expected resistance at the beginning of PBL development in science 

education and other areas [21]. Changing the pedagogy of science is problematic because many 

teachers lack the skills and confidence needed to lead discussions and manage student-directed 

classrooms [28, 32]. Etherington reported some pre-service teachers became antagonistic when 
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forced to work on critical thinking and open-ended PBL [28]. Goodnough found teachers often 

needed coaching in PBL problem design [32]. Other obstacles related to the adoption of PBL 

center around time and standardized testing concerns. Research documenting the academic 

performance of PBL students has begun to address standardized testing concerns [20-22, 25]. 

Literature Review-Summary 

Problem-based learning offers students the opportunity to take control of their learning. 

Studies indicate students across grade levels respond favorably to this type of investigative 

autonomy [3, 16, 21]. Research on academic gains related to PBL report positive findings, but 

the degree of improvement varies [15, 20-24, 27, 28]. More research is needed on the impact of 

PBL in varying grade levels and subject content areas. 

While questions remain about the degree of the academic impact of PBL, all studies 

reviewed reported positive impact in the affective domain [16-18, 21]. Students of PBL reported 

feeling empowered and more interested in the learning environment. Furthermore, social impact 

was often cited as a positive aspect of PBL implementation. Data revealed students were more 

willing to share knowledge and participated more actively in cooperative learning than peers in a 

traditional setting [20]. 

Institutional and personal impediments to PBL implementation exist. Driven by high

stakes testing, school divisions often lack flexibility in schedules and instructional strategies 

utilized by teachers. The issue of training and continued professional support adds an additional 

burden to the already overscheduled school day. On an individual level, resistance to PBL 

instruction was noted among teachers. Teachers expressed concerns over their ability to manage 

behavior and lead essential discussions in a student-centered classroom. 

Today's students do not see classroom science as popular or related to the real world. 

Traditional lecture methods have not engaged students in a meaningful way. Problem-based 

learning shows promise as an instructional method capable of connecting students with science. 

For teachers to be equipped to teach PBL science, they must be exposed to science methods 

courses that model this strategy. 

Methodology-Introduction 

Though the use of PBL has been widely studied through the lens of improving student 

outcomes and achievement at the K-12 level, little work has been done in studying the use of PBL 
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as a means of preparing pre-service teachers to teach science in their future classrooms [ 16, 22, 

33]. To address this gap in the literature, four university-based science educators from three 

institutions of higher education across Virginia engaged in a collaborative study to investigate the 

value-added effects of infusing PBL methodology into their respective elementary, middle, and 

secondary science methods courses taken by pre-service teachers as part of professional education 

preparation programs. 

Methodology-Participants 

The study was facilitated at all three institutions during the 15-weck instructional period 

of the Fall 2011 semester. During the pre-test, a total of twenty-nine pre-service teachers from 

across the institutions participated in the study, including twenty-one pre-service elementary 

school teachers and eight pre-service middle/secondary science teachers. During the post-test, a 

total of twenty-five pre-service teachers from the pre-test participated in the study, including 

seventeen pre-service elementary school teachers and eight pre-service middle/secondary science 

teachers. Table 1 provides a breakdown of demographic data of the participants. 

Table 1 
Demographic Data for Pre-Test (N=29) and Post-Test (N=25) 

Demographic Pre-Test Post-Test 
N N 

Male 1 1 
Female 28 24 
Total 29 25 

African-American 9 5 
Caucasian 20 20 
Total 29 25 

Elementary 21 17 
Secondary 8 8 
Total 29 25 
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Methodology-Research Questions 

In order to gather the information necessary, the following research questions helped 

guide the research: 

1) What are pre-service teachers' perceptions of delivering problem-based 

learning? 

2) How do pre-service teachers differ on personal science teaching efficacy 

beliefs and science teaching expectancy outcomes with respect to elementary 

and secondary pre-service teaching? 

Methodology-Instrumentation 

In all methods courses, study participants completed a survey developed by Enochs and 

Riggs (1990) known as the Science Teaching Efficacy Belieflnstrument (STEBI-B) [34]. The 

STEBI-B was developed as a survey to evaluate pre-service teachers' self-efficacy toward 

teaching science. The instrument was based around Bandura's social learning theory, and 

consists of two constructs: Personal Science Teaching Efficacy (PSTE), and Science Teaching 

Outcome Expectancy (STOE) [35]. The STEBI-B has a reliability rating of .90 (PSTE) and .76 

(STOE), making it a reliable instrument. The instrument utilizes a 5-point Likert scale ("Strongly 

Agree" - "Strongly Disagree"). Enochs and Riggs suggest that the following numbers, 5 = 

Strongly Agree, 4 = Agree, 3 = Undecided, 2 = Disagree, and 1 = Strongly Disagree, correspond 

with responses [34]. 

Methodology-Procedure 

During the first week of the courses, pre-service teachers were given the STEBl-B as a 

benchmark indicating their self-efficacy with respect to their ability to teach science. During the 

course of the semester, the pre-service teachers participated in PBL activities facilitated by their 

course instructors, and then were tasked with developing their own PBL units for use in their 

future science classrooms. The STEBI-B survey was administered again during the final week of 

the course to detect any changes in the pre-service teachers' self-efficacy which could potentially 

occur as a result of their exposure to PBL methodologies infused into the methods courses. 
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Methodology-Analysis of Results 

This study was completed during the Fall 2011 semester at three institutions. In the 

study, descriptive statistics and an analysis of variance (ANOV A) were conducted to address the 

research questions. 

Research Question 1: What are pre-service teachers' perceptions of delivering problem-based 

learning? To address this question, the researchers conducted descriptive statistics to display 

pre-service teachers' perceptions prior to the delivery of coursework toward teaching problem

based learning and after the coursework was completed. Prior to coursework, pre-service 

teachers scored toward undecided (M = 3.53, SD = .539) on personal science teaching efficacy 

(PSTE) and moderately low as well on science teaching outcome expectancy (STOE) (M = 3.50, 

SD= .437). For pre-service teachers, results from the post-tests suggest that pre-service students 

perceived themselves to be moderately high in personal science teaching efficacy (PSTE) (M = 

4.13, SD = .413) as a result of the coursework. Furthermore, while their science teaching 

outcome expectancy (STOE) was not as high (M = 3.87, SD= .564), there was a small gain from 

the pre-tests. Moreover, the effect size, using Cohen's d, were computed to identify practical 

significance of the differences between the pre-tests and post-tests [36]. The pre-tests and post

tests revealed strong effects on PSTE (d = 1.019) and STOE (d = 1.109). Means, standard 

deviations, and effect size are displayed in Table 2. 

Table 2 
Descriptive Statistics on Pre-Test (N = 29) and Post-Test (N = 25) 

Subscale 

PSTE 

STOE 

Pre-Test 
M SD 

3.53 .539 

3.50 .437 

Post-Test 
M SD 

4.13 .413 

3.87 .564 

Effect Size 
d 

1.019* 

1.109* 

Note: Effect size strength was determined using Cohen's breakdown for small (d = .20-.49), 
moderate (d = .50-.79), or strong (d = .80 or higher) [36]. 
*Strong effect. 

Research Question 2: How do pre-service teachers dijJer on personal science teaching efficacy 

beliefs and science teaching expectancy outcomes with respect to elementary and secondary 
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pre-service teaching during the post-test? A one-way analysis of variance (ANOV A) was run, 

in which elementary pre-service teachers and secondary pre-service teachers did not differ 

significantly on PSTE because the p value was greater than .05 and .001 levels at F (1,24) = 

3.137,p < no significance. Post-test results revealed significance on the subscale STOE between 

elementary pre-service teachers and secondary pre-service teachers at F (I, 24) = 4.655, p< .05 

level, with a higher mean for elementary pre-service teachers. Table 3 summarizes the results of 

the analysis of variance on PSTE and STOE of the STEBI-B post-test. 

Table 3 
Analysis of Variance on Elementary Pre-Service and Secondary Teachers 

Source 

PSTE 

STOE 

PSTE 

STOE 

Note: *p<.05 

ss 

.491 

1.285 

3.598 

6.349 

Methodology-Summary 

df 

1 

1 

23 

23 

MS 

Between Groups 

.491 

1.285 

Within Groups 

.156 

.276 

F 

3.137 

4.655 

3.137 

4.655 

p 

.090 

.042* 

.090 

.042* 

Data revealed that students initially did not perceive themselves as capable of delivering 

problem-based learning prior to their training. The participants were undecided in whether they 

could perform problem-based learning at an acceptable level. However, the data did reveal that 

the coursework improved their understanding of PBL and enhanced their self-efficacy toward 

delivering this method of instruction in a science class. Furthermore, pre-service teachers felt 

they were capable of getting their future students to obtain student outcomes toward problem

based learning. 
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Discussion 

Perceived Science Teaching Efficacy - Pre-data revealed participants were undecided about 

their abilities to effectively teach and engage students in science. Post-data showed that pre

service teachers gained confidence in their science teaching abilities throughout their experience 

with PBL. This finding is significant because teacher confidence is directly related to the type of 

instruction found in the classroom. Teachers who lack confidence are more likely to focus on 

teacher-directed instruction that can marginalize students and minimize learning [29]. With the 

current emphasis on student-led inquiry, science teachers must be confident enough to relinquish 

some of the decision-making duties and provide students with a more active role in their science 

education [10-12]. Data from this study indicate PBL training was effective in strengthening 

participants' confidence in teaching science. This finding suggests PBL-infused science methods 

courses are of value in informing pre-service teachers' PSTE and potentially impacting how 

science will be taught in their future classrooms. 

Effectively implementing a particular instructional model takes time and practice. It is 

essential for pre-service teachers to observe a master teacher modeling PBL so they know what 

true PBL looks like. Additionally, pre-service teachers must be provided the opportunity to be 

students of PBL in order to judge first-hand the impact of learning science in that manner. With 

the awareness that PBL implementation presents challenges for many beginning and experienced 

teachers, science methods educators should model the role of facilitator by asking probing and 

guiding questions and fostering student-led inquiries. This type of science methods instruction 

will help students learn content and learn how to learn. Teachers must have a strong Pedagogical 

Content Knowledge (PCK) to model for students. Similarly, teachers in training need science 

education professors to model a strong PCK for them. Findings from this study align with work 

by Van Driel and Delong who determined pre-service teachers' PCK improved when taught in a 

PBL format [27]. Etherington reported intellectual gains for pre-service teachers who engaged in 

PBL learning [28]. This supports findings for the current study because students who gain 

intellectual understanding of content would be expected to show improvements in beliefs about 

their abilities. While the initial improved confidence found in the current study is of interest, it is 

important to remember the importance of ongoing professional coaching to maintain confidence 

and effective implementation of PBL. 

Science Teaching Outcome Expectancy - Prior to PBL methods courses, participants reported 

they were somewhat undecided about how their teaching might impact student learning. Post

data indicated improvement in participants' STOE values that is of practical significance. These 
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findings add additional strength to the call for PBL-infused science methods courses. Pre-service 

teachers' views of their abilities to impact student learning grew after PBL coursework. For these 

reasons, science education faculty should incorporate PBL into their courses in order to help 

future teachers develop skills and confidence in PBL implementation. 

Furthermore, data from this study found pre-service elementary and secondary teachers 

did not differ significantly in their PSTE post-test scores. The fact that pre-service elementary 

teachers felt as confident as pre-service secondary teachers in science instruction is important 

because most elementary science teachers are not science majors. It stands to reason that teachers 

with a science background will feel more confident teaching science than teachers without a 

science background. The fact that PBL played a part in pre-service elementary majors becoming 

more confident in their ability to teach science is an interesting finding that warrants further 

investigation. 

Pre-service elementary and secondary teachers were found to have significant post-study 

differences on the STOE, with elementary pre-service teachers yielding a higher mean. This 

finding is important because elementary teachers as a whole tend to report a lack of confidence 

and/or interest in science instruction. If pre-service teachers taught via PBL grow in the belief 

that they can positively impact student learning, they are more likely to show an interest and 

enthusiasm for science that will come across to their students. Teachers who feel capable and 

empowered arc more likely to produce capable and empowered students. 

Diversity continues to increase among today's students. The diversity of the classroom 

teacher is not keeping up with that of the larger population. The majority of educators continue to 

be white females. Diverse instructional strategies present a method of addressing the social and 

cultural differences that exist between teachers and students. When students are able to lead their 

own science inquiries, the experiences will be much more relevant, meaningful, and motivating. 

Problem-based learning offers a means for highly effective science instruction that is culturally 

responsive. 

Implications for Education 

This initial study provided a foundation for infusing PBL strategies into pre-service 

science methods courses spanning the K-12 level offered by multiple institutions of higher 

education across Virginia. Though the study was relatively small in terms of the number of 

participants, the impact of the findings can be extended to a wider educational context. 
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Preliminary results indicate that the benefits of employing problem-based learning strategies at all 

levels of science education are numerous for all parties involved, and the science education 

community as a whole should continue to embrace and support this emerging methodology of 

science instruction. 

Suggestions for Best Practices in Pre-Service Learning 

Based on the preliminary results of this study, the following suggestions for best practices 

in pre-service science learning have been identified: 

• Pre-service science teachers should be given the opportunity to participate in 

authentic problem-based learning scenarios as part of their own science education

Since PBL methods likely differ from the traditional methods many pre-service teachers 

experienced during their own K-12 science education, it is crucial to allow prospective 

teachers to experience PBL in order to convince them of its added benefit of exploring 

the world in a scientific way. In addition, first-hand experience will increase their 

comfort level with PBL methods. 

• In introducing PBL strategies into science methods courses, instructors should make 

thoughtful linkages between PBL methodology and other successful constructivist 

methodologies in science education-For example, the four phases of developing 

effective PBL scenarios are very compatible with the stages of the learning cycle, which 

may be more familiar to pre-service teachers [37]. Though the benefits of employing 

PBL methods within science classrooms across Virginia are becoming apparent, it is 

important to keep in mind that PBL did not emerge without a solid grounding in 

constructivist learning theory [38]. 

• Pre-service science teachers should be given the opportunity to practice designing 

PBL units for use in the classroom, ideally with the opportunity to implement their 

units in the classroom in cooperation with veteran K-12 teachers-Pairing pre

service and in-service teachers to implement PBL units in science classrooms benefits 

both the pre-service teachers and in-service teachers in multiple ways. In working with 

veteran teachers, pre-service teachers are afforded the intuition and guidance of 

experienced teachers as they design their units. Even if a veteran teacher has not used 

PBL strategies in the past, s/he possesses the pedagogical content knowledge to discern 

whether an activity is appropriate for the students, as well as whether it will be an 
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effective way for them to learn the content at hand. In working with pre-service teachers 

who have received instruction in PBL methods, veteran teachers gain exposure to new 

pedagogy that may be unfamiliar or seem chaotic at first glance. Having experienced 

PBL methods as a way of approaching an authentic problem first-hand, the pre-service 

teachers can offer support to veteran teachers in implementing PBL instruction, and offer 

suggestions for providing support to students throughout the course of the unit without 

resorting to direct instruction. 

Promoting Awareness of PBL: Removing Obstacles 

One of the primary challenges to the widespread use of PBL methodology in K-12 

schools is the prevalent perception that there is not enough time to do so. If we solidly believe in 

the value-added benefits of PBL as a means for empowering science students to establish cross

thematic connections between science concepts, then we must work together as a science 

education community to convince educators, administrators, colleagues, and parents that the 

additional time, if any, required to implement PBL units in science classes is more educationally 

valuable to students than methods of direct instruction. It is also important to wholly support K-

12 educators in doing so. There are several initial ways to approach this formidable task: 

• We must link PBL units to the Virginia Standards of Learning (SOL) explicitly-In 

designing PBL units for use in K-12 science classrooms, we must be sensitive to the time 

constraints experienced by classroom teachers at all levels, and duly acknowledge these 

concerns by making sure that PBL scenarios embody a multitude of science SOL that 

would otherwise need to be covered as a means of justifying the use of class time to 

complete the PBL unit. 

• Design cross-disciplinary PBL units which encourage cooperation between teachers 

of different disciplines-Sharing the development and implementation of PBL units 

across multiple classrooms at all levels can ease the burden of class time required to 

complete the unit. Additionally, having students approach the same problem from 

different disciplinary lenses encourages the type of global thinking which PBL aims to 

engender. 

• Make PBL a focal point of pre-service science teacher education-By providing 

support in learning how to effectively implement PBL to the next generation of science 

teachers, the science education community can help make pre-service teachers become 
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more comfortable in employing a methodology which they did not experience as students 

themselves. Thus, the science education community is making strides in combatting the 

old adage that "we teach the way that we were taught," and promoting real reform in 

science education. These pre-service teachers will be equipped to become the PBL 

experts in their future schools, providing a support network to veteran teachers in 

implementing PBL strategies in their classrooms. 

Future Directions of PBL 

Though preliminary results of this study and others are favorable in terms of the 

widespread use of PBL in science education, continued study of PBL is needed, particularly in 

the area of the effects of the infusion of PBL methodology in pre-service science teacher 

education. Future directions include further study of PBL in pre-service, K-12 science teachers 

across Virginia via a lesson study model in order to investigate how pre-service science teachers 

implement PBL units in their first classrooms, and how their use of PBL evolves over time. 

One of the limitations of the current study was the use of the STEBI-B as the primary 

tool for identifying changes in teacher self-efficacy as a result of instruction in PBL methodology. 

Though this instrument is known to be flawed, locating and designing more accurate instruments 

to capture such subtle and personal teacher characteristics is difficult. In future studies, a more 

qualitative model could provide a more detailed description of the impact of PBL on pre-service 

teachers' transitions to the science classroom. 
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This article is a survey of the literature on inquiry teaching. Many teachers do not participate in 

inquiry teaching for various reasons. The following are the main reasons: it takes too much time; 

students do not learn what they need for the state test; and, the teachers do not know how to grade 

projects and presentations. These reasons sound like rhetoric from long ago, but it is very current. In 

this article, research is used to show that students who participate in inquiry learning or any type of 

problem-based education do much better than students who do not have that opportunity. The student 

participants not only have better grades, but they think on a higher level, become more civic minded, 

and are better problem solvers. 

Included in the article are four models which can be used to teach inquiry science, and two lesson 

plans with rubrics to help grade the inquiry STS lesson. The major point being made throughout is that 

there is an advantage to teaching students using inquiry. The only disadvantage is not giving the 

students the opportunity to use inquiry and to grow. 

Introduction 

What is inquiry? When one is asked this question, it can be properly explained that, "It is 

the process of questioning, asking, and interrogating." Thus, inquiry in science thus would be the 

process of asking a question or seeking the solutions to science questions. Some teachers will say 

it is that method which takes too much time. However, there are more definitive and descriptive 

definitions of inquiry: "Inquiry is the process by which scientists pose questions about the natural 

world and seek answers and deeper understanding, rather than knowing by authority or other 

processes" [1]. This should encourage teachers to "yearn" for inquiry and not fear it. 

Inquiry is found as a major component of scientific literacy. As a means of the methods 

of science, it focuses on the basic skills of observing, inferring, predicting, measuring, and 

experimenting [2]. To many teachers, it is the act of asking students questions, and then directing 

them on how to answer the questions. There are others who will let students suggest their own 

questions and design experiments to answer them. In short, there are many interpretations of the 
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meaning of inquiry, but there really is a definition with special characteristics that make an 

activity or practice an inquiry one. 

Definitions of Inquiry 

Science as inquiry is one of the content standards of the National Science Education 

Standards [3]. It is a basic in curriculum organization and in students' science education 

experience. This standard highlights the ability to do inquiry and the fundamental concepts about 

scientific inquiry that should develop. The emphasis on inquiry moves, "beyond the processes of 

science and emphasizes the students' cognitive development based on critical thinking and 

scientific reasoning required in the use of evidence and information to construct scientific 

explanations [ 4]. 

As one of the science teaching standards, it is recommended that effective science 

teachers plan an inquiry-based science program for their students. This means that the teachers 

would develop a framework of yearlong short-term goals for students, select science content, and 

adapt and design curricula to meet the interests and experiences of students. They would also 

select teaching and assessment strategies that support the development of students' understanding 

and would nurture a community of science learners. Inquiry-supporting teachers work together as 

colleagues within and across disciplines and grade levels for the benefit of the students [4]. 

The National Science Education Standards (NSES) also have professional development 

standards concerning inquiry. It calls for teachers to learn the essential science content through 

the perspectives and methods of inquiry. It emphasizes that teachers are taught as they will teach 

their students by stating that science teaching experiences or professional development for 

teachers must include being a participant in inquiry. This means taking the following actions: 

actively investigating phenomena that can be studied scientifically, interpreting results, and 

making sense of findings consistent with currently accepted scientific understanding; addressing 

issues, events, problems, or topics significant in science and of interest to participants; and, 

incorporating ongoing reflection on the process and outcomes of understanding science through 

inquiry [ 4]. 

Inquiry teaching goes back to Dewey when he noted that developing thinking and 

reasoning, formulating habits of mind, learning science subjects, and understanding the process of 

science were the objectives of teaching science through inquiry [5]. Through the idea of hands-
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on science, inquiry was promoted in the 1960s with the goal of engaging students in the kind of 

science practiced by scientists using hands-on activities, ultimately helping students develop 

scientific concepts and process skills [6-8]. 

Inquiry has its beginning in constructivism which included hands-on activities as a way 

to motivate and engage students while trying to solidify science concepts. Constructivist 

approaches emphasize that knowledge is constructed by an individual through active thinking, 

defined as selective attention, and organization of information and integration with or 

replacement of existing knowledge. In addition, social interaction is necessary to create shared 

meaning; therefore, an individual needs to be actively engaged both behaviorally and mentally in 

the learning process for learning to take place. As constructivist approaches permeated much of 

the educational practices in the 1970s, it became particularly prominent in science education 

through the focus on inquiry [9]. 

The NSES extends the definition and differentiates the terms "scientific inquiry," 

"inquiry learning," and "inquiry teaching." DeBoer stressed that science was both process and 

product whether it is practiced by scientists or studied in classrooms [ 1 O]. Trowbridge, et al. 

state, "It is important to note, however, inquiry teaching does not require students to behave 

exactly as scientists do. Science inquiry is simply a metaphor for what goes on in an inquiry

based classroom" [4]. Inquiry can be demonstrated on a continuum. The National Research 

Council (NRC) defined it as full, partial, open, and guided: full inquiry is when students engage 

in all features of inquiry; partial is when students engage in fewer essential features of inquiry; 

open is when fully directed by the students; and, guided is when the teacher directs the activities 

[6]. 

Some educators equate inquiry with discovery learning. Discovery learning only 

involves students using their minds to gain insight into a concept or principle. While in inquiry, 

an individual may use all of the discovery mental processes in addition to formulating problems, 

hypothesizing, designing experiments, synthesizing knowledge, and demonstrating such attitudes 

as objectivity, curiosity, open-mindedness, and respect for theoretical models, values, and 

attitudes. Inquiry methods seem to engender the following: increase higher level thinking; cause 

a shift from extrinsic to intrinsic rewards; help students learn how to investigate; increase 

knowledge retention; make instruction student-centered, thereby contributing to a person's self-
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concept; increase expectancy level; develop multiple, not just academic, talents; and, allow more 

time for students to assimilate and accommodate information [ 4]. 

Many researchers, scientists, and educators have studied classrooms and evaluated 

investigations, experiments, and practices to see the commonalities of those labeled as "inquiry 

practices." All hands-on activities are not inquiry activities. If students arc solving a problem 

using data analysis which began with a research question, then it is most likely an inquiry-based 

practice or activity. Another criteria for labeling a science practice or activity as inquiry is if the 

students use the collected data to answer the research question [2]. 

Research on Inquiry Practices 

Dalton, et al. directly compared two hands-on curricula that made a difference in students 

learning some physics concepts [11). It was found that the hands-on activities alone were not 

sufficient for conceptual change. Students also needed an opportunity to process the activities 

and concepts. Discussing meaning and interactions through class discussions of the reasons 

behind the observations in their independent design activity were needed for conceptual change. 

Crawford found that mentor teachers' beliefs and preferred instructional approaches 

influence pre-service teachers' willingness to take risks in creating inquiry-based lessons [6, 12). 

Demer and Abell found that teachers not only had a wide variety of conceptions of inquiry, but 

also considered inquiry as any student-driven activities, student generated questions, and student 

independent research with either little or no teacher intervention [6]. To promote inquiry in all 

levels of education, practitioners need to recognize broader views of inquiry that include the 

essential features of inquiry as supported by the NRC. 

It was found in a study by Minner, Levy, and Century that the majority ( 51 % ) of their 

fifty-eight studies showed positive impacts of some level of inquiry on science instruction on 

student content learning and retention [9]. Forty-five (33%) showed mixed impact of inquiry 

instruction, nineteen (14%) showed no impact, and three (2%) showed negative impact. There 

were nine studies that looked at some contrasting aspects of student responsibility for learning. 

Six of those studies found a statistically significant increase in student conceptual learning when 

there was more student responsibility in the instruction with higher inquiry saturation. In studies 

where there were more teacher-directed learning goals and activities or lower inquiry saturation, 

the student conceptual learning was very low. Five of the six studies also showed a statistically 
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significant improvement in student conceptual learning from instruction that had hands-on 

activities with more inquiry saturation when compared with treatment with less emphasis on 

inquiry-based practices. 

The Education Development Center, Inc. (EDC) did a four-year study to address the 

research question, "What is the impact of inquiry science instruction on K-12 student outcomes?" 

(13] One hundred thirty-eight studies were analyzed; they indicated a clear positive trend 

favoring inquiry-based instructional practices, particularly instruction that emphasized student 

active thinking and drawing conclusions from data. Teaching strategies that actively engaged the 

students in the learning process through scientific investigations were more likely to increase 

conceptual understanding than the strategies that used more passive techniques [9]. 

The value of the inquiry approach has yielded positive evidence as related to students' 

attitudes and self-concept, and involving critical thinking rather than traditional instruction. 

Carnegie-Mellon University found that an inquiry-oriented social studies curriculum significantly 

increased students' abilities to inquire about human affairs, compared to those who were studying 

non-inquiry materials (14]. 

The term "inquiry" has invaded science education with three distinct categories of 

activities: 1) what scientists do; 2) how students learn; and, 3) a pedagogical approach that 

teachers use (3, 15]. Whether it is the students, the scientists or the teachers, there are six 

essential features or components from the learners' perspectives as essential features of classroom 

inquiry: 

1) Learners are engaged by scientifically oriented questions. 

2) Learners give priority to evidence, which allows them to develop and evaluate 

explanations that address scientifically oriented questions. 

3) Learners formulate explanations from evidence to address scientifically oriented 

questions. 

4) Learners evaluate their explanations in light of alternative explanations, particularly 

those reflecting scientific understanding. 

5) Learners communicate and justify their proposed explanations (6, 9, 16]. 
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6) The amount of direction and decision making done by the teacher versus the student 

has produced distinctions, such as open and guided inquiry [16]. 

Additional Benefits of Inquiry 

Project 2061 defined the goal of inquiry as helping people in every walk of life deal 

knowledgeably with problems that often involve evidence, quantitative considerations, logical 

arguments, and uncertainty. Much of the research explained how engaging students in scientific 

inquiry can serve many purposes, including student motivation, the preparation of future 

scientists, and the development of citizens who will be autonomous, independent thinkers [ 6]. 

Inquiry methods seem to give rise to the following: increase intellectual potency; cause a shift 

from extrinsic to intrinsic rewards; help students learn how to investigate; increase memory 

retention; make instruction student-centered, thereby contributing to a person's self-concept; 

increase expectancy level; develop multiple, not just academic talents; avoid learning only on the 

verbal level; and, allow more time for students to assimilate and accommodate information [17]. 

There are many benefits for students using the inquiry method when it is taught correctly. 

Inquiry Teaching 

There are definitely two aspects of inquiry: one is the students' learning, their attitudes, 

and their abilities; the other is teaching approaches and learning strategies. Therefore, inquiry 

instruction can be defined as an active process in which students answer a research question 

through data analysis. Teachers should be able to scaffold inquiry instruction for the students to 

help them develop inquiry abilities. By varying the amount of information given to students, 

teachers can scaffold inquiry activities and model the process of scientific inquiry [2, 18]. 

