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The Kaprekar Routine is a famous mathematical procedure involving the digits of a positive 

integer. This paper offers natural generalizations of the routine, states and proves related results. 

and presents many open problems that arc suitable for mathematical research at the underhrraduate 

level. In the process. we shed light on some interesting facts about digit games. 

Introduction 

Undergraduate senior research is a typical capstone experience. Additionally, it is 

usually an integral part of the assessment cycle of any undergraduate Mathematics 

curriculum. The Supporting Assessment of Undergraduate Mathematics (SAUM) initiative of 

the Mathematical Association of America (MAA) is an invaluable resource for mathematics 

departments looking for guidance in this regard. Of course, there is great variability in the 

degree to which departments make this requirement comprehensive. Furthermore, it is often 

difficult to find good and reasonable problems suitable for undergraduate research. These 

problems need to be clearly posed, and it must be easy to generate useful examples. Most of 

all, they must be solvable (in a semester or a year). There is a body of problems that satisfy 

the above criteria in an area of number theory that we will call "digit games." These are 

problems that involve the properties of some arithmetical function or manipulation of the 

digits of a whole number. In studying them, students are afforded the opportunity to 

experience many of the important aspects of mathematical research: 

• Read and Understand the Problem - These problems are typically comprehensible with a 

knowledge of arithmetic and exponents; 

• Pose Problems - Students are given a chance to pose their own problems either by 

extending known results to a more general setting or solving an open problem in a special 

case; and, 
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• Learn from Empirical Data - It is easy to generate many examples using a computer or 

calculator that students can subsequently use to formulate conjectures. 

Elizabeth N. Chaille's senior thesis, Kaprekar Type Routines For Arbitrary Bases is a 

wonderful case study of just this type of exploration [ 1]. Many of these problems have well

known names with rich histories. The following is a short list of classes of integers defined 

by special properties involving their digits: 

• Narcissistic Numbers - An n -digit number is said to be n -narcissistic if it is equal 

to the sum of the nth power of its digits ( e.g., 153 = 13 + 53 + 33 ). 

• Niven ( n -Harshad) Numbers - A positive integer is an n -Harshad (or Niven) 

number if it is divisible by the sum of its digits in base n ~ 2 (examples: 

I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, ... are 10-Harshad numbers). 

• Vampire Numbers - A number v is said to be a vampire number if v has an even 

number n of digits and v = ab where a and b are both f -digit numbers and made 

up of the original digits of v in any order. Pairs of trailing zeros are not allowed 

( examples: 1260, 1395, 1435, ... ) 

This paper is motivated by a digit game called the Kaprekar Routine. In 1949, the 

Indian mathematician D. R. Kaprekar discovered a procedure that, when applied to any 

positive 4-digit integer, not all of whose digits are the same, converges to the fixed point 6174 

in at most seven iterations [2-3]. Now known as the "Kaprekar Routine," the procedure is 

described below. 

1) Pick any 4-digit (base 10) number, not all of whose digits are the same. 

2) Rearrange the digits in decreasing order to obtain a new 4-digit number B. 

3) Rearrange the digits in increasing order to obtain a new 4-digit number A . 

4) Find the difference B - A . 

5) Repeat the process with B-A with leading zeros added when necessary. 

The first questions a student might ask are: 1) what is special about the three or four 

digits? and, 2) what is special about base 1 0? We can describe the Kaprekar Routine more 

generally as follows: for any positive m - digit integer N in base r, not all of whose digits 

are the same, arrange its digits in descending order yielding the integer N" and ascending 
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order yielding the integer N 0 , treating the results as m - digit integers by adding leading 

zeros if necessary. Now continue to perform the above routine on the result of the difference 

It is well known that when applied to decadic (base 10) 3-digit integers, the Kaprekar 

Routine converges to the unique fixed point 495 in at most six iterations. In fact, Klaus and 

Seok showed exactly what happens using the Kaprekar Routine on any 3-digit integer in an 

arbitrary base in their paper entitled, "The Determination ofKaprekar Convergence and Loop 

Convergence of All Three-Digit Numbers" [4-5]. While variations to the Kaprekar Routine 

have been studied in the past, we extend the results found in Klaus and Seok's paper to 

fourteen other natural variations of the Kaprekar Routine for 3-digit integers in an arbitrary 

base [4, 6]. We shall see that two such variations yield analogous results to the Kaprekar 

Routine and interestingly, all three routines share a nice property that the other twelve 

routines fail to possess. In a later section, we have provided different and less complicated 

proofs of the results on the Classical Kaprekar Routine found in Klaus and Seok' s paper [ 4]. 

