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In this work we have developed three ordinary differential equation models of bi-

ological systems: body mass change in response to exercise, immune system response

to a general inflammatory stimulus, and the immune system response in atherosclero-

sis. The purpose of developing such computational tools is to test hypotheses about

the underlying biological processes that drive system outcomes as well as possible

real medical interventions. Therefore, we focus our analysis on understanding key

interactions between model parameters and outcomes to deepen our understanding

of these complex processes as a means to developing effective treatments in obesity,

sarcopenia, and inflammatory diseases.

We develop a model of the dynamics of muscle hypertrophy in response to resistance

exercise and have shown that the parameters controlling response vary between male

and female group means in an elderly population. We further explore this individual

variability by fitting to data from a clinical obesity study. We then apply logistic re-

gression and classification tree methods to the analysis of between- and within-group
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differences in underlying physiology that lead to different long-term body composition

outcomes following a diet or exercise program. Finally, we explore dieting strategies

using optimal control methods.

Next, we extend an existing model of inflammation to include different macrophage

phenotypes. Complications with this phenotype switch can result in the accumulation

of too many of either type and lead to chronic wounds or disease. With this model

we are able to reproduce the expected timing of sequential influx of immune cells and

mediators in a general inflammatory setting. We then calibrate this base model for

the sequential response of immune cells with peritoneal cavity data from mice. Next,

we develop a model for plaque formation in atherosclerosis by adapting the current

inflammation model to capture the progression of macrophages to inflammatory foam

cells in response to cholesterol consumption. The purpose of this work is ultimately

to explore points of intervention that can lead to homeostasis.
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CHAPTER 1

INTRODUCTION

Deterministic ordinary differential equation models are often applied to biological

systems when knowledge or data is limited but a qualitative and/or quantitative un-

derstanding of the system is desired. Simulated experiments can then be conducted

to guide experimental design, aid in the selection of time points for future data col-

lection, and predict treatment efficacy. In this work, this approach is employed to

explore interventions for obesity and atherosclerosis with the development of three

ordinary differential equation models of biological systems: body mass change in re-

sponse to exercise, immune system response to a general inflammatory stimulus, and

the immune system response in atherosclerosis in the following chapters.

In chapter 2, we present a model of muscle hypertrophy in response to resistance

training. We model this with the addition of a muscle hypertrophy term to a model

of human metabolic processes developed by Hall et al. [1]. We then use this model

to compare the effects of different interventions and explore individual variation in

response by varying parameters controlling response and by fitting to experimental

data from an elderly population undertaking a resistance exercise program [2].

In chapter 3, we frame the problem of body mass change as an optimal control

problem in order to investigate optimal diet strategies to maintain or increase lean

mass under different priorities: fat loss, lean mass gain, or equal prioritization. This

requires proof of existence and uniqueness of an optimal control for a simplified version

of the model developed in chapter 2. For this simplified case, we solve the optimal

control problem in a variety of scenarios and compare results.
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In chapter 4, we apply machine learning methods to the problem of parameter

estimation in a mechanistic model. We use classification and regression tree methods

to find parameter subsets leading to different outcomes in measurement variables

using simulated data. This could be considered a novel methods for identifiability

and sensitivity analysis, as collinearities between model parameters can be revealed

during the tree building process and only influential parameters are selected. In

addition, results are more easily visualized with a tree diagram than with traditional

methods.

In chapter 5, we present a model of immune cell response to an inflammatory

stimulus. This model builds on previous work [3, 4, 5] to include macrophage polar-

ization: the transition between extreme macrophage phenotypes M1 and M2. Model

parameters are calibrated with experimental data from a mouse model of peritonitis

and model identifiability and sensitivity are analyzed. We identify neutrophil apop-

tosis as a key driver of population-level macrophage phenotype shift in addition to

testing a selection of treatment strategies in silico. This model is extended to the

inflammatory setting in athersclerosis in chapter 6 as a first step in the development

of a multi-compartmental spatio-temporal model for the formation of plaques in the

heart.

Finally, chapter 7 contains a summary of results presented in this work as well

as an outline of future directions. Code for all of the models presented is included in

the appendices.
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CHAPTER 2

RESISTANCE EXERCISE INDUCED MUSCLE HYPERTROPHY

Abbreviations

CE Cardiovascular exercise

LHS Latin Hypercube Sampling

LM Lean mass

PAL Physical activity level

RE Resistance exercise

2.1 Introduction

Health complications such as obesity, cardiovascular disease, stroke, and diabetes

are in part attributable to the disproportionate allocation of body mass to adipose

tissue versus lean body mass. The focus, however, is often on how to reduce body

fat rather than on how to increase the lean component of body mass. Obesity in-

terventions in particular tend to focus on reducing overall body weight by reducing

energy intake or by increasing energy expenditure through CE. A typical response

to these interventions is an initial loss of both FM and LM, with free-living research

subjects typically failing to maintain the predicted maximum of weight loss achieved

after 6-8 months, gradually regaining weight [1, 6, 7, 8]. While physical activity has

been shown to aid in long-term weight maintenance [9], type of activity could be an

important consideration, especially for sarcopenic populations. Sarcopenia, the loss

of muscle mass and strength that can occur with aging, is implicated in a variety
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of health issues among the elderly from fractures to increased risk of cardiovascular

disease and prediabetes [10, 11]. Since RE has been shown to preserve LM [12, 13,

14, 15, 16, 17, 18] while CE is associated with loss of LM [12, 13, 14, 15], it deserves

consideration as an ideal type of exercise to improve body composition, especially

when combined with a hypocaloric diet or CE.

Here we extend a mathematical model of human metabolism to include the ef-

fects of RE in order to investigate the impact of this activity on long-term body

composition, both alone and when combined with a hypocaloric diet. Many energy

balance models of body mass change have evolved over the preceding decades [19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 32, 33, 34, 35]; and some of these

specifically investigate the effects of modulating physical activity level [32, 34, 27,

31]. However, in each of these models physical activity is defined as a body weight or

BMI dependent source of additional energy expenditure that is solely a component

of total energy expenditure. The production of significant additional LM is unique to

RE type physical activity, and the effects of this have not yet been investigated with

mathematical modeling. Our simulations support what has been shown clinically,

that additional LM generated via RE may shift the body composition set point to a

healthier state.

We first use this model to conduct a simulated case study comparing the long-

term outcomes of a hypocaloric diet alone, dieting with CE, and dieting with RE

for a hypothetical individual. We then simulate a cohort of individuals with varying

responses to RE. Finally, to further validate the model and its general applicability,

we use parameter estimation methods to fit data from an RE study in elderly subjects

and perform statistical analyses to evaluate biological feasibility of model results.
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2.2 Methods

2.2.1 Model background

The regulation of human metabolism and body weight involve a myriad of com-

plex biological processes, but the whole-body system is ultimately governed by the

laws of thermodynamics, making mathematical modeling possible. The law of con-

servation of energy requires that changes in the body’s energy content are due to an

imbalance in energy intake and energy expenditure and, since energy is stored in the

body as either FM or LM, it is possible to predict changes in body mass given an

energy surplus or deficit [36]. Such an energy-balance model, developed by Hall et

al. [30, 1], consists of five differential equations that describe the storage of glycogen

from ingested carbohydrate (Eqn. 1), extracellular fluid retention (Eqn. 2), adaptive

thermogenesis (Eqn. 3), and the partitioning of energy stored in the body into FM

(Eqn. 4) or LM (Eqn. 5). These differential equations depend on energy expenditure

(Eqn. 6) and energy expenditure due to physical activity (Eqn. ??). A description

of the terms in each equation appears in Table 1.

2.2.1.1 Glycogen Storage

ρG
dG

dt
= CI − kGG2 (1)

Carbohydrate consumed in food is stored in the body as glycogen, primarily in the

liver and in muscle tissue. Although glycogen dynamics are a complex function of

many metabolic processes, glycogen content in the body primarily depends on dietary

carbohydrate intake CI, the first term in Eqn. (1). The glycogen term is quadratic so

that carbohydrate intake must be increased three-fold to increase glycogen by a factor

of 1.8 [1]. The parameter ρG=0.004 kcal/kg, the energy density of carbohydrate, and
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Table 1. Variables, parameters, and constants in the model of Hall et al. [1].

G stored glycogen G(0) =0.5 kg

ρG energy density of carbohydrate 0.004 kcal/kg

CI carbohydrate intake CI(t) = 0.6E(t) kcal

kG calculated constant kG = CI(0)

G2
init

CIb carbohydrate intake at baseline kcal

Ginit glycogen stored at baseline 500 g

[Na] extracellular sodium concentration 3.22 mg/ml

∆[Na]diet change in dietary sodium mg/d

ξNa renal sodium excretion 3000 mg/L/d

ξCI renal sodium excretion 4000 mg/d

ECFinit extracellular fluid at baseline kg

AT adaptive thermogenesis kcal

τAT AT time constant 14 days

βAT AT parameter 0.14

EI energy intake kcal

∆EI change in EI from initial input δ = EI(t)− EI(0)

F fat mass kg

L lean mass kg

ρF energy density per unit change of fat 9440.7 kcal

ρL energy density per unit change of lean mass 9440.7 kcal

p energy paritioning function p = C
C+F

, C = 10.4 kg · ρL
ρF

TEF thermic effect of feeding kcal

δ energy cost of physical activity kcal

PAL physical activity level dimensionless parameter
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kG = CIb/G
2
init, where Ginit=500 g and CIb is carbohydrate intake at the start of the

diet [1].

2.2.1.2 Extracellular Fluid

ECF

dt
=

1

[Na]

(
∆[Na]diet − ξ[Na](ECF − ECFinit)− ξCI(1−

CI

CIb
)

)
(2)

Extracellular fluid (ECF), or water retained in the body, changes according to dietary

sodium intake in Eqn. (2) where [Na] is the extracellular sodium concentration,

∆[Na]diet is the change in dietary sodium, and ξ[Na] and ξCI describe the effect of

dietary carbohydrate intake on renal sodium excretion [1].

2.2.1.3 Adaptive Thermogenesis

τAT
dAT

dt
= βAT∆EI − AT (3)

Like friction opposes the movement of a pendulum, adaptive thermogenesis acts in

opposition to weight change, bringing energy expenditure into equilibrium with energy

intake. In this model, adaptive thermogenesis changes according to perturbations

of EI and persists until energy expenditure is equal to energy intake [30], where

βAT = 0.14 and τAT =14 days, the estimated time constant for the onset of adaptive

thermogenesis, is equal to 14 days.

2.2.1.4 Energy Partitioning

Energy stored in the body is compartmentalized into either lean tissue or fat.

Changes in body fat (F ) and lean mass (L) depend on energy intake (EI) and energy
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expenditure (EE) and are modeled in Eqns. (4) and (5) [1].

ρF
dF

dt
= (1− p)(EI − EE − ρG

dG

dt
) (4)

ρL
dL

dt
= p(EI − EE − ρG

dG

dt
) (5)

In these equations ρF and ρL are the energy content per unit change in body fat or lean

tissue, respectively, and p is a dimensionless energy partitioning function p = C
C+F

with C a constant [1]. Energy expenditure EE is given by Eqn. (6) where K is a

calculated constant, γF and γL are regression coefficients from models describing the

contribution of fat mass and lean mass, respectively, to resting metabolic rate (RMR)

[37], and ηF and ηL are the energy expended to change body fat and lean mass.

EE =
K + γFF + γLL+ δBW + TEF + AT + (EI − ρG dGdt )[pηL

ρL
+ (1− p)ηF

ρF
]

1 + pηL
ρL

+ (1− p)ηF
ρF

(6)

Changes in energy intake result in an immediate change in the energy expended

during digestion, with TEF = βTEF∆EI, where βTEF = 0.1 [1].

Energy expenditure due to physical activity is modeled by Eqn. (??) with PAL

the physical activity level of the individual, BW current bodyweight, and RMR

resting metabolic rate [1].

δ =
[(1− βTEF )PAL− 1]RMR

BW
(7)

Weight-loss trajectory output from this model, which closely matches clinical

outcomes, predicts an initial steep drop in both FM and LM, variables F and L, in

response to dieting that gradually approaches equilibrium, or weight maintenance,

due to the effect of adaptive thermogenesis (AT) which is modeled by Eqn. 3 [1].
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2.2.2 Model development

In order to model RE-mediated muscle hypertrophy, we have added a term to

Eqn. 5 resulting in the new differential equation to model change in LM, less extra-

cellular fluid, given by Eqn. 2.1.

dL

dt
= p(EI − EE − ρG

dG

dt
)/ρL + r

Lα

Lα +Hα
1

1

1 +
(
L
H2

)β (2.1)

This term consists of a Hill-type factor for the growth dynamics, which is inhibited

by amount of LM accumulated. The inhibition multiplier was used to capture the

later decay in growth rate as the body adapts to the training program.

While the time course of muscle growth varies among different modes of training and

total LM gained varies widely among individuals [38, 39], studies suggest that for less

damaging modes of RE, the rate of muscle hypertrophy is most rapid for the initial

6-15 week period following the start of a new RE program, followed by a long, slow

decline as the body adapts to the exercise [40]. The functional form of Eqn. 2.1

captures these dynamics, as shown in Figure 1 with the rate of LM gain slowing and

eventually decreasing towards zero as it accumulates for a hypothetical individual

who has 58 kg of LM before beginning a simulated RE program.

By subtracting the muscle hypertrophy term from the fat equation

dF

dt
= (1− p)(EI − EE − ρG

dG

dt
)/ρF −

rρL
ρF

Lα

Lα +Hα
1

1

1 +
(
L
H2

)β (2.2)

the model can be made energy balanced. Adding this term makes the simplifying

biological assumption that the gain in lean mass corresponds to a loss in adipose

tissue to achieve energy balance. We acknowledge that this process is significantly

more complicated and that stored adipose tissue is not used to generate lean tissue.

Future models can be developed to more accurately model this process.
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Fig. 1. Model behavior and predictions for initial body measurements cor-
responding to the average US male [41] performing RE with varying
parameter values and energy intakes (A) Daily change in LM in response
to RE is plotted against total LM. As LM accumulates the rate of increase
slows and approaches zero. (B) Predicted time course of accumulation of LM
in response to RE is plotted for different sets of parameter values shown in the
legend. Physical activity level, PAL, was set to 1.6 for each simulation in order
to compare the effects of varying parameters in the muscle hypertrophy term
in Eqn. 2.1.

The parameters in the muscle hypertrophy term are not directly measurable,

but can be interpreted both mathematically and physiologically. Since r is a scaling

parameter, it can be considered the response to dose of RE, where higher frequency,

intensity, or volume of training are reflected in higher values of r. The exponent α

controls the steepness of the ascent of the curve shown in Figure 1, or the speed of

response to training. Parameter H1 is defined as the level of LM at which the Hill-

type factor is 1/2 and also controls speed of initial response; thus parameters α and

H1 can be modulated to simulate fast or slow responders. Parameter H2 is defined as

the level of LM at which the multiplicative inhibition factor is 1/2. This parameter

plays a large role in magnitude of response and can be considered representative of

genetic potential for hypertrophy in response to training. The exponent β controls

the steepness of the descent of the curve shown in Figure 1A, and can be thought
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of as controlling speed of adaptation to training. By varying these parameters, the

predicted time course and magnitude of muscle hypertrophy in response to RE can be

modulated to fit data or otherwise conform to physiological expectations. A compar-

ison of model predictions achieved by varying parameters for the same hypothetical

individual, with initial conditions corresponding to those of the average US male aged

20-39 years from NHANES 1999-2004 [41], is shown in Figure 1B. Further modulat-

ing the effectiveness of RE is the level of LM as shown in Figure 1A for the same

individual.

To explicitly model changes in total lean body mass including extracellular fluid

fluctuations due to changes in dietary sodium and carbohydrate intake we have added

an additional variable, LBM , given by Eqn. 2.3.

dLBM

dt
=
dL

dt
+
dECF

dt
(2.3)

In the absence of dietary changes, dECF/dt = 0 and Eqn. 2.3 reduces to Eqn.

2.1. Changes in energy intake or dietary sodium will result in a rapid change in

extracellular fluid storage that will shift the predictive curve for LBM up or down

slightly as shown in Figure 2. When dietary changes are modeled here, it is total lean

body mass that is shown.

Energy intake will also influence predicted changes in body mass, as shown in the

upper panel of Figure 3 which compares the effects of varying energy intake for the

same hypothetical individual and the same model parameters. A hypercaloric diet is

predicted to allow for energy storage in both the lean and fat compartments of body

mass. Under a hypocaloric diet muscle hypertrophy is predicted to be inhibited,

which is consistent with experimental results [42, 43, 44], and FM is predicted to

decrease. Continued maintenance energy intake is predicted to allow for a modest
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Fig. 2. Effect of an 800 kcal/day decrease in energy intake on total lean body
mass.
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Table 2. Comparison of initial conditions and parameter values for an aver-
age US male versus female aged 20-39 years [41].

LM (kg) FM (kg) Fat % PAL r α β H1 H2

Male 59.9 23.4 28.1 1.6 0.06 42.2 93.8 21.5 43.4

Female 42.3 28.9 40.6 1.6 0.02 32.1 86.2 25.2 28

increase in LM at a slight expense of FM. Since energy intake may be an important

determinant of muscle hypertrophy in response to RE [42, 43, 44], any uncertainty in

the estimation of initial energy intake will influence model predictions.

At this stage of development, the model does not explicitly account for differences

in gender or age; however, differences in initial conditions between these groups are

accounted for and may lead to different parameter sets that are group-specific. For

example, women tend to have lower body mass and a higher percentage of body fat

than males, therefore, parameters that produce physiologically reasonable behavior

for these relative body measurements will not be the same as for males. Figure 3

(C) and (D) compare model predictions for an average US male versus an average

US female aged 20-39 and the parameter values that generated these predictions are

compared in Table 2.

The effect of cardiovascular exercise on energy expenditure was modeled by vary-

ing the value of parameter PAL (physical activity level) in Eqn. ?? as in Hall et al.

[1]. LM has consistently been shown to be the best single predictor of RMR [45, 46,

47] and, given that LM is likely to change with RE, we chose to model the resting

metabolic rate (RMR) with LM-dependent predictive equation RMR = 21.6LM+370

[46] versus the Mifflin-St.Jeor equations used in Hall et al. [1] which depend on age,

sex, and height. If RMR is known, it can be treated as a model input, otherwise its

estimation will effect model predictions and associated uncertainty can be considered
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Fig. 3. Effects of initial conditions on model predictions. Initial conditions and
parameters used to generate simulations in (A)-(D) are shown in Table 2. (A) A
comparison of predicted LM in response to RE for the same parameter set and
varying energy intakes: maintenance, a hypocaloric diet, and a hypercaloric
diet. Initial body measurements used to generate simulations correspond to
those of an average US male aged 20-39 years from NHANES 1999-2004 [41].
(B) Predicted FM is compared for the same conditions as in (A). (C) Predicted
LM in response to RE for the average US male on a maintenance energy intake
(shown in (A)). (D) Predicted LM in response to RE for an average US female
aged 20-39 years from NHANES 1999-2004 [41].
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tion RMR = 21.6 × LM + 370 [46] versus Mifflin-St.Jeor equation
RMR = 9.99×Weight+6.25×Height−4.92×Age+166×Sex(Male = 1, Female = 0)−161.
Initial conditions and parameters used to generate these simulations are the
male values given in Table 2.

a model limitation. A comparison of predicted change in LM for two different RMR

estimations is shown in Figure 4 for an average US male with initial conditions and

parameters given in Table 2.

Mathematical models of biological phenomena such as this also need to be eval-

uated for robustness. To do this we need to determine sensitivity of outcomes to

perturbations in these parameters, which parameters are most responsible for which

outcomes, whether outcomes for a given range of parameter values can be deemed

biologically feasible, and if variation of parameters produces expected results. To

answer these questions we combined the uncertainty analysis (sampling using LHS)
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employed in Section 2.3.2 first with sensitivity analysis and then with classification

and regression tree methods (CART). Partial rank correlation coefficient results from

our sensitivity analysis showed that each parameter in the model has a significant

effect on predicted LM, and that correlations between each parameter and predicted

LM are consistent with our expectations. A full description of our methodology and

results appears in Section 2.3.4. CART methods provide some further insight into

how different combinations of parameter values can lead to similar outcomes, which

can both guide parameter selection for experiments and also allow us to evaluate

biological feasibility.

2.3 Results

We first fit parameters to an individual in a case study to view results for a simu-

lated RE program and determine whether model dynamics capture expected behavior.

We then explore the role of the muscle hypertrophy term in Eqn. 2.1 by varying the

parameters controlling it using LHS as seen in [48, 49]. LHS is a stratified sampling

without replacement method in which each parameter is independently sampled from

a statistical distribution in order to create a collection of parameter sets that can each

be used to generate model output, thus simulating a variety of responses. This was

done both to simulate how an RE program might effect a cohort of individuals and

to simulate the variability in response to RE that is seen clinically. Parameter ranges

shown in Table 4 were divided into 100 subintervals of a uniform distribution with

each subinterval sampled exactly once so that the entire parameter range, including

extreme values, was explored. Each combination of six independently sampled pa-

rameters is then grouped into a parameter set that is used to generate model output,

creating 100 simulated responses to RE for the same initial conditions.
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2.3.1 Case study

A hypothetical individual is considered, weighing 100 kg with 27.2% body fat

and with a maintenance energy intake level of 3024 kcal/day. Initial conditions and

model constants specific to this individual are shown in Table 3 and, while gender

is not explicitly modeled, these initial conditions of 100 kg body weight and 72.8 kg

LM are more representative of male characteristics. Parameters were selected that

produced a moderate response in LM to RE for this individual of about 3 kg gained

in one year while in energy balance, consistent with the projected average gain seen

in clinical studies with shorter time periods [50, 51, 14, 12, 52, 53, 54]. Parameter

values are listed in Table 3 and the resulting predicted time course of change in LM

in response to RE is shown in Figure 5.

For this hypothetical individual, we simulated a hypocaloric diet consisting of an 800

kcal/day deficit maintained for 12 weeks followed by a gradual return to a pre-diet

level of 3024 kcal/day over an 8-week period. This scenario was chosen because it

has been shown in clinical studies that subjects on a hypocaloric diet will eventually

return to pre-diet energy intake levels [6, 55, 7, 8].

We then compared the effects of a hypocaloric diet with no exercise to the effects

of this diet when combined with an ongoing healthy lifestyle change of either CE or

RE. The addition of CE was modeled as an increase in PAL that remained constant

for the entire time period, simulating light activity such as jogging performed several

times per week on an ongoing basis. The addition of RE was modeled with the pa-

rameter values shown in Table 3 that produced the accumulation of LM over time

shown in Figure 5. Predicted long-term, three-year body composition outcomes for

each of the three scenarios are shown in Figure 6.
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Table 3. Model inputs for experiment comparing the effects of a hypocaloric
diet only to diet with CE or RE. Initial conditions are specific to a
hypothetical individual weighing 100 kg with 27.2% body fat. Parameters
appear in Eqn. 2.1 and were chosen such that a modest LM gain in response
to RE was simulated.

Name Description Value

LM0 Initial LM 72.8

FM0 Initial FM 27.2

K Energy balance constant in Eqn. 6 658.8224

kG Glycogen constant in Eqn. 1 7257.6

PAL Parameter 1.5

r Parameter 0.25

α Parameter 9

β Parameter 77

H1 Parameter 66

H2 Parameter 74
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This simulation predicts that a temporary hypocaloric diet will result in an even-

tual return to the pre-diet body composition, as was predicted in Hall et al. [1] and

which is supported by clinical study outcomes. The boost in physical activity level

that results from continued CE appears to result in maintenance of a lower body

composition. The greatest predicted change results from continued RE and its ac-

companying increase in LM, with a body composition trajectory that continues to

decrease. These predictions depend on clamped energy intake after 20 weeks.
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Fig. 5. Change in LM over time in response to RE for a 100 kg individual with 27.2%
body fat and a maintenance energy intake of 3024 kcal/day, with a hypocaloric
diet consisting of an 800 kcal/day deficit was begun on Day 1 and maintained for
12 weeks followed by a gradual return to 3024 kcal/day over 8 weeks. Parameter
values: PAL=1.5, r = 0.25, α = 9, β = 77, H1 = 66, H2 = 74.
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Fig. 6. A comparison of diet and exercise interventions for a 100 kg hypothetical indi-
vidual with 27.2% body fat and a maintenance energy intake of 3024 kcal/day.
In each scenario, a hypocaloric diet consisting of an 800 kcal/day deficit was
begun on Day 1 and maintained for 12 weeks followed by a gradual return
to 3024 kcal/day over 8 weeks. Diet Only has PAL = 1.5, appropriate for a
sedentary individual. Cardiovascular exercise was modeled with an increase in
PAL to 1.6, approximating light activity such as several short duration jogs
per week. RE was modeled with parameter values PAL=1.5, r = 0.25, α = 9,
β = 77, H1 = 66, H2 = 74.

2.3.2 Simulated cohort

Individual response to RE is known to vary widely among individuals [2, 39],

with high, low, slow, or fast response to training stimulus possible. In order to cap-
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ture physiologically reasonable variation in response to RE, we simulated a cohort of

100 hypothetical individuals with the same initial conditions given in Table 3, yet dif-

ferent responses to RE that were simulated by allowing parameters to vary. This was

done using LHS. Parameter ranges sampled from, shown in Table 4, were restricted

to ranges that produced physiologically reasonable results for these initial conditions.

Statistics calculated on results for the full cohort are shown in Table 5.

A typical clinical study differs from this simulated cohort in that both responses and

initial conditions vary between individuals. However, it is still possible to evaluate

reasonableness of the statistics and mean behavior for this simulated cohort by com-

paring results to clinical study results for a variety of populations. For example, the

mean values for absolute gain in LM and loss of FM seen for our simulated cohort in

Table 5 are comparable to results from studies of the effects of RE on young, elderly,

or obese individuals [50, 51, 14, 12]. More significantly, a key aspect of the physiology

of LM gain that was described in Section 2.2.2 is reproduced: a rapid initial increase

that occurs over approximately the first 12 weeks followed by a greatly reduced re-

sponse over the following 12 weeks as the simulated cohort adapts to the RE program.

Statistics calculated on our simulated cohort shown in Table 5 highlight this qual-

itative behavior, since mean gain of LM over the second twelve week period versus

the first twelve week period decreased by 66.4%, a similar decrease to what is seen

clinically over a period of 24 weeks [2, 54]. The mean of the transients for over time

of the full cohort was calculated by averaging the values for LM and FM, respectively,

at each time point. Figure 7 shows the time course of LM change for all 100 simulated

individuals in the cohort, while Figure 8 displays the mean of the transients of the

full cohort to give an idea of average behavior.
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Table 4. Parameter set data. LHS was restricted to these parameter ranges to
ensure that physiologically reasonable simulations were generated given initial
conditions. Sample means are close to the midpoints we expect for a uniform
distribution, so a sample size of n = 100 was deemed sufficient.

Parameter name Range Mean

PAL 1.5 - 1.6 1.55

r 0 - 0.5 0.2505

α 2 - 80 9.001

β 20 - 80 49.974

H1 60 - 74 67.001

H2 65 - 75 70

Table 5. Cohort statistics. Mean and standard deviation calculated for absolute
change in LM and FM after 12 weeks and 24 weeks of RE.

Change in Response Variable 12 Wk Mean 12 Wk SD 24 Wk Mean 24 Wk SD

∆ LM (kg) 1.6905 1.8756 2.2114 2.3990

∆ FM (kg) -0.9463 0.5007 -2.0934 1.1194
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Fig. 7. Change in LM over time in response to RE for a simulated cohort of 100, 100
kg individuals with 27.2% body fat. RE was modeled with parameter values
sampled from a uniform distribution with ranges restricted to the values given
in Table 4.
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Fig. 8. Mean of the transients for LM and FM of the full cohort.

2.3.3 Parameter estimation

The ability to select parameters such that experimental results are closely matched

can provide model validation. Here we validate the model’s ability to fit data from

a study comparing the effects of RE between elderly women and men. RE is known

to effectively combat sarcopenia. One meta-analysis of 49 studies and a total of 1328

participants showed an increase of about 1 kg of LM annually after RE versus the

decline usually observed for sedentary individuals over 50 [56].