An old adage states, "Tell me and I forget; show me and I remember; involve me and I 

understand." One dictionary defines "inquiry" as "a close examination of a matter in search for 

information or truth" [ 19]. That same dictionary defines "involvement" as the process of 

occupying or engaging the interest of someone. The learning process embraced by inquiry-based 

learners allows them to utilize what they already know about a topic as the basis for continued 

learning. The inquiry-based learning approach encourages students to investigate and discover 

more knowledge about a topic or natural phenomenon as they attempt to determine and 

understand why something is the way it is or how it works. So, how does this apply to the 

classroom? 
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Inquiry-based teaching is a teaching method which combines the curiosity of the students 

and the scientific method, while developing critical thinking skills of science. Students usually 

engage in five activities when participating in inquiry practices. The students usually question, 

investigate, connect evidence to knowledge, share findings, and use evidence to describe, explain, 

and predict [20]. 

Inquiry-based lessons encourage students to formulate explanations that address scientific 

questions. This approach to learning guides students into developing the skills needed to convert 

information and data into useful knowledge that they can convey to others successfully. 

According to Chiappetta and Koballa, "Scientific inquiry centers on natural phenomena and is an 

attempt to understand nature, to explain that understanding, to make accurate predictions from 

knowledge, and to apply the knowledge to societal needs" [21]. 

Successful implementation of inquiry-based learning reqmres that lessons, when 

developed, encourage students to collaborate with one another, gain a new or deeper 

understanding of why something is the way it is, and to use this understanding effectively to 

communicate with others about their findings [3]. This approach differs from the traditional 

classroom where individual learning is prized, even demanded and tested. Although both 

classrooms would embrace the scientific method during the learning process, the traditional 

approach differs in that it offers students a lab with sequenced steps, basic questions, and pre

determined conclusions. The traditional approach makes no allowances for student prior learning 

or for the individual thought process encouraged by the opportunity to inquire freely. In contrast, 

students are encouraged to protect their findings from their peers, to share ideas of ways to 

improve the investigation only if asked, and to communicate with other students during the 

learning experience only when allowed by the teacher-if they are allowed to talk at all. To be 

successful with inquiry-based learning, teachers must have an in-depth knowledge and 

understanding of the topic being presented. They should have the pedagogical tools to support 

the students in their thought processes while stimulating their interests in learning more than they 

already do [21]. Just as scientists do, students should have the opportunity to share as they learn, 

and the teachers should be able to facilitate a forum that encourages discussions and arguments 

among the students. Having a strong background in the topic is essential. Without in-depth, 

critical knowledge about a topic, teachers are not going to be effective in leading collaborative 

discussions which encourages students to evaluate or synthesize what is being presented by 

classmates. For example, students may need to clarify what they have stated or incorporate visual 
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models for a better understanding of their position. Teachers should be able to identify that need 

and facilitate these interactions. 

During lesson planning, teachers should anticipate opportunities that may arise where 

they will need to encourage students to dig deeper into the topic content. Teachers need to 

consider students' thought processes in their lesson [21]. As teachers compose their lesson plans, 

the focus should be on ensuring that students will gain the conceptual understanding for the skill 

or concept. The lesson objectives and assessment measures must reflect this focus. As an 

example, goals in an introductory, inquiry-based learning lesson would be for students to 

understand what inquiry is, conduct an investigation utilizing inquiry-based learning, 

conceptually understand the topic, and demonstrate growth in knowledge by how they develop 

their conclusions about their investigation. 

Because the inquiry-based approach to learning deviates from the traditional classroom 

approach, teachers must motivate students to learn by inquiry, rather than directing them. In 

order to motivate students in this learning approach, teachers need to create a rapport with the 

students. Teachers need to reassure students that there is a support system behind the approach 

that will not leave them fumbling around, but will offer guidance and structure when required. It 

is the responsibility of the teachers to ensure that students have a warm, welcoming learning 

environment that encourages student learning instead of "student floundering." This is a critical 

factor to ensure individual success in learning. 

The demonstration that learning has taken place results when students finish their 

investigation and are able to apply it to real life, explaining how their findings contribute to 

society. Full lesson effectiveness is demonstrated when students are able to apply the outcomes 

of their investigation-their artifacts-across the curricula. This means that students are able to 

show correlations or applications within subject areas, such as mathematics and language arts. 

This would be demonstrated by improved expression when writing, and improved analysis when 

working with mathematics problems. 

For students that need enrichment or remediation, inquiry-based learning supports all of 

the multiple intelligences. Inquiry-based learning encourages students to use their preferred 

learning style, allowing them to learn in ways that are comfortable for them. This increases 

successful learning by these students because it reduces stress during the learning process. The 
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sky is the limit! Using inquiry-based learning allows students who think outside of the box to do 

so, as well as stay outside the box as long as they wish. It also allows those students that like the 

"middle of the road" to be in their comfort zone. For remedial students, this approach encourages 

them to collaborate with others, to develop their own ideas, and to capture explorations on paper 

in a way that is less threatening, because help from mentoring students or even from the teacher is 

part of the course of learning rather than the exception. It allows these students to explore and 

learn by doing, thus giving them control over how they learn. It is the role of the teacher to 

facilitate the learning process, keep students on task, and ensure a learning environment that 

encourages each student to strive for their full potential. 

Inquiry-based learning is supported by both long-term and short-term goals, just as any 

learning should be. The experiences of inquiry-based learning support all learners regardless of 

their educational background or capabilities. Teachers are challenged by inquiry-based learning 

to create environments and experiences that ensure all students will gain additional knowledge, 

apply that knowledge, and evaluate that knowledge culminating in the ability of the students to 

apply their new knowledge to real-life experiences. Inquiry-based learning is a proven approach 

that teachers can use successfully to develop students interested in answering their own questions 

and owning their own knowledge. 

Teaching Models 

To ensure that students have successful experiences using inquiry, teachers must feel 

secure that they can teach and coach the students in the inquiry process. The authors introduce 

the teachers to four inquiry teaching models: 1) the traditional Suchman model, 2) the 5-E model, 

3) the Science Technology Society (STS) model, and 4) the Problem-Based model. Each 

teaching model relinquishes more responsibility to the students to the extent that the STS and 

Problem-Based Leaming models can be full inquiry. 

Traditional Suchman Inquiry Model - The traditional Suchman inquiry model consists of five 

steps: 1) posing a question; 2) constructing a hypothesis; 3) designing a plan to answer or 

research the hypothesis; 4) reevaluate the hypothesis after the collection of data; 5) forming a 

general statement about the results from the data collection process, and then sharing and 

teaching it to the class [3, 22-25]. In pre-service classes and professional development sessions, I 

use the Traditional Inquiry Model organizer with the teachers. Phase I of this process introduces 

the teachers to the variability of inquiry (see Appendix A) and shows how to focus on the student 
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and not just the task. The phases or steps in this model are defined and explained in Appendix B. 

Teachers are then asked to complete the organizer (see Appendix C), anticipating what the 

students will do when answering research questions. It is visible and written for the teacher to see 

that the student is to do these activities and practices without the intervention of the teacher. It 

takes some time, but after several practices, written and orally, the teachers begin to understand 

that inquiry is about the students' learning, hypothesizing, examining, and forming conclusions. 

5-E Inquiry Model - The five steps learning cycle, or the 5-E model, includes five phases: 1) 

engagement, 2) exploration, 3) explanation, 4) elaboration, and 5) evaluation. The engagement 

phase is used to pique the students' interest and provide focus for the activities. The exploration 

phase proceeds like guided discovery where the teacher serves as a facilitator. The explanation 

phase includes more involvement of the teacher with the introduction of new concepts while 

answering questions and guiding students to connect the new knowledge with their prior 

knowledge. The elaboration phase follows the explanation phase and includes students or 

students' groups applying newly learned concepts to new situations. Students show the ability to 

transfer their learning in this phase. The final phase is the evaluation phase where the learning 

and understanding are assessed. This assessment can be formal, informal, or even a sclf

assessmcnt, but students are given feedback at this time [26]. The stages are dominated by the 

students' actions, except the explanation phase (see Appendix D) where the teacher can lead 

discussions and help students make connections with the new knowledge. 

Science Technology Society (STS) Inquiry Model - The third model, Science Technology 

Society (STS), is similar to the traditional Suchman inquiry model except students study an issue 

and then exhibit or propose a behavior change. They (students in pairs or groups) proceed 

through the five steps; in addition, they propose a solution to the issue, and design and execute a 

plan to address or solve the issue. The STS movement/curricula intent was to integrate 

technological and societal issues into the science classroom. It put the motivation for science 

instruction in the natural curiosity to understand the world. Once the understanding is obtained, 

the knowledge is then applied [27]. 

The STS lesson is an integrated science lesson which shows the impact of science on 

technology and the impact of technology on society. It demonstrates the following: how 

progress affects people; how people interact with progress or new technology; and, the impact of 

new technology on the world. The STS lesson not only teaches content and technology, but it 
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requires some actions from the students. The students must perform some task, such as make a 

presentation to a governing body, construct posters to inform the community, or survey the 

community to see if they are aware of a specific issue. It can be used with either the Traditional 

Inquiry Method (see Appendix B) or the 5-E Model (sec Appendix D). 

Problem-Based Leaming (PBL) - Another approach to science education and the teaching of 

science is the design-based or project based immersion units referred to as full inquiry units or 

Project-Based Science (PBS). Those units usually last for some weeks and provide students with 

one overarching problem. Most of the projects have learning goals in areas that include 

communication about scientific explanations or arguments, and students developing scientific 

reasoning. Design-based curriculum like PBS evolved out of an engineering model of teaching 

and learning, and has a strong focus on applying science concepts to solve real-world problems 

[28]. This epistemological view, like the integrative view, is nonlinear. Knowledge taught to 

students in an integrative curriculum is taught around broad themes and issues that are important 

to students and part of their lives: "Curriculum is integrative when it helps make sense of their 

life experiences" [29, 30]. It helps students find answers to their questions and solve problems in 

the learning process. Many studies which have used this method have had successful and 

promising results [31]. 

The distinction between problem-based learning and other forms of active learning often 

are confusing because they share certain common features and approaches. However, an 

essential component of problem-based learning is that content is introduced in the context of 

complex, real-world problems. In other words, the problem comes first [32, 33]. This contrasts 

with prevalent teaching strategies where the concepts, presented in a lecture format, precede 

"end-of-the-chapter" problems. In problem-based learning, students working in small groups 

must identify what they know and, more importantly, what they don't know and must learn 

(learning issues) in order to solve a problem. These are prerequisites for understanding the 

problem and making decisions required by it. The nature of the problem precludes simple 

answers. Students must go beyond their textbooks to pursue knowledge in other resources in 

between their group meetings. The primary role of the instructor is to facilitate group process and 

learning, not to provide easy answers. Different forms of assessment come with the change in 

format, such as group examinations and application of the new knowledge. 
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The model for problem-based learning comes from a few medical schools, notably 

McMaster, where more than twenty-five years ago, they questioned how well traditional, pre

clinical science courses trained physicians to be problem solvers and lifelong learners [34]. 

Information-dense lectures presented by a series of content experts to large student audiences 

seemed disconnected from the practice of medicine that required integration of knowledge, 

decision making, working with others, and communicating with patients. The curricula of several 

medical schools now include problem-based, pre-clinical science courses. The effectiveness of 

the problem-based learning approach in the medical school environment has been debated, 

evaluated, and given qualified endorsement based on a number of studies [35-37]. 

In problem-based learning (PBL), students use "triggers" from the problem case or 

scenario to define their own learning objectives. Subsequently, they do independent, self-directed 

study before returning to the group to discuss and refine their acquired knowledge. Thus, PBL is 

not about problem solving per sc, but rather it uses appropriate problems to increase knowledge 

and understanding. The process is clearly defined, and the several variations that exist all follow 

a similar series of steps (see Appendix E). 

There have been significant scholarly achievements seen with PBL. With the successful 

achievement results, it is believed that PBL should be promoted in middle school classrooms [31, 

38]. Traditionally underrepresented groups in science have higher achievement with problem

based learning, and this would provide an opportunity for increased science achievement by all 

students. Problem-based learning is compatible to many of their learning styles, field 

dependency. Problem-based learning would give all students an opportunity for higher-level 

thinking and transformational opportunities in their daily lives. The problems are usually 

relevant, but always involve the students' contributions and understanding. 

Inquiry Lessons 

There are seven important elements of any inquiry lesson: 

1) The Problem-Meets the condition of focus, and the problem should be real, meaningful, 

and capable of study [39]; 

2) The Background Information-Some means of putting the class on a common level; 

3) The Materials-Same as Suchman's responsive environment; 

4) The Guiding Question-Consists of an anticipated list of questions to be asked by the 

teacher to direct students' thought processes; 



INQUIRY TEACHING: TT IS EASIER THAN YOU THINK 123 

5) The Hypothesis-Should be formulated as a result of discussions and guiding questions; 

6) The Data Gathering and Analysis-The hands-on components and experimental parts of 

the inquiry lesson (this is a low pressure area to allow for mistakes and repeats); 

7) The Conclusion-The lesson's closure should culminate in some final result based on 

experimentation and discussion (group conclusions are accepted) [4]. 

There is a great deal of information and various models to enable use of inquiry in the 

classroom. Because of its effectiveness with all students, it can be applied as guided and full 

inquiry using some of the traditional lessons. It depends on the amount of student interaction 

compared to the teacher interaction and input. For the classroom teacher, Appendix F shows a 

traditional lesson converted to a guided inquiry lesson. This is to illustrate that "It is easier than 

you think!" 
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Appendix A 

The Inquiry Process 

Phase 1: Description of Inquiry Activities 

I. Inquiry can be viewed as a systematic way to investigate a question or problem. 

Scientists use the process of inquiry to generate and validate knowledge. 
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Examples: The investigation of disease and other health-related matters are all essentially 

inquiry problems. 

• The tentative conclusions suggesting that smoking, high cholesterol foods, excessive 

weight, and lack of exercise are detrimental to health are the result of inquiry. 

• They originate in studies that ask questions, such as "Why does one sample of people 

have a higher incidence of heart disease than does another?" 

• The decision to install black boxes in aircraft attempts to answer the question, "Why did 

the accident happen?" 

• "Why did the students in one set of classrooms achieve more than those in another set of 

classrooms?" 

Inquiry is a process for answenng questions and solving problems based on facts and 

observations. 

II. At the classroom level, inquiry is a teaching strategy designed to teach students how to 

attack questions and problems encountered in various content areas. As a teaching strategy, 

the Inquiry Model is operationally defined as a five-step method that proceeds as follows: 

1. Question or problem identification 

2. Hypothesis generation 

3. Data gathering 

4. Assessment of hypotheses through data analysis 

5. Generalizing 

III. Inquiry is a model designed specifically for the development of thinking skills. 

Students develop their skills first at the general problem-solving level, and they also practice 

the specific micro-thinking skills contained within the model, such as generating hypotheses 

and analyzing data. 
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Appendix B 

The Inquiry Teaching Model 

Phase II. 5 General Steps 

This Inquiry Teaching Model is designed to aid the student to facilitate inquiry science 
processes while teaching traditional science concepts. This model reflects and resembles the 
Scientific Methods which is an inquiry method as well. It allows the students to imitate the 
scientists and investigate questions of their own. The 5 general steps are: 

1. Question or problem identification-student or groups brainstorm and identify a 
problem or question they wish to solve. 

2. Hypothesis generation-student or groups brainstorm and identify a hypothesis they 
wish to test. 

3. Data gathering-student or groups brainstorm and identify a procedure they wish to 
follow. They write out the procedure they wish to use, gather materials needed, and test 
for their variable. They collect data in this step and use it to accept their hypothesis and 
form their result statement or generalizing statement. 

4. Hypothesis Assessment-student or groups brainstorm and decide to accept their 
hypothesis or reject it. They discuss the results they got and compare it with the question 
and hypothesis. Based upon their decision, they form a generalizing statement based 
upon what they did in their investigation. 

5. Generalizing-student or groups brainstorm and identify a generalizing statement from 
their experimentation. All groups will share their results with the class for the class to 
form a generalizing statement/s if possible. 
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Phase IIL Students' Actions 

Appendix C 
Inquiry Teaching Model 
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In the procedure section of your lesson plan or the presenter's lesson, one should see the 

five steps of the Inquiry Model of Teaching. Please check it off as it is indicated in the column 

under "The Student will." The Inquiry model is a student-centered model, so the students should 

perform the actions. Please write what the students will do for each step under the column, 

"Actions by students/The Student will:" 

Steps Actions by students/The Student will: 

1. Question or problem 
identification 

2. Hypothesis generation 

3. Data gathering and plan 
of testing 

4. Hypothesis Assessment 

5. Generalizing 
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AppendixD 
5-E (Inquiry) Teacher and Student Actions 

Stages Of the What the Teacher Does What the Student Does 
Instructional 
Model 

Engage Creates interest. Asks questions, such as: Why did 
Generates curiosity. this happen? What do I already 
Identifies what the student knows about the know about this? What can I find 
topic. out about his? Show interest in the 

topic. 
Explore Encourages students to work together Thinks freely, but within the limits 

without direct instruction from the teacher. of the activity. Tests predictions 
and hypotheses. 

Observes and listens to students as they Forms new predictions and 
interact. Asks probing questions to redirect hypotheses. 
students' investigations when necessary. 

Tries alternatives and discusses 
Provides time for students to puzzle through them with others. 
problems. Acts as a consultant for students. 

Records observations and ideas. 
Suspends judgment. 

Explain Encourages students to explain concepts and Explains possible solutions or 
definitions in their own minds. answers to others. Listens to and 

tries to comprehend explanations 
Asks for justification (evidence) and offered by the teacher. 
clarification from students. Formally 
provides definitions, explanations, and new Refers to previous activities. 
labels. Uses recorded observations in 

scientific explanations. 
Uses students' previous experience as the 
basis for explaining concepts. 

Elaborate Expects students to use formal definitions Applies new labels, definitions, 
and explanations. explanations and skills in new, but 
Encourages students to apply the concepts similar, situations. 
and skills in new situations. Uses previous information to ask 

questions, propose answers, make 
Reminds students to data and evidence and decisions, design experiments. 
asks: What do you already know? Why do Draws reasonable conclusions from 
fYOU think .. ? evidence. 

Records observations and 
explanations. 
Checks for understanding among 
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peers. 
Evaluate Observes students as they apply new Answers open-ended questions by 

concepts and skills. using observations, evidence, and 
Assesses students' knowledge and/or skills. previously accepted explanations. 

Looks for evidence that students have Demonstrates an understanding or 
changed their thinking and behaviors. knowledge of the concept or skill. 

Allows students to assess their own learning Evaluates his or her own progress 
and group-process skills. and knowledge. Asks related 
Asks open-ended questions, such as: why do questions that would encourage 
you think .. ? What evidence do you have? future investigations. 
What do you know about? How would you 
explain .. ? 

Appendix E 
STS Sample Lesson 2 for Pre-Service and In-Service Teachers 

Maior Standards and Prompt 

1. Content. Teachers of science understand and can articulate the knowledge and practices of 

contemporary science. They can interrelate and interpret important concepts, ideas, and 

applications in their fields of licensure, and can conduct scientific investigations. To show that 

they are prepared in content, teachers of science must demonstrate that they: 

(a) understand and can successfully convey to students the unifying concepts of science 

delineated by the National Science Education Standards; 

(b) understand and can successfully convey to students important personal and technological 

applications of science in their fields of licensure. 

2. Nature of Science. Teachers of science engage students effectively in studies of the history, 

philosophy, and practice of science. They enable students to distinguish science from nonscience, 

understand the evolution and practice of science as a human endeavor, and critically analyze 

assertions made in the name of science. To show they are prepared to teach the nature of science, 

teachers of science must demonstrate that they: 

(a) understand the historical and cultural development of science and the evolution of 

knowledge in their discipline; 
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(b) understand the philosophical tenets, assumptions, goals, and values that distinguish 

science from technology and from other ways of knowing the world. 

3. Inquiry. Teachers of science engage students both in studies of various methods of scientific 

inquiry and in active learning through scientific inquiry. They encourage students, individually 

and collaboratively, to observe, ask questions, design inquiries, and collect and interpret data in 

order to develop concepts and relationships from empirical experiences. To show that they are 

prepared to teach through inquiry, teachers of science must demonstrate that they: 

(a) understand the processes, tenets, and assumptions of multiple methods of inquiry leading 

to scientific knowledge. 

4. Issues. Teachers of science recogmze that informed citizens must be prepared to make 

decisions and take action on contemporary science- and technology-related issues of interest to 

the general society. They require students to conduct inquiries into the factual basis of such 

issues and to assess possible actions and outcomes based upon their goals and values. To show 

that they are prepared to engage students in studies of issues related to science, teachers of 

science must demonstrate that they: 

(a) understand socially important issues related to science and technology in their field of 

licensure, as well as processes used to analyze and make decisions on such issues. 

5. General Skills of Teaching. Teachers of science create a community of diverse learners who 

construct meaning from their science experiences and possess a disposition for further exploration 

and learning. They use, and can justify, a variety of classroom arrangements, groupings, actions, 

strategies, and methodologies. To show that they are prepared to create a community of diverse 

learners, teachers of science must demonstrate that they: 

(a) Vary their teaching actions, strategies, and methods to promote the development of 

multiple student skills and levels of understanding; 

(b) Successfully promote the learning of science by students with different abilities, needs, 

interests, and backgrounds; 

(c) Successfully organize and engage students in collaborative learning using different 

student group learning strategies; 
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(d) Successfully use technological tools, including but not limited to computer technology, to 

access resources, collect and process data, and facilitate the learning of science; 

( e) Understand and build effectively upon the prior beliefs, knowledge, experiences, and 

interests of students; 

(f) Create and maintain a psychologically and socially safe and supportive learning 

environment 

6. Science in the Community. Teachers of science relate their discipline to their local and 

regional communities, involving stakeholders and using the individual, institutional, and natural 

resources of the community in their teaching. They actively engage students in science-related 

studies or activities related to locally important issues. To show that they are prepared to relate 

science to the community, teachers of science must demonstrate that they: 

(a) identify ways to relate science to the community, involve stakeholders, and use 

community resources to promote the learning of science. 

An Example of a STS Lesson 

Prompt: You will be given or allowed to choose a relevant and current issue in the scientific 

perspective, include opinions of all stakeholders, and propose a solution based upon the data 

collected (NSTA 3.0). 

Example: In a city in a southern state, there is a prominent chemical company named Velux. If 
you investigated this problem, you would find out what chemical Velux manufactures and give the 

chemistry background of the chemical. Velux has been accused of dumping the chemicals and 

by-products into Calm Creek which runs through several northern communities (NSTA 4.0, 7.0). 

These communities have been found through research and documentation to have high deaths due 

to cancer. You will need to get the facts from past records and interview a sample of persons from 

each affected neighborhood to get the perspectives of these stakeholders. The opinions of the 

Velux employees and owners are important, too (NSTA 2.0). 

The public asserts that Velux's chemical has penetrated the soil of the surrounding 

communities and has caused illness in children, also. You can do soil testing or find records of 

soil testing done in the areas. If you are a biology teacher, you may want to look for flora and 

fauna at, in, and along the creek (NSTA 1.0). You may want to survey the schoolchildren or 
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children living near Calm Creek to see if they noticed anything or has any idea about this issue. 

Soil around one apartment complex was excavated and replaced. An earth science teacher may 

wish to pursue this. Find out what the apartment manager/owner knows and what is told to 

prospective renters about the soil. 

I think you are getting the picture and can see that science is an important and integral 

part of local and regional communities. It is also relevant to your students. You will notice that 

scientific and community issues involve stakeholders, and whether individual or institutional, 

they value the natural resources of the community, but in different ways. As you design your 

inquiry STS project, you will identify a discipline and a concept to follow as you identify ways to 

relate science to the community, involve stakeholders, and use community resources to promote 

the learning of science (NSTA 7.0). 

Finally, you will write a lesson plan and scoring rubrics to show how you would involve 

students successfully in activities that relate your science issue to resources and stakeholders in 

the community and to the resolution of issues important to the community. You will state the 

follow-up action/behavior expected of your students based upon this data (see Appendix G). 
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Appendix F 
Sample Lessons for Classroom Students 

I. Hydrogen Peroxide and Potatoes: Actions of an Enzyme 

Grade Level: 7-12 
National Science Standards: Life Science Content Standards 

• Using concepts and processes 
• Science as inquiry 
• Physical science: chemical reactions 

Lesson Objectives: 
• The student will experience inquiry through this investigation. 
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• The student will explore and discover what happens when hydrogen peroxide and 
potatoes come in contact. 

• The student will evaluate what a catalase is and how it is used. 
• The student will describe the relationship between organic matter and a catalase. 

Materials: 
Tomatoes, raw chicken livers, potatoes, hydrogen peroxide, eye droppers, knife. 

Safety: 
Applicable safety rules will be written on a poster and discussed before beginning the activity. 

Lesson Activities: 
1. Students will pair in groups of four to do the experiment. They will gather prior 

knowledge about hydrogen peroxide and how it reacts with organic material. Students 
will create a KWL chart to determine what questions they need to answer based on the 
guidelines of the experiment. 

2. Students will research hydrogen peroxide and catalase. They will make predictions of the 
possible outcomes prior to beginning the experiment. Students will write a problem and 
then a hypothesis based on their research (see Appendix E). 

3. Students will perform the experiment based on the guidelines that are given by the 
teacher or on the ones they are allowed to develop themselves. Students may choose to 
modify the experiment based on research and permission from the teacher. The students 
will test the catalase on the tomatoes, chicken livers, and potatoes to discover and explore 
what happens. 

4. The students will record their data in each group and collaborate together to determine if 
their results validated their hypothesis or if another experiment needs to take place. 

5. Once the students have determined what a catalase is, what the reaction is and why it 
takes place, the students will create a presentation to present their findings. 
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6. The presentation will report their findings. The teacher should look for relationships, 
correlations, and discoveries during the presentation to gauge the students' conceptual 
understanding. This will tell the teacher how to proceed with the students. The 
objectives should be stated in their own words by explaining how they conceptually 
understood them (Johnson and Raven, 2001). 

Assessment: 
Participation Rubric, Presentation Rubric, Graded Teacher-Created Worksheet 

Enrichment: 
Where else can we see catalase or any enzyme being used? What are advantages and 
disadvantages of catalase or other enzymes? 
Students will be asked to design another experiment that will further their understanding of 
organic/inorganic matter and catalase. 



INQUIRY TEACHING: IT IS EASIER THAN YOU THINK 137 

Appendix G 
Lesson Design for Learning 

Daily Lesson Planning Form 
(For all types of science lessons) 

Name Subject/Grade Date --

Curriculum Connections Six Weeks Length of Lesson days --

Curriculum Guide Objective/National Science Standards: 
1.0 Content 
2.0 Nature of Science 
3.0 Inquiry 
4.0 Issues 
5.0 General Skills of Teaching 
7.0 Science in the Community 

For SPI, see the Major standards on the prompt page. 

Guidin!! Ouestion 

How does pollution from plants and factories affect the environment? 

Concepts: chemistry, biology, botany, pH, soil types 

Motivation 

How many of you pass the bakery on the way to school or home? How can you tell when you 
are near it? Why? 

Student Particioation: Whole class, individually, and in pairs. 

Relate to Previous Leaming: Remember when we talked about ozone, car emissions, and 
how it affected the atmosphere? How do you feel about carbon emission today? Why? 

Relate to Student Exoerience: Do you remember how this community got sidewalk recycling 
bins? (Some students may remember my class taking a survey to see who would use the bin at 
their home if the City gave them free recycling bins. They then mailed officials at City Hall 
and told them what data they had collected concerning recycling bins in their 
neighborhood.) 

Today we will look at another issue confronting this community. 

Strategies/ Activities/Distributed Assessment/s 
Practice/Intervention 

• Notes on concepts being 
• Students will get in groups of four and researched . 
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brainstorm their problems using the 
traditional inquiry model worksheet • Written report containing 
(student version). academic language for the 

project. 

• All groups will debrief to the whole 
class. • Having a plan deciding how to 

address the issue. 
• Students will get in pairs and decide if 

they want to change their hypothesis and • Result of the action to address the 
research a different part of the problem. issue. 

• They will write another plan and begin • Result of the research showing 
to do their research. They will do most information on increased 
of the research out of class and in class, knowledge related to the chosen 
the content and concepts will be concept. 
discussed. 

(The rubric will usually help detect this, 
but teachers should look for this growth 
in the reports.) 

Closure 

Each pair of students will report and afterward the whole class will respond to the community 
and other stakeholders to offer assistance and gratitude. 

