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This article includes professional development topics for middle school mathematics and science 

teachers from two week-long Urban Teacher Institutes. These Institutes were held at J. Sargeant 

Reynolds Community College (JSRCC) and its partner institution, Virginia Commonwealth University 

(VCU), during the summers of 2007 and 2008, and were supported by a grant obtained by Dr. Harriet 

Morrison (JSRCC). Co-author Dr. Dewey Taylor directed the 2007 workshop, and both authors served 

as faculty leaders in both workshops. The workshops focused on teaching in an urban environment and 

·'community mapping" (understanding the details of a certain locale to make the teacher more 

knowledgeable about the environments of both the students and the schools). The community mapping 

aspect of the workshops was led by Dr. Shirley Key of the University of Memphis. They featured 

content teaching and applications led by VCU faculty in mathematics, physics, forensics, engineering, 

mathematics education, and science education. This article focuses on the mathematics professional 

development strand in the workshop which featured conceptual learning with graphing calculator 

support as an alternative to the memorization of formulas. 

Mathematics Concepts versus Memorization of Formulas 

The discovery activities are outlined in the following sections. These activities were 

investigated either in the teacher workshop sessions or in the plenary presentations of the Urban 

Teacher Institute. 

Find the Formula for the Area of an Ellipse and Never Forget It! 

x2 y2 
Consider the ellipse - 2 + 2 = 1 with x-intercepts ± a and y-intercepts + b 

a b 
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2 2 b2 2 2b2 a y + x = a 

2 2 2b2 b2 2 a y = a - x 

2 

2 b ( 2 2) y = 2 a -x 
a 

b .J 2 2 y = ±-a -x 
a 

(O,b) 

Using the following integral from calculus, we can compute the area, 

Ia 
4b 2 2 

A=- ~a -xdx. 
a o 

Let's examine a special case with a= 3, b = 2 

3 
A=~ f ~9-x2dx 

3 Jo 
Since many teachers will either not have studied calculus or have forgotten it, we use the 

TI-83 calculator to demonstrate and run several programs which calculate the integral which, 

when multiplied by 4, gives the area. Setting the window to "zoom decimal," we first run the 

program "Riemann" to show the rectangular area which will approximate the actual areas. For 

this visual, we use n = 10 subdivisions to distinctly see the rectangles. Now, we run a program 
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"Integral" to get a very close area approximation with n = 500 divisions. This program will run 

in slightly more than a minute and will produce the area approximation of 18.84946 when the 

answer is multiplied by 4. We now ask the teachers to guess whether or not Jr is a factor of the 

answer for the area. Most will guess "yes." So, we now divide the answer by Jr and obtain 

5.9999722 which we interpret approximately as an area of 6. The teachers now guess that 6 is the 

product of the length of two semi axes, namely 6 = 3 x 2 . Now, the area in the given case can be 

guessed to be A= 7r x 3 x 2 and in the general case to be A= 1rab. We now note that this 

generalization of the area is 1ra2 of the circle which results when a = bis the radius of the 

circle. 

Arithmetic Sum Based on Concept of Average 

We motivate this concept by asking: How much money would you make if you averaged 

$50 per week for four weeks? Most teachers know that the result is $50 x 4 weeks which equals 

$200. We recall that the average per week can represent each actual amount per week which 

could, for example, have been $45, $55, $51, and $49, respectively. Next, we pose the following 

problems and discuss the solutions. 

• Find the average of 2, 4, 9. 

o The average is 1 ½ = 5 which is the sum of the numbers divided by the number 

of terms, which defines "average." 

• Use the average to find the sum of the three numbers. 

o Since the average 5 can represent each of the 3 terms, the solution is 5 x 3 = 15. 

• Find the average of 3, 5, 7, 9, 11, 13. 

o The average is 8; namely, the sum of the terms which is 48 divided by the 

number of terms which is 6. We now observe that the sum is "arithmetic" which 
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means that each successive term is obtained by adding a constant difference (in 

this case 2) to the preceding term. We note that the average can be found in these 

arithmetic sums by averaging the first and last term, a fact which will be proved 

below. 

• Use the average to find the sum of the six numbers. 

• 

o The average is (3 + 13) + 2. Since the number of terms is 6, the sum is 

(3+13)+2x6 = 48. 

n(n+I) 
Prove that the sumS of I +2+3+ .. . +nis given byS =--- . 