In this study, 60 subjects performed a moderate volume of RE three times per week

for 24 weeks with assessments at 0, 12, and 24 weeks [2]. To fit mean time course

data for the male and female groups in this study, we sought to separately simulate

a mean elderly male response and a mean elderly female response. This was done by

creating male and female variants of the model using the mean initial LM and FM

for each group given in Table 5 as initial conditions and with initial energy intake

for each estimated such that a male or female individual with mean values for each

characteristic (age, height, weight, body composition) would be in energy balance.

The fitting procedure was then performed via ordinary nonlinear least squares using
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Table 6. Initial conditions and parameter estimates for group data.

Group LM (kg) FM (kg) Fat % PAL r α β H1 H2

Men 62.2 19.3 22.6 1.6 0.5 18.14 100 8.07 60.79

Women 42.5 21.2 32.1 1.6 0.21 2.37 99.94 13.48 42.16

the Matlab lsqnonlin routine with bound constraints, with bounds placed on the

parameter value search that were appropriate for the given initial conditions. This

local optimization routine seeks parameters within given bounds that minimize the

sum of squared errors between the data and model predictions using a trust region

algorithm. Data for both FM and LM were fit simultaneously and the resulting pa-

rameter estimates for each group are shown in Table 6. Model output versus mean

data for both the male and female groups is shown in Figure 9.

For the male group, the difference between predicted and observed LM at 12 and 24

weeks was 0.087 kg and 0.27 kg, respectively, and the difference between predicted

and observed FM at 12 and 24 weeks was 0.5 kg and 0.68 kg, respectively. For the

female group, the difference between predicted and observed LM at 12 and 24 weeks

was 0.14 kg and 0.15 kg, respectively, and the difference between predicted and ob-

served FM at 12 and 24 weeks was 0.3 kg and 0.3956 kg, respectively. Each of these

predicted values is within the standard error of measurement of the experimental

data.
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Fig. 9. Predicted and measured body mass during a trial comparing the
effects of a moderate volume RE program on elderly men and women
[2]. (A) Predicted and measured average LM with SEM for 29 elderly men.
(B) Predicted and measured average FM with SEM for 29 elderly men. (C)
Predicted and measured average LM with SEM for 24 elderly women. (D)
Predicted and measured average FM with SEM for 24 elderly women.

We then used the parameter estimates that were obtained in fitting mean data

for each group in the study [2], shown in Table 6, combined with the associated mean

initial conditions to simulate a longer-term scenario in which hypothetical “average”

male and female elderly subjects in the study cease RE completely following the 24-

week supervised training period. The projected results are shown in Figure 10. For

the hypothetical male, following the cessation of training there is a slight loss of LM

until the level of energy intake is sufficiently above that of energy expenditure to

cause a second increase. Although initial dynamics are different for the hypothetical
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female, predicted LM and FM for both hypothetical subjects appear to eventually

reach a stable steady state at a new, healthier body composition. These scenarios

are only two of many possible outcomes that could be investigated for a variety of

hypothetical individuals using this model.

Fig. 10. Model predictions of long-term change in LM and FM following 24
weeks of RE. Parameter estimates obtained in fitting the model to mean
data from elderly subjects completing a RE program for 24 weeks [2] were
then used to simulate a long-term scenario: cessation of RE after 24 weeks.
(A) Predicted average LM for the male group. (B) Predicted average FM
for the male group. (C) Predicted average LM for the female group. (D)
Predicted average FM for the female group

27



2.3.4 Sensitivity analysis

Latin Hypercube Sampling (LHS) was used to generate 1000 samples with each

parameter sampled from ranges given in Table 4. Since the relationship between

parameters and output (LM) was assumed to be nonlinear and monotonic, PRCCs

(Partial Rank Correlation Coefficients) were calculated for each parameter at time

point t = 730 days (2 years) when the system is approaching steady state for each

sample. We then tested for significance of each parameter in the model at an α-level

of 0.10 to determine whether it impacted model output. Insignificant parameters can

indicate that there are problems with the model or that parameters should be elimi-

nated, combined, or set to constant values. This method uses partial rank correlation

to first rank transform the vectors containing sample parameters and associated out-

puts, and then calculates the correlation between each parameter and output after

discounting the effects of the remaining parameters [49]. Thus this global method

apportions variability in model output to variability in parameters, allowing us to de-

termine how each parameter effects model output and evaluate biological feasibility

of these effects. Results are shown in Figures 11 and 12.

28



Fig. 11. Linear-linear plot of the residuals of the linear regressions of each parameter
versus all other parameters of the model (horizontal axis) and the residuals
of the linear regression of the output versus each parameter (vertical axis).
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Fig. 12. PRCC results. The magnitude of the dummy parameter value is used as a
significance measure for the parameters; a PRCC parameter value less than
the PRCC dummy value indicates insignificance.

The plots in Figure 11 confirm that there are some nonlinearities in relationships

between the parameters and output and that the assumption of monotonicity is valid.

PRCCs and p-values are also given in Table 5; every parameter has a significant effect

on LM although α, the exponent on the Hill term, is only weakly influential as its

PRCC value is close to that of the random dummy variable included in the analysis

for comparison, shown in Figure 12. Positive PRCC values indicate a positive corre-

lation between the parameter and LM and negative PRCC values indicate a negative

correlation between the parameter and LM . Thus an increase in parameter PAL
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Parameter LM(t)

PAL -0.2730*

r 0.7278*

α 0.0242

β -0.4779*

H1 -0.2197*

H2 0.9023*

Table 7. PRCC. Time point t = 730 days. *Significant (p < 0.10).

(energy expended through physical activity) is predicted to decrease LM, which is

expected as LM is consumed along with FM when energy expenditure exceeds energy

intake. Increases in β, the exponent on the multiplicative inhibition term, and H1, the

half max of the Hill term, are also predicted to decrease LM. This is physiologically

reasonable as increases in these parameters can be interpreted as increased speed of

adaptation to RE and delayed onset of response to RE, respectively.

An increase in parameter r is predicted to increase LM; given that r scales the lean

mass gain term this is expected. Parameter H2, the half max of the inhibition multi-

plier, is also positively correlated with LM. This parameter can be thought of as being

related to an individual’s genetic potential as it is the amount of LM at which the

rate of lean mass gain is half of the maximum achieved. Parameter α is also weakly

positively correlated with LM; an increase in this parameter is related to a faster rate

of lean mass gain.
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2.3.5 Discussion

We have extended the Hall et al. energy balance model [1] of human metabolism

to include muscle hypertrophy in response to RE with the addition of the muscle

hypertrophy term in Eqn. 2.1. Statistical analyses was performed that provides

support for the biological interpretation of the parameters given in Section 2.2.2. We

also determined that, for selected parameters, the model is able to reproduce a key

aspect of the physiology of RE: a fast initial rate of response over the first 12 weeks

of a training program that slows over the following 12 weeks as the body adapts.

A simulated case study comparing the effects of a hypocaloric diet alone versus

combined with CE or RE followed by a resumption of pre-diet energy intake levels

showed that the increased energy expenditure from LM gained in response to RE

could lead to better long-term body composition outcomes. The modest gain in

LM from RE leads to an energy expenditure of 3084 kcal/day. This is sufficiently

above energy intake to produce continued fat loss. Higher energy expenditure from

moderate CE gives an energy expenditure of 3030 kcal/day, barely above pre-diet

energy intake levels. A hypocaloric diet alone with no exercise results in a new, lower

energy expenditure of 3003 kcal/day due to the energetically expensive LM lost during

the period of reduced energy intake, and an eventual FM regain. Additionally, the

boost in energy expenditure that results from increased LM due to RE or increased

calories burned due to CE offsets the effect of adaptive thermogenesis, which works

in opposition to the maintenance of a new, lower body weight [57]. It is known that a

majority of individuals on a weight loss diet eventually return to higher energy intake

levels leading to a regain of weight lost [6, 55, 7, 8]. A way to combat this could be

the addition of a RE program with the support and education necessary to make it

an ongoing lifestyle change.
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We also simulated a cohort of individuals with varying responses to RE by sam-

pling parameters from a uniform distribution using LHS to capture known variation

in individual response. This demonstrates how the model presented here could be

used to simulate clinical studies for hypothesis testing or experimental design.

To further validate the model, we used parameter estimation methods to fit data

from an RE study and performed statistical analyses to evaluate biological feasibility

of model results. The parameter estimates shown in Table 6, when considered along

with the sensitivity analysis results in Section 2.3.4, seem to be reasonable in the

context of known biology. Versus the male group, the female group has a lower r

value (corresponding to a lower overall gain), a lower α value (corresponding to slower

overall response), a higher H1 value (corresponding to a somewhat delayed response),

and a lower H2 value (corresponding to a lower potential for gain given lower initial

LM). Both groups have a high β value corresponding to quick adaptation to RE that

could result in a lower level of gain over time which would not be unexpected for

elderly trainees.

Our predictions for LM and FM at 12 and 24 weeks were within the standard

error of measurement for the data, yet it would be ideal to have more than three

longitudinal data points. Additionally, we have had to make assumptions regarding

energy intake given the free-living status of the research subjects. It is possible that

better fits could be achieved with more knowledge about energy intake of subjects

over the course of the study. However, given the relative closeness of fit for both

LM and FM achieved with these limitations, one can see how group and patient-

specific parameters could be estimated and then used to simulate different diet and

exercise strategies. It is not currently established that there are inherent differences

in response to RE between groups such as young or old, or male and female; fitting

this model to data from different groups and comparing parameter estimates could
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provide some intuition in this area.

2.3.6 Conclusion

Stability analysis performed on this model could provide insight into how the

addition of LM from RE effects body weight set point. This model could also be

further refined to include additional physiological responses to varying energy intake

and exercise such as hormonal effects and even the response to specific styles of

training such as high intensity interval training, a type of CE which is also known to

have a positive effect on metabolism and increase LM. Submodels that are specific to

populations could also be developed; for example, the addition of a muscle loss term

to account for sarcopenia could produce an elderly-specific model. Since this model

is unique in its inclusion of response to resistance-type exercise, it can now be used

to perform in silico testing of this type of exercise as part of a simulated obesity or

sarcopenia intervention.
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CHAPTER 3

OPTIMAL CONTROL OF BODY MASS CHANGE

3.1 Introduction

Optimal control theory seeks to determine how to control an element of the

system such that the "best" outcome is achieved, subject to physical constraints. By

applying optimal control to the problem of body mass change during diet and exercise

interventions, we first seek to find a dietary control that produces a balancing effect

between the competing goals of fat loss and lean mass retention in a reduced model

that considers variables fat mass (F ), lean mass (L), and energy intake (EI). A

hypocaloric diet (below weight maintenance levels) results in a reduction of both

adipose tissue and lean tissue. Retention of lean mass while dieting may improve

weight loss outcomes and prevent muscle wasting in individuals over 60, as described

in detail in Section 2.1.

Optimal control techniques have been applied to many problems in medicine

where interventions may have undesirable side effects, such as chemotherapy and

immunotherapy for cancer [58, 59, 60], drug therapy for infection [61, 62], and vacci-

nation and quarantine in epidemics [63, 64]. Optimal control has also been applied

to models focusing on the social and psychological aspects of obesity [65, 66], but

to our knowledge this is the first application that considers exercise and body mass

partitioning.

First, we describe the basic optimal control problem and the steps required to find

an optimal control. Next, we prove the existence and uniqueness of an optimal control

for the specific problem and then characterize it in terms of the necessary conditions.
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Finally, we compute the optimal control numerically and investigate dependence of

the optimal control on parameters via simulations.

3.2 Methods

3.2.1 The Basic Problem in Optimal Control

The basic problem with one state variable x(t) and one control variable u(t) is

formulated as

max
u

∫ tf

t0

f(t, x(t), u(t))dt

subject to x′(t) = g(t, x(t), u(t))

x(t0) = x0 and x(t1) free

(3.1)

where f is the objective functional and g is the differential equation satisfied by x(t).

To find the solution we must solve a set of necessary conditions that are satisfied by

an optimal control u∗(t) and its corresponding state x∗(t). With the application of

Pontryagin’s Maximum Principle [67], necessary conditions can be written in terms

of the Hamiltonian H which is defined as

H(t, x, u, λ) = f(t, x, u) + λg(t, x, u)

where λ is an adjoint function. Our problem is then to maximize H with respect to

the control u at u∗ and the necessary conditions we must satisfy can be expressed as

∂H

∂u
= 0 at u∗ ⇒ fu + λgu = 0 optimality condition,

λ′ = −∂H
∂u
⇒ λ′ = −(fx + λgx) adjoint equation,

λ(t1) = 0 transversality condition.
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The dynamics of the state equation are given as

x′ = g(t, x, u) =
∂H

∂λ
, x(t0) = x0.

If, instead of maximizing (minimizing) a function over the entire time course, we

prefer to maximize (minimize) it’s value at the final time, we can append a payoff

term to the objective functional

J(u) =

∫ tf

t0

f(t, x(t), u(t))dt+ φ(x(tf )) (3.2)

Only the transversality condition changes as a result: we now require that λ(tf ) =

φ′(x∗(tf )).

The one-dimensional problem can be extended to include multiple states and controls

with ~u∗ maximizing H(t, ~x∗, ~u, ~λ) with respect to ~u over [t0, tf ] and satisfying the

same necessary conditions for each vector component.

3.2.2 Statement of the Optimal Control Problem

Our purpose in applying optimal control to the problem of body mass change is

to determine how diet and exercise controls balance competing goals such as fat loss

and muscle retention. The goal is to minimize fat mass over a finite time period such

that lean mass is maximized at the final time. In an optimal control framework, the

problem is

min
u
J(u) =

∫ tf

t0

[
F (t) +

ε

2
u2
]
dt− L(t)

subject to ρFF ′(t) = (1− p)(EI(t)− EE(F,L)− u(t))−RT, F (t0) = F0

ρLL
′(t) = p(EI(t)− EE(F,L)− u(t))−RT,L(t0) = L0

EI ′(t) = −u(t), EI(t0) = EI0

(3.3)
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where RT = rLα/(Lα +Hα
1 )∗1/(1 + (L/H2)β). We seek optimal control u∗ such that

J(u∗) = minu{J(u)|u ∈ U}, where U is the set of admissible controls U = {u|a ≤

u ≤ b} where a and b are constants specific to the initial conditions and u is Lebesgue

measurable.

We have defined a quadratic control for its convex property so that convergence

can be achieved; however, there is no biological rationalization for such a choice.

In a practical context, the control u is daily dietary change in kilocalories from the

previous day, and the state variable EI, which is the solution to EI ′(t) = −u(t), gives

total kilocalories that should be consumed daily.

3.2.3 Existence and Uniqueness of an Optimal Control

We first prove the existence of an optimal control that minimizes the objective

functional.

Due to physiological constraints, F̃ (t) = L̃(t) = ẼI(t) = 0 is a lower solution to the

system. To find an upper solution, it is first convenient to define the initial value

problem associated with optimal control problem 3.3 as
F ′ = f1(F,L,EI), F ′(0) = F0

L′ = f2(F,L,EI), L′(0) = L0

EI ′ = f3, EI
′(0) = EI0.

An upper solution to the IVP is then given by the solutions of
F̃ = sup{f1(F, θ1, θ2)|0 ≤ θ1 ≤ L, 0 ≤ θ1 ≤ EI} = EE(F )(p− 1)

L̃ = sup{f2(L, θ1, θ2)|0 ≤ θ1 ≤ F, 0 ≤ θ1 ≤ EI} = EI − EE(L) +RT

ẼI = sup{f3(EI, θ1, θ2)|0 ≤ θ1 ≤ F, 0 ≤ θ1 ≤ L} = −u(t).
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Further, since the set U of admissable controls is bounded with ~x(t), u(t), t, t0 ≤ t ≤ tf

any admissible pair, then the RHS of ~x′ = f(t, ~x(t), u(t)) = (f1, .., f3) is bounded

and therefore x(t) satisfies a Lipschitz condition [68, p. 167]. We can then apply a

comparison result to conclude that the system is bounded [69].

We can now apply a result from Fleming and Rishel [70, p. 68].

Theorem 3.2.1. Given objective functional J(u) =
∫ tf
t0

[F (t) + u2] dt − L(t), where

U = {u Lebesgue integrable |a ≤ u ≤ b ∀ a, b ∈ IR, t ∈ [t0, tf ]} subject to states and

initial conditions given in system 3.3, there exists an optimal control u∗(t) such that

minu(t)∈[a,b]J(u) = J(u∗) if the following conditions are met:

(a) The class of all feasible pairs ( ~x0, u) such that u ∈ U is Lebesgue integrable on

[t0, tf ] with values in U is non-empty;

(b) U is closed;

(c) The set S is compact and φ is continuous on S, where e ∈ S with e = (t0, tf , ~x(t0), ~x(tf ))

and S is a given subset of E2n+2 = E6 (solutions at the boundary);

(d) U is convex, f(t, ~x, u) = α(t, ~x) + β(t, ~x)u and the integrand of J(u) is convex on

U

(e) The integrand of J(u) is greater than c1u
2 − c2, c1 > 0

Proof.

(a) Since the parameters of the system are non-negative and bounded above by phys-

iological constraints and since the solutions of the system and u(t) are bounded

on a finite time interval we obtain the existence of a solution [68, p. 167];

(b) U is closed by definition;

(c) Since the set of solutions is closed and bounded the set S is compact, and φ =

−L(t) (the payoff term) is continuous;
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(d) U is convex by definition. We can write f(t, ~x, u) as

f(t, ~x, u) = ~α(t, ~x) +


0

0

−u

 ,
where

~x =


F

L

EI


and ~α(t, ~x) is the RHS of the system without control u.

To show the integrand of J(u) is convex on u, we need to show

J(t, F, au1 + (1− a)u2) ≤ aJ(t, F, u1) + (1− a)J(t, F, u2), 0 ≤ a ≤ 1

J(t, F, au1 + (1− a)u2)− aJ(t, F, u1) + (1− a)J(t, F, u2) ≤ 0

J(t, F, au1 + (1− a)u2)− aJ(t, F, u1) + (1− a)J(t, F, u2) =

F + (au1 + (1− a)u2)2 − (F + au2
1 + u2

2 − au2
2) =

a2u2
1 + 2a(1− a)u1u2 + (1− a)2u2

2 − au2
1 − u2

2 − au2
2 =

a2u2
1 + 2au1u2 − 2a2u1u2 + (1− 2a+ a2)u2

2 − au2
1 − u2

2 + au2
2 =

a2u2
1 + 2au1u2 − 2a2u1u2 + u2

2 − 2au2
2 + a2u2

2 − au2
1 − u2

2 + au2
2 =

a(u1 − u2)2 ∗ (a− 1) =

(a2 − a)(u1 − u2)2

Since 0 ≤ a ≤ 1, then (a2 − a) < 0, and (u1 − u2)2 > 0 so (a2 − a)(u1 − u2)2 < 0

and therefore J(t, F, au1 + (1− a)u2) ≤ aJ(t, F, u1) + (1− a)J(t, F, u2).

(e) We need to show the integrand J(u) is bounded below by c1u
2 − c2 with c1 > 0.
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We can choose c1 = ε
2
. Then

J(u) = F +
ε

2
u2(t) ≥ ε

2
u2(t) ≥ ε

2
u2(t)− c2.

So J(u) is bounded below by ε
2
u2(t)− c2.

3.2.4 Characterization of the Optimal Control Problem

Theorem 3.2.2. Given that there exists an optimal control u∗ ∈ U and corresponding

solution F ∗, L∗, and EI∗ that minimizes J(u) over U , there exists adjoint functions

λF , λL, λEI satisfying
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λ′F =− 1− λF C

ρF (C + F )2 (EI − 1 (K + γF F + γL L+ ((1− βTEF )PAL− 1)

(21.6L+ 370) + βTEF (EI0− EI) + EI

(
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

))
(

1 +
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

))−1

− λF
ρF

(
1− C

C + F

)
(
−1

(
γF + EI

(
− CηL

(C + F )2 ρL
+

CηF

ρF (C + F )2

))
(

1 +
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

))−1

+ 1 (K + γF F + γL L

+ ((1− βTEF )PAL− 1) (21.6L+ 370) + βTEF (EI0− EI) + EI

(
CηL

(C + F ) ρL

+
ηF
ρF

(
1− C

C + F

)(
− CηL

(C + F )2 ρL
+

CηF

ρF (C + F )2

)(
1 +

CηL
(C + F ) ρL

+
ηF
ρF(

1− C

C + F

)−2

+
λLC

(C + F )2 ρL
(EI − 1 (K + γF F + γL L+ ((1− βTEF )PAL− 1)

(21.6L+ 370) + βTEF (EI0− EI) + EI

(
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

))
(

1 +
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

))−1

− λLC

(C + F ) ρL
(−1 (γF + EI(

− CηL

(C + F )2 ρL
+

CηF

ρF (C + F )2

)(
1 +

CηL
(C + F ) ρL

+
ηF
ρF

(
1− C

C + F

))−1

+ 1 (K + γF F + γL L+ ((1− βTEF )PAL− 1) (21.6L+ 370) + βTEF (EI0− EI)

+ EI

(
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

))
(
− CηL

(C + F )2 ρL
+
CηF
ρF

(C + F )2

)(
1 +

CηL
(C + F ) ρL

+
ηF
ρF

(
1− C

C + F

))−2
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λ′L =1 +
λF (γL + 21.6 (1− βTEF )PAL− 21.6)

ρF

(
1− C

C + F

)(
1 +

CηL
(C + F ) ρL

+
ηF
ρF

(
1− C

C + F

)−1

+
λF
ρF

D

 rLα

Lα +H1
α

(
1 +

(
L

H2

)β)−1


 rLαα

L (Lα +H1
α)

(
1 +

(
L

H2

)β)−1

− r (Lα)2 α

(Lα +H1
α)2 L

(
1 +

(
L

H2

)β)−1

− rLαβ

L (Lα +H1
α)

(
L

H2

)β (
1 +

(
L

H2

)β)−2

+
λ2C (γL + 21.6 (1− βTEF )PAL− 21.6)

(C + F ) ρL

(
1 +

CηL
(C + F ) ρL

+
ηF
ρF

(
1− C

C + F

)−1

− λ2 rL
αα

ρL L (Lα +H1
α)

(
1 +

(
L

H2

)β)−1

+
λ2 r (Lα)2 α

ρL (Lα +H1
α)2 L

(
1 +

(
L

H2

)β)−1

+
λ2 rL

αβ

ρL L (Lα +H1
α)

(
L

H2

)β
(

1 +

(
L

H2

)β)−2

λ′EI =− λF
ρF

(
1− C

C + F

)(
1− 1

(
−βTEF +

CηL
(C + F ) ρL

+
ηF
ρF

(
1− C

C + F

))
(

1 +
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

))−1

− λ2C

(C + F ) ρL
(1− 1 (−βTEF

+
CηL

(C + F ) ρL
+
ηF
ρF

(
1− C

C + F

)(
1 +

CηL
(C + F ) ρL

+
ηF
ρF

(
1− C

C + F

))−1

with transversality conditions λF (tf ) = λL(tf ) = 0 and λEI = C for some constant

C. In addition, u∗(t) is given by

u∗ = min(b,max(a,
λEI
ε

)).

Proof. The adjoint equations and transversality conditions can be found using Pon-
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tryagin’s Maximum Principle such that

λ′F = −∂H
∂F

, λF (tf ) = 0

λ′L = −∂H
∂L

, λL(tf ) = 0

λ′EI = − ∂H

∂EI
, λEI(tf ) = C.

The optimal control u∗ can be found using the optimality condition ∂H
∂u

= 0. We

obtain u∗ in the form of Theorem 3.2.2 using the bounds on U (a ≤ u ≤ b).

3.3 Results

Since the optimality system given in Theorem 3.2.2 contains initial conditions on

the state variables and terminal conditions on the adjoints, it is a two-point boundary

value problem that can be solved numerically with the Forward-Backward Sweep

method. A brief description of this algorithm based on [71] is given below:

1. Discretize the time interval [t0, tf ] with time step h so that ti = t0 + ih.

2. Guess initial ~u∗.

3. Solve for ~x forward in time with initial conditions and ~u values.

4. Solve adjoint equations ~λ backward in time using transversality conditions and

values for ~u and ~x.

5. Update ~u.

6. Check for convergence and stop if the variables of the current iteration have

values sufficiently close to values for the previous iteration. Otherwise, return

to step 3.
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Code to implement this algorithm using a Runge-Kutta routine was written in Mat-

lab [72] and is included in Appendix B.

We first compare the effects on the control and states of different priorities when

implementing a change in diet during a resistance training program:

• Prioritize fat loss

• Equal emphasis on fat loss and muscle retention

• Maximize lean mass at the final time.

To do this, we apply weighting constants A and B to F (t) and −L(t) in the objective

functional of the optimality system (3.3) so that it becomes

min
u
J(u) =

∫ tf

t0

[
AF (t) +

ε

2
u2
]
dt−BL(t).

To prioritize fat loss, we set A = 10, B = 1; to prioritize lean mass gain, we set

A = 1, B = 10; under equal emphasis for each goal, A = 1, B = 1. The same

hypothetical individual is considered here as in the simulated case study in Section

2.3.1, weighing 100 kg with 27.2% body fat and with a maintenance energy intake level

of 3024 kcal/day. Initial conditions and model constants specific to this individual

are shown in Table 3 along with parameters used. Parameters were selected that

produced a moderate increase in lean mass in response to resistance exercise that is

consistent with the projected average gain seen in clinical studies [50, 51, 14, 12, 52,

53, 54]. The control u is daily decrease in calories from the previous day and EI gives

total kilocalories that should be consumed daily.

Results of numerical experiments for an 8 week diet under different priorities are

shown in Fig 13. The optimal daily change in calories is largest at the beginning of
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the time period (84 days) and slowly reaches zero over time. This strategy results

in an energy intake that very gradually increases/decreases over the first 3/4 of the

time course before saturating. Placing a priority on maximizing lean mass at the final

time has the effect of drastically moderating the severity of the diet control. Even

under prioritization of fat loss, the diet control is moderate enough to allow for an

increase in lean mass for this hypothetical individual undergoing a resistance training

program (for different parameters, the negative impact on lean mass of a hypocaloric

diet may be greater). Fat loss is reduced when the dietary strategy prioritizes lean

mass retention. Control u is negative when the priority is to maximize lean mass at

the final time because the optimal strategy is to increase energy intake.

3.4 Discussion

We have framed body mass partitioning during a diet and exercise program as

an optimal control problem and explicitly characterized an optimal quadratic control

using Pontryagin’s Maximum Principle. We also numerically simulated and compared

optimal controls and their associated state variables under different goals: fat loss

prioritization, equal weight given to fat loss and lean mass retention, and prioritization

of maximum lean mass at the final time. The resulting optimal quadratic controls,

shown in Fig 13, require precise manipulation of daily calories consumed and would

therefore be difficult to implement. However, this model can provide some strategic

insight for how to approach dieting while minimizing muscle loss. Overall, the model

shows that diets should be moderate if there is a muscle retention goal and that

even a moderate, gradual diet can successfully reach a fat loss goal. The long-term

implications of greater lean mass retention for successful weight maintenance also

remain to be explored.

In future work, controls for exercise could be added as well (cardiovascular and
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resistance training), since often weight loss interventions combine diet and exercise

strategies. A more intuitive linear control for diet in the objective functional could

also be characterized, with appropriate constraints. Here we have imposed a fixed

end time with state variables at the final time free. Alternatively, we could fix a

state variable at the final time, for example a fat mass target, and allow a free end

time, thus solving for goal time frame. Further, effects of parameters on control could

be compared. The long-term outcomes of different short-term strategies can also be

compared.
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CHAPTER 4

QUALITATIVE ANALYSIS OF MODEL BEHAVIOR WITH

DECISION TREES

4.1 Introduction

Machine learning, a subfield of artifical intelligence, is most commonly used to

produce an accurate classifier given data; for example, one biological application is

to use clinical data for medical diagnosis and prognosis. However, it can also be used

to uncover the predictive structure of a problem. In systems biology modeling it

could be used to gain an understanding of which system components or interactions

drive the phenomenon or best characterize the conditions that determine outcomes

or phenotype.

Machine learning uses pattern recognition methods to construct classifiers for

data sets. When we know the class of each observation in the data set, we can use

supervised learning to build a classifier based on the current data to classify future

observations. Decision trees methods, developed by Breiman [73], are an example of

supervised learning. If we do not know the classes associated with our observations, or

even how many classes exist, we can use unsupervised learning methods. Clustering

is an example of this approach.

