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Activities based on mathematics education research are incorporated into a preservice 

content course designed to reflect the course objectives of (i) broadening and deepening 

preservice teachers' understanding of the complexities of teaching and learning, (ii) 

encouraging them to develop reflective practices, and (iii) exposing them to the scholarship 

of teaching. Research articles and videos are used throughout the semester to generate 

cognitive dissonance that facilitates the reconstruction of inappropriately formed concept 

images and as sources of classroom investigations and assessment questions. The activities 

provide pre-service elementary teachers with experiences which result in changes in their 

attitudes about mathematics and engage them in professional practices that inform their 

instructional, pedagogical, and theoretical perspectives. 

Research-based activities include a seminar experience which serves to inform students 

about some of the issues involved in the teaching and learning of mathematics. Assigned 

problems such as the Towers Problem, generate discussions that reveal students' thinking, 

their understanding of proof, their beliefs about the elementary school mathematics content 

they need to know, and their assumptions about grade school children's mathematical abilities. 

Ann's Fraction Cookie is an activity which models the use of questions as a constructivist 

instructional practice and introduces the student to problems involving part/whole and 

part/part relationships in the absence of rote symbolic manipulations, with the goal of 

developing conceptual understanding of these relationships. These activities and their impact 

on students are described in this report. 

The Seminar 

The seminar introduces students to mathematics education research and the scholarship 

of teaching. fu preparation for the seminar, students are given a handout describing a seminar: 
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A seminar brings together an interested group of learners who have done some 
preparation outside of class, including having read, thought about and written about 
various research reports and articles. Seminar is a time to "mine" the research, to 
work it over as a group, to think aloud about it, and to test your ideas against those 
of other members of the group. It is a special time for a unique intellectual activity 
-the exchange ofideas focused on a source (research articles, a book, a video, etc.) 

A second handout with suggestions for writing an effective and useful seminar paper, together 

with a list of focus questions directed at salient features of the assigned readings is also 

distributed. Attendance at seminar is mandatory. 

Students are given copies of three or four research articles, which they are assigned to 

read :in preparation for the seminar. Sources of these seminar readings :include various math

ematics education research journals, papers presented at conferences, and/or books which 

:include various researchers' writings on specific topics/issues of mathematics education. A 

short list of questions designed to focus students' attention on some of the salient features of 

the assigned readings is distributed along with the readings. Students are requested to note 

text passages they find most interesting and to review the articles :in light of the focus 

questions with which they have been supplied. Each student writes a short paper (3-5 pages 

typewritten) in which the research articles are analyzed and the relevance of the research to 

the student's own previous mathematics experiences is described. Students report to seminar 

with their written question(s) about some feature of the readings they would like clarified and 

at least one notion they found particularly :interesting/relevant that they are prepared to 

discuss. The questions and the particular ideas or topics of interest, together with the 

students' seminar papers, form the basis for discussion during the seminar. 

Prior to the seminar, students review the :individual and group responsibilities described 

in the seminar handout. They are responsible for conducting the seminar and directing the 

discussion. The instructor's role in seminar is that of an observer and occasional participant 

as s/he moves from group to group and room to room, neither the focus of attention nor the 

authority who tells students what they should learn. In order to provide greater opportunity 

for all students to actively participate :in the discussions, participants form small groups (5-6 

students). Seminar discussions take place :in two adjacent classrooms, three groups per class

room. A follow-up discussion at the neJi..'t class meeting provides opportunities for students 

from the various groups to share their seminar experiences with other members of the class 
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and students submit their written papers for evaluation. 
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Reactions to the seminar experience, based on the seminar discussions and their written 
papers, suggest that most preservice teachers re-examine their own mathematics learning as 
a result of their engagement :in this reflective activity. The following excerpt from a student's 
seminar paper is typical of the comments: 

When I read these articles, I began to think about my own math education. I thought 
back to when I was in first grade and in high school. I would have to say I used 
instrumental understanding all the way through. That is the way I was taught. In 
first grade, I was taught to count the points on the numbers, but when I got to 9 + 9, 
there were no po:ints, so I couldn't solve the problem. In high school, when we were 
using algebraic equations, I never knew why. I never knew why, if you used a certain 
equation, you would come up with this answer. We were always given an equation, 
showed how to apply it to a number and that was it. No explanations of why it 
worked the way it did. 