Extend and Refine Knowled{!:e Assessment/Student Products and 
Performances/Technology 

Students may make an informative brochure for 
the stakeholders with the company or the positive Students can make a video of the 
stakeholders. community showing the positive and 

negative effects of the company. 
They may investigate other companies within 
communities. They can sponsor a health night with the 

medical community and find out if the 
community has a health problem related to 
the company. 
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Appendix G (cont'd.) 
The STS Lesson Rubric Criteria 

Explanations 

Explanation of the points 0, 1, 2 arc shown below on the abbreviated rubric. These are 

from the National Science Education Standards and they explain what the pre-service teacher 

(candidate) should be able to do in a college classroom and in a public school classroom. (0 

means that the knowledge is limited and the academic language is not there; 1 means that the 

knowledge level is acceptable and the academic language is there; and 2 means that the candidate 

has successfully exhibited the knowledge requested and has used the academic language 

excellently. 

Standards Correlation and Scoring Rubric 

NSTA 0 1 2 
Standards Unacceptable Acceptable Optimal 

NSTA 1B Candidate does not Candidate understands and Candidate 
understand and cannot can minimally convey to understands and can 
successfully convey to students the unifying successfully convey 
students the unifying concepts of science. to students the 
concepts of science. unifying concepts 

of science 
delineated by the 
National Science 
Education 
Standards. 

NSTA IC Candidate does not Candidate can convey to Candidate 
understand and cannot students some important understands and can 
convey to students personal and technological successfully convey 
important personal and applications of science. to students 
technological applications important personal 
of science. and technological 

applications of 
science in their 
fields of licensure. 

NSTA2A Candidate does not Candidate understands the Candidate 
understand the historical historical and cultural successfully 
and cultural development development of science understands the 
of science and the and the evolution of historical and 
evolution of knowledge in knowledge in their cultural 
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their discipline. discipline. development of 
science and the 
evolution of 
knowledge in their 
discipline. 

NSTA2B Candidate does not Candidate does Candidate docs 
demonstrate the demonstrate the demonstrate and 
philosophical tenets, philosophical tenets, understand the 
assumptions, goals, and assumptions, goals, and philosophical 
values that distinguish values that distinguish tenets, assumptions, 
science from technology science from technology goals, and values 
and from other ways of and from other ways of that distinguish 
knowing the world. knowing the world. science from 

technology and 
from other ways of 
knowing the world. 

NSTA3A Candidate does not Candidate demonstrates Candidate 
demonstrate the processes, the processes, tenets, and demonstrates and 

NSTA3B tenets, and assumptions of assumptions of inquiry understands the 
multiple methods of leading to scientific processes, tenets, 
inquiry leading to knowledge. and assumptions of 
scientific knowledge. multiple methods of 

inquiry leading to 
scientific 
knowledge. 

NSTA4A Candidate does not Candidate demonstrates Candidate 
demonstrate the socially important issues related to demonstrates and 
important issues related to science and technology understands 
science and technology and some processes used socially important 
and the processes used to to analyze and make issues related to 
analyze and make decisions on such issues. science and 
decisions on such issues. technology, as well 

as processes used to 
analyze and make 
decisions on such 
issues. 

NSTA 7A Candidate does not Candidate does identify Candidate 
identify ways to relate ways to relate science to understands and 
science to the community, the community, involve identifies ways to 
involve stakeholders, or stakeholders, and use relate science to the 
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use community resources community resources to community, involve 
to promote the learning of promote the learning of stakeholders, and 
science. science. use community 

resources to 
promote the 
learning of science. 

NSTA 1B Candidate docs not give Candidate gives the title of Candidate 
the title of the lesson and the lesson and the successfully 

NSTA5A the designated grade ( s) designated grade (s). displays the title of 
within specified time. the lesson, 

designated grade (s) 
and specified time. 

NSTA 1B9 Candidate does not Candidate identifies the Candidate specifies 
specify the NST A or NST A or district the NST A and the 

NSTA5A district science standards. standards. district science 
standards. 

NSTA 1B9 Candidate does not Candidate gives a question Candidate 
identify a major question or issue which weakly successfully 

NSTA5.0 or issue to guide the connects to or guides the identifies a major 
lesson. lesson. question or issue to 

guide the lesson. 

NSTA5.0 Candidate does not Candidate identifies a Candidate 
NSTA lC identify or name the major concept which will be successfully 

concepts which will be taught. identifies major 
taught. concepts and 

connections which 
will be taught. 

NSTA 1B9 Candidate does not Candidate identifies some Candidate 
identify stakeholders and stakeholders and some identifies all 
views. views. stakeholders and 

examines all views. 

NSTA 1B Candidate does not Candidate attempts a Candidate 
identify a focus or focus or attention getter to successfully begins 
attention set to start the start the lesson. lesson with a 
lesson. relevant focus or 

attention getter to 
start the lesson. 

NSTA 1B3 Candidate does not use Candidate uses some Candidate 
community resources to community resources to successfully uses 



142 S. KEY and D. OWENS 

NSTA 7A teach the lesson (people, teach the lesson (people, community 
natural, institutional). natural, or institutional). resources to teach 

the lesson (people, 
natural, 
institutional). 

NSTA IA Candidate does not Candidate does specify Candidate 
specify strategy or strategy or integration successfully 
integration to teach the used to teach the science identifies specific 
science behind the issues. behind the issues. strategy or 

integration to teach 
the science behind 
the issues. 

NSTA2B Candidate does not use Candidate uses technology Candidate uses 
technology or specify and minimally integrates technology and 

NSTA4B interaction with and the impact on society. successfully 
impact on society. integrates the 

interaction with and 
impact of 
technology on 
society. 

NSTA 1B9 Candidate does not relate Candidate does relate Candidate 
science to the resources science to the resources successfully relates 

NSTA4B and to the resolution of the and to the resolution of the science to the 
issues. issues. resources and to the 

resolution of the 
issues. 
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Appendix G (cont'd.) 
The STS Lesson Plan Grading Rubric 

This rubric is used to grade/evaluate your lesson plan. The above rubric 
categories have been shortened to state which standard is being used, such as NST A 1 b, 
and the earned points for each standard will be circled and totaled. 

Components Descriptions Points 

.... 
. NSTA Standards 

< .... . ... ,-,· '"":: .• ;c. """""' 

l.NSTA 1B Unifying concepts of science are delineated. 0 1 2 

2.NSTA lC Personal and technological applications of science 
are delineated. 

0 1 2 

3.NSTA2A Understand the historical and cultural development 
of science and the evolution of knowledge in their 
discipline. 0 1 2 

4.NSTA2B The philosophical tenets, assumptions, goals, and 
values that distinguish science from technology and 
from other ways arc discussed. 0 1 2 

5.NSTA 3A The processes, tenets, and assumptions of multiple 0 1 2 
methods of inquiry are demonstrated. 

6.NSTA4A Socially important issues arc related to science and 0 1 2 
technology, and decisions made on such issues. 

7.NSTA 7A Related science to the community and stakeholders. 0 1 2 

... · 
/ t < Lesson Plan Components ······ 

I 
.... 

• 

....... / 
············· . 

J ... 
······ 

8.NSTA 9.0 Appropriate safety rules and safety plans are 0 1 2 
reviewed with students. 

Safety 

9.NSTA 5.0 Title of the lesson and the designated grade (s) within 0 1 2 
time specified. 

Grade Level, Title, 
Length of Time 

10.NSTA 5.0 The NSTA, and Memphis City School standards are 0 1 2 
specified. 
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Standards 

11.NSTA 5.0 A major question or issue is asked to guide the 0 l 2 
lesson. 

Guiding Question 

12.NSTA 5.0 Major concepts which will be taught are named. 0 1 2 

Concepts 

13.NSTA 7A All stakeholders and views are named and examined. 0 1 2 

Stakeholders 

14.NSTA 5.0 A type of focus or attention getter is used to start the 0 1 2 
lesson. 

Motivation 

15.NSTA 3A The inquiry method is used with various teaching 0 l 2 
strategies, including considerations of risks, costs, 

Strategies/ Activities and benefits of alternative solutions; relating these 
to the knowledge, goals, and values of the students, 
and what behavior change is expected of the 
students. 

16.NSTA 1B3 Some community resources were used to teach the 0 1 2 

NSTA 7A 
lesson (people, natural, institutional). 

Community Resources 

17.NSTA 5.0 Specific strategy or integration is specified to teach 0 1 2 
the science behind the issues. 

Learning of Science 

18.NSTA2B Technology and its interaction with and impact on 0 1 2 

NSTA4B 
society is specified. 

Technology 
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19.NSTA 5.0 Students relate science to the resources and to the 0 1 2 
resolution of the issues. 

NSTA 1B 

NSTA4B 

Closure 

Total Points 

Average Points Earned 

It is important that rubrics are used so that the students will know what is expected of 

them, and that they may be able to address everything and discuss with others what they do not 

know. It is also a helpful guide for the teacher; many students will be doing different things, but 

addressing some of the criteria from the rubrics will show the importance of the project and the 

value the teacher puts on it. 
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We report findings from a research project designed to examine the mathematics and science advice 

networks of teachers who participated in professional development under the auspices of the NSF

funded Rocky Mountain-Middle School Math and Science Partnership. We provide descriptive statistics 

of results. Additionally, we reflect on the research process and discuss some of the practical challenges 

involved. 

Introduction 

A significant literature base discusses aspects of teacher professional networks, as there is 

an emerging consensus that they are an important part of school improvement [l]. Professional 

community among teachers is connected both to efforts to improve instruction and actual 

instructional improvement [2-6]. Often, this involves leadership or distributed leadership roles as 

a way of transmitting information among groups of teachers [7-8]. 

Professional development courses for teachers affect these networks. The Rocky 

Mountain-Middle School Math and Science Partnership (RM-MSMSP), developed at the 

University of Colorado Denver (UCD) and funded by a National Science Foundation 

Mathematics and Science Partnership (MSP) grant, offers professional development courses 

designed to increase teacher content knowledge. At the time of this study, over six hundred 

teachers had participated in courses offered through the RM-MSMSP. In addition to professional 

development, the RM-MSMSP focuses on contributing to the research base in middle school 

mathematics and science education. As part of the RM-MSMSP, we are using social networking 

to analyze the advice networks of participating mathematics and science teachers. That is, we 

investigate aspects of to whom these teachers tum for advice or information about teaching 

mathematics or science. 
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Numerous recent studies have used social network analysis to study professional 

community, district policy and its connection to teachers' social networks, distributed leadership, 

and to evaluate MSP grants [8, 9]. Similarly, our work sought to describe the social networks of 

a large MSP [10, 11]. 

Theoretical Framework 

Professional development programs seek to improve and modify aspects of teachers' 

practices. They do this in a variety of ways, from building content knowledge in a discipline, to 

challenging assumptions about and enhancing aspects of pedagogical practices. There is 

significant literature to support the importance of school-based professional development [ 12-15]. 

However, as teachers spend more time in their schools, they become increasingly familiar 

with the expectations and beliefs of others who work there, and teaching can take on a more 

routine quality [16]. Teacher isolation can be a common issue [17, 18]. Thus, professional 

development opportunities that offer participants a chance to interact with and learn from teachers 

outside their schools can play a central role in affecting teacher practice and school change [ 19-

21]. In particular, these external professional development opportunities have been cited as 

improving teachers' classroom practice and promoting teacher leadership [22]. Thus, it stands to 

reason that both in-school and out-of-school professional development communities play an 

important role for teachers. 

Successful teacher learning communities are generally characterized by a trusting 

atmosphere in which members have confidence in their colleagues, and in which a flow of 

information is created [23, 24]. These networks provide support to teachers, as well as serving as 

channels for information and expertise to be shared. In addition, they create an opportunity for 

teachers to learn from one another as well as share ideas and resources [3, 5, 25-27]. In addition 

to benefiting teachers, several studies have shown that the professional networks of teachers have 

an impact on overall school performance and student learning [28-31]. Additionally, professional 

networks have been found to play an integral part in successful school reform and policy 

implementation [3, 5, 25, 28, 32-35]. 

Beliefs about teaching have been shown to be highly influenced by professional 

networks, and teachers' attitudes have been shown to impact students [26, 31, 36-38]. Moreover, 

beliefs about mathematics seem to affect teachers' behavior in the classroom, including their 

types of questions, depth of questions, and choice of methodologies and amount of direction to 
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provide students [39-40]. Specifically, teachers struggle to overcome their previous conceptions 

about how to teach mathematics [41-43]. Professional networks can aid in this. 

Moreover, one study also found that the networks of literature teachers are larger than 

those of mathematics teachers, and that those literature teachers make more frequent contact than 

mathematics teachers. In the schools studied, this led to stronger literature support networks [ 44]. 

However, in general there seems to be a shortage of investigations in the literature on 

advice networks of mathematics and science teachers. Thus, we seek to further contribute to the 

research base regarding social networks and professional communities, primarily with regard to 

middle-level mathematics and science teachers. This study specifically addressed the following 

research issues: 

1) Describe the social network information associated with participants in the 

RM-MSMSP. How does this vary across the participants in the network? 

2) Do teachers who participated in a higher number of RM-MSMSP courses have 

stronger social networks with regard to mathematics and science education? 

3) Do teachers at a given level (elementary, middle, high) have a greater 

propensity than others to discuss mathematics and science outside their own 

level? 

Methods 

Our study sought to capture data on the professional advice interactions of mathematics 

and science teachers who had participated in the RM-MSMSP, measured from the perspective of 

the teacher receiving advice. We proceed by providing details about the participants, and then 

discuss data collection and data analysis. 

Participants 
There are several unique challenges to social network surveys: the need for a clear 

network boundary, protecting confidentiality of respondents, and the need for a very high 

response rate [45-47]. To clearly define our network boundary, we chose to survey all of the 

teachers in partner districts who had participated in RM-MSMSP courses from its inception in 

Fall 2004 through Summer 2008. This grant was designed to meet the needs for middle school 

teachers in the Denver Front Range region to meet the needs of the federal No Child Left Behind 

legislation for teachers to be highly qualified in their discipline. Additionally, the program was 

designed under the assumption that teachers with higher content knowledge in their discipline 
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would have increased student achievement [ 48]. Over the first two years of the project, 

approximately eight mathematics courses and eight science courses were developed and 

implemented. In subsequent years, five additional courses (two mathematics, two science, and 

one integrated) were developed and implemented. These were offered for 4 graduate credits and 

ran for either two weeks full-time (8-5 daily) or three weeks part-time (8-12 daily). These 

courses were generally 80% content and 20% pedagogy-focused. In addition, each course that 

was initially developed had a pedagogy-focused "structured follow-up" during the next academic 

year. Additionally, semester-long academic year versions of the courses were offered, wherein 

the structured follow-up pedagogy content was integrated into the mathematics and science 

content of the course. Teachers received stipends and reduced tuition for participation in the 

courses. These teachers ranged from elementary to high school teachers, with most teaching at 

the middle school level. 

We advertised the survey via an e-mail invitation to these teachers and sent weekly e-mail 

reminders to participants during the approximately four weeks in which the survey was active. 

Of the 569 teachers invited to participate, 368 had taken mathematics courses, 300 had taken 

science courses, and 99 had taken both. Participants were offered a small gift card for responding 

to the survey and, in total, 232 teachers responded. 

A summary of the teachers responding to the survey is shown in Table 1. Note that the 

majority of participants taught in middle schools, and the number of elementary and high school 

teachers was approximately the same. Also, the number of participants who were mathematics 

teachers was approximately the same as the number who were science teachers, and there were 

some participants who did not teach either subject. These tended to be special education teachers, 

coaches, and administrators. 
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Table 1 
Summary of Participant Data 

Elementary school teachers 
Middle school teachers 
High school teachers 

Mathematics teachers 
Science teachers 
Teachers of both mathematics and science 
Participants teaching neither mathematics nor 
science 

Years teaching 
Number of mathematics classes taken* 
Number of science classes taken* 

Number 
40 

105 
47 

70 
67 
37 
24 

Mean 
8.50 
2.43 
2.51 

Standard 
Deviation 

6.53 
1.68 
1.60 

*This calculation only includes teachers who had taken at least one math/science class 
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Notice that teachers averaged significant teaching experience, with an average of eight and a half 

years. 

Data Collection 

Our primary means of data collection was a slight modification of the School Staff Social 

Network Questionnaire (SSSNQ) survey. We adapted this from the one used in Distributed 

Leadership Study (DLS) for Middle School Mathematics Education at Northwestern University 

[10]. In this survey, participants' advice networks are measured using the technique of name 

generators, which ask survey respondents to recall, by listing specific names, various people from 

whom they have sought advice or information. The survey centered on the primary question of, 

"During this academic year, to whom have you gone for advice and/or information about teaching 

mathematics and/or science?" 

For each name that a respondent listed, follow-up questions asked the respondent whether 

they received advice or information about mathematics, science, or both, to describe the role or 

job description of the person named, and to characterize their interactions with the person in 

terms of frequency and content matter. In order to improve accuracy, respondents were also 
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asked to provide possible alternate names (maiden names, nicknames) that their advisors might 

use. Finally, the survey also contained several demographic questions. Specifically, respondents 

were asked about the subject(s) they teach, at what levels of school(s) they have taught, and the 

number of years they have been teaching. The survey took between three and ten minutes to 

complete, depending on the number of advisors a respondent provided. 

In order to minimize chances that respondents would misinterpret the questions, we 

followed the SSSNQ wording as closely as possible. The SSSNQ was evaluated using cognitive 

interviews to assess its clarity and effectiveness [ 49]. We also conducted a small pilot survey 

with teachers and made minor changes based on this feedback. Beyond that, reliability and 

validity were established through the DLS. 

Data Analysis 

Before detailed analysis on the data could be completed, significant data cleanup was 

necessary. Specifically, in order to obtain accurate data from the social network surveys, it is 

necessary that the spelling and formatting of names are consistent. Thus before beginning data 

analysis, it was necessary to clean up and format the data so that it could be entered into the 

analysis software. The majority of the data cleanup was necessary due to discrepancies in the 

spellings of names and the use of nicknames or maiden names. For example, one respondent may 

list an advisor as Bill Smith while another would list him as William Smith. Additionally, several 

teachers responded to the survey multiple times. In these cases, the responses were combined. 

There are many measures available for analyzing social networks. We focused on out

degree due to its high level of robustness to incomplete network data and high correlation to other 

network measures [45, 47]. Out-degree is essentially a measure of the support network of an 

individual. In this case, it measures how many people a teacher turns to for advice or information 

about teaching mathematics and/or science based on self-report data. 

To compute a more detailed measure of out-degree, we differentiated between ties 

seeking mathematics advice and ties seeking science advice. In addition, we computed a 

weighted out-degree by taking frequency of advice into consideration. That is, a tie to someone 

from whom a participant reported seeking more frequent advice was considered stronger than a 

tie to someone from whom the participant reported rarely seeking advice. 

During the first round of analysis, we began by looking for correlations to assess whether 
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there were relationships between the number of RM-MSMSP classes taken and out-degree. 

Additionally, we looked for correlations between out-degree and number of years teaching, as 

well as differences between mathematics and science advice ties. 

Recall that the primary survey question asked RM-MSMSP participants to list people to 

whom they have turned for advice over the last school year about teaching mathematics or 

science. During the first stage of the analysis, we used network visualization tools to provide 

initial insight into the advice network. Specifically, using NetDraw, we created visual depiction 

of the advice network using a graphical layout known as a sociogram. 

For the next part of our analysis, we investigated from whom, on average, teachers were 

seeking advice. We calculated the average proportion of connections from respondents of one 

level to advisors of another level, as well as the average proportion of connections to other RM

MSMSP participants, aggregating the data by level and subject. 

Results 

In all, there were 198 usable, unique responses that provided a total of 465 unique names 

of advisers and respondents. Due to their low numbers, the six responses that were from 

participants who were not teachers were not included in the statistical analysis. 

Figure 1 is a sociogram depicting the advice network of our respondents. The 

respondents are represented as circles. Black circles represent teachers who responded to the 

survey, while white circles represent teachers who were named as advisors but were not surveyed 

or did not respond. Two teachers are connected by an arrow if one teacher sought advice from the 

other. The arrow points from the teacher seeking advice to the individual who gave advice. The 

collection of black dots at the upper left of Figure 1 denotes those respondents who reported 

seeking no advice or information from others regarding mathematics and/or science, and who also 

were not named by any other participants in the study as a source of such advice. Looking at this 

sociogram, we see that most teachers have only a few advice connections. It further appears that 

there is a lack of widespread connectedness in the network. However, this last conclusion could 

be limited by lack of data. 
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Figure 1. 

Advice network of respondents. 

A noticeable exception is the large group of connected teachers seen in the middle right 

of the sociogram. This group formed around several well-connected teachers. A sociogram 

isolating this group is shown in Figure 2. This group, containing ninety-nine individuals, centers 

on a teacher on special assignment from the Department for Leaming and Achievement within a 

district. With an out-degree of ten, this teacher had the highest level of connectedness of all 

teachers surveyed. In addition, this group contains seventeen teachers with higher-than

average connectedness. This group was largely clustered by school, with these highly-connected 

teachers serving as links among the schools. 
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Figure 2. 

Isolation of Figure 1 group formed around several well-connected teachers. 

We next investigated how a teacher's level, subject, years teaching, and number of classes 

taken through RM-MSMSP affected the number of connections of teachers. We investigated total 

connections, mathematics connections, and science connections separately. There were no 

significant correlations found in the data. Also, there was no significant diff erencc between data 

weighted by frequency of contact and non-weighted data. 

Overall, the average number of advisors per respondent was 1.84. Of these connections, 

0.96 were to mathematics teachers and 0.81 were to science teachers. Disaggregating the data by 

content area showed that teachers who taught only mathematics or only science had on average 

2.0 advisors each. In contrast, teachers who taught both subjects sought less frequent advice, 

with the average number of advisors at 1.57, but this difference was not statistically significant. 

The average number of respondents did not vary significantly based on the level at which the 

teacher taught. For teachers who taught both subjects, the average number of advisors in each 

discipline was nearly the same. Overall respondents had, on average, 0.20 advisors who taught at 

the elementary level, 0.70 advisors who taught at the middle school level, and 0.42 who taught at 

the high school level. A summary of these connections is given in Table 2. 
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Table 2 
Summary of Advisors 

Total advisors 
Mathematics advisors 
Science advisors 
Advisors in school 
Advisors who teach elementary 
Advisors who teach middle school 
Advisors who teach high school 

Average 
1.84 
0.96 
0.81 
0.80 
0.20 
0.70 
0.42 

Standard 
Deviation 

1.42 
1.18 
1.15 
0.94 
0.47 
0.97 
0.84 

We next investigated the types of connections that teachers had. For this part of the 

analysis, it was necessary to remove the twenty-three respondents who reported not seeking any 

advice. For the remaining respondents, who reported at least one advisor, we analyzed the 

average proportion of connections each respondent had, aggregating the data across various 

characteristics. 

First, we calculated the percent of advisors that teachers had at various grade levels (sec 

Table 3). We note that each level of teacher had over half of their connections to teachers at the 

same level, with high school teachers having almost 70% of their advisors also at the high school 

level. This is consistent with what was found in Coburn, Choi, and Mata where in Year 1 of their 

study, 51 % of their teachers' ties were actually to teachers at precisely the same grade level [ 1]. 

Table 3 
Advisors by Level Taught 

Advisors at 
elementary level 

Elementary teachers 
Middle school teachers 
High school teachers 

55% 
4% 
2% 

Average Percent of Advisors 
Advisors at Advisors at high 

middle school school level 
level 
10% 
56% 
9% 

2% 
7% 

69% 

Other advisors 

33% 
33% 
20% 

Next, we calculated the percent of advisors that teachers had to others within their own school 

and to other participants in RM-MSMSP classes (see Table 4). 
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Advisors within 
teacher's school 

Elementary teachers 
Middle school teachers 
High school teachers 

Discussion 

41% 
36% 
58% 

Table 4 
Advisors 
Average Percent of Advisors 

Advisors not Advisors who 
within teacher's 

school 

59% 
64% 
42% 

wereRM
MSMSP 

participants 
27% 
38% 
22% 
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Advisors who 
were not RM

MSMSP 
participants 

73% 
62% 
78% 

This study investigated the professional advice networks of mathematics and science 

teachers who participated in a large mathematics and science partnership. It was grounded in the 

fields of social network analysis and teacher professional development. 

We found evidence that there were not significant differences in the self-reported advice 

networks based on subject taught (mathematics or science) or level taught ( elementary, middle, or 

high school). We found that, in the setting of this professional development program, most 

teachers reported a relatively small advice network. However, given the design of the 

professional development program, this does not seem too surprising. It does, however, suggest 

that this professional development (PD) model may not be ideal for the development of teacher 

professional networks. A small, more cohort-based model of PD may be more appropriate if 

strengthening teacher advice networks is the primary goal. However, this PD was designed to 

increase teachers' content knowledge of mathematics and science, and indicators support that it 

fulfilled this objective. 

Our study also allows for several interesting comparisons to the Math in the Middle (M2) 

Institute program. First, the average number of connections for these teachers was lower than the 

numbers found in the University of Nebraska at Lincoln (UNL) study of the Math in the Middle 

Institute Partnership. The UNL study reported the average number of advisors as 3.8, 3.5, 2.9, 

and 2.8, respectively, for their four cohorts of participants. This is considerably higher than the 

average of approximately 1.8 that we reported. 

Second, for their first three cohorts, the M2 mean number of advisors who were other M2 

participants was 1.7. In contrast, for middle school mathematics teachers who participated in our 

study, the mean number of connections to RM-MSMSP participants was 0.57, much lower than 
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the M2 participants. We posit that a reason for this difference could be the cohort model that M2 

implemented, where groups of 25-35 teachers went through the program together, taking almost 

all of the same coursework for twenty-six months. Since our program lacked this cohort model, 

teachers often would not take further coursework with each other. Also, many teachers in our 

program only took a few courses, whereas the M 2 teachers took approximately ten courses 

together. It is logical to conclude that their cohesiveness would be much stronger as a result. 

Limitations 

There are several limitations with this study. First, we lacked baseline information on the 

participants' mathematics and science advice networks. This precluded us from making any 

comparisons over time or drawing any causal inferences. 

Second, we lacked a high response rate. Social network survey analysis requires either a 

high response rate or sophisticated sampling techniques. We were aiming for a high response 

rate. However, we did not achieve this, and we hypothesize two main reasons. First, we were 

attempting to survey teachers who had taken courses over a six-year time span. Many of the e

mail addresses were likely out of date, as teachers had moved schools and/or districts, or left the 

field. Also, many responding teachers participated in a relatively low number of courses from the 

RM-MSMSP. Thus, they likely did not feel the same connection to the program that teachers 

who took more courses felt, and were thus less likely to respond. This is in stark contrast to the 

Nebraska Math in the Middle Institute Partnership where teachers went through an intensive, 26-

month program in cohorts of approximately thirty-five teachers and the survey was administered 

in person to each cohort [10]. The low response rate of approximately 35% limits our ability to 

use many traditional social network analysis tools. Thus, we were restricted primarily to 

descriptive network measures. However, given the sparseness of information in the literature on 

mathematics and science advice networks of teachers, we still consider this information to be of 

value to the field. 

Suggestions for Further Study 

This article raises several questions worthy of further investigation. It would be helpful 

to have a more complete picture of how these advice networks change over time, both within the 

time frame of the professional development grant and for several years afterward. 

There have been a few studies of network change over time in schools, but data on 

network change of participants in an intensive, sustained professional development experience 



UNDERSTANDING MATH AND SCIENCE ADVICE NETWORKS ... 159 

that is not situated in a given school or district seems limited. Another study of interest could 

more deeply examine the change of mathematics and/or science advice networks in schools over 

time. 

Several other areas of study include how teacher professional development might be 

designed on a large scale to increase both content and pedagogical knowledge, while still 

developing teacher advice networks. Additionally, how can such advice networks be sustained 

and even further developed once the professional development opportunity ends? 

Conclusion 

There are many reasons to use social network analysis to study teachers' professional 

networks. This study examined a large advice network of mathematics and science teachers. We 

found that there were many commonalities between both the mathematics and science teachers, 

and across the diff ercnt levels at which the teachers taught. While our study had significant data 

limitations, we feel that the research questions that it sought to address are significant and worthy 

of future study. We hope that our lessons learned will aid other researchers in studying the impact 

of large professional development programs on teacher professional networks. 
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There are different perceptions among researchers with regard to the infusion of everyday experience 

in the teaching of science: 1) it hinders the learning of science concepts; or, 2) it increases the 

participation and motivation of students in science learning. This article attempts to contemplate those 

different perspectives of everyday knowledge in science classrooms by using everyday contexts to teach 

grade 3 science in Singapore. In this study, two groups of grade 3 students were presented with a 

scenario that required them to apply the concept of properties of materials to design a shoe. 

