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ABSTRACT 

CHARACTERIZING THE CELLULAR NATURE OF THE PHYSICAL INTERACTIONS 
NECESSARY FOR COLLECTIVE NEURON MIGRATION 
 

By Rebecca D. Vareed, B.S.  
A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

in Biology at Virginia Commonwealth University. 
Virginia Commonwealth University, 2019 

Major Advisor: Gregory S. Walsh, Ph.D. Associate Professor, Department of Biology 
 

 
 Neuronal migration is an essential process in the development of the nervous system. 
Neurons are born in one location and migrate sizable distances to their final location. In many 
other developmental processes, cells migrate as collectives, where the migration of one cell 
influences the migration of another cell; this process has yet to be shown in the developing central 
nervous system. Using the conserved tangential migration of facial branchiomotor neurons 
(FBMNs), I aim to determine the nature of the collective migration in the developing nervous 
system. Here, two models of FBMN collective migration are tested: the “Pioneer” model, where 
following FBMNs migrate intimately on the axon of the first neuron to migrate and the “Contact 
inhibition of locomotion (CIL)” model, where transient cell-cell contacts are the driving influence 
of the proper caudal migration of FBMNs. Using fixed tissue imaging, it was found that early born 
FBMNs do not contact the axon. In contrast, they are more likely to make soma-soma contact and 
display morphology typical of CIL. FBMNs that do contact the axon do not display an elongated 
morphology that is predicted of a cell using the leader axon as a substrate for migration. Further, 
wild-type FBMNs are able to rescue PCP-deficient FBMNs. Therefore, blastula-stage 
transplantation of PCP-deficient neurons into wild-type hosts allows us to live image the method 
of collective migration. CIL events were observed between PCP-deficient neurons and wild-type 
neurons, indicating that PCP is not required for CIL. In addition, PCP-deficient neurons making 
sustained contact with wildtype axons were not rescued, arguing against the Pioneer model. Taken 
together, these observations are more consistent with the “CIL” model of FBMN collective 
migration in which transient soma-soma interactions are required for the coordinated movement 
of neurons as they migrate in the developing nervous system.   
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INTRODUCTION 

 

Development of the nervous system and neuron migration 

 The human nervous system is constructed of a complex network of neurons responsible 

for sensing environmental stimuli and controlling behavior. Neuron migration is an essential step 

in the formation of these neural circuits. Neurons are often born in one location and migrate 

sizable distances to their final destination where they assemble into neural circuits. Neurons 

integrate numerous cellular and molecular cues to navigate to their final positions. These include 

heterotypic cell-cell interactions with neuroepithelial cells, homotypic interactions with 

neighboring neurons, intrinsic factors like polarity complexes and transcription factors, and 

responses to extrinsic factors, such as secreted chemotactic factors.   

Mutations in genes that regulate neuron movement have been shown to cause rare 

neurodevelopmental disorders such as epilepsy, Tourette’s syndrome, and lissencephaly, as well 

as more common neurodevelopmental disorders such as autism and schizophrenia (Ross et al., 

2002; Valiente et al., 2010). For example, mutations in DCX, implicated in regulating 

microtubule organization and stability, and LIS1, implicated in regulation of microtubule 

organization and dynein motor function, are responsible for the majority of classical 

lissencephaly (Ross et al. 2002). Mutations in reelin, an extracellular matrix protein that 

regulates cell-cell interactions necessary for proper cell positioning, result in cerebellar 

hypoplasia (Ross et al., 2002). It is therefore essential to understand the cellular and molecular 

mechanisms of neuron movement in the developing nervous system. 
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 Neurons migrate radially or tangentially depending on where they are born and their final 

destination. Radial migration occurs when cells migrate from the ventricular zone towards the 

surface of the brain. Neurons that migrate radially are initially born from radial glia (neural 

progenitors of the cortex) from asymmetric cell division. Subsequently, radially migrating 

neurons re-attach with radial glial fibers, using them as a substrate for migration towards the 

marginal zone. As they migrate radially, these neurons make intimate contact with radial glial 

fibers as they migrate to the developing cortical plate, displaying an elongated bipolar 

morphology, with a thick leading process and a thin trailing process (Kriegsten et al., 

2004). These leading and trailing processes are tightly associated with and adhered to the glial 

fiber as the cell migrates. Cell adhesion molecules (CAMs) such as N-cadherin, a calcium-

dependent homotypic CAM, play an important role in neuron-radial glial cell migration. Neuron-

specific inactivation of N-Cadherin leads to a defect in radial migration and an increase in the 

distance between neuron and radial glial fiber (Kadowaki et al, 2007; Kawauchi et al, 2010).  

 
 Tangentially migrating neurons, unlike radially migrating neurons, move through the 

parenchyma, perpendicular to radial glia, to reach their final destination. Tangentially migrating 

neurons rely on integration of repulsive and/or attractive chemotactic cues in the environment, 

rather than contact with radial glia, to navigate to their final destination (Marin et al., 2003; 

Evsyukova et al., 2013). There are several examples of tangential neuron migration, including the 

migration of GABAergic inhibitory precursors neurons from the ganglionic eminences to the 

cortex (Anderson et al, 1997; Tamamaki et al., 1997). These precursors rely on semaphorin-

neuropilin interactions to migrate to the cortex. The repulsive cues established by Sema3 guides 

proper dorsal migration by Npn-1 positive cells, while also ensuring that cells do not migrate 

improperly into ventricular zone (Tammamaki et al., 2003). Another example of tangential 
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migration is the posterior/caudal movement of the facial branchiomotor neurons in the hindbrain 

(see below for more information).  

 

Cell migration 

 Cell migration involves front-rear polarity, actin polymerization, and membrane 

dynamics. In general, cells develop an intrinsic polarity that consists of a front, where membrane 

protrusions such as lamellipodia and filopodia, and a rear, where cell membrane is contracted, 

and adhesions are regulated to detach as the cell advances. Most migrating cells have the 

nucleus, Golgi apparatus, and microtubule organizing center arranged in a line pointing towards 

the front axis of the cell. This allows for cargo from the Golgi to be transported along 

microtubules to the front of the cell as it migrates. This intrinsic polarity may be influenced by 

multiple cues including cell-cell interactions, cell-matrix interactions, and secreted factors.   

 Morphologically, front-rear polarity is characterized by the presence of a large 

lamellipodium and smaller, dynamic filopodia. Lamellipodia and filopodia are stabilized at the 

leading edge of the migrating cell, and the cell exhibits motility through a protrusion, adhesion, 

contraction, and retraction cycle. This polarity is established by activation of small Rho family 

GTPases, such as Cdc42 and Rac1 at the front of the cell and RhoA at the rear of the cell, which 

regulate actin dynamics and protrusion formation (Takai et al, 2001; Jaffe & Hall 2005). Rac1 

typically promotes branched actin polymerization seen in lamellipodia, cdc42 promotes long 

parallel actin polymerization in filopodia, and RhoA promotes actin-myosin contraction and/or 

the dis-assembly of actin filaments at the rear of the cell (Nyugen et al., 2016). In the absence of 

directive cues, migrating cells display random motility (Bard and Hay 1975). In vitro, cells 
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display peripheral lamellipodia, mostly in part due to high activation of Rac at the leading edge 

(Pankov et al., 2005).  

 In order to migrate directionally, cells require cues such as contact-guidance, cell-cell 

contact, or chemotactic gradients (Rieg et al., 2014). When given a directional cue, protrusion 

formation stabilizes along a leading axis, allowing cells to exhibit proper directional movement. 

These extrinsic cues ultimately affect the activation Rac and cdc42 at the front and RhoA 

activation at the rear of the cell, leading to polarized directional movement. Inhibition of random 

protrusion formation is mediated by Rho, as well as membrane tension, which acts as a physical 

signal to inhibit protrusion formation anywhere but the leading edge (Rieg et al., 2014).  Multiple 

extrinsic cues can regulate the activity of Rac and Rho, and hence actin polymerization and de-

polymerization, leading to guided movement of cells.  

 While individual cues can be isolated and studied in vitro, neuron migration in vivo relies 

on multiple cues found in the 3-dimensional milieu through which they navigate.  These include 

cell-cell contact, contact guidance, and chemotactic gradients may interact. Importantly, many 

cell types in vivo often migrate as collective groups (Rieg et al., 2014).  