Here we use classification trees, a supervised learning method, because it can

provide complex decision boundaries and can help visualize decision rules in an easily

digested format. We have made a first exploration of applying classification tree

algorithms to perform qualitative analysis on our model of response to resistance

training. We also use the method for validation of concept: does the classifier sort by
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parameters in the way that we expect given our hypotheses?

4.2 Methods

4.2.1 Simulation of data for training and testing

A data set containing 1000 parameter sets with an associated response variable

defined as total lean mass gained after 180 days was created from 1000 simulations.

4.2.2 Definitions and notation

A simplified table showing the representation of data is given in Table 4.2.2.

Simulation ~θ1 · · · ~θm−1
~L(180) Class label

1 θ
(1)
1 · · · θ

(1)
m−1 L(180)(1) High

2 θ
(2)
1 · · · θ

(2)
m−1 L(180)(2) Low

...
...

n θ
(n)
1 · · · θ

(n)
m−1 L(180)(n) High

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
observations measurements classes

Measurements are made on an observation. In this case, as shown in Table

4.2.2, the measurements are the parameter sets used to generate a predicted response

together with the response. We want to predict which class the observation is in

based on the measurements (parameters).

The data set contains n observations
{
~x(1), · · · , ~x(n)

}
. Each observation is a

vector of m measurements ~x(i) =
[
x

(i)
1 , x

(i)
2 , · · · , x

(i)
m

]
and X is the measurement space

of all possible measurement vectors.

Assume observations fall into j classes and let C be the set of classes C =

{1, · · · , j}. Define Aj as the subset of X for which the C = j: Aj = {~x|C = j}. The
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sets A1, · · · , Aj are disjoint and X =
⋃
j Aj so that the Aj form a partition of X .

Then a classifier is defined as a partition of X into j disjoint subsets A1, · · · , Aj with

X =
⋃
j Aj such that for each ~x ∈ Aj the predicted class is j.

Classifiers for new data are constructed from prior knowledge of the system in

the form of a learning set L made up of n observed measurement vectors with their

class labels as shown in Table 4.2.2.

Let nj be the number of observations in class j in L. Prior knowledge used in

the construction of the classifier appears as a prior class probability π(j) =
nj

n
. The

joint probability that an observation will be in node t and belong to class j is given

by

p(j, t) =
π(j)nj(t)

nj
.

The probability that an observation is in node t is given by

p(t) =

j∑
1

p(j, t)

and the probability that an observation is in class j given it is in node t is calculated

as

p(j|t) =
p(j, t)

p(t)
.

4.2.3 Building a tree

Binary tree classifiers repeatedly split subsets of X into two descendant subsets

at each node t. Subsets not split are terminal nodes. For example, if we have two

measurements x1 and x2 and two classes then an example tree is shown in Fig 14. Fig

14 illustrates that splits can occur on either measurement variable, with observation

values that are less than the assigned splitting value going to the left node and the

rest to the right. When an observation reaches a terminal node it is assigned a class.

51



Node 1

Node 2 Node 3

Class 1

Node 4 Node 5

Node 6 Node 7

Class 2

Class 1Class 2

Split 1:

x1 < a

Split 2:

x2 < b

Split 3:

x1 < c

Fig. 14. Example of a binary tree with two measurements and two classifiers.

The partition corresponding to the classifier is found by combining all terminal nodes

with the same class. For example, in Fig, A1=node 2 + node 7 and A2=node 5 +

node 6.

Constructing a tree has three parts:

1. Selection of the splits.

2. Decision to terminate or keep splitting.

3. Assignment of each terminal node to a class.

4.2.3.1 Splitting

Learning set L is used to find binary splits of X so that each split reduces the

“impurity” of the descendant subsets, i.e. the number of different classes in the subset.

• Define a measure of impurity i(t) where t is the node. We use the Gini diversity
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index

i(t) = 1−
j∑
1

[p(j|t)]2 .

• Determine all splits s on each measurement by proposing splits halfway between

consecutive values for that measurement

• Pick the best split on each measurement as the one which yields the largest

decrease in impurity

∆i(s, t) = i(t)− pRi(tR)− pLi(tL)

where pR is the proportion of observations in t that go to the right node tR.

Similarly for pL as shown in Fig 15.

• Pick the measurement variable on which to split at each node as the one with

the greatest overall decrease in impurity ∆i(s, t).

4.2.3.2 Decision to terminate splitting

A variety of stopping rules are possible. We declare a node to be terminal if all

observations are from one class or if a a pre-defined criterion is met. The criterion

used here is a set maximum on the number of splits.

4.2.3.3 Assignment of terminal node to a class

For class j0, if

p(j0|t) = max
j
p(j|t)

then t is a class j0 terminal node. In other words, we assign class label j0 to a node

if the probability over all classes is maximized for class j0 given that it is in node t.
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Node t

Node tL Node tR

Split spL pR

Fig. 15. Illustration of how proportions of observations are split between
nodes.

4.2.4 Error rate

The error rate of the tree tells us the rate at which observations in the learning

set L have been misclassified. The error at each node t is the fraction of misclassified

observations at each node and is given by

r(t) = 1−max
j
p(j|t)

and the overall error rate for the entire tree is calculated using the error at each

terminal node

R(t) =
∑
T

r(t)p(t)

where T is the set of all nodes.

4.2.5 Cross-validation

Overfitting of a tree classifier to the learning data set can give an incorrect

estimate of the misclassification error rate for new data. There are a variety of

methods for increasing accuracy of the error estimate given limited data. Here we use

k-fold cross-validation, which shuffles the learning set and then divides it into k groups.

Each group takes a turn as the holdout set while all other groups combine to form

the learning set. A tree is trained on the learning set and tested on the holdout set

at each step. For every fold, this method computes the fraction of misclassified data
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for in-fold (learning set) observations using a model trained on out-of-fold (holdout

set) observations.

4.3 Results

A learning sample consisting of 1000 parameter sets together with lean mass pre-

dictions and our assigned class labels was generated using Latin Hypercube Sampling

as described in Section 2.2. Parameter sets that generated a predicted lean mass gain

of less than 2 kg/year after 180 days were labeled Low response while those with

predicted lean mass gain of greater than 2 kg/year were labeled High response. In

this way the continuous variable L (lean mass) was converted to a binary value for

classification. While it is possible to grow a regression tree on a continuous variable,

this requires a linear dependence of the response variable on the parameters which

does not apply here. Classification trees were generated using 10-fold cross-validation

to calculate an error rate at different pruning levels to select the best size tree. Using

this method, L was divided into several training and testing sets.

The fitctree function in Matlab was used to generate decision trees. This

algorithm grows complex decision trees with many branches by default. The default

average number of splits for this data was around 23, which is far too large for

meaningful interpretation. To determine the best tree depth (i.e. when to stop

splitting), we look at the error rate as a function of the maximum number of splits

allowed in Fig 16. An increase above eight splits does not reduce error significantly,

so we set the maximum number of splits to eight.

A classification tree trained on the learning set is shown in Fig 17. Decision rules

used to generate the tree as returned from Matlab (see code 4.1) can also be used

to code rules on parameter splits in other languages and for other contexts such as

setting bounds on random sampling or parameter estimation.
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r < 0.02 
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Fig. 17. A classification tree trained using a data set containing 1000 param-
eter sets and an associated response variable defined as total lean
mass gained after 180 days. Each of the 1000 parameter sets was classified
as being likely to produce a High or Low response to resistance training in
simulations according to parameter splitting rules marked on each branch of
the tree. Terminal nodes are outlined in red if observations within are in the
High class and blue if they are assigned to the Low class.
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Listing 4.1 Matlab output of decision rules used to fit a binary classification tree with
a maximum of 8 splits

,
1 Decision tree for classification
2 1 if x1<0.0201011 then node 2 elseif x1≥0.0201011 then ...

node 3 else 0
3 2 if x5<72.1374 then node 4 elseif x5≥72.1374 then node ...

5 else 1
4 3 if x5<55.4891 then node 6 elseif x5≥55.4891 then node ...

7 else 0
5 4 class = 1
6 5 if x1<0.0105772 then node 8 elseif x1≥0.0105772 then ...

node 9 else 1
7 6 if x3<4.0457 then node 10 elseif x3≥4.0457 then node ...

11 else 1
8 7 if x5<60.9438 then node 12 elseif x5≥60.9438 then node ...

13 else 0
9 8 class = 1

10 9 class = 0
11 10 class = 0
12 11 class = 1
13 12 if x1<0.0395436 then node 14 elseif x1≥0.0395436 then ...

node 15 else 0
14 13 class = 0
15 14 class = 1
16 15 class = 0

These rules on parameters can be used to guide simulation and parameter fitting

4.3.1 Classifying parameter sets in a model of resistence exercise induced

muscle hypertrophy

A tree generated from the full data set misclassified only 4.7% of observations

and a second tree generated using a holdout data set with equally apportioned classes

misclassified 5.5%. This accuracy in prediction of lean mass outcomes given only the

parameter sets that generated them indicates that there is a well-defined relationship

between parameter sets and associated predicted changes in lean mass. Further, only

parameters r, H2, and β were found significant in predicting total lean mass gained

57



r β 1 2

Predictors

0

1

3

5

7

9

P
re

d
ic

to
r 

Im
p
o
rt

a
n
c
e
 E

s
ti
m

a
te

s

10-3

Fig. 18. Predictor importance estimates.

after 180 days (see Fig 18). This is consistent with the sensitivity analysis results in

Section 2.3.4.

The splitting rules for each parameter shown in the tree diagram in Figure 17,

and the paths that lead to a predicted High or Low response to resistance exercise,

bear closer examination. This information can guide parameter selection for case

studies in the future and can also allow us to evaluate biological feasibility of the

model outcomes. At the uppermost level of the tree diagram we begin with 1000

samples (observations) that are then partitioned into the High and Low classes at

each subsequent level by the given splitting rule. Terminal nodes are red if the

observations within are classified as High and blue if they are classified as Low.

For example, if we view the leftmost main branch of the diagram in Figure 17 we

see that for the 193 parameter sets with r-value less than .02, the likelihood of being

a Low responder is greater because 153 of them are classified as producing a low

response. However, this can be overcome if H2 > 72.14 and if r is at least above a
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threshold value of .01, and this applies to only 37 of the parameter sets.

This could be interpreted biologically as well: if frequency, intensity, and volume

of exercise (total effort) as defined by r are low, it is unlikely to result in a high

response unless the genetic potential for hypertrophy, as defined by H2, is high and

if total effort is above a certain threshold. The other available pathways off the left

main branch show that when effort is low and genetic potential is low, or when genetic

potential is high yet effort is below a certain threshold, the result is a low response.

Other paths yield similar insights. The tree diagram provides an illustration

of how very different paths, which can be viewed both as different combinations of

parameters and different combinations of physiological tendencies, can ultimately lead

to the same outcomes.

4.4 Discussion

We have used our model of response to resistance exercise to demonstrate the

qualitative analysis of biological model behavior using decision trees. Using this

relatively simple method, intuition can be gained about how partitions in parameter

space produce different model behaviors - intuition that cannot usually be gained

from limited experimentation. In this way we can learn what other behaviors the

model is capable of producing. This preliminary exploration can also serve several

practical purposes:

• Visual communication of the significance of model parameters to non-

mathematicians. The tree format allows interactions between multiple pa-

rameters and the associated output to be represented simultaneously. In this

way it can be made clear that the same behavior can result from different combi-

nations of parameters. Most other statistical methods of parameter exploration

are not easily visualized or are restricted to pairwise parameter plots.
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• Sensitivity analysis. Unbiased predictor importance estimates can be calcu-

lated by summing changes in the misclassification risk due to splits on every

predictor and dividing the sum by the number of branch nodes. More informally,

we can simply look at the parameters used in pruned decision trees to identify

the important parameters. In general, this a much quicker way of getting a

first look at the key parameters that drive model behavior. We can change

class definitions dependant on the behavior for which we want to identify these

important parameters; for example, instead of High and Low responders, we

could have defined Fast and Slow responders if we wanted to identify which

parameters drive adaptation to training.

• Decision rules can be used to find representative sets for simulation.

To do this, we can sample parameter sets from value ranges restricted to those

suggested by a decision tree. For example, given the tree in Fig 17, we can

choose parameters that satisfy:

– 0.01 < r < 0.02, H2 < 72.14

– r ≥ 0.02, H2 < 54.21, β < 4.05

– r ≥ 0.05, H2 ≥ 60.94

to select parameter sets representative of a hypothetical High responder or a

cohort of hypothetical High responders.

• Decision rules can be used to set bounds on parameter space for

fitting. Given experimental data, we know the ultimate class of the observation.

Setting bounds on the parameter space and choosing initial parameter values for

data fitting is nontrivial and can be time consuming. Generation of a decision

tree from simulated data is relatively fast and straightforward. We can then refer
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to the decision rules on parameters that result in the same class the observation

is in to initiate parameter estimation.

There are many ways of improving the likelihood that decision trees will accurately

classify new data. For a more complex model, using an ensemble of classifiers such

as random forests, bagging, or boosting may be more appropriate. There are many

variations of tree-based classification methods; the choice of which to use will depend

on whether prediction or exploration is the goal, and whether classes are discrete or

continuous.

Effects of initial conditions will also need to be investigated before decision rules

could be considered to apply to any biologically reasonable sample. One possible

way to do this is to include different initial conditions as parameters in an expanded

learning data set when training decision trees.
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CHAPTER 5

MACROPHAGE POLARIZATION IN PERITONITIS

5.1 Introduction

Macrophages play an essential role in both the progression and the resolution

of inflammation. These contradictory roles may be explained by the idea of a spec-

trum of macrophage phenotypes, ranging from the inflammatory M1 phenotype to

the anti-inflammatory M2 phenotype at either extreme, with diverse subpopulations

of macrophages in between [74, 75, 76, 77]. Another possible explanation is that

macrophages exhibit typically M1 or M2 type functions to varying degrees at various

points in time, or there are portions of each type present at each of the different

phases of inflammation [78]. While this duality of purpose is not fully understood,

it is known that an imbalance between pro- and anti-inflammatory macrophage ac-

tivities has been linked to disordered healing and implicated in many inflammatory

diseases. For example, overpopulation of M1 macrophages can induce tissue injury

[74], and the accumulation of M1s in adipose tissue which secrete pro-inflammatory

cytokines can lead to insulin resistance, diabetes, and atherosclerosis [79, 80]. Even

M2 macrophages, which are thought of as resolving inflammation, can cause disor-

ders such as allergies, asthma, fibrosis, and excessive scarring when present in large

numbers [77]. There is also an increased association of M2 polarized macrophages

with solid tumor formation [81, 82].

All macrophages begin life as monocytes circulating in the bloodstream and, upon

settling into tissues and organs in the body, will adapt to their local environment.

At an inflamed site, monocytes are triggered to differentiate into macrophages in re-
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sponse to stimuli such as chemokines and cytokines in the extracellular environment,

phagocytosis of apoptotic cells or debris, or the presence of pathogen [74, 80, 83,

77, 84]. These first invading macrophages primarily activate to a more M1 pheno-

type but, under normal conditions, M2 macrophages producing anti-inflammatory

cytokines will eventually dominate, suppressing the inflammatory and Th1 adaptive

immune response, while promoting a Th2 response [77]. In response to infection or

presence of pathogens, neutrophils are the first immune cell to appear to facilitate

removal. Subsequent macrophage infiltration is essential for the removal of apoptotic

neutrophils and continued secretion of cytokines to further limit the effects of the

invading pathogens [85].

This timely recruitment and egress of immune cells is central to the mounting of an

appropriate immune response that resolves to restore tissue homeostasis. Dysfunc-

tion or disruption of this response is the cause of essentially all chronic inflammatory

diseases. Appropriate switching of phenotype of the overall macrophage population

from initial M1 to M2 phenotype is critical for a balanced response. Knowledge of

which subpopulations of macrophages to modulate is therefore necessary for the de-

velopment of interventions that can aid in the resolution of inflammation.

Mathematical modeling has been extensively applied to the problem of inflammation

in a variety of contexts such as wound healing [86, 3, 87, 88, 5, 89, 90, 4, 91, 92,

93, 94] and atherosclerosis [95, 96, 97, 98, 99, 100, 101, 102]. Deterministic ordinary

differential equations (ODEs) in particular have been used when the primary interest

is capturing time course and/or qualitative behavior at the cellular level. Reynolds et

al. in 2006 [3] modeled the innate immune response to pathogen including activated

phagocytes, level of pathogen, tissue damage, and anti-inflammatory mediators and

this model was modified to apply to a local wound with the inclusion of fibroblast

activity and the effect of tissue oxygen levels in Menke et al. [5]. The work was
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further extended by Segal et al. in 2012 [4], adding collagen accumulation as a means

of tracking the healing progress. Cooper et al. [93] next tracked macrophages and

neutrophils specifically rather than a single variable representing immune response.

Phagocytosis of apoptotic neutrophils was considered a key driver of the resolution

of inflammation in models developed by Dunster et al. [92]. In a study analyzing

macrophage polarization following myocardial infarction, Wang et al. [91] tracked

both M1 and M2 macrophages as well as pro- and anti-inflammatory mediators. Re-

cent work by Lee et al. [103] models M1 and M2 macrophage response to respiratory

viral infection along with epithelial cells, cytokines, and enzymes.

Here we draw on the work done in these previous models to develop a new computa-

tional model of inflammation that seeks, in part, to explain the relationship between

macrophage polarization and neutrophils. To our knowledge, our model is the first to

include both inflammatory M1s and resolving M2s that is fit to in vivo experimental

data.

We first use ODEs to develop a computational model of the sequential influx of im-

mune cells in response to an external trigger to permit a system-level analyses of

the processes. We then parametrize the model by fitting to cell count data for neu-

trophils, M1 macrophages, and M2 macrophages obtained from a mouse model of

peritonitis, a well-accepted model to assess inflammatory responses in vivo that is

also widely used to evaluate the efficacy of targeted anti-inflammatory interventions.

This step entails finding a subset of identifiable parameters to estimate and fixing

those that were unidentifiable, a process that has many approaches across a wide ap-

plication area [104, 105, 106, 107, 108, 109]. Once a final parameter set is estimated,

we conduct a local sensitivity analysis of the fitted model in order to gain an under-

standing of the primary controls of the system. The results support the dependence of

macrophage polarization on neutrophils that has been hypothesized in the literature
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[110, 74, 111, 112, 76]. Finally, we use the model to test several macrophage-targeted

treatment scenarios that are hypothesized to dampen inflammation. The resulting

predictions could have implications in the development of treatment strategies for

chronic inflammation.

5.2 Methods

Experimental details

Induction of peritonitis by intraperitoneal injection of thioglycollate broth, which

will facilitate the rapid growth of bacteria in the peritoneal cavity, is a well-suited

platform to monitor the influx of immune cells and also permits easy characterization

of the infiltrating cells in a time dependent manner. Peritoneal exudates were har-

vested from mice at 10 different time-points over 7 days after a single intraperitoneal

injection of 3% thioglycollate broth. The peritoneal cavity was flushed with serum

free RPMI medium. The cells were collected by brief centrifugation, re-suspended,

and then stained with fluorescently conjugated antibodies to CD45, CD11b, Ly6G

(Gr-1), F4/80 and Ly6C and analyzed by flow cytometry to determine the distri-

bution of neutrophils, macrophages and Ly6CHi (M1) or Ly6CLo (M2) polarization

[113]. While all leukocytes are CD45+, neutrophils and macrophages can be dis-

tinguished by the presence of specific markers, namely Ly6G or Gr1 and CD11b or

F4/80 on neutrophils and macrophages, respectively. The macrophages in the peri-

toneal exudates can further be differentiated into resident (CD11bHi and F4/80Hi),

inflammatory M1 (CD11b+Ly6CHi) and anti-inflammatory M2 (CD11b+Ly6CLo)

phenotypes. The gating strategy and representative dot plots and histograms used to

identify individual cell populations are shown in Figure 19. Flow cytometry data was

analyzed using the FlowJo software and percent distribution of individual cell type

65



determined as described earlier [113]. The data collected from these experiments is

used to calibrate the model parameters (see C.1).

5.2.1 Model Development

This model tracks the signaling and resulting immune response with in the peri-

toneal cavity. We do not explicitly model the blood component and all variables

represent local levels. To create this model, previous models of immune response

to a wound [3, 4, 93] have been adapted to include polarization of macrophages be-

tween phenotypes M1 and M2, transition of neutrophils to the apoptotic state, and

the injection of nutrient broth to induce growth of pathogen and stimulate immune

response. System variables include cell populations given by M1 (M1 macrophages),

M2 (M2 macrophages), N (neutrophils), and AN (apoptotic neutrophils) as well as

P (pathogen) and B (inflammatory stimulus). We track the total cells for each pop-

ulation with units of 107 cells. Model parameters for rates of activation, transition,

decay, and interactions are specified in Table 8. Units for many of the model pa-

rameters are given in terms of their associated variable, since they are representative

of immune functions such as cell signaling and mediators for which units cannot be

determined. The model is summarized in Fig 20 and described by Eqs 5.1-5.6.
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CD45+
Leukocytes

CD11b+
Macrophages

Ly6G+
Neutrophils

Ly6C-Lo (M2)

Ly6C-Hi (M1)

Fig. 19. Experimental details. Gating strategy and representative dot plots and
histograms used to identify individual cell populations
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Macrophages:

dM1

dt
=

activation/influx rate︷ ︸︸ ︷
smrRM1(P,N,M1, AN)

µmr +RM1(P,N,M1, AN) +RM2(M2)
−

switch to M2 from M1 per phagocytized AN︷ ︸︸ ︷
km1m2kanm1ANfi(M1, N) (5.1)

+

switch to M1 from M2︷ ︸︸ ︷
km2m1M2 −

decay︷ ︸︸ ︷
µm1M1

dM2

dt
=

activation/influx rate︷ ︸︸ ︷
smrRM2(M2)

µmr +RM1(P,N,M1, AN) +RM2(M2)
+

switch rate from M1 per phagocytized AN︷ ︸︸ ︷
km1m2kanm1ANfi(M1, N) (5.2)

−
switch from M2 to M1︷ ︸︸ ︷

km2m1M2 −
decay︷ ︸︸ ︷

µm2M2

where the activation/influx rates for M1 and M2 are given by

RM1 =

activation by P︷ ︸︸ ︷
km1pP +

activation by byproducts of N︷ ︸︸ ︷
km1nN +

activation by M1s and their cytokines︷ ︸︸ ︷
km1m1M1

+

activation by necrotic AN︷ ︸︸ ︷
km1anµanAN

RM2 =

activation by M2s and their cytokines︷ ︸︸ ︷
km2m2M2 +

background anti-inflammatory cytokines︷︸︸︷
kc

Neutrophils:

dN

dt
=

activation rate︷ ︸︸ ︷
snrRN(P,AN)

µnr +RN(P,AN)
−

apoptosis︷ ︸︸ ︷
kanN (5.3)

dAN

dt
=

apoptotis of N︷ ︸︸ ︷
kanN −

removal by M1︷ ︸︸ ︷
kanm1ANfi(M1, N)−

removal by M2︷ ︸︸ ︷
kanm2ANfi(M2, N)−

removal by N︷ ︸︸ ︷
kannN (5.4)

−
secondary necrosis︷ ︸︸ ︷

µanAN

where the activation rate for neutrophils is

RN =

activation by P︷ ︸︸ ︷
knpP +

activation by necrotic AN︷ ︸︸ ︷
knanµanAN
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Inflammatory Stimulus:

dP

dt
=

logistic broth-dependent growth︷ ︸︸ ︷
kpgP

(
1− P

P∞ +B

)
−

removal by N︷ ︸︸ ︷
kpnPN −

removal by M1︷ ︸︸ ︷
kpmPfi(M1, N) (5.5)

−
removal by M2︷ ︸︸ ︷

kpmPfi(M2, N)

dB

dt
=

consumption by P︷ ︸︸ ︷
−kbBP (5.6)

Inhibition function:

fi(x,N) =
x

1 + ( N
n∞

)2
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M1 N

AN

B
P

kpm1

kanm1

km1p knp

kpn

kanm2

km1m1

km2m1

km2m2

km1m2
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n
�
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�

kbkm1an kann

kpm2

kan

knan

M2

Fig. 20. Model schematic. Model schematic for the inflammatory response with
components defined in key. Arrows represent up-regulation and bars repre-
sent destruction or inhibition. Parameters in the schematic that are included
in the final subset of identifiable parameters appear in bold; additional non-in-
teraction parameters that do not appear in the schematic are given with the
full subset in Table 11.
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The healthy peritoneal cavity is impermeable and is assumed to be nearly sterile prior

to inflammatory stimulus, with very low levels of pathogen, and so contains only a

very small number of “surveying” macrophages. Therefore, all of our immune cell

variables have an initial condition of zero. The injection of nutrient broth is assumed

to stimulate a very rapid increase in pathogen growth that quickly subsides as broth

is consumed and pathogen is removed by macrophages and neutrophils. Timely re-

moval of pathogens is dependent on appropriate influx and egress of inflammatory

cells. Therefore, development and/or resolution of peritonitis report on an individ-

ual’s ability to mount or resolve inflammation. The initial spike in pathogen modeled

by Eqs 5.5-5.6 initiates the subsequent immune cell response.

As in Cooper et al. [93], immune cells are assumed to activate and influx into the local

environment rapidly compared to other dynamics, so the quasi-steady state assump-

tion is used. This gives rise to Michaelis-Menten type activation and influx terms in

Eqs 5.1-5.3. In addition, we do not explicitly model cytokines but instead allow the

presence of immune cells to act as an indicator of associated cytokine level.

Resting neutrophils are the first immune cells to arrive at the site of infection, rapidly

becoming activated by pathogen and the debris formed by apoptotic neutrophils at

the rate RN(P,AN). As neutrophils become laden with bacteria, they undergo apop-

tosis at rate kan. Apoptotic neutrophils are then removed by M1s at rate kanm1,

M2s at rate kanm2, and by active neutrophils at rate kann. We have chosen kann to

be much smaller than both kanm1 and kanm2 as appropriate for the case when both

macrophages and neutrophils are present, but in the absence of macrophages, the

clearance of apoptotic cells by neutrophils may take on greater importance [114, 115].

Apoptotic neutrophils that are not cleared undergo secondary necrosis at rate µan,

contributing to the positive feedback described in the neutrophil activation term RN .

Resting monocytes (MR) are next to arrive. The majority of these first monocytes
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differentiate to an inflammatory M1 phenotype in response to pathogen, byproducts

of neutrophils, M1s and their cytokines, and cytokines spilled by necrotic apoptotic

neutrophils at rate RM1(P,N,M1, AN). Background levels of anti-inflammatory cy-

tokines, kc (related to the anti-inflammatory source term in Reynolds et al. [3]), cause

a small portion of monocytes to differentiate to an M2 phenotype. Intrinsic decay is

assumed to occur at rate µm1 in M1s and at rate µm2 in M2s. M1s are assumed to

be able to switch to M2s at rate km1m2, and this switch is assumed to be promoted

by the phagocytosis of apoptotic cells [116, 112, 76, 74]. Plasticity of macrophage

phenotype is not fully understood, therefore, we allow for the possibility of a tran-

sition from M2 to M1 in Eq 5.1 at rate km2m1 as well. Late arriving monocytes are

assumed to be able to activate to the M2 phenotype in response to anti-inflammatory

cytokines produced by M2s at rate RM2(M2).

The inhibition term fi(x,N) models the inhibition of macrophage activity by neu-

trophils due to oxidation of the environment, in which parameter n∞ controls the

level of neutrophils at which inhibition reduces macrophage activity by 50% [93].