This student's written description and her subsequent comments during the seminar and in the 

follow-up session, suggest that she has a conceptual orientation, i.e., she feels a need to know 

why something works as well as how it works. It seems that her prior remembered 

experiences occurred in a classroom in which the :instructor provided only a calculational 

orientation [ 1]. These prior experiences left her with feelings of frustration and a distaste for 

mathematics. The assigned readings and seminar activities provided a validation of her 

expectations that mathematics should make sense and gave the student a renewed confidence 

which was evident throughout the semester. 

Classroom and Journal Investigations 

Research articles are a rich source of problems which provide documentation of students' 

thinking and beliefs. Two such problems featured in research reports, Building Towers and 

Ann's Fraction Cookie, are described, along with their use in the preservice course. 

Building Towers [2]: Pre-video Experiences 

Early :in the semester, preservice teachers are assigned the problem, Building Towers, as 

homework: 

Given plastic cubes of two different colors (red and blue): 
a) Build as many different towers as possible four cubes high without omitting or 
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duplicating any. 
b) Convince other members of your group that you have built all possible different 

towers and that you do not have any duplicates. 

During the next class meeting, students discuss their work and solution(s) to the problem with 

other members of their group, justifying their results. Members of different groups then share 

their discussions, solutions, methods of investigation, and justifications. The groups then 

explore Building Towers II: 

Given plastic cubes in two different colors (red and blue): 
a) Build as many different towers as possible five cubes high without omitting 

or duplicating any. 
b) Convince other members of your group that you have built all possible different 

towers and that you do not have any duplicates. 

Preservice teachers' initial explorations of this problem generate classroom discussions 

that reveal their thinking about the problem. It is a problem characterized as easily 

accessible-that is, every student is able to get started on the problem and work out a solution, 

though the solutions of many preservice teachers are frequently incorrect. After the class 

investigations and further discussion, students are assigned a reflection journal as homework 

and asked to complete the following: 

I first thought .... 

I first attempted the problem by .... 

After talking with my group I realized ... . 

I know I have all the towers because ... . 

These written reflections reflect the range of abilities and ways of thinking of different stu

dents. A typical response was: 

When I first looked at this problem I thought it was going to be very complex and 
difficult. I don't know ifI have all the answers ... Every time I think I have all the 
towers I :find a couple more. It's driving me mad!!! I know there is a pattern but I'm 
not sure what it is .... However, I just realized that some towers repeated, so this 
pattern really doesn't work. Augh! ! ! 

Occasionally, some students indicate they have made connections with previous problems 

which they recognize as having a similar structure. A student recently wrote: 
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I first thought that this problem might be like the ice cream problem that we did from 
the book. We were dealing with 4 elements (cubes) in the tower problem and 4 
toppings in the ice cream problem. I first approached the problem by reviewing the 
ice cream problem. I remembered that there were 16 different combinations of 
toppings m the ice cream problem ... .! also remembered the following table from our 
text: 

·E Nilii-iB6t.6£ 
: iEi~tficihts·<•t 

1 

2 

3 

4 

5 

2 

4 

8 

16 

32 

This student went on to complete the statement: I know I have all the towers because ... 

This helped me generalize about a tower with n numbers of blocks. For any set with 
n elements, the number of subsets (combmations in this case) of that set is 2n. This 
helped me verify that there would indeed be 16 different towers of 4 cubes and with 
5 cubes we would get 25 which is 32 combinations. 
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In general, preservice teachers' understandmgs of the nature of proof provide little cause 

for rejoicing by their instructors. Few students are able to provide a valid proof They 

generally fail to recognize that the fourth- graders use various methods of proof to justify their 

work, includmg proof by exhaustion and proof by induction. More representative of the 

responses to the question of whether they have found all the cubes is the statement: 

I know I have all the towers because I have talked with the people in my group and 
we all had the same answer. 