 

Collective cell migration 

Collective cell migration is defined as the coordinated and cooperative movement of a 

cell population. Importantly, the behavior and migration of one cell can influence the migratory 

behavior of another cell. Collective cell migration is borne from cell-cell interactions, where 

cooperation between neighboring cells contributes to their overall directionality. These may 

range from stable physical links between cells in a group (e.g. epithelial cells) to transient 

interactions between neighboring cells (e.g. mesenchymal cells, neural crest cells (NCC)). Given 
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the necessity of cell-to-cell contact in collective migration, as contact events are critical for 

collective migration, it is not surprising that cell adhesion molecules play a central role.  For 

example, during germ layer morphogenesis in the course of gastrulation, lateral line migration in 

zebrafish, and epithelial sheet migration during wound healing, cells remain physically 

connected throughout their migratory path (Olson et al., 2018; Danjo et al., 1998). This form of 

collective migration has also been described in invasive carcinomas (Yamamoto et al., 1983; 

DiCostanzo et al., 1990; Gaggioli et al., 2007). In this instance, the leading cells physically pull 

other cells behind them as they migrate, bound stably by physical cell-cell connections. These 

physical cell-cell connections are responsible for migration of the cell population; for example, 

E-cadherin is essential for proper migration of epithelial sheets in wound healing, as loss of E-

cadherin halts migration entirely (Li et al., 2012).  

Cells can migrate collectively as individuals, making transient contacts throughout 

migration. This occurs when cells migrate as loose chains or streams, which has been best 

described in the migration of neural crest cells (NCC) that migrate as a stream of cells 

(Sadaghiani and Thiebaud, 1987). Individual cells make transient contact with neighboring 

NCCs, and evidence suggests these transient contacts are essential for NCC directional migration 

(Theveneau et al., 2010). For instance, when NCCs are placed in a gradient of an attractive 

chemotactic factor, NCCs only migrate directionally if there is a large enough density of NCCs 

to promote NCC-NCC interactions. If NCCs are placed as a lone cell within this gradient, they 

often wander randomly and without persistent directed movement (Theveneau et al., 2010). 

These studies indicate that cell-cell contact is necessary for NCCs to polarize and respond 

correctly to other extrinsic cues in the environment. Interestingly, cadherins, a family of calcium-

dependent cell adhesion molecules, are thought to play an important role as key regulators of 
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cell-to-cell communication that allow cells to polarize and collectively migrate with high 

directionality. In the absence of N-cadherin, NCCs migrate randomly even in the presence of a 

chemotactic gradient (Theveneau et al., 2010).  

Although studies of collective migration in 1D or 2D culture have yielded valuable 

insights, the number of model systems to study collective migration of streams or chain 

migration in vivo are few. The study of neural crest cells in frog and zebrafish have provided 

valuable insights into the cellular and molecular mechanisms of collective cell migration. A 

second model relies on the collective migration of hemocytes in Drosophila that require cell-cell 

contact to disperse evenly across the organism (Stramer et al., 2010). Similarly, Cajal-Retzius 

cells make transient interactions to ensure an even distribution as they migrate over the surface 

of the cortex (Villar-Cervino et al., 2013). However, the study of collective migration in the 

developing nervous system has not been characterized. There is a need to develop additional 

model systems in vivo to identify the molecular mechanisms of collective migration, especially 

in the central nervous system. 

Contact inhibition of locomotion  

 How do transient cell-cell interactions lead to directional movement? An observation of 

cells undergoing transient collisions by Abercrombie suggested that cell-cell contact leads to an 

arrest in migration followed by repolarization and migration in the opposite direction, leading to 

dispersal of the cells (Abercrombie & Heaysman, 1953; Abercrombie & Ambrose, 1958). This 

behavior of the cells has been coined contact inhibition of locomotion. Contact inhibition of 

locomotion (CIL) occurs when a cell contacts another cell, ceases its movement, collapses 

protrusions at the site of contact, repolarizes with protrusive behavior initiating on the free 
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surface of the cell (away from the site of contact), and changes its directional migration. CIL 

should be thought of as a repulsive influence on neighboring cells, thereby leading to dispersion 

of the collective. CIL has been demonstrated to be the driving force behind the collective cell 

migration of neural crest cells and Cajal-Retzius cells in vertebrates (Becker et al., 2013; Villar-

Cervino et al., 2013). CIL has also been shown to show an important role in the collective 

migration of hemocytes in Drosophila (Stramer et al., 2010).  

 CIL is mediated by transient cell surface interactions through classical signaling 

molecules. In neural crest cells, cadherins are necessary for proper CIL, while Eph-Ephrin 

interactions mediate the repulsive CIL behavior of both cancer cells and Cajal-Retzius cells 

(Becker et al, 2013; Batson et al., 2013; Villar-Cervino et al., 2013). Migrating fibroblasts rely 

on Slit-Robo interactions at collision sites to properly engage in CIL (Roycroft et al., 2016). 

Engagement of these adhesion molecules and transmembrane receptors leads to repolarization 

and changes in protrusion dynamics by modulating the Rac-Rho axis in the relevant cell types.  

 N-cadherin has been shown to be necessary for proper migration in neural crest cells, as 

inhibition of N-cadherin signaling results in failure of neural crest cell migration (Theveneau et 

al., 2010). Importantly, N-cadherin is essential for CIL, as N-cadherin deficient cells display 

cell-cell overlapping, as well as making overlapping protrusions between neighboring cells. 

Wild-type cells display clear cell-cell boundaries and do not make overlapping protrusions. 

Further, N-cadherin deficient cells do not display the halt in migration and change in behavior 

that wild-type cells display after a collision event. This suggests that cells lacking N-cadherin 

have lost the ability to inhibit protrusions, and therefore have lost CIL behavior that is necessary 

for them to migrate properly (Theveneau et al., 2010).  
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Planar cell polarity  

 Planar Cell Polarity (PCP) refers to the coordinated alignment of cells within the 

epithelial plane. PCP signaling involves the evolutionarily conserved core transmembrane 

proteins Frizzled (Fzd), Celsr, Van Gogh-like (Vangl), and the cytoplasmic proteins Disheveled 

(Dsh), Prickle (Pk), and Scribble (Scrib), which localize asymmetrically to regulate polarity. PCP 

has been extensively described in Drosophila wing epithelial cells. These wing cells are 

characterized by trichomes, an actin-based hair that is localized to the distal side of each wing 

cell. The aforementioned core PCP proteins are responsible for the localization of this trichome, 

as mutations in these genes result in improper wing hair organization (Vinson & Adler, 1987; 

Krasnow et.al. 1995, Shimada et al., 2001; Tissir & Goffinet, 2013). The proper orientation of 

trichomes is established by the asymmetrical localization of Fzd, Celsr, Dsh, and Dgo to the 

distal side and Vangl, Celsr, and Pk to the proximal side of each wing cell (Strutt 2001; 

Montcouquiol et al., 2006; Strutt & Strutt, 2006). 

 This asymmetrical localization of core PCP proteins is highly conserved and has been 

implicated in important developmental processes in vertebrates as well. PCP is also responsible 

for the proper alignment of epithelial cells. For instance, loss of any PCP core protein leads to a 

randomized alignment of hair cells in the inner ear, misaligned hair follicles in the skin, and loss 

of asymmetric localization of mono-cilia in floorplate cells, responsible for the circulation of 

cerebrospinal fluid (CSF) (Borovina et al., 2010; Walsh et al., 2011). The asymmetry in 

morphology is also mirrored by an asymmetry in the distribution of core PCP proteins. For 

instance, Vangl2 protein is found on the same side as the cilia in inner ear hair cells, whereas 

Fzd3 is found localized to the opposite cell membrane (Borovina et al., 2010; Wallingford 2012).   
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 In addition to its role in static epithelial cells, PCP signaling plays a role in the movement 

and migration of various cell types. Perhaps the best studied example is convergent extension 

movements during gastrulation of vertebrate embryos. Convergent extension (CE) is an essential 

process for body axis elongation, where cells must intercalate and narrow along one axis leading 

to extension of the body axis. This process was first described in Xenopus but has also been 

described in Zebrafish gastrulation (Keller et al., 1988; Heisenberg et al., 2012). PCP has been 

implicated in the regulation of convergent extension, as loss of Wnt11 signaling results in 

improper CE (Ulrich et al., 2005). Further, many PCP mutants, such as vangl, dsh, pk1a, and 

scrib, display a convergent extension defect (Tada et al., 2012). PCP signaling is also necessary 

for other types of cell migration including wound healing, neural crest migration, and neuron 

migration (see below).  

