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In this paper, we consider some issues surrounding the teaching of mathematics to pre-service 

teachers. In particular, we look at the possibilities for teaching elementary mathematics from an 

advanced standpoint and alignments of curriculum that have the capacity to enhance student 

involvement in the making of the mathematics. The particulars of the James Madison University 

curriculum arc used to illustrate many of the points. 

Introduction 

Since I am about to ask you to consider my approach to teaching prospective teachers, let 

me explain the basis on which I offer the approach. For college mathematics instruction 

generally, I am committed philosophically to the principles that: 1) a student of mathematics 

should understand, beyond a superficial level, the mathematics he or she is trying to learn; and, 2) 

a college mathematics course should contain college level thinking~that is, the student should be 

challenged both to have ideas and to validate that which he/she creates or is asked to accept. 

Thus, this must be extended to those courses for prospective teachers. To be consistent 

with this, prospective teachers cannot be allowed to deal with the mathematics as if they were 

children; the goal, rather, is to get them to understand it at a college level so that they can bring 

their learning theory and child psychology to bear on the planning. This helps them present the 

mathematics in a way that is both age appropriate for their students, and consistent with the fonn 

the mathematics will take in the long run. Indeed, I challenge my students to try to find ways to 

teach mathematics so that what their students eventually have to unlearn is minimized. In 

addition, when teaching within the mathematics major, I teach all my upper-level courses using 

the Moore method, a pedagogy that depends completely on student initiative and achievement. 

Even my "lecture-based" courses aim at getting students to make arguments for their problem 

solutions. My classroom experience has been largely that of finding ways to get students to 

discover, on their own, why things are correct. The "research" basis for the remarks that follow is 

philosophical and experiential. The experience base is real. However, if the philosophy does not 
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resonate, then the techniques that I have developed, while they may stand on their own, would 

have to be judged very robust to pass muster. 

At James Madison University (JMU), prospective elementary and middle-school teachers 

routinely major in Interdisciplinary Liberal Studies (IDLS), a program developed specifically for 

the purpose of educating them and preparing them for teaching positions. The core of this 

program requires a three-course, nine-hour mathematics component. The first two courses in this 

sequence, Fundamentals of Mathematics I and II (FM I, FM JI), have been a part of the university 

curriculum during my entire twenty-year stay at JMU, although their contents have recently been 

rethought during the development of IDLS. The third course, Math 207, is a recent addition. It 

was originally conceived as a "problem solving" course, although it is beginning to absorb 

material from FM I and II to free up time for deeper involvement in the topics of FM I and II. 

My experience is in teaching FM I and II; I have dealt with Math 207 only at the committee level 

as the course was planned and revised, and in making tentative planning for the possibility of 

being assigned the course. The University catalogue commits the two courses to "sets, logic, 

numeration systems, number theory, probability and statistics, measurement, geometry and an 

introduction to computers." Probability and statistics are now deferred to Math 207 and an 

introduction to computers has, for at least a decade, been ignored as a priority since the computer 

as a tool is now addressed in the general education program. Historically, the topics have been 

split so that sets, logic, numeration systems, and the number theory that supports the algorithms 

of arithmetic are taught in FM I while geometry, measurement, and models for R are taught in 

FM 11. Recent re-examination of the curriculum for the sequence resulted in increased 

commitment to geometry, and moving probability and statistics to the third semester to create the 

time for said commitment. 

Fundamentals <?[ Mathematics I 

The students that populate FM I and II are preponderantly freshmen and sophomores who 

intend to major in IDLS; indeed, for the past three years, JMU has had an effective filter on 

registration for the courses, and the course has been largely limited to IDLS majors. Generally, 

FM I is the first mathematics course a student in it takes. Hence, there can be no realistic 

expectation of the students in the course bringing with them any mathematical maturity, and the 

students must thus be taught within the course to meet whatever standards of rigor are demanded. 

