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The mathematics cumcula m the Upper Schools of St. Cathenne·s and St. Chnstopher·s 

Schools are coordinated with students from the tv,:o schools sharing classes in the eleventh and 

twelfth grades. For the past several years. the schools have offered courses in which students 

take advantage of the power of Mathematica to attack difficult problems and to pursue projects in 

mathematics and science which require extensive computation. In this paper, we shall describe a 

project undertaken and completed by the first author with the aid of Mathematica[l]. The work 

was performed with the guidance and assistance of her mathematics and physics teachers, the 

second two authors named above. Katherine presented her results at the annual meeting of the 

Virginia Association of Independent Schools in November 2000. We shall present our work in 

narrative form and chronological order without assigning credit for particular results to individual 

authors. 

We set out to develop an idealized mechanical model that would execute simple 

anharmonic motion, to write an equation of motion for the oscillator, and to solve the equation 

with the aid of Mathematica. We also wished to animate the motion and, finally, we added an 

experimental component to the project. Throughout our paper, we shall draw boxes about 

Mathematica commands, inputs. and outputs to separate them from the rest of our text. 

The Simple Harmonic Oscillator 

Let us begin by recalling the simple harmonic oscillator. Suppose that a block of mass m 

is attached to two identical massless springs as indicated in Figure 1. All motion of the system is 

confined to a horizontal, coordinate plane. The springs have Hooke's Law force constant k and 

unstretched length L >> 1, and the dimensions of the block are negligible when compared with L 

and 1 unit. The ends of the springs which are not connected to the block are anchored at the 

points (0, L) and (0, -L). 
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Figure 1. The Simple Harmonic Oscillator 

We now suppose that the block is displaced to the point (0, 1) and then released from 

rest. The block will execute simple harmonic motion on the y-axis. Since there are two springs 

providing restoring forces upon the block proportional to its displacement, the equation of motion 

for this simple harmonic oscillator is 

md 2_vl dt 2 = -2ky. 

The well known solution to this equation under the initial conditions y = 1 and dyldt = 0 

at t = 0 is y = cos ( .J2k Im t). The period of the oscillatory solution is 2:rr.J2k Im . Later, we 

shall compare these results with those which we obtain for the simple anharmonic oscillator. 

The Simple Anharmonic Oscillator 

A vibrating mass for which the restoring force is directly proportional to the third power 

of displacement is known as an anharmonic oscillator. To model such an oscillator, we suppose 

that we have displaced the block to the point (1, 0) on the x-axis. If we release the block from 



A SIMPLE ANHARMONIC... 117 

rest, it will vibrate back and forth along the x-axis with an amplitude of magnitude 1 as indicated 

in Figure 2. 
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Figure 2. The Simple Anharmonic Oscillator 

When the displacement of the block is x, -1 s x s 1, the stretched lengths of the two 

springs are -J L2 + x2 , and the tensions in the spring have magnitude k (-J L2 + x 2 - L). The x­

components of these tensions provide the unbalanced force which accelerates the block back and 

forth between (1, 0) and (-1, 0) on the x-axis. Thus, each spring contributes a restoring force of 

magnitude k(-J L2 + x 2 -L )sin0. Angle 6 is shown in Figure 2, and it should be clear that 

sin0 = x/-J L2 + x2 . 

The equation of motion for the transverse vibration of the block along the x-axis is 

Having written an equation of motion far too formidable for our unaided computational 

power, we now ask Mathematica to give us the third order Maclaurin polynomial in x for the 

righthand side of the equation. 
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Nonna{ Series[-2k * x( 1-1/ J<x-L) 2 + L2 ), {x, 0,3} ]] 

la3 
... 

L-

Smee we have assumed that L >> l, we feel justified in replacing the restonng force with 

its third order Maclaurin approximation as output above. Thus we turn our attention to the much 

simpler equation of motion 

(2) 

We have now obtained our equation of simple anharmonic motion and thus have found a model 

for simple anharmonic motion. 

The First Integral of the Equation of Motion 
We employ a trick well lmown to those who study mechanics to discover the velocity v = 

dx/dt of the oscillating block. The trick which may be termed a "backwards chain rule" is 

nothing more than the observation that 

., ., 
d-x/ dr = dvl dt = (dx I dt)(dvl dx) = v(dvl dx). 