Some students, perhaps not quite convinced that their group members are correct, look to 

other groups for verification: 

We have also talked to other classmates and have all come to an agreement. Therefore 
we have all possible towers. 

Unfortunately, they don't. In a recent class, twelve of the twenty-three students did not find 
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all possible four- and five-cube towers. The approximate percentage of 50% of students who 

find a correct solution has remained fairly consistent during the four years we have used the 

problem. 

Building Towers I and II: Post-video Reflections 

Following the preservice students' investigations of the Towers problem, a twelve-minute 

video of a group of four fourth-graders working on the same problem is viewed by the class. 

(The videotape is part of a longitudinal research study on the nature of elementary grade 

children's experiences with proof) The videotape presentation generates discussion in which 

students' beliefs are revealed about elementary school mathematics content they need to know 

and their assumptions about grade school children's mathematical abilities. Students are 

assigned to write a second journal in which they are asked describe their observations about 

the four fourth graders on the video clip, together with reflections on their own investigations 

of the Towers problem. They were asked to answer four questions: 

As a result of class discussion, I now realize about the Tower Problem .... 

Before seemg the video of the 4th graders doing the Tower Problem, I thought that .... 

After seeing the video, I now .... 

I have the following additional comments and/or reflections .... 

Several students were surprised to discover the variety of ways the problem could be 

approached, an observation typical of a majority of students after viewing the video. Many 

of the preservice teachers commented that, prior to watching the video, they believed "the 

fourth graders would have a harder time dealing with the problem than they did." Several 

preservice teachers acknowledged that fourth grade students did better than they (the 

preservice teachers) had done and that the elementary grade students were more capable of 

doing a higher level of mathematics than previously thought. Typical comments were: 

After seeing the video, I realize just how intelligent 4th graders are. They seem to be 
so willing to explore different ways about finding solutions. 

Children are doing more cli:fficult tasks at a younger age than I was. 

I realized that 4th graders can handle this concept and with ease! I felt a bit 
'challenged' by the intelligence and confidence the 4th graders displayed. 
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A few students, after viewing the video, saw connections to other problems they had missed 

in their previous investigations: 

The pattern was Pascal's triangle, and those kids were a heck of a lot smarter than 
I thought. Their ideas and thoughts were very advanced. 

The reflections and subsequent class discussions form the basis for later investigations into 

the nature and role of proofs, including an analysis of the proofs given by the fourth graders 

in the video clip. 

Ann's Fraction Cookie [3] 

Preservice teachers generally have little conceptual understanding of fractions and have 

learned operational algorithms by rote. Less than fifteen percent of preservice teachers each 

semester have been able to demonstrate mastery (85% correct) on a thirty question 

competency test of basic arithmetic skills given during the first week of class. The areas of 

greatest difficulty for these students are the questions which test basic skills with fractions and 

those dealing with proportional reasoning. A common strategy for finding the sum 9 + 7 3i8 

is to change both addends to improper fractions, combine the terms, and attempt to convert 

the answer to a mL"Xed number. More than seventy percent of the students who have enrolled 

in the preservice content course during the past six years used this strategy. 

Experiencing cognitive dissonance can be effective in the restructuring of previously

acquired inappropriate concept images. The following activity has been effective in 

generating cognitive dissonance which resulted in students' restructuring of their existing 

schemas. Ann's fraction cookie activity is designed to provide students with experiences of 

part/whole and part/part relationships. Students are given the "cookie" and asked the 

following series of questions: 

C 

8 

I 
IA 

D 
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The Questions 

1. A is what part of the whole cookie? 

2. Bis what part of the whole cookie? 

3. How did you figure out your answer? 

4. C is what part of the whole cookie? Why? 

5. Can you show me half of the cookie? 

6. Can you see any more halves? 

7. How many ways can you make one-half? 

8. What is more important, the shape or the number of squares? 

9. How many ninths would make half of the cookie? 

10. How many ninths would make the whole figure? 

11. How did you figure that out? 

12. Ifl give you forty-five ninths of this cookie, how many cookies would 
you be able to make? 

13. Suppose I give you one thirty-sixth and one eighteenth of a cookie. 
What part of the cookie have I given you? Why? 

14. Suppose I give you two thirty-sixths and three eighteenths, what part 
of the cookie would you have? Why? 

15. What part of the cookie would you have if I give you three ninths and 
two eighteenths of it? 

16. Instead, suppose I give you one sixth and one ninth of the cookie, what 
part of the cookie would you have? 

17. If I give you two sixths of the cookie and then three ninths of the 
cookie, what part of the cookie would you have? Why? 