To my mind, this makes the teaching oflogic and language a mandatory first topic. To try to give 
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"relevance" to the task, I teach the logic unit as analysis of language. I proselytize the need for 

them as teachers to make connections between language arts and mathematics rather than to build 

barriers. I give them the syntactical vocabulary, "and"; "or"; "it is not the case that"; 

"if. .. ,then ... "; and, "there is ... so that. .. " I give them the sentence constructs of statements and 

open sentences. I give them the standards for truth for statements fanned using "and"; "or"; "it is 

not the case that"; "if ... ,then ... "; and, "there is ... so that. .. " Then I put them to work on real 

sentences with the goal of recognizing the logical construction of the sentences and recognizing 

which words give meaning within the sentences. There are two expected outcomes. One is that 

the students realize that grammar can be used poorly or used well. Those sentences in which 

grammar is used poorly (often simply because of idiom!) usually have more than one plausible 

interpretation in logical form. This has the capacity to teach the importance of using grammar 

carefully (a language art), and also gives a context in which to study logical equivalence as we 

address the question, "Might the structural ambiguity have any bad consequences?" Second is 

the fact that the conscious separation of syntax from semantics affords a discussion of why 

knowing what the words mean (what the semantic content is) is crucial to making a judgment 

about the truth or falsity of the statement. This provides a pulpit from which to preach the 

importance of definition in mathematics. Having made the initial application of logic on 

sentences from ordinary language, I finish the unit by studying sets. This can be an effective 

bridge because we identify the primitive words "set, clement, ordered pair, first co-ordinate, 

second co-ordinate," and describe (not define!) how the words are used. This is a first attempt at 

axiomizing and can serve as a basis for comparison when number algebra is axiomized later in 

the course. When we describe the definition of sets through language in our third protocol, the 

function of open sentences in mathematics is reinforced. When definitions are made for "subset, 

intersection, union," and "complement," the student gets to experience how semantic content is 

introduced into mathematics. 

At this stage of the course, we have in place: 1) standards for sentence construction in 

ordinary language; 2) truth standards associated with sentences we might make; 3) a common 

language through which to form logical structure; and, 4) a common language for the use of sets. 

The connection with ordinary language is the only one of these topics that is not revisited later in 

the course. 



l 12 E.G. PARKER 

Despite the omnipresence of computing devices, I still regard the algorithms for 

arithmetic as the primary source from which elementary/middle school students learn number 

sense and develop the capacity to see the importance of structure within mathematics. I devote 

over half of FM I to their study. In the first half of this portion, students are asked to develop 

explanations for the "correctness" of the algorithms from counting, thus making the trip in the 

same direction as the elementary school mathematics curriculum. In the second half of the 

algorithm portion, the students are given the field axioms, model place value numbers as 

polynomials in the base of the system with digit coefficients, model fractions as products of 

natural numbers with reciprocals of natural numbers. Then, they are asked to justify the 

algorithms as a deductive consequence of the algebra of the field axioms when applied to the 

models. Thus, the students first get to experience the development of the algorithms in a 

sequentially analogous manner to that of the students they will teach. Then, they get to start with 

what is commonly the long-term goal of teaching arithmetic structurally, number algebra, and 

demonstrate that the ideas of number algebra are sufficient to drive the algorithms of arithmetic, 

regardless of where the axioms might have originated. Students often confuse the purpose of FM 

/, seeing it as learning the "mathematics" that they "learned" in grade school. I see it as vital that 

any such notion be disabused, that my expectation is that they already know the processes we are 

studying. What I want for them is to be able to make sense of, as mathematics, what they learned 

in grade school. I try to make it clear that we are doing the mathematics in an adult mindset so 

that they will understand it in a way that will give them the flexibility to pitch the mathematics to 

the individuals in their care as they become aware of individual differences and various stages of 

maturation. This is my way of walking the tightrope of balancing grade-school content with 

college credit. 