5.2.2 Identification and analysis of equilibrium points

We assume the initial inflammatory stimulus (nutrient broth and pathogen) is re-

moved in the determination of steady state solutions. This reduces the system to M1,

M2, AN, and N and removes all terms associated with the stimulus:

dM1

dt
=

activation/influx rate from MR︷ ︸︸ ︷
smrRM1(N,M1, AN)

umr +RM1(N,M1, AN) +RM2(M2)
−

switch to M2 from M1 per phagocytosed AN︷ ︸︸ ︷
km1m2kanm1ANfi(M1, N)

+

switch to M1 from M2︷ ︸︸ ︷
km2m1M2 −

decay︷ ︸︸ ︷
µm1M1 (5.7)
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dM2

dt
=

activation/influx rate from MR︷ ︸︸ ︷
smrRM2(M2)

umr +RM1(N,M1, AN) +RM2(M2)
+

switch rate from M1 per phagocytosed AN︷ ︸︸ ︷
km1m2kanm1ANfi(M1, N)

−
switch from M2 to M1︷ ︸︸ ︷

km2m1M2 −
decay︷ ︸︸ ︷

µm2M2 (5.8)

where the activation/influx rates for M1 and M2 are given by

RM1 =

activation by byproducts of N︷ ︸︸ ︷
km1nN +

activation by M1s and their cytokines︷ ︸︸ ︷
km1m1M1

+

activation by necrotic AN︷ ︸︸ ︷
km1anµanAN

RM2 =

activation by M2s and their cytokines︷ ︸︸ ︷
km2m2M2 +

background anti-inflammatory cytokines︷︸︸︷
kc

Neutrophils:

dN

dt
=

activation rate︷ ︸︸ ︷
snrRN(AN)

µnr +RN(AN)
−

apoptosis︷ ︸︸ ︷
kanN (5.9)

dAN

dt
=

apoptotis of N︷ ︸︸ ︷
kanN −

removal by M1︷ ︸︸ ︷
kanm1ANfi(M1, N)−

removal by M2︷ ︸︸ ︷
kanm2ANfi(M2, N)−

removal by N︷ ︸︸ ︷
kannN (5.10)

−
secondary necrosis︷ ︸︸ ︷

µanAN

where the activation rate for neutrophils is

RN =

activation by necrotic AN︷ ︸︸ ︷
knanµanAN

Inhibition function:

fi(x,N) =
x

1 + ( N
N∞

)2

76



We set each of the 4 time derivatives equal to zero. Since there is no dependence

on N in the first term of Eq 5.11, we can solve for N in terms of AN which results in

a reduction of the system to three equations. In order for all three time derivatives

to equal zero, AN must equal zero (as solved using Maple 2018), and so we are left

with the following two equations determining steady states:

smrkm1m1M1

umr + km1m1M1 + km2m2M2 + kc
+ km2m1M2 − µm1M1 = 0

smr(km2m2M2 + kc)

umr + km1m1M1 + km2m2M2 + kc
− km2m1M2 − µm2M2 = 0.

5.2.3 Analysis of equilibria

If we do not consider the influence of background levels of anti-inflammatory

mediator (kc), which have been shown with numerical simulations to have slight

impact on dynamics, then we obtain the following result.

1. If smr

µmr
< µm1

km1m1
, then the system has one biologically possible equilibrium at

health: E1(0, 0, 0);

2. If smr

µmr
> µm1

km1m1
and µm1

km1m1
< km2m1+µm2

km2m2
, then the system has two biologically

possible equilibria: health E1(0, 0, 0) and a sustained M1 population E2( smr

µm1
−

µmr

km1m1
, 0, 0);

3. If smr

µmr
> µm1

km1m1
> km2m1+µm2

km2m2
, then the system has three biologically possible equi-

libria: health E1(0, 0, 0), a sustained M1 population E2( smr

µm1
− µmr

km1m1
, 0, 0), and

sustained M1 and M2 populations E3(−km2m1P
Q

, (km1m1(km2m1+µm2)−km2m2µm1)P
km2m2Q

, 0);

where P = smrkm2m2−µmrkm2m1−µmrµm2 and Q = (km2m1 +µm2)(km1m1µm2−
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km2m2µm1).

Stability of these equilibria can be analyzed by linearization and calculation of

the Jacobian matrix at each point. The trivial steady state E1 is analogous to the

resolution of inflammation, and biological feasibility of this equilibrium is indepen-

dent of parameter values. The Jacobian matrix at E1 is

J(E1) =


smrkm1m1

µmr
− µm1 km2m1 0

0 smrkm2m2

µmr
− km2m1 − µm2 0

0 0 snrknanµan
µnr

− snrknankannµan
kanµnr

− µan

 .
Since J(E1) is upper triangular, the eigenvalues appear on the main diagonal, with

all three real-valued. The trivial steady state is therefore locally stable when the

following conditions on the parameters are met:

1. smr

µmr
< µm1

km1m1

2. smr

µmr
< km2m1+µm2

km2m2

3. snr

µnr
(kan − kann) < kan

knan

Evaluating stability of E1 in the context of the current parameter set, we find

that condition 3 simplifies to snr

µnr
< 1

knan
due to the very small value of parameter

kann.

1. smr

µmr
≈ 4× 100 < µm1

km1m1
≈ 7× 104

2. smr

µmr
≈ 4× 100 < km2m1+µm2

km2m2
≈ 5× 100

3. snr

µnr
≈ 4× 101 < 1

knan
≈ 2× 101
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Only the first two conditions are satisfied, although the third condition is close

to being met. Increasing decay of resting neutrophils (unr) or decreasing positive

feedback from neutrophils (kann) will lead to stability. Parameters were fit to real

data with inflammatory stimulus, however, and we will see in the following numerical

simulations that in this more realistic scenario E1 is stable even for this simplified

model.

5.2.4 Numerical simulations

The M1 and M2 macrophage populations exert positive feedback on themselves

via pro- and anti-inflammatory cytokines, respectively. Rate of activation of M1s by

M1 cytokines is modeled with parameter km1m1 and similarly, km2m2 models positive

feedback of M2s. In our analysis of equilibria, we found existence criteria (1) and (2)

that identify km1m1 and km2m2 as bifurcation parameters. In this section, we employ

numerical simulations to give bifurcation diagrams of the system for parameter km1m1

and coupled variations in km1m1 and km2m2 that can investigate our theoretical anal-

ysis. All figures in this section were created using XPPAUT [117].

Initial conditions for the system were set to (M1,M2,AN)=(0,0,0.5), so that

we are essentially starting the system at the point after the initial inflammatory

stimulus has triggered neutrophil response before subsiding. Changes in stability and

existence of equilibria with variation of parameter km1m1 are shown in Fig 21, which

demonstrates that the system features both monostable and bistable regimes. For a

low level of positive feedback from M1s (km1m1), the system has one stable steady

state at health (E1). For intermediate values, the system is bistable between E1 and

E3 before health loses stability via a transcritical bifurcation at km1m1 = 2.15. For

high levels of positive feedback from M1s, the system is bistable between E2 and E3.
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A two parameter bifurcation diagram in Fig 22 shows the division of the km1m1 and

km2m2 parameter space between a region with one steady state (E1) and a region

with three steady states (E1, E2, and E3). Finally, Fig 23 shows the effects on M1 of

varying km1m1 through the limit points shown in Fig 21. As we increase the value of

km1m1 through 2.75, we can see the jump to E3.

km1m1

M
1

3

2.5

2

1.5

1

0.5

0

0 0.5 1 1.5 2 2.5 3

Fig. 21. Bifurcation diagram for M1 as km1m1 varies.Stable steady states are
plotted as solid lines and unstable steady states as thin lines. For small values
of km1m1, the system has one stable steady state at health. For intermediate
values, the system is bistable between health and a sustained M1 and M2
response before health loses stability via a transcritical bifurcation. For high
values of km1m1, the system is monostable with a sustained M1 response.
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Fig. 22. Two parameter plot of cusp.

5.2.5 Parameter Estimation Background

Determining which parameters can be uniquely determined, or at least limited

to a finite range of possible values, is a critical step in informing further experimenta-

tion. Ideally only parameters that significantly influence measurable model outputs

will be targeted for manipulation, either clinically or in silico. Therefore, using the

nominal parameter values obtained from data fitting, we will then explore structural

and numerical identifiability of the proposed model a posteriori via the Fisher Infor-

mation Matrix obtained from the discretized sensitivity matrix.

Given k state variables x, i outputs y, and j parameters p, the sensitivity of the ith

model output to the jth parameter is
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Fig. 23. Plot of changes in M1 dynamics as km1m1 varies through limit points.

∂yi
∂pj

=
n∑
k=1

∂fi
∂xk

vkj +
∂fi
∂pj

where fi is the RHS of the ith state variable xi and vkj = ∂xk
∂pj

. The discretized sensi-

tivity matrix is then formed by numerically solving the state equations and sensitivity

equations simultaneously at discrete time points.

5.2.6 Parameter Estimation

Cell count data is given in units of 107 cells. The model given by Eqs 5.1-5.6

was fit to experimental data using the trust region method within PottersWheel, a

82



Matlab toolbox for parameter estimation [118]. The trust region approach uses the

lsqnonlin algorithm of Matlab’s optimization toolbox, which allows for the specifica-

tion of bounds on the parameter space to be searched. Bounds for each parameter

are given in Table 8.

The fitting procedure was then performed iteratively via weighted least squares with

merit function

χ2(~p) =
n∑
i=1

(
yi − y(ti; ~p)

σī

)2

(5.11)

with ~p the vector of estimated parameters, yi the observations, y(ti; ~p) the model

predictions given the parameter estimates, σī the standard errors, and n equal to

the total number of observations over all response variables. Minimizing χ2(~p)/2 is

equivalent to maximizing the log-likelihood

logL(~p|ydata) = −
∑
i

(ydatai − ymodeli )2

2σ2
i

−N log
√

2π −
∑
i

log σi

since only the first term is parameter-dependant [118].

Fitting was performed in logarithmic parameter space since some parameter bounds

span several orders of magnitude. This local optimization routine seeks parameters

that minimize the sum of squared errors between the data and model predictions while

accounting for variance. Since each observable N , M1, and M2 has high standard

deviations for measurements taken at time points near the maximum, weighting by

these standard deviations would result in compliance with many models. We chose

instead to use error model σi = 0.05yi + 0.1max(y), assuming 5% uncertainty at each

time point and 10% overall uncertainty relative to the maximum of each observable.

At each step of the fitting process, parameter estimations were performed iteratively

to ensure minimization of the merit function. Results at each step were analyzed

to determine free and fixed parameters and to narrow the search for an identifiable

83



subset of parameters as described in the Results section.

5.2.7 Goodness-of-fit measures

Under the assumption that residuals between the data and model predictions

are Gaussian distributed, the log-likelihood is distributed like a χ2 distribution with

N −M degrees of freedom, with N data points and M parameters being estimated

[118]. PottersWheel calculates a χ2 p-value after each fit for the null hypothesis

that (1) the model sufficiently explains the data, (2) true standard deviations do not

exceed standard deviation estimates, and (3) the residuals are normally distributed

[118].

PottersWheel also calculates the Akaike Information Criterion AIC = −2 logL+ 2p

for a model with p parameters [119]. Given two models under consideration, the one

with the lowest AIC value is preferred.

5.3 Results

With the general model developed, we next estimate model parameters, analyze

sensitivity of model characteristics to perturbations in the parameters and, finally,

predict changes in neutrophil and macrophage behavior in response to parameter

variations.

5.3.1 Determination of an identifiable subset of model parameters

Structural identifiability (SI) is a prerequisite for model prediction [120], while

numerical or practical identifiability is required to determine confidence intervals

around parameter estimates and ensure that the connection between the dynamic
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model and the data model is sufficiently strong for prediction. Determining which

parameters can be uniquely determined, or at least limited to a finite range of possi-

ble values, is also a critical step in informing further experimentation. This process

includes selecting parameters that significantly impact model outputs as well as defin-

ing interactions between parameters that can influence parameter estimates obtained

during fitting. In this section, we analyze local parameter identifiability as outlined

in the steps below and in Fig 24 :

1. Estimate all parameters.

• Use the fitted model to generate the discretized sensitivity matrix S.

2. Fix insensitive parameters.

• Use S to rank parameters by sensitivity.

• Set a threshold such that parameters with sensitivity below the threshold

(insensitive) are fixed and parameters with sensitivity above the threshold

(sensitive) are analyzed in Step 3.

3. Select low collinearity group of parameters as identifiable (ID) subset.

• Check for pairwise correlations between parameters by deriving an approx-

imate correlation matrix from S.

• Check for collinearity between groups of parameters with a collinearity

index (CI) measure. Set a threshold such that groups of parameters with

CI above the threshold are considered collinear. Groups of parameters

with CI below the threshold are considered identifiable subsets.

4. Estimate identifiable (ID) subset of parameters.
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• One identifiable subset of parameters is selected to be estimated.

• The remaining parameters are fixed.

Yes

No No

Yes

Fix insensitive
parameters

Estimate all
parameters

1.

2.

Check pairwise

correlations

Check group

collinearity

Select low
collinearity group

as ID subset

3.

Estimate ID
parameters

4.

Fix

Above

threshold?

Generate
sensitivity matrix

Rank parameters

by sensitivity
In ID

subset?

Fig. 24. Steps to estimate an identifiable subset of parameters. Step 1 (gray):
estimate all parameters and generate a discretized sensitivity matrix from
the fitted model. Step 2 (pink): Fix parameters that fall below a determined
sensitivity threshold. Step 3 (blue): Select one group of low collinearity (iden-
tifiable) parameters. Step 4 (green): Estimate the chosen identifiable subset
and fix all other parameters.

Model parameters were estimated using a maximum likelihood equivalent cri-

terion and trust region search algorithm as described (see Materials and Methods).

Since reducing parameters to be estimated can be considered a form of model reduc-

tion [121], we refer to our final model with 6 estimated parameters as the “identifiable”

model versus the “full” model with all 24 parameters estimated in the comparisons

below.

First, we performed parameter estimation on the full model. For all three ob-

servable model outputs (N , M1, and M2) sampled at 10 time points with 24 model

parameters, a 30× 24 discretized sensitivity matrix S is produced. To test structural

identifiability of the model a posteriori, we generated these matrices at a variety of
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locations in parameter space within the bounds given in Table 8 and found the rank

and the singular values for each. Since each of these matrices was determined to have

full column rank and no zero singular values, we concluded that the model is locally

SI [122] within the bounds we had set for parameter estimation.

Next, we ranked the impact of each parameter on all three observable model outputs

(N , M1, and M2) by calculating a root mean square sensitivity measure, as defined

in Brun et al. [104], for each column j of the normalized sensitivity matrix as

RMSj =

√√√√ 1

n

n∑
i=1

(
pj
yi

∂yi
∂pj

)2

.

Parameter j is deemed insensitive if RMSj is less than 5% of the value of the maxi-

mum RMS value calculated over all parameters. By this measure, 8 parameters were

deemed insensitive, as shown in Figure 25, and fixed at their nominal values.

We had determined that all singular values were greater than zero, indicating SI, but

only 6 of the 24 singular values obtained had values with order of magnitude greater

than zero. If we consider the very small singular values essentially zero for the pur-

pose of rank calculation (in order to reduce problems with numerical identifiability)

this gives rank(S)=6, and since rank(S) can be used to identify the number of pa-

rameters that can be included in an identifiable subset [121, 106], a subset of size

6 is suggested. The parameter estimation problem was therefore reduced to finding

identifiable subsets of size 6 out of the 16 sensitive parameters.

The estimated correlation matrix for the sensitive subset of parameters, shown in

Figure 26, shows a large number of dependencies between pairs of parameters. Ef-

fects of nearly linearly dependent parameters on output are pairwise indistinguishable

and cannot be reliably estimated, due to compensating effects by changes in other

parameters in the group. In addition to discovering pairwise parameter relationships,
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we sought a minimally correlated group of 6 parameters. A measure that applies to

parameter subsets of any size is the collinearity index defined by Brun et al. [104] as

CI =
1√
λk

where λk is the smallest eigenvalue of S̄Tk S̄k and S̄ is a submatrix of S containing

the sensitivity vectors for parameters in subset K. In practical terms, changes in

model output caused by a change in parameter pj can be compensated for by other

parameters by up to 1
CI

(e.g., for CI=20 a change in output caused by a change in pj

can be compensated for up to 5% by other parameters in subset K) [104]. A cutoff

of CI = 20 was used to select subsets of parameters with low collinearity.

Collinearity indices were calculated for parameter subsets of increasing size as

described in Brun et al. [104], using code in the VisId Matlab toolbox [105]. Thirteen

parameter pairs that were found highly correlated by this measure are shown in Ta-

ble 9; others are not shown due to the large number of collinear groups (for example,

there were 68 highly collinear parameter subsets of size 3). No subsets of size greater

than 6 met our criteria for low collinearity between parameters. In all, 25 parameter

subsets of size 6 met our criteria, involving 10 different parameters (shown in Table

10).
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Fig. 25. Parameter importance ranking (RMS) for full and identifiable
model. We ranked the impact of each parameter on all three observable
model outputs (N , M1, and M2) by calculating a root mean square sensi-
tivity measure, as defined in Brun et al. [104]. The sensitivity threshold was
set at 5% of the maximum RMS value calculated over all parameters. Eight
parameters in the full model were thus deemed insensitive and fixed in step
2 of our identifiability analysis. The inset plot shows RMS values for the
identifiable model.
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significant linear correlations (greater than 0.7) between sensitive parameters
that appear as black or white squares on the off diagonal.
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Table 9. Pairwise collinearity indices. Pairs of parameters were considered
collinear (highly correlated) if CI > 20.

Parameter Pair CI

km1m2, kanm1 67.98

snr, unr 47.04

snr, knan 46.16

unr, knan 43.50

kan, knan 28.28

snr, kan 26.79

kan, unr 25.79

unr, uan 25.13

n∞, knan 24.84

kan, n∞ 24.20

snr, uan 24.14

uan, knan 20.77

snr, n∞ 20.16

Table 10.: All identifiable parameter subsets of size 6. A subset of sensitive

parameters was considered identifiable if its collinearity index was below 20. Of these

twenty-five identifiable subsets of size 6 (generated from 10 parameters), we chose one

subset to estimate given in Table 11. With our choice, we sought to both minimize the

CI and maximize the sum of the RMS sensitivity measures over all of the parameters

in a subset containing parameters that may be reasonably estimated from currently

available data and that we hope to vary in future simulated experiments.

Parameter group Collinearity Index

snr, smr, µm1, km1m2, knp, kanm2 18.492

Continued on next page
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Table 10 – Continued from previous page

Parameter group Collinearity Index

snr, smr, µm1, knp, kanm1, kanm2 18.915

snr, smr, µm2, km1m2, knp, kanm2 18.726

snr, smr, µm2, knp, kanm1, kanm2 19.281

snr, smr, km1m2, knp, kanm2, km2m2 18.197

snr, smr, km1m2, knp, kanm2, km1an 19.170

snr, smr, knp, kanm1, kanm2, km2m2 18.562

snr, smr, knp, kanm1, kanm2, km1an 19.815

snr, µmr, µm1, km1m2, knp, kanm2 18.009

snr, µmr, µm1, knp, kanm1, kanm2 18.311

snr, µmr, µm1, knp, kanm2, km1an 19.060

snr, µmr, km1m2, knp, kanm2, km2m2 18.606

snr, µmr, km1m2, knp, kanm2, km1an 18.323

snr, µmr, knp, kanm1, kanm2, km2m2 19.032

snr, µmr, knp, kanm1, kanm2, km1an 18.741

snr, µm1, µm2, km1m2, knp, kanm2 18.370

snr, µm1, µm2, knp, kanm1, kanm2 18.800

snr, µm1, µm2, knp, kanm2, km1an 19.984

snr, µm1, km1m2, knp, kanm2, km2m2 18.207

snr, µm1, knp, kanm1, kanm2, km2m2 18.567

snr, µm1, knp, kanm2, km2m2, km1an 19.251

snr, µm2, km1m2, knp, kanm2, km1an 18.610

snr, µm2, knp, kanm1, kanm2, km1an 19.121

Continued on next page
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Table 10 – Continued from previous page

Parameter group Collinearity Index

snr, km1m2, knp, kanm2, km2m2, km1an 18.364

snr, knp, kanm1, kanm2, km2m2, km1an 18.771

In selecting one of these parameter subsets to be estimated in an identifiable

model, we considered several factors. First, from a practical standpoint, it was desir-

able to choose parameters that may be reasonably estimated from currently available

data and also that we hope to vary in future simulated experiments. Next, we sought

to both minimize the CI and maximize the sum of the RMS sensitivity measures

over all of the parameters in the subset. Minimizing the CI reduces the likelihood

of parameter dependencies interfering with optimization, while choosing the subset

with the most sensitive parameters should require the smallest adjustment to their

values [121].

The chosen identifiable subset of 6 parameters is shown in Table 11 along with point-

wise 95% confidence intervals calculated based on the approximate Hessian matrix of

the objective function given in Eq 5.11, as described in Maiwald et al. [118]. The

correlation matrix for the identifiable model, shown in Fig 27, shows less correlation

between estimated parameters than in the full model. The fit of the identifiable model

to M1, M2, and neutrophil data is shown in Fig 28. State variable predictions for

pathogen, nutrient broth, and apoptotic neutrophils are shown in Fig 29. Differences

between model predictions and observations are also shown in Fig 30.

5.3.2 Goodness-of-fit

The full model, with 24 parameters estimated, and the identifiable model, with 6

parameters estimated, are compared with respect to goodness-of-fit using the Akaike
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Table 11. Parameter values and 95% pointwise confidence intervals for iden-
tifiable model. Remaining parameters were fixed at values given in Table
8.

Parameter Estimate 95% CI

µm1 6.83 (5.45, 8.54)

km1m2 8.62 (5.56, 13.4)

km2m2 1.59 (0.86, 1.96)

snr 16.4 (16.0, 16.8)

knp 3.10 (1.68, 5.65)

kanm2 91.0 (66.4, 125)

information criterion (AIC) and χ2 test (see Methods) in Table 12. By these measures,

the data is best explained by the identifiable model even though the difference in

χ2 metric value between models is small. There is close agreement between model

predictions and observations achieved with our obtained parameters, however, we

remark that there is some dependency between fixed and estimated parameters and

that there are inherent limitations in estimating parameters with limited experimental

data. Therefore, these estimates should be taken as conditional, and we can determine

which fixed parameters they may be conditioned on by viewing the profile likelihood

[107, 123, 124].

The profile likelihood approach for analyzing identifiability fixes a parameter pi at

values over a specified range, re-estimating all other parameters at each point [123]:

χ2
PL(pi) = min

pj 6=i

[
χ2(p)

]
.

Using the profile likelihood, it is possible to trace out the functional form of identifiable

combinations of parameters, and this information can be used in re-parametrization
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Fig. 27. Correlation matrix plot for the identifiable model. An approximate
correlation matrix was obtained from the Fisher Information Matrix of the
identifiable model and used to visualize correlations between model parame-
ters. There is one significant correlation (greater than 0.7) between parame-
ters km1m2 and km2m2.

[107, 106]. However, this requires reducing extra degrees of freedom in the estimated

parameters in order to avoid compensation effects. [107]. Even with collinearities

present, it is possible to get an idea of compensation effects between parameters dur-

ing fitting by observing how estimated parameters change over the profiled parameter.

This can be important in determining whether estimated parameters are conditional

on parameters that were fixed prior to fitting [104]. We have plotted the profile like-
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Fig. 28. Model response variable predictions versus observations for the
identifiable model. Model predictions for M1 macrophage (M1), M2
macrophage (M2), and neutrophil (N) counts are plotted versus mean ob-
served values and standard errors.

lihoods of parameters in the identifiable subset versus other parameters that change

significantly over the profile likelihood in Fig 31.

5.3.3 Sensitivity Analysis

The impact that both fixed and estimated parameters have on predictions for

M1 and M2 macrophages was analyzed with one-at-a-time sensitivity analysis. We

focused our analysis on these two observable outputs since our goal is to identify

drivers of population level phenotype switch in macrophages. In applying this method,

we increased each parameter by a factor of 1.001 of its baseline value while holding

all other parameters at their baseline values to determine the effects on the M1 and
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Fig. 29. Model state variable predictions for the identifiable model. Model
predictions for levels of pathogen (P ) and nutrient (B) and apoptotic neu-
trophil (AN) counts.

Table 12. Goodness-of-fit statistics. In the full model, 24 parameters were esti-
mated. After identifiability analysis, estimated parameters were reduced to
6 and the remaining parameters were fixed prior to fitting. The reduction
in estimated parameters improved the weighted least squares merit function
value (χ2), increased p-value on a χ2 test indicating that the identifiable
model sufficiently explains the data, and lowered the estimated amount of
information lost between the model and the data by the Aikake Information
Criterion (AIC) measure.

np χ2 p-value AIC

Full model 24 19.325 0.003 122.462

Identifiable model 6 15.473 0.906 82.61
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M2 characteristics shown in Figs 32 and 33. The sensitivity of characteristic f with

respect to parameter p is then estimated as s = (f(1.001∗p)−f(p))/(1.001∗p−p)∗p/f

using the PottersWheel Matlab toolbox [118]. The parameter is then reset to its

baseline value and the process is repeated for the next parameter, until sensitivity

of all parameters is analyzed. Baseline values for parameters that were fixed during

fitting are given in Table 8 and baseline estimated parameter values are given in Table

11. Baseline characteristics of each cell type are shown in Figs 32 and 33, along with

sensitivities of each characteristic to variations in each parameter. Since parameters

are varied individually, this analysis does not take into account interactions between

variables that may influence model results in unexpected ways if more than one
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Fig. 31. Profile likelihood plots. The six parameters in the identifiable subset are
plotted versus the estimated parameters on a logarithmic scale. Only esti-
mated parameters that change significantly are plotted. These changes can
indicate dependencies between parameters.

parameter is varied simultaneously. Taken with the above caution, however, we can

gain some insight into which factors may drive macrophage phenotype balance.

The most influential parameters on M1 behavior are snr and smr (availability of

resting neutrophils and monocytes), kpg (behavior of inflammatory stimulus), km1p

and knp (response of M1s and neutrophils to inflammatory stimulus), and uan (rate of

secondary necrosis of neutrophils). In the present context, M1s are primarily activated

by initial inflammatory stimulus and necrosis of apoptotic neutrophils that have not

been phagocytosed. This supports the hypothesis that effective clearance of apoptotic

cells is important in the resolution of inflammation [125, 126, 127, 128, 110, 129, 130,

116, 74]. If our parameter estimates had been obtained by fitting to data from chronic
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inflammation, feedback from existing M1s and the pro-inflammatory byproducts of

existing neutrophils would likely be greater contributors to M1 response. Negatively

related to magnitude of M1 response are parameters µm1 (decay or efflux rate of M1s)

and n∞ (the level of neutrophils required to inhibit macrophage activity by 50%). As

the threshold for inhibition of M1s increases, the magnitude of the M1 population

decreases because less M1s are required to mount an adequate response.

The importance of neutrophils and neutrophil apoptosis in mounting a timely and

sufficient M2 response is evidenced by the high sensitivity of M2 peak timing and

amplitude to neutrophil-associated parameters snr, uan, kan, knp, unr, n∞, kanm1,

kanm2, and knan. The magnitude of the M2 population peak is also strongly positively

associated with km1m2 (switch rate from M1s) and km2m2 (feedback from existing

M2s). Increasing rates of decay or efflux for resting monocytes (µmr) and resting

neutrophils (unr) diminishes M2 population magnitude, as does reduced M1 activation

by pathogen (km1p), indicating M2 dependence on the population size of other immune

cells.

5.3.4 Simulations

Our objective in this work is to identify key drivers of macrophage phenotype bal-

ance during the inflammatory response, in order to identify potential clinical targets.

Therefore we now perturb parameters from fitted values in order to view effects on

model behavior and simulate therapeutic targeting of macrophages for intervention in

the early inflammatory process critical to disease progression, as has been proposed

[131, 132, 133].

Even varying the identifiable subset of parameters (µm1, km1m2, km2m2, snr, knp, kanm2)

within confidence interval bounds determined during fitting can significantly alter the

time course of response variables N , M1, and M2 as shown in Fig 34. One proposed
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strategy to dampen inflammation is to directly polarize M1 macrophages to an M2

phenotype [131]. To evaluate the effects of varying the transition rate of M1 to M2,

we varied parameter km1m2 over 10 linearly spaced values within a factor of 1 ± .3

of its baseline value, with resulting dynamics shown in Fig 35. The model predicts

that increasing km1m2 has a small effect on M1 magnitude of response while increas-

ing the magnitude of M2 response, which is expected. However, the time course of

both macrophage populations is predicted to be shortened due to a higher transition

rate; whether this results in faster resolution of inflammation or an insufficient M2

population for a subsequent proliferation or repair phase may depend on the nature

and magnitude of the inflammatory stimulus.