2 

S= 1+ 2 + 3 + ... +n 
PROOF: 

S = n +(n-I)+n-2)+ ... +I 

By adding the series written forward and backward, we obtain each successive 

term for 2S is n+ 1 so that 

2S = ( n + I) + ( n +I) + n + I)+ ... + n + I and S = n( n +I) . 
2 

nterms 

General arithmetic series may have the following form of: 
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Adding, we obtain: 

n terms 

Many texts use the form n ( S1 + S2 ) instead of 
2 

( SI +Sn) h' h d ti · · f h ti l d I' · n --'-----'-- w 1c ten s to orce memonzat10n o t e ormu a as oppose to conceptua 1zmg 
2 

the use of average. 

Dividing by n, we obtain S - 8 1 + 8 n 
n 2 

Since S is the definition of average, 
n 

indeed the average of all the terms is the average of the first and last terms. 

So, S = (number of terms) x (avg. term) where for arithmetic series: 

A VG. TERM= A VG. OF FIRST AND LAST TERMS. 

NOTE: The average is also the average of the second and next-to-last term, etc. 

AVERAGE= (S1 +k)+(Sn -k) = S1 +Sn 
2 2 

However, this rule tends to be less useful since posed questions generally are stated so that the 

first and last terms are known. 

We now pose one final problem: Find the sum of S = 5 + 10 + 15 + 20 + ... + 100. 

The average term is 105 + 2 which implies thatS = (105 + 2)x 20 = 1050. 
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Concept of the Size of an Acre 

Nearly every parcel of land bought or sold in this country is measured in acres. However, 

very few people, including college graduates, have a concept of the size of an acre. Rather than 

"looking up" the definition in terms of square feet or square yards, neither of which provides 

much enlightenment of the size concept, we propose to relate the size to that of a football field. 

We first have the teachers guess the relative size of an acre by comparison with standard sizes of 

a tennis court, a basketball court, a soccer field, or a football field. We settle on a comparison 

with the size of a football field. Nearly everyone will know that a football field is I 00 yards long. 

Few (a coach or two) will know that the football field is 53! yards wide. We use the calculator 
3 

to calculate the football field area to be A 1 = 5330 square yards. Using the definition that the 

A 
area A 2 of an area is 4,840 square yards, we calculate the ratio - 2- = 1.10 (approximately). 

A1 

Thus, a football field is approximately one and one tenth acres so that the size of a football field, 

not counting the end zones, is a reasonable approximation of an acre. 

We now note that farmers approximate an area by "stepping oft" seventy yards square. 

This measure of seventy yards square yields 4,900 square yards to approximate an acre. The ratio 

of 4,900 square yards to 4,840 square yards yields 1.01 acres, notably accurate to .01. Even if 

you forget the "farmers' measure," the football field measure will provide a good comparison. 

Rational Numbers: Converting Repeating Decimals to Fractions 

Demonstrating that converting terminating and repeating decimals to their rational 

number fraction representation will enable middle school mathematics teachers to recognize the 

equivalence of the definition of rational numbers in either form, namely a where a and b are 
b 

integers and b -:/:. 0 , or a terminating or repeating decimal. 
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1 
Of course, a fraction like - can be divided out to yield .25, and conversely, .25 can be 

4 

25 1 2 
written as -- and reduced to - . Also, a number like - can be divided out to yield 

100 4 7 

.295714295714in a repeating decimal form. 

However, converting a repeating decimal to a fraction is more difficult. While a 

repeating decimal like .3535 can be represented as a geometric series 

S = .35 + .0035 + .000035 + ... ,and summed by the formula 

3/(i 3/(i 
S = _ ½O = 9% OO = 3 J{ 0O' the student must memorize the formula S = I ~ where a 

1 100 100 r 

35 1 
is the first term -- and r is the common ratio -- . We prefer that the student become familiar 

100 100 
with the concept of subtracting the "infinite tails" of decimals as a general way of making these 

conversions as follows: Let x = .3 53 5, so that 1 00x = 3 5 .3 5 . Then, subtracting 

lOOx = 35.35 

- X = 00.35 

99x = 35 

35 
and x=-. 

99 

The student will quickly learn to adapt this process of creating and subtracting off "infinite tails" 

of other such repeating decimals in an example like the following: 

X = .123 

so that l000x = 123.123. Then, subtracting: 
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lO00x = 123.123 

X = 000.123 

999x = 123 

which implies that X = -- = -- . 
999 333 

One final example should provide ample concept reinforcement: Let X = 6.321515. 