Affectively, I work really hard at having the "Algorithms from Counting" unit contrast 

strongly to the "Algorithms as a Consequence of Number Algebra" unit. In the "Algorithms from 

Counting" unit, everything is developed intuitively and, as ideas take shape, we make some 

attempts at formalizing the ideas with the language of the theory of sets. In the "Algorithms as a 

Consequence of Number Algebra" unit, the formal mathematics is dictated at the beginning, and 

everything that is accepted after the models are made is accepted because of arguments based on 

the axioms. 
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In the first unit, the progression is: 
1) devise a scheme of comparison of sets to "define" counting 
2) devise a numeration scheme that replaces the comparison with symbols from 

which the count can be recovered 
3) devise a numeration scheme based on place value 
4) define + and - in terms of counts through the language of the theory of sets 
5) define * and ..;- in terms of+ and -
6) execute the algorithms for+,-, *,and..;- within the place value numeration 

systems they make 
7) verify that the algorithms give correct answers 
8) justify why they give correct answers 

In the second unit, the progression is: 
1) state the field axioms using the primitive words number,+, and * 
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2) make the connection to the numeration system by declaring the placeholders to 
be numbers, give a rule for+ and * on the placeholders (in the process showing 
why the placeholder O must be the identify for+ and the placeholder 1 must be 
the identity for*), declare the place value and powers of the place value to be 
numbers 

3) define the number for which a numeral stands 
4) interpret each step of each algorithm within the algebra and justify it 

As stated earlier, the macrostructure of the two units described above is designed 

to have the students look at the algorithms from the "same" basis as the students, to look back at 

the algorithms from the basis that is the long-tenn goal of the curriculum, and to create a context 

in which to reinforce the use of the theory of sets to formalize ideas and give an experience in the 

making of proofs. The microstructure also affords opportunities. I develop place value 

numeration as a tool to symbolize the ideas developed for counting, and counting is initially 

developed, completely intuitively, on the notion of "matching." I never articulate "matching" 

formally (despite having the means to do so within the set theory they have been given via the 

primitive words "ordered pair, first co-ordinate, second co-ordinate," thus making the definition 

of function available), using instead demonstration to give the word meaning. The word "count" 

is established to describe the result of "matching" when a special outcome occurs. Thus, a 

matching between I I I I and # # # # can be demonstrated by physically pairing the objects from 

the first listing with those of the second listing in an "acceptable" way and all objects of both 

listings are parts of pairs. Interpreting the lists within the theory of sets and using that language 

to formalize what the lists are is as far as I go with actual mathematics. 
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Grouping to make comparisons more convenient is a short step away, and we are 

on our way to creating place value numeration by deciding on a count (which I call the 

"organizer") to be the standard by which grouping is done, creating numerals to represent the 

counts less than the organizer and a placeholder, and a place value scheme for making the 

numerals to represent counts. The creation of such a numeration system is then repeated each 

class day until the end of the unit as the class operates under the following rule: the organizer 

cannot be//////////, and the organizer we choose today cannot have the same count as the organizer 

we chose the previous class. The students are thus put in a position to do their arithmetic as a 

consequence of the structure established. The long-term lesson is that the algorithms work 

because of the structure of place value numeration, not just because of the choice of////////// as the 

organizer. When the ideas for+, -, *, and -c- are decided upon, I have the students formalize them 

using the language of the theory of sets together with the word "count." The symbols + and - are 

thus shown to be more basic, from the counting point of view, than * and 7 . Once the definitions 

are made, students are asked to add, subtract, multiply, or divide on the basis of the definition 

they have made. Then, they are reminded of the appropriate algorithm from grade school and the 

following teaching dynamic recurs: 

1) the students execute the algorithm to get an answer; 
2) the students create a count to show that the answer the algorithm gave is correct; 
3) the students create a count that shows why the algorithm gave the correct answer. 

The first step reinforces mastery of the procedure that defines the algorithm; the second 

indicates that it gives correct answers; and, the third argues it gives correct answers. Once an 

operation is defined, but before the algorithm is brought to their attention, students are asked to 

find sums or differences or products or quotients. And interesting sidelight is that they seldom 

produce counts that suggest the algorithm. A context exists to suggest that perhaps the algorithms 

being taught might not be so "natural" after all, and that a young student may have ideas that 

make sense even when they don't "fit." 