 PCP functions further in many processes in the development of the nervous system. First, 

PCP is essential for proper neural tube closure. PCP signaling has been implicated in the proper 

movement and intercalation of dividing cells during neural tube closure, and when interrupted 

can lead to defective midline establishment and failure of neural folds to fuse (Ciruna et al., 

2006; Ybot-Gonzales et al., 2007). PCP is also essential for axon pathfinding, as fzd, vangl, 

celsr3, and scrib are required for proper pathfinding of spinal cord commissural neurons, as well 

as dopaminergic neurons in the brainstem (Sun et al., 2016; Zou, 2004; Tissir and Goffinet, 

2013). PCP core components have also been shown to be required for the posterior tangential 

migration of facial branchiomotor neurons in the developing hindbrain (see below).  
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Migration of facial branchiomotor neurons  

 The migration of facial branchiomotor neurons (FBMNs) in zebrafish is highly 

stereotyped and provides an excellent model system to investigate the cellular and molecular 

mechanisms of neuron migration. FBMNs are a subset of cranial motor neurons that are born in 

rhombomere 4 at 16 hpf and undergo a tangential migration caudally to reach r6/r7 in zebrafish 

by 48hpf (Figure 1). This migration is evolutionarily conserved in mammals, fish, and lizards 

(Chandrasekhar, 2004). FBMNs are born ventrally and migrate along the ventral aspect of the 

hindbrain. During the course of their migration, FBMNs come in contact with several different 

cell types, and these cell-cell interactions can provide guidance cues to promote proper caudal 

movement. FBMNs interact homotypically with other FBMNs, as well as heterotypically with 

the surrounding neuroepithelial cells.  

 
 As FBMNs migrate, they trail their axons behind as they move caudally (Chandrasekhar, 

2004). FBMN axons exit the spinal cord from r4 (where they are born), where they make up the 

motor portion of the facial nerve (cranial nerve VII). In humans, FBMNs innervate muscles 

responsible for facial expression, whereas in fish, FBMNs innervate muscles associated with 

some aspects of jaw movement, as well as muscles that move the operculum that covers the gills 

(Chandrasekhar, 2004).  

 Previous experiments have identified some of the proteins responsible for regulation of 

proper FBMN migration. For instance, the transcription factor Hoxb1a is expressed in r4, and is 

essential for proper patterning including differentiation of FBMNs, as they are born in r4 

(McClintock et al., 2002). Mutation or knockdown of hoxb1a in either mouse or zebrafish leads 

to a complete block in FBMN caudal migration (Rohrschneider et al., 2007; Gavalas et al., 
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2003). Further, tbx20, another transcription factor, is expressed by cranial motor neurons and is 

essential for proper caudal FBMN movement (Song et al., 2006).  

 Secreted chemotactic factors are also responsible for the proper caudal migration of 

FBMNs. SDF1, Vegf164, and Hgf1/2, and their obligate receptor molecules such as Cxcr4, 

HGFR, and Met have all been implicated in the regulation of FBMN movement (Sabede et al, 

2005; Schwarz et al. 2004; Elsen et al., 2009; Cubedo et al., 2006). Extracellular matrix proteins 

expressed at the base of the neural tube, such as Laminin, also play a role in mediating proper 

migration (Grant & Moens, 2010; Sittaramane et al., 2009). The evolutionarily conserved planar 

cell polarity (PCP) pathway has also been specifically implicated in regulating the caudal 

migration of FBMNs.  

Planar cell polarity and facial branchiomotor neurons  

 PCP is essential for the regulation of proper caudal migration of FBMNs. Mutations in 

the core PCP genes fzd3a, celsr1/2, vangl2, and scrib result in the aberrant stalling of FBMN 

migration in r4 (Wada et al, 2005,2006; Jessen et al., 2002; Glasco et al, 2012). Through 

generation of chimeric embryos via gastrula stage transplants, it has been shown that these 

essential PCP proteins function non-cell autonomously. That is, wild-type cells transplanted into 

a PCP-deficient environment are unable to migrate properly (Wada et al., 2005, 2006; Davey et 

al., 2016; Jessen et al., 2002; Sittaramane et al., 2013; Walsh et al., 2011). This suggests that 

PCP-dependent polarization of the neuroepithelial environment is necessary for proper migration 

of FBMNs.  
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 Evidence suggests that the PCP protein Pk1b is not required non-cell autonomously 

(Rohrschneider et al., 2007; Mapp et al., 2011). Pk1b, unlike other PCP genes that are expressed 

ubiquitously, is only expressed in FBMNs as they move from r4 through r6 and not in the 

surrounding neuroepithelial cells (Rohrschneider et al., 2007). Absence of pk1b expression 

results in failure of FBMNs to migrate out of r4 (Rohrschneider et al., 2007; Mapp et al., 2011). 

Unlike other PCP mutants, wild-type cells transplanted into a pk1b-deficient host are able to 

properly migrate posteriorly (Mapp et al., 2011; Walsh et al., 2011). This indicates that the 

neuroepithelial environment in a pk1b-deficient host retains the proper polarization necessary for 

proper caudal directionality of migrating FBMNs. Further, reciprocal transplants demonstrate 

that pk1b-deficient cells are unable to migrate in a wild-type host (Rohrschneider et al., 2007). 

This supports a cell autonomous role for Pk1b in FBMN migration.   

 It has been demonstrated that other core PCP proteins function non-cell autonomously 

(Wada et al., 2005, 2006; Davey et al., 2016; Jessen et al., 2002; Sittaramane et al., 2013; 

Walsh et al., 2011). If other PCP proteins function within the neurons cell autonomously, then it 

would be predicted that a PCP mutant FBMN would fail to migrate in a wild-type host. 

However, after analysis of chimeric embryos, it was observed that while a large number of PCP-

mutant neurons fail to migrate, approximately half of fzd3a-, vangl2-, or scrib-deficient FBMNs 

did migrate appropriately when transplanted into a wild-type host (Wada et al., 2006; Walsh et 

al., 2011; Davey et al., 2016). The reason for this is elucidated by the novel transplantation of 

fzd3a, vangl2, and scrib mutant donor cells into pk1b mutant hosts. In pk1b mutant hosts, the 

environment is wild-type, as previously discussed, but host neurons fail to migrate (Figure 2). 

Under these conditions, PCP-deficient donor cells completely fail to migrate caudally, remaining 

blocked in r4 with the unmigrated host neurons (Walsh et al., 2011; Davey et al., 2016). 
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Therefore, it can be concluded that the only reason some PCP-deficient neurons can migrate in a 

wild-type environment is due to the presence of properly migrating wild-type neurons. That is, 

wild-type neurons can rescue the posterior migration of an adjacent PCP-deficient cell.  

 First, this observation demonstrates that core PCP proteins function cell autonomously 

(within the neuron) as well as within the environment (non-cell autonomous) to regulate caudal 

movement. Secondly, this observation suggests that one neuron can influence the migration of a 

neighboring neuron, and therefore FBMN migration should be classified as a collective 

migration. This was the first demonstration of collective behavior by neurons migrating in the 

developing central nervous system. It should be noted that the observation of collectiveness only 

occurs in mosaic embryos generated by cell transplantation that is easily accomplished in 

zebrafish embryos.  

 The molecular mechanism regulating the collective migration of FBMNs is still being 

elucidated. However, given that a wild-type neuron can rescue the migration of a PCP-deficient 

neuron, it appears that the neuron-neuron interactions that drive and promote collective 

movement are independent of PCP-signaling (at least in the rescued cell).  Given that other 

collective migrations are mediated by cell-cell interactions and cell adhesion molecules, it was 

postulated that a cell adhesion molecule is responsible for neuron collective migration. Indeed, 

inactivation of N-cadherin specifically within FBMNs leads to a loss of collective neuron 

migration (Rebman et al., 2016). Specifically, in mosaic embryos, wild-type neurons are unable 

to rescue N-cadherin-deficient FBMNs (Rebman et al., 2016). These results support a model in 

which the collective cell behaviors of FBMNs are driven by N-cadherin-based neuron-to-neuron 
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interactions. It remains unclear what the nature of the physical interactions are that drive 

collective neuron movement.  

 Neuron-to-neuron interactions clearly play an important role during FBMN migration; 

however, no coherent model currently exists for how neuron-to-neuron cell contacts contribute to 

sustained directed migration of FBMNs. Based on available literature, I propose two alternative 

cellular models to explain how neuron-to-neuron contacts may drive collective migration of 

FBMNs.  

1) The Pioneer Model:  

 It was proposed that the very first FBMN to migrate caudally is a “pioneer” neuron that 

trails an axon behind it as it migrates (Wanner et al., 2013). In this model, “follower” neurons 

use Cdh2 to control neuronal attachment to the trailing pioneer axon and promote caudal 

migration along a preferred substrate. This would indicate a soma-axon interaction model as the 

mode of migration of FBMNs. Support for this model derives from experiments in which laser 

ablation of the leading neuron’s axon results in failure of some late-born follower FBMNs to 

properly migrate out of r4 (Wanner et al., 2013). This model postulates that similar to the radial 

migration of neurons in the developing cortex, all tangentially migrating FBMNs adhere to the 

leader axon as a necessary substrate for migration. A prediction of this model would suggest that 

FBMNs make intimate contact with the pioneer axon and may adopt an elongated morphology as 

they crawl along the Pioneer axon. Intimate contact is defined here as a following cell displaying 

an elongated morphology similar to migrating neurons on radial glia fibers,  (Viskari, 2019). 