Not surprisingly, the Kaprekar Routine has long been a source of open problems. We 

continue this tradition by providing several problems, together with a few simple proofs for 

possible exploration by undergraduate students. 

Terminology and Notation 

Let abc be a 3-digit positive integer in base r and without loss of generality assume 

that a :2'. h :2'. c . Further assume that a, b, c are not all the same. Thus, a > c for otherwise, 

a=h=c. 

Let S = ( a, /3), where a and /3 are distinct permutations of the set {I, 2, 3 /. A 

Kaprekar Routine of Type S is one in which at each stage the digits of a positive integer are 

rearranged in the order a and /3, respectively, and the integer corresponding to the 

rearrangement /3 is subtracted from the integer corresponding to the rearrangement a , 

adding leading zeros when necessary. For some routines, it is possible that this subtraction 

will produce a negative result. In such cases, we will use the absolute value of the result 

when reordering the integer to use in the next iteration. For example, in the classical routine, 

each iterate is obtained by reordering the digits in descending order minus the integer 

obtained by reordering the digits in ascending order, so the classical routine is of Type 

(123,321). Note that our notation implies that I corresponds to the digit a, 2 corresponds to 

the digit b , and 3 corresponds to the digit c. 
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There are fifteen possible Kaprekar type routines for 3-digit integers. Table I shows 

the routines, as well as the result of the first iteration for each of them. It is easy to see that 

for m -digit integers, there are [l + 2 + 3 + · · · + (m!-1)] possible Kaprekar type routines. 

Observe that the routine of Type (123,321) is the Classical Kaprekar Routine. For a given 

positive integer m , base r and subtraction routine A , a positive m - digit integer K in base 

r is called the m-digit, r-adic Kaprekar constant of" Type A if all m -digit integers, not all of 

whose digits are the same, in base r converge to K after a finite number of iterations of 

routine A . Thus, 495 is the 3-digit, decadic Kaprekar constant of Type (123,321) while 

6174 is the 4-digit, decadic Kaprekar constant of Type (1234, 4321 ). In fact, it is known that 

in the decadic case, 495 and 6174 are the only Kaprekar constants [7-8]. When referring to 

the Classical Kaprekar Routine, we will omit mention of its type. Here, we will study the 

Kaprekar type routines on all positive, 3-digit integers, and will denote the integer ahc by 

the ordered triple (a,h,c). 

Table 1 
All Possible Kaprekar Type Routines and the Result of the First Iteration 

Type Subtraction Order Result After First Iteration 
(123,132) abc-acb (b-c)r-(b-c) 

(123,213) abc-bac (a-b)r 2 -(a-b)r 

(] 23,231) abc-bca (a-b)r 2 + (b-c)r-(a-c) 

(123,312) abc-cab (a-c)r 2 -(a-b)r -(h-c) 

(123,321) abc- cba (Classical) (a-c)r 2 -(a-c) 

(132,213) acb-bac (a-b)r 2 -(a-c)r+(h-c) 

(l 32,231) acb-bca (a-h)r 2 -(a-h) 

(132,312) ach-cab (a-c)r 2 -(a-c)r 

(132,321) ach-cba (a-c)r 2 -(h-c)r -(a-b) 

(213,231) bac-bca (a-c)r-(a-c) 

(213,312) bac-cah (b-c)r 2 -(b-c) 

(213,321) bac-cba (b-c)r 2 +(a-h)r-(a-c) 

(231,312) hca-cab (h-c)r 2 -(a-c)r+(a-b) 

(231,321) bca-cba (h-c)r 2 -(h-c)r 

(312,321) cab-cba (a-b)r-(a-b) 
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Routines With Kaprekar Constants 

It is easy to see that when applying a Kaprekar type routine to a positive 3-digit 

integer in a fixed base r, there are only three possible outcomes: the routine converges to O , 

a non-trivial fixed point, or a cycle. The routines that are especially interesting are those for 

which Kaprekar constants exist. 