An analogous "mind expansion" occurs in the second unit as the savvy students realize 

that, if they already knew algebra as a deductive device, the algorithms would be superfluous, and 

the rules for the arithmetic of common fractions would be afterthoughts. Good flashpoints occur: 

when the students are asked to make algebraic sense out of "the placeholder that is not a count" 

and O*D is not covered in the axioms (the role of theorems in mathematics arises); and, when+ 
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and * are axiomized, but * and + are seemingly omitted. Regarding the latter, the role of 

definition in mathematics arises and a tension between counting as a foundation - + and - are 

more basic than * and + -and algebra as a foundation- + and * are more basic than - and < 

The distributive law emerges as the engine that makes things go. Also, when fractions come up 

as a consequence of the field axioms, I remark that they were not apparent from counting and that 

the fundamental intuition for them comes from geometry. Redeeming this observation in FM If 

by emphasizing the role that congruence plays in counting parts to make fractions thus becomes a 

priority for the second course. 

The Fundamentals<~( Mathematics II 

The curriculum for FM II contains geometry and the decimal and fraction models for real 

numbers with, as noted in the introductory comments, a recent mandate for not shortchanging 

geometry. I commit two units to geometry, with the organization created to first emphasize 

synthetic geometry and then to study the geometry thus created with the added assumption that 

number lines may be created so that distance between points is consistent with congruence of the 

line segments with those points as endpoints. For the unit on the number systems, I build on the 

question, "Can we communicate, through language, what the objects in the numeration system 

are?" The aim is to plant it in the minds of the students the possibility that the system, if you're 

not already used to it (and the students they will teach will not be!) is really quite complicated. 

Classroom dynamics for FM If are completely different than those for FM I. In FM II, 

you know that each student has passed FM I, so there is reasonable expectation of some maturity. 

On the other hand, any class is likely to be very heterogeneous; one can expect students from four 

to eight different teachers in FM I, most who do not share my prejudices about the level of rigor 

that should be demanded. I think it is important to try to tum this into a positive by giving them a 

stake in voicing their version of what they bring forward from FM I. I express my desire to make 

sure that we have a basis for communication within mathematics and suggest that a clear use of 

language can provide such a basis. My expectation (which I do not share with the students) in 

FM JI is that I will have the opportunity to re-teach logic and language in the context of 

geometry, and I consider time well spent. 

By making synthetic geometry the first unit m FM If, I get at least two teaching 

opportunities. First, in making mathematics from the pictures, or more specifically, from the 
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tools that make the pictures, the students are, as in the counting unit of FM I, starting from the 

place at which their students will be. Second, since they are given the task of articulating the 

ideas suggested by the pictures using the language from logic and the theory of sets, I have a 

chance to involve them in the making of the axioms. They get to experience the distinction 

between axiom and theorem, and primitive word and definition, as participants. l consider this 

an opportunity to give the students an experience in the possibilities and difficulties in making 

constructivist learning happen. 

The problem I set for the class is to connect the primitive words "point" and "line 

segment" to the tools (end of half of a compass and edge of a meter stick). They must make 

mathematics that articulate the notions associated with the tools using the primitive words "point, 

line, plane, line segment," and "congruent": 

I) making a picture by letting the line segment go "on and on"; 

2) looking at the surface on which the point maker leaves a track when adhering to 

the straightedge; 

3) giving meaning to "same size." 

Goals I have for the class are that they recognize the power that the language of sets gives them 

and that when first principles are clearly articulated, other ideas become consequent to those 

principles. For instance, that angle makes sense, because the relationships among points, lines, 

line segments, and planes are clear, is supposed to be important. Once the structures are in place, 

the students return to the concrete by making constructions in which they interpret deductively 

the mathematics they have created. The outcome that I hope will influence their teaching is that 

number, particularly fraction, can be given meaning through geometry. The progression is: 

1) identify the tools; 

2) make principles using the words point, line, plane, line segment, and congruent, 

as well as the words from logic and the theory of sets to give meaning to the 

primitive words that are deemed consistent with the pictures, the tools make; 

3) enhance the vocabulary for the subject by defining (at least) ray, circle, angle, 

and parallel; 

4) make arguments from the principles that justify the outcome of constructions 

using the tools; 
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5) interpret appropriate constructions as creating number ideas. 