Subsequently, the transcripts of classroom discussions and interactions were analyzed using the 

framework of sociocultural learning and an interpretative analytic lens. Our analysis suggests that 

providing an authentic everyday context is insufficient to move young learners of science from their 

everyday knowledge to scientific knowledge. Further, group interactions among young learners of 

science to solve an everyday issue need to be scaffolded to ensure meaningful, focused, and sustained 

learning. Implications for research in science learning among younger students are discussed. 

Introduction 

Everyone, regardless of schooling opportunities, has everyday experiences that they can 

share with others. These everyday encounters are experiences that are real and familiar to each 

individual. The accessibility and familiarity of these experiences make informal everyday 

experience an ideal starting point for discussions and learning in the classroom. Classrooms 

provide the space and platform for the diverse everyday experiences of students to be presented, 
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discussed, negotiated, and appreciated. Despite the availability and potential usefulness of 

everyday experience in enriching classroom discussions and learning, critics of science learning 

see everyday experience as informal and a potential hindrance to students' learning as it increases 

the probability that students will develop misconceptions and naive conceptions [ 1]. When 

compared with scientific knowledge, everyday experience and knowledge are viewed as less 

precise, more informal and, hence, less acceptable. In the face of this concern, there are also 

researchers and practitioners who position everyday experience as a valuable resource that will 

facilitate students' learning of scientific knowledge. Warren, Ogonowski, and Pothier argued for 

"scientific knowledge as growing out of experience, as a refinement, not a replacement, of 

experience" [ 1]. As such, science teachers create opportunities for students to recast familiar 

everyday experiences, through a process of creative synthesis, as scientific representation. 

Leaming science can thus be described as a new interpretation of everyday experience. This 

study takes the stance that everyday experience enriches the science learning of young learners by 

increasing their participation in classroom discussion since everyday experiences are the most 

readily available resource. 

Everyday Experience and Science Learning 

Projects focusing on science education reform repeatedly highlight the need for students 

to learn both the content of science as well as the process of science. Indeed, one common 

recommendation is a call to move away from dull, uninteresting, memorized scientific facts 

presented in textbooks toward applications of science that are relevant to students' lives in the 

curriculum [2, 3]. The widespread isolation of school science knowledge from students' 

everyday experience often contributed to students' low motivation and interest in learning science 

[4]. In an era where scientific literacy is often emphasized as an asset and a desirable outcome of 

science education, the urgency for science education to make science more relevant to the lives of 

students is heightened. Scientific literacy can be defined as "an understanding of science and its 

applications to social experience," and teaching scientific literacy involves a process of 

socializing and enculturing young learners of science for active membership in a science- or 

technology-based democracy [3-5]. However, the urgent question that remains largely 

unanswered is how the socialization and enculturation of young learners can be carried out in 

schools that are often characterized by unique and independent cultures different from the real 

world. The school culture is often defined by a crowded curriculum, standardized testing, 

textbooks, and syllabi that are dogmatic about scientific facts that students are expected to learn. 
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Efforts have been made in many classrooms by science teachers and science education 

researchers to examine how students can be socialized and accultured to become scientifically 

literate consumers of science and technology. For example, the promotion of science inquiry in 

science classrooms, the use of problem-based learning in solving authentic school science 

problems, and other innovations are strategies and programs planned to bring students' 

experience into science learning. The infusion of everyday context for the development of 

twenty-first century skills among students has been discussed at great length. Bybee aptly asks 

the question whether the focus of science curriculum in the twenty-first century ought to be on 

science subject matter itself or whether the emphasis should be on life situations whereby science 

plays a key role [5]. He argued that basic science concepts should be taught, but the knowledge 

must be applied in contexts that the learners encounter in life. The ability to apply scientific 

understanding to real-life situations should be an important outcome of science education. In this 

research, we take the position of applying science concepts to everyday life and use this as a 

starting point in a science learning activity. We structure the activity in such a way that scientific 

understanding is developed as the students share their everyday experiences and knowledge with 

each other in order to complete the task. 

Research into these strategies and programs support the notion that productive learning of 

science is and can be built upon a foundation of students' shared everyday experience and their 

interaction with materials inside and outside the science classroom [6, 7]. However, King, 

Bellocchi, and Ritchie highlighted that methodological obstacles have prevented researchers from 

comparing context-based and content-based curricula [8]. Hence, we have knowledge of what 

students gain from an experience of learning with everyday context, but we have little knowledge 

of their process of learning. Additionally, the bulk of earlier research in the use of context and 

applications of science-or science-technology-society approach-to develop scientific 

understanding was carried out with learners of science between the ages of eleven to sixteen years 

of age [9]. Further, in their review, Bennett, Lubben, and Hogarth suggested that more research 

ought to be carried out on particular activities that are not traditionally associated with science 

teaching, and how they can be used to support development of scientific understanding by 

appealing to students' everyday experience [9]. Therefore, this study was designed to examine 

the kinds of knowledge and the resultant tensions during interaction in developing scientific 

knowledge of young learners of science (aged nine) by using their everyday experiences as 

starting points. 
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Everyday Knowledge and Scientific Knowledge 

This study stems from a sociocultural perspective of learning [ 10, 11]. Adopting a social 

view of learning means that higher order functions like logic and argumentation of scientific 

knowledge are a result of social interaction. Physical tools and language are used to facilitate the 

learning process by mediating the relationship between the learners and the world. Based on this 

perspective, we examine students' learning of elementary science content and processes by 

examining three key components: 1) individual ideas; 2) knowledge (everyday and scientific) 

that is revealed by the situation; and, 3) how students use language/tools to articulate or represent 

their knowledge. Individual ideas refer to students' prior knowledge about the contents of 

science, their personal beliefs about science, and their experience with the phenomena. Learning 

in this context views students using and applying their prior knowledge, beliefs, and experiences 

to make sense of the circumstances. Finally, we also note how students communicate and present 

their ideas. 

In this research, we acknowledge the presence of different kinds of knowledge. 

According to Thomas Jefferson, knowledge can be scholarly or practical--or it can be stable or 

situational [12]. Furthermore, knowledge can be classified according to where and how it is 

applied. For example, we can have knowledge that is practiced by a particular group of people 

(such as scientists), knowledge that is presented in books, and knowledge as content that resides 

in the minds of individuals. Knowledge, we argue, is not bound to a situation, but rather located 

within a particular situation [12]. As such, an individual's idea, the context in which this idea is 

accessed, used, and discussed does not have a static nature, but rather it changes in nature and 

complexity when applied to different situations. The way that knowledge is talked about in the 

classroom can also be different. Students can be engaged in contextualized discourse which is 

characterized by talk that focuses only on the situations and objects in the immediate context. 

Students can also be occupied in decontextualised talk which is discourse involving past or future 

events that are not part of the present environment [13]. Engagement in different kinds of 

discourse suggests the application and formation of different kinds of knowledge. 

Scientific knowledge in school is often perceived as "abstract and self-contained" 

entities, and one of the possible reasons for this is that science is often presented as standalone 

statements of truth that arc context free, having little relevance and application to real-life 

situations [3, 14]. Students who are exposed to compartmentalized, ready-made, and textbook

based knowledge of science might develop misconceptions about the nature of science and 

possibly lose interest in it. There is little opportunity for application of these abstract concepts in 
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authentic situations, and the absence of appropriate application of scientific concepts often results 

in the learning of unusable scientific knowledge. The learning and acquisition of unusable 

scientific knowledge will ultimately impact the motivation of students and how they learn 

science. We postulate that increasing students' abilities to make relevant connections between 

school science and their everyday experience would develop more motivation in studying science 

and, in the process, develop more accurate conceptions of the nature of science. As such, we 

devised this research to examine the kinds of knowledge grade 3 students use when they interact 

with each other as they learn science through solving a problem based within an everyday 

context. We hypothesize that using familiar everyday contexts and knowledge as starting points 

for students to gain school science knowledge would present a more concrete means for young 

learners of science to build their scientific knowledge. To facilitate our understanding, we 

examine the forms of interaction in the light of the kinds of knowledge, talk, and skills that the 

students practice in solving the problems and learning the science. 

In many classrooms, science teachers and students are faced with the challenges of 

curriculum demands, standardized testing, and inadequate resources, as well as a lack of 

curriculum time. Such limitations often result in frustration among teachers who resort to 

planning lessons for students to "do the lesson" rather than "do science" [15]. Students' everyday 

experience is often ignored in the urgency to cram as much content within the limited curriculum 

time. Based on a sociocultural perspective, we hypothesize that students' everyday experience 

and knowledge can serve as valuable resources in science learning, and can be used as a primer to 

develop authentic and in-depth scientific understanding in schools. Research has argued for the 

use of everyday context in the learning of science as it helps improve students' enjoyment of 

learning [ 16, 17]. We concur with the notion that the role of everyday context in the learning of 

science will make science more manageable and approachable for young learners of science since 

"concepts in the scientific domain are explicitly defined, based on rules and universally coherent 

logic. Concepts in the everyday domain are implicit, based on experimental schema, and 

organized through locally coherent association" [16]. 

Purpose 

The primary purpose of this study was to examine the classroom interactions and the 

learning outcomes of two groups of grade 3 students' learning about properties of materials. This 

is done through a detailed analysis of events that take place when a video of a scenario related to 

their everyday experience was presented to the students. This research is guided by the following 
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research question: "What forms of interaction occur among grade 3 students when they work in 

groups to solve a science problem that is based on everyday experience?" 

Integrating Everyday Context Using the Scenario-Based Inquiry Approach 

In this section, we present the principles and rationale of "scenario-based inquiry"-a 

strategy that utilizes video playback technology to present an everyday issue that would require 

the students to use at least one scientific principle to either explain an issue or solve a problem 

that is embedded in the story presented in the video. Scenario-based inquiry is used as a means of 

incorporating everyday context in elementary science classrooms. The context presented in the 

video contains a situation that is familiar to the students, and each situation presented contains 

both information that is useful for the students to solve the problem and also information that is 

not required by the students. This condition creates the opportunity for the students to discuss 

and make decisions about which piece of information (evidence) is necessary and useful to help 

them solve the problem. The different information is incorporated into the scenario to allow for 

multiple perspectives to be formulated during group discussions. Chinn and Malhotra argued that 

opportunities for multiple perspectives are necessary to make science inquiry tasks authentic [18]. 

We termed the information that is not required by the students "noise." This "noise" can come in 

two forms: 1) that which is intrinsic within the scenario that is presented; and, 2) the diverse 

prior knowledge ( often naYve conceptions) that the students bring into the discussion. This is 

fundamentally the basis for the need for students to talk and discuss the issue as a group so that 

all of their ideas are presented in a public forum, and thus scrutinized by their peers before it 

becomes legitimate knowledge. In authentic situations, scientists also bring with them a 

multitude of ideas and knowledge, some orthodox while others less so. It is also a negotiating 

process to legitimize knowledge. 

Video playback technology is chosen as the medium of presentation of the scenarios as it 

allows motion, sounds, and colors to be integrated, unlike traditional stories that are 

predominantly textual. Video playback technology also allows the incorporation of "noise" 

within the scenario in the form of graphics, colors, sounds, and actions; these could possibly serve 

as distractions to the actual evidence on which the students should be focused. All of these 

components increase the authenticity of the learning experience. Distinct from problem-based 

learning, the scenario presented to the students focuses on the targeted application of scientific 

concepts in the context of the scenario presented, rather than on solving a problem that may have 

multiple solutions which may be unscientific and too complex for young learners of science. 
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The scenanos m the videos are crafted with the intention of harnessing students' 

everyday experience in developing scientific understandings. Components of these scenano

based videos are aimed at engaging the students with scientifically oriented questions in a serious, 

informed, and sustained manner (see Table 1). In addition, these videos provide situations in 

which the students take the scenarios as a personal or collective challenge which require creative 

responses to understand. 

Table 1 
Characteristics of Scenario-Based Videos 

Categories Characteristics 

Story line • Based on everyday experience or exposure to popular culture 

of students 

• Must have at least one scientific principle/concept embedded 

• Must have an issue or a scientific question for the students to 

discuss or solve scientifically 

• Embedded in the scenarios are "noise" which serves as 

distractions to the learning process or embedded information, 

and helps students solve problems or questions by allowing 

for multiple perspectives to be presented 

Duration Five to eight minutes 

Language English 

Software Windows Movie Maker® or iMovie® 

Method-Participants 

The school where the study was conducted is situated in a prestigious neighborhood with 

students generally coming from privileged family backgrounds. The participants in this study are 

two classes, each with forty students in grade 3 (both girls and boys) and their teachers. The two 

teachers are "Ling" and "Feng," both of whom have an average of five years of teaching 

expenence. 

Method-Context 

The elementary science curriculum is designed around five themes: Diversity, Cycles, 

Systems, Interactions, and Energy [ 19]. The scenario-based video was incorporated as part of the 

unit of work on materials that is under the theme of Diversity. In this unit, the students are to 
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learn about the diversity of non-living things, with the goal of achieving the following learning 

outcomes: 

• to list the various types of materials and relate their properties to their uses 

(for example plastics, wood, ruler, metals); 

• to compare materials based on their physical properties of hardness, strength, 

flexibility, and ability to float/sink in water; and, 

• to show objectivity by using data and information to validate observations 

and explanations about the properties and uses of materials. 

Method-Video Content 

The scenario video is eight minutes long and is intended for grade 3 students. The 

scientific content of this video illustrates the properties of different materials, which include 

hardness, strength, flexibility, and the ability of materials to float or sink in water. The video is 

based on the popular children's fairy tale of Cinderella and her glass slipper. The key character in 

the story is a prince who broke the glass slipper he intended to present to the princess. As a 

result, he commissioned the shoemakers in his kingdom to design a new pair of shoes for his 

princess. The following materials were given to the shoemakers: 1) rubber bands; 2) plastic bags; 

3) Styrofoam™; 4) metal rulers; 5) a piece of wood; 6) name cards; 7) ceramics; 8) cloth; 9) 

sponge; and 10) leather. The students were also given a worksheet with two parts: the first part 

required them to record their observations about the materials; and in the second part, they made 

decisions about the materials best suited to make the shoe. The two parts of the worksheet 

allowed students to engage in a decision-making process based on their observations, as well as 

on their everyday experience and prior knowledge. 

Based on the context and content of the video, the task required students to evaluate the 

properties of the materials required to make a good pair of shoes for the princess. The scientific 

content they needed for this task consisted of the properties of the materials provided, as well as 

the design and construction of shoes. The everyday experience that they brought into the 

discussion included the following: 1) their exposure to different kinds of shoes; 2) observations 

about the durability of different parts of the shoes; and, 3) the different materials that they are 

exposed to in their everyday life. The task also required the students to communicate, negotiate, 

convince, and collaborate with their group members. Consequently, this task demanded that 

students put together knowledge gained from the video, their everyday experience, their prior 

scientific knowledge, and their science process skills. 
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Method-Data Collection and Analysis 

This study used an interpretive qualitative case study method to illustrate the students' 

response to the use of scenario-based videos in learning science. The illustration is based on the 

two data sources of video recordings of classroom observation and students' worksheets. Video 

recordings of the lessons were transcribed, the transcriptions of the lesson were read, and then 

events during the lessons were coded see Appendix A). Data analysis was carried out by 

examining the classroom interaction between the following groups: 1) between students; 2) 

between students and materials; 3) between students and the teacher; and, 4) between students 

and scientific knowledge. Here, we examine the four forms of interaction in light of the kinds of 

knowledge and skills that the students practiced in solving the problems and learning the science. 

The students' worksheets were examined to index the scientific knowledge that they acquired 

through the lessons. 

Results and Discussion 

Analysis of the interactions and events in the classroom revealed the prominence of two 

forms of interactions and knowledge within the grade 3 science classroom: teacher-directed 

learning, and students' learning and interaction to solve the problem. In teacher-directed 

learning, we discuss how teacher-directed instruction fulfilled instructional goals so that the 

knowledge presented in textbooks can be transmitted, then we discuss how students engaged in 

group work accomplished the goal of task completion, and that the knowledge practiced is the 

knowledge of doing school science and making explicit the knowledge that resides in the minds 

of different individuals. 

Further, it became evident that younger learners of science exhibited two difficulties: 1) 

they needed more scaffolding so that they could present their points of view within a group 

context to convince their peers; and, 2) they had an unclear idea of the boundary between 

scientific and everyday language when using everyday contexts as the starting point to learn 

scientific knowledge. The everyday contexts presented bring forth different types of knowledge 

usage among the students, and consequently shape the interactions in the classroom. 

Furthermore, our analysis of these interactions among the students suggest the following results: 

1) they are concerned with task completion goals more than knowledge building given the limited 

curriculum time; 2) they need to be taught explicitly how to construct scientific knowledge from 

everyday knowledge when solving problems; and 3) they need to learn how to work 

collaboratively in a group setting to solve problems. These three points will be explained in the 

section "Students' Learning and Interaction to Solve Problems." 
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Teacher-Directed Learning 

At the beginning of class time, Ling asked her class of thirty-seven students to push back 

their desks and sit on the cleared floor, facing the projector screen (see Figure 1). After orienting 

them about the day's agenda, she showed a video that presented a Cinderella-like story. In the 

story, the prince faced the problem of replacing the maiden's broken glass shoe and posed the 

question, "What materials should I use?" Excerpt 1 begins where the teacher paused the video to 

discuss what the students understood from what they had seen up to that point. Sequential line 

numbers have been assigned to the dialogue in the Excerpts, and are used to illustrate our 

observations. 

I 181 
I I 
I I 
I I 
I I 
IWl 101 • ··Wi@ ......• _(')_ 

Figure 1. Arrangement of students with respect to the teacher and the projector screen; the video 
recorder was placed at the corner of the classroom. 

After watching the video, Ling addressed the whole class, asking "What actually 

happened? What's the story all about?" These questions provided a springboard for discussing 

the science concept of properties of materials that was embedded in the story shown in the video. 

In conversations with the researchers prior to this class observation, Ling expressed that her aim 

was to take an inquiry teaching approach for the lesson and to use the story scenario as a platform 

for instruction. While constantly referring to the events in the Cinderella-like story, she 

systematically led the discussion with her questioning to elicit students' knowledge of the 

properties of materials (i.e., glass). She referred to the glass slipper and asked why it broke (15); 

and after showing another segment of the video, she directly presented the prince's question on 

the properties of glass (50) and connected the student's responses to a past discussion on this 

topic (58). While deploying these concept questions, she also helped the students recall particular 
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story elements (3, 7, 9) and, before showing the next video segment, asked them to predict what 

would happen next (24). 

The foregoing moments of instructional discourse in the teacher's instruction were 

interspersed with, or embedded within, regulative discourse [20]. She asked her students to wait 

to be called upon (15, 17), required non-verbal cues for attention (24), instructed the students to 

guess what would happen next (24), asked them to quiet down (45, 64) and watch the "movie" 

(47, 62), and directed them to recall a previous discussion to connect with the current topic (57). 

It is therefore quite evident that the interaction was to a large extent shaped by the combination of 

the teacher's purposes and the chosen instructional material. In some sense, the interaction was 

predetermined and the teacher exercised control over the task to be accomplished for that day. 

The institutional roles of being a teacher and a student were expressed in the strict tum-taking 

format of the interaction. 

In Excerpt 1, pauses often appeared as thinking time in the classroom interaction. Every 

time the teacher addressed a question to the whole class, she paused for varying lengths of time 

(1, 15, 30, 48), although in most instances she took only a fraction of a second. According to 

Owocki and Goodman, the length of the pause has been said to be critical in engaging more 

students to participate in discussion [21]. However, in this excerpt the students were already 

quite engaged by the story in the video. Many were eager to answer the teacher's questions. At 

one point, Ling had to tell an eager student to wait (15) and she complained that too many of 

them were responding to her question at the same time (17). Moreover, pauses were used not 

only to give students time to think, but also to command the students' attention, to make sure they 

were listening and keeping up (9, 45, 63). Sometimes, they were used to put emphasis on a 

conjunction ("but") (9) or on an adverb ("anyway") (15), or to solicit tacit agreement with 

forthcoming words (22, line 2). 

Turn Speaker 

I 

2 

3 

4 

Ling 

(T): 

Arlie: 

T: 

Ss: 

Excerpt 1 
The Lovely Maiden's Glass Shoe Is Fragile 

OK, now, what actually happens?(.) If the sou::nd is not really that clear, but from 

what you have observed just now, what actually happens? What's the story all about? 

(0.2) Yes, Arlie? 

The shoe is (brittle) 

The shoe is made from? 

Glass 
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5 T: Gla:::ss. OK [(0.6) soi'] 

6 John: [Cinderella] 

7 T: Ok who is the lady in the picture, [(.) in the] video? 

8 John: [Cinderella] 

9 T: Ok maybe Cinderella, but(.) alright what name did the prince call the lovely maiden? 

10 Ss: ((talking among themselves)) 

11 T: S:::::o yes Bong? 

12 Bong: This (is East) Park ((pointing to the projector screen)) 

13 T: Ok never mind-!- Yes. Oh, ok! Did you get to see them recording? 

14 Bong: No ((shaking his head)) 

15 T: Ok. Wait ah ((addressing a student who has been calling out teacher's name while 

raising his hand)) Anyway (0.2) why do you think the slipper (0.4) broke? 

16 Ss: ((speaking all at the same time)) 

17 T: Too many of you are answering me. Ok, Grace. 

18 Grace: Glass is fragile. 

19 T: Glass is fragile. Very good! 

20 ((One student answers inaudibly)) 

21 T: Sorry? ((looking at the student; student gives no response)) 

22 T: Alright so because glass is fragile(.) and unfortunately alright the lovely maiden's 

shoe is made from glass, ok? (.) And the prince's itchy fingers (0.4) <alright held the> 

slippers and he was not carefuli' he let it go and it broke. 

23 Ss: ((students talking loudly among themselves)) 

24 T: So ((raising her hand)) what do you think happened next? Guess what happens (0.4) 

Dion? 

25 Dion: I think(.) he go[es to] buy another pair. 

26 T: He will buy another pair of shoes for the lovely maiden. Oki' 

27 ((some students talking and some raising their hands)) 

28 T: Wahidah? 

29 Wahida He will make 

h: 

30 T: He will make, [alrighti' (0.4)] He will make another pair of slippers.(.) Yusuf? 

31 Bong: [I know I know] ((raising his hand, vying to be called)) 

32 Yusuf: He will just fix it. 

33 T: He will just fix it with what? 

34 P: Glue= 

35 P: =super [glue!] 

36 T: [Ok super gluei'] 

37 ((students talking animatedly among themselves)) 



38 Bong: 

39 T: 

40 Ss: 

41 T: 

42 P: 

43 T: 

44 P: 

45 T: 

46 P: 

47 T: 

48 T: 

49 P: 

50 T: 

51 Gie: 

52 T: 

53 Gie: 

54 Brian: 

55 T: 

56 Brian: 

57 T: 

58 P: 

59 T: 

60 P: 

61 T: 

62 Ss: 

63 T: 
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Teacher, I know! I know! The prince go take the other shoe and drop and buy another 

pair. 

Okt now 

((everyone laughs)) 

Let's(.) Let's see 

Shhhhh! 

Right, who gets it right, ok? Right now you know that. 

Shhhhh! 

tThree Flex::ibility,I., (.) ((class name)) You want to listen very carefully right? 

Yes. 

Ok so let's go watch the movie. ((Teacher resumes the video and students all quietly 

face the projector screen. After a 28 s video segment, the teacher continues with the 

discussion. )) 

Ok (1.0) so(.) eventually what happened?(.) The prince decided tot= 

=Create! 

Create another pair of shoes, a:::nd (2.0) the prince is asking you, what's the properties 

of glass{- What did you say just [now?] 

[Fragile.] 

Fragilet 

Breaka[ble] 

[ 0 hard0 ) ((uttered while hand raised)) 

Ok fragile and breakable t 

Hard (1.0) 0 hard0 ((student put down his hand)) 

0 Hard0 • Alth::ough, remember what I said yesterday, alth::ough (0.4) somebody says 

glass is hard, alright it is when you ok when it fell it will definitelyt= 

Break 

=be broken. Yes ((moves to the computer behind her desk to control video)) Are you 

ready? 

0 Yes0 

Shall I continue the story? 

Yes, yes. 

So what am I supposed to expect you people (1.0) ok. (5.0) ok? Now. ((video plays 

again)) 

While students individually brought into the classroom various everyday knowledge, the 

teacher arbitrated which knowledge was relevant to the task at hand. When Ling posed the 

question, "What's the story all about?" at the onset of the whole class discussion, Arlie answered, 
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"The shoe is brittle" (2). It was difficult to ascertain if Ling heard the last word of Arlie's 

utterance because it was made in quite a soft tone, or if she thought it was not the appropriate 

description for the shoe. However, we could still ask if the adjective brittle is an acceptable 

replacement for the word glass that Ling validated as the correct response (5) to her complete

the-sentence question, "The shoe is made from-?" (3) In other words, can a glass material be 

described as being brittle? Evidently, Ling did not take up this issue in the turns following 

Arlie's utterance. 

John readily associated the story in the video to the well-known Disney classic 

Cinderella. The integration of this familiar children's narrative into the design of the video story 

was intended to activate the students' experiences outside school and reuse it as a learning 

platform in the classroom. John responded to this built-in video feature and must have felt 

confident about the narrative connection. He persisted in vying to participate in the discussion, 

uttering "Cinderella" more than once (6, 8) and stopping only when Ling acknowledged his 

expression. Ling's question, "Who is the lady in the picture?" might have been prompted by 

John's initial, eager nomination of the topic (6). Interestingly, Ling's response, "Ok, maybe 

Cinderella" (7), while acknowledging the possibility of John's identification of the heroine, also 

seemed to push that knowledge into the sidelines of the discussion. Instead, Ling asked the 

students to restrict identification of the "maiden" in terms of the video story context, asking them 

"Alright, what name did the prince call the lovely maiden?" No response to this question was 

expressed distinctly by any of the students. 

Bong is an interesting case in that Ling perceived his responses as trivial and irrelevant, 

and thus deserving sanction. Noticing his restlessness (11), Ling called on Bong to share what it 

was he was eager to say. Bong said, "This is East Park" while pointing to the screen, implying 

that he knew the location where the video was shot. Ling dismissed outright the comment by 

saying, "Ok, never mind" (13) and in the same breath challenged Bong's confident claim that he 

knows the video setting: "Did you get to see them recording?" Bong confidently resurfaced later 

in the classroom exchanges (31-40) with another knowledge claim, this time in answer to Ling' s 

prompt for them to anticipate in the forthcoming video segment playback what the prince might 

do now that the glass slipper is broken (22-24). Several turns after his first vigorous bid to recite 

(31 ), Bong decided to volunteer his idea, saying "The prince go take the other shoe and drop and 

buy another pair." It elicited laughter from the whole class, except Ling. She just managed a 

smile and then called attention from the whole class, which had burst into much animated talk. 
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In the preceding descriptions, we have seen how Ling acted as a gatekeeper of everyday 

knowledge that is taken up in the public space of the classroom. Her responses (or non

responses) to some of the students' ideas ascribed degrees of relevance to the instructional agenda 

at hand. Some of these ideas were appraised as irrelevant and could thus be ignored, while others 

were only slightly irrelevant and deserved some mention during the discussion. In contrast, 

student expressions that Ling deemed relevant to her instructional goal were warmly 

complimented. For the correct response Grace made to the question "Why do you think the 

slipper broke?" she received the first enthusiastic affirmation from Ling: "Glass is fragile. Very 

good!" (19) Ling repeated the property of glass as being fragile twice for the rest of this Excerpt 

(22, 52), perhaps as a way of reinforcing the school science content knowledge the students 

needed to learn. Similarly, the concept that glass is breakable was mentioned twice (55, 59), and 

must therefore be relevant and important for students to remember. In fact, when Brian 

nominated hard as a property of glass (54, 56) as if to correct an inaccurate answer, Ling was 

quick to refer to the previous day's discussion (57) as a source of prior knowledge. Presumably, 

in that discussion Ling qualified the idea that while glass is hard, it is not unbreakable. As fragile 

and breakable arc descriptors of glass found in their textbook, Ling thus manoeuvred through the 

discussion intent on focusing student understanding on the properties of materials as formal 

scientific knowledge. 