Type (132,312) Routine 

Theorem 1. If r > 1 is an even integer, then all positive 3-digit integers in base r, not all of 

whose digits are equal, converge to the unique fixed point given by (';2 ,f,0) in at most 

(f + I) iterations of the Kaprekar Routine of Type (132,312). 

Proof. Let abc be a positive 3-digit integer in base r. Without loss of generality, assume 

that a?: b?: c with a > c . According to Table I, the result of the first iteration of the 

KaprekarRoutineofType (132,312) is (a-c)(r 2 -r). Wemayalsoexpresstheresultof 

the first iteration as the triple (a - c -1, r-a + c, 0). Since a> c, the possible values of 

a - c are I, 2, 3, ... , r -1. Therefore, the possible values of the triples are 

(0, r -1, 0), (I, r -2, 0)- · ·, (r -1, 0, 0). We will show that each of the first iterates converge 

to (';2 ,f,0) in at most (f+l) iterations by calculating the sequence of iterates for each 

possibility. Table 2 shows these results. 

For O::;; n::;; f, we have r - n?: n. Hence, it is easy to check that, in this situation, if 

a - c = n , the first iteration of the Type (132,312) routine yields ( n -1, r - n, 0) . The next 

iterate is always (r- n -1, n, 0). In general, for k > 1 the (k + It iterate is found by 

reordering the triple (r -[k + n - I], k + n - 2, 0) and subtracting to obtain 

(r-[k + n-1],0,k + n-2)-(0,r-[k + n-I],k + n-2) = (r-[k + n],k +n-1,0). 

This continues until 

r - [ k + n - I] = ';2 

and 

k+n-2= .!:... 
2 

which occurs, for the first time, when k = f + 2 - n. Note that this value of k 1s a 

solution to the previous system of equations. 



148 K. PETERSON and II. PULAPAKA 

Table 2 
Se quences o fl terates a ter ype 

' 
; f kT (132 312) I terat10ns or r E en V 

n\k 1 2 3 ... f+ 1 

I (0,r-1,0) (r-2,1,0) (r-3,2,0) ... ( .cl .L 0) 
2 ' 2 ' 

2 (l,r-2,0) (r-3,2,0) ... (.!:=I .L 0) 
2 '2' 

.L ( .cl .L 0) 
2 2 ' 2 ' 

r-2 (r-2, 1,0) (r-3,2,0) ... cr-2 .L 0) 
2 '2' 

r-1 (r-1,0,0) (r-2,1,0) (r-3,2,0) ... ( .cl .L 0) 
2 '2' 

Note the symmetry in the cases (f+l),(-§-+2),···,(r-1) and l,2,···(f-1). Let 

f < m s r -1 ; it is clear that in this case we have m 2: r - m . If we let a - c = m , then the 

second iteration of the Type (132,312) routine yields (m-1,r-m,0). Letting 

n=r-m+I, we have 0<nSf. Solving form, we find that the triple (m-I,r-m,0) 

becomes (r- n, n -1, 0) one of the second iterates already listed. Hence, in every case, the 

iterates must converge to ( r;2 , f, 0) . Thus, substituting n = r - m + I in the expression 

k = f + 1- n , we see that the number of iterations required in this case is given by 

k=m+l-f. 

Finally, we show that ( r;2 , f, 0) is a fixed point under the Kaprekar Routine of Type 

(132,312). PerformingaType (132,312) iterationon (r;2 ,f,0) gives 

(!_ 0 r - 2) _ (0 !_ r - 2) = ( r - 2 !:.. 0). 
2'' 2 '2' 2 2 '2' 

This completes the proof. ,:,. 