That is, the migrating cell will be elongated and display two opposing protrusions that are tightly 

bound to or wound around the leader axon anterior and posterior to the migrating cell’s soma.   
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This model could explain how PCP-deficient cells are ‘rescued’ by wild-type FBMNs, 

since ‘follower’ PCP-mutant FBMNs could still make use of Cdh2-mediated adhesion to migrate 

along a wild-type Pioneer axon substrate to move in the caudal direction (Figure 3). In this 

model of rescue, it is expected that all PCP-deficient FBMNs that contact a wild-type axon 

would rescue and migrate properly along the length of the leader axon.  

2) The CIL Model:    

 An alternative hypothesis suggests that N-cadherin-mediated neuron-neuron interactions 

lead to (CIL) behaviors. Preliminary evidence from the Walsh lab supports a soma-soma 

interaction model (Rebman et al., data not shown). Live imaging studies indicate that wild-type 

FBMNs exhibit CIL behavior (Figure 4). That is, as FBMNs migrate, they often collide into their 

neighbor. This collision between two neighboring FBMNs often leads to a halt in migration 

followed by a reversal in direction of migration of the follower/trailing neuron.  

The CIL model could explain the collective migration “rescue” of PCP-deficient FBMNs 

if wild-type FBMNs re-polarize PCP mutant neurons via Cdh2-based soma-to-soma contact. In 

this scenario, a wild-type neuron induces polarized protrusive behavior in PCP-deficient neurons 

towards the caudal direction; these protrusions may be stabilized along the posterior free edge by 

an as-yet-unidentified chemotactic extrinsic cue. This model suggests that PCP-deficient neurons 

migrate in front of a wild-type neuron that can continue to polarize the neuron in the proper 

direction via CIL inducing collisions. In the absence of continuous collisions that encourage 

caudal directionality, not every neuron may be rescued.  
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 While both of these models support the notion that N-cadherin mediated neuron-neuron 

interactions are necessary for the proper migration of FBMNs, it is still unclear which mode of 

neuron-neuron contact is occurring in migrating FBMNs. As previously described, collective 

migration has been observed via the N-cadherin mediated rescue of PCP-deficient FBMNs by 

wild-type cells. In order to fully understand the mechanism of collective migration of FBMNs, it 

is essential to determine whether FBMN migration is influenced by soma-axon contact (Pioneer 

Model) or soma-soma contact (CIL Model).  

Research Aim 

 It is essential to determine by which mechanism FBMNs are undergoing collective 

migration in order to fully characterize this migration process. The aim of this study is to 

determine the nature of the physical interactions that mediate the collective migration of FBMNs. 

It is important to note that neither model is mutually exclusive. In this study, I have utilized 

FBMNs as a model to determine the nature of cell-cell contacts that mediate collective migration 

in the developing nervous system.  

Significance 

 The experiments conducted here explore the cellular mechanism of neuron migration. 

Using a combination of anatomy, mosaic analysis, chimeric analysis, and live cell imaging, I 

have described the cellular interactions that drive the collective behavior of neurons as they 

migrate. The significance of observing collective migration in the developing nervous system 

cannot be overstated. Further insight into the underlying mechanisms through which cell-cell 

interactions drive directed cell movements will aid in future efforts aimed at devising therapeutic 
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strategies to ameliorate the condition of children born with neuron migration defects that lead to 

more serious neurodevelopmental disorders.  
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MATERIALS AND METHODS  

 

Fish strains 

 Zebrafish (Danio rerio) were maintained according to standard procedures and were 

staged as previously described (C.B. Kimmel, Ballard, Kimmel, Ullmann, & Schilling, 1995). 

The pk1b mutant was originally described as pk1bfh122 (Mapp et al., 2011). Tg(islet1:GFP)rw0 

fish were originally described by Higashijima et al, 2000. Tg(islet1:memb-mRFP1) was 

originally described as Tg(zCREST1:memb-mRFP1) (Grant & Moens, 2010). Tg(islet1:GFP-

CaaX) was made in the Walsh lab facility (Jane Rebman, unpublished).  

 

Microinjections 

 Injection dishes were prepared with 1.2% agarose in fish water using a float mold to create 

triangular wells with a 45° angle as a backstop for injections. Glass capillary needles were pulled 

using a P-97 Flaming/Brown Micropipette puller (Sutter Instrument). Zebrafish were placed in 

crossing cages with a removable divider to separate males and females. Dividers were pulled to 

allow fish to mate and embryos were collected and placed in injection dishes. DNA encoding the 

isl1:GFP-CaaX plasmid (50 ng/uL) was co-injected with Tol2 transposase mRNA (50 ng/uL) into 

Tg(isl1:memb-RFP) embryos at the 1 cell stage. The dish was positioned on the stage such that as 

the needle enters the embryo, the embryo is pushed against the back of the well. The loaded 

injection needle is entered into the embryo, taking care to inject into the center of the embryo. 

Embryos were removed from injection dishes and placed in petri dishes containing fish water and 

incubated at 28.5°C until the desired stage.  
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Morpholino Injections. 

 Tg(isl1:GFP) embryos were collected and placed in injection dishes, as above. Embryos 

were injected with 1 nL of a cocktail containing 2.5ng/uL of pk1b I3E4 MO (5’-

GGCAGTAGCGAATCTGTGTTGAAGC-3’) and 2.5ng/uL of pk1b E6I6 MO (5’-

TTAATGAAACTCACCAATATTCTCT-3’). All injections were done with an ASI MPPI-3 

(Applied Scientific Instrumentation) pressure injector. Embryos were positioned and injected as 

above. Embryos were removed from injection dishes and placed in petri dishes containing fish 

water and incubated at 28.5°C until the desired stage.  

 

Blastula Stage Transplants  

 The apparatus used for cell transplantation in the zebrafish blastula consists of a 

micrometer drive-controlled Hamilton syringe attached by a three-way stopcock to a reservoir of 

mineral oil and to a micropipette holder through a length of flexible tubing. After assembling the 

transplantation rig, it is filled with mineral oil, taking care to eliminate all air bubbles from the 

system. The positioning of the micropipette holder and needle is controlled by a Narishige 

manual micromanipulator.  

 Transplantation needles were made from glass capillary pipettes and pulled using a P-97 

Flaming/Brown Micropipette puller (Sutter Instrument. The tip of the needle was broken off 

under a dissecting microscope using a straight edge razorblade at the point where the inner 

diameter of the needle is slightly larger than the cells to be transplanted, approximately 50-60 

mm for blastula stage transplants. Needles were then fire polished using a MF-200 Microforge 

(World Precision Instruments).   
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 Injection dishes were prepared with 1.2% agarose in fish water using a float mold with 

rows of wedge-shaped protrusions in a Petri dish. Once the mold is removed, it leaves an agar 

mold that contains rows of triangularly shaped wells each just large enough to hold one embryo. 

Blastula stage embryos were enzymatically dechorionated with pronase and were individually 

loaded into each well with a fire polished glass pipette such that the donor embryos are placed 

down one column and the host embryos are placed down the adjacent column. Embryos were 

positioned in the transplant wells on their sides with yolk pointing upwards. 

 The dish was positioned on the stage such that as the needle enters an embryo, the 

embryo is pushed against the back wall of its well. Once the donor embryo was positioned 

properly, and the needle is gently entered into the blastula cap of the embryo. Donor cells were 

drawn slowly drawn up the needle, as taking cells up too quickly can cause shearing. After the 

desired number of cells is taken up, the pressure is reversed slightly to stop suction and the 

needle is removed from the embryo. The transplant dish is moved to bring the host embryo into 

position, and the host embryo was gently repositioned if necessary, using the transplantation 

needle. Donor cells are then expelled into the host embryo with extra care not to puncture the 

YSL or introduce a large amount of mineral oil.  

 After cell transplantation was complete, donor-host pairs were transferred from the mold 

to agarose-coated dishes to develop further.  

 

Immunocytochemistry & immunofluorescence  

 Primary antibodies used were rabbit anti-GFP (Invitrogen) and mouse anti-RFP 

(Clonetech). Secondary antibodies used were goat anti-rabbit Alexa 488 (ThermoFisher) and 
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goat anti-mouse Alexa 547 (Thermofisher).  Primary antibodies were used at 1:1000, secondary 

antibodies were used at 1:200.  