This teacher-led, whole-class discussion can be categorized as a formal type of 

institutional conversation [22]. It is labeled "formal" as it is more restricted than those found in 

casual conversations, and typically involves a large number of potential participants and an 

audience. The features of turns in formal exchanges are closely linked to the social roles of the 

participants in the institutional setting. The traditional teacher/student relationship is governed by 

a certain protocol for engagement: students should stay on-topic (11-15), wait to be called to 

recite (15), speak one at a time (16, 17), pay attention (24, 64), and listen carefully (45). 

Students are constrained to follow these rules and there are consequences if these are undermined: 

they will be ignored (15) or issued a stem warning (45). In contrast, teachers are expected to lead 

the discussion by asking, in this instance, all of the questions, and then evaluating student 

responses (19, 58). Unlike informal conversations between friends (i.e., between equals), this 

teaching episode exhibited asymmetry in the distribution of knowledge. The teacher constantly 

took an evaluative frame in her questioning, making sure that the students got their facts straight 

and had an accurate understanding of what was presented by the knowledge source (video). In 

this way, the teacher positioned herself as the arbiter of knowledge in the classroom. The 
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question-and-answer format persisted throughout the exchange, soliciting mostly single-word or 

short-phrase answers from the students. 

The two teachers, Ling and Feng, used the video in different ways in their respective 

classrooms. Unlike Ling in Excerpt 1, Feng played the entire video before commenting on it. 

Despite the difference in the way the information in the video was presented, the students in both 

classes were intrigued when the video was played, as evidenced by the students' unwavering gaze 

on the projector screen. Although Feng carried out structured questioning only once, Feng's 

checking and questioning of the students was similar in structure and function as that presented in 

Excerpt 1. In this teacher-directed segment, the students were reminded of the formal scientific 

knowledge that they had acquired earlier so that they could make use of this prior knowledge to 

make sense of the scenario presented in the video. 

After the teacher-directed question-and-answer session, the students in both classes were 

subsequently divided into groups of four or five to work on the problem. The general mood of 

the class during the group work can be described as excited. 

Students' Learning and Interaction to Solve Problems 

In this section, we illustrate the following observations: 1) students' concern with the 

goal of task completion overwhelms their goal to build knowledge in science; 2) students 

demonstrate an inability to move from everyday experience and knowledge to scientific 

knowledge as intended as the learning outcomes of the lesson; and, 3) students lack the skill to 

collaboratively make decisions as a group within a classroom context. In Excerpt 2, Jill and her 

group members were deciding which material is most suited to make the shoe after they have 

examined all the materials given. Jill expressed the idea that plastic is not a suitable material for 

making shoes as it would break when a heavy load is added (1). She is likely to have applied her 

everyday experience and knowledge with using plastic bags to make this claim. After a pause of 

thirty seconds, she declared with excitement that Croes™ shoes are made of rubber and hence, 

rubber is the best material to make their shoes. Her reference to Croes™ shoes was evidence of 

her usage of decontextualised language, suggesting that she was able to think about ideas and 

apply knowledge that was outside her immediate environment [13]. The causal relationship that 

she made (1, 3) by relating the heaviness of an object to the possibility of breakage of the plastic 

bag suggests that she was bridging a real-life example to the idea of breakability. Croes™ shoes 

are popular among many young children and teenagers in Singapore. Her suggestion was not 

immediately accepted by her group members, as Bill countered that rubber shoes are not 



GRAPPLING WITH ISSUES OF LEARNING ... 181 

comfortable (2). Bill was also using his everyday experience, knowledge, and personal 

preference to justify his claim Jill was adamant that rubber is the choice material by telling Bill 

that rubber is unbreakable (as compared to plastic), and hence should be used to make the shoe 

(3). Jill's criterion for selecting a material to make shoes is one of strength, something that would 

not break under weight. Without waiting for collective agreement, Jill proceeded to make 

changes in the group's worksheet and handed the worksheet to the teacher. Bill and the other 

group members did not protest or provide counterarguments. 

Turn Speaker 

Excerpt 2 

Croes™ Shoes 

1 Jill: Plastic, if you put too heavy, it will break. (30s) 

Croes shoes is rubber. Croes. No, rubber is best. 

2 Bill: It is not comfortable. 

3 Jill: No, rubber is unbreakable. 

Rubber is fine. 

[Jill proceeded to ask the recorder in the group to change the group decision on the worksheet and 

submitted it to the teacher.] 

Excerpt 2 demonstrated how the students' everyday knowledge, experience, and personal 

preferences influenced their decision making and discussion during the group work. The 

difference in opinion between Jill and Bill suggests that everyday experience and knowledge 

varies according to the individual, and is likely to be found within their personal realm of 

experience. Using the variety of everyday experience to make a collective decision to solve a 

problem and understand the properties of material would require the students to have more in

depth discussions, and understand the intrinsic properties of the materials rather than rely on their 

personal preferences. The short negotiation between Jill and Bill before a final decision was 

made could possibly suggest that the students are not familiar with using the skills of negotiation 

within a group setting and/or they are more concerned with completing the task at hand rather 

than building collective knowledge of materials suitable to make shoes. 

Excerpt 3 illustrates yet another example of how the students were keen on completing 

the task, but were not mature enough and sufficiently competent to negotiate their ideas within 

the group, so that they were able to complete the task accurately and within the time frame 

provided. The students in this group were examining the properties of metal to determine if it 
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was an appropriate material to make the shoe. Paul examined the metal ruler and declared that it 

was unbendable. Daniel, the scribe in the group, examined the metal ruler to confirm what he 

needed to record in the group worksheet. Paul, who was standing behind Daniel, added that one 

of the properties of metal is that it is not able to absorb water (2). He got impatient and repeated 

the fact that metal cannot absorb water. He directed his frustration to his three other team 

members whom he perceived to be clowning around and not contributing to the completion of the 

task. He subsequently moved away from the group. After Paul moved away, Fred added that the 

metal ruler is a solid (3), and Noel approached the teacher to ask if the metal ruler is fragile (4). 

Turn Speaker 

[Holding a metal ruler] 

1 Paul: It's unbendable. 

Excerpt 3 

Unbendable 

[Daniel, who is recording, starts to pick up the object and tries to bend it before recording the observation 

in the group worksheet] 

2 Paul: It cannot absorb water. (.5) I ALREADY said it cannot absorb water. [speaking to the 

other three members of the group who are playing with the ruler] 

Everything anyhow do, anyhow do, then how to get correct huh? 

[Paul moves away from the group] 

3 Fred: Solid, made of solid. 

4 Noel: [asking the teacher] Is this fragile? 

In Excerpt 3, the students demonstrated uncertainty as to how they could communicate and 

interact with each other within their groups in order to collectively negotiate an agreed upon 

answer on the properties of metal. With different experiences and expectations about what group 

work and collective decisions are, it does not help the rest of the group members who are not 

ready or who are uncertain about the properties to learn about them. This particular situation was 

exacerbated by having a frustrated group member (Paul) who was keen to complete the task, 

obviously ahead, and thought he was right. The different levels of knowledge (both about group 

work as well as scientific knowledge) among the group members can be seen (4) when Noel 

actually had to tum to the teacher to ask whether metal is fragile; this indicated a lack of 

understanding of the word "fragile" or the properties of metal. 

To further illustrate the complexity of using everyday scenarios as a starting point for 

grade 3 students to learn the properties of materials, Excerpt 4 shows another group of students 
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trying to determine the property of wood so that they can determine if it is suitable for making 

shoes. Seth examined the block of wood given and commented that wood comes from trees and 

that the block of wood is hard (1). Sabrina, another member of the group, added that it is also 

light. Keith sought clarification (3) about the relationship between wood and trees, but this was 

not built on by his team members. Seth added that the wood is strong. Mike noticed that every 

time they recorded that something was hard, they also commented that it was strong ( 5), and he is 

not convinced by the relationship. Indeed, during the group discussion, it was evident that many 

students associated hardness with strength. 

Turn Speaker 

Excerpt 4 

Strong and Hard 

[Holding a block of wood] 

1 Seth: Wood is made up of trees. It is hard. 

2 Sabrina: 

3 Keith: 

4 Seth: 

5 Mike: 

And light. 

This material is wood? (.2) what made up of trees? 

It is strong. 

Every time you write it is strong, it is hard. Crazy ah, you? [Colloquial way of speech 

meaning: "Are you crazy?"] 

In this Excerpt, we observe how Seth, Sabrina, and Keith built on each others' ideas relating to 

the properties of wood (1-4). This was done through clarification (3) and stating their ideas. 

Mike played the role of a critic (5) by commenting that he thought it was wrong that the property 

of strength is almost always related to hardness. In fact, he thought that his team members were 

crazy to think that way. In Excerpt 4, the rest of the group eventually ignored Mike's input which 

is indicative that Mike was unsuccessful in convincing his group members of his point. We argue 

here that this is indicative of the students' uncertainty with their knowledge of the properties 

"strong" and "hard," and how they should be collaborating and communicating this with the 

members in their groups. 

All the students submitted their completed worksheets to Ling, and their work was 

assessed based on accurate usage of scientific terms like strength and flexibility, and on the way 

their arguments were presented. From the completed worksheets, Ling noticed that some 

students used "comfortable" and "ticklish" as properties of a material. These descriptions are 

common everyday expressions of materials and their personal preferences, and are not part of the 

stable scientific language used formally to describe the intrinsic properties of materials. This 
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indicated that some students were unclear on how to describe the properties of materials 

scientifically, and hence provided descriptions that they were familiar with from their everyday 

experience. As Ling commented, this form of description is not aligned with the instruction 

objectives spelt out in the syllabus. 

The difficulties of these grade 3 students to describe the intrinsic properties of the 

materials and then use them for making shoes suggest that for the grade 3 students to recast their 

everyday experience, knowledge, and preferences to a more stable and acceptable scientific 

knowledge and language, they needed more explicit instruction and guidance, besides being 

presented with a scenario within an everyday context to solve a problem. Further, the complexity 

of the task given suggested that younger learners of science also need more scaffolding in order to 

be able to distill the multiple perspectives and then present them to their peers in a convincing 

manner. From Excerpts 1-4, it is noted that, while these students did support their claims with 

evidence (for example, Excerpt 2, lines 1 and 3), that largely comes from their everyday 

experience. This is a good start for more in-depth discussion which will likely happen only with 

more time and teacher guidance. Ling decided that an extension of the lesson by using the 

students' answers as building blocks to shift the students' understanding of properties of materials 

from an everyday perspective to a scientific perspective is necessary. 

Conclusion 

In this article, we set out to answer the research question, "What forms of interaction 

occur among grade 3 students when they work in groups to solve a science problem that is based 

on everyday experience?" Two key forms of interaction were observed: 1) teachers used 

questioning to focus students' attention and achieve instructional goals; and, 2) task completion 

goals took priority when the students worked in groups. There is little evidence of knowledge 

building goals being achieved in the classrooms observed since it requires a longer period of time 

to achieve. Our findings in this study concurred with Bereiter's hypothesis that knowledge 

building goals arc likely to be the most important but least often observed in classrooms as they 

tended to be difficult to achieve as well as to measure [ 12]. He argued that task completion goals 

and instructional goals are likely to be most evident and observable since they are short term and 

more easily achieved. 

Analysis of group discussions among the students showed that more needs to be done to 

prepare the grade 3 students to engage in open-ended problem solving in science, use dialogue to 

recast their everyday experience and knowledge to more rule-based scientific knowledge, and use 
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tools like argumentation for collaborative decision making. As shown in Excerpts 2, 3 and 4, the 

students were unable to sustain meaningful and focussed discussions so that they could 

collectively agree upon the answer to their task. Their discussions were abrupt (possibly due to 

the constraints of curriculum time) and were often based on their personal preferences as well as 

emotions. While research has shown that incorporating everyday contexts in the learning of 

science allows for better understanding and also increased motivation in learning, the interactions 

observed in the grade 3 classrooms suggest that more structure and guidance are needed for 

students to engage in meaningful discussions of science that use everyday context as starting 

points [6, 7]. The movement between everyday experience/knowledge to scientific understanding 

is not unidirectional, but rather dialectical, and this needs to be made explicit to the students, 

especially younger learners [23]. However, despite the hurdles and tensions illustrated, the grade 

3 students showed that they were able to engage in both contextualised and decontextualised talk 

to link the present and concrete (what is presented to them) to past, future, and abstract ideas. 

This is an important aspect in the learning of scientific knowledge as well as science literacy. 

Further, students' problem solving in everyday contexts helped them reflect on and bring their 

own experiences to the conversation, so it made their discussions richer and more contextualized. 

While it was evident that they lacked communication skills, the opportunity to explore with 

others in more collaborative ways is a good opportunity for them to learn communication skills. 

As the call for curricula to shift toward context-based instruction to provide meaningful 

learning in science and to produce scientifically literate citizens is addressed, the findings from 

this research serve as a reminder that attention needs to be paid to pedagogical structures, and that 

readiness of the students needs to be examined before the intended goals of context-based science 

curricula can be fulfilled [3, 5]. There are many issues that young learners of science need to 

grapple with before the learning of science can be a fruitful and meaningful experience for them. 

As shown in Excerpts 2, 3 and 4, the students in this study spent the bulk of their time trying to 

figure out how they could work with their group members to complete the task. They had to 

convince group members to listen to their ideas and also struggled to make themselves 

understood. We suggest that, for young learners of science, the development of certain skills 

(e.g., working in a group, ways to put forth argumentation, etc.) has to be incorporated into the 

context-based science curriculum and be taught explicitly before the students can work in groups 

effectively. 

Starting with everyday experience as a context for learning science offers realistic and 

authentic perspectives that allow students to bring in their direct experience, making classroom 
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discussions richer. It can, however, be seen from our research that everyday experience can be 

either a hindrance to learning science or it can serve as a catalyst to speed up acceptance and 

understanding of abstract scientific concepts. As students with different experience come to 

school, sharing and merging their largely local experience to become scientific knowledge that is 

universal involves a process of negotiation, collaboration, argumentation, and understanding [ 16]. 

These processes are all part of the scientific inquiry process to which learners of science need to 

be acculturated, and the integration of everyday experience not only provides a platform, but 

serves as a primer to facilitate discussions, conversations, and argumentation among students. 
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Appendix A 
Key to Excerpt Dialogue Codes 

Point of overlap onset 
Point of overlap termination 
(a) Turn continues below, at the next identical symbol 
(b) If inserted at the end of one speaker's tum and at the beginning of the next 

speaker's adjacent turn, indicates that there is no gap at all between the two turns 
( c) Indicates that there is no interval between adjacent utterances 
Interval between utterances (in seconds) 
Very short untimed pause 
Speaker emphasis 
Lengthening of the preceding sound 
Rising intonation, not necessarily a question 
Animated or emphatic tone 
Low-rising intonation, suggesting continuation 
Falling (final) intonation 
Utterances between degree signs are noticeably quieter than surrounding talk 
Marked shifts into higher or lower pitch in the utterance following the arrow 
Talk surrounded by angle brackets is produced slowly and deliberately (typical of 

teachers modeling forms) 
Indicates the transcriber's doubt about a word 
Speaker in breath 
A description enclosed in a double bracket indicates non-verbal activity. 

Alternatively, double brackets may enclose the transcriber's comments on 
contextual or other features. 

Teacher 
Unidentified student 
Several or all students simultaneously 
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In 2004, the "Mathematics Specialists in K-5 Schools: Research and Policy Pilot Study" 

garnered support from the Teacher Professional Continuum (TPC) of the National Science 

Foundation (NSF). The project's focus was to determine the effectiveness of a school-based 

Mathematics Specialist program in grades K-5. Preparation, deployment, and support oftwenty

four Mathematics Specialists in two cohorts of 12 was at the heart of the project, utilizing well

designed research to gauge the impact on teachers who are supported by Mathematics Specialists, 

and on the mathematics achievement by these teachers' students. 

Unique to this grant was the specific and significant attention to a policy component. An 

innovative approach of utilizing a team of policy analysts to examine policy, legislative, 

regulatory, and funding issues regarding the establishment of Mathematics Specialist programs 

was utilized from the beginning. Two policy associates with extensive government relations 

experience in public education at the state and local division level formed the team. 

As the NSF -TPC grant ramped up in the fall of 2004, the policy team composed an initial 

report on policy and regulatory issues, and presented it to the grant team. This first work 

explained the role of state policymakers and state policymaking processes, including such issues 

as Virginia's education governance and policymaking structures, legislative and regulatory 

processes, and Board of Education (BOE) authority. It also included some analysis of the 

Mathematics Specialist position itself. 

Included with the report was a paper describing the then-current climates of support and 

lack of support for a K-5 Mathematics Specialist position and a chart of existing statutory and 

regulatory requirements highlighting expectations for mathematics achievement on the part of 
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Virginia public school students. These materials showcased the tremendous degree to which 

public education, in general, is grounded in policy and budgeting at the state level, and to which 

the case for Mathematics Specialists, in particular, could be advanced by interacting with the 

various policymaking processes that exist in Virginia. 

The two policy associates participating in the work of this project drew on grant team 

members' strengths, expertise and past work, as well as relationships those members had built, to 

advise and help steer them through the various policymaking processes to effectuate important 

decisions about Mathematics Specialists, and mathematics teaching and learning. This was 

accomplished through team members being increasingly responsive and proactive in providing 

useful information to key policymakers at the appropriate time in their decision-making process. 

This article describes those policy-related processes and how they work "in practice" in 

Virginia. It also details how involvement in and interaction with these processes, led by the 

policy team, was undertaken successfully by the members of this Mathematics Specialist project. 

In addition, separate sections address the importance of keeping policymakers and the public 

informed about the benefits of Mathematics Specialists and the great importance of understanding 

the state and local government responsibilities and processes for funding public education. 

State Policymakers and State Policymaking Processes 

The framework for governance of public education in Virginia is set forth in Article VIII 

of the Virginia Constitution. Often called the "education article," the ultimate authority for the 

educational system to the General Assembly, it establishes a state board of education to provide 

general supervision of the public school system, and vests the supervision of schools in each 

school division with a local school board. 

The General Assembly directs education policy by approving changes to the state Code 

and by enacting the state budget. As directed by the Constitution, it must provide for a system of 

free public elementary and secondary schools for all school-age children and seek to ensure that 

an educational program of high quality is established and continually maintained. The Board of 

Education (BOE) is directed to prescribe the Standards of Quality (SOQ), which define the 

Commonwealth's required educational program, and to recommend any changes in such to the 

legislature. However, the General Assembly may enact the Board's recommendations into law or 

revise the existing Standards, found in the Code of Virginia at §22.1-253.13: 1-8, as it deems 

appropriate. 
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Virginia operates with a biennial budget. In even-numbered years, the General Assembly 

adopts a two-year revenue and spending plan, with appropriations made for programs in the first 

and/or second years. Almost all major budget actions are taken in the first year, though if 

revenue is uncertain, legislators sometimes defer appropriations until the second year for a 

program adopted in the first. 

The budget process and consideration of legislative bills generally are on parallel tracks, 

as approved policy changes may necessitate the state paying all or part of the costs associated 

with new and revised statutes. Approved budget provisions, which may be actual appropriations 

or language directing an action, take precedent over statutes and thus often are the ultimate 

drivers of education policy. Moreover, the legislature, through the budgeting process, apportions 

the costs of providing the educational program meeting these standards between the state and 

local governments. 

The BOE has the primary responsibility and authority for effectuating state educational 

policy, guiding public education through such functions as promulgating regulations for 

accrediting schools, establishing learning objectives, and setting licensurc standards for teachers. 

The governor appoints the nine-member Board, the Superintendent of Public Instruction, and the 

Secretary of Education who is a member of the Cabinet. As is the Superintendent, Virginia's 

Secretary of Education is an advisor to the Governor on educational matters and promotes the 

Governor's educational policies. The Governor, however, has considerable influence over public 

education policy largely through his management of the state's budgeting process. 

The Constitution and the Code provide that the supervision of schools in each school 

division shall be vested in a school board. Specific school board powers and duties are stipulated 

in the Code at §22.1-79. In particular, this section states that a school board shall, insofar as not 

inconsistent with state statutes and BOE regulations, operate and maintain the public schools in 

the school division. As mandated by the SOQ, school boards have great responsibility for 

meeting the educational needs of diverse student populations by implementing various 

instructional programs, providing support services, assessing student progress and achievement, 

and providing support, training, and professional development for school personnel. 

State policy in many program service areas, including public education, also is shaped 

through a defined regulatory process. State regulations in large part direct the operation of 

Virginia's state agencies and the programs and entities affected by the actions of such agencies. 
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Such regulations must be authorized by law, and they carry the force of the law. The Virginia 

Administrative Process Act (AP A) provides the basic framework for this regulatory rulemaking, 

setting out the stages of the regulatory process, including notice and opportunity for public 

comment. Typically, each regulatory action goes through a mandatory three-stage process 

constructed to ensure the public has ample opportunity to participate, and that all perspectives are 

considered in the development of a final regulation. 

The formation of education policy in Virginia often is a very deliberative process, with 

significant changes sometimes taking years to be realized. It is common practice for the General 

Assembly to establish legislative or agency studies to examine new, ongoing, or divisive issues. 

That process rarely is rapid and recommendations are not necessarily considered in a timely 

manner. Therefore, the push for significant policy changes more often than not languishes until 

advocates muster significant legislative interest in the issue to try again. 

Recent State Policy Actions 

Over the course of the TPC grant's five years (2004-2009), state policymakers approved 

a number of actions that are telling both in substance and in the expression of support and 

confidence these leaders place on the work and value of Mathematics Specialists. The most 

significant include the following actions: 

• Licensure Regulations-The 2005 General Assembly approved SJR 428, which 

requested the BOE to include a Mathematics Specialist endorsement in its revisions to the 

Virginia Licensure Regulations for School Personnel. The BOE finalized the 

Mathematics Specialist for elementary and middle education add-on endorsement as part 

of the licensure regulations that took effect in 2007. 

• Public Commendation-The General Assembly approved HJR 258 m 2006, which 

commended local school boards employing Mathematics Specialists. 

• Legislative Study-HJR 25, also approved in 2006, established a joint subcommittee to 

study mathematics, science, and technology education in the Commonwealth. 

• Budget-The 2007 General Assembly provided one-time funding of $150,000 for salary 

support for certain grant-supported Mathematics Specialists so that an additional year of 

data could be obtained. 

• Standards of Quality for Public Education-At the request of the BOE, the General 

Assembly amended the SOQ in 2007 to require school divisions to identify and assist 

students having difficulties in mathematics. 
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How Outreach, Awareness, and Advocacy Influenced Successful Outcomes 

For each of these successful actions, the grant management team, members of Virginia 

Mathematics and Science Coalition (VMSC), and partner school divisions, their school board 

members and staffs all deserve credit for effectuating the positive outcomes. Success was 

achieved through a series of communications and outreach, awareness-building and advocacy 

activities, many initiated by the grant team and others undertaken as proactive responses. 

These activities essentially constituted a sustained campaign over several years. Indeed, 

it was critical that they be ongoing and focused, due to the previously noted lengthy processes in 

Virginia to effectuate change in policies. Over time, these efforts and the outcomes they 

produced met the intended goal to increase support for the key role that Mathematics Specialists 

play in improving student learning in mathematics, while building awareness of their growing use 

and benefit. 

Throughout the course of the five-year period, grant team members acted on information 

and encouragement from the policy associates to do the following: 1) proactively participate in 

specific state policy-shaping activities, including the introduction of legislation and budget 

initiatives, and advocacy before the BOE; 2) seize upon opportunities to provide evidence of the 

benefits of implementing Mathematics Specialist programs in ways that were credible to 

mathematics educators and policymakers at all levels; and, 3) build awareness and support for 

Mathematics Specialists throughout the education community which in tum could inform and 

influence state policymakers. For each of these successful policy actions, let's take a closer look 

at various strategies and approaches that were instrumental in bringing about desired outcomes. 

These activities, while specific to Virginia in their details, may serve as models for other 

advocates to undertake when opportunities are afforded in their education policy environment. 

State Regulations: Licensure Regulations for School Personnel - In 2005, the General 

Assembly approved SJR 428, which requested the BOE to include a Mathematics Specialist 

endorsement in its upcoming revisions to the Virginia Licensure Regulations for School 

Personnel. The BOE then created the Mathematics Specialist for elementary and middle 

school education add-on endorsement as part of the regulations that took effect in 2007. 

Background: The Virginia Mathematics and Science Coalition (VMSC) was an early advocate 

for this licensure endorsement for educators. In 2002, amidst growing research and evidence 



196 D. BLOUNT and J. SINGLETON 

linking student outcomes with teacher quality, it convened a task force to research and report to 

the Virginia education community how a "Teacher Specialist" would improve student learning. 

Its charge was to examine job description, competencies, preparation, and licensure of such 

specialists. The Task Force observed that "Virginia teachers and administrators reported to the 

Task Force that ongoing, site-based assistance is necessary to adequately support teachers in the 

change process. One way to provide this sustained support is to develop and maintain a cadre of 

Mathematics Teacher Specialists who can offer meaningful and consistent site-based guidance to 

their colleagues." The group focused its work and findings on the roles and responsibilities of a 

school-based Mathematics Specialist, the importance of state licensure, and the necessity of 

quality preparation programs [1). 

In June 2003, the BOE's Advisory Board on Teacher Education and Licensure (ABTEL) 

proposed revisions to the licensure regulations that included a proposal to establish a 

Mathematics Specialist endorsement for both elementary and middle school education. 

Responding to the VMSC work and ABTEL recommendation, the BOE approved the following 

resolution: 

It is the intention of the Board to proceed forthwith on establishing criteria for the 

new licensure endorsement of Math Specialist. It is the Board's further intention 

that upon the completion of the process of establishing the Math Specialist 

endorsement, the Board will recommend the inclusion in the SOQ of Math 

Specialists at an appropriate ratio to be determined by the Board. 

The BOE was continuing to review and discuss the overhaul of the licensure regulations 

(following some delay due to ongoing implications with the then-recently implemented federal 

No Child Left Behind legislation) when the General Assembly adopted SJR 428 requesting the 

Board to include an endorsement for Mathematics Specialist in that regulatory revision. Revised 

regulations that took effect September 21, 2007, and that remain current, contain a Mathematics 

Specialist endorsement. The endorsement requires either graduation from an approved master's 

degree-level Mathematics Specialist preparation program or completion of a master's degree

level program in mathematics, mathematics education, or a related field including at least twenty

one content hours in undergraduate or graduate-level mathematics. Corresponding Regulations 

Governing the Review and Approval of Education Programs that similarly were approved, 

address the same coursework competencies as highlighted in the endorsement section 

(knowledge, skills, application, history, technology), and speak to the school-based Mathematics 

Specialist as a resource in professional development, instructing children who have learning 
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difficulties in mathematics, curriculum development and implementation, mentoring new 

teachers, and parent and community education. 

Policy Team and Management Team Activities: The grant management team continuously 

advocated, through communication with BOE members and Department of Education (DOE) 

officials, for the inclusion of a Mathematics Specialist endorsement in the licensure regulations. 

Members built relationships with BOE members and DOE staff during the early work of the Task 

Force, disseminated results of the Task Force report, and provided letters of support and 

testimony at BOE hearings. 

In advancing the General Assembly resolution, members of the grant management team 

drafted the resolution, requested it be introduced by a legislator who at the time was the VMSC 

chairman, and solicited support for it in the education community. The policy team monitored 

and reported on its progress to passage by the General Assembly. The VMSC solicited support of 

SJR 428 via letter to local school divisions in late 2004, prior to the convening of the 2005 

General Assembly. During the legislative session, talking points in support of the resolution and 

several letters of endorsement were distributed to legislators. 

Commending Legislative Resolution - The General Assembly approved HJR 258 which 

commended local school boards employing Mathematics Specialists. 

Background: At the request of the VMSC, the Speaker of the Virginia House of Delegates 

introduced a resolution commending Virginia school boards that employ Mathematics Specialists 

in order to increase student mathematics achievement by increasing the quality of mathematics 

instruction. The resolution directed: 

... [the preparation of] a copy of this resolution for presentation to the Virginia 

Mathematics and Science Coalition, requesting that it further distribute copies of 

this resolution to the respective school boards as an expression of the General 

Assembly's admiration and support for their commendable initiatives directed at 

improving both instruction and achievement in mathematics [2]. 

The resolution was approved on voice votes by both the House of Delegates and Senate in 

February 2006. Thus, the General Assembly provided a "thumbs up" to those school divisions 
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implementing Mathematics Specialist programs, while also signaling to others that they look at 

the implemented models for establishment in their own schools. 