Example 1. For r = 14 (i.e., base 14), the integer (3,4, 7) converges to the Kaprekar type 

constant ( 6, 7, 0) in at most 1; + 1 = 8 iterations of Type (132,312). In fact, we see that 

convergence occurs m exactly five iterations: 
(3,4, 7) ~ (3, 10,0) ~ (9,4, 0) ~ (8,5,0) ~ (7, 6, 0) ~ (6, 7,0). 

Corollary 1. Let c( 132.312 J be the smallest number of iterations necessary for a three-digit 

integer in an even baser to converge to (f,0,,.;2 )-(0,f,,.;2 )=(r;2 ,f,0), the Kaprekar 

constant of Type (132,312), then 
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C = ( J:\2.312) 

r 
-+2-(a-c) 
2 

r 
(a-c)+l--

2 

"f r 1 (a-c)< 2, 

r 
if(a-c)= 2, 

.f r 
1 (a-c)>-. 

2 
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Theorem 2. If r > 1 is an odd integer, then all positive 3-digit integers in base r, not all of 

whose digits are equal, converge to an element of the 2-cycle given by 

(cl cl O) ( r-3 L.±!. O) 
2'2' ~ 2'2' in at most L±l 

2 
iterations of the Kaprekar Routine of Type 

(132,312). 

Proof. The beginning of this proof is identical to the proof of Theorem 1. In fact, for 

0 ::::: n ::::: f, we also have the k'" iteration, for k > 1 to be ( r - [ k + n - I], k + n - 2, 0) where 

11 = a - c . As in Theorem 1, this continues until r - [ k + 11 - I] = ,.;-1 and k + n - 2 = ,.; 1 , 

which occurs at k = ,.;:i - n . The symmetry found in Theorem 1, for the cases with 

f < m ::::: r - 1 , is also the same. Here, we find the number of iterations required in this case 

by replacing n with r - m + I in the equation k = r;:i - n to obtain k = m - ,.;1 • 

Finally, we show that c-;1 'r;I '0) ~ c·;:i' r;I '0) is in fact a 2-cycle. Performing the 

Type ( I 32 312) routine on (cl cl 0) yields (L=l O cl) - (0 L=l cl) = (cl L.±1. 0) and 
' 2'2' 2''2 '2'2 2'2' 

now performing the Type (132,312) routine on ( L.::l L.±1. 0) 
2 ' 2 ' 

yields 

(cl 0 L.±1.) - (0 ,._, L.±1.) = (cl cl 0) This completes the proof. Table 3 illustrates what we 
2''2 '2'2 2'2'. 

have just shown. "" 
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Table 3 
s equences o era es a ter ype 

' 
; f It t f k T (132 312) I terations or r Odd 

n\k 1 2 3 ... .!.±!. 
' 

I (0,r-1,0) (r - 2, 1, 0) (r-3,2,0) ... (cl cl 0) 
2 ' 2 ' 

2 (l,r-2,0) (r-3,2,0) ... (cl cl 0) 
2 ' 2 ' 

cl (cl cl 0) 
2 2 ' 2 ' 

r+I (cl cl 0) 2 2 ' 2 ' 

r-2 (r - 2, 1, 0) (r-3, 2,0) ... (cl cl 0) 
2 ' 2 ' 

r-1 (r-1,0,0) (r-2,1,0) (r-3,2,0) ... (cl cl 0) 
2 ' 2 ' 

Example 2. For r = 13, the integer (3,4, 7) converges to the 2-cycle (6,6,0) H (5, 7,0) in 

at most 1\+ 1 = 8 iterations of Type (132,312). In fact, we see that convergence occurs in 

exactly five iterations: (3, 4, 7) ~ (3, 9, 0) ~ (8, 4, 0) ~ (7, 5, 0) ~ (6, 6, 0) ~ (5, 7, 0). 

Corollary 2. Let /032 _3121 be the smallest number of iterations of Type (132,312) necessary 

for a three-digit integer m an odd base r to converge to an element of the 2-cycle 

(.ci. L±l. 0) H (cl cl 0) then 
2'2' 2'2'' 

l -(132.312) -

Type (213,231) Routine 

r+3 
---(a-c) 

2 

r-1 
(a-c)--

2 

r-1 
if ( a - C) < - 2-, 

r-1 
if (a-c)=-2-, 

r-1 
if (a-c)>--. 

