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The role of educational technology--computers, calculators (scientific, graphing. 

programmable, and others) Calculator Based Laboratory (CBL), sensors, videodiscs, CD-ROMs, 

and telecommunication networks through which real data can be accessed-are instruments that 

aid the learning process in mathematics, and have given teaching an innovative quality, capable 

of greatly influencing mathematical knowledge and reasoning. Although it is not the solution to 

teaching and learning problems in mathematics, there is evidence that technology will slowly 

become a catalyst agent of change in mathematics education [ 1]. 

Thanks to the possibilities offered through the dynamic manipulation of mathematical 

objects in multiple systems of representation within interactive structures, technology opens 

spaces that allow students to have new mathematical experiences which are hard to achieve in a 

traditional medium; in which they can manipulate directly mathematical objects within an 

exploration setting. In considering solutions to problems, such as the approach to the teaching of 

mathematics and the construction of knowledge as a learning model, some authors [ 1,2,3] have 

established that the pedagogical principles that serve as the foundation for the constructivist 

paradigm may contribute to the integration of new technologies in education. Through this 

approach, qualitative changes in the nature of learning and teaching in mathematics may be 

promoted. 

Laboratory Activities as an Option for the Learning of Concepts 

The results found in mathematics courses that follow traditional teaching methods, such 

as the exposition of content as a finished body of knowledge, the theoretical administration of 

results, and the mechanical solution of problems point toward changes that lead to the 

consideration of more active methods. Using these methods, students explore, make conjectures 

and deductions, elaborate justification, test arguments, and understand that the primary 

responsibility of learning lies within themselves [4]. These ideas are not new, as Polya wrote in 
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1975, "if learning mathematics is reflected to some degree in the invention of this science, there 

must be a place in it for intuition, for the plausible inference." [5] 

Through well-designed laboratory activities that integrate technology, students participate 

actively in the process and construct their mathematical knowledge. In this setting, the students' 

task is not to use the technology to make calculations mechanically (this may be done in other 

settings), but rather to analyze and reason about the results obtained through this technology. To 

achieve this reflection and reasonmg, we must seize the pedagogical advantages it offers. For 

example, the graphing calculator promotes: speed in computation, visualization, interaction, and 

learning from mistakes. Besides properties such as its graphing, numerical, symbolic, and 

programming capabilities, and its ease of use, it allows students to construct processes and 

mathematical objects which are complemented by the graph to attain higher levels of learning, 

compatible with a quasi-experimental mathematical presentation [6]. 

In these laboratory activities, the important element is the active construction process that 

links new knowledge with prior knowledge, observation, reflection, analysis, argumentation, 

proof of results, and others, but not the result. Instead of receiving the information in a passive 

manner, or simply copying the information from the professor or the textbook, students analyze 

the information in an active way from the start, trying to make sense of it and to relate it with 

what they already know about the subject. This constructive process is important because unless 

students construct representations of the new knowledge, making it their own as they paraphrase 

it and consider its meanings and implications, the learning will be retained only as mechanical 

and inert memories relatively void of meaning [7]. In this process, the exposition of recipes that 

are memorized for a brief period is out of place. Learning will be more meaningful through 

discoveries that occur during explorations motivated by curiosity [8]. 

In consequence, these laboratory activities should be designed within the framework of 

guided discovery, through which students are provided the opportunity to manipulate 

mathematical objects actively and transform them through direct actions. Also, they are designed 

in such a way that they stimulate students to seek, explore, analyze or process, in one way or 

another, the information they receive instead of only responding to it. These laboratory activities 

will be fruitful whenever the following is taken into consideration: 

• The complexity of the mathematical content to be taught; 
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• The complexity of the cognitive processes involved in the learning of mathematics; 

• The fundamental role that curriculum designers and faculty should play in the design and 

implementation of teaching situations which address students' difficulties and needs, and 

take advantage of technology to create spaces m which students can construct broader 

and more powerful mathematical lmowledge. 

A radical change 1s proposed, from a passive method based on receiving information 

toward an active method in which mathematical lmowledge is constructed. In a setting such as 

this, the cooperative participation of students is fundamental [9-12]. This setting allows students 

to interact regularly with many of their peers, to discuss interesting questions about the course 

and to learn from each other. This is why it is necessary to provide an adequate physical 

environment where students can carry out these laboratory activities that will lead toward higher 

levels of learning mathematical concepts and principles. 

Implementation of Laboratory Activities 

The need of an adequate physical environment for the implementation of laboratory 

activities refers to more than a room full of the necessary equipment; it is a place where there is 

an environment in which students can explore the objects they study. It should be a place where 

students have the freedom to comment, ask questions, and make conjectures about the course 

matter. In this environment, the professor is available to serve as a facilitator who offers students 

the opportunity to verify their analysis, so that they may identify mistakes in their reasoning for 

themselves and generate feedback on their own lmowledge. This is the way that they construct 

and reconstruct the object of the learning process. 

The physical environment must fulfill the conditions that allow students to carry out their 

work, without unnecessary distractions, and promote the interaction of ideas among peers, the 

professor, and teaching assistants. As the students set the process of the scientific method in 

practice through the laboratory activity, they construct high level mathematical lmowledge. 