Equation 2 may now be rewritten as 

v( dv I dx) = -( m: 2 ) x 3 . (3) 

We integrate both sides of Equation 3 to obtain another equation which relates velocity 

and displacement: 

~= C--k-(.!.)x4. 
2 mL2 4 

(4) 
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In this equation, C denotes the constant of integration. The initial conditions that x = I and v = 

dx/dt = 0 when t = 0 imply that C = k/ ( 4ml 2 ). Thus, 

v=dxldt=±J k 2 ~1~x4 . (5) 
2ml 

Dunng the first quarter period of motion. 0 :s x :s I and v = dxldt :s 0. We are able to 

fix our attention upon the first quarter penod by takmg the negative sign for the differential 

equation above. 

The Period of Oscillation 

Equation 5 may be rewritten as 

(6) 

in the first quarter period. It follows that the period for our simple anharmonic oscillator is given 

by 

T=-4 ~r dx =4 ~11 dx . 
~---;;- r-:i v,:- ~ 

1 v'l-x~ o v'l-x~ 

This integration may now be quickly done by Mathematica as shown below: 

7.4163JmL2 

. k 

(7) 
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The period for our oscillator is 7.4163/?- which may also be written as 

5 .244 I 2~ l:L' . 

The Graph of x(t) 

Let us define the following function of p. 0 $ p ::; I, for which p is the lower limit of a 

definite integral: 

(8) 

The function represents the time elapsed in the first quarter period of oscillation between the 

release of the block and its reaching the point (p, 0). Clearly, F(O) = T/4. 

With Mathematica evaluating F(p) for a very large number of values of p, we obtained 

an extensive list of ordered pairs (t, x) where t = F(x). We then employed Mathematica's 

ListPlot command with the PlotJoined option to obtain the following graph of the first quarter 

period of the displacement x(t). 
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Figure 3. A Graph of Displacement x(t) for O::; t::; T/4 
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The graph of x(t) for a complete period can be pieced together by simply repeating the 

graph for the first quarter period with suitable translations and reflections. The result is shown in 

Figure 4. The dashed curve in that graph represents the cosine solution for simple harmonic 

motion with the same frequency as our simple anharmonic oscillator. 
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Figure 4. The Graph ofx(t) for One Period with the Cosine Curve Shown for Comparison 

Displacement as a Function of the Independent Variable Time 

Thus far, we have accomplished our first three objectives: to create a model of simple 

anharmonic oscillator, \\Tite its equation of motion. and then solve that equation. The function t 

= F(x) and the graph of x(t) = F- 1 ( t) extended to a full period as shown in Figure 4 constitute 

the solution. 

Our fourth objective was to animate the motion of the oscillator by using the powerful 

graphics commands available in Mathematica. Here we encountered a difficulty. In our 

solution t = F(x), displacement plays the role of the independent variable making it relatively 

easy to obtain ordered pairs (t, x) for uniform increments in x, but not in time t. An animation 

requires that the variable representing time change at a constant rate. We could have integrated 
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F(p) using the If function to perform the integrations and record values of x = p when t reached 

prescribed values separated by integral multiples of some fixed .6.t. 

The amount of programming required to implement this procedure did not appeal to us. 

It has been our experience that easy-to-formulate, but difficult-to-solve problems often have their 

solut10ns already built into Mathematica. We knew that the closed-form solution to our 

differential equation of anharmonic motion (Equation (2)) with our imtial conditions involves the 

elltptic function. cn(t) the Jacobi cosine-amplttude function. It had ne\'er occurred to us that the 

el!tptic functions might be available in Afathematica; but we mvest1gated. and discovered to our 
.., 

surprise that we could indeed call for cn(t) as JacobiCN[r,a-J where a is the modulus of the 

function. 

We now had the means to animate the motion of the simple anharmonic oscillator. We 

could have avoided much of the work described thus far had we known before we started that our 

software would make it so easy to obtain the elliptic functions of the independent variable t. 