Then, 1 00x = 632.1515. Subtracting gives: 

lO000x = 63215.15 

- 100x=632.1515 

9900x = 62583 

62583 
Thus, x=---

9900 

Of course, this technique can be used to derive the aforementioned formula for the sum of a 

geometric series as follows: 

Thus, 

S 2 3 n = a + ar + ar + ar + ... + ar + ... 

rS= 2 3 n ar + ar + ar + ... + ar + ... 

a 
S-rS =(1-r)S =a so thats=--. 

1-r 
Once the concept has been mastered, teachers can work in groups to create their own examples. 

The Tl-83 graphing calculator (or other comparable calculator) can be used to check the answers. 

Setting the "mode key" to the maximum nine decimal places and using the "math key" to convert 

fractions to decimals and vice versa can provide an ample check. 
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Solving Systems of Linear Equations 

Systems of two linear equations and two unknowns, that have exactly one solution, are 

taught in eighth grade mathematics and Algebra I. Systems of two linear equations and two 

unknowns that have either no solution or infinitely many solutions are not discussed. In this 

workshop, we wanted to explore all the different cardinalities of solution sets to systems of two 

linear equations and two unknowns, and then generalize these results to larger systems with more 

than two unknowns. In addition, methods to solve larger systems of linear equations by hand 

using techniques from linear algebra, as well as how to solve systems on the graphing calculator, 

were discussed. 

To motivate this topic, we started with an activity where we asked the teachers the 

following questions: Does every system of two linear equations and two unknowns have a 

solution? Is it possible to find a system of two linear equations and two unknowns that has 

exactly two solutions? Most teachers guessed the correct answer to the first question, but not the 

second. The teachers were asked to come up with different graphs to try to illustrate these 

questions and make conjectures about how many solutions a system of linear equations can have. 

Even though the teachers were unable to draw two lines that intersected exactly twice, some of 

them were still hesitant to say that such a system of linear equations does not exist. 

We followed up this activity with a worksheet containing three systems of two linear 

equations with two unknowns, one with exactly one solution, one with no solution, and one with 

infinitely many solutions. The teachers were asked to solve all three systems using algebra only. 

Even though the teachers were able to work down to some "end result," they were not able to 

interpret their answers correctly. For example, ending up with an equality of 2 = 2 or O = 2 did 

not make sense. 

In an effort to get the teachers to interpret their results on their own, we asked the 

teachers to graph each system of linear equations. Suddenly, everyone started to make sense of 

the answers that they had gotten algebraically. They were able to conjecture that every time a 

system of linear equations has no solution, one will always end up with an equality at the end that 

is mathematically absurd; i.e., 0 = 2. Similarly, the teachers were able to notice that if two 

equations differed by a nonzero scalar only, then they were in fact the same equation, giving the 

system infinitely many solutions. 



152 D. TAYLOR and R.W. FARLEY 

It is easy to remember that every system of linear equations has either exactly one 

solution, infinitely many solutions, or no solution by simply thinking about a system of two 

equations and two unknowns. Every pair of lines must either intersect in a point, be scalar 

multiples of each other (the same line), or be parallel, thus giving exactly one, infinitely many, or 

no solutions, respectively. 

After the teachers were comfortable with this, we moved to systems of three equations 

and three unknowns. We discussed the different cardinalities of possible solution sets thinking of 

the three planes modeled by configurations within the classroom. Referencing the planes 

containing two adjacent walls as plane A and plane B, respectively, and the plane containing the 

floor as plane C, we could see that planes A and C intersect in the baseline and planes B and C 

meet in another baseline, while planes A and C meet in the corner line. Now, we can see that 

these three lines meet in a point where the corner intersects the floor. So, a unique solution is 

possible. To illustrate the case where three planes intersect in a line, we swing the corner door 

ajar and let plane D be the plane containing the door. Then planes A, B, and D intersect in the 

corner line. We can also indicate a no solution possibility which occurs when two planes such as 

the ones containing the ceiling and the floor are parallel. Of course, all three equations might 

represent the same plane within which infinite solutions exist. Hence, we need no additional 

props other than the visualization within the room configuration to model the possible solutions 

for three linear equations in three unknowns. The teachers were again able to be convinced that 

every system of three equations and three unknowns was going to have either exactly one 

solution, infinitely many solutions, or no solution. The teachers were asked to solve the 

following system: 

Starting with z = 3 and using back substitution, we get 2y-21 = -l 7which implies 

that y =2. Finally, substituting both of these values into the first equation yields 

X + 2 + 6 = 9, hence X = I . 
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When asked to solve the system 

x+ y+2z =9 

2y+4y-3z = 1 

3x+6y-5z=0 

by hand, it was clear that some alternative methods would be necessary. 