Considerations for Writing a Laboratory Activity 

The preparation of a laboratory activity requires more elaboration time to achieve the 

exploration and discovery of a concept. The following are some general considerations that 

provide guidance for writing a laboratory activity [ 13). 
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1. According to the proposed objectives, the laboratory activity should fall into one of the 

following categories: 

• Developed before the presentation of a topic: the activity should be initiated with 

a problem that stimulates discussion. The discovery of concepts belongs to this 

type. 

• Those that include interesting applications with data that have not been 

manipulated because of the extent of the calculations. Questions about analysis 

and interpretation of the obtained results are suggested so that the experience is 

not reduced to a simple numerical calculation. An example of this is the 

laboratory in which a phenomenon is modeled and the characteristics and 

properties are explored. 

• Those in which the content presented is broadened or reinforced in class. The 

professor can provide questions to motivate the analysis of the situation and help 

students to observe and predict or make conjectures about the results, according 

to the topic previously explained. 

2. It is imperative that professors master the content of the class very well, even more than 

if it were an expository class, so that they can provide adequate answers to questions that 

emerge during experimentation. 

3. The problems to be studied should be carefully selected so that they are not too easily 

solved, but require analysis of the situation, besides being interesting and pertinent for 

students. 

Example: Representation systems 1 

The use of technology allows the dynamic handling of multiple representation systems of 

mathematical objects. This is one of their relevant characteristics from the perspective of learning 

mathematics. Representation systems are a central aspect of the students' understanding of 

mathematical objects and their relations, as well as the mathematical activities that they perform 

when they carry out tasks that have to do with these objects [8,9,10]. External representations 

allow the student to organize mathematical experiences and to organize the information 

internally. From this perspective, a representation system is composed of a set of symbols that 

are manipulated according to rules that identify or create characters, operate within them, and 

1 The complete laboratory is very long, so only a brief description is included. 
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determine relations among them. The same mathematical object can be represented by different 

representation systems. 

We have developed a laboratory where the student manipulates the symbolic 

representation, the graph, and the table of values of a quadratic funct10n. The function 

f(x)=x:+5x-6 is represented by students in the symbolic representation system, in the graphic 

representation system, and in the value table representation system (see Figure 1), among others. 

~=- --.. : · .. :::-= 

0. 
1 . 0. 
2. 8. 
3. 18. 
4. 30 

x=-2. 
MAIM f:A[I AUTO FUMC 

Figure 1. 

The idea of representation makes it possible to characterize the students' activities as they 

carry out the task. The laboratory is designed so that students do syntactic transformations 

within the same representation system. They transform f(x)=x2+5x-6 into f(x)=(x-1 )(x+6) or into 

f(x)=(x+ 2.5)2 -12.25 in the symbolic representation system; they also transfer the graph 

horizontally or vertically or when the dilation in the graphic representation system varies. The 

second type of mathematical activity that students perform in the laboratory is the translation 

between representation systems. That is, the relation of the function on the graphic as it goes 

from the base symbolic representation f(x)=x2 to the expression f(x)=(x+2.5)2-12.25 (in which it 

is possible to identify the localization of the vertex) or to the expression f(x)=(x-l)(x+6) (in 

which the roots may be located). 

In this way, students handle procedurally the representation systems and this action 

serves as a base for evolving into a conceptual understanding of the mathematical object and the 
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mathematical relations. Student understanding evolves along two axes: one axis is horizontal 

along which the management of the representation systems advances from a mathematical 

concept; along the second axis advancement is made in the materialization process (from 

procedural to conceptual) of the same concept [ 14]. 

Final Comments 

During the past few years, several groups have recommended the use of new educational 

technologies for the learning of mathematics. Some authors have pointed out that the sustained 

use of technology in the classroom will convert it into a setting where the student discovers, 

formulates conjectures, justifies and tests arguments. Our experience has been to use these 

laboratory activities as an additional experience to the traditional classroom. 

The development of these activities takes up more time and effort, since the needs of the 

students must be considered. From this viewpoint, the textbook becomes one more reference and 

the professor becomes less dependent on it. 

The results with future teachers found in the integration of these laboratory experiences 

in their mathematics classes are heartening. The level of the type of questions they pose is higher 

than the traditional ones. The students become familiar with the way in which mathematical 

knowledge is constructed, promoting the compression of the epistemology of the knowledge area 

they will teach. The evaluations of these activities by students have been positive. In focus 

groups carried out with students, they have expressed that: "when I'm in the classroom as a 

teacher I will follow this methodology"; "I like the laboratory activities because they are more 

active than in the traditional class"; "the use of the graphing calculator allows us to do the 

analysis faster and I have more time to understand the material." 

Technology is obviously not the solution to teaching and learning problems in 

mathematics, but it is making us think about it. It is possible that the major contribution of 

technology to the teaching and learning process of mathematics consists of the interaction 

between it, the professor, and the student and this is changing the vision that students have of 

mathematical content and the educational process. • 
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