However, our work was instructive and we would still have needed to integrate for the period of 

the motion. 

The Elliptic Functions 

Although long known, the elliptic functions have fallen out of sight in recent years and 

are rarely studied today[2). The complex plane is their natural domain; but for our purposes, their 

domain may be restricted to the set of real numbers. The restricted functions are periodic and 

differentiable. Unlike the trigonometric functions which they do resemble, the elliptic functions 

have periods which depend upon their amplitudes. We note that. m our proJect, we have 

simplified matters by assuming x(t) to have unit amplitude. The three elliptic functions with 

which we are concerned are the sme-amplitude. cosine-amplitude. and difference-amplitude 

functions which we denote by sn u, en u, and dn u. respectively. 

These three functions may be defined by the relationships 

sn 2u + cn 2u = 1 

dn 2u + a 2 sn 2u = 1 
d 

-(snu) = (cnu)(dnu) and 
du 
sn(O) = O,cn(O) = dn(O) = 1. 

(9) 

(10) 

(11) 

(12) 



A SIMPLE ANHARMONIC... 123 

As previously noted, the constant a is the modulus of the elliptic functions. Functions 

with different values of a are different functions. Just as the properties of the trigonometric 

functions may be · deduced from the initial statements 

sin 2 0 + cos 2 0 = I, ~(sin 0) = cos 0, sin(O) = 0, and cos(O) = 1, the properties of the three 
d0 

elliptic functions may be developed from Equations 9 through 12. For example, implicit 

d d 
differentiation of Equation 9 yields 2snu-(snu)+2cnu-(cnu)=O. By Equat10n 

du du 

d 
11.(snu )( cnu )(dnu )+ (cnu )-(cnu) = 0. It follows that 

du 

d 
-(cnu) = -(snu)(dnu). 
du 

In like manner, we may derive that 

d 2 
-(dnu) = -a (snu)(cnu). 
du 

The Closed-Form Solution of the Equation of Motion 

(13) 

(14) 

We return to Equation 2. The animation of simple anharmonic motion will require that 

we assign a numerical value to the coefficient of x 3 . Since the choice is ours to make, we take 

k 
"the easy way out" and let --2 = 1. The simplified equation of motion is 

ml 

(15) 

Let us assume that x(t) = cn(t) satisfies Equation 15. The calculations following upon 

that assumption will force us to a proper choice for modulus a. Substituting en(!) for x in 

Equation 15 and using the properties given by Equations 9 through 14 lead to the following 

conclusions: 
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2 

d 2 ( ent) = _!!.._(snt dnt) = -(cntdn2 t -a2ent sn2 t) 
dt dt 

= en t ( a 2 sn 2 t - dn 2t) = en t ( a 2 sn 2 t -1 + a 2 sn 2 t) 
= en t ( 2a2 sn 2 t -1) = en t ( 2a2 - 2a2 cn 2 t -1 ). 

d2 
\Ve see that - 2 (cnt) = -cn3t if and only if a 2 = 1/2. If we let a= 1/ Ji, we have 

dt 

x(t) = en t as the desired solution of Equation 2. Note that the Mathematica mput of the Jacobi 

elliptic functions requires the entry of a 2 rather than a. 

k 
Since we have let--2 = 1, the period of cn(t) must be 7.4163. In Figure 5, we display 

ml 
the graph of x(t) = cn(t) for one period. We again show as a dashed curve the graph of the cosine 

with the same period. We are happy to note that Figures 4 and 5 appear to be identical. 
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Figure 5. The Graph of x(t) = cn(t) 
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The Animation of the Simple Anharmonic Motion 

The procedure for animating a motion with Mathematica is to create a sequence of n still 

images of the changing system. The images must depict the system at times 

t1 ,t1 + !lt,t1 + 2/lt, ... ,t1 + (n -l)!lt for a fixed value of !::.t. Upon command, Mathematica will 

show the images in rapid succession, thereby creating the sensation of \"iewing the motion. Now 

that we have x(t) = cn(t) with mdependent variable t. the animation becomes easy to achie\'e. 