18. Suppose I have a certain amount of money. I would like to give you 
one fourth and one eighth of that money. What part of my money 
would I have given you? 

The responses to these questions are based on understanding the relationships among the 
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various components of the fraction cookie manipulative. Students are not permitted to use 

pencil and paper to calculate their responses, only to record their answers to this series of 

questions. For homework, they are to read the research article that reports Ann's 

investigations based on the same questions. Additionally, the preservice teachers are to 

identify the fraction operations in the questions used during the initial class investigation. 

They are to note the sequence in which the operations were introduced. Students are given a 

second copy of the cookie, which they use as manipulatives to continue their explorations of 

the various relationships. 

The investigations utilizing the Fraction Cookie manipulatives introduce a sequence of 

activities leading to discussion of "What's my unit?" and a more conceptual understanding of 

the operational algorithms students have learned previously. This problem introduces students 

to the use ofmanipulatives. Students' :final course interview comments typically mention their 

reaction to the introduction and use ofmanipulatives: 

Instead of thinking I have a math disability of some kind, I am starting to think of 
math as a journey into more exciting learning e"--periences. I had so much fun vvith 
the fraction manipulatives, I went and bought some; my husband laughs at me 
because I like to do problems with them during the commercials on tv. 

Assessment and Evaluation Activities 

Research articles are also a source of problems used as evaluation items on small group 

take home exams and on small group oral exams. Preparation for the small group oral exam 

offers students opportunities to demonstrate the creativity inherent in mathematical thinking 

in ways most of these students have not e;,.,l)erienced previously. Two problems that have been 

extremely effective in revealing how creatively students think about a problem are Sam 's 

Cookies and The Bowl and Measuring Cup [4]. Both problems afford students opportunities 

to demonstrate their ability to use manipulatives effectively and appropriately- opportunities 

which allow students to use their imagination in wonderfully creative ways. 

Sam's Cookies 

Sam has 35 cups of flour. He makes cookies that require 3/8 of a cup each. If he 
makes as many such cookies as he has flour for, how much flour will be left over? 

The manipulatives that students use to demonstrate their solutions to these problems have 
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included hand-made manipulatives as well as "found" manipulatives. One group used Legos 

to demonstrate their solution to Sam's Cookies. They arranged thirty-five 8-cell units, 

forming a base layer representing the thirty-five cups of flour on a flat Lego platform. On top 

of the thirty-five 8-cell units, they placed 3-cell units, arranged to cover as much of the 35 8-

cell units as possible. 

The Bowl and the Measuring Cup 

Perhaps the problem that students have the most fun with is The Bowl and the Measuring 

Cup: 

You are given a large bowl and a small measuring cup. AB quantities to measure, 
you have some rather large pebbles and some fine-grained sand. You repeatedly fill 
the measuring cup with the pebbles, transferring them to the large bowl until it is 
filled. By counting you have determined that it required 27 cups of pebbles to fill the 
bowl. You then empty the bowl. 

a) Calculate how many cups of sand will be needed to fill the bowl to the top. 

b) Put 20 cups of pebbles into the empty bowl and calculate how many cups of sand 
will be needed to fill the bowl to the top. Consider what arithmetic operation is 
appropriate for this situation, if any. Once you have made your choice, carry out 
the appropriate calculation (you may use a hand-held calculator), then verify your 
answer. 

c) Describe the essential mathematical tasks contained in this problem. 