Next, we simulated a change in the apoptosis rate of neutrophils, kan, based on

our hypothesis that efferocytosis (phagocytic removal of apoptotic and necrotic cells)

is a key driver of macrophage phenotype change and that this requires a sufficiently

sized population of apoptotic cells [110, 74, 111, 112, 76]. Dysregulation of neutrophil

population level and turnover is known to be a direct contributor to human inflamma-

tory and autoimmune diseases such as coronary artery disease, rheumatoid arthritis,

acute arterial occlusions, gout, asthma, and many others [134, 135]. Macrophages

themselves are known to modulate neutrophil lifespan by releasing cytokines that

can delay apoptosis [136] and some microbial pathogens delay or accelerate neutrophil

apoptosis to promote their own growth [134]. From the results in Fig 36, we note

that modulating the size kan has some interesting effects. In the biologically unlikely

case where kan = 0 and there is no population of apoptotic neutrophils available for

efferocytosis, neutrophils remain the dominant immune cell. For low values of kan,

sustained inflammation appears to be the result of too many inflammatory neutrophil

byproducts and the low M2 population levels. Midrange kan values were determined
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during fitting to produce a normal response, while higher kan levels seem to produce

faster resolution similar to increasing the transition rate km1m2. This is unsurprising

given the dependency of the second term of Eq 5.1 on km1m2, kanm1, and AN , which

tracks the size of the apoptotic neutrophil population. Yet the magnitude of the

effects of modulating kan versus acting on transition directly via km1m2 are predicted

to diverge for lower values, with the former providing more dramatic changes.

To explore points of intervention in the case of delayed neutrophil apoptosis,

we set kan = 5.56. This results in sustained inflammation as shown in Fig 36, and

changes in sensitivity to parameters across this bistability is also shown in Fig 37.

For example, with delayed neutrophil apoptosis (unhealthy case), the number of M1s

remaining at day 7 becomes strongly positively associated with parameter snr (influx

rate of resting neutrophils) and the number of M2s remaining at day 7 becomes neg-

atively associated with increased µm2.

By changing these as shown in Fig 38 we are able to resolve inflammation in spite

of impaired neutrophil apoptosis. Modulating resting neutrophils by either reducing

influx (simulated by lowering the value of snr) or increasing decay or efflux (simulated

by increasing the value of unr) returns all immune cell populations to homeostasis.

However, reducing decay or efflux of M2s (by lowering the value of µm2) led to a

resolution of inflammation but a sustained M2 population that could potentially be

problematic.

Finally, we simulated reducing availability of monocytes for recruitment by re-

ducing monocyte source parameter, smr, by 1/2 at early versus late time points (16

hours or 5 days) to compare effects as shown in Fig 39. Resulting predictions support

what has been demonstrated experimentally: that intervening at early timepoints

102



to block or reduce monocyte recruitment and their subsequent differentiation to in-

flammatory macrophages can actually impair resolution of inflammation [131, 137,

138].

5.3.5 Discussion

Modulating macrophage subpopulations has been proposed as a strategy to re-

solve inflammation [131, 132, 133, 139], but the mechanisms driving macrophage

phenotypic switch are not well understood. In this work we have developed a model

that includes macrophage polarization during inflammation. To our knowledge, it is

the first model of its kind to be fit to in vivo experimental data. Our model allows

some insight into key drivers of macrophage population shift over the time course of

inflammation and allows us to predict the effects of therapies targeting macrophages.

The experimental data used to fit this mathematical model was obtained from

the widely studied peritonitis model of inflammation. In addition to recapitulating

the influx and egress of inflammatory cells in response to stimulus-induced inflam-

mation, this model is also extensively used to assess the involvement of endogenous

processes in mounting as well resolving the inflammatory processes. In recent studies,

the pro-inflammatory role of human proteinase 3 (PR3) during acute inflammatory

responses by modulating neutrophil accumulation and the underlying mechanisms

were almost entirely determined using a zymosan-induced peritonitis model [140].

Extending the investigations into endogenously produced pro-resolving lipid media-

tors, Ramon et al. not only identified PCTR1, a member of the protectin family as a

potent monocyte/macrophage agonist but also established the therapeutic potential

of PCTR1 supplementation in resolving inflammation using microbial-induced peri-

tonitis in mice [141]. Similarly, Juhas et al. confirmed the ability of RX-207 to reduce
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neutrophil migration using thioglycollate-induced peritonitis [142]. These examples

not only underscore the importance of developing a mathematical model based on

experimental data from mouse peritonitis, but also provide the rationale and future

application of such a model for evaluating and predicting outcomes to be validated

by subsequent experimentation.

The process of parameter selection is fully elucidated (see Results). Parameter

estimation was carefully conducted such that unidentifiable parameters were fixed

and the confounding effects of parameter interactions were reduced in order to obtain

an identifiable subset of parameters of interest for estimation. We also stipulate that

other, equally viable, identifiable subsets could have been estimated (see Table 10)

and that estimated parameters may be conditional on parameters that were previ-

ously fixed. It is important to acknowledge that parameters chosen for estimation

will depend on the experimental context and available measurements. To this end we

also display variations of parameters within their confidence intervals to give an idea

of different, yet physiologically reasonable, behaviors (see Fig 34).

It is hypothesized that efferocytosis of apoptotic cells is an important determinant of

macrophage phenotype [110, 74, 111, 112, 76], and our sensitivity analysis supports

the dependence of macrophage behavior on neutrophils. Our analysis indicates that

timing and magnitude of the M2 response in particular is closely related to neutrophil

dynamics.

We simulated several treatment scenarios targeting macrophages both directly and

indirectly. We compared the effects of targeting macrophage transition rate directly

(in the model via parameter km1m2) versus varying neutrophil apoptosis rate, kan, in

order to increase the population of apoptotic cells available for macrophage efferocy-

tosis. A shorter time course of both M1 and M2 response is predicted in both cases;
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whether this indicates fast resolution or introduces the possibility of an insufficient

M2 population given a sustained pathogen insult or injury requires further examina-

tion.

Our model predicts that timing may be critical in blocking or reducing availability of

monocytes in order to reduce the inflammatory M1 response, as has been proposed,

and that this could lead to chronic inflammation. These effects have been observed

in an experimental setting as well [131, 137, 138].

Since pro- and anti-inflammatory mediators could not be measured experimentally,

we instead used cellular feedback loops to describe their contribution to inflamma-

tory processes. The future addition of parameters such as local production/levels of

pro- or anti-inflammatory mediators that likely influence the function of infiltrated

immune cells will further fine-tune this model. It is noteworthy that using the mouse

model of peritonitis, Dequine et al. demonstrated that local TNFR1 signaling mod-

ulated neutrophils for increased cytokine production with implications on neutrophil

recruitment and egress [143]. Further experimentation is also likely to allow a larger

identifiable subset of parameters, especially if cytokines associated with the various

cell types are explicitly measured, giving a stronger connection between available data

and feedback loop components in the model.

In future work, this peritonitis model will be extended to the case of early

atherosclerosis. In addition to the routinely monitored changes in serum lipid profiles,

changes in monocytosis as well as increased circulation of pro-inflammatory media-

tors are also causally related to atherogenesis and chronic unresolved inflammation

is recognized as an underlying cause of multiple metabolic diseases. It is notewor-

thy that Angsana et al. reported a positive correlation between delayed clearance

of macrophages from the peritoneal cavity and atherosclerotic plaque burden [144]
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and Feige et al. showed that a small molecule lecinoxoid (VB-201) which reduced

monocyte migration in a peritonitis model, also reduced atheroma development [145].

These studies underscore the predictive value of computational models based on cel-

lular influx/egress from the peritoneal cavity.

Chronic inflammatory diseases in general require timely peaks and ebbs in immune

cell response in order for homeostastis to be restored; particularly in macrophages,

which include subpopulations that either contribute to or resolve inflammation. In

the case of atherosclerosis, this phenotype switching is believed to be critical to a

balanced response to hyperlipidemia. Our extended model will be able to provide hy-

pothesis testing for points of intervention in atherosclerosis that target macrophage

phenotype. Jacinto et al. have recently demonstrated the importance of extra-arterial

contributors such as functionality of monocytes in aggravation of atherosclerosis under

normocholesterolemic conditions emphasizing the need for the inclusion of such mea-

sures into predictive models [146]. This work could also be extended to other disease

systems that feature chronic inflammation, and the modeling of variables pathogen

and nutrient broth could be replaced by an inflammatory stimulus input function f(t)

that is more general and applicable to pathogen insult or injury.

In conclusion, data presented herein describes the development of a computational

model of the sequential influx of immune cells in response to an external trigger and

fitting this model to experimental data obtained from a well-established in vivo model

of inflammatory response namely peritonitis. Fine tuning this model with inclusion of

other systemic parameters related to inflammation will permit the future application

to chronic inflammatory diseases with dysfunctional resolution of inflammation.
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Fig. 32. Baseline characteristics for M1 and sensitivity of characteristics to
parameter variations. The M1 transient curve and its characteristics are
plotted for the baseline parameter values given in Tables 8 and 11. Parameter
sensitivity plots show the effects on M1 characteristics of varying model pa-
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response resulting from reducing the value of parameter kan to 5.56 while
holding all other parameters constant. The bar charts compare the associ-
ated sensitivity of M1 and M2 characteristics to parameter variations in the
healthy case versus the unhealthy case. Insensitive parameters, which have
zero sensitivity for all characteristics, are not shown.
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CHAPTER 6

MACROPHAGE POLARIZATION IN ATHEROSCLEROSIS

6.1 Introduction

Atherosclerosis is the leading cause of death worldwide [147]. Adipose tissue can

accumulate M1s which secrete pro-inflammatory cytokines that can in turn lead to

insulin resistance and diabetes. These resident arterial plaque macrophages accumu-

late and adopt an inflammatory phenotype, which is why artherosclerosis is viewed as

inflammatory [79, 80]. Chronic inflammatory diseases in general require timely peaks

and ebbs in immune cell response in order for homeostastis to be restored. In the

case of atherosclerosis, this macrophage phenotype switching is believed to be critical

to a balanced response to excess cholesterol in the blood. Infiltrating macrophage-

mediated removal of modified LDL from the intimal space should be followed by

egress of lipid-loaded macrophages to prevent excessive accumulation and a transi-

tion of macrophages to pro-inflammatory foam cells. Our extended model will be able

to provide hypothesis testing for points of intervention in early atherosclerosis that

target macrophage phenotype, as has been proposed [131, 132, 133].

6.2 The Inflammatory Process in Early Atherosclerosis

6.2.1 The Blood

A high level of cholesterol associated with low density lipoprotein cholesterol par-

ticles (LDL-C) in plasma is a widely established risk factor of cardiovascular disease

(CVD) risk [148]. LDL exists either in native or modified form such as oxidized (ox-
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LDL) form. Native LDL-C does not contribute to ultimate foam cell formation, since

LDL receptor expression on macrophages is downregulated in the presence of high

levels of LDL-C [149]. However, when native LDL is modified to ox-LDL, the LDL

receptors no longer function and uptake of LDL-C by macrophages occurs through

scavenger receptors (SRs) and this process is not downregulated in the presence of

high cholesterol levels [150]. Baseline circulating ox-LDL levels have thus been estab-

lished as a predictor of atherosclerosis progression [151].

Toll-like receptor signaling in the presence of hyperlipidaemia promotes activation of

circulating immune cells. About 80% of circulating monocytes recruited to plaques

in mice are LY6Chi (M1) and 20% are LY6Clo (M2) [131].

6.2.2 The Gut

The high saturated fat and cholesterol content of the Western diet is strongly im-

plicated in atherosclerosis. One factor that is receiving increasing consideration as a

driver of disease progression is the increased gut permeability associated with this diet

that, coupled with the associated unhealthy gut microbiome, allows a small amount

of LPS (bacterial endotoxin lipopolysaccharide) to circulate in the bloodstream [152,

153, 154, 155, 156, 157]. This low grade inflammatory signal leads to chronic systemic

inflammation that can become pro-atherogenic via a variety of pathways including

(1) stimulation of macrophage influx in response to perceived pathogen, (2) downreg-

ulation of expression of transcription factor liver X receptor that suppresses choles-

terol uptake, and (3) upregulation of cholesterol uptake by increasing expression of

proatherogenic LDL receptor, very low density lipoprotein receptor, and adiponectin

receptor 2 [158].
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6.2.3 The Endothelium

In areas of the coronary artery wall that experience a large amount of shear due

to blood flow, such as branches or bends, the endothelium becomes disrupted, and

this activation promotes leukocyte and granulocyte [159, 160, 131] recruitment to the

area. These cells then adhere to the luminal surface of the endothelial wall due to

production of adhesion factors by activated endothelial cells [131, 161]. Low levels of

circulating LPS may also activate the endothelium.

6.2.4 Foam cells

M1 macrophages uptake both normal and modified LDL; however, it is up-

take of modified LDL that is largely unregulated and contributes most toward foam

cell formation [148]. When macrophages take up LDL-C via scavenger receptors,

macropinocytosis, and phagocytosis of aggregated LDL, they become foam cells.

Cholesterol esters (CEs) associated with LDL are hydrolysed to free cholesterol within

macrophages before migrating to the plasma membrane where any excess is re-

esterified and stored as lipid droplets [162]. It is excessive cholesterol fatty acid

accumulation which gives these macrophages a “foamy" appearance. Foam cells pro-

duce pro-inflammatory mediators (such as IL-1, IL-6, TNF, CCL2, CCL5, CXCL1)

and macrophage retention factors (including netrin 1 and semaphorin 3E) [131] that

promote inflammation in the developing plaque.

Cholesterol cannot efflux without first being released from stored CE by hydrolysis

that is mediated by cholesterol ester hydrolase (CEH). So availability of CEH is con-

sidered a critical component of this process [163, 148]. In the absence of sufficient

CEH and when other cholesterol trafficking pathways are overwhelmed, excess free

cholesterol stored in foam cells can become toxic and induce endoplasmic reticulum
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stress that leads to apoptosis [164]. Functioning foam cells are unable to effectively

phagocytose these apoptotic foam cells due to their own dysregulated lipid metabolism

pathways, and so secondary necrosis occurs, releasing lipids and other components

that form the necrotic core in later stage plaques [131, 165].

6.2.5 The Role of Neutrophils

Neutrophils are also important in early atherosclerosis. Hypercholesterolemia

alone has been shown to induce neutrophilia (high numbers of neutrophils in the

blood), the degree of which is positively related to atherosclerotic lesion formation

[159]. Neutrophils make up a small portion of the monocyte-dominated immune cell

population of a plaque, however, the locations of highest neutrophil infliltration are

also the areas with highest monocyte density [166]. In contrast, blocking neutrophil

influx to the area of inflammation has been found to protect against plaque formation

[167].

Release of pro-inflammatory products by neutrophils is considered a possible mecha-

nism of monocyte recruitment to the area of a developing plaque [168, 169, 170, 171],

and some additional mechanisms include:

• neutrophil products that promote differentiation of monocytes to an M1 phe-

notype [76, 77, 169, 172, 173, 174]

• neutrophil products that are chemotactic for monocytes and/or that cause

monocyte adhesion to the endothelium [175, 176, 177, 178, 179, 180]

• neutrophil products that regulate foam cell development [181, 182]

• neutrophil extracellular trap (NET) formation that promotes pro-inflammatory

cytokine production by macrophages [183, 184].
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6.2.6 Treatments

In addition to established therapies such as statins and β-blockers, novel strate-

gies to treat atherosclerosis are being tested in mouse models that target immune

cells directly, some of which are outlined below.

Strategies that target neutrophils:

• blocking neutrophil influx with adoptive transfer of neutrophils with deficiency

of chemokine receptor CXCR2 [167]

• induction of neutropenia (low numbers of neutrophils in the blood)[159, 169]

• antagonism of receptor for neutrophil chemokine [185]

Strategies that target macrophages:

• specific disruption of CD40 leukocyte signaling to skew immune response to an

anti-inflammatory phenotype [186, 187]

• inhibition of pro-inflammatory macrophage migration inhibitory factor (MIF)

[188, 189]

• interfering with pro-atherogenic chemokine receptors CCR5 and CCR2, which

are used by M1s to enter plaques [190, 191, 192, 193, 194]

6.3 A Selection of ODE and PDE Models

An early model of lipoprotein oxidation in vitro was developed by Cobbold et al.

[98] that tracks LDL, antioxidants, and free radicals and is also extended to include

HDL.

Ougrinovskaia et al. [95] developed a model of early atherosclerosis that models lo-

cal concentration of modified LDL (mLDL), capacity of active macrophages (foam
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cells) to ingest mLDL, and internalized lipid content. The influx rate of LDL is set

constant since it only varies in time with significant dietary changes. Uptake rate of

modified LDL by foam cells is modeled with several different functions that saturate

with increasing mLDL, and it is found that only saturating functions with one inflec-

tion point (exponent of 2) produce physiological results. In a later extension of their

model [195] to include HDL, concentration of HDL is modeled with parameter h, and

influx rate of LDL is modeled with a smooth, increasing, saturating function of h.

Emigration rate of foam cells and modification rate of LDL are dependent on h, as is

the influx rate of monocytes since HDL lowers the expression of adhesion molecules

by endothelial cells.

The work of Bulelzai et al. [100] extends prior work by Zohdi et al. [196], that focuses

on the effects of shear stress from blood flow. Here, the LDL oxidation process is not

modeled, only LDL that is instantaneously oxidized as it enters the intima is included.

The rate at which monocytes enter the intima changes with shear stress: for low shear

it is considered linearly related to oxidized LDL, while higher sheer stress gives rise

to Michaelis-Mentin type dynamics in the relationship [100]. However, while shear

stress is an important factor in long-term evolution of plaques, and Bulelzai et al.

predict dependence of lumen radius on shear stress once LDL uptake has passed a

critical value, this importance is a factor in later stage plaque development rather

than early atherosclerosis.

In McKay et al. [197], in addition to LDL oxidation, HDL, and radicals immune

interactions including chemokines, proliferation factors, T-cells, smooth muscle cells,

and macrophages. The model is built in stages, so that components can be exam-

ined analytically, and a third stage models spatial dynamics by tracking necrotic core

buildup due to macrophage and smooth muscle cell death as well as collagen deposi-

tion.
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The work of Zhang et al. [198] derives from both a prior PDE model [99] and lipid ox-

idation is modified from previous work [86, 98] to include foam cells and macrophages

as separately tracked variables. Foam cell formation linearly depends only on phago-

cytosis of oxidized LDL by macrophages. Analysis of the model focuses on the effects

of HDL between the two cases of constant influx over time versus time-varying influx.

Chalmers et al. [96] developed a PDE model of early atherosclerosis including concen-

tration of mLDL, concentration of chemoattractants and cytokines, density of mono-

cytes and macrophages (trackes as a combined variable), and foam cells. They assume

that the rate of macrophage conversion to foam cell is proportional to macrophage

consumption of mLDL, and the resulting foam cells are assumed to be immobile.

Model parameters are unknown, and given by relative order of magnitude.

Friedman et al. [97] developed a PDE model that includes M1, M2, and foam cell

macrophages. In this model, only M1s influx to the area of the plaque, then transi-

tion to foam cell upon LDL-C uptake. Foam cells can transition to an M2 phenotype

dependant on reverse cholesterol transport.

Finally, in Thon et al. [102], a complete ODE model is assembled from three sub-

models that are separately fit to in vitro experimental data. The first describes LDL

modification and ingestion by macrophages. It had been determined experimentally

that concentration of mLDL per macrophage saturates for increasing LDL, and this

is reflected in the model. The modification of LDL is described as linear in the ab-

sence of any experimental information. The second submodel captures HDL and its

inhibition of LDL modification. The third models the cholesterol cycle and reverse

cholesterol transport based on in vitro experiments by Brown et al. [163].

In summary, existing models do not, to our knowledge, include systemic inflammation

driven by circulating LPS and dietary cholesterol. Nor do they include neutrophils

and macrophage polarization between phenotype, although in Friedman et al. [97]
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foam cells can transition to M2. Only in the work of Zhang et al., Chalmers et al.,

and Friedman et al. [198, 96, 97] is a distinction made between macrophage and foam

cell. Additionally, availability of cholesterol ester hydrolase (CEH), a rate limiting

factor in reverse cholesterol transport, is not modeled in any previous work, to our

knowledge.

6.4 Model Development

Here we extend our model of the interactions between neutrophils and M1 and

M2 macrophages as described in 5 to the setting of atherosclerosis. Macrophage

types now include both the foam cell state and the apoptotic foam cell state. As

either M1 or M2 macrophages take up LDL-C, they transition to the foam cell state,

and an excess of internalized lipids can lead to apoptosis. Apoptotic cells, composed

of neutrophils and foam cells, contribute to accumulating debris that is also tracked

as a first step in tracking necrotic core formation. In addition to immune cells, we

include systemic inflammation driven by circulating LPS leaked from the gut and di-

etary cholesterol, both of which result from a Western diet. We distinguish between

systemic and local inflammatory factors and immune cells as a first step in the devel-

opment of a compartmentalized model that can be fit to measurements taken from the

different compartments, as shown in Fig 40. The reverse cholesterol transport pro-

cess is modeled with variables that track concentration of foam cell internalized free

cholesterol and esterified cholesterol. HDL is currently included as a constant here

although its functionality is highly variable and may change over the time course of

plaque development. All variables appear with a description in Table 13. A schematic

of the model shown in Fig 40. The model is described in Eqns 6.1-6.13, with model

parameter descriptions and nominal values given in Table 14.
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Fig. 40. Diagram showing plan for model development. Currently the model
is built from the viewpoint of the plaque, with influxing macrophage and
neutrophil precursors and cholesterol transported via high and low density
lipoproteins. Reverse cholesterol transport occurs within the foam cells, mod-
eled with variables Cf (free cholesterol) and Ce (cholesterol ester). For now
we consider HDL-C influx constant.
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Table 13. Description of model variables. Variables marked with (*) are currently
set constant and appear as parameters in Table 14. However, circulating
LDL-C will be modeled as a saturating function of dietary cholesterol and
circulating LPS should also depend on dietary cholesterol.

Variable Description

Lblood
∗ circulating LDL-C

G∗blood circulating LPS

MR,blood circulating monocytes

NR,blood circulating granulocytes

L LDL-C in plaque

M1 pro-inflammatory macrophages

M2 anti-inflammatory macrophages

N neutrophils

NA apoptotic neutrophils

FC foam cells

FCA apoptotic neutrophils

Cf free (un-esterified) internalized cholesterol in foam cells

Ce esterified internalized cholesterol in foam cells

LDL-C:

dL

dt
=

local influx of LDL-C︷ ︸︸ ︷
rLLblood −

removal by M1 dep. on saturating function of ingested LDL-C︷ ︸︸ ︷
kLM1M1

L2

a2 + L2

−

removal by M2 dep. on saturating function of ingested LDL-C︷ ︸︸ ︷
kLM2M2

L2

b2 + L2
+

chol. spilled by necrotic FC︷ ︸︸ ︷
µafcCF (6.1)
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Circulating macrophage and neutrophil precursors:

dMr,blood

dt
=

natural source︷︸︸︷
smr −

decay︷ ︸︸ ︷
µmrMr,blood +

up-regulation of source rate from LDL-C︷ ︸︸ ︷
kmrLLblood

+

up-regulation of source rate from LPS︷ ︸︸ ︷
kmrgGblood −

activation/influx︷ ︸︸ ︷
RM1Mr,blood −RM2Mr,blood (6.2)

dNr,blood

dt
=

natural source︷︸︸︷
snr −

decay︷ ︸︸ ︷
µnrNr,blood +

up-regulation of source rate from LDL-C︷ ︸︸ ︷
knrLLblood

+

up-regulation of source rate from LPS︷ ︸︸ ︷
knrgGblood −

activation/influx︷ ︸︸ ︷
RNNr,blood (6.3)

Macrophages:

dM1

dt
=

activation/influx︷ ︸︸ ︷
RM1Mr,blood −

transition to M2 per phagocytosed AN︷ ︸︸ ︷
km1m2kanm1ANfi(M1, N)

+

transition to M1 from M2︷ ︸︸ ︷
km2m1M2 −

efflux︷ ︸︸ ︷
µm1M1−

transition to foam cell from LDL-C uptake︷ ︸︸ ︷
kLM1M1

L2

a2 + L2

−
transition to foam cell per phagocytosed FCA︷ ︸︸ ︷

km1fckafcm1FCAfi(M1, N) (6.4)

dM2

dt
=

activation/influx︷ ︸︸ ︷
RM2Mr,blood +

transition from M1 per phagocytosed AN︷ ︸︸ ︷
km1m2kanm1ANfi(M1, N)

−
transition to M1︷ ︸︸ ︷
km2m1M2 −

efflux︷ ︸︸ ︷
µm2M2−

transition to foam cell from LDL-C uptake︷ ︸︸ ︷
kLM2M2

L2

b2 + L2

−
transition to foam cell per phagocytosed FCA︷ ︸︸ ︷

km2fckafcm2FCAfi(M2, N) +

transition from FC from Cf efflux [97]︷ ︸︸ ︷
kfcm2µcf

H2

d2 +H2
CfFC (6.5)

Macrophage activation rates:
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RM1 =

local LDL-C︷ ︸︸ ︷
km1LL +

neutrophil byproducts︷ ︸︸ ︷
km1nN +

M1s and their cytokines︷ ︸︸ ︷
km1m1M1

+

foam cell products︷ ︸︸ ︷
km1fcFC +

necrotic cell byproducts︷ ︸︸ ︷
km1a(µafcFCA + µanNA)

(6.6)

RM2 =

M2s and their cytokines︷ ︸︸ ︷
km2m2M2 +

background anti-inflammatory cytokines︷︸︸︷
kc

Neutrophils:

dN

dt
=

activation︷ ︸︸ ︷
RNNr,blood−

apoptosis︷ ︸︸ ︷
kanN

(6.7)

dNA

dt
=

apoptotis︷ ︸︸ ︷
kanN −

removal by M1︷ ︸︸ ︷
kanm1NAfi(M1, N)−

removal by M2︷ ︸︸ ︷
kanm2NAfi(M2, N)−

removal by N︷ ︸︸ ︷
kannN

−
secondary necrosis︷ ︸︸ ︷

µanNA (6.8)

Neutrophil activation rate:

RN =

local LDL-C︷ ︸︸ ︷
knLL +

necrotic cell byproducts︷ ︸︸ ︷
kna((µafcFCA + µanNA))
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Foam cells:

dFC

dt
=

transition from M1︷ ︸︸ ︷
kLM1M1

L2

a2 + L2
+

transition from M2︷ ︸︸ ︷
kLM2M2

L2

a2 + L2

−

transition to M2 dep. on efflux [97]︷ ︸︸ ︷
kfcm2µcf

H2

d2 +H2
Cf −

apoptosis︷ ︸︸ ︷
kfca

C2
f

e2 + C2
f

FC +

transition from M1 per phagocytosed FCA︷ ︸︸ ︷
km1fckafcm1FCAfi(M1, N)

+

transition from M2 per phagocytosed FCA︷ ︸︸ ︷
km2fckafcm2FCAfi(M2, N) (6.9)

dFCA
dt

=

apoptosis︷ ︸︸ ︷
kfca

C2
f

e2 + C2
f

FC −
removal by M1︷ ︸︸ ︷

kafcm1FCAfi(M1, N)−
removal by M2︷ ︸︸ ︷

kafcm2FCAfi(M2, N)

−
secondary necrosis︷ ︸︸ ︷
µafcFCA (6.10)

Internalized lipids

Free cholesterol:

dCF
dt

=

chol. assoc. w LDL taken up my M1︷ ︸︸ ︷
ncfkLM1M1

L2

a2 + L2
+

chol. assoc. w LDL taken up my M2︷ ︸︸ ︷
ncfkLM2M2

L2

b2 + L2

−
esterification [102, 163]︷︸︸︷

keCf +

hydrolysis of chol, rate depends on CEH︷ ︸︸ ︷
kceCeCEH

−

efflux sat. function of HDL,[102]︷ ︸︸ ︷
µcf

H2

d2 +H2
Cf +

chol. in recruited M1s︷ ︸︸ ︷
cm1kLM1M1

L2

a2 + L2

+

chol. in recruited M2s︷ ︸︸ ︷
cm2kLM2M2

L2

a2 + L2
(6.11)
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Esterified cholesterol:

dCe
dt

=

esterification [102, 163]︷︸︸︷
keCf −

hydrolysis of chol, rate depends on CEH︷ ︸︸ ︷
kceCeCEH (6.12)

Apoptotic cells (contribution to necrotic core):

f(FCA, NA) =

secondary necrosis︷ ︸︸ ︷
µafcFCA +

secondary necrosis︷ ︸︸ ︷
µanNA (6.13)

128



Ta
bl
e
14

.:
D
es
cr
ip
ti
on

of
p
ar
am

et
er
s
an

d
va
lu
es
.