2 

Theorem 3. If r > 1 is an even integer, then all positive 3-digit integers in base r, not all of 

whose digits are equal, converge to the unique fixed point given by ( 0, ,.22 , f) in at most 

( ~ + l) iterations of the Kaprekar Routine of Type (213,231). 

Proof. As expected, the proof is identical in strategy to that of Theorem 1. Once the reader 

generates the table of first iterates, the remainder of the proof follows from an easy emulation 
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of the arguments in Theorem 1. 
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Example 3. For r = 14, the integer ( 2, I I, 7) converges to the constant ( 0, 6, 7) in at most 

1} + 1 = 8 iterations of Type (213,231). In fact, we see that convergence occurs in exactly 

three iterations: ( 2, 11, 7) ---+ ( 0, 8, 5) -H 0, 7, 6) ---+ ( 0, 6, 7) . 

Corollary 3. Let crm.nl l be the smallest number of iterations of Type (213,231), necessary 

for a three-digit integer in an even base r to converge to the Kaprekar constant ( 0, ' 22 , -:I) . 
Then, 

r 
-+2-(a-c) 
2 

r 
(a-c)+l--

2 

. r 
1f (a-c)< 2, 

r 
if (a-c)= 2, 

if (a -c) > !__ 
2 

Theorem 4. If r > l is an odd integer, then all positive 3-digit integers in base r, not 

all of whose digits are equal, converge to an element of 2-cycle given by 

(0, ';1 , ';1) H (0, ';3 , 1 ; 1) in at most 1 ; 1 iterations of the Kaprekar Routine of Type 

(213, 23 I). 

Proof. This time, as expected, the proof is similar to that of Theorem 2. 

Example 4. For r = 13, the integer ( 2, 11, 7) converges to the 2-cycle ( 0, 6, 6) H ( 0, 5, 7) 

in at most 1~+ 1 = 7 iterations of Type (213,231). In fact, we see that convergence occurs in 

exactly four iterations: ( 2, 11, 7) ---+ ( 0, 8, 4) ---+ (0, 7, 5) ---+ ( 0, 6, 6) ---+ ( 0, 5, 7). 

Corollary 4. Let /213 _231 l be the smallest number of iterations of Type ( 213,231) necessary 

for a three-digit integer in an odd base r to converge to an element of the 2-cycle 

(0 cl .!21) H (0 cl cl) then 
' 2 ' 2 ' 2 ' 2 ' 



152 K. PETERSON and H. PULAPAKA 

l = 213.23 I) 

r+3 
---(a-c) 

2 

r-1 
(a-c)--

2 

. r-l 
tf(a-c)<-2-, 

r-1 
if (a-c) =-2-, 

. r-1 
1f (a-c) >--. 

2 

Type (123,321) Routine-Classical Kaprekar 

In this section, we present proofs of the main results in Klaus and Seok' s paper using 

the techniques already outlined [4]. 

Theorem 5. If r > I is an even integer, then all positive 3-digit integers in base r, not all of 

whose digits are equal, converge to the unique fixed point given by ( ,.22 , r - 1, f) in at most 

( f + 1) iterations of the Kaprekar Routine [ 4]. 

Proof. As before, the technique used to prove Theorem I works perfectly for the Classical 

Kaprekar Routine. From Table I, in this case, the possibilities for the first iterates when 

expressed as a triple are ( a - c -1, r - I, r - a+ c). Since a > c , the possible first iterates are 

(0,r-l,r-l),(l,r-l,r-2),··,(r-2,r-1,1). Table 4 ~hows the iterates. Notice that we 

can obtain this table by simply making the second digit r -1 and removing the trailing zero 

digit from the table found in Theorem l. 1::,_ 

Table 4 
Sequences of Iterates after k Classical Kaprekar; Iterations for r Even 

n\k I 2 3 ... f+l 
1 (0,r-l,r-1) (r-2,r-1,1) (r-3,r-1,2) ... (.cl -I.!:.) 2 , r , 2 