The followmg program created 21 images umformly separated m time over one penod of 

oscillation. Note that, in the first step below. the constant a 1s assigned its \'a)ue so that 

4Ji a = 7.4163 which corresponds to one period. 

a= 1.31103 

anharpts = 

Table [ {4Ji a* n I 20, JacobiCN[ 4J2 a* n I 20, 1/2]}, {n, 0, 20} ]; 

setl[n_] := { {0,3}, {anharpts[[n,2]], O}, {O, -3} 

Do[plotl = ListPlot[setl[n], PlotRange ~ { {-1.5, 1.5}, {-3, 3}}, 

PlotJoined ~ True, PlotStyle ~ Dashing[ {0.02} ], 

AspectRatio ~ Automatic,Ticks ~ False, 

DisplayFunction ~ Identity]; 

plot2 = Graphics[ {PointSize[0.1 ], Point[ { anharpts[[ n, 2]], 0}]}, 

AspectRatio ~ Automatic, Axes ---+ True, 

PlotRange---+ { {-1.5, 1.5}, {-3, 3} }]; Show[plot2, plotl], {n, 1, 21}] 

In the next figure, one frame from the sequence of images is shown. The springs are 

represented by the dashed line segments. 
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Figure 6. One Frame from the Animating Sequence 

In our advanced physics laboratory, we constructed an oscillator from two springs and a 

light mass (0.004 kg.) to approximate the ideal oscillator depicted in Figure I. However. the 

springs and mass were aligned vertically. The undistorted length of each of the springs was 3 

cm. However. the springs were stretched by about 50% of their undistorted length when they 

were attached to the mass in its equilibrium position. This was done so that the springs would 

operate in their optimum linear range. 

Any additional distortion in the springs produced by the weight of the mass was assumed 

to be negligible. In any event, no additional stretching of the upper spring and compression of 

the lower were observed. The stretched length of the springs was large with respect to the 

dimensions of the mass. The mass (to which we had taped a small section cut from a stiff index 

card) was pulled aside to a horizontal displacement of approximately I cm. and then released 

from rest. 
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The motion of the spring-mass system took place m a vertical plane with the mass 

vibrating on a horizontal line. The length of the springs was always much greater than the 

horizontal displacement of the mass. We employed a VERNIER™ Ultrasonic Motion Detector 

and interfaced it with the computer via a U L I in order to record the position of the vibrating 

mass at fifty equally spaced instants of time per second. The section of index card served to 

reflect the ultrasonic waves produced by the device. The software program which we used to 

treat the data was MacMotion (vers10n 4). The next figure displays the displacement of the mass 

for two consecutive periods chosen well after the motion had settled into a steady pattern. We 

make no claims that our experimental work was closely controlled or quantitative. It seems to us 

that the most meaningful use to make of the data would be statistical in nature. 
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Figure 7. Displacement (Distance) as a Function of Time for the Real Oscillator 

In Figure 8, we display nine points (x, t) withm a single penod with respect to the dashed 

cosine graph for the simple harmonic motion of the same period, phase, and amplitude as those of 

the real motion. The points marked with the symbol "#" are those which we judge to depart from 

the cosine graph in the manner predicted by Figure 4, in the case that our real oscillator was 

actually a simple anharmonic oscillator. It had occurred to us that we might look at a large 

number of such periods and accµmulate a count of points "better explained" by an anharmonic 

model than by the harmonic model of oscillation. We then might do a bit of statistics by 

developing a nonparametric sign test of the null hypothesis that the data were explained by the 

harmonic model. We would hope to reject that hypothesis. We decided not to pursue these 



128 K. DURLACHER, J. BOYD, and T. DIDASCALOU WA TERMAN 

ideas, but would be happy to share the data with the joint Advanced Placement Statistics class in 

our two schools. 
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Figure 8. Nine Points (x, t) from One Period 

Conclusions 

All three authors, regardless of the levels of their mathematical and technological 

sophistication, benefited from participation in this work. Each is able to point out new ideas and 

combinations of ideas with which he or she had to grapple in order to bring the project to its 

conclusion. We believe that others teachmg and studying in secondary schools at the Advanced 

Placement Level can with profit and success attempt interdisciplinary projects of the sort which 

we have described. • 
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