Policy Team and Management Team Activities: The policy team suggested and drafted the 

resolution for the Speaker of the House that was submitted, and during the course of the 

legislative session, monitored and reported on its progress to passage by the General Assembly. 

Following approval of the resolution, the VMSC distributed copies, as requested, to local school 

boards, as well as to other K-12 education stakeholders. The grant team viewed this policy team 

recommendation as an effective way to draw legislators' attention to Mathematics Specialists, as 

well as to provide some recognition to local school divisions employing Mathematics Specialists, 

with the desire that some of their peers take notice and explore such programs themselves. 

Joint Legislative Study - The General Assembly approved HJR 25 which established a joint 

subcommittee to study mathematics, science, and technology education in the 

Commonwealth. 

Background: In 2006, the legislature approved HJR 25, which established a two-year joint 

subcommittee to study mathematics, science, and technology education in the Commonwealth at 

the elementary, secondary, and undergraduate levels. The resolution, which was approved 

unanimously, noted the importance of ensuring "that the curricula of Virginia's public schools 

provide an adequate foundation for students to pursue and continue successful studies of science, 

math, and technology at institutions of higher education." The fourteen-member panel was 

charged with, among other things, reviewing and recommending "innovative ways to interest 

students at all education levels in science, math, and technology" [2]. 

The HJR 25 subcommittee membership included two citizen members, one designated by 

the resolution to be "a professor of mathematics-, science-, or technology-related courses at a 

state institution of higher education." Acting on the policy team's suggestion, the VMSC 

nominated one of its members to be part of the HJR 25 subcommittee, and the Senate Rules 

Committee appointed this nominee to the panel. The VMSC closely followed the work of the 

panel, providing oral and written information about the efficacy of Mathematics Specialists. At 

the conclusion of its two-year stint, the study committee was continued for an additional year. 

Policy Team and Management Team Activities: The policy team also monitored and reported 

on the progress of the HJR 25 study committee's work and legislative recommendations. The 
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first two legislative recommendations of the HJR 25 study (in 2007) directly supported teacher 

mathematics education and the employment of Mathematics Specialists. The first 

recommendation would qualify students agreeing to teach in a mathematics or science field for 

the Virginia Teaching Scholarship Loan Program; the second would create a pilot program to 

provide grants to six school divisions to hire an elementary Mathematics Specialist. These two 

recommendations were introduced during the 2008 General Assembly as HB 1165 and HB 984, 

respectively. Although these recommendations were not approved by the legislature, legislators 

were hearing Mathematics Specialists discussed more frequently. 

State Budget - In 2007, the General Assembly-approved budget provided one-time funding 

of $150,000 for salaries of certain grant-supported Mathematics Specialists so that an 

additional year of data could be obtained. In 2009, the budget included flexibility in the use 

of state funds to hire Mathematics Specialists. 

Background: The chairman of the House Education Committee (who represents one of the 

project's partner school divisions), and a member of the Senate Finance Committee (who is a 

former VMSC chairman) each proposed a policy team-drafted amendment to the state budget. 

This amendment provided the five partner divisions a $25,000 allocation for each of the Cohort I 

Mathematics Specialists that the divisions continued to employ in their then-current positions for 

the 2007-2008 school year. The $25,000 NSF fund allocation to the partner divisions for the first 

twelve Mathematics Specialists was provided only for 2005-2006 and 2006-2007. 

As part of the budgeting process previously explained, the House of Delegates and the 

Senate each prepare their own version of the budget, which then is negotiated by a team of senior 

legislators to reach a compromise spending plan for a given two-year period. In this particular 

case, the $25,000 amendment was included in the House version of the budget, but not in the 

Senate plan. The compromise on this particular item was the approval of a $12,500 one-time 

allocation for each Specialist, or half the amount requested. Still, the inclusion of any funding for 

the Mathematics Specialist cohort was deemed a major victory, as state budget writers were 

convinced that the research being conducted and the impact of Mathematics Specialists on 

student learning was of significant importance. 

In a year of diminishing funding for public education at both the state and local levels, 

state policymakers in 2009 displayed their belief that Mathematics Specialists are effective, as the 

legislature and governor sought to provide authority for school divisions to flexibly use several 
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existing funding sources to hire Mathematics Specialists to provide intervention services. Two of 

these legislative efforts succeeded. 

First, the governor's proposed budget for 2009-2010 contained language to allow school 

divisions to use state Standards of Learning (SOL) Algebra Readiness Initiative Funds to employ 

state-endorsed Mathematics Specialists to provide intervention services. The budget ultimately 

approved included this provision, which had been initiated by the BOE and endorsed by the State 

Superintendent of Public Instruction (the language also was included in the approved budget for 

FYl 1 and FY12). Second, HJR 652 (which was a 2008 recommendation of the HJR 25 study 

committee and which passed unanimously), requested school divisions "to consider using existing 

intervention, remediation, and at-risk funding to hire K-8 Mathematics Specialists as an effective 

means to improve the performance of low-achieving students." 

It is worthy to note that a survey by the Department of Education (Summer 2009) found 

that 44% of the eighty-five school divisions responding (37 divisions) reported employing 

Mathematics Specialists in 2009-2010. Of those responding, 29% indicated they were employing 

Specialists with local funds, while 25% indicated use of federal funding. State funding from 

existing intervention, remediation, and at-risk funding was cited by 18%. In addition, 21 % of 

those who responded indicated they utilized Algebra Readiness Initiative Funds. 

Policy Team and Management Team Activities: The policy team reached out to the two 

legislators to request submittal of the budget amendments, and outlined a plan for local school 

superintendents to lobby their legislators on this budget amendment. An initial letter was sent to 

superintendents and mathematics supervisors in the affected divisions prior to the start of the 

General Assembly to request that they contact state lawmakers to support the amendments. 

During the legislative session, they again were encouraged to phone and e-mail members of the 

budget committees that were considering the proposed amendments. Position papers explaining 

and supporting the amendments also were distributed to the committee members, staff, and 

budget negotiators throughout the budget development process. Following budget approval, 

thank-you letters were sent to the two legislative patrons. This amendment led to an unexpected 

third year of collection and analysis of PDA data from the Cohort I Specialists. 

The policy team also monitored progress of the Speaker of the House's independently 

proposed budget item to provide state funding for elementary school Mathematics Specialists in a 

school division he represents. While the amendment itself was not approved, the proposal was a 
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testament to his belief in the value of Mathematics Specialists, having witnessed first-hand their 

potential in one of the grant's partner school divisions. It also helped set the stage for the 

successful grant-initiated budget amendment. 

Code of Virginia/Standards of Oualitv - The legislature amended the Standards of Quality 

to require school divisions to identify and assist students having difficulties in mathematics. 

Background: As previously noted, it is a duty of the BOE to prescribe the Standards of Quality 

(SOQ) for review and revision by the General Assembly. Beginning with the review required in 

2003, the Board has utilized an open, public process to consider changes to the SOQ. It 

established a standing Committee on the Standards of Quality, which holds regular meetings to 

deliberate potential SOQ changes and where public involvement is invited and encouraged. 

The BOE indicated in 2006 that it would prepare a package of recommended changes to 

the SOQ for submittal to the 2007 General Assembly session. The grant team submitted a letter 

to the BOE and State Superintendent, which noted: 

Much is known about how students learn mathematics and, with appropriate 

learning strategies, many more students can be successful in mathematics than is 

currently the case. Accordingly, we encourage the Board to include mathematics 

as an area where it is crucial to identify student needs at the earliest time. 

The VMSC had presented a similar case and recommendation to the Board in 2004. This time, 

the Board seized upon this recommendation and included in its package language to direct local 

school boards to identify and diagnose students having difficulties in mathematics and to 

implement appropriate strategies practices to assist them. 

In addition, the Board had proposed a new required staffing standard requiring the 

employment of one Mathematics Specialist per 1,000 students in grades K-8. The Board held ten 

public hearings across the state to solicit input on its SOQ proposal. The language and staffing 

standard items were included in the proposal submitted to the General Assembly, and introduced 

by the chairmen of the respective education committees. The SB 795 was the legislative vehicle 

for the SOQ changes that advanced through the legislative process. While all new staffing 

standards, including the K-8 Mathematics Specialist, were removed from the bill, the language 

amendment on early identification and assistance was included in the final, approved version of 
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the bill (previously, the SOQ had required such interventions only for students having difficulty 

with reading). 

Policy Team and Management Team Activities: Concerning the SOQ changes, VMSC members 

on several occasions provided oral and written testimony advocating the following: 1) a 

requirement that local school divisions identify, diagnose, and assist students having difficulty 

with mathematics; and, 2) the concept of employing Mathematics Specialists in elementary 

schools. Remarks were made at a meeting of the Board's SOQ subcommittee (by invitation in 

July 2006) and submitted during the public hearing and comment period on the BOE's proposed 

revisions to the SOQ. The successful language amendment may be viewed as a "sleeper" 

amendment, as it establishes in the Code the importance of addressing underachievement in 

mathematics. In brighter fiscal days, it might be used to obtain state financial or other support for 

Mathematics Specialists. 

Following inclusion of the one Mathematics Specialist per 1,000 students provision in the 

BOE recommendations, the VMSC sent a letter to the BOE President and the State 

Superintendent proposing establishment of a work group to examine issues surrounding 

implementation of such a requirement. Specifically, the letter proposed working with other 

stakeholders to address challenges to and develop scenarios for implementation of the staffing 

recommendations (the work group was not formed, as the one Specialist/1,000 was not 

approved). 

Building the Case 

Over the course of the grant period, numerous other activities recommended by the policy 

team were undertaken by the grant team with the goal of raising awareness of and support for 

Mathematics Specialists. These upbeat efforts were viewed as prime opportunities to sensitize 

and invigorate targeted audiences to the influential work of Mathematics Specialists: 

1) The VMSC wrote commending letters to the relevant local and state elected officials 

upon the Norfolk community's winning the 2005 Broad Prize for Urban Education, 

awarded annually to one outstanding urban school district for increased achievement. 

Norfolk Public Schools, which at the time employed a Mathematics Specialist in each of 

its thirty-five elementary schools, had made impressive gains in mathematics 

achievement in its elementary and middle schools over the previous four years. 
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2) The VMSC submitted a proposal to make a presentation regarding Mathematics 

Specialists during the round-table portion of the Virginia School Boards Association's 

educational conference in Richmond in July 2005. The VSBA accepted the VMSC 

proposal, and the presentation was made. 

3) Publishable articles were prepared by the policy team and specifically tailored for use by 

the elementary and secondary school principal associations in Virginia, as well as the 

school superintendents association. All versions focused primarily on the findings of 

parallel utilization interviews conducted by the policy team with the principals of each 

elementary school where Cohort I Mathematics Specialists were placed. 

4) The grant team developed a one-page information sheet about the state of Mathematics 

Specialists in Virginia (2006). The paper explained preparation efforts at six state 

institutions of higher education and highlighted employment practices around the state. It 

also included the text of the HJR 25 resolution that commended local school boards 

employing Mathematics Specialists. The one-pager was used in various outreach 

activities, including widespread distribution in the K-12 and higher education 

communities. 

5) On several occasions, the VMSC advocated that the BOE amend its Regulations 

Establishing Standards for Accrediting Public Schools (SOA) in Virginia, both prior to 

and after approval of the SOQ requirement for identification, diagnosis, and assistance 

for students having difficulty with mathematics. 

6) A second one-page information sheet was developed in the summer/fall of 2009 to 

highlight grant research findings that Mathematics Specialists, over time, are having a 

significant impact on student achievement, and that Virginia preparation programs for 

Mathematics Specialists are of high quality. This paper also was widely distributed in the 

K-12 and higher education communities, as well as to BOE members and key legislative 

members and their staffs. 

Follow the Money 

As previously noted, the state budget often is the ultimate driver of education policy, as 

the legislature must provide state general fund dollars to support public education through the 

budgeting process and apportion the costs of providing an educational program between the state 

and local governments. It is helpful to examine these duties more closely to understand the 

challenges of paying for Mathematics Specialists. 
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While Article VIII, § 1 of the Virginia Constitution brands the General Assembly as the 

entity responsible for the establishment of public education in the state, Article VIII, § 2 speaks to 

fiscal authority. The 1971 revision to the Constitution added the following language stipulating 

that, while the General Assembly would apportion costs, responsibility for funding public schools 

would be shared with localities: 

The General Assembly shall determine the manner in which funds are to be 

provided for the cost of maintaining an educational program meeting the 

prescribed standards of quality, and shall provide for the apportionment of the 

cost of such program between the Commonwealth and the local units of 

government comprising such school divisions. Each unit of local government 

shall provide its portion of such cost by local taxes or from other available funds 

[3]. 

State budget policy and process has significant, direct effects on local government. Local 

governing bodies, established by statute in Title 15.2 of the Code, have the "power of the purse," 

as they control the funding of the state-required local portion of the SOQ and any additional items 

the local community deems necessary for a quality education. When the legislature adopts and 

funds new education initiatives, adopts and does not fund new initiatives, or reduces or eliminates 

state education funding, there are reverberations at the local level. 

It is the legislature's current practice that, overall, the state assume 55% of the statewide 

costs of funding the SOQ, leaving 45% of the funding to be provided collectively by the local 

governments. The state provides more funding to school divisions judged less capable to fund 

education locally than it does to those school divisions judged more able to provide local 

resources. These adjustments are provided through a complex and increasingly controversial 

formula that measures the local ability to pay-the local composite index (LCI). The LCI ranges 

from .2000 at the less affluent end to .8000 at the more affluent. A locality with an LCI of .2000 

receives 80% of required SOQ expenditures from the state and is responsible for the remaining 

20%; a local government with an index of .8000 receives 20% of its required expenditure from 

the state and must provide the other 80%. Thus, for example, an SOQ-mandated position 

estimated by the state to have an annual cost of $36,000 requires those divisions with an index of 

.2000 to come up with $7,200 in local dollars and those with an index of .8000 to find $28,800 in 

local funds. For the 2010-2012 biennium, nearly 80% of the Commonwealth's school divisions 

have an index below .5000. 
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Another funding controversy rages between the state and local governments over whether the 

state properly calculates the actual cost of providing the SOQ program. Local governments 

generally believe that the state understates the true costs of providing a public education, thus 

minimizing state costs at the expense of localities, chiefly through its approach to funding teacher 

salaries and school construction. The state recognizes salary and other operating costs in the 

SOQ based on "reasonable" costs, which usually are lower than a school division's actual salary 

expenditures, and has played a minimal role over the years in providing dollars for local school 

facility needs. 

In addition to providing direct aid for public education through funding the mandated SOQ, 

m the past the legislature provided incentive funding to offer optional money for certain 

educational programs it espouses. Under this incentive scenario, local school divisions received 

state funding for certain programs or initiatives if they matched the available state funding with 

required amounts of local dollars. In more recent years, as budget and revenue shortfall 

challenges have necessitated reductions in public education funding, the state has turned to 

consolidating funding streams and funding more programs with dollars allotted to education from 

state lottery revenues. 

State dollars for education will be dwindling in the near future. While public education 

largely was sheltered from major funding reductions in 2008 and 2009, state funding for at least 

the next two years was sharply reduced. State general funds budgeted for public education fell 

from just under $6.3 billion for FYIO to a projected $5.5 billion for FYI 1, a three-quarters of a 

billion dollar decrease (2010-2012 Appropriations Act). General Assembly budget writers 

resigned themselves to the fact that reductions would have to occur, given that state dollars for 

schools make up over one-third of the entire state general fund budget. Moving forward over the 

next several years, the state will continue to face tough fiscal choices, and likely will be hard 

pressed to increase public education funding in the face of pressures to also adequately address 

other priorities and program service areas. 

While state policymakers have demonstrated that they recognize the value of Mathematics 

Specialists, and local policymakers are convinced and confident about the value of the in-school 

coaching model that Mathematics Specialists bring to improving mathematics achievement, both 

acknowledge that the major obstacle to expanded hiring of Mathematics Specialists is insufficient 

state and local funding. Local policymakers do not want a mandate to employ Mathematics 

Specialists, as paying the required local share for these more expensive employees is costly to 
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localities, especially as budgets are being reduced, not enhanced. Further, any such mandate 

could possibly set required employment ratios at levels that do not match local needs across more 

than 130 local school divisions. Likewise, state policymakers are challenged by the numbers, as 

the estimated state cost (FYlO) of one full-time Mathematics Specialist for each 1,000 students in 

grades K-8 was estimated at $28.6 million (local costs were estimated to be slightly lower at 

$22.8 million) [ 4]. 

Conclusion 

Providing credible, useful, and timely information to policymakers for decisions 

concerning implementation of Mathematics Specialist initiatives during the course of this project 

was rewarded by those policymakers taking actions to enforce and support the benefits of 

implementing Mathematics Specialist programs. The key to success was using information about 

policy issues for implementing Mathematics Specialist initiatives to engage policymakers, the 

education community, and the public in dialogue to create an awareness of and stronger support 

for not only Mathematics Specialists, but also public education in general. 

The policy associates educated the project team members in education policymaking in 

Virginia, found opportunities for advancement, identified the pitfalls, and initiated strategy 

discussions for the purpose of engaging policymakers effectively. While the process "tools" may 

differ from state to state, a winning formula to effectuating policy goals should include 

effectively interacting with and utilizing the processes at hand. Patience is also a virtue. 
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RIGHT TRIANGLES OF GIAN FRANCESCO MALFATTI 

Introduction. 

J. Boyd 
St. Christopher's School 

Richmond, VA 23226 

Every triangle circumscribes a unique triple of circles, each of which is tangent to the 

other two. Figure 1 shows a right triangle which circumscribes three circles as described. 

B 

C 
Figure 1. Right triangle with its circles. 

Such circles are named Malfatti circles to honor the Italian mathematician Gian Francesco 

Malfatti who, in 1803, wrongly conjectured that the greatest area that can be bounded by three 

circles drawn within any triangular region is the area contained by the three Malfatti circles of the 

triangle. Using the search engine Google™ to search for "3 circles in a triangle" produced an 

enormous amount of information about the geometry of triangles and their Malfatti circles. Thus, 

it should be clear that no startling contributions to the subject are to follow. 

Motivation 
To this mathematics teacher, the most interesting problems are those that arise naturally 

from the material that he is teaching, that are easy to pose, and that quickly lead from the familiar 

to mathematical places new to him. So it was that the teacher (i. e., the author of this article) 
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wondered how to write a program with Mathematica to create a figure like the one above. It was 

obvious that he needed to locate his triangle in the .zy-plane and then to find the coordinates of the 

centers and the lengths of the radii of the three circles. Figure 2 shows the triangle above with the 

addition of the centers of the circles and the radii to the points of tangency between the circles 

and the sides of the triangle. 

B 

c. 
1"J 

Figure 2. Right triangle with its Malfatti circles. 

Facts from Grade 9 Geometry 

The notation used in the statements that follow is derived from Figure 2. Although 

summer will remove many of these statements from the rising grade 10 memory, the facts and 

ideas with which the statements are concerned were once current and familiar in grade 9 

geometry class. The centers of the three circles are 0 1, 0 2, and 0 3 and the corresponding radii are 

rl, r2, and r3. 

1) Tangent segments AA1 and AA2 have the same length. In this case, AA1 = AA2 = p. Also BB 1= 

BB2 = q and CC 1= CC 2= rl. Note that CC1 and CC2 will also have the same length, but that 

length is the same as radius r1 only because angle ACB is a right angle. 
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2) Rays A02, B03, and C01 bisect their angles BAC, ABC, and BCA, respectively. 

3) B1 C1, A1 C2,and A2 B2 are common external tangents for their circles and have lengths 

2-vrl * r3 , 2-vrl * r2, and 2-vr2 * r3, respectively. 

If one starts with a correctly given triple of parts that determines the congruence of 

triangles, one (in theory) ought to be able to compute the radii and the coordinates of the centers 

of the Malfatti circles of a triangle. If a triangle is a right triangle as shown in Figure 6, one can 

write five equations which, when solved, will supply the information needed to write the program 

to create the figure. Under the assumption that triangle ABC of Figure 2 is a right triangle with all 

sides and angles known, these five equations hold true: 

p + q + 2-Vr2 * r3 = AB, 
r1 + p + 2-vrl * r2= AC, 

r1 + q + 2-vrl * r3 = BC, 
tan(LA/2) = r2/p, and tan(LB/2) = r3/q. 

If the triangle is taken to represent the general case, six equations are required and an 

enormous amount of algebra is necessary to achieve a solution. Goldilocks might have said, "The 

general triangle is too hard and the equilateral triangle is too easy. The right triangle is just right." 

Malfatti Circles in Right Triangles 

Grade 9 geometers at the top of their game should understand the thinking that went into 

the five equations above. Even though the difficulty of the Malfatti circles in a right triangle is 

"just right", the algebra involved in solving the five equations is still quite challenging. However, 

Mathematica can do the algebra as well as draw the figures. 

Here are two examples to argue the richness of the blend of analytic geometry and 

technology in problems on Malfatti circles. 

Example 1. Find the radii and centers of the Malfatti circles in a 30°- 60°- 90° right triangle with 

sides oflengths 5, 5./3, and 10 units. Then, draw the triangle with its circles. 

Solution. Since a figure is needed in explaining the solution, it makes sense to place the cart 

before the horse in this instance. So here is ~ABC with right LC in Figure 3; the program for 

creating the figure will follow. 
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Figure 3. A 30° - 60° - 90° right triangle. 

In A.ABC, LA= 30°, LB= 60°, and LC= 90° with AB= 10, AC= 5-v?,, and BC= 5. The five 

equations written in the symbols developed above are: 

p + q + 2v'r2 * r3 = 10, 
r1 + p + 2v'r1 * r2= 5-v?, 
r1 + q + 2v'r1 * r3 = 5, 
tan(LA/2) = tan (30°/2) = r2/p = 2 - .../3, and 
tan(LB/2) = tan(60°/2) = r3/q = 1/-v?,. 

The last two equations may be rewritten asp= (2 + -v?,) r2 and q = ../3r3. Substitution of 

these expressions for p and q in other equations leaves only the following three equation to be 

solved for the radii: 

(2 +.../3 )r2 + ../3 r3 + 2v'r2 * r3 = 10, 
r1 + (2 + .../3 )r2 + 2v'r1 * r2 = 5.../3, and 
r1 +.../3 r3 + 2v'r1 * r2 = 5. 
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Mathematica gives the speedy numerical solution rl = 0.928434, r2 = 1.44996, r3 = 

1.15499. Figure 4 lists the instructions which lead to the solution. It follows that p = (2 + -v3)r2 = 

5.41131 and q = v3r3 = 2.0005. 

NSolve[{(2 + v'3)r2 + V3 r3 + 2-../r2 * r3 == 10, 

r1 + (2 + v'3) r2 + 2-../rl * r2 == 5V3, r1 + v3r3 + 2-../rl * r3 == 5}, 

{r1, r2, r3}] 

{{r1 ~ 0.928434, r2 ~ 1.44996, r3 ~ 1.15499}} 

Figure 4. Instructions for finding the three radii with Mathematica. 

If the coordinates of the vertices of the triangle are taken to be (5-v3, 0) for A, (0, 5) for B, and (0, 

0) for C, reference to Figure 3 will reveal the coordinates of the centers of the circles. The 

coordinates of 0 1 are (rl,rl) = (0.928434, 0.928434), the coordinates of 02 are (5-v3 - p, r2) = 

(3.24894, 1.44996), and the coordinates of 0 3 are (r3, 5 - q) = (1.15499, 2.9995). Now that the 

coordinates of the centers and radii of the three circles have been computed, all input information 

needed for Mathematica to draw the 30 ° -60 ° -90 ° right triangle with its Malfatti circles is 

available. Here is the program that produced Figure 3: 
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rl = 0.928434; r2 = 1.44996; r3 = 1.15499; 

q = Y3 1.1549879938480403 

2.0005 

5-q 

2.9995 

p = ( 2 + 'YJ) * 1. 44995658969149 

5.41131 

SY3-p 
3.24894 

listl = {{o, O}, {sv, o}, {O, S}, {O, O}}; 

plotl = ListPl.ot [listl, Pl.otJoined-+ True, 
AspectRatio -+Automatic, PlotStyle-+ GrayLevel [OJ, Axes -+ Fal.se); 

list2 = {{rl, O}, {rl, rl}, {O, rl}, {O, O}, {rl, rl}}; 

plot3 = ListPlot [list2, PlotJoined-+ True, 
AspectRatio-+ Automatic, PlotStyle-+ GrayLevel[O), Axes-+ Fal.se); 

list3 = { {O, 5-q}, {r3, 5-q}, {r3 (l + l / 2), 5-q+ r3 * V / 2}}; 

plot4 = ListPlot[listJ, PlotJoined-+ True, 
AspectRatio-+ Automatic, PlotStyle-+ GrayLevel [OJ, Axes-+ False); 

plotS=ListPlot({{O, S}, {rJ, 5-q}}, PlotJoined-+True, 
AspectRatio-+ Automatic, PlotStyle-+ GrayLevel [OJ, Axes -+ False]; 

plot6 = ListPlot({{s V -p, r2 }, {s -../3, o}}, PlotJoined-+ True, 

AspectRatio-+ Automatic, PlotStyle-+ GrayLevel [OJ, Axes-+ False]; 

list4 = { { 5 V - p, 0}, { 5 -../3 - p, r2}, { ( 5 -../3 -p) + r2 / 2, r2 ( l + -../3 / 2)}}; 

plot7 = ListPlot[list4, PlotJoined-+ True, 
AspectRatio-+ Automatic, PlotStyle-+ GrayLevel [OJ, Axes-+ False]; 

plot2 = ParametricPlot [ { {. 928434 (1 + Cos (t)), • 928434 (1 + Sin [t))}, {3. 24894 + 1. 44996 Cos [t], 
1.449969 (l+Sin[t])}, {1.15499 (l+Cos(t]), 2.9995+1.15499Sin(t]}}, 

{t, O, 2 ,r}, PlotStyle-+ GrayLevel [OJ, Axes-+ False]; 

Show (plotl, plot2, plot3, plot4, plots, plot6, plot7] 
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Figure 5. Program for the 30°-60°-90° right triangle. 

Here is the second example. Since it involves an isosceles right triangle, it is quite a bit simpler 

than the first example. 

Example 2. Find the radii and centers of the Malfatti circles in a 45°- 45°- 90° right triangle with 

sides of lengths 10, 10, and 10.../2. Then, draw the triangle with its circles. 

Solution. Here is ~ABC with right angle at C as shown below in Figure 6. The notation is the 

same as that in Figure 3, but the symmetry of the isosceles triangle offers significant 

simplifications. Thus, AC= BC= 10, AB= 10-v'z, LA= LB= 45°, and LC= 90°. Also, AA1 = 

AA2 = BB1= BB2 = p and tan(LA/2) = tan(LB/2) = tan 22.5° = .../2 - 1. 
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Figure 6. Isosceles right triangle. 

Symmetry requires that r2 = r3 and reduces the five equations of the first example to only three in 

this case. The three equations to be solved are: 

P = cvz + l)r2, 
2p + 2r2 = 1 OVZ, and 

r1 + p + 2-Vrl * r2 = 10. 

Then, Mathematica wastes little time in solving for rl, r2, and p. 

Clear [rl, r2, p] 

NSolve[{P== (.../2 +1) r2, p+r2 == s.../2, rl+p+2'Vrl•r2 =• 10}, {rl, r2, p}] 
{{rl--+ 1.48847, r2--+ 2.07107, p--+ 5.}} 

Figure 7. Solution of the three equations with Mathematica. 
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It follows that the radii of circles 0 1, 0 2, and 0 3 are r1 = 1.48847, r2 = 2.07107, and r3 

2.07107, respectively. Reference to Figure 6 reveals that the coordinates of 0 1 are (rl, rl) 

(1.48847, 1.48847), the coordinates of 0 2 are (10 - p, r2) = (5, 2.07107), and the coordinates of 

0 3 are (r3, 10 - p) = (r2, 10 - p) = (2.07107, 5). The program which produced Figure 6 is listed 

below. 