2 (1, r - I, r - 2) (r-3,r-1, 2) ... (.cl -l .!:.) 2 , r , 2 

L ( r-2 -1 L) 
2 2 , r , 2 

r-2 ( r - 2, r - l, 1) ( r - 3, r - l, 2) ... ( r-2 _ 1 .!:. ) 
2 , r , 2 

r-1 (r-l,r-1,0) (r-2,r-l,l) (r -3, r -1, 2) ... (.cl -l.!:.) 2 , r , 2 

Example 5. For r = 14, the integer (1, 9, 11) converges to the constant (6, 13, 7) in at most 

1; + 1 = 8 iterations of the Kaprekar Routine. In fact, we see that convergence occurs in 
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exactly four iterations: (1, 9, 11)---+ (9, 13,4)---+ (8,13,4)---+ (7, 13,6)---+ (6, 13, 7). 

Corollary 5. Let c be the smallest number of iterations of the Kaprekar Routine necessary 

for a three-digit integer in an even base r to converge to the Kaprekar constant ( ';2 , r - I, "T), 

then 

c= 

See Klaus and Seok [ 4]. 

r 
-+2-(a-c) 
2 

r 
(a-c)+l--

2 

.f r 
1 (a-c)< 2, 

if (a-c)= ;, 

.f r 
1 (a-c)>-. 

2 

Theorem 6. If r > I is an odd integer, then all positive 3-digit integers in base r, not 

all of whose digits are equal, converge to an element of the 2-cycle given by 

( ';1 , r -1, ';1) H ( ';', r -1, 1 ; 1) in at most 1 ; 1 iterations of the Kaprekar Routine [ 4]. 

Proof. Finally, we exhibit the table of iterates for the Classical Kaprekar Routine for 

odd bases. Again notice the similarities to Table 4. In this case, the possibilities for 

the first iterates are (O,r-l,r-l),(l,r-l,r-2),···,(r-2,r-1,1). Table 5 shows the 

iterates. Again, it is easy to check that ( ';1 , r -1, '; 1) H ( ';' , r -1, 1 ; 1 ) is, in fact, a 2-

cycle. 1:,. 

Table 5 
Sequences of Iterates after k Classical Kaprekar; Iterations for r Odd 

n\k 1 2 3 ... L±l. 
2 

1 ( 0, r -1, r - I) ( r - 2, r -1, 1) (r-3,r-1,2) ... (cl -1 cl) 2 , r , 2 

2 (l,r-l,r-2) (r-3,r-1,2) ... (cl -1 cl) 2 , r , 2 

r~I (cl -1 cl) 2 2 , r , 2 

L.±.l (cl -lcl) 
2 2 , r , 2 

r-2 ( r - 2, r - 1, 1) (r-3,r-1,2) ... (cl -1 cl) 2 , r , 2 

r-1 (r-l,r-1,0) ( r - 2, r - I, I) ( r -1, r -1, 2) ... (cl -1 L) 2 , r , 2 
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Example 6. For r = 13, the integer (1, 9, 11) converges to the 2-cycle ( 6, 12, 6) ~ (5, 12, 7) 

in at most 1i+ 1 = 7 iterations of the Kaprekar Routine. In fact, we see that convergence 

occurs in exactly five iterations: 

(l, 9, 11) ~ (9, 12,3) ~ (8, 12,4) ~ (7, 12,5) ~ (6, 12,6) ~ (5, 12, 7). 

Corollary 6. Let l be the smallest number of iterations of the Kaprekar Routine necessary 

for a three-digit integer in an odd base r to converge to an element of the 2-cycle 

(cl r -1 cl) ~ ( ,._, r - I ..c±.!..) then 
2' '2 2' '2' 

I= 

See Klaus and Seok [ 4]. 

The Decadic Story 

r+3 
--(a-c) 

2 

r-1 
(a-c)--

2 

. r-1 
1f (a-c) <-2-, 

r-1 
if (a-c)=-2-, 

r-1 
if(a-c)>--. 