In the second geometry unit, the mathematics of numbers is merged with the mathematics 

made during the first geometry unit by articulating a ruler axiom and a protractor axiom, and 

stating the axiom for similar triangles. The ruler and protractor axioms allow the definition of 

measures of line segments, angles, and rectangles and the geometry developed in the first unit 

carries these ideas as a basis for fractions and to the measure of polygons. The axiom for similar 

triangles gives a comprehensive look at a geometric basis for fractions; the study of area provides 

a geometric alternative to thinking of multiplication as repeated addition as well as making 

plausible that multiplication could make sense for any pair of numbers that represent length. 

Investigation of trapezoids is a good place to use algebra to clarify consequences of geometry. 

Establishing meanings for the measure of a circle and the measure of its interior develops clearly 

stated approximation schemes. The Pythagorean theorem is a high point of the unit. A plausible 

argument is available from the structures created in the first unit using the structures developed in 

the second unit. Application of the theorem gives an application of number algebra and 

establishes existence of lengths which are not fractions of integer units (in itself a magnificent 

result). This gives background for the study of the structure of the numbers that will take place in 

the third unit. 

A progression is: 

I) articulate a ruler axiom, a protractor axiom, and the axiom for similar triangles; 

2) define distance and defend direct construction of fractions from the axiom for 

similar triangles; 

3) define measure for triangles, articulate the ideas for Cavalieri's principle, and 

measure polygons; 

4) develop the Eudoxus principle to measure the lengths of circles and the areas of 

their interiors; 

5) prove the Pythagorean theorem and explore its consequences. 

For the third unit, I have the students study the place value and fraction models for the 

numbers. The first problem I set for the students is: "using only the language of the theory of 

sets and the existence of the natural numbers, express the qualities that will allow you to explain 

through language what the symbols in each system stand for." 
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For the place value model, I don't rest until they have identified the importance of 

position relative to the decimal point, position relative to the place values thereby identified, the 

placeholders, and the restrictions on "to the left of the decimal point" that are not in force "to the 

right of the decimal point." For the fraction model, it usually doesn't take long to identify "what 

is the numerator and what is the denominator" as the key issues. Once they have constructed 

objects using the language of the theory of sets to formalize the two structures, I have them go 

back and forth between the formalisms and the notation with which they will teach their students. 

Then we set out to articulate, in both models, comparison principles from which < can be defined, 

and algorithms for + and *. 

In the place value model, there are deep thoughts to be had at every turn. In studying 

comparison, the students find that 0.09 is less than 0.10, but that there is no element of the 

model between them; where to go from there is always fun. When they appropriate the ideas 

from the algorithm for + for natural numbers, they find that those ideas do not apply unless the 

part of the numeral "to the right of the decimal point" "terminates", and a resolution of the 

question of defining + on the rest of the model is challenging. I seldom have time to do * on the 

place value model, but when I do, the same extension problem arises. This affords either a 

second chance to try to understand its resolution or else reinforcement of the likelihood that its 

resolution is very important (we'd like to be able to add or multiply any two numbers or we can't 

even meet the first expectation for an algebra!). These extension problems have no direct 

application to the elementary mathematics curriculum; what they do is teach a respect for the 

complexity of the place value model regarding arithmetic and, by analogy, plant the need for 

patience with young students struggling with the model at their own levels. 

In the fraction model, studying comparison leads to the problems associated with dual 

representations and gives context to the reasonableness of reducing fractions to lowest terms. 