 Embryos were manually dechorionated and fixed at 24 and 42 hours post fertilization in 

4% paraformaldehyde in 1X PBS overnight at 4°C, and then washed with PBST (1xPBS + 

0.25% Triton-X. Embryos were permeabilized with ice-cold acetone. Embryos were washed with 

PBST before being incubated with blocking solution (PBST + 10% goat serum + 4% BSA) for 

one hour at room temperature. Primary antibody was added to embryos diluted in block 

overnight at 4°C. Embryos were then washed in PBST before secondary antibody diluted in 

block was added overnight at 4°C. Embryos were washed 5x in PBST for 30 minutes each. 

Embryos were successively dehydrated in 25%, 50%, and 75% glycerol in 1× PBS. 

 

Embryo mounting 

 After immunocytochemistry and immunofluorescence, yolks were removed using 

sharpened tungsten wire and embryos were flat mounted on coverslips and surrounded with 75% 

glycerol. For live image analysis, embryos were manually dechorionated, anesthetized with 

Tricaine, and mounted in 1.2% low melt agarose on a glass bottomed dish.  

 

Confocal microscopy 

 All images were taken using a Carl Zeiss spinning disc confocal microscope at 63X 

magnification. The embryos fixed in 4% PFA were deyolked and mounted laterally in 75% 

glycerol on a glass slide with a coverslip. 
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RESULTS 

 

Early born FBMNs do not make intimate contact with the leader axon 

 The earliest FBMNs are born in r4 at 16 hours post fertilization (hpf) and begin their 

posterior migration shortly after. After the earliest FBMNs begin to migrate caudally out of r4, 

FBMNs continue to arise in r4 until approximately 24 hpf. It is still unclear what the nature of 

the neuron-neuron physical interactions are that promote the collective behavior of FBMNs. The 

“Pioneer Model” proposes that newly born FBMNs make soma-axon interactions to migrate out 

of r4, migrating on the axon left behind by the pioneer neuron. On the other hand, the “CIL” 

model favors soma-soma contact as the cellular basis for collective movement.  

 Therefore, I first sought to determine whether FBMNs are more likely to make soma-

axon or soma-soma physical interactions as they begin to migrate. To accomplish this, I utilized 

Tg(isl1:GFP-CaaX) and Tg(isl1:memb-RFP) fish, which, under the islet-1 promoter, allow 

visualization of the cranial motor neurons. These transgenic lines express a fluorescent protein 

tagged with a membrane-localization motif and therefore the fluorescent proteins allow specific 

visualization of the membrane of cranial motor neurons. This allows for analysis of the 

protrusive activity of cranial motor neurons. Using fixed timepoints and immunostaining, I 

examined the early interactions and morphology of FBMNs.  

 First, I examined whether early migrating FBMNs are contacting the axon of the pioneer 

neuron. FBMNs were observed both overlying the leading axon as well as appearing to migrate 

in free space near the axon. Cells that are making contact with the leading axon, however, do not 

appear to be intimately associated with the axon, instead overlaying it (Figure 5A-B, 4J). As 

previously discussed, an intimate association with the axon is similar to that of migrating 
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neurons on radial glia fibers, with migrating cells elongated and closely associated with the 

leader axon. No intimate association between the migrating follower FBMNs and the leader axon 

were observed. The impression of FBMNs overlying the axon were observed in projections of z-

stack confocal images. However, examination of all optical sections indicated that the FBMNs 

were in close proximity, but not using the axon as a substrate. Protrusive activity was not 

localized and tightly adhered to the leader axon. Moreover, the FBMNs did not display an 

elongated morphology, as might be predicted if the cell was exclusively using the axon as a 

substrate to navigate caudally. Rather, the FBMNs were largely spherical. Other times, 

protrusion from a FBMN would cross over the pioneer axon, but the cell soma was located a 

short distance away from the pioneer axon. Further, I did observe axon-axon physical 

interactions between FBMNs. That is, axonal fasciculation was seen, where trailing axons of 

migrating FBMNs begin to adhere to each other and bundle into a single axon tract, involving 

both the leading cell and later born FBMNs. This typically occurs between the axons of two 

migrating cells, resulting in the two cells appearing very close together. However, while the cell 

somas of these FBMNs appear close together, there is distinct space between the soma of the 

following cell and the axon of the leading cell (Figure 5H, 4I).  

 I also observed neurons migrating independently of the leading axon, displaying 

polarized protrusive activity into posterior free space (Figure 5B, 4G). Similarly, large groups of 

cells appearing to contact each other but separated from the pioneer axon were observed (Figure 

5C-E). Some of these cells may appear to make contact with the axon, again either overlaying 

the axon or making contact that cannot be defined as an intimate association as discussed 

previously (Figure 5A-B).  
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 Quantification of the number of FBMNs making soma-axon contacts, irrespective of 

whether the contact was an intimate association or a single protrusion in contact with the pioneer 

axon, indicated that only 20 ± 11.4% (n = 339 neurons; 26 embryos) of early born migrating 

FBMNs make some sort of soma-axon contact (Figure 6F-G).  

 

FBMNs are more likely to make cell-cell contact as they migrate 

 Visualization of early born FBMNs can be challenging in only one transgene, as there 

can be too much fluorescent information to properly examine cell-cell contacts. With all FBMNs 

expressing one transgene, cell boundaries are challenging to distinguish, and the nature of cell-

cell contacts is difficult to observe and therefore accurately quantify. In order to further elucidate 

the nature of the cellular contacts that facial motor neurons are making as they begin their 

migration, I created Tol-2 mediated transient transgenics. By injecting an isl1:GFP-CaaX 

construct into Tg(isl1:mem-RFP) embryos, I was able to selectively label only a few FBMNs in 

green, compared to all the FBMNs labeled in red. These mosaics were utilized to further 

characterize the nature of the cell-cell contacts that early born FBMNs make. Analysis of 

individual neurons labeled by GFP-CaaX confirmed impressions that few follower FBMNs make 

soma-axon contact with the leader axon. Cells exiting r4 often do not appear to contact the leader 

axon as they begin migration (Figure 6A-C). Further, in the event of soma-axon contact, cells 

were often overlaying the axon, absent of morphology suggesting an intimate association with 

the leading axon (Figure 6F). That is, no cells displaying elongated, tight associations with the 

leader axon were observed. On the other hand, migrating cells are observed making soma-soma 

contacts, easily visualized in mosaics (Figure 6D-E). Quantitation revealed that the majority, 88 
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± 10.9% (n = 339 neurons; 26 embryos), of FBMNs make some sort of soma-soma contact as 

they are migrating (Figure 6). 

 If soma-soma contact is indeed the mode of migration used by FBMNs, these contacts 

would be predicted to induce CIL and a collapse of protrusions at sites of contact would be 

observed. Indeed, in mosaic embryos, cells making soma-soma contact displayed an absence of 

protrusions at the site of contact (Figure 7). Similarly, colliding cells making protrusions away 

from the site of collision into free space were observed, which is a behavior typical of CIL 

(Figure 7A’-A’’, 6B’). These observations suggest that not only are FBMNs more likely to make 

soma-soma contact than soma-axon contact, but also that these soma-soma contacts may have an 

influence on protrusion dynamics that subsequently alter the directionality of FBMNs.   

 While the majority of neurons are contacting either the soma or the axon of another cell 

in single snapshots during migration, there are FBMNs that are not in physical contact with 

another neuron; that is, they are not making any homotypic cell-cell contacts (Figure 7C-6D’). 

These individual neurons can display a variety of morphologies, ranging from dramatically 

polarized with a clear leading edge to more amorphous and lacking any clear filopodia. First, this 

observation reinforces the idea that FBMNs migrate as individuals (streams) that make transient 

physical interactions, and not as a cluster with stable physical adhesions. Second, this suggests 

transient physical interactions may continually influence the polarity of FBMNs as they migrate. 

 

Pk1b morphant and mutant FBMNs are blocked in r4 

 To determine whether soma-soma interactions are important for the collective migration 

mediated rescue of PCP-deficient neurons, I sought to transplant cells from pk1b mutant donors 

into wild-type hosts. The Walsh lab fish facility houses only pk1b +/- fish, and therefore to 
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generate donor embryos for transplanting, I used pk1b +/- in-crosses, resulting in  25% of the 

progeny (pk1b-/-) being informative in transplants. Since blastula stage transplants are not 100% 

effective (for instance, donor cells may differentiate into cells that are not facial neurons), an 

alternative method for pk1b loss-of-function was sought. To generate pk1b-deficient donor 

embryos, pk1b antisense morpholino oligonucleotides (MOs) were utilized, as morpholinos 

block expression of the target protein and can be utilized as a knockdown. To ensure that I could 

indeed generate similar phenotypes, the severity of the FBMN migration defect was compared in 

both pk1b mutants and pk1b morphants. Both pk1b mutants and pk1b morphants display FBMNs 

that fail to migrate out of r4 at 48hpf, when wild-type FBMNs would be fully migrated (Figure 

8A-B). Pk1b morphants display a full or partial failure to migrate 82.6% of the time (n=98 

embryos).  