Clear[rl, r2, p] 

p" 5; rl "1.48847; r2 "2.07207; 

list3" {{O, O}, {10, O}, {O, 10}, {O, O}}; 

list4" { {O, rl}, {rl, rl}, {rl, O}}; 

plots" ListPlot[list4, PlotJoined-+ True, 
AspectRatio-+ Automatic, PlotStyle-+ GrayLevel [OJ, Axes -+False]; 

plot3 "ListPlot[list3, PlotJoined-+ True, 
AspectRatio-+ Automatic, PlotStyle-+ GrayLevel [OJ, Axes -+False]; 

plot6" ListPlot[{{O, O}, {rl, rl}}, PlotJoined-+ True, 
AspectRatio-+ Automatic, PlotStyle--+ GrayLevel[O], Axes-+ False]; 

plot7 "ListPlot[{{O, 10}, {r2, 5}}, PlotJoined-+True, 
AspectRatio -+ Automatic, PlotStyle -+ GrayLevel [OJ , Axes -+ False] ; 

lists" { {O, 5}, {r2, 5}, {(1 + 1/ -vi") r2, 5+ (1/ "'2) r2}}; 

plots" ListPlot[listS, PlotJoined-+ True, 
AspectRatio-+ Automatic, Plotstyle-> GrayLevel [OJ, Axes -+False]; 

plot9 " ListPlot [ { { 10, O}, { 5, r2}}, PlotJoined -+ True, 
AspectRatio -+ Automatic, PlotStyle-+ GrayLevel [O] , Axes ... False]; 

plotlO" ListPlot[list6, PlotJoined-+ True, 
AspectRatio-+ Automatic, PlotStyle--+ GrayLevel [O], Axes ->False]; 

plot4" ParametricPlot[{{l.48846 (l+Cos[t]), 1.48846 (l+Sin[t])}, 
{5+2.07107Cos[t], 2.07107 (l+Sin[t])}, {2.07107 (l+Cos[t]), 5+2.07107Sin[t]}}, 

{ t, O, 2 ,r}, PlotStyle -+ GrayLevel [O] , Axes -+ False J ; 

Show [plot3, plot4, plots, plot6, plot7, plots, plot9, plotlO] 
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Figure 8. Program for the 30°-60°-90° right triangle. 

Suggestions for Other Problems. 

One good thing about teaching geometry is that fun and work often overlap. Such was the 

case with the circles and triangles of Gian Francesco Malfatti. The summer's assigned work was 

to use the Internet to seek enrichment material for the geometry class of 2011-12. The fun was 

learning more geometry (new to this teacher, old to many others), and then using the computing 

power of Mathematica to achieve the results described above. Should there be readers who found 

these ideas to be of interest, more fun awaits them in the 3 - 4 - 5 right triangle and in isosceles 

triangles with nice integer sides. 



A LESSON PLAN WITH AN ARC MIDPOINT 

Abstract 

G.V.AKULOV 
Luther College High School 

Regina, SK Canada S4S 0A2 

O.G.AKULOV 
University of British Columbia 

Vancouver, BC Canada V6T 1Z4 

The article introduces an explicit way of locating the arc midpoint in the Cartesian plane, which is 

consistent for both x- and y-coordinates and is technically accessible for students starting as young as 

fifteen. The authors give the proof of the statement using two trigonometry identities, and discuss some 

materials for innovative lessons on the arc midpoint computation that could enrich and enhance 

curriculum. 

Introduction 

Circumference is one of the most nearly perfect and most important lines in mathematics 

and science. Its segments, arcs, and their midpoints occur in thousands of theoretic and real

world problems. Along with the linear midpoint formula, the arc midpoint is beneficial for 

students' mathematics learning in general, and for their performance in coordinate geometry in 

particular. The logic conjunction "iff," used in the arc midpoint statement, means "if and only 

if." 

Arc Midpoint Computation 

Let the origin-centered arc of radius r in the Cartesian plane (see Figure 1) have the 

endpoints A and B with x-coordinates a, b respectively, and midpoint M with x-coordinate µ. 

Then, 

2µ= ±~(r+a)(r+b )±~(r-a Xr-b) , (1) 

where the first radical has "-" iff the arc makes a negative x-intercept, and the second radical 

has "+ " iff the arc makes a positive x-intercept. 
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M 

-r X 

Figure 1. 

The Same Relationship Holds for y-Values - Proof of this statement is shown below. Note that 

details of the proof arc accessible only for strong mathematics students who are learning 

trigonometry at the advanced level. Consider additional propositions that are used in the main 

proof. 

Two Identities 

For any p,q E[-1,1] 
sin-1 p + sin-' q = 2sin-1 A, 

cos-' p+ cos-' q = 2cos-' A, 

where 2A = ..j(l + p )(1 + q )- ..j(I- p ){1- q). 

(2) 

(3) 

To prove identity (3), we denote p = cos a, q = cos /J, and y = a+ /J, where a, /J, y E [ 0, Jr]. 
2 

Then, its left side of identity (3) is simplified to cos-1 (cos a)+ cos-' (cos /J)= a+ fJ = 2y. 

Since a,/J E [O, Jr], then cos a?: 0 and cos /J?: 0. Using this, let us simplify its right side: 
2 2 

2cos-' A= 2cos-1 ½(~(1 + cos a )(1 + cos/J)- ~(1- cos a )(1- cos/J) )= 

2cos-' (cos a cos /J -sin a sin /JJ = 2cos-' (cos a+ /JJ = 2y, 
2 2 2 2 2 

and identity (3) is proved. Identity (2) is a simple corollary of identity (3), indeed: 
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sin-1 p + sin-1 q =; - cos-1 p +; - cos-1 q = 1r-(cos-1 p + cos-1 q )= 

tr - 2 cos -i A = 2 ( ; - cos_, A) = 2 sin 1 A , 
and identity (2) is also proved. 

Arc Midpoint Computation Proof 
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Denote p = a Ir, q = b Ir, and m = µIr . Consider angles a= cos-1 p , f3 = cos-' q, 

and y = cos-' m that radii OA, OB, and OM form with positive part of x-axes, respectively. 

There are four cases. 

Case 1. The arc does not have x-intercepts. Then, y = (a+ /J)I 2 , and therefore 

1 {, -I -I ) m = cos r = cos 2 \cos P + cos q . Using identity (3), we get 

m =A= ½{~(1+ p )(l+q)-~(1- p )(1-q)). Hence, 2µ= ~(r+a)(r+b )-~(r-a)(r-b), 

and Case 1 is proved. 

Case 2. The arc has a positive x-intercept, but does not have a negative one. Then, y = la -131 I 2, 

and therefore m = cos½(cos-1 p- cos-1 q). In addition, using identities (2) and (3), it is easy to 

see that lcos-' p-cos-' qi= 2cos-1 ½{~(1+ p )(1 +q)+ ~(1- p )(1-q)) also holds for any 

p,q E[-1,1]. From here, we get m = ½{~(1 + p )(1 +q)+~(l- p )(1-q)) Hence, 

2µ= ~(r+a )(r+b )+~(r-a )(r-b), and Case 2 is also proved. 

Case 3. The arc has a negative x-intercept, but does not have a positive one. This part of the 

proof is similar to Case 2 with y = tr _ _! la - 131 . 
2 
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Case 4. The arc has two x-intercepts. This part of the proof is similar to Case 1 with 
1 r = Jr--(a+ P). 
2 

Proof for y-values can be achieved similarly using identity (2) or otherwise. Q.E.D. 

Thoughts and Materials for Lessons 

The first lesson on the new topic could begin from recalling the midpoint formula and 

illustrating with a quick example. Then, an analogy with the arc midpoint computation and its 

diagram can be made. The diagram is an important part of the computation. After the theory of 

computation is introduced, and before considering numerical examples, it is useful to have 

preliminary exercises to help students understand the logic of two"± decisions." Through such 

exercises, the teacher ensures that students use the conjunction iff properly. Several diagrams, 

representing different locations of the arcs, may be shown on the board, and students could be 

asked to determine signs of both radicals in the formula ( 1) based on the particular location of the 

arc. For example, for the arc shown in Figure 1, the first radical has"+" because an arc does not 

have a negative x-intercept, and the second radical has"+" because an arc does have a positive x

intercept. Or, for the arc shown in Figure 2, the first radical has " - " because an arc does have a 

negative x-intercept, and the second radical has " - " because an arc does not have a positive x

intercept. When preliminary "± practice" is finished, numerical examples could be discussed. In 

the following examples, we provide a selection of sample problems where the exact answer is to 

be found without using a calculator. 

Example A: An origin-centered arc of radius 50, located as shown in Figure 1, has the ends at 

x = 14 and x = 25 . Find the x-coordinate of its midpoint. 

Example B: An arc, with radius 40 and the center at origin, is located above the x-axis. If it 

begins and ends at x = -24 and x = 9, what is the x-value of its midpoint? 

Example C: An arc has its center at (0,0) and radius 82. It starts at y = 18 in quadrant II, 

passes through quadrant III and ends in quadrant IV at y = -1. What is the y-value of the arc's 

midpoint? 
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Solution A: We are given r = 50 , a = 14, b = 25 . As previously discussed, in this case both 

radicals in the arc midpoint formula ( 1) have "+ " hence, 

2µ = J(5o + 14 )(5o + 25)+ J(50-I4 )(5o- 25) = 40./3 + 30, 

and 20./3 + 15 is the answer. 

Solution B: We are given r = 40, a= -24, b = 9. In this case, the first radical has"+," since 

the arc does not have a negative x-intercept, and the second radical has " - ," since the arc does 

not have a positive x-intercept. Using formula ( 1 ), we get 

2µ = J(40-24){40+ 9)- J(40+ 24)(40-9) = 28-851 , 

and 14- 45! is the answer. 

Solution C: r = 82, a= 18, b = -I are given. In this case, the first radical is"-," since the arc 

does have a negative y-intercept, and the second radical has " - ," since the arc does not have a 

positive y-intercept. Hence, 

2µ = -J(82 + 18)(82-1)-J(82-18)(82 + 1) = -90- sm , 
and -45 - 4Jsj is the answer. 

Applications of the arc midpoint computation to the real-world problems could be 

planned for the next lesson. In such problems, both exact and rounded answers could be 

requested, and a calculator should be used for evaluating radicals. 

Problem 

A water tank (T), a grain bin (B), and a storage unit (S) are located on the circle (see 

Figure 2). T is 0.6 km away from the center C and equidistant from S and B. If S is located 0.4 

km south of center C and B is located 0.2 km north of C, how far north of C is T located? 
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Figure 2. 
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Introduce the coordinate system with origin at C, x-axis pointed east and y-axis pointed 

north. Note that T is a midpoint of the arc STB. Using y-coordinates and 1 unit= 100 m, we 

have a = -4 , a= 2, r = 6. For the first radical in (1) we chose"+ ," since the arc does not have 

a negative y-intercept. For the second radical in (1 ), we chose "+" since the arc does have a 

positive y-intercept. Then, formula (1) gives they-value of 

T: ½ (~( 6 - 4 )( 6 + 2) + ~( 6 + 4 )( 6 - 2) )= 2 + Jw . Hence, T 1s located 

100~ + .Jio) m north ofC (or 516 m north ofC). 

New problems for further practice could be prepared using various real-world situations 

that involve arcs and their midpoints. 
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It is difficult to find good problems for undergraduates. In this article, we explore an interesting 

problem that can be used in virtually any mathematics course. We then offer natural generalizations, 

state and prove some related results, and ultimately end with several open problems suitable for 

undergraduate research. Finally, we attempt to shed some light on what makes a problem interesting. 

Introduction 

The Department of Mathematics at Lynchburg College has made a concerted effort to 

bring serious mathematical thinking into every one of its mathematics classes. We want our 

students to have the opportunity to question, explore, make conjectures, and then prove those 

conjectures. We want them to experience the true beauty of problem solving. 

We spend a great deal of our time looking for appropriate problems that can be used at many 

levels. We leave no stone unturned. We examine textbooks, Math Olympiad and similar problem 

books, websites, and Car Talk "Puzzlers" [1-3]. During these investigations, we have come 

across several excellent problems. We are always looking for interesting problems that satisfy 

the following four criteria: 

1) Are easy to understand, but for which the solution is not obvious; 

2) Require some experimentation and examples to make a conjecture; 

3) Have some higher-level mathematics lurking in the background; and, 

4) Can be easily generalized. 

In this article, we will study one such problem. This problem can be found in Mathematical 

Delights, in "From the Desk ofLiong-shin Hahn" as Problem 1: "A Safe Cracking Problem" [4]. 

The problem is as follows: 
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A lock has sixteen keys arranged in a 4 x 4 array; each key is oriented either 

horizontally or vertically. In order to open the lock, all of the keys must be 

vertically oriented. When a key is switched to another position, all the keys in 

the same row and column automatically switch their positions, too (see diagram). 

(Only one key at a time can be switched.) 

Show that no matter what the starting position, it is always possible to open this 

lock. 

Figure 1. Original lock; lock after turning the shaded key. 

This problem was given to students at many levels: to students from our liberal arts problem 

solving course to our upper-level students in linear algebra and experimental mathematics. All of 

these students agreed that the problem was easy to understand and that the solution was not at all 

obvious. 

Problems like this force students to think differently. They spend more time practicing 

higher-order thinking skills than they do rummaging through their dusty old high school bag of 

formulas and techniques. In fact, no matter the mathematical level of the student, they 

immediately begin experimenting! 

Results 

Most mathematicians that see this problem instantly recognize the locks (in all their 

possible states) as elements of the vector space of 4 x 4 matrices over Z2, where an entry of 0 

corresponds to a vertical key and an entry of 1 corresponds to a horizontal key. In this setting, 

turning a key in the (i,j) position translates to adding the matrix A;.J that has ones in the ;th row 
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and the /h column and zeros elsewhere to the matrix corresponding to the lock in question. To 

prove that every lock is open, one need only prove that the set of matrices A;,j form a basis. 

Before we prove any results for lock problems such as this one, we should make a few 

comments. Students, even those with no background in linear algebra, quickly realize from 

experimentation that they can change the orientation of the key in the ;th row and /h column while 

leaving all other keys in the same orientation by turning each key in the lh row and the /h column 

exactly once. This realization requires knowledge of neither linear algebra nor modular 

arithmetic. In fact, it turns out that students with knowledge of little other than basic parity can, 

with a little experimentation, come to this same conclusion. However, it is exactly this technique 

that can be used to prove the linear algebra version in a straightforward manner for any lock with 

an even number of both rows and columns: 

Result 1. Any lock with an even number of rows and an even number of columns can be opened 

regardless of starting position. 

Proof. Choose an arbitrary starting position of any m x n lock where m and n are both even. Let 

A be the matrix in the vector space V of m x n matrices over Z2 for which we choose each entry as 

follows: if the corresponding key in our given starting position is horizontal, the entry is 1, and if 

the corresponding key in our given starting position is vertical, the entry is 0. 

Consider matrices of the following form in the vector space of m x n matrices 

over Z2: 

A,., delmed by (A,.,) ,,1 = { ~ if k * iand l * j. 
if k = i or l = j. 

Ak,1 + A produces a matrix that corresponds to the lock position we would obtain by turning the 

key in the kth row and the fh column. So, if the set S = {Ak,L : 1 :'S k :'S m, 1 :'S / :'S n} spans V, every 

matrix in V may be written as a linear combination of elements of S, in particular the zero matrix, 

which will allow us to conclude that any arbitrary lock may be opened. 

In order to show that S spans V, it suffices to show that any arbitrary element of the 

standard basis of V can be written as a linear combination of elements of S. Choose an arbitrary 
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element of the standard basis of V, E;j, the matrix whose (iJt entry is 1 and all other entries are 

zero. Clearly, we can unlock any lock using the matrices E;j. 
m n 

We claim that E. . = "Ak . +" A I - A . .. l,J .L.,. ,] .L.,. I, l,J 
k=I l=l 

m n 

First,notethat '°'(Ak .) .. + '°'(A. 1) .. -(A.) . =m+n-1==1 =(E. ). (mod2) . .L.. ,J l,J .L.. ,, l,J ld l,J l,J l,J 
k=I l=l 

m n 

Ifsi-i,then '°'(Ak) .+'°'(A. 1) .-(A .. ) .=m+I-I=m=0=(E; 1 ),,(mod2) . .L.,. ,J S,J .L.,. l, S,J l,j S,j ,. , ,. 

k=I l=l 

m n 

If t i-J, then L(Ak,);,i + L(A;,i );,i -(A;,j);,1 = 1 + n - I= n = 0 = (E;,);/rnod2). 
k=l l=l 

m n 

Ifs i- i and ti-}, then L(Ak,J).,,1 + L(A;,1)s,t -(A;,J)s,t = 1 + 1-0 = 0 = (E;,J)s,t(mod2). 
k=l l=l 

Hence, S spans V and therefore any m x n lock with m and n even can be opened. 

In asking our students to ask interesting questions inspired by the lock problem, a natural 

idea students have is to question whether the results will be the same if the number of rows and 

columns are changed. The result we have just shown is, in fact, one such simple extension of this 

problem. In asking these sorts of questions, one of our students noticed that a 3 x 3 lock had a 

particular position (and then a whole class of related positions) that could not be unlocked. In 

fact, even an introductory student can quickly discover positions for a 1 x n lock, with n > I , that 

cannot be unlocked. 

Again, as mathematicians, creating these examples is relatively simple if we treat the 

locks as elements of the vector space of m x n matrices over Z2 . However, students, even those at 

an introductory level, can quickly create "unopenable" positions of locks of various sizes, along 

with most of a proof that these locks cannot be opened, even if they lack any background in linear 

algebra. Again, an understanding of parity is all that is required to discover these ideas. 

However, in a class in which Martin Gardner's famous "Mutilated Chessboard" problem is 

studied, students can find interesting connections between their attempts to create an unbreakable 

lock and that problem [5]. We will now prove a couple more results that were inspired by these 

students' explorations. 



UNLOCKING UNDERGRADUATE PROBLEM SOLVING 229 

Result 2. If m is odd and n is even, there exist positions from which an m x n lock cannot be 

opened. 

Proof. Examine any starting position of this m x n lock with an odd number of horizontally 

positioned keys. Let A be the m x n matrix over Z2 which corresponds to this starting position as 

before. Further, define the matrices Ak,t as before. Define the function a by: 
m n 

(J"(B) = LL(B);,/mod2). 
i=I }=I 

An open lock which corresponds to matrix D satisfies a(_D) = 0 (mod 2), while the matrix 

A for our starting position above satisfies a(A) = 1 (mod 2). Further, since Ak,J + A produces a 

matrix that corresponds to the lock position we would obtain by turning a key in the kth row and 

f' column, a(_B + C) = a(_B) + a(_C) for any matrices Band C, and a(Ak,1) = m + n - I = 0 (mod 2), 

no sequence of key turns can open a lock in a position corresponding to matrix A. 

Result 3. If m and n are both odd, not both 1, there exist positions from which an m x n lock 

cannot be opened. 

Proof. Color the position ( or cell) of the key in the ;th row and /h column of a lock black if i + j is 

even and white if i + j is odd. The cells will appear in a checkerboard pattern, starting with a 

black cell in the upper left hand comer as shown in Figure 2 below. 

Figure 2. Colored 3 x 5 lock. 

Note that each odd row and column starts and ends with a black cell, while each even row 

and column starts and ends with a white cell. Thus, when m (or n) = 1 (mod 4), since m (or n) = 

4r + 1, each odd row ( or column) contains 2r + 1 black and 2r white cells, and each even row ( or 

column) 2r + 1 white and 2r black cells. Also, when m (or n) = 3 (mod 4), m (or n) = 4r + 3, 
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each odd row (or column) contains 2r + 2 black and 2r + 1 white cells, and each even row (or 

column) 2r + 2 white and 2r + 1 black cells. 

For any position of a lock, we can define an m x n matrix A over Z2 corresponding to that 

position as before. Also, define the matrices Ak,t as before. Define the functions rYb and rYw which 

sum the entries in a matrix corresponding to the black and white cells of a lock: 

m n {(A) .. 
a-b(A) = ~~x;_;(mod 2), where x;J = 0'·1 

m n {(A) .. 
a-w(A) = ~~x,,;(mod2), where xi,J = 0'·1 

if i + j is even. 

if i + j is odd. 

if i + j is odd. 

if i + j is even. 

An open lock which corresponds to matrix D satisfies rYb{D) = rYw(D) = 0 (mod 2). Again, 

note that Ak,J + A produces a matrix which corresponds to the lock position we would obtain by 

turning a key in the (k,tl' cell and rYh{B + C) = rYb(B) + o°b(C) and rYw(B + C) = rYw(B) + rYw(C) for 

any matrices B and C. 

Examine the following cases. 

Case 1: m = n = 1 (mod 4) 

Let m = 4r + 1 and n = 4s + 1. 

If k and / are even, rYw(Ak,t) = (2r + l) + (2s + 1) = 0. 

If k is even and/ is odd, rYw(Ak,t) = (2r + 1) + (2s)- 1 = 0. 

If k is odd and/ is even, rYw(Ak,t) = (2r) + (2s + 1)- 1 = 0. 

If k and/ are odd, rYw(Ak,J) = (2r) + (2s) = 0. 

Choose a starting position for the lock which has an odd number of white horizontal cells. Then, 

the corresponding matrix A to this lock satisfies rYw(A) = 1 (mod 2). Since rYw(Ak,t) = 0 for any 

choice of k and /, no sequence of key turns can open a lock in a position corresponding to matrix 

A. 

Case 2: m = n = 3 (mod4) 

Similar to Case 1. 
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Case 3: m = 1 (mod 4) and n = 3 (mod 4) 

Let m = 4r + 1 and n = 4s + 3. 

If k and/ are even, a'b(Ak,1) = (2r) + (2s + 1) - 1 = 0. 

If k is even and / is odd, a'b(Ak,l) = (2r) + (2s + 2) = 0. 

If k is odd and / is even, (J'b(Ak,l) = (2r + 1) + (2s + 1) = 0. 

If k and/ are odd, ah(Ak,l) = (2r + 1) + (2s + 2)- 1 = 0. 
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Choose a starting lock position which has an odd number of black horizontal cells whose matrix 

A then satisfies ab(A) = 1 (mod 2). Again, since (J'h(Ak,t) = 0 for all k and/, no sequence of key 

turns can open such a lock. 

Case 4: m = 3 (mod 4) and n = 1 (mod 4) 

Similar to Case 3. 

Conclusion 

As we mentioned earlier, this problem satisfies the four criteria that makes a problem 

interesting. We have proven a few results so that students might have some ideas on how to start 

on other generalizations. Like all interesting problems, generalizations abound! We end this 

paper with the following versions of lock problems: 

1) Start with an m x n lock as studied above. Change the rules for which keys change 

when a particular key is turned. For instance, what if only the keys sharing a border 

with the turned key changes? What size locks can be opened? 

2) Start with a locked 3-dimensional rectangular m x n x l box, each face of which is 

covered by two m x n, two m x l, and two n x I keys similar to those studied above. 

In this 3-D version, turning one key changes the positions of each key in the same 

row and column around the entire box. 

3) Start with a locked 3-dimensional rectangular m x n x I box containing mnl cubes 

each containing a key. Turning any key (even those in the interior of the box) 

changes the position of every key sharing a horizontal or vertical plane with the key 

turned. Alternately, turning any key might change the position of every key sharing 

a horizontal or vertical row with the key turned. 

4) Start with an m x n lock that corresponds to an m x n matrix over Zr. That is, a lock 

where each key has r intermediate positions between the horizontal and vertical 

positions. 
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5) Start with a locked 3-dimensional rectangular m x n x I box that works as in version 

1 or version 2 above, but with keys that have r intermediate positions between 

horizontal and vertical positions as in version 3 above. 
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The history of educational reform at all levels surely shows that significant and long

lasting change is not easy. Influencing change in college courses can be especially difficult 

because of the independent nature and disciplinary expertise of the professors who teach those 

courses. While external grants from prestigious foundations can certainly help convince college 

professors to modify their courses, a continuing question is whether those changes continue after 

that external funding and support disappear. What characteristics of those redesigned courses 

will continue after the initial reform effort ends? 

The purpose of this article is to present the results of a follow-up evaluation on a six-year 

project to develop more effective introductory college mathematics and science courses, 

especially for those students planning to become elementary and middle school teachers. Faculty 

at seven Virginia higher education institutions collaborated to develop introductory mathematics, 

science, and education courses that offered a broad-based core of knowledge taught through "best 

teaching practices" to enhance student learning. The mathematics and science faculty were also 

asked to focus especially on the most important disciplinary knowledge for those students who 

planned to become K-8 teachers. 

From 1993 to 2000, the National Science Foundation funded the Collaboratives for 

Excellence in Teacher Preparation (CETP) program to encourage educational institutions to 

reform the initial training of K-12 teachers in order to produce future teachers well prepared in 

mathematics, science, and technology. One of the main CETP goals was to encourage arts and 

sciences college faculty to work with education faculty and local school teachers to develop 

mathematics and science instructional experiences that help students learn in-depth subject matter 

and essential teaching skills. 

The theoretical framework for reform programs such as CETP can be clearly found in the 

mathematics and science standards-based reform efforts of the past ten years. Twelve years ago, 

the American Association for the Advancement of Science began Project 2061 with the explicit, 
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long-term goal to reform K-12 education to produce science literate graduates. Their 1989 report, 

Science for All Americans, identified what all students should know and be able to do in 

mathematics, science, and technology after thirteen years of schooling [1]. In 1993, Project 2061 

published Benchmarks for Science Literacy that translates the literacy goals of Science for All 

Americans into explicit learning objectives by the end of grades 2, 5, 8, and 12 [2]. The National 

Science Education Standards released in December 1995 provided a series of standards for the 

following: 1) science teaching; 2) professional development of teachers; 3) teachers' 

development of professional knowledge and skills; 4) science education assessment; 5) content 

standards organized by K-4, 5-8, and 9-12 grade levels; 6) school district science program 

standards; and, 7) the science education system beyond the school [3]. Among the six science 

teaching standards presented in that report, three-the calls for inquiry-based science programs, 

for the teacher to become a facilitator of student learning, and for the ongoing assessment of 

teaching and student learning-are especially important to reforming college science courses. 

Methods 

The Virginia Collaborative for Excellence in the Preparation of Teachers (VCEPT) was 

established in May 1996 and originally consisted of the following: 1) four-year institutions 

(Virginia Commonwealth University, Norfolk State University, Mary Washington College, and 

Longwood College-faculty from UV A and the College of William & Mary joined VCEPT in 

later years); 2) two-year institutions (J. Sargent Reynolds Community College, Tidewater 

Community College, and Germanna Community College); 3) community-based educational 

institutions (the Science Museum of Virginia and the Virginia Mathematics and Science Center); 

and, 4) local school systems. The Virginia Collaborative for Excellence in the Preparation of 

Teachers (VCEPT) was engaged in formal project activities for six years until May 2002. As part 

of a more extensive CETP impact study, the National Science Foundation funded a three-year 

evaluation follow-up in 2002 on the effects of the VCEPT activities. This three-year follow-up 

study examined the impact of VCEPT (in terms of both influence and sustainability) on college 

professors, teacher graduates, professional teachers in the field, and the policies of the Virginia 

Department of Education. Only the impact on higher education faculty will be examined in this 

article. 

One of the main VCEPT project goals was to facilitate a re-examination of introductory 

college mathematics, science, and education courses taken by students preparing to be K-8 

teachers. Typically, these introductory courses were also used to satisfy the general education 

requirements of other students not planning to become teachers. While a few of these students 



REFORM TEACHING IN MATH AND SCIENCE COURSES-A FOLLOW UP EVALUATION 235 

would choose to major in mathematics and science, these were normally the final mathematics or 

science course for most students in these courses. 

Teams of college and K-8 faculty worked on the redesign of specific courses at each of 

the VCEPT institutions. They were guided by course development principles which the entire 

VCEPT project working group had approved by consensus. The choice of specific courses' 

goals, activities, and assignments were to be guided by the following fifteen instructional 

characteristics: 

1) active student learning 

2) up-to-date teaching technologies 

3) connections to other related disciplines 

4) connections to the natural world 

5) mixture of breadth and depth in coverage 

6) interesting and intellectually involving concepts 

7) critical thinking about current events 

8) practical applications to students' own lives 

9) effective interactions among students 

10) opportunities to collect pertinent information 

11) opportunities to organize information 

12) opportunities to analyze information 

13) opportunities to communicate conclusions and ideas 

14) ethical and social implications in the world 

15) different methods of assessing student performance 

Fifty-eight VCEPT "reformed" courses were developed at five of the original VCEPT project 

institutions-Longwood University (LWU); Norfolk State University (NSU); University of Mary 

Washington (UMW); Virginia Commonwealth University (VCU); and J. Sargeant Reynolds 

Community College (JSRCC}-using these guiding principles. Throughout the original six-year 

VCEPT project, these courses were regularly evaluated through classroom visits by project 

evaluators, interviews with course instructors, and end-of-course evaluations by students. The 

results of these efforts were shared with course instructors through individual feedback reports. 