153 

Since we wanted to be able to solve systems that involved any number of equations and 

unknowns, we introduced the teachers to matrices, Gaussian elimination, and row echelon (and 

reduced row echelon) form. After learning these ideas, the teachers were led to an understanding 

of how to use the three elementary row operations: 

l) Multiply a row through by a nonzero constant; 

2) Interchange two rows; and, 

3) Add a multiple of one row to another row. 

The teachers were asked to first solve a system of two equations and two unknowns using these 

three rules, and then solve the above system of three equations and three unknowns. This was 

enough to notice that the work involved is tedious and that the use of a graphing calculator would 

be handy. 

We used the TI-83 and TI-84 calculators for this lesson, but any comparable calculator 

could be used. After learning how to input matrices into the calculator, we used the REF and 

RREF commands under the MA TRIX menu to provide the output matrix in row echelon and 

reduced row echelon forms, respectively. When using RREF, one can read the solution for the 

system directly from the screen of the calculator for a system that has a unique solution. 

Similarly, systems that have no solution are easy to recognize as well. We need only look for a 

row in the output matrix that has all zeros except for the last entry. For example, to solve the 

system, we calculate 

x+ y+2z = 9 

2y+4y-3z=l 

3x+3y+ bz = 0 
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[ : : ~3 : Jrref[ ~ 
3 3 6 0 0 

0 5.5 

1 -3.5 0 

0 0 1 

The last line indicates that O = I which shows that this system has no solution, just the same as 

what happened in the smaller systems that the teachers are familiar with that have two equations 

and two unknowns. Finally, in the situation where the system has infinitely many solutions, the 

output matrix will have fewer nonzero rows (meaning nonzero in the reduced row echelon form 

of the coefficient matrix) than there are variables in the system, as illustrated in the system shown 

below: 

This system can be written now as 

x+y+2z=9 

2y+4y-3z=l 

( 
1 0 5.5 17.5] 

0 1 -3.5 -8.5 

X + 5.5z = 17.5 

y-3.5z = -8.5. 

Let z = t, where t is any real number. Then y = -8.5 + 3.5t and x = 17.5 - 5.5t. 

The use of the Gaussian elimination has the advantage of allowing one to solve any 

system of linear equations. Indeed, using the "inverse matrix method" for findings, as is taught 

for use on the Virginia SOL, is limited to systems that have a unique solution. 

As an application that could be used for a post-SOL activity, we studied traffic flow 

through an intersection. Given an intersection, we can set up a system of linear equations 

following the idea that the flow of cars into the intersection has to equal the flow of cars out of 

the intersection. The teachers can easily set up the system of linear equations, using the 

calculator to find the reduced row echelon form. Consider the following network of streets. 
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100 

200 

100 

200 

Starting at the upper left and moving counterclockwise, the system of linear equations 

that corresponds to this diagram is: 

X1 + 100 = X3 X1 - X3 = -100 

X3 = X4 +200 X3 -X4 = 200 
~ 

x4 =x2 +100 -x2 +x4 =100 

X2 +200 = X1 X1 -X2 = 200 

The calculator quickly produces the reduced row echelon form of the matrix for this system as: 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

-1 100 

-1 -100 

-1 200 

0 0 
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The solution of the system can now be written as 

x4 = t, where t is any real number 

X3 = 200+t 

X2 = -lOO+t 

X1 = lOO+t. 

From this, we can see that the flow of traffic on the street labeled x4 controls the flow of traffic 

in the entire network. For example, if there are l 00 vehicles per hour moving along the street 

labeled x4 , then the flow of traffic on the remaining streets would be x1 = 200, x2 = 0, and 

x3 = 300 vehicles per hour. This example also offers the opportunity for the workshop teachers 

to observe that in this situation, t must be a "whole number" since it represents a number of cars. 

Conclusion 

Although all of the topics in this paper are not new to teachers, our purpose was to get the 

teachers to think about math that they may have already known in a slightly different way. 

Learning how to generalize and think about special cases is an important tool in mathematics and 

is often difficult for teachers to do. 
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