 

Pk1b morphant FBMNs are rescued by wild-type FBMNs 

 In order to determine the mode of rescue of pk1b-deficient FBMNs, I first sought to 

confirm the possibility of rescue by wild-type neurons. To test whether placing pk1b-deficient 

neurons adjacent to wild-type FBMNs could rescue of some of the pk1b-deficient neurons, I 

performed blastula stage transplants of cells from pk1b-/-;Tg(isl1:memb-RFP) donors into wild-

type Tg(isl1:GFP) hosts. Preliminary transplants imaged at 48 hpf, when wild-type FBMNs have 

properly migrated into r6/r7, indicate that pk1b-/- FBMNs are able to be rescued by wild-type 

FBMNs (Figure 9A-C). Rescued pk1b mutant FBMNs are surrounded by wild-type cells on 

either side. This initially appears to be consistent with the soma-soma model of migration, 

suggesting that rescued FBMNs collided with neighboring wild-type FBMNs, inducing CIL 

behavior that promotes caudal migration. Rescued cells are observed further into r6 and r7, 
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suggesting that donor pk1b mutant cells were able to make many migration promoting collisions 

with later born wild-type FBMNs. However, without live-image time-lapse imaging of this 

process in action, it cannot be concluded that this is the method by which FBMNs migrate.  

 I next sought to determine the mode of rescue of morphant neurons by wild-type neurons 

by time-lapse live-image of blastula-stage transplants. To accomplish this, I transplanted cells 

from pk1b morphant Tg(isl1:GFP) donors to wild-type Tg(isl1:memb-RFP) hosts. I observed 

that morphant FBMNs failed to rescue, though they are making contact with the axon (Figure 

9D-F). Some of these FBMNs appear to migrate partially into r5 but are distinct from the fully 

migrated wild-type population.  

 Morphant neurons that were not rescued were observed making protrusions towards the 

pioneer axon (Figure 10). These protrusions are rather long and stable, contact the entire width of 

the axon (Figure 10A-F). At the final timepoint, these neurons are still present in r4, suggesting 

that sustained axonal contact is not sufficient for pk1b morphant neurons to begin migrating. 

Other donor FBMNs underwent CIL-typical behavior with wild-type FBMNs (Figure 11). 

Morphant FBMNs make contact with wild-type FBMNs and migrate away from the site of 

contact. While no protrusions are visualized, this behavior is still consistent with CIL (Figure 

11A-F). This suggests that PCP is not required in the pk1b-deficient FBMN for CIL events, 

which is a necessary condition if CIL is in fact responsible for the rescue of PCP-deficient 

neurons.  Observing CIL behavior between two neurons in vivo provides further evidence that 

migrating cells are making soma-soma contact.  However, even though morphant neurons 

undergo CIL, it is unclear why they are not fully rescued (as seen in Figure 9 D-F and Figure 

11G).  
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 Next, I sought to determine why morphant neurons undergoing CIL are not fully rescued. 

I suggest that while some morphant neurons are born at the right timepoint, allowing wild-type 

FBMNs to collide with the morphant and encourage its caudal migration, this cell may happen to 

be jostled out of the way by a CIL collision that results in lateral movement out of the path of 

other migrating wild-type FBMNs. These wild-type FBMNs then migrate around the morphant 

FBMN, whose migration stalls.  

 CIL collisions that do not result in caudal movement were observed (Figure 12). A 

collision between a pk1b morphant neuron results in classic CIL behavior, with both cells 

withdrawing from the site of collision (Figure 12A-B). This collision promotes caudal 

directionality in the wild-type cell that continues on in its proper migration path. However, the 

pk1b morphant cell migrates rostrally to collide with another wild-type cell in a more lateral 

manner. The change in directionality that results from this collision is not fully in the caudal 

direction (Figure 12 C-D). The pk1b morphant FBMN and the adjacent wild-type neuron 

continue to collide and engage in CIL, with each reversal of direction becoming more and more 

lateral as development progresses (Figure 12E-F). These continuing collisions, as well as the 

accumulation of more pk1b-morphant FBMNs results in the wild-type FBMN eventually 

migrating past the morphant neuron (not shown).  

 This provides further explanation as to why some of these neurons only migrated 

partially, or there was no rescue. This failure to fully rescue is most likely due to the lack of 

wild-type neurons rostral to the morphant neuron to induce CIL and migration in the proper 

caudal direction, and/or due to CIL collisions promoting migration in a lateral direction. Without 

collisions promoting proper caudal directionality, wild-type cells may bypass morphant neurons 

and continue their proper migration, leaving the morphant neuron behind.  
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 Here, I have provided evidence that soma-soma contact appears to be the dominant 

contact in FBMNs migration. Further, evidence presented here indicates that soma-axon contact 

is not responsible for FBMN migration. Live image time-lapse analysis indicates that the 

direction of FBMN migration is instead influenced by soma-soma contact that results in CIL.  
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DISCUSSION 

 

 Neuron migration is an essential part of development of the nervous system. Neurons are 

born in one location and must migrate to their final position in order to properly assemble into 

circuits. Recent evidence has suggested that neurons engage in collective migration (Walsh et al. 

2011; Davey et al. 2016; Rebman et al., 2016). As previously discussed, collective migration of 

neurons has yet to be fully characterized in the developing nervous system.  Neuron-neuron 

interactions are an essential component of the cues that promote the collective behavior of 

neurons. Previous work using facial branchiomotor neurons (FBMNs) as a model system has 

uncovered that N-cadherin-mediated neuron-neuron interactions are required for their 

coordinated movement. To date it has been unclear what the nature of these physical interactions 

are between neurons that drive the collective behavior of neurons. The studies conducted here 

have investigated the nature of these neuron-neuron interactions that are important for collective 

neuron migration.  

 Previous publications have suggested that the leading axon is necessary for the migration 

of all following FBMNs (Wanner & Prince, 2013). Ablation of the “pioneer” neuron results in 

stalling of follower neuron migration in 33% of the ablated embryos. On the other hand, in 42% 

of embryos with ablated pioneer neurons, some follower neurons still migrate into r6, and 25% 

display a weak phenotype, where most follower neurons migrate into r6 (Wanner & Prince, 

2013). Further, ablation of only the leading neuron’s axon results in 66% of neurons failing to 

migrate (Wanner & Prince, 2013). Ablation of the second follower neuron, rather than the 

leading neuron, does not result in a stalling of neurons, though a small number of ablated 

embryos displayed a weak phenotype.  
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 The results presented in this thesis contradict this model. If neurons were solely migrating 

on the leading axon, I would predict that all neurons would contact the axon in a way that 

suggests the axon is a necessary substrate for migration, similar to elongated cortical neurons 

migrating closely on and tightly adhered to radial glia (Kriegsten et al., 2004). At early 

timepoints, neurons do not appear to require axonal contact to migrate out of r4, as suggested by 

Wanner and Prince, 2013. First, newly born neurons do not adhere immediately to the pioneer 

axon as a substrate for migration. Further, neurons that do contact the leading axon do not 

display a morphology that suggests an intimate association with the pioneer axon. FBMNs do not 

elongate their morphology to wrap around and intimately crawl along the pioneer axon like 

newly born cortical neurons do on radial glial fibers (Kriegsten et al., 2004). Instead, many 

FBMNs are observed to be overlying or making transient contact with the axon. The observation 

that FBMNs overlying the axon is made more prevalent due to confocal projections that collapse 

image information into one 2-dimensional image. The protrusive activity towards the axon that 

was observed does not suggest that the leader axon is a necessary substrate. The lack of intimate 

association with the pioneer axon, both in terms of protrusive activity and morphology of 

individual migrating FBMNs, suggests that migrating FBMNs do not solely rely on contact with 

the pioneer axon for migration.  

 Previous evidence from the Walsh lab (not shown) has also described CIL in the 

migratory behavior of FBMNs. That is, collision between the soma of adjacent neurons can often 

lead to collapse of protrusions at the site of contact, followed by migration away from one 

another. Using mosaic analysis, I showed that an individually labelled FBMN does not make 

protrusions at sites of soma-soma contact with neighboring FBMNs. Rather, protrusions are 

made into free space, away from collision sites. This is consistent with traditional CIL examples, 
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where protrusive activity repolarizes away from the site of contact and directional movement 

away from the site of contact is observed. FBMNs migrate as individuals, rather than a 

continuously connected cluster of cells, that make transient contacts with each other. These 

results provide further evidence that these transient soma-soma contacts between FBMNs are 

responsible for influencing directional migration. That is, CIL is occurring between migrating 

FBMNs that make soma-soma contact.   