That both comparison and addition of fractions depend directly on multiplication of natural 

numbers has the capacity to be an engaging idea. The question, "How can we recognize when 

elements of the different models might represent the same number?" can be used to raise 

additional questions. In addition, it provides connections between what they brought with them 

and what you have them thinking about. 
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A progression is: 

I) identify decimal point, left of the decimal point, right of the decimal point, place 

value, and placeholder as critical ideas for giving meaning to decimal notation; 

2) create structures within the theory of sets to articulate these ideas and achieve 

facility going back and forth between notation and meaning for the notation; 

3) articulate a comparison principle to define <, construct "numbers" between 

"numbers," and address the problem of the existence of different numbers that 

have no number between them; 

4) articulate an algorithm for+ and deal with its deficiencies; 

5) articulate an algorithm for * and deal with its deficiencies; 

6) identify numerator, denominator, and fraction line as critical ideas for g1vmg 

meaning to fraction notation; 

7) create structures within the theory of sets to articulate these ideas and get facility 

going back and forth between notation and meaning for the notation; 

8) articulate a comparison principle to define < and address the problem that there 

are different "numbers" which cannot be compared; 

9) articulate algorithms for+ and* on the model; and, 

10) relate the models. 

If you are still reading, it has perhaps occurred to you that the course p Ian through which 

you have been led does not mesh particularly well with most of the books designed to support 

courses like FM I and FM II. Most such books have a chapter or two on logic and sets, but the 

emphasis is typically on truth tables and Boolean diagrams, with little emphasis on how grammar 

is used to create logical structure and the distinction between structure and semantics. Many of 

these books work with different bases for place value numeration, but usually emphasize 

changing from one to another rather than the system itself having qualities that are not base 

dependent. In addition, they often deal with the axioms for the numbers as an algebraic structure, 

but use them to consolidate examples rather than as a basis for deduction. These books treat the 

principles of synthetic geometry informally and use the synthesis of a metric with a geometry, but 

usually make no big deal about geometry dictating number ideas or number ideas being useful for 

articulating geometric properties. The books available use both the decimal and fractions models, 

but usually act as if it is obvious what the symbols stand for and why objects within the separate 

models must stand for the same thing. The main point of teaching the way I do is to put students 
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in a position where they have no option other than to get involved in thinking about why things 

are the way they are. As a result, it might seem as if having no text is a reasonable choice. On 

the other hand, IDLS students have a common career goal-to teach-and they, once in the work 

force, will be expected to deal with curricular materials adopted by the jurisdictions in which they 

teach. Thus, I feel an obligation to make a textbook a part of their course, both to nurture the use 

of materials and to teach skepticism about materials, at least until one has thought about them. 

I use the text in one of two ways. Some semesters, I will introduce a unit by leading a 

discussion in which the class clarifies an idea from which we hope to make mathematics. I will 

then suggest that perhaps the book has treated those ideas and suggest that they find the parts of 

the book pertinent to them. If students succeed in such a task, we will go to the selected parts, 

make them the focal point of our discussions, and then either adopt them as a part of our 

mathematics, reject them for just cause, or do whatever is necessary to adapt the ideas to our 

standards for language. An alternative method is to have the class develop the mathematics 

independent of the book, then finish off the unit by sending them to the book with the purpose of 

their finding how the book treated the mathematics we had developed. When I use this method, I 

purposefully neglect something the book has covered that fits with our unit. When the students 

find one or more of "the neglected ideas," we discuss it (them), adopt or reject each one, and the 

students experience using multiple sources for expanding on what they have in hand. If the 

students don't find what I know is there, I make sure at least one idea they haven't uncovered 

makes its way onto the unit test, and I get to teach something affective when I put out the ensuing 

fire. 

Conclusion 

This paper is already rather long, but one aspect sorely lacking is a collection of 

demonstrative instances of how one might handle a particular idea. Toward that end, if the 

philosophy offered above were to interest you, feel free to contact me. The references I have 

used ask questions that have triggered, or comment upon, some of the ideas that I have attempted 

to make a part of my teaching of prospective teachers [ 1-5]. a 
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