P
ar
am

et
er

D
es
cr
ip
ti
on

N
om

in
al

V
al
u
e

s m
r
b

ci
rc
ul
at
in
g
m
on

oc
yt
es

in
bl
oo

d
0.
75

/M
-u
ni
ts
/d

ay

k
m
r
L

ac
ti
va
ti
on

ra
te

of
M

r,
bl
o
o
d
by

L
D
L
−
C
bl
o
o
d

1.
00

/M
-u
ni
ts
/d

ay

µ
m
r
b

de
ca
y
of

ci
rc
ul
at
in
g
m
on

oc
yt
es

1.
4/

da
y

k
m
r
g

ac
ti
va
ti
on

ra
te

of
M
1
by

LP
S

0.
12

5/
M

-u
ni
ts
/d

ay

s n
r
b

so
ur
ce

of
re
st
in
g
N

1/
N
-u
ni
ts
/d

ay

µ
n
r
b

de
ca
y
of

re
st
in
g
N

16
.4
02

/d
ay

k
m

1
n

ac
ti
va
ti
on

ra
te

of
M
1
by

N
by

pr
od

uc
ts

0.
02

5/
M

-u
ni
ts
/d

ay

k
m

1
m

1
ac
ti
va
ti
on

ra
te

of
M
1
by

M
1s

an
d
th
ei
r
cy
to
ki
ne
s

0.
00

1/
M

-u
ni
ts
/d

ay

k
m

2
m

1
tr
an

si
ti
on

ra
te

of
M
2
to

M
1

0.
11

7/
M

-u
ni
ts
/d

ay

u
m

1
de
ca
y
of

M
1
m
ac
ro
ph

ag
es

6.
82

6/
da

y

k
m

1
m

2
∗

tr
an

si
ti
on

ra
te

of
M
1
to

M
2

8.
61

7/
M

-u
ni
ts
/d

ay

k
m

2
m

2
ac
ti
va
ti
on

ra
te

of
M
2
by

M
2s

an
d
th
ei
r
cy
to
ki
ne
s

1.
59

3/
M

-u
ni
ts
/d

ay

k
c

co
nc
en
tr
at
io
n
of

ba
ck
gr
ou

nd
an

ti
-in

fla
m
m
at
or
y

0.
12

5/
M

-u
ni
ts
/d

ay
(fi
xe
d
[3
])

µ
m

2
de
ca
y
of

M
2
m
ac
ro
ph

ag
es

8.
27

1/
da

y

C
on

tin
ue
d
on

ne
xt

pa
ge

129



Ta
bl
e
14

–
C
on

tin
ue
d
fr
om

pr
ev
io
us

pa
ge

P
ar
am

et
er

D
es
cr
ip
ti
on

N
om

in
al

V
al
u
e

k
n
a

ac
ti
va
ti
on

ra
te

of
N

by
ap

op
to
ti
c
ce
lls

0.
60

8

n
∞

le
ve
lo

fN
fo
r
50

%
in
hi
bi
ti
on

of
M

ac
ti
vi
ty

0.
15

6/
N
-u
ni
ts

k
a
n

tr
an

si
ti
on

ra
te

of
N

to
A
N

7.
10

8/
N
-u
ni
ts
/d

ay

k
a
n
n

de
st
ru
ct
io
n
ra
te

of
A
N

by
N

0.
00

1/
N
-u
ni
ts
/d

ay

k
a
n
m

1
de
st
ru
ct
io
n
ra
te

of
A
N

by
M
1

2.
89

8/
N
-u
ni
ts
/d

ay

k
a
n
m

2
de
st
ru
ct
io
n
ra
te

of
A
N

by
M
1

90
.9
58

/N
-u
ni
ts
/d

ay

µ
a
n

se
co
nd

ar
y
ne
cr
os
is

of
A
N

1.
30

9/
da

y

r L
ra
te

of
ci
rc
ul
at
in
g
LD

L-
C

in
flu

x
to

pl
aq

ue
0.
00

1

k
m
L
m

1
ra
te

of
LD

L-
C

up
ta
ke

m
y
M
1

1

k
m
L
m

2
ra
te

of
LD

L-
C

up
ta
ke

m
y
M
2

1

µ
a
f
c

ra
te

of
FC

ap
op

to
si
s

1t
im
es

10
1
1

µ
cf

effl
ux

ra
te

of
C
f

0.
12

5

k
f
cm

2
tr
an

si
ti
on

ra
te

of
FC

to
M
2

0.
01

25

a
H
ill

fu
nc

ti
on

co
ns
ta
nt

fo
r
M
1
up

ta
ke

of
L

1

b
H
ill

fu
nc

ti
on

co
ns
ta
nt

fo
r
M
2
up

ta
ke

of
L

1

C
on

tin
ue
d
on

ne
xt

pa
ge

130



Ta
bl
e
14

–
C
on

tin
ue
d
fr
om

pr
ev
io
us

pa
ge

P
ar
am

et
er

D
es
cr
ip
ti
on

N
om

in
al

V
al
u
e

d
H
ill

fu
nc

ti
on

co
ns
ta
nt

fo
r
H
D
L-
de
pe

nd
en
t
FC

tr
an

si
ti
on

to
M
2

1
×

10
4

e
H
ill

fu
nc

ti
on

co
ns
ta
nt

fo
r
C
f
-d
ep

en
de
nt
F
C

ap
op

to
si
s

1
×

10
4

H
co
ns
ta
nt

H
D
L-
C

in
flu

x
to

pl
aq

ue
1

k
e

C
f
es
te
ri
fic
at
io
n
ra
te

0.
1

c f
c

fr
ee

ch
ol
es
te
ro
li
n
F
C

no
t
fr
om

LD
L-
C

up
ta
ke

0.
01

25

k
ce

hy
dr
ol
ys
is

ra
te

of
C
e

0.
00

1

k
m
r
L

ac
ti
va
ti
on

of
ci
rc
ul
at
in
g
m
on

oc
yt
es

by
ci
rc
ul
at
in
g
LD

L-
C

0.
12

5

k
m
r
g

ac
ti
va
ti
on

of
ci
rc
ul
at
in
g
m
on

oc
yt
es

by
ci
rc
ul
at
in
g
LP

S
0.
12

5

k
n
r
g

ac
ti
va
ti
on

of
ci
rc
ul
at
in
g
gr
an

ul
oc
yt
es

by
ci
rc
ul
at
in
g
LP

S
0.
12

5

G
b

co
ns
ta
nt

in
flu

x
of

LP
S
to

bl
oo

d
fr
om

le
ak

y
gu

t
1

L
b

ci
rc
ul
at
in
g
LD

L-
C

de
pe

nd
en
t
on

di
et
ar
y
ch
ol
es
te
ro
l

1

k
a
f
cm

1
re
m
ov
al

of
F
C
A
by

M
1s

10

k
a
f
cm

2
re
m
ov
al

of
F
C
A
by

M
2s

10

k
m

1
L

ac
ti
va
ti
on

of
M
1s

by
L
D
L
−
C
bl
o
o
d

0.
12

5

k
m

1
a

ac
ti
va
ti
on

by
ne
cr
ot
ic

ce
ll
by

pr
od

uc
ts

0.
12

5

C
on

tin
ue
d
on

ne
xt

pa
ge

131



Ta
bl
e
14

–
C
on

tin
ue
d
fr
om

pr
ev
io
us

pa
ge

P
ar
am

et
er

D
es
cr
ip
ti
on

N
om

in
al

V
al
u
e

k
n
r
L

ac
ti
va
ti
on

of
ci
rc
ul
at
in
g
gr
an

ul
oc
yt
es

by
ci
rc
ul
at
in
g
LD

L-
C

0.
12

5

k
n
L

ac
ti
va
ti
on

of
N

by
L
D
L
−
C
bl
o
o
d

0.
12

5

n
cf

ch
ol
es
te
ro
la

ss
oc
ia
te
d
w
it
h
LD

L-
C

1

132



Dietary cholesterol causes an increase in circulating LDL-C in the blood, which in

turn influxes into the local environment of the plaque where it is taken up by M1

and M2 macrophages. If apoptotic foam cells have become too numerous for timely

macrophage removal they undergo secondary necrosis, spilling their lipid burden and

adding to LDL-C in the plaque, as modeled in Eq 6.1. Circulating LDL-C (LBLOOD)

and circulating LPS (GBLOOD are currently set constant and appear as parameters

in Table 14. However, circulating LDL-C will be modeled as a saturating function of

dietary cholesterol and circulating LPS should also depend on dietary cholesterol.

We no longer use the quasi-steady state assumption to model differentiation of

circulating immune cells into macrophages and neutrophils, as in 5. Here we include

dependence of circulating Mr,BLOOD and Nr,BLOOD on circulating LDL-C and LPS

in Eqs 6.2-6.3 with the expectation that measurements for all of variables can be

obtained from the blood in a future experiment (see projected outputs from the

blood compartment in Fig 40.

Resting neutrophils influxing into the plaque become activated by local LDL-

C and the debris formed by apoptotic cells at the rate RN(L,A). They undergo

apoptosis at rate kan. Apoptotic neutrophils are then removed by M1s at rate kanm1,

M2s at rate kanm2, and by active neutrophils at rate kann. Apoptotic neutrophils that

are not cleared undergo secondary necrosis at rate µan, contributing to the positive

feedback described in the neutrophil activation term RN(L,A).

Resting monocytes (MR) are next to arrive. The majority of these first mono-

cytes differentiate to an inflammatory M1 phenotype in response to local LDL-C,

byproducts of neutrophils, M1s and their cytokines, foam cells products, and cy-

tokines spilled by necrotic apoptotic cells at rate RM1(L,N,M1, FC,A). Decay and

polarization between M1 and M2 is modeled as described in 5.2. When M1 or M2

macrophages increase their lipid content above normal levels by taking up LDL-C or

133



apoptotic foam cells they transition to foam cells. Foam cells can transition to M2

macrophages dependent on HDL-C mediated cholesterol efflux [97].

Here we model esterification of free cholesterol within foam cells as a linear func-

tion, but in Thon et al. [102] buffer-like behavior of the cholesterol cycle is assumed

bases on in vitro experiments conducted by Brown et al. [163]. Also from Thon et al.

is the idea of a maximum foam cell capacity for cholesterol Cf,max and the “normal"

load of cholesterol Cf,min carried by macrophages that we have not yet incorporated

for simplicity’s sake. Dependence of hydrolysis of free cholesterol on cholesterol ester

hydrolase (CEH) is represented with a linear dependence on parameter CEH, cur-

rently set to a value of 1. This setup functions as a placeholder for later development:

the parameter could be removed, with dependence on CEH rolled into cholesterol hy-

drolysis rate constant kce, or modeled with a more realistic functional dependence on

CEH. We do not track plaque size directly, but we can track accumulation of necrotic

foam cells and neutrophils, f = µafcFCA + µanNA, as a first step toward tracking

plaque size in Eq 6.13.

Figs 41(a) and 42(a) show model predictions with parameters set at nominal

values given in Table 14. Figs 41(b) and 42(b) show the predicted effects of removing

dietary cholesterol on the basic model. In this example, for t < 50, there is some

level of circulating LDL-C in the blood (i.e. Lb = 1) that is dependent on dietary

cholesterol. For t > 50, we set the parameter Lb=0.001 to simulate a drastic reduction

in circulating LDL-C that would result from the removal of cholesterol in the diet.

Immune cell levels decrease except for M1- and M2-derived active foam cells.

This is due to reduced foam cell apoptosis since foam cell internalized lipid levels

are decreased. Both free and esterified cholesterol per foam cell are substantially

decreased, although esterified cholesterol is still increasing over time at a slower rate.

Increasing availability of CEH (simulated by setting CEH > 1) is one approach to

134



modulate cholesterol esterification.
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Fig. 41. Predicted effects of removing dietary cholesterol on cells in the basic
model. (a) Parameters are set at the nominal values given in Table 14. (b)
For t < 50, there is some level of circulating LDL-C in the blood (i.e. Lb = 1)
that is dependent on dietary cholesterol. For t > 50, we set the parameter
Lb=0.001 to simulate a drastic reduction in circulating LDL-C that would
result from the removal of cholesterol in the diet. Immune cell levels decrease
except for M1- and M2-derived foam cells due to reduced foam cell apoptosis.
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Fig. 42. Predicted effects of removing dietary cholesterol on cholesterol in
the basic model. (a) Parameters are set at the nominal values given in
Table 14. (b) For t < 50, there is some level of circulating LDL-C in the
blood (i.e. Lb = 1) that is dependent on dietary cholesterol. For t > 50,
we set the parameter Lb=0.001 to simulate a drastic reduction in circulating
LDL-C that would result from the removal of cholesterol in the diet. Both free
and esterified cholesterol per foam cell are substantially decreased, although
esterified cholesterol is still increasing over time.
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6.5 Discussion

Our work has extended the peritonitis model presented in Chapter 5 as well as

the work of many others [98, 95, 100, 196, 197, 198, 96, 97] to include macrophage

phenotype polarization in this system. Results from our numerical simulation of an

intervention that removes dietary cholesterol demonstrates that in spite of a predicted

modest impact on local LDL-C and an increase in foam cells, foam cell internalized

lipids are significantly reduced. This model was built from the perspective of the

plaque compartment, but the structure is in place to add greater levels of complexity,

such as a more detailed blood compartment and variable components within.

In the future, a parameter estimation process similar to that presented in Chapter

5 can be performed to fit to experimental data. Sampling from each compartment

may allow fitting in spite of the relative complexity of the model. Further, the model

can be extended to include a spatial dimension with PDE modeling, to capture plaque

size change.
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CHAPTER 7

CONCLUSION

7.1 Summary

We have developed three mathematical models of biological systems with poten-

tial medical applications and analyzed each. For each application, once a model was

developed a full exploration of model parameters was carried out. We applied Latin

Hypercube Sampling methods to generate parameter sets that were then used in sim-

ulations to explore the limits of model behavior. The simulated data that results

allows us to investigate parameter sensitivity and interactions and to set bounds on

parameter space for later estimation. Once fitted to experimental data, the model

parameters are the connection between the mathematical model and the biological re-

ality. Understanding the limitations of model predictions as they relate to uncertainty

in the parameter estimation process was a focus of our work.

Our model of human muscle hypertrophy in response to resistance exercise was

created to investigate the effects of an increase in lean mass on long-term maintenance

of a healthy body weight. Changes in body weight depend on changes in energy intake

and energy expenditure and an imbalance can result in obesity. By 2030, over 50%

of the US population is expected to be obese, and obesity-attributable disease is

projected to rise precipitously [199]. Most dieters regain weight over time [6, 55, 7,

8], but a common attribute of successful dieters is continued physical activity [9].

Though resistance training carries many health benefits it is under-explored as a

clinical intervention because the relationship between this type of exercise and energy

expenditure is not as straightforward as for cardiovascular exercise. There is also a
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great deal of individual variation in response to resistance exercise, making it harder

to predict outcomes.

With our model, we tested our hypothesis that the incremental additional ex-

penditure due to accumulation of lean mass could help maintain a healthy body

composition following a diet. A simulated case study that compared the effects of a

hypocaloric diet alone versus diet combined with cardiovascular or resistance exercise

predicted that continued exercise could result in fat loss maintenance, even after a

return to pre-diet energy intake levels. Using Latin Hypercube Sampling, we also

simulated a cohort of hypothetical individuals with varied response to resistance ex-

ercise. In this way, our model could be used to predict clinical study outcomes for a

population with varied response.

In our exploration of model parameters, we performed sensitivity analysis via

PRCC calculations on simulated data, fit to data from a resistance exercise study,

and trained decision trees on simulated data. When results from these varied ap-

proaches are considered together, the model is shown to produce biologically feasible

predictions. For example, when fitted to male versus female data, parameters differ

in a way that makes sense. The r value estimate for the female group is lower, which

corresponds to a lower overall gain, the α value is also lower, which corresponds to

slower response, the H1 value is higher, (delayed response), and a lower H2 value

(lower potential increase given lower initial lean mass). With more group-specific

data, population-level differences in response could be further explored. In addition,

the important parameters that were discovered using sensitivity analysis and decision

trees agreed across both methods.

In what is, to our knowledge, the first application of optimal control techniques

to individual body mass change, we put body mass partitioning during a diet and

exercise program into this framework and were able to explicitly characterize an
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optimal quadratic controlfor the system. We performed numerical simulations under

different goals: fat loss prioritization, equal weight given to fat loss and lean mass

retention, and prioritization of maximization of lean mass at the final time. Overall,

the model shows that the optimal strategy to retain or gain lean mass, which will help

maintain results long-term given previous model predictions, is to diet moderately.

The simulations also predict that even such a gradual and moderate implementation

of dietary changes can result in fat loss.

We used this model of response to resistance exercise to demonstrate the qual-

itative analysis of biological model behavior with decision trees, a machine learning

method. These methods can easily be implemented and can yet provide similar intu-

ition on model parameters to other, more complicated techniques as demonstrated by

our comparison to PRCC results. In addition to providing a visualization of parame-

ter interactions that determine outcomes, the decision rules obtained can be used to

find group-specific parameter sets and set bounds on parameter estimation.

Our model of macrophage polarization between the M1 and M2 phenotypes dur-

ing inflammation was developed because the modulation of macrophage subpopula-

tions has been proposed as an intervention strategy [131, 132, 133, 139]. However,

mechanisms governing this polarization are not yet understood. With our model,

insight can be gained about the key system components that drive the inflammatory

process and shift macrophage populations. To our knowledge, it is also the first model

of this type to be fit to in vivo experimental data.

Experimental data in the form of immune cell counts was obtained from the

widely studied peritonitis mouse model of inflammation. The model fitting and pa-

rameter selection process that is developed here is shared in great detail. Identifiabil-

ity of parameters is extremely important for the reliability of model predictions, and

the limitations of the model with respect to parameters are clearly presented, with
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confidence interval bounds placed on identifiable parameter estimates as well.

Our fitted model is used to test hypotheses about the factors that determine

macrophage phenotype, such as clearance by macrophages of apoptotic cells (effero-

cytosis) [110, 74, 111, 112, 76]. Sensitivity analysis performed on the model suggests

that neutrophils, and the resulting population of apoptotic neutrophils, are closely

related to macrophage dynamics. In addition, we simulated a number of interven-

tion scenarios such as targeting the macrophage phenotype transition rate directly

or indirectly by targeting neutrophil apoptosis. We tested the blocking of the source

of monocytes for recruitment to macrophages, and the results from our simulations

showing the importance of timing of the intervention have been experimentally ob-

served [131, 137, 138].

Our model of the inflammatory immune response in early atherosclerosis extends

our previous model of inflammation and builds on the previous work of many others

[98, 95, 100, 196, 197, 198, 96, 97]. There is a causal relationship between athero-

genesis and increases in circulating monocytes and pro-inflammatory mediators and,

further, positive relationships between plaque size, delayed clearance of macrophages,

and reduced monocyte migration has been demonstrated [144, 145]. These results

highlight the usefulness of a computational model of atherosclerosis that includes de-

tailed immune cell interactions and activities to simulate targeted macrophage ther-

apies [186, 187, 188, 189, 190, 191, 192, 193, 194] and targeted neutrophil therapies

[159, 167, 169, 185]. With our model, we have simulated an intervention that removes

or drastically reduces dietary cholesterol. Results show that even though the reduc-

tion in LDL-C local to the plaque is modest and there is an increase in foam cells, lipid

burden per foam cell is significantly reduced. Inclusion of a framework for separate

blood and local compartments, as well as circulating LPS from a leaky gut, allow this

work to be extended to other disease systems featuring chronic inflammation.
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7.2 Future directions

Since our model of body mass change is unique in its inclusion of response to

resistance-type exercise, it can be used to further test different diet and exercise com-

bination strategies as obesity interventions. One current limitation is a dearth of

good quality longitudinal data from clinical studies where energy intake is controlled.

Currently, such data only exists for starvation studies where exercise is not feasible,

yet energy intake has a large impact on body mass. More data, preferably capturing a

wide cross-section of the human population, is required to better define model param-

eters. Given data, population-specific submodels could be developed; for example, an

elderly-specific model.

We can further test diet and exercise strategies with variations on the optimal

control framework for such problems that we have developed. With the addition of a

control for exercise, we may find an optimal combination strategy. A linear control is

also yet to be characterized. Finding a reasonable time frame in which to reach weight

loss goals can be a nontrivial problem, and usually a short time frame is arbitrarily set

for a clinical intervention that is convenient in the short term but may be detrimental

for long-term weight maintenance due to metabolic damage. Within this framework,

we can solve for the goal time by fixing a fat mass target for the final time.

In modeling the inflammatory immune response, we used cellular feedback loops

to approximate the effects of mediators for which we did not have experimental mea-

surements. Explicit inclusion of these components would refine these models. For the

current peritonitis model, additional data will also likely allow identification of more

parameters. For our model of atherosclerosis, we hope to obtain experimental data

for parameter estimation. The collection of data from the different compartments

(blood, plaque, internalized lipids) will allow model refinement and we hope that this
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will allow parameters to be estimated in spite of the high level of model complexity.

Adding a spatial dimension to the model will allow a more detailed tracking of plaque

size.

In conclusion, we will employ these models in gaining a deeper understanding

of the underlying processes driving human disease such as obesity and those that

feature chronic inflammation and we hope to apply these models to the testing of

interventions.
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Appendix A

CODE FOR THE RESISTANCE EXERCISE MODEL

A.1 SBML model file

This .xml file in Systems Biology Markup Language (SBML) can be imported

into the Matlab Simbiology toolbox [200] or any other SBML-compatible software

package.

,
1 <!--Model of body mass change in response to resistance ...

training -->
2 <?xml version="1.0" encoding="UTF-8"?>
3 <sbml xmlns="http://www.sbml.org/sbml/level2/version4" ...

level="2" version="4">
4 <annotation>
5 <SimBiology xmlns="http://www.mathworks.com">
6 <Version Major="5" Minor="6" Point="0"/>
7 </SimBiology>
8 </annotation>
9 <model id="mw17a63ba7_776d_4b73_ac96_564ca01b91df" ...

name="RT_12_18">
10 <listOfCompartments>
11 <compartment ...

id="mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1" ...
name="Schematic" size="1" constant="true"/>

12 </listOfCompartments>
13 <listOfSpecies>
14 <species id="mw90c87dde_e0a8_4e05_afb2_29276061ec6c" ...

name="G" compartment=
15 "mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1"
16 initialConcentration="0.5"
17 boundaryCondition="false" constant="false"/>
18 <species id="mw11e3a509_3e54_42d4_9e04_8e8bf1141db5" ...

name="AT" compartment=
19 "mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1"
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20 initialConcentration="0" boundaryCondition="false" ...
constant="false"/>

21 <species id="mwf1c0663d_1a61_4564_90c7_be0412eab4d1" ...
name="F" compartment=

22 "mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1"
23 initialConcentration="16.632" ...

boundaryCondition="false" constant="false"/>
24 <species id="mwd216a905_5d4c_4f61_9571_9e3dcb45b108" ...

name="L" compartment=
25 "mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1"
26 initialConcentration="27.82" ...

boundaryCondition="false" constant="false"/>
27 <species id="mwbaf79cc5_8f27_4f2c_b2f7_3e62ae00c8b6" ...

name="ECF" compartment=
28 "mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1"
29 initialConcentration="0" boundaryCondition="false" ...

constant="false"/>
30 <species id="mw188ffe6b_491f_46b7_b33a_bbe49c5b175c" ...

name="LBM" compartment=
31 "mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1"
32 initialConcentration="27.82" ...

boundaryCondition="false" constant="false"/>
33 <species id="mwea9e5002_ae74_4804_8e16_0be189d41376" ...

name="EI" compartment=
34 "mwb2ea0abf_52f0_4d92_b66c_0a37fa8ce2d1"
35 initialConcentration="1208" boundaryCondition="true" ...

constant="false"/>
36 </listOfSpecies>
37 <listOfParameters>
38 <parameter ...

id="mw735bcb0c_a7eb_4741_a7c7_68d451695bb2" ...
name="r" value="0.01" constant="true"/>

39 <parameter ...
id="mw0e5dd104_6c36_4d61_aaa0_304495f4958d" ...
name="alpha" value="2" constant="true"/>

40 <parameter ...
id="mw3e8ac7b4_c93c_46d1_afa3_0ffe81ac5fa9" ...
name="beta" value="12" constant="true"/>

41 <parameter ...
id="mw7d93fe54_abc0_4168_be20_b0c4cd50db7e" ...
name="H_1" value="24" constant="true"/>

42 <parameter ...
id="mwbcae1952_7942_4e93_baa0_602708e643ed" ...
name="H_2" value="39.089204" constant="true"/>

43 <parameter ...
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id="mw6b754d96_d5ec_4c93_9c49_81a862fd99e3" ...
name="kG" value="0" constant="false"/>

44 <parameter ...
id="mwf757b81c_acf1_42fc_8c71_e8e8477f9c35" ...
name="K" value="0" constant="true"/>

45 <parameter ...
id="mwd655381f_5be7_40a6_9382_44a09fa2e4a9" ...
name="EI0" value="1208" constant="true"/>

46 <parameter ...
id="mwbefacf2e_0633_4509_b37a_67d3fb3abf08" ...
name="CI" value="0" constant="false"/>

47 <parameter ...
id="mwc3955de4_7ac4_4f85_9eb3_ecf3c9b28b9c" ...
name="PAL" value="1.6" constant="true"/>

48 <parameter ...
id="mwfac7025f_6dcc_4606_a379_4fefb55a4c9c" ...
name="TEF" value="1" constant="false"/>

49 <parameter ...
id="mw4dd84072_9c69_4ea2_b6d1_4b3f7d60e34c" ...
name="EE" value="1" constant="false"/>

50 <parameter ...
id="mw0dfa195b_9ad7_4855_8857_ff396398cab1" ...
name="BW0" value="1" constant="true"/>

51 <parameter ...
id="mw3f90ba7d_f81b_467e_a0a6_57941b3eb364" ...
name="∆_sodium" value="0" constant="true"/>

52 <parameter ...
id="mwdab98099_f37d_420e_8aa3_5ff8cd6dadc8" ...
name="diet" value="1000" constant="false"/>

53 <parameter ...
id="mw58e7a6e9_b243_49f7_8cd7_13efb5566da7" ...
name="diet_time" value="40" constant="false"/>

54 </listOfParameters>
55 <listOfInitialAssignments>
56 <initialAssignment ...

symbol="mw6b754d96_d5ec_4c93_9c49_81a862fd99e3">
57 <math xmlns="http://www.w3.org/1998/Math/MathML">
58 <apply>
59 <divide/>
60 <apply>
61 <times/>
62 <cn> 0.6 </cn>
63 <ci> mwea9e5002_ae74_4804_8e16_0be189d41376 </ci>
64 </apply>
65 <apply>
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66 <power/>
67 <ci> mw90c87dde_e0a8_4e05_afb2_29276061ec6c </ci>
68 <cn type="integer"> 2 </cn>
69 </apply>
70 </apply>
71 </math>
72 </initialAssignment>
73 <initialAssignment ...

symbol="mwf757b81c_acf1_42fc_8c71_e8e8477f9c35">
74 <math xmlns="http://www.w3.org/1998/Math/MathML">
75 <apply>
76 <minus/>
77 <apply>
78 <minus/>
79 <apply>
80 <minus/>
81 <ci> ...

mwd655381f_5be7_40a6_9382_44a09fa2e4a9 </ci>
82 <apply>
83 <times/>
84 <cn> 3.107 </cn>
85 <ci> ...

mwf1c0663d_1a61_4564_90c7_be0412eab4d1 ...
</ci>

86 </apply>
87 </apply>
88 <apply>
89 <times/>
90 <cn> 21.989 </cn>
91 <ci> ...