2 

At this point the obvious question is, "do any of the other Kaprekar type routines 

yield similar results?" Table 6 lists all fixed points and cycles for each of the Kaprekar type 

routines in base I 0. This table was generated using information from a MATLAB® program 

that simply checked every possibility. This is a great opportunity to use technology for 

generating a variety of examples that may help identify interesting patterns. We see that 

Types (123,321), (132,312), and (213,231) are the most interesting routines and all 

demonstrate similar properties. That is to say, they exhibit Kaprekar constants. It is not 

known whether the other results in Table 6 may be generalized to other bases. 



TIIE KAPREKAR ROUTINE AND OTIIER DIGIT GAMES .. 

Table 6 
All Possible Kaprekar Type Routines for Base 10 with Resulting Fixed Points and 

Cycles 

Type Subtraction Order Fixed Points Cycles 
(123,132) ahc-ach (0,0,0) none 

(123,213) ahc-hac (0,0,0) (8, 1, 0)( 6, 3, 0)(2, 7, 0)( 4, 5, 0)(0, 9, 0) 

(123,231) ahc-hca none ( 4, 0, 5)( 1, 3, 5 )( 2, 1, 6) 

(123,312) abc-cah (4,5,9) (3, 7,8)(4,8, 6) 

(123,321) ahc -cha (Classical) ( 4, 9,5) none 

(132,213) acb-hac (0,5,4) (1, 6, 2)(3, 5, I) 

(132,231) acb-hca (0,0,0) none 

(132,312) acb-cab (4,5,0) none 

(132,321) acb-cba none (4,8,6)(3,7,8)(4,5,9) 

(213,231) hac-bca (0,4,5) none 

(213,312) hac-cab (0,0,0) (8, 9, 1)( 6, 9, 3 )(2, 9, 7)( 4, 9, 5)(0, 9, 9) 

(213,321) bac-cha none (3, 5, 1)(1, 6, 2)(0, 5, 4) 

(231,312) hca-cab (4,0,5) (2,1,6)(1,3,5) 

(231,321) hca-cba (0,0,0) none 

(312,321) cab-cha (0,0,0) ( 0, 8, I)( 0, 6, 3 )( 0, 2, 7 )( 0, 4, 5 )( 0, 0, 9) 

Open Problems 

155 

Note that in Chaille's Kaprekar T_,vpe Routines For Arbitrary Bases, the student 

obtained many partial results toward a complete exploration of all Kaprekar type routines for 

4-digit integers in an arbitrary base [ 1]. However, as is customary of any good research, 

Chaille's thesis also poses many new interesting open problems. As promised, this branch of 

recreational mathematics offers a plethora of accessible open problems for student 

exploration. We present six such problems. 

1) Complete the analysis of the fifteen Kaprekar type routines for 3-digit 

integers in all bases. 

2) Classify what happens in an arbitrary base for the Classical Kaprekar Routine 

(i.e., of Type (1234, 4321) for 4-digit integers. 

3) Complete the analysis of the 275 other Kaprekar type routines for 4-digit 

integers in all bases. 

4) If possible, generalize Problems 1 and 2 to arbitrary m - digit integers where 

m?. 5. 

5) Define and explore other reorder-subtract routines that are not of the 
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Kaprekar type. 
6) Study the connections between the properties of the symmetric group 

S,, and Kaprekar type "digit games" on n - digit integers in an 

arbitrary base. 

Concluding Remarks 

In conclusion, we observe that Types (123,321), (132,312), and (213,231) offer 

interesting results since they are the only three Kaprekar type routines for 3-digit integers for 

which the first iterates depend solely on the difference between the largest( a ) and 

smallest( c) digits. Since we require that a > c , this difference is guaranteed to be positive. 

However, in the 4-digit case, the existence of 6174 as a Kaprekar constant is a seemingly 

perplexing phenomenon because the Type (1423,4123) routine (the 4-digit version of the 

Type [132,312] yields the 5-cycle 4527-+ 4509-+ 8109-+ 8163-+ 6327. It would be 

nice to be able to discover the properties that guarantee Kaprekar constants for the other 275 

Kaprekar type routines for 4-digit integers and to determine if there are some, other than the 

obvious ones like Type ( 1234, 3214). Digit games are a truly wonderful source of problems 

for undergraduate research that often lead to surprising results. • 
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