 In support of this, quantification of neuron-neuron interactions at early timepoints 

demonstrates that FBMNs are much more likely to be engaged in soma-soma contact then in 

soma-axon contact. The presence of soma-soma contact is consistent with the “CIL” model of 

FBMN collective migration. Taken together, this suggests that soma-soma contact is the physical 

interaction that drives the collective migration for FBMNs, rather than soma-axon contact. 

However, neither of these models can be unambiguously confirmed without the addition of live 

imaging of the rescue of pk1b deficient cells. As discussed previously, PCP-deficient cells can be 

rescued by wild-type cells, typical of collective migration. Therefore, by transplanting PCP-

deficient cells into a wild-type background and live-imaging FBMN migration, I can directly 

observe the physical interactions between wild-type neurons and pk1b-deficient neurons that 

promote the collective migration-mediated rescue of PCP-deficient cells.  

I first ensured that rescue of pk1b-deficient was possible by wildtype cells by analyzing 

the end timepoint of the transplant. Indeed, pk1b-deficient cells are able to be rescued by wild-

type cells. These rescued cells are flanked by wild-type cells in r6 and r7, consistent with the 

notion that these wild-type cells influenced through physical interactions the caudal migration of 

the rescued pk1b-deficient neurons. 
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 Analysis of live images of chimeric embryos indicate that the leading axon is not a 

sufficient substrate for migration. At final timepoints, pk1b-deficient neurons that make contact 

with the wild-type axon do not properly migrate, suggesting that soma-axon interactions do not 

drive the rescue of pk1b-deficient neurons. If the axon was the necessary substrate for FBMN 

migration, it is expected that axonal contact is sufficient for the rescue of pk1b-deficient neurons. 

Further, time-lapse imaging shows pk1b-deficient neurons making protrusions towards the axon. 

These protrusions are stable, making extensive, long-term contact with the axon; if FBMNs use 

the axon as a substrate for migration, this stable axonal contact should allow for the pk1b-

deficient neuron to initiate migration on the axon. However, pk1b-deficient neurons do not 

adhere to and utilize the axon as a substrate for migration, arguing against the Pioneer model of 

migration.  

 Some pk1b-deficient cells do appear to partially migrate, but stall in r4 or r5. If the 

“Pioneer” model was the proper mode of FBMN migration, any morphant neuron contacting the 

axon should rescue fully; however, this is not what occurs. Only the “CIL” model provides a 

reasonable explanation for partially rescued morphant neurons that stall in r5 or earlier. This 

could reflect several collisions between wild-type neurons and a pk1b morphant neuron that 

drive a small amount of caudal movement. Time-lapse imaging indicates that wild-type cells 

collide with pk1b morphant cells. CIL behavior between colliding morphant and wild-type 

FBMNs has been observed, where a morphant cell and wild-type cell contact each other and the 

morphant neuron migrates away from the site of contact. This suggests that PCP is not required 

(at least in one cell) for CIL events in FBMNs, which differs from the CIL-mediated collective 

migration of neural crest cells. While both FBMNs and NCCs require N-cadherin for CIL 

behavior, NCCs further require PCP for CIL behavior (Rebman et al., 2016; Becker et al., 2013., 
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Carmona-Fontaine et al., 2008). Inhibition of PCP signaling in NCCs results in protrusions 

failing to collapse after a collision (Carmona-Fontaine et al., 2008). In migrating FBMNs, 

collisions between wild-type and PCP-deficient cells result in proper CIL behavior, 

differentiating the collective migration of FBMNs from that of NCCs. These collisions do not 

always promote caudal movement and instead jostle the pk1b morphant cell out of the path of 

other wild-type cells, and then the wild-type neuron by-passes the stalled pk1b-deficient neuron 

(Figure 13). In the absence of further collisions with wild-type neurons, the pk1b-deficient 

neurons are no longer rescued by CIL-causing soma-soma interactions. This is one reason why I 

had difficulty imaging the CIL-mediated rescue of pk1b-deficient cells, as expected.  

 A second potential explanation for why time-lapse imaging the rescue of pk1b-deficient 

neurons proved to be difficult may stem from differences in transplant methodology. Gastrula-

stage transplants allow for more specific targeting of donor cells to the prospective ventral 

hindbrain progenitor domains where FBMNs will arise. Gastrula-stage transplants have 

previously shown that PCP-deficient FBMNs are rescued by wild-type FBMNs; however, only 

about 50% of PCP-deficient FBMNs are rescued (Rohrschneider et al., 2007; Walsh et al., 2011; 

Davey et al., 2016). Blastula-stage transplants, on the other hand, have not been used to show 

PCP-deficient FBMN rescue in the same manner until now and have proven difficult in targeting 

the proper cell population and timepoint. Often, transplanted donor cells differentiate into 

FBMNs at too late of a timepoint to be properly rescued by host wild-type cells that have already 

progressed in their migration. For instance, an ideal scenario would have donor pk1b-deficient 

neurons born first, followed by wild-type host neurons. The later born wild-type neurons would 

then collide with the earlier-born PCP-deficient neuron, promoting CIL-induced protrusion 

formation on the caudal side of the pk1b-deficient neuron, leading to caudal movement. 
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However, in blastula-stage transplants, the pk1b-deficient neurons often arose as late-born 

FBMNs and failed to engage in sufficient numbers of collisions with wild-type host neurons. 

Similarly, blastula-stage transplants often only give rise to only two or three donor FBMNs, 

rarely yielding the high number of donor FBMNs seen in gastrula-stage transplants (Walsh et al., 

2011; Davey et al., 2016).   

 While I cannot yet unambiguously determine which model is most likely responsible for 

the collective migration of FBMNs, the evidence presented here suggests that axon-soma contact 

is neither necessary nor sufficient for FBMN migration. Fixed tissue imaging shows that FBMNs 

do not contact the axon at early timepoints, and pk1b-deficient FBMNs that contact the axon do 

not rescue and properly migrate. Observations of soma-soma contact and loss of protrusions at 

sites of soma-soma contact are consistent with the CIL-model of neuron migration. The live 

imaging done here has provided evidence for CIL occurring between migrating neurons and 

influencing the direction of migration. Future live imaging of rescue of pk1b-deficient neurons 

will resolve unambiguously that soma-soma contact, or the “CIL” model, is solely responsible 

for the collective migration of FBMNs.  

 Understanding the cellular nature of the transient contacts that mediate collective 

migration of migrating neurons could lead to further insight into resolving developmental 

defects. Neuron migration defects can result in severe developmental disorders, as previously 

discussed. Having a full understanding of the developmental context of neuron migration could 

lead to future medical breakthroughs that allow rectification of migration defects.  
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Future directions 

 Blastula-stage transplants, while often successful, do not allow for specific targeting of 

FBMNs. Gastrula-stage transplants could be considered as an alternative transplantation method. 

Similarly, transient transgenesis through the introduction of a wild-type pk1b plasmid into pk1b-

/-  could result in a different method of visualizing rescue. Mutant cells could be rescued by 

reintroduction of full-length Pk1b protein and could therefore behave like wild-type cells and 

rescue neighboring mutant cells. Further, there are other ways to visualize CIL in migrating 

FBMNs. Injecting constructs that allow us to visualize cell machinery as it re-orients in vivo after 

a collision event would provide further evidence that CIL is occurring in migrating FBMNs. 

 F-actin polymerizes at the leading edge of a migrating cell, stabilizing exploratory 

protrusions. When cells undergoing CIL collide, protrusions are collapsed at the site of collision 

and actin repolymerizes at the opposite pole of the cell, enabling protrusions to be made in the 

opposite direction from the site of contact (Stramer & Mayor, 2016). Injecting a fluorophore 

tagged Lifeact into either the Tg(isl1:GFP-CaaX) or Tg(isl1:mRFP) lines would allow 

visualization of F-actin dynamics in FBMNs in vivo. If CIL is occurring in FBMNs during 

migration, a collapse of F-actin at the site of collision and a repolarization to the opposite pole of 

the migrating cell is expected. This would result in directional migration in the opposite direction 

of the collision in FBMNs and provide further evidence that CIL is occurring in FBMNs.  