mwd216a905_5d4c_4f61_9571_9e3dcb45b108 </ci>
92 </apply>
93 </apply>
94 <apply>
95 <times/>
96 <apply>
97 <minus/>
98 <apply>
99 <times/>

100 <cn> 0.9 </cn>
101 <ci> mwc3955de4_7ac4_4f85_9eb3_
102 ecf3c9b28b9c </ci>
103 </apply>
104 <cn type="integer"> 1 </cn>
105 </apply>
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106 <apply>
107 <plus/>
108 <apply>
109 <times/>
110 <cn> 21.6 </cn>
111 <ci> mwd216a905_5d4c_4f61_9571_
112 9e3dcb45b108 </ci>
113 </apply>
114 <cn type="integer"> 370 </cn>
115 </apply>
116 </apply>
117 </apply>
118 </math>
119 </initialAssignment>
120 <initialAssignment ...

symbol="mwbaf79cc5_8f27_4f2c_b2f7_3e62ae00c8b6">
121 <math xmlns="http://www.w3.org/1998/Math/MathML">
122 <apply>
123 <times/>
124 <cn> 0.2 </cn>
125 <apply>
126 <plus/>
127 <ci> mwf1c0663d_1a61_4564_90c7_be0412eab4d1 </ci>
128 <ci> mwd216a905_5d4c_4f61_9571_9e3dcb45b108 </ci>
129 </apply>
130 </apply>
131 </math>
132 </initialAssignment>
133 <initialAssignment ...

symbol="mw0dfa195b_9ad7_4855_8857_ff396398cab1">
134 <math xmlns="http://www.w3.org/1998/Math/MathML">
135 <apply>
136 <plus/>
137 <ci> mwf1c0663d_1a61_4564_90c7_be0412eab4d1 </ci>
138 <ci> mwd216a905_5d4c_4f61_9571_9e3dcb45b108 </ci>
139 </apply>
140 </math>
141 </initialAssignment>
142 <initialAssignment ...

symbol="mw188ffe6b_491f_46b7_b33a_bbe49c5b175c">
143 <math xmlns="http://www.w3.org/1998/Math/MathML">
144 <ci> mwd216a905_5d4c_4f61_9571_9e3dcb45b108 </ci>
145 </math>
146 </initialAssignment>
147 <initialAssignment ...
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symbol="mwea9e5002_ae74_4804_8e16_0be189d41376">
148 <math xmlns="http://www.w3.org/1998/Math/MathML">
149 <ci> mwd655381f_5be7_40a6_9382_44a09fa2e4a9 </ci>
150 </math>
151 </initialAssignment>
152 </listOfInitialAssignments>
153 <listOfRules>
154 <assignmentRule ...

variable="mwbefacf2e_0633_4509_b37a_67d3fb3abf08">
155 <math xmlns="http://www.w3.org/1998/Math/MathML">
156 <apply>
157 <times/>
158 <cn> 0.6 </cn>
159 <ci> mwea9e5002_ae74_4804_8e16_0be189d41376 </ci>
160 </apply>
161 </math>
162 </assignmentRule>
163 <assignmentRule ...

variable="mwfac7025f_6dcc_4606_a379_4fefb55a4c9c">
164 <math xmlns="http://www.w3.org/1998/Math/MathML">
165 <apply>
166 <times/>
167 <cn> 0.1 </cn>
168 <apply>
169 <minus/>
170 <ci> mwea9e5002_ae74_4804_8e16_0be189d41376 </ci>
171 <ci> mwd655381f_5be7_40a6_9382_44a09fa2e4a9 </ci>
172 </apply>
173 </apply>
174 </math>
175 </assignmentRule>
176 <assignmentRule ...

variable="mw4dd84072_9c69_4ea2_b6d1_4b3f7d60e34c">
177 <math xmlns="http://www.w3.org/1998/Math/MathML">
178 <apply>
179 <divide/>
180 <apply>
181 <plus/>
182 <ci> mwf757b81c_acf1_42fc_8c71_e8e8477f9c35 </ci>
183 <apply>
184 <times/>
185 <cn> 3.107 </cn>
186 <ci> ...

mwf1c0663d_1a61_4564_90c7_be0412eab4d1 </ci>
187 </apply>
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188 <apply>
189 <times/>
190 <cn> 21.989 </cn>
191 <ci> ...

mwd216a905_5d4c_4f61_9571_9e3dcb45b108 </ci>
192 </apply>
193 <apply>
194 <times/>
195 <apply>
196 <minus/>
197 <apply>
198 <times/>
199 <cn> 0.9 </cn>
200 <ci> mwc3955de4_7ac4_4f85_9eb3_
201 ecf3c9b28b9c </ci>
202 </apply>
203 <cn type="integer"> 1 </cn>
204 </apply>
205 <apply>
206 <plus/>
207 <apply>
208 <times/>
209 <cn> 21.6 </cn>
210 <ci> mwd216a905_5d4c_4f61_9571_
211 9e3dcb45b108 </ci>
212 </apply>
213 <cn type="integer"> 370 </cn>
214 </apply>
215 </apply>
216 <ci> mwfac7025f_6dcc_4606_a379_4fefb55a4c9c </ci>
217 <ci> mw11e3a509_3e54_42d4_9e04_8e8bf1141db5 </ci>
218 <apply>
219 <times/>
220 <apply>
221 <minus/>
222 <ci> ...

mwea9e5002_ae74_4804_8e16_0be189d41376 ...
</ci>

223 <apply>
224 <minus/>
225 <ci> mwbefacf2e_0633_4509_b37a_
226 67d3fb3abf08 </ci>
227 <apply>
228 <times/>
229 <ci> mw6b754d96_d5ec_4c93_9c49_
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230 81a862fd99e3 </ci>
231 <apply>
232 <power/>
233 <ci> mw90c87dde_e0a8_4e05_afb2_
234 29276061ec6c </ci>
235 <cn type="integer"> 2 </cn>
236 </apply>
237 </apply>
238 </apply>
239 </apply>
240 <apply>
241 <plus/>
242 <apply>
243 <times/>
244 <cn> 0.1073 </cn>
245 <apply>
246 <divide/>
247 <cn type="integer"> 2 </cn>
248 <apply>
249 <plus/>
250 <cn type="integer"> 2 </cn>
251 <ci> mwf1c0663d_1a61_4564_90c7_
252 be0412eab4d1 </ci>
253 </apply>
254 </apply>
255 </apply>
256 <cn> 0.018987 </cn>
257 </apply>
258 </apply>
259 </apply>
260 <apply>
261 <plus/>
262 <cn type="integer"> 1 </cn>
263 <apply>
264 <times/>
265 <cn> 0.1073 </cn>
266 <apply>
267 <divide/>
268 <cn type="integer"> 2 </cn>
269 <apply>
270 <plus/>
271 <cn type="integer"> 2 </cn>
272 <ci> mwf1c0663d_1a61_4564_90c7_
273 be0412eab4d1 </ci>
274 </apply>
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275 </apply>
276 </apply>
277 <cn> 0.018987 </cn>
278 </apply>
279 </apply>
280 </math>
281 </assignmentRule>
282 <rateRule ...

variable="mw90c87dde_e0a8_4e05_afb2_29276061ec6c">
283 <math xmlns="http://www.w3.org/1998/Math/MathML">
284 <apply>
285 <divide/>
286 <apply>
287 <minus/>
288 <ci> mwbefacf2e_0633_4509_b37a_67d3fb3abf08 </ci>
289 <apply>
290 <times/>
291 <ci> ...

mw6b754d96_d5ec_4c93_9c49_81a862fd99e3 </ci>
292 <apply>
293 <power/>
294 <ci> ...

mw90c87dde_e0a8_4e05_afb2_29276061ec6c ...
</ci>

295 <cn type="integer"> 2 </cn>
296 </apply>
297 </apply>
298 </apply>
299 <cn> 0.004 </cn>
300 </apply>
301 </math>
302 </rateRule>
303 <rateRule ...

variable="mw11e3a509_3e54_42d4_9e04_8e8bf1141db5">
304 <math xmlns="http://www.w3.org/1998/Math/MathML">
305 <apply>
306 <divide/>
307 <apply>
308 <minus/>
309 <apply>
310 <times/>
311 <cn> 0.14 </cn>
312 <apply>
313 <minus/>
314 <ci> ...
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mwea9e5002_ae74_4804_8e16_0be189d41376 ...
</ci>

315 <ci> ...
mwd655381f_5be7_40a6_9382_44a09fa2e4a9 ...
</ci>

316 </apply>
317 </apply>
318 <ci> mw11e3a509_3e54_42d4_9e04_8e8bf1141db5 </ci>
319 </apply>
320 <cn type="integer"> 14 </cn>
321 </apply>
322 </math>
323 </rateRule>
324 <rateRule ...

variable="mwf1c0663d_1a61_4564_90c7_be0412eab4d1">
325 <math xmlns="http://www.w3.org/1998/Math/MathML">
326 <apply>
327 <minus/>
328 <apply>
329 <divide/>
330 <apply>
331 <times/>
332 <apply>
333 <minus/>
334 <cn type="integer"> 1 </cn>
335 <apply>
336 <divide/>
337 <cn type="integer"> 2 </cn>
338 <apply>
339 <plus/>
340 <cn type="integer"> 2 </cn>
341 <ci> mwf1c0663d_1a61_4564_90c7_
342 be0412eab4d1 </ci>
343 </apply>
344 </apply>
345 </apply>
346 <apply>
347 <minus/>
348 <apply>
349 <minus/>
350 <ci> mwea9e5002_ae74_4804_8e16_
351 0be189d41376 </ci>
352 <ci> mw4dd84072_9c69_4ea2_b6d1_
353 4b3f7d60e34c </ci>
354 </apply>
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355 <apply>
356 <minus/>
357 <ci> mwbefacf2e_0633_4509_b37a_
358 67d3fb3abf08 </ci>
359 <apply>
360 <times/>
361 <ci> mw6b754d96_d5ec_4c93_9c49_
362 81a862fd99e3 </ci>
363 <apply>
364 <power/>
365 <ci> mw90c87dde_e0a8_4e05_afb2_
366 29276061ec6c </ci>
367 <cn type="integer"> 2 </cn>
368 </apply>
369 </apply>
370 </apply>
371 </apply>
372 </apply>
373 <cn> 9440.727 </cn>
374 </apply>
375 <apply>
376 <divide/>
377 <apply>
378 <times/>
379 <ci> ...

mw735bcb0c_a7eb_4741_a7c7_68d451695bb2 </ci>
380 <apply>
381 <divide/>
382 <apply>
383 <power/>
384 <ci> mwd216a905_5d4c_4f61_9571_
385 9e3dcb45b108 </ci>
386 <ci> mw0e5dd104_6c36_4d61_aaa0_
387 304495f4958d </ci>
388 </apply>
389 <apply>
390 <plus/>
391 <apply>
392 <power/>
393 <ci> mwd216a905_5d4c_4f61_9571_
394 9e3dcb45b108 </ci>
395 <ci> mw0e5dd104_6c36_4d61_aaa0_
396 304495f4958d </ci>
397 </apply>
398 <apply>
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399 <power/>
400 <ci> mw7d93fe54_abc0_4168_be20_
401 b0c4cd50db7e </ci>
402 <ci> mw0e5dd104_6c36_4d61_aaa0_
403 304495f4958d </ci>
404 </apply>
405 </apply>
406 </apply>
407 <apply>
408 <divide/>
409 <cn type="integer"> 1 </cn>
410 <apply>
411 <plus/>
412 <cn type="integer"> 1 </cn>
413 <apply>
414 <power/>
415 <apply>
416 <divide/>
417 <ci> mwd216a905_5d4c_4f61_9571_
418 9e3dcb45b108 </ci>
419 <ci> mwbcae1952_7942_4e93_baa0_
420 602708e643ed </ci>
421 </apply>
422 <ci> mw3e8ac7b4_c93c_46d1_afa3_
423 0ffe81ac5fa9 </ci>
424 </apply>
425 </apply>
426 </apply>
427 <cn> 1816.444 </cn>
428 </apply>
429 <cn> 9440.727 </cn>
430 </apply>
431 </apply>
432 </math>
433 </rateRule>
434 <rateRule ...

variable="mwd216a905_5d4c_4f61_9571_9e3dcb45b108">
435 <math xmlns="http://www.w3.org/1998/Math/MathML">
436 <apply>
437 <plus/>
438 <apply>
439 <divide/>
440 <apply>
441 <times/>
442 <apply>
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443 <divide/>
444 <cn type="integer"> 2 </cn>
445 <apply>
446 <plus/>
447 <cn type="integer"> 2 </cn>
448 <ci> mwf1c0663d_1a61_4564_90c7_
449 be0412eab4d1 </ci>
450 </apply>
451 </apply>
452 <apply>
453 <minus/>
454 <apply>
455 <minus/>
456 <ci> mwea9e5002_ae74_4804_8e16_
457 0be189d41376 </ci>
458 <ci> mw4dd84072_9c69_4ea2_b6d1_
459 4b3f7d60e34c </ci>
460 </apply>
461 <apply>
462 <minus/>
463 <ci> mwbefacf2e_0633_4509_b37a_
464 67d3fb3abf08 </ci>
465 <apply>
466 <times/>
467 <ci> mw6b754d96_d5ec_4c93_9c49_
468 81a862fd99e3 </ci>
469 <apply>
470 <power/>
471 <ci> mw90c87dde_e0a8_4e05_afb2_
472 29276061ec6c </ci>
473 <cn type="integer"> 2 </cn>
474 </apply>
475 </apply>
476 </apply>
477 </apply>
478 </apply>
479 <cn> 1816.444 </cn>
480 </apply>
481 <apply>
482 <times/>
483 <ci> mw735bcb0c_a7eb_4741_a7c7_68d451695bb2 </ci>
484 <apply>
485 <divide/>
486 <apply>
487 <power/>
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488 <ci> mwd216a905_5d4c_4f61_9571_
489 9e3dcb45b108 </ci>
490 <ci> mw0e5dd104_6c36_4d61_aaa0_
491 304495f4958d </ci>
492 </apply>
493 <apply>
494 <plus/>
495 <apply>
496 <power/>
497 <ci> ...

mwd216a905_5d4c_4f61_9571_9e3dcb45b108 ...
</ci>

498 <ci> ...
mw0e5dd104_6c36_4d61_aaa0_304495f4958d ...
</ci>

499 </apply>
500 <apply>
501 <power/>
502 <ci> mw7d93fe54_abc0_4168_be20_
503 b0c4cd50db7e </ci>
504 <ci> mw0e5dd104_6c36_4d61_aaa0_
505 304495f4958d </ci>
506 </apply>
507 </apply>
508 </apply>
509 <apply>
510 <divide/>
511 <cn type="integer"> 1 </cn>
512 <apply>
513 <plus/>
514 <cn type="integer"> 1 </cn>
515 <apply>
516 <power/>
517 <apply>
518 <divide/>
519 <ci> mwd216a905_5d4c_4f61_9571_
520 9e3dcb45b108 </ci>
521 <ci> mwbcae1952_7942_4e93_baa0_
522 602708e643ed </ci>
523 </apply>
524 <ci> mw3e8ac7b4_c93c_46d1_afa3_
525 0ffe81ac5fa9 </ci>
526 </apply>
527 </apply>
528 </apply>
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529 </apply>
530 </apply>
531 </math>
532 </rateRule>
533 <rateRule ...

variable="mwbaf79cc5_8f27_4f2c_b2f7_3e62ae00c8b6">
534 <math xmlns="http://www.w3.org/1998/Math/MathML">
535 <apply>
536 <minus/>
537 <apply>
538 <times/>
539 <apply>
540 <divide/>
541 <cn type="integer"> 1 </cn>
542 <cn> 3.22 </cn>
543 </apply>
544 <apply>
545 <minus/>
546 <ci> ...

mw3f90ba7d_f81b_467e_a0a6_57941b3eb364 </ci>
547 <apply>
548 <times/>
549 <cn type="integer"> 3000 </cn>
550 <apply>
551 <minus/>
552 <ci> mwbaf79cc5_8f27_4f2c_b2f7_
553 3e62ae00c8b6 </ci>
554 <apply>
555 <times/>
556 <cn> 0.2 </cn>
557 <ci> mw0dfa195b_9ad7_4855_8857_
558 ff396398cab1 </ci>
559 </apply>
560 </apply>
561 </apply>
562 </apply>
563 </apply>
564 <apply>
565 <times/>
566 <cn type="integer"> 4000 </cn>
567 <apply>
568 <minus/>
569 <cn type="integer"> 1 </cn>
570 <apply>
571 <divide/>
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572 <ci> ...
mwbefacf2e_0633_4509_b37a_67d3fb3abf08 ...
</ci>

573 <apply>
574 <times/>
575 <cn> 0.6 </cn>
576 <ci> mwd655381f_5be7_40a6_9382_
577 44a09fa2e4a9 </ci>
578 </apply>
579 </apply>
580 </apply>
581 </apply>
582 </apply>
583 </math>
584 </rateRule>
585 <rateRule ...

variable="mw188ffe6b_491f_46b7_b33a_bbe49c5b175c">
586 <math xmlns="http://www.w3.org/1998/Math/MathML">
587 <apply>
588 <plus/>
589 <apply>
590 <minus/>
591 <apply>
592 <times/>
593 <apply>
594 <divide/>
595 <cn type="integer"> 1 </cn>
596 <cn> 3.22 </cn>
597 </apply>
598 <apply>
599 <minus/>
600 <ci> ...

mw3f90ba7d_f81b_467e_a0a6_57941b3eb364 ...
</ci>

601 <apply>
602 <times/>
603 <cn type="integer"> 3000 </cn>
604 <apply>
605 <minus/>
606 <ci> mwbaf79cc5_8f27_4f2c_b2f7_
607 3e62ae00c8b6 </ci>
608 <apply>
609 <times/>
610 <cn> 0.2 </cn>
611 <ci> mw0dfa195b_9ad7_4855_8857_
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612 ff396398cab1 </ci>
613 </apply>
614 </apply>
615 </apply>
616 </apply>
617 </apply>
618 <apply>
619 <times/>
620 <cn type="integer"> 4000 </cn>
621 <apply>
622 <minus/>
623 <cn type="integer"> 1 </cn>
624 <apply>
625 <divide/>
626 <ci> mwbefacf2e_0633_4509_b37a_
627 67d3fb3abf08 </ci>
628 <apply>
629 <times/>
630 <cn> 0.6 </cn>
631 <ci> mwd655381f_5be7_40a6_9382_
632 44a09fa2e4a9 </ci>
633 </apply>
634 </apply>
635 </apply>
636 </apply>
637 </apply>
638 <apply>
639 <divide/>
640 <apply>
641 <times/>
642 <apply>
643 <divide/>
644 <cn type="integer"> 2 </cn>
645 <apply>
646 <plus/>
647 <cn type="integer"> 2 </cn>
648 <ci> mwf1c0663d_1a61_4564_90c7_
649 be0412eab4d1 </ci>
650 </apply>
651 </apply>
652 <apply>
653 <minus/>
654 <apply>
655 <minus/>
656 <ci> mwea9e5002_ae74_4804_8e16_
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657 0be189d41376 </ci>
658 <ci> mw4dd84072_9c69_4ea2_b6d1_
659 4b3f7d60e34c </ci>
660 </apply>
661 <apply>
662 <minus/>
663 <ci> mwbefacf2e_0633_4509_b37a_
664 67d3fb3abf08 </ci>
665 <apply>
666 <times/>
667 <ci> mw6b754d96_d5ec_4c93_9c49_
668 81a862fd99e3 </ci>
669 <apply>
670 <power/>
671 <ci> mw90c87dde_e0a8_4e05_afb2_
672 29276061ec6c </ci>
673 <cn type="integer"> 2 </cn>
674 </apply>
675 </apply>
676 </apply>
677 </apply>
678 </apply>
679 <cn> 1816.444 </cn>
680 </apply>
681 <apply>
682 <times/>
683 <ci> mw735bcb0c_a7eb_4741_a7c7_68d451695bb2 </ci>
684 <apply>
685 <divide/>
686 <apply>
687 <power/>
688 <ci> ...

mwd216a905_5d4c_4f61_9571_9e3dcb45b108 ...
</ci>

689 <ci> ...
mw0e5dd104_6c36_4d61_aaa0_304495f4958d ...
</ci>

690 </apply>
691 <apply>
692 <plus/>
693 <apply>
694 <power/>
695 <ci> mwd216a905_5d4c_4f61_9571_
696 9e3dcb45b108 </ci>
697 <ci> mw0e5dd104_6c36_4d61_aaa0_
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698 304495f4958d </ci>
699 </apply>
700 <apply>
701 <power/>
702 <ci> mw7d93fe54_abc0_4168_be20_
703 b0c4cd50db7e </ci>
704 <ci> mw0e5dd104_6c36_4d61_aaa0_
705 304495f4958d </ci>
706 </apply>
707 </apply>
708 </apply>
709 <apply>
710 <divide/>
711 <cn type="integer"> 1 </cn>
712 <apply>
713 <plus/>
714 <cn type="integer"> 1 </cn>
715 <apply>
716 <power/>
717 <apply>
718 <divide/>
719 <ci> mwd216a905_5d4c_4f61_9571_
720 9e3dcb45b108 </ci>
721 <ci> mwbcae1952_7942_4e93_baa0_
722 602708e643ed </ci>
723 </apply>
724 <ci> mw3e8ac7b4_c93c_46d1_afa3_
725 0ffe81ac5fa9 </ci>
726 </apply>
727 </apply>
728 </apply>
729 </apply>
730 </apply>
731 </math>
732 </rateRule>
733 </listOfRules>
734 <listOfEvents>
735 <event id="mw4a68a71c_d9aa_4767_818b_072f94eb6fe6" ...

name="event_1">
736 <trigger>
737 <math xmlns="http://www.w3.org/1998/Math/MathML">
738 <apply>
739 <geq/>
740 <csymbol encoding="text" definitionURL=
741 "http://www.sbml.org/sbml/symbols/time"> ...
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time </csymbol>
742 <ci> mw58e7a6e9_b243_49f7_8cd7_13efb5566da7 </ci>
743 </apply>
744 </math>
745 </trigger>
746 <listOfEventAssignments>
747 <eventAssignment ...

variable="mwea9e5002_ae74_4804_8e16_0be189d41376">
748 <math xmlns="http://www.w3.org/1998/Math/MathML">
749 <apply>
750 <minus/>
751 <ci> ...

mwd655381f_5be7_40a6_9382_44a09fa2e4a9 </ci>
752 <ci> ...

mwdab98099_f37d_420e_8aa3_5ff8cd6dadc8 </ci>
753 </apply>
754 </math>
755 </eventAssignment>
756 </listOfEventAssignments>
757 </event>
758 </listOfEvents>
759 </model>
760 </sbml>

A.2 Matlab code for Latin Hypercube Sampling

Code contained in this section is modified from code from Marino et al. [49]. Energy

balance constants and initial conditions are those of the average NHANES male [41]

given in Table 2.

A.2.1 ODE_LHS_NHANESmale.m (ODEs)

,
1 function du=ODE\_LHS\_NHANESmale(t,u,LHSmatrix,x,runs)
2 %% PARAMETERS %%
3

4 Parameter\_settings\_LHS\_NHANESmale;
5

6 PAL=LHSmatrix(x,1);
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7 r=LHSmatrix(x,2);
8 a=LHSmatrix(x,3);
9 b=LHSmatrix(x,4);

10 c=LHSmatrix(x,5);
11 d=LHSmatrix(x,6);
12 dummy_LHS=LHSmatrix(x,7);
13

14 %%Input parameters%%
15 kG = 6960;
16 K = 778.0655;
17 EI0 = 2900;
18 ∆_sodium=0;
19 BW0=83.3;
20 diet = 800;
21 dietsteps = 8;
22

23 %example code to implement a weekly decrease in energy intake
24 %dietinc = diet/dietsteps;
25

26 % EI = NaN(size(t));
27 % % stopvar = floor(t./7);
28 % case1 = (t≤7*dietsteps);
29 % EI(case1) = EI0 - dietinc*floor(t(case1)/7);
30 % case2 = (7*dietsteps ≤t);
31 % EI(case2) = EI0-dietinc*floor((dietsteps*7)/7);
32

33 %constant energy intake
34 EI = EI0;
35 CI=0.6*EI;
36 RMR = 21.6*u(6)+370;
37

38 %thermic effect of feeding
39 TEF=.1*(EI-EI0);
40

41 %energy expenditure
42 EE=(K+3.107*u(3)+21.989*u(6)+(.9*PAL-1)*RMR+TEF+u(2)...
43 +(EI-(CI-kG*u(1)^2))*((.1073)*(2/(2+u(3)))...
44 +.018987))/(1+.1073*(2/(2+u(3)))+.018987);
45

46 %system of odes
47 %du(1) is dG/dt: glycogen storage
48 du(1)= (CI-kG*u(1)^2)/.004;
49 %du(2) is dAT/dt: adaptive thermogenesis);
50 du(2)=(.14*(EI-EI0)-u(2))/14;
51 %du(3) is dF/dt
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52 du(3)=(1-2/(2+u(3)))*(EI-EE-(CI-kG*u(1)^2))/9440.727...
53 -r*((u(4)^a/(u(4)^a+c^a))*(1/(1+(u(4)/d)^b)));
54 %du(4) is dL/dt
55 du(4)=(2/(2+u(3)))*(EI-EE-(CI-kG*u(1)^2))/1816.444...
56 +r*((u(4)^a/(u(4)^a+c^a))*(1/(1+(u(4)/d)^b)));
57 %du(5) is dECF/dt
58 du(5) = (1/3.22)*(∆_sodium-...
59 3000*(u(5)-0.2*BW0))-4000*(1-CI/(0.6*EI0));
60 %du(6) is dLBM/dt
61 du(6)=du(4)+du(5);
62 du=du';

A.2.2 Parameter_settings_LHS_NHANESmale.m (parameter baseline

values and initial conditions)

,
1 % PARAMETER BASELINE VALUES
2

3 PAL=1.6;
4 r=0.01;
5 a=2;
6 b=10;
7 c=30;
8 d=65;
9 dummy_LHS=1;

10

11 % Parameter Labels
12 PRCC\_var={'PAL', 'r', ...
13 'a','b', 'c','d','dummy'};%
14

15 %% TIME SPAN OF THE SIMULATION
16 t_end=365; % length of the simulations
17 tspan=(0:1:t_end); % time points where the output is ...

calculated
18 time_points=[84 730]; % time points of interest for the US ...

analysis
19

20 % INITIAL CONDITION FOR THE ODE MODEL
21 dG=0.5;
22 dAT=0;
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23 dF=23.4;
24 dL=59.9-0.2*83.3;
25 dECF=0.2*83.3;
26 dLBM=59.9;

A.2.3 Model_LHS_NHANESmale.m (main file)

,
1

2 clear all;
3 close all;
4

5 %% Sample size N
6 runs=100;
7

8 %% LHS MATRIX %%
9 Parameter\_settings\_LHS\_NHANESmale;

10

11 PAL_LHS=LHS\_Call(1.6, PAL, 1.6, 0 ,runs,'unif'); % ...
baseline = 10

12 r_LHS=LHS\_Call(1e-3, r,.1 , 0, runs,'unif'); % baseline = 3e-2
13 a_LHS=LHS\_Call(2,a,80, 0 ,runs,'unif'); % baseline = 2.4e-5
14 b_LHS=LHS\_Call(20, b,100, 0, runs,'unif'); % baseline = 3e-3
15 c_LHS= LHS\_Call(20 , c ,50 , 0 , runs , 'unif'); % ...

baseline = 0.24
16 d_LHS=LHS\_Call(40,d,50, 0 ,runs,'unif'); % baseline = 1200
17 dummy_LHS=LHS\_Call(1,1,1e1, 0 ,runs,'unif'); % dummy parameter
18

19 %% LHS MATRIX and PARAMETER LABELS
20 LHSmatrix=[PAL_LHS r_LHS a_LHS b_LHS ...
21 c_LHS d_LHS dummy_LHS];
22

23 for x=1:runs %Run solution x times choosing different values
24 f=@ODE\_LHS\_NHANESmale;
25 x;
26 LHSmatrix(x,:);
27 [t,u]=ode15s(@(t,u)f(t,u,LHSmatrix,x,runs),tspan,u0,[]);
28 A=[t u]; % [time u]
29 %% Save the outputs at ALL time points [tspan]
30 T_RT(:,x)=A(:,1);
31 G_RT(:,x)=A(:,2);
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32 AT_RT(:,x)=A(:,3);
33 F_RT(:,x)=A(:,4);
34 L_RT(:,x)=A(:,5);
35 ECF_RT(:,x)=A(:,6);
36 LBM_RT(:,x)=A(:,7);
37

38 %% Save only the outputs at the time points of ...
interest [time_points]:

39 %% MORE EFFICIENT
40 % G(:,x)=A(time_points+1,1);
41 % AT_lhs(:,x)=A(time_points+1,2);
42 % F_lhs(:,x)=A(time_points+1,3);
43 % L_lhs(:,x)=A(time_points+1,4);
44 end
45 %% Save the workspace
46 save Model_RT_PRCC.mat;
47 % CALCULATE PRCC
48 [prcc sign ...

sign_label]=PRCC(LHSmatrix,L_RT,1:length(time_points),...
49 PRCC_var,0.1);

A.2.4 LHS_Call.m (LHS algorithm file)

,
1 function ...

s=LHS\_Call(xmin,xmean,xmax,xsd,nsample,distrib,threshold)
2 % s=latin_hs(xmean,xsd,nsample,nvar)
3 % LHS from normal distribution, no correlation
4 % method of Stein
5 % Stein, M. 1987. Large Sample Properties of Simulations ...