Combined course evaluations were also shared with VCEPT project members and the National 

Science Foundation through annual VCEPT reports. 
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For the follow-up evaluation, a sample of these courses was selected to investigate to 

what degree the courses still exhibited those principles after the original VCEPT project ended. 

In addition, the evaluation examined how well those reform course characteristics enhanced 

students' learning. During the fall and spring semesters of the 2003-2004 academic year, 

eighteen different courses (with 1-5 different sections of each course) were evaluated using an 

end-of-course student questionnaire (see Appendix A) that asked students to rate to what degree 

the course exhibited these fifteen VCEPT course development principles and the degree to which 

they contributed to their learning in the course. 

The number of courses ( and sections of the same course) at each institution was the 

following: one course (6 sections) at JSRCC; two courses at UMW (1 and 2 sections); two 

courses at VCU (1 and 4 sections); five courses at NSU; and, seven courses (1, 2, 3, 4, 4, 4 and 5 

sections) at LWU. The number of students completing the follow-up VCEPT course evaluations 

was 112 at JSRCC, 73 at UMW, 237 at VCU, 129 at NSU, and 459 at LWU for a total of 1,010 

students. The courses were chosen by institutional VCEPT coordinators to be representative of 

the "typical" VCEPT reform course. This purposeful sampling method would adequately 

represent the type of mathematics, science, and education VCEPT reform courses still being 

taught at each institution. 

Results 

The students taking the VCEPT reform courses at all five of the institutions provided 

remarkably consistent feedback about their course experiences. At all five VCEPT institutions, 

the students identified "active student learning" as the most frequently encountered characteristic 

of the fifteen identified VCEPT course characteristics and also the most valuable characteristic 

for their learning in the course. Typically, about 85% of the students indicated that "active 

student learning" occurred systematically or customarily in all of their classes. On a 5-point 

scale-where 1 = Systematic use (100% of classes); 2= Customary use (75%-99% of classes); 3= 

Frequent use (50%-74% of classes); 4= Moderate use (25-49% of classes); and, 5= Occasional 

use (0-24% of classes)-"active student learning" averaged a 1.91 rating for the degree to which 

it occurred in their classes. While the use of a mean rating with these five ordinal categories can 

be misinterpreted, the mean rating is included here because it provides a helpful indication of the 

distribution of the students' responses among the choices. 

Other most frequent VCEPT course characteristics that students reported being a part of 

their courses did vary somewhat among institutions, but there was still much consistency in the 
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students' ratings. At Longwood University, the second through fifth most frequently noted 

course characteristics were "assessment of student performance in different ways," "connections 

to the natural world," "mixture of breadth and depth in coverage," and "opportunities to organize 

information." At Norfolk State University, the second through fifth most frequently noted course 

characteristics were "interesting and intellectually involving concepts," "opportunities to organize 

information," "up-to-date teaching technologies," and "opportunities to analyze information." At 

the University of Mary Washington, the second through fifth most frequently noted course 

characteristics were "effective interactions among students," "up-to-date teaching technologies," 

"practical applications to students' own lives," and "opportunities to communicate conclusions 

and ideas." At Virginia Commonwealth University, the second through fifth most frequently 

noted course characteristics were "effective interactions among students," "opportunities to 

analyze information," "connections to the natural world," and "opportunities to communicate 

conclusions and ideas." At J. Sargeant Reynolds Community College, the second through fifth 

most frequently noted course characteristics were "connections to the natural world," "interesting 

and intellectually involving concepts," "opportunities to analyze information," and "mixture of 

breadth and depth in coverage." While the students' reported use of these course characteristics 

did vary among the different types of mathematics, science, and education courses, students were 

quite consistent in reporting "customary use" (defined as occurring in 75% to 99% of their 

classes) for these top five characteristics. 

These students were also asked to rate the importance of these fifteen VCEPT course 

characteristics in helping them to learn in their course. The number one rated characteristic by 

the students across all VCEPT institutions was "active student learning" with a mean rating for all 

forty-two VCEPT courses/sections sampled of 1.47 on a 5-point scale, where 1= Very Important, 

2= Important, 3= Unimportant, 4= Detrimental to Your Leaming, and 5= Not Applicable or No 

Opinion. Again, the mean rating is used for these five nominal categories to represent the overall 

ranking of the students for each characteristic. 

"Interesting and intellectually involving concepts" was rated the second most valuable 

course characteristic for student learning at LWU, NSU, and JSRCC while being rated third most 

valuable at VCU and fifth most valuable at UMW. "Assessment of student performance in 

different ways" was rated second most valuable at VCU, third most valuable at L WU, fourth most 

valuable at UMW, and fifth most valuable at JSRCC. "Practical applications to students' own 

lives" was rated second most valuable at UMW and fourth most valuable at LWU. Two other 

course characteristics made the top five for their value to student learning in three different 
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institutions: "effective interactions among students" and "up-to-date teaching technologies." 

"Opportunities to analyze information" and "opportunities to communicate conclusions and 

ideas" made the top five at two of the VCEPT institutions. 

There was again much consistency among the students' ratings of the least frequently 

encountered course characteristics. These four course characteristics were always rated the least 

frequent components of the VCEPT courses, although the exact twelfth to fifteenth order did 

differ among the VCEPT institutions: "critical thinking about current events," "ethical and social 

implications in the world," "connections to other related disciplines," and "practical applications 

to students' own lives." The three lowest-rated course characteristics on value to students' 

learning were also the same among all the four-year VCEPT institutions with the exact order at 

the bottom again differing slightly: "ethical and social implications in the world," "critical 

thinking about current events," and "connections to other related disciplines." 

Discussion and Conclusions 

The VCEPT course evaluation follow-up data support the conclusion that project

initiated changes to mathematics, science, and education courses are sti 11 reflected in students' 

perceptions three to five years after the initial course modifications. These new students' end-of

course evaluations of their reform mathematics, science, and education college courses show that 

the class activities and assignments have continued to exhibit most of the VCEPT instructional 

characteristics that faculty put into their redesigned courses. 

"Active student learning" has continued to be the most important course element for both 

instructors and students. While the exact nature of these activities differs among the courses, 

students do perceive an overall instructional commitment for student-centered learning rather 

than teacher-centered lecturing. While there was some variation among the rest of students' 

rankings at different institutions, the course characteristics of "opportunities to analyze 

information," "connections to the natural world," "interesting and intellectually involving 

concepts," "mixture of breadth and depth in coverage," "effective interactions among students," 

"up-to-date teaching technologies," and "opportunities to communicate conclusions and ideas" 

were typically seen as customarily used in the reform courses. 

When students were asked to indicate which course characteristics contributed most to 

their learning, "active student learning" was the highest ranked instructional component. Since 

this was also the one course characteristic most frequently identified with the reform courses, this 
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finding suggests that students' learning was indeed enhanced by the project-based course 

changes. "Interesting and intellectually involving concepts" and "assessment of student 

performance in different ways" were the next two highest-ranked contributions to students' 

learning. "Effective interactions among students," "up-to-date teaching technologies," "practical 

applications to students' own lives," "opportunities to analyze information," and "opportunities to 

communicate conclusions and ideas" were the other highest-ranked contributors to student 

learning. All of these except assessment were also perceived as frequently occurring in the 

reform courses. 

Examining the least frequent and least valuable course characteristics students identified, 

at least two interpretations of these findings are possible-the less frequent use of these 

characteristics made them less valuable to the students or the students did not find inclusion of 

these issues helpful to learning the basic content of the courses. Interviews with faculty did 

reveal that instructors found including course material that provided "ethical and social 

implications in the world," "critical thinking about current events," and "connections to other 

related disciplines" the most challenging of the instructional characteristics to address. 

While this follow-up evaluation provides positive evidence that the VCEPT reform 

courses have consistently retained the VCEPT course principles, additional kinds of evidence 

could have strengthened that conclusion. Most of the instructors who redesigned the courses are 

still the instructors-of-record. When new professors start teaching these courses, will they 

continue the same objectives, activities, and assignments? Whether the current professors mentor 

their colleagues and convince them of the value of these reform course characteristics remains an 

open question. 

This follow-up evaluation used students' judgments because they were the target 

consumers for the course changes. However, the evaluation would have been stronger if an 

objective measure of student learning was available for students taking the VCEPT reform 

courses. While each instructor did formally assess and grade each student's learning, the changes 

in the courses made comparisons with earlier students in the pre-reform courses impossible. The 

use of any standardized assessment measure given as a pre-test and post-test was also not an 

evaluation strategy that the instructors embraced. 

In conclusion, this follow-up evaluation has shown that college course development 

initiated by a formal NSF-funded project can be maintained after that funding ceases. Since the 
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sustainability of project-initiated changes is an important goal of such foundation-funded 

projects, this evaluation should encourage future efforts to help mathematics, science, and 

education faculty reconsider the way they help undergraduate students learn the core concepts 

and principles that help them learn-and, in some cases, teach-those fundamental disciplinary 

ideas. 
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Appendix A 

Virginia Collaborative for Excellence in the Preparation of Teachers 

Fall 2003 Evaluation Questionnaire 

Your instructors have been participating in a National Science Foundation project to 

identify and implement "best practices" for college mathematics and science instruction. Please 

complete the following questionnaire so that we can use your feedback in the future development 

of this course. Your anonymous opinions will be returned to the project evaluator who will 

summarize them for the instructors and the National Science Foundation. Since we will be 

summarizing your responses as group data, your individual opinions will remain confidential. 

However, we are asking for some biographical information to see how students' views are 

influenced by their year in school or career aspirations. Thank you in advance for taking the time 

to respond thoughtfully to these questions. 

Please use a No. 2 pencil to fill in the appropriate circle on the General Purpose Answer 

Sheet to record your answers. In the Last Name space print the abbreviation for your course and 

section number, such as MATH 106-01, CMSC 128-03, or BIO 121-02, but you do NOT need to 

mark the circles under those letters and numbers. 

Feedback on Course 

Please use the 5-point rating scale on the right for items 1-15 as you describe the 

following characteristics of this course. 

To what degree did classes in this course include 

1. active student learning 

2. up-to-date teaching technologies 

3. connections to other related disciplines 

4. connections to the natural world 

5. mixture of breadth and depth in coverage 

A= Systematic use (100% of classes) 

B = Customary use (75%-99% of classes) 

C = Frequent use (50%-74% of classes) 

D = Moderate use (25-49% of classes) 

E = Occasional use (0-24% of classes) 

6. interesting and intellectually involving concepts 

7. critical thinking about current events 

8. practical applications to students' own lives 

9. effective interactions among students 
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10. opportunities to collect pertinent information 

11. opportunities to organize information 

12. opportunities to analyze information 

13. opportunities to communicate conclusions and ideas 

14. ethical and social implications in the world 

15. assessment of student performance in different ways 

Please use the 5-point rating scale on the right for items 16-30 as you assess the value of 

these course characteristics to help you learn math and/or science content. 

To what degree are these course characteristics important in helping you learn in this 

course? 

16. active student learning 

17. up-to-date teaching technologies 

18. connections to other related disciplines 

19. connections to the natural world 

20. mixture of breadth and depth in coverage 

21. interesting and intellectually involving concepts 

22. critical thinking about current events 

23. practical applications to students' own lives 

24. effective interactions among students 

25. opportunities to collect pertinent information 

26. opportunities to organize information 

27. opportunities to analyze information 

A = Very Important 

B = Important 

C = Unimportant 

D = Detrimental to your learning 

E = Not Applicable or No Opinion 

28. opportunities to communicate conclusions and ideas 

29. ethical and social implications in the world 

30. assessment of student performance in different ways 

Biographical Information 

31. What was your academic classification at the beginning of the Fall 2002 semester? 

A= Freshman B = Sophomore C = Junior D = Senior E = Graduate or Unclassified 
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32. Do you plan to become certified to teach? [If unsure of the grade level, mark all of those 

that might apply.] 

A= No, B = Yes, grades K-5, C= Yes, grades 6-8, D = Yes, grades 9-12, E= Undecided 

If you are planning to teach, please also answer questions 33 to 35. 

Use the 4-point scale on the right to indicate your opinion about each of these statements: 

33. This course experience increased my 
motivation to try a variety of 
mathematics/science teaching strategies in 
my own teaching. 

34. This course experience increased my 
understanding of how to use different 
mathematics/science teaching strategics. 

35. I will likely share teaching ideas from this 
course with classmates. 

A = Strongly Agree 

B = Agree 

C = Disagree 

D = Strongly Disagree 
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Strong, consistent support from state and local policymakers is essential to the 

establishment of effective Mathematics Specialists programs in local school divisions. When 

policymakers and policy leaders understand that there is a positive relationship between school

based Mathematics Specialists and significantly improved student mathematics achievement, they 

are likely to take legislative, regulatory, and budget actions that initiate, nurture, and sustain 

successful programs. This article presents specific state and local policy actions that have 

contributed to Virginia's nationally-recognized accomplishments in implementing and supporting 

Mathematics Specialist programs in elementary and middle schools. 

In 2004, the National Science Foundation (NSF) awarded a consortium of three Virginia 

universities and five partner school divisions a five-year Teacher Professional Continuum (TPC) 

grant having as its overall goal determining the effectiveness of a school-based Mathematics 

Specialist program in grades K-5. The program core has been a pilot program to prepare, deploy, 

and support-with NSF and local funding-twenty-four Mathematics Specialists in elementary 

schools for two years each. Twelve Cohort I Mathematics Specialists started their school 

assignments at the beginning of the 2005-06 school year; twelve Cohort II Mathematics 

Specialists, with the 2007-08 school year. 

From its inception, the NSF-TPC grant has focused on identifying and taking into 

consideration the state and local policy climates that underlay the successful implementation of 

Mathematics Specialist programs across Virginia. The grant's project management team has 

included two policy associates who have analyzed policy, legislative, regulatory, and funding 

issues at the state and local levels, and also guided the team and the partner divisions in 

understanding the relationships between policymaking and establishing effective, sustainable 

Mathematics Specialist models. 
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In the fifty states, education policy is established and funded, to a greater or lesser extent, 

by the state legislative body. For Virginia, this body is the Virginia General Assembly, advised 

by the gubernatorially-appointed Virginia Board of Education. State public education policy is 

set by the legislatively-enacted Standards of Quality (SOQ) found in the Code of Virginia, the 

biennial budget's appropriation of elementary and secondary education funding based on the 

SOQ and various other legislation, such as laws regarding personnel, transportation, and health. 

Virginia's local school divisions are creations of the General Assembly and, in almost all 

instances, follow the political boundaries of counties, cities, and towns. The local school boards 

are given specific limited powers in the Virginia Constitution and are to be either popularly 

elected or appointed by the local elected governing body; that is, the county board of supervisors 

or the city ( or town) council. Local school boards carry out state education policy, and adopt 

congruent policies for employing instructional staff and addressing local priorities. The school 

board determines the school division budget, subject to the approval and appropriations of the 

local government. 

For the purposes of this article, policymakers are considered to be those state and local 

government legislators, elected officials, and local school board members who are empowered by 

law to set and, in some cases, fund education policy. Policy leaders include the superintendent 

and administration of local school divisions who are key influencers of the policies adopted or not 

adopted by the policymakers. Policy leaders initiate policy recommendations to the school board, 

analyze policy suggestions and directives, inform the school board's policy decisions, and carry 

out these decisions. In this same manner, at the state government level, the members of the 

Virginia Board of Education are seen as important policy leaders, while the Governor and 

General Assembly are seen as policymakers. 

While the terms policymakers and policy leaders are used more or less interchangeably in 

this article, sometimes, for simplicity, policymakers may refer to either. However, as described 

above, the makers and the leaders, while working closely together, differ markedly in terms of 

actual authority and responsibilities. 
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Support from Policymakers and Policy Leaders 
Throughout the five years of the NSF-TPC grant, state and local policymakers and policy 

leaders have strongly and consistently backed the preparation and support programs provided for 

the grant's elementary school Mathematics Specialists. School administrators have 

enthusiastically endorsed the in-school implementation model developed and used for the NSF

TPC grant. As this article will detail, the policymakers have funded as well as endorsed the 

program. 

This on-going support is rooted in two bases: 1) the direct positive experiences of school 

divisions employing Mathematics Specialists either in locally-developed programs or through 

participation in NSF Mathematics Specialist grants; and, 2) the convincing body of evidence 

which has emerged from grant-supported quantitative research. This research has determined 

that, over time, K-5 Mathematics Specialists contribute directly to raising the mathematics 

achievement of the student populations they serve. 

While this article draws on interviews and interactions with policymakers and policy 

leaders, it does not specifically address research findings. Let it be noted that the research 

conducted for this grant shows that overall, students in schools having elementary Mathematics 

Specialists in place for three years had statistically significant higher scores on the Virginia 

Standards of Learning mathematics assessments than did students in the control schools without 

such Specialists. 

At all levels of government, policymakers and policy leaders are, by necessity, financial 

realists. They know that funding constraints may understandably limit the expansion and/or 

retention of the numbers of Mathematics Specialists employed by local school boards as Virginia 

struggles during the current economic recession. Moreover, they are aware that funding shortfalls 

may determine how the role of a Mathematics Specialist develops within a school division or in a 

specific school. 

This article reports actions and interview statements from partner division policymakers 

and policy leaders. Also, it expresses the conclusion of policymakers and policy leaders that the 

key obstacle to employing Mathematics Specialists is not unwillingness but insufficient funds. 
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State Policymakers and Policy Leaders 

State policymakers and policy leaders quickly recognized the value of Mathematics 

Specialists in increasing student mathematics achievement by enhancing the quality of 

mathematics instruction. For more than six years, the General Assembly and the Virginia Board 

of Education have taken actions in support of Mathematics Specialists. These have included 

creating a Mathematics Specialist add-on endorsement, recommending requirements and 

appropriations for mandated K-8 Mathematics Specialists in public schools, providing funding in 

support of a third year of employment for Cohort I Mathematics Specialists, and amending the 

Virginia Standards of Quality to require specialized assistance for students evidencing problems 

in learning mathematics. Recall that the Standards of Quality are the sections of the Code of 

Virginia which govern public elementary and secondary education, and drive its funding. It 

should be noted, not surprisingly, that the actual funding formulas are a source of continuing 

controversy between the Commonwealth and the local governments. 

Endorsement - As a result of amendments recommended by the Virginia Board of Education to 

the Virginia Licensure Regulations for School Personnel, an add-on endorsement for a 

Mathematics Specialist for elementary and middle school education became effective in 

September 2007. In 2005, the General Assembly had requested the Board to consider such an 

endorsement in its licensure regulations revision in order to improve student achievement m 

mathematics. As of March 2010, 229 individuals had achieved this endorsement. 

Legislative Mathematics Education Study - During its 2006 session, the General Assembly 

commended several Virginia school boards for both recognizing the value of Mathematics 

Specialists and taking the initiative to employ them to help elevate both teacher and student 

performance. In that same session, the legislature created the Joint Subcommittee Studying 

Science, Math and Technology Education, stating in its resolution that increased emphasis on 

science, mathematics, and technology education is necessary at the elementary and secondary 

level. In 2007, this Joint Subcommittee introduced legislation for a pilot program providing 

grants to six school divisions to hire Mathematics Specialists. The proposed legislation was not 

enacted. 

Mathematics Specialist Position Requirement - In 2006, the Virginia Board of Education 

recommended that the Commonwealth of Virginia include requirements and appropriations for 

K-8 Mathematics Specialists in the public schools through the Standards of Quality which drive 

funding for many instructional positions. Enabling legislation was introduced during the 2007 
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legislative session to provide one, full-time Mathematics Specialist for each 1,000 students in 

grades K-8. Its failure may be largely attributed to its very large costs. The FYl0 financial 

impact estimate of the state share of the cost for K-8 Mathematics Specialists at the proposed 

ratio was $28.6 million. The local share, also based on the controversial state funding 

methodology, was $22.8 million. 

Mathematics Specialist Grant Support - For FY07, the General Assembly did provide one-time 

funding for salary support for some NSF-TPC grant-supported Mathematics Specialists so that an 

additional third year of research data could be obtained. The NSF grant had provided $25,000 per 

year to the partner school divisions for each of the Cohort I Specialists employed during 2005-06 

and 2006-07 only. The General Assembly provided $12,500 to the partner divisions per 

Specialist employed during 2007-08 and the partner divisions provided the additional funding for 

each of the twelve Specialists. This third year of data proved to be key to the positive findings of 

the quantitative research component of the grant. 

Standards of Quality Amendment - At the request of the Virginia Board of Education, the 2007 

General Assembly amended the Standards of Quality to require school divisions to identify and 

assist students having difficulty with mathematics. Previously, the Standards of Quality had 

required such interventions only for students having difficulty with reading. This amendment 

codifies the legislative intent to improve student mathematics achievement. 

Flexibility Budget Amendment - In advance of the termination of the NSF-TPC grant's funding 

with the 2008-09 school year, the Virginia Board of Education submitted a budget amendment to 

the Governor to authorize local school divisions to draw from certain existing funding sources, 

which had been established for different but complementary educational purposes, to employ 

Mathematics Specialists. The Governor and the 2009 General Assembly accepted this 

amendment, a token of their continued support for Mathematics Specialists during a gloomy 

budget cycle. Local school divisions have used this authority. 

Local Policymakers and Policy Leaders 

Local policymakers and policy leaders are convinced and confident about the value of the 

in-school coaching model that Mathematics Specialists bring to improving mathematics 

achievement. These widespread views were particularly evidenced at three points during the 

NSF-TPC grant's course when the two policy associates interviewed key local policy leaders and 
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policymakers regarding their perceptions and intentions regarding the employment of 

Mathematics Specialists. 

During July and August 2006, the policy associates interviewed the principals of the 

schools in which the first cohort of twelve Specialists had begun their assignments in September 

2005. During the summer of 2008, they interviewed the principals of the schools in which the 

second cohort of twelve Specialists had begun in September 2007. In the intervening year, they 

interviewed division policy leaders, including division superintendents, directors of instruction, 

and a school board member. 

The thirty-six individuals interviewed were similar in their views of the effectiveness of 

the Mathematics Specialists and the effectiveness of the in-school model. Principals quickly 

homed in on the Specialists' value in improving inexperienced and weak classroom teachers. In 

addition, the Specialists were directed to teachers with a range of diverse learners because the 

principals recognized their ability to help with accelerated as well as special education. Division

level policy leaders appreciated the rigorous mathematics content courses taken by Specialists, 

the focus on classroom teacher education, and the daily imbedded on-site assistance; they saw 

these as essential components of the model. One noted that resident expertise was a big positive 

for teachers, for instruction, and ultimately, for the students. 

Retention - Beyond the voluminous anecdotal information, those interviewed offered the fact 

that all five partner divisions retained all Mathematics Specialists beyond the two years of NSF 

grant support for each Specialist is proof of the division policymakers' belief in the efficacy of 

Mathematics Specialists. Despite downward-trending budgets, the partner divisions have 

provided all funding to continue Cohort I Specialists for the fourth and fifth years and Cohort II 

Specialists for the third year. In all years, no matter the existence or level of grant or state 

assistance, the divisions have voluntarily borne a significant part of each Specialist's salary and 

benefits. 

For the 2009-2010 school year, twenty-two of the twenty-four original TPC Specialists 

continued to be employed by their partner divisions as Mathematics Specialists, despite the 

cessation of all grant-related funding. One Specialist retired and one moved to a non

participating division for employment in a school mathematics instruction supervisory role. 
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Grant Requirements Fulfilled - The five partner school divisions fulfilled all requirements under 

the NSF-TPC research and policy study over its five years. In addition to employing the 

Specialists for the required periods, the divisions provided access to schools, staff, and data. The 

divisions were agreeable to numerous visitors, technology requirements for transmitting research 

data, and release time for Mathematics Specialists and other staff. The mathematics supervisors 

in each partner division were able to devote many hours to supporting their Specialists and were 

of great value during the grant period. The building principals were gracious, persistent, and 

innovative in adapting their faculties and communities to the Specialists' presence, as well as in 

guiding the Specialists in their new placements. 

Participation in New NSF Mathematics Specialist Grants - Nineteen local school divisions are 

participating in one or both of two new NSF-supported Mathematics Specialist research studies 

awarded in 2009. One division already participated in the NSF-TPC grant. 

Sixteen divisions are involved in the Middle School project which has as a prime goal 

preparing a group of fifty exemplary middle school teachers (grades 6-8) with a profound 

understanding of mathematics studied in the middle grades in order to provide intellectual 

leadership as school-based Mathematics Specialists. All NSF-TPC grant divisions had expressed 

a need for help at the middle school level. 

Thirteen divisions arc involved in the Rural K-5 Schools project which is dedicated to 

extending Mathematics Specialists to the rural settings where the majority of Virginia's divisions 

arc located. This grant addresses the challenges of delivering course content via distance learning 

and providing induction and on-the-job support to beginning Specialists in divisions with few or 

no mathematics support personnel. 

Numerous Other Local Mathematics Specialist Programs - More than forty local school 

divisions in Virginia, in addition to the five TPC partner divisions, currently employ Mathematics 

Specialists who fit the criterion of specially-trained teachers released to work with other teachers. 

This number is approximately 30% of the Commonwealth's school divisions. 

Some of these local programs have existed for several years and pioneered the use of 

Mathematics Specialists in elementary schools. They all demonstrate a variety of position 

responsibilities, support models and preparation programs, and have been a great source of ideas 
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and experiences for the NSF-TPC grant model, as well as the Rural K-5 Schools and Middle 

School research projects now underway. 

Funding-The Key Obstacle 

Policymakers and policy leaders acknowledge that the key obstacle to the employment 

of Mathematics Specialists is insufficient state and local funding. Budget pressures that emerged 

a few years ago have worsened, not abated. Revenues are down, spending is down, and new or 

expanded instructional programs have become rare. 

The fact is that Virginia's biennium budget for FYl l and FY12 slashes general operating 

funds to FY06 levels. Almost all state funding for K-12 public education comes from the state's 

General Fund. Moreover, the adopted K-12 public education budget for FYll is nearly three

quarters of a billion dollars ($773 million) below the FYlO base adopted in 2009. 

Another funding impediment which makes local school division employment of 

Mathematics Specialists challenging at this time stems from the Commonwealth's funding 

methodology for mandated versus non-mandated instructional positions. Mandated positions are 

those that are required by the Standards of Quality. Local school divisions are obligated to share 

the mandated costs with the Commonwealth on the basis of their ability to pay, as determined by 

a complex and controversial formula. 

The Standards of Quality (SOQ) require local school divisions to employ elementary 

classroom teachers at legislatively-established ratios; but, the SOQ does not require local school 

divisions to employ Mathematics Specialists. Accordingly, since required instructional costs arc 

shared between the Commonwealth and the local divisions, the Commonwealth shares the cost of 

employing mandated classroom teachers, but not the costs of non-mandated Mathematics 

Specialists. Financially-strapped local school divisions are less likely to create new instructional 

positions in the absence of a state requirement and funding support to do so. Moreover, they are 

more likely to discontinue instructional positions for which the costs are entirely locally borne. 
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Conclusion 

While the current financial situation is difficult, the future of Mathematics Specialists is 

not dark. Mathematics Specialist programs are established in Virginia, the economy is expected 

to eventually improve, and federal policy will continue to stimulate state and local governments 

to raise mathematics achievement. 

The more than forty Mathematics Specialist programs in Virginia school divisions, the 

growing number of endorsed K-8 Mathematics Specialists, the several established preparation 

programs at institutions of higher learning throughout the Commonwealth, and the nineteen 

divisions participating in the new grant programs have created a synergy in which Mathematics 

Specialists will continue to thrive. Mathematics Specialists are now widely known and well 

regarded in the public schools and their communities. 

The National Science Foundation's award to Virginia of three Mathematics Specialist 

grants has not only encouraged the building of a state-wide infrastructure, but also enabled a 

growing number of school divisions to establish footholds for growth. The Rural K-5 and Middle 

School projects recently funded are helping to sustain the drive for program expansion and 

improvement. 

The federal No Child Left Behind legislation has unarguably motivated public 

elementary and secondary education to examine instructional delivery systems, scrutinize teacher 

performance and preparation, and use assessment data to focus instruction and intervention. The 

reauthorization of the Elementary Education and Secondary Education Act with its promised 

focus on readiness for college and career will continue to drive the quest for strong mathematics 

achievement throughout the country. 
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