 Illustrating repolarization of the cell also could be done by visualizing centrosome 

location. Centrosomes are an essential cytoskeletal organization center in migrating cells, 

regulating microtubule organization (Kuijpers et al., 2011). Centrosomes in migrating cells are 

localized ahead of the nucleus, from which microtubules extend out towards the leading edge of 

the migrating cell. Improper localization of centrosomes in FBMNs has resulted in aberrant 
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migration in FBMNs (Grant and Moens, 2010). This suggests that proper centrosome 

localization is important for regulating directional migration of FBMNs, and therefore may play 

a role in reorienting cells after CIL collision events.  Visualization of the location of the 

centrosome by injection of a fluorophore tagged centrin, a protein that localizes to the 

centrosome, would also allow us to visualize movement of the centrosome after a CIL collision 

event, as I could watch the centrosome reorient opposite of the site of collision. This 

reorientation would lead to the directional change in movement that is typical of CIL. This would 

provide further evidence for the “CIL” model of collective FBMN migration. 

 The “Pioneer” model and “CIL” model are not mutually exclusive; while most FBMNs 

are not contacting the axon, it is possible that some migrating cells do require axonal contact to 

properly migrate. This is challenging to visualize in maximum projections of confocal images, as 

cells that may not be close in 3D space appear to be overlaying each other in a 2D projection. To 

further establish that FBMNs are migrating independent of axon, using a microtome to make 

micron-thick sections of Tg(isl1:GFP-CaaX) embryos embedded in JB4 resin that preserves 

fluorescence would allow for high resolution imaging to visualize whether FBMN axons are 

indeed making contact with leader axons.  
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FIGURES  
 

 
Figure 1: Facial branchiomotor neuron migration is highly conserved. FBMNs (in green) are 
born around 16hpf in r4 of the developing hindbrain. They migrate posteriorly until they reach r6 
at 48hpf. 
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Figure 2. Cell transplantation experiments to show cell autonomy. Some PCP mutant neurons 
migrate when transplanted into WT hosts. PCP mutant neurons do not migrate though pk1b-
deficient environment due to lack of collective migration. 
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Figure 3. Two potential models for the cellular mechanisms of collective FBMN migration. 
FBMNs (in green) migrate intimately on the axon of the leader cell (Pioneer model) or migrate by 
engaging in cell-cell contact that leads to repolarization and caudal movement (CIL model). Both 
the pioneer model and CIL model are mediated by N-cadherin (yellow) dependent cell-cell contact.  
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Figure 4. Wild-type FBMNs undergo CIL in vivo. Collisions between migrating wild-type 
cells result in a repolarization and colliding cells withdrawing from sites of contact. Cells that 
undergo collisions begin to migrate in the opposite direction from the site of collision. (A-E) 
Live confocal imaging of wild-type cells. (Arrowheads denote sites of contact; arrows indicate 
sites of contraction and cells migrating away from the site of contact.) 
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Figure 5. Early born FBMNs do not make contact with the leader axon. FBMNs visualized 
contacting the axon made transient contacts and did not display an intimate association (A,B, J; 
arrows indicate soma-axon contact; arrowheads indicate space between leader axon and migrating 
FBMNs). FBMNs appear to migrate as clusters, contacting other FBMNs and not the axon (C-G; 
arrowheads indicate space between leader axon and migrating FBMNs). While axon fasciculation 
between two FBMNs was observed, following cells were contacting other FBMNs rather than the 
axon (H, I; arrowheads indicate sites of fasciculation; arrow indicates soma-soma contact). (A-F) 
Fixed tissue confocal imaging of anti-GFP immunofluorescence in Tg(isl1:GFP-CaaX) embryos. 
(G-H) Fixed tissue confocal imaging of anti-RFP immunofluorescence in Tg(isl1:mRFP) embryos.  
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Figure 6. FBMNs are more likely to make soma-soma contact than soma-axon contact. 
FBMNs migrating out of r4 do not adhere to the leader axon as they begin their caudal migration 
(A-C). Migrating FBMNs make soma-soma contacts coupled with a lack of protrusions at sites of 
contact (D, E). Most FBMNs making axonal contact are overlaying the leader axon, rather than 
displaying elongated morphology expected of FBMNs migrating on an axon (F; *denotes r6 
derived cells; arrow indicates axon-soma contact). 20% of early born migrating FBMNs make 
contact with the leader axon, while 88% make soma-soma contact (n= 26 embryos, 339 FBMNs; 
p < .0001) (G). (A-F) Fixed tissue confocal imaging of anti-RFP and anti-GFP 
immunofluorescence in mosaic Tg(isl1:mRFP) embryos injected with an isl1:GFP-CaaX 
construct.  

G 
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Figure 7. FBMNs migrate as individuals and display CIL typical behavior. Mosaic embryos 
allow for visualization of protrusion collapse at sites of contact. FBMNs making soma-soma 
contact display protrusive activity away from the contact site (A-B’’). Rather than remaining 
tethered to each other, FBMNs migrate as individuals, and may nor may not display protrusive 
activity in the absence of a collision event (C-D’’). (A-D’) Fixed tissue confocal imaging of anti-
RFP and anti-GFP immunofluorescence in mosaic Tg(isl1:mRFP) embryos injected with an 
isl1:GFP-CaaX construct. 
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Figure 8. Prickle1b-deficient FBMNs are blocked in r4. Pk1b-/- FBMNs fail to migrate out of 
r4 (A). Pk1b morphant neurons similarly fail to migrate out of r4 (B). 82.6% of morphant 
embryos display a strong phenotype (failure of all neurons to migrate out of r4; n=98 embryos).  
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Figure 9. Prickle1b-deficient neurons can be rescued by wild-type cells. Pk1b-deficient 
neurons may be rescued by wild-type neurons when transplanted into a wild-type host (A-C). 
Note that rescued neurons are usually surrounded by neurons on either side (* denotes rescued 
cells; arrows denote surrounding wild-type cells). Non-rescued pk1b-deficient neurons appear to 
make contact with the axon and may have partially migrated into r5, but do not migrate into r6 
(D-F). Sustained axonal contact does not appear to be sufficient enough to rescue pk1b-deficient 
neurons (* denotes two morphant cells; arrow indicates site of soma-axon contact). (A-C) Live 
confocal imaging of blastula stage transplants of Tg(isl1:mRFP;pk1b-/-) into Tg(isl1:GFP) at 
48hpf. (D-F) Live confocal imaging of blastula stage transplants of pk1b morpholino in 
Tg(isl1:GFP) into Tg(isl1:mRFP) at 48hpf. 
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Figure 10. Soma-axon contact is not sufficient to rescue pk1b-deficient FBMNs. Pk1b 
morphant neurons display stable protrusive activity towards the axon (A-F). Protrusions contact 
the axon (A-D) or even continue past the axon (E-F). Axonal contact does not result in these 
neurons properly migrating into r6, as they remain blocked in r4 (* denotes FBMN in A-F) (G). 
(A-F) Live confocal imaging of blastula stage transplants of pk1b morpholino in Tg(isl1:GFP) 
into Tg(isl1:mRFP) at 24hpf. (G) Live confocal imaging of blastula stage transplants of pk1b 
morpholino in Tg(isl1:GFP) into Tg(isl1:mRFP) at 48hpf. 
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Figure 11. CIL events occur between pk1b morphant FBMNs and migrating wild-type 
FBMNs. Pk1b morphant neurons make contact with wild-type neurons (arrows) followed by a 
directional change in movement (arrowheads) (A-F). Morphant FBMNs still do not properly 
migrate (G). (A-F) Live confocal imaging of blastula stage transplants of pk1b morpholino in 
Tg(isl1:GFP) into Tg(isl1:mRFP) at 24hpf. (G) Live confocal imaging of blastula stage 
transplants of pk1b morpholino in Tg(isl1:GFP) into Tg(isl1:mRFP) at 48hpf. (“x” denotes r6 
derived cells.) 
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Figure 12. CIL collisions between pk1b morphant FBMNs and wild-type FBMNs do not 
always promote caudal migration. Wild-type FBMNs collide with a pk1b morphant neuron 
and display a reversal of direction (A-H). Collisions are denoted with arrows; directional changes 
are denoted with arrowheads. Some collisions result in further caudal movement as seen between 
the pk1b morphant cell (*) and a wild-type cell (1), which will continue its proper migration (A-
B). Other collisions between the morphant and a different wild-type cell (2) jostle the wild-type 
FBMN. This cell is unable to promote caudal migration; rather, CIL events between the pk1b 
morphant and (2) occur repeatedly and result in lateral movement. (A-H) Live confocal imaging 
of blastula stage transplants of pk1b morpholino in Tg(isl1:mRFP) into Tg(isl1:GFP) at 24hpf. 
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Figure 13. pk1b morphant FBMNs engage in CIL with wild-type FBMNs that results in 
wild-FBMNs cells migrating around them. A wild-type FBMN (in red) collides on an angle 
with a morphant FBMN (green). This collision results in the pk1b morphant cell migrating 
laterally, and the morphant cell does not engage in further collisions with wild-type FBMNs. The 
wild-type neuron migrates normally, bypassing the pk1b morphant neuron.  
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