Each semester, one or more groups attempt to replicate the problem conditions as 

precisely as they can. One group, working at a member's home, crept out during a rainstorm 

and "borrowed" pebbles from the neighbor's driveway across the street and sand from the 

ne:,,._1:-doorneighbor child's sandbox. Another group, not certain a cup was a cup was a cup, 

used every bowl in the house, then borrowed additional bowls from the neighbors as they 

investigated the problem, using cereal and sugar; hard candy and salt; and other combinations 

of materials-they couldn't find any pebbles or sand, nor could they find a bowl. Another 

group spent a week locating "proper equipmentn before attempting to solve it-they measured 

how much liquid every bowl in each of their four houses could hold, trying to find a bowl that 

held exactly twenty-seven cups. 

The adventures that preservice teachers have investigating this problem are described by 
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the student who wrote on her final portfolio evaluation: 

We solved many word problems over the semester (and I think that math learning 
should be mostly word problems), but my favorite had to be the problem on the oral 
exam concerning the large bowl, the measuring cup, the sand, and the pebbles. The 
sand, pebbles and bowl problem asked us to make a prediction about the ratio of the 
sand to the pebbles. This led to a long discussion about whether "a cup is a cup" no 
matter what is inside. Tiris lively debate caused our group to rethink preconceptions 
about this idea, and to perform tests to prove or disprove our various hypotheses. 
What made it most enjoyable was all the time that our orals group spent arguing 
about it, and the fact that we were pouring fish rocks in the Denny's Restaurant for 
hours. We argued, we laughed, and we griped, but we all learned from sharing one 
another's ideas and methods. It was a rich experience that I'll not soon forget. 
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Her change in attitudes and beliefs during the semester is clearly demonstrated if one 

compares the portfolio evaluation comments with comments written during the first week of 

the semester in her autobiography. At the beginning of the semester, this student wrote: 

If you have the words 'Beth', 'math', and 'highlights' in one sentence, there must be 
an oxymoron in there somewhere. Although I don't feel that I'm afraid of math as 
much as I'm just frustrated with it, I must be one of those students who suffers from 
math anxiety. 

Summary 

Students' lack of conceptual understanding of foundational mathematical ideas-their 

inability to interpret and use ambiguous mathematical notation effectively and appropriately; 

the plethora of misconceptions and inappropriate concept images they enter class with; their 

innate and learned over-reliance on rote procedures and inflexible schemas; together with their 

negative attitudes and beliefs about mathematics are some of the issues that confront the 

instructor of preservice students. The responses cited in this paper illustrate the lack of 

prerequisite mathematical knowledge and skills preservice students bring to our courses. 

College students who cannot add two mixed numbers correctly; who are convinced they need 

to change a whole number to an improper fraction before adding to a mixed number; who 

believe that fourth graders know more mathematics and can solve problems more easily than 

they can-these are the students who hope to teach mathematics to the future generations of 

students. 

How do we narrow the gap between the under-preparedness of preservice students and the 
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level of conceptual understanding and competence necessary to teach future generations of 

students? Given their lack of mathematical competence and conceptual understanding, the 

accomplishment of many of our students in the short period of a sixteen week semester are 

quite remarkable. But is it enough? A growing body of research [ 5] suggests that instruction 

designed with a reconceptualized view of mathematics and learning can improve students' 

competency and understanding of what mathematics is, what it means to know mathematics, 

and how to go about learning mathematics. The literature provides a framework within which 

to interpret our observations and student work, and is a rich source of problems which reveal 

students' trunking. A student's self-assessment upon completing the preservice content course 

summarizes the impact research-based activities had on her beliefs and attitudes: 

Upon entering this class, I was really stuck in a rut-if it's math, I can't do 
it ... Mathematics almost seems a philosophy to me at this point. I am taking an 
astronomy course in conjunction with this class, and the discovery in both classes of 
the appearance of patterns as a problem-solving tool has really solidified this 
technique for me. I see math as a tool that is there to work for me rather than 
something to make things more difficult. 

Students' responses such as this, together with the improvements in mathematical competence 

and understandings they have demonstrated, suggest that activities and evaluations grounded 

in research can play a vital role in the development of future teachers. More work on effective 

uses of the research literature is needed. We invite you, the reader, to join with us as we 

continue to e:i,..'-plore ways to incorporate research findings into our instructional practices.• 
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