Using Latin Hypercube Sampling.
6 % Technometrics 29:143-151
7

8 if nsample==1
9 s=xmean;

10 return
11 end
12 if nargin<7
13 threshold=1e20;
14 end
15
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16 [sample,nvar]=size(xmean);
17 if distrib == 'norm' % you only need to specify xmean & xsd
18 ran=rand(nsample,nvar);
19 s=zeros(nsample,nvar);
20 %method of Stein
21 for j=1: nvar
22 idx=randperm(nsample);
23 P=(idx'-ran(:,j))/nsample; % probability of ...

the cdf
24 s(:,j) = xmean(j) + ltqnorm(P).* xsd(j); % this ...

can be replaced by any inverse distribution function
25 end
26 end
27

28

29 if distrib == 'unif' % you only need to specify xmin & xmax
30 if xmin==0
31 xmin=1e-300;
32 end
33 nvar=length(xmin);
34 ran=rand(nsample,nvar);
35 s=zeros(nsample,nvar);
36 for j=1: nvar
37 idx=randperm(nsample);
38 P =(idx'-ran(:,j))/nsample;
39 xmax(j);
40 xmin(j);
41 xmax(j)/xmin(j);
42 if (xmax(j)<1 & xmin(j)<1) || (xmax(j)>1 & xmin(j)>1)
43 'SAME RANGE';
44 if (xmax(j)/xmin(j))<threshold %% It uses the ...

log scale if the order of magnitude of ...
[xmax-xmin] is bigger than threshold

45 '<1e3: LINEAR SCALE';
46 s(:,j) = xmin(j) + P.* (xmax(j)-xmin(j));
47 else
48 '≥1e3: LOG SCALE';
49 s(:,j) = log(xmin(j)) + ...

P.*abs(abs(log(xmax(j)))-abs(log(xmin(j))));
50 s(:,j) = exp(s(:,j));
51 end
52 else
53 'e- to e+';
54 if (xmax(j)/xmin(j))<threshold %% It uses the ...

log scale if the order of magnitude of ...
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[xmax-xmin] is bigger than threshold
55 '<1e3: LINEAR SCALE';
56 s(:,j) = xmin(j) + P.* (xmax(j)-xmin(j));
57 else
58 '≥1e3: LOG SCALE';
59 s(:,j) = log(xmin(j)) + ...

P.*abs(log(xmax(j))-log(xmin(j)));
60 s(:,j) = exp(s(:,j));
61 end
62 end
63 end
64 end
65 %hist(s) % plots the histogram of the pdf
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Appendix B

MATLAB CODE FOR THE OPTIMAL CONTROL PROBLEM

,
1 function y = optdiet_payoff(params,init,T,A,B)
2 % example inputs:
3 %params=[1.5,0.25,9,77,66,74];
4 %init(initial conditions)=[27.2,72.8,3024];
5 %T(end time)=84;
6 %A(weight on fat loss in objective functional)=100;
7 %B(weight on lean mass maximization at final time in ...

objective functional)=100;
8

9 %constants
10 C=2;
11 beta_TEF=.1;
12 rho_L=1816.444;
13 rho_F=9440.727;
14 eta_L=229.4169;
15 eta_F=1028.903;
16 gamma_L=21.989;
17 gamma_F=3.107;
18

19 %params
20 PAL=params(1);
21 r = params(2);
22 a = params(3);
23 b = params(4);
24 c=params(5);
25 d=params(6);
26

27 %functions
28 F0 = init(1);
29 L0 = init(2);
30 EI0 = init(3);
31 K = EI0-3.107*F0-21.989*L0-(0.9*PAL-1)*(21.6*L0+370);
32

33 %optimality
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34 test = -1;
35

36 ∆_test = 0.001;
37 N = 1000;
38 t = linspace(0,T,N+1);
39 h = T/N;
40 h2 = h/2;
41

42 F = zeros(1,N+1);
43 F(1) = init(1);
44 L = zeros(1,N+1);
45 L(1) = init(2);
46 EI = zeros(1,N+1);
47 EI(1) = init(3);
48

49 lambda1 = zeros(1,N+1);
50 lambda2 = zeros(1,N+1);
51 lambda2(N+1) = -B;
52 lambda3 = zeros(1,N+1);
53

54 u = zeros(1,N+1);
55 %%
56

57 while(test < 0)
58 oldu = u;
59 oldF= F;
60 oldL= L;
61 oldEI=EI;
62 oldlambda1 = lambda1;
63 oldlambda2 = lambda2;
64 oldlambda3 = lambda3;
65

66

67 for i = 1:N
68

69

70 k11 = (1-C/(C+F(i)))*(EI(i)-(K+gamma_F*F(i)+...
71 gamma_L*L(i)+((1-beta_TEF)*PAL-1)*(21.6*L(i)...
72 +370)+beta_TEF*(EI(i)-EI0)...
73 +EI(i)*(C/(C+F(i))*eta_L/rho_L+...
74 (1-C/(C+F(i)))*eta_F/rho_F))/(1+C/(C+...
75 F(i))*eta_L/rho_L+(1-C/(C+F(i)))*eta_F/rho_F))/...
76 9440.727-r*((L(i)^a/(L(i)^a+c^a))*(1/(1+...
77 (L(i)/d)^b)))*1816.444/9440.727;
78
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79 k12 = C/(C+F(i))*(EI(i)-(K+gamma_F*F(i)+...
80 gamma_L*L(i)+((1-beta_TEF)*PAL-1)*(21.6*L(i)...
81 +370)+beta_TEF*(EI(i)-EI0)+EI(i)*(C/(C+...
82 F(i))*eta_L/rho_L+(1-C/(C+F(i)))*eta_F/rho_F))/...
83 (1+C/(C+F(i))*eta_L/rho_L+(1-C/(C+F(i)))*...
84 eta_F/rho_F))/1816.444+r*((L(i)^a/(L(i)^a+...
85 c^a))*(1/(1+(L(i)/d)^b)));
86

87 k13=-u(i);
88

89 k21 = (1-C/(C+(F(i)+h2*k11)))*((EI(i)+h2*k13)-...
90 (K+gamma_F*(F(i)+h2*k11)+gamma_L*(L(i)+h2*k12)+...
91 ((1-beta_TEF)*PAL-1)*(21.6*(L(i)+h2*k12)+370)+...
92 beta_TEF*((EI(i)+h2*k13)-EI0)+(EI(i)+h2*k13)*...
93 (C/(C+(F(i)+h2*k11))*eta_L/rho_L+(1-C/(C+(F(i)+...
94 h2*k11)))*eta_F/rho_F))/(1+C/(C+(F(i)+h2*k11))*...
95 eta_L/rho_L+(1-C/(C+(F(i)+h2*k11)))*...
96 eta_F/rho_F))/9440.727-r*(((L(i)+h2*k12)^a/...
97 ((L(i)+h2*k12)^a+c^a))*(1/(1+((L(i)+h2*k12)/...
98 d)^b)))*1816.444/9440.727;
99

100 k22 = (C/(C+(F(i)+h2*k11)))*((EI(i)+h2*k13)-...
101 (K+gamma_F*(F(i)+h2*k11)+gamma_L*(L(i)+h2*k12)+...
102 ((1-beta_TEF)*PAL-1)*(21.6*(L(i)+h2*k12)+370)+...
103 beta_TEF*((EI(i)+h2*k13)-EI0)+(EI(i)+h2*k13)*...
104 (C/(C+(F(i)+h2*k11))*eta_L/rho_L+(1-C/(C+(F(i)+...
105 h2*k11)))*eta_F/rho_F))/(1+C/(C+(F(i)+h2*k11))*...
106 eta_L/rho_L+(1-C/(C+(F(i)+h2*k11)))*...
107 eta_F/rho_F))/1816.444+r*(((L(i)+h2*k12)^a/...
108 ((L(i)+h2*k12)^a+c^a))*(1/(1+((L(i)+...
109 h2*k12)/d)^b)));
110

111 k23 = -0.5*(u(i)+u(i+1));
112

113 k31 = (1-C/(C+(F(i)+h2*k21)))*((EI(i)+h2*k23)-...
114 (K+gamma_F*(F(i)+h2*k21)+gamma_L*(L(i)+h2*k22)+...
115 ((1-beta_TEF)*PAL-1)*(21.6*(L(i)+h2*k22)+370)+...
116 beta_TEF*((EI(i)+h2*k23)-EI0)+(EI(i)+h2*k23)*...
117 (C/(C+(F(i)+h2*k21))*eta_L/rho_L+(1-C/(C+...
118 (F(i)+h2*k21)))*eta_F/rho_F))/(1+C/(C+(F(i)+...
119 h2*k21))*eta_L/rho_L+(1-C/(C+(F(i)+h2*k21)))*...
120 eta_F/rho_F))/9440.727-r*(((L(i)+h2*k22)^a/...
121 ((L(i)+h2*k22)^a+c^a))*(1/(1+((L(i)+h2*k22)/...
122 d)^b)))*1816.444/9440.727;
123
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124 k32 = (C/(C+(F(i)+h2*k21)))*((EI(i)+h2*k23)-...
125 (K+gamma_F*(F(i)+h2*k21)+gamma_L*(L(i)+...
126 h2*k22)+((1-beta_TEF)*PAL-1)*(21.6*(L(i)+...
127 h2*k22)+370)+beta_TEF*((EI(i)+h2*k23)-EI0)...
128 +(EI(i)+h2*k23)*(C/(C+(F(i)+h2*k21))*eta_L/...
129 rho_L+(1-C/(C+(F(i)+h2*k21)))*eta_F/rho_F))/...
130 (1+C/(C+(F(i)+h2*k21))*eta_L/rho_L+(1-C/(C+...
131 (F(i)+h2*k21)))*eta_F/rho_F))/1816.444+r*...
132 (((L(i)+h2*k22)^a/((L(i)+h2*k22)^a+c^a))*...
133 (1/(1+((L(i)+h2*k22)/d)^b)));
134

135 k33 = -0.5*(u(i)+u(i+1));
136

137 k41 = (1-C/(C+(F(i)+h2*k31)))*((EI(i)+h2*k33)-...
138 (K+gamma_F*(F(i)+h2*k31)+gamma_L*(L(i)+...
139 h2*k32)+((1-beta_TEF)*PAL-1)*(21.6*(L(i)+...
140 h2*k32)+370)+beta_TEF*((EI(i)+h2*k33)-EI0)...
141 +(EI(i)+h2*k33)*(C/(C+(F(i)+h2*k31))*eta_L/...
142 rho_L+(1-C/(C+(F(i)+h2*k31)))*eta_F/rho_F))/...
143 (1+C/(C+(F(i)+h2*k31))*eta_L/rho_L+(1-C/(C+...
144 (F(i)+h2*k31)))*eta_F/rho_F))/9440.727-r*...
145 (((L(i)+h2*k32)^a/((L(i)+h2*k32)^a+c^a))*...
146 (1/(1+((L(i)+h2*k32)/d)^b)))*1816.444/9440.727;
147

148 k42 = (C/(C+(F(i)+h2*k31)))*((EI(i)+h2*k33)-...
149 (K+gamma_F*(F(i)+h2*k31)+gamma_L*(L(i)+...
150 h2*k32)+((1-beta_TEF)*PAL-1)*(21.6*(L(i)+...
151 h2*k32)+370)+beta_TEF*((EI(i)+h2*k33)-EI0)...
152 +(EI(i)+h2*k33)*(C/(C+(F(i)+h2*k31))*eta_L/...
153 rho_L+(1-C/(C+(F(i)+h2*k31)))*eta_F/rho_F))/...
154 (1+C/(C+(F(i)+h2*k31))*eta_L/rho_L+(1-C/(C+...
155 (F(i)+h2*k31)))*eta_F/rho_F))/1816.444+...
156 r*(((L(i)+h2*k32)^a/((L(i)+h2*k32)^a+c^a))*...
157 (1/(1+((L(i)+h2*k32)/d)^b)));
158

159 k43 = -u(i+1);
160

161 F(i+1) = F(i) + (h/6)*(k11 + 2*k21 + 2*k31 + k41);
162 L(i+1) = L(i) + (h/6)*(k12 + 2*k22 + 2*k32 + k42);
163 EI(i+1)= EI(i) + (h/6)*(k13 + 2*k23 + 2*k33 + k43);
164 end
165 %%
166

167 for i = 1:N
168 j = N + 2 - i;

173



169 k11 = -A-lambda1(j)*C*(EI(j)-(K+gamma_F*F(j)+...
170 gamma_L*L(j)+((1-beta_TEF)*PAL-1)*(21.6*L(j)+...
171 370)+beta_TEF*(EI0-EI(j))+EI(j)*(C*eta_L/((C+...
172 F(j))*rho_L)+(1-C/(C+F(j)))*eta_F/rho_F))/(1+...
173 C*eta_L/((C+F(j))*rho_L)+(1-C/(C+F(j)))*...
174 eta_F/rho_F))/(rho_F*(C+F(j))^2)-lambda1(j)*...
175 (1-C/(C+F(j)))*(-(gamma_F+EI(j)*(-C*eta_L/...
176 ((C+F(j))^2*rho_L)+C*eta_F/((C+F(j))^2*...
177 rho_F)))/(1+C*eta_L/((C+F(j))*rho_L)+(1-C/(C+...
178 F(j)))*eta_F/rho_F)+(K+gamma_F*F(j)+gamma_L*...
179 L(j)+((1-beta_TEF)*PAL-1)*(21.6*L(j)+370)+...
180 beta_TEF*(EI0-EI(j))+EI(j)*(C*eta_L/((C+...
181 F(j))*rho_L)+(1-C/(C+F(j)))*eta_F/rho_F))*...
182 (-C*eta_L/((C+F(j))^2*rho_L)+C*eta_F/((C+...
183 F(j))^2*rho_F))/(1+C*eta_L/((C+F(j))*...
184 rho_L)+(1-C/(C+F(j)))*eta_F/rho_F)^2)/rho_F...
185 +lambda2(j)*C*(EI(j)-(K+gamma_F*F(j)+...
186 gamma_L*L(j)+((1-beta_TEF)*PAL-1)*(21.6*...
187 L(j)+370)+beta_TEF*(EI0-EI(j))+EI(j)*(C*...
188 eta_L/((C+F(j))*rho_L)+(1-C/(C+F(j)))*...
189 eta_F/rho_F))/(1+C*eta_L/((C+F(j))*rho_L)+...
190 (1-C/(C+F(j)))*eta_F/rho_F))/(rho_L*(C+...
191 F(j))^2)-lambda2(j)*C*(-(gamma_F+EI(j)*...
192 (-C*eta_L/((C+F(j))^2*rho_L)+C*eta_F/((C+...
193 F(j))^2*rho_F)))/(1+C*eta_L/((C+F(j))*...
194 rho_L)+(1-C/(C+F(j)))*eta_F/rho_F)+(K+...
195 gamma_F*F(j)+gamma_L*L(j)+((1-beta_TEF)*...
196 PAL-1)*(21.6*L(j)+370)+beta_TEF*(EI0-...
197 EI(j))+EI(j)*(C*eta_L/((C+F(j))*rho_L)+...
198 (1-C/(C+F(j)))*eta_F/rho_F))*(-C*eta_L/...
199 ((C+F(j))^2*rho_L)+C*eta_F/((C+F(j))^2*...
200 rho_F))/(1+C*eta_L/((C+F(j))*rho_L)+...
201 (1-C/(C+F(j)))*eta_F/rho_F)^2)/(rho_L*(C+F(j)));
202

203 k12 = B+lambda1(j)*(1-C/(C+F(j)))*(gamma_L+...
204 21.6*(1-beta_TEF)*PAL-21.6)/(rho_F*(1+C*...
205 eta_L/((C+F(j))*rho_L)+(1-C/(C+F(j)))*...
206 eta_F/rho_F))+lambda1(j)*r*L(j)^a*a/(rho_F*...
207 L(j)*(L(j)^a+c^a)*(1+(L(j)/d)^b))-...
208 lambda1(j)*r*(L(j)^a)^2*a/(rho_F*(L(j)^a+...
209 c^a)^2*(1+(L(j)/d)^b)*L(j))-lambda1(j)*r*...
210 L(j)^a*(L(j)/d)^b*b/(rho_F*(L(j)^a+c^a)*...
211 (1+(L(j)/d)^b)^2*L(j))+lambda2(j)*C*(gamma_L...
212 +21.6*(1-beta_TEF)*PAL-21.6)/(rho_L*(C+...
213 F(j))*(1+C*eta_L/((C+F(j))*rho_L)+(1-C/(C+...
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214 F(j)))*eta_F/rho_F))-lambda2(j)*r*L(j)^a*a/...
215 (rho_L*L(j)*(L(j)^a+c^a)*(1+(L(j)/d)^b))+...
216 lambda2(j)*r*(L(j)^a)^2*a/(rho_L*(L(j)^a+...
217 c^a)^2*(1+(L(j)/d)^b)*L(j))+lambda2(j)*r*...
218 L(j)^a*(L(j)/d)^b*b/(rho_L*(L(j)^a+c^a)*...
219 (1+(L(j)/d)^b)^2*L(j));
220

221 k13=-lambda1(j)*(1-C/(C+F(j)))*(1-(-beta_TEF+...
222 C*eta_L/((C+F(j))*rho_L)+(1-C/(C+F(j)))*eta_F/...
223 rho_F)/(1+C*eta_L/((C+F(j))*rho_L)+(1-C/(C+...
224 F(j)))*eta_F/rho_F))/rho_F-lambda2(j)*C*(1-...
225 (-beta_TEF+C*eta_L/((C+F(j))*rho_L)+(1-C/(C+...
226 F(j)))*eta_F/rho_F)/(1+C*eta_L/((C+F(j))*...
227 rho_L)+(1-C/(C+F(j)))*eta_F/rho_F))/(rho_L*...
228 (C+F(j)));
229

230 k21 = -A-(lambda1(j)-h2*k11)*C*((0.5*(EI(j)+...
231 EI(j-1)))-(K+gamma_F*(0.5*(F(j)+F(j-1)))+...
232 gamma_L*(0.5*(L(j)+L(j-1)))+((1-beta_TEF)*...
233 PAL-1)*(21.6*(0.5*(L(j)+L(j-1)))+370)...
234 +beta_TEF*(EI0-(0.5*(EI(j)+EI(j-1))))+(0.5*...
235 (EI(j)+EI(j-1)))*(C*eta_L/((C+(0.5*(F(j)+...
236 F(j-1))))*rho_L)+(1-C/(C+(0.5*(F(j)+...
237 F(j-1)))))*eta_F/rho_F))/(1+C*eta_L/((C+...
238 (0.5*(F(j)+F(j-1))))*rho_L)+(1-C/(C+(0.5*...
239 (F(j)+F(j-1)))))*eta_F/rho_F))/(rho_F*(C+...
240 (0.5*(F(j)+F(j-1))))^2)-(lambda1(j)-...
241 h2*k11)*(1-C/(C+(0.5*(F(j)+F(j-1)))))*...
242 (-(gamma_F+(0.5*(EI(j)+EI(j-1)))*...
243 (-C*eta_L/((C+(0.5*(F(j)+F(j-1))))^2*rho_L)+...
244 C*eta_F/((C+(0.5*(F(j)+F(j-1))))^2*rho_F)))/...
245 (1+C*eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+...
246 (1-C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/rho_F)+...
247 (K+gamma_F*(0.5*(F(j)+F(j-1)))+gamma_L*(0.5*...
248 (L(j)+L(j-1)))+((1-beta_TEF)*PAL-1)*(21.6*...
249 (0.5*(L(j)+L(j-1)))+370)+beta_TEF*(EI0-(0.5*...
250 (EI(j)+EI(j-1))))+(0.5*(EI(j)+EI(j-1)))*...
251 (C*eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+...
252 (1-C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/rho_F))*...
253 (-C*eta_L/((C+(0.5*(F(j)+F(j-1))))^2*rho_L)+...
254 C*eta_F/((C+(0.5*(F(j)+F(j-1))))^2*rho_F))/...
255 (1+C*eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+...
256 (1-C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/...
257 rho_F)^2)/rho_F+(lambda2(j)-h2*k12)*C*((0.5*...
258 (EI(j)+EI(j-1)))-(K+gamma_F*(0.5*(F(j)+...
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259 F(j-1)))+gamma_L*(0.5*(L(j)+L(j-1)))+...
260 ((1-beta_TEF)*PAL-1)*(21.6*(0.5*(L(j)+...
261 L(j-1)))+370)+beta_TEF*(EI0-(0.5*(EI(j)+...
262 EI(j-1))))+(0.5*(EI(j)+EI(j-1)))*(C*eta_L/...
263 ((C+(0.5*(F(j)+F(j-1))))*rho_L)+(1-C/(C+...
264 (0.5*(F(j)+F(j-1)))))*eta_F/rho_F))/(1+C*...
265 eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+(1-...
266 C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/rho_F))/...
267 (rho_L*(C+(0.5*(F(j)+F(j-1))))^2)-...
268 (lambda2(j)-h2*k12)*C*(-(gamma_F+(0.5*...
269 (EI(j)+EI(j-1)))*(-C*eta_L/((C+(0.5*(F(j)+...
270 F(j-1))))^2*rho_L)+C*eta_F/((C+(0.5*(F(j)+...
271 F(j-1))))^2*rho_F)))/(1+C*eta_L/((C+(0.5*...
272 (F(j)+F(j-1))))*rho_L)+(1-C/(C+(0.5*(F(j)+...
273 F(j-1)))))*eta_F/rho_F)+(K+gamma_F*(0.5*...
274 (F(j)+F(j-1)))+gamma_L*(0.5*(L(j)+L(j-1)))+...
275 ((1-beta_TEF)*PAL-1)*(21.6*(0.5*(L(j)+...
276 L(j-1)))+370)+beta_TEF*(EI0-(0.5*(EI(j)+...
277 EI(j-1))))+(0.5*(EI(j)+EI(j-1)))*(C*eta_L/...
278 ((C+(0.5*(F(j)+F(j-1))))*rho_L)+(1-C/(C+...
279 (0.5*(F(j)+F(j-1)))))*eta_F/rho_F))*(-C*...
280 eta_L/((C+(0.5*(F(j)+F(j-1))))^2*rho_L)+...
281 C*eta_F/((C+(0.5*(F(j)+F(j-1))))^2*rho_F))...
282 /(1+C*eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+...
283 (1-C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/...
284 rho_F)^2)/(rho_L*(C+(0.5*(F(j)+F(j-1)))));
285

286 k22 = B+(lambda1(j)-h2*k11)*(1-C/(C+0.5*(F(j)+...
287 F(j-1))))*(gamma_L+21.6*(1-beta_TEF)*PAL-21.6)/...
288 (rho_F*(1+C*eta_L/((C+0.5*(F(j)+F(j-1)))*rho_L)...
289 +(1-C/(C+0.5*(F(j)+F(j-1))))*eta_F/rho_F))+...
290 (lambda1(j)-h2*k11)*r*0.5*(L(j)+L(j-1))^a*...
291 a/(rho_F*0.5*(L(j)+L(j-1))*(0.5*(L(j)+...
292 L(j-1))^a+c^a)*(1+(0.5*(L(j)+L(j-1))/d)^b))-...
293 (lambda1(j)-h2*k11)*r*(0.5*(L(j)+L(j-1))^a)^2*...
294 a/(rho_F*(0.5*(L(j)+L(j-1))^a+c^a)^2*(1+...
295 (0.5*(L(j)+L(j-1))/d)^b)*0.5*(L(j)+...
296 L(j-1)))-(lambda1(j)-h2*k11)*r*0.5*(L(j)+...
297 L(j-1))^a*(0.5*(L(j)+L(j-1))/d)^b*b/...
298 (rho_F*(0.5*(L(j)+L(j-1))^a+...
299 c^a)*(1+(0.5*(L(j)+L(j-1))/d)^b)^2*0.5*(L(j)...
300 +L(j-1)))+(lambda2(j)-h2*k12)*C*(gamma_L+21.6*...
301 (1-beta_TEF)*PAL-21.6)/(rho_L*(C+0.5*(F(j)+...
302 F(j-1)))*(1+C*eta_L/((C+0.5*(F(j)+F(j-1)))*...
303 rho_L)+(1-C/(C+0.5*(F(j)+F(j-1))))*eta_F/...
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304 rho_F))-(lambda2(j)-h2*k12)*r*0.5*(L(j)+...
305 L(j-1))^a*a/(rho_L*0.5*(L(j)+L(j-1))*(0.5*...
306 (L(j)+L(j-1))^a+c^a)*(1+(0.5*(L(j)+L(j-1))/...
307 d)^b))+(lambda2(j)-h2*k12)*r*(0.5*(L(j)+...
308 L(j-1))^a)^2*a/(rho_L*(0.5*(L(j)+L(j-1))^a+...
309 c^a)^2*(1+(0.5*(L(j)+L(j-1))/d)^b)*0.5*(L(j)...
310 +L(j-1)))+(lambda2(j)-h2*k12)*r*0.5*(L(j)+...
311 L(j-1))^a*(0.5*(L(j)+L(j-1))/d)^b*b/(rho_L*...
312 (0.5*(L(j)+L(j-1))^a+c^a)*(1+(0.5*(L(j)+...
313 L(j-1))/d)^b)^2*0.5*(L(j)+L(j-1)));
314

315 k23 = -(lambda1(j)-h2*k11)*(1-C/(C+0.5*(F(j)+...
316 F(j-1))))*(1-(-beta_TEF+C*eta_L/((C+0.5*(F(j)+...
317 F(j-1)))*rho_L)+(1-C/(C+0.5*(F(j)+F(j-1))))*...
318 eta_F/rho_F)/(1+C*eta_L/((C+0.5*(F(j)+...
319 F(j-1)))*rho_L)+(1-C/(C+0.5*(F(j)+F(j-1))))*...
320 eta_F/rho_F))/rho_F-(lambda2(j)-h2*k12)*C*...
321 (1-(-beta_TEF+C*eta_L/((C+0.5*(F(j)+F(j-1)))*...
322 rho_L)+(1-C/(C+0.5*(F(j)+F(j-1))))*eta_F/...
323 rho_F)/(1+C*eta_L/((C+0.5*(F(j)+F(j-1)))*...
324 rho_L)+(1-C/(C+0.5*(F(j)+F(j-1))))*eta_F/...
325 rho_F))/(rho_L*(C+0.5*(F(j)+F(j-1))));
326

327

328 k31 =-A-(lambda1(j)-h2*k21)*C*((0.5*(EI(j)+...
329 EI(j-1)))-(K+gamma_F*(0.5*(F(j)+F(j-1)))+...
330 gamma_L*(0.5*(L(j)+L(j-1)))+((1-beta_TEF)*...
331 PAL-1)*(21.6*(0.5*(L(j)+L(j-1)))+370)...
332 +beta_TEF*(EI0-(0.5*(EI(j)+EI(j-1))))+...
333 (0.5*(EI(j)+EI(j-1)))*(C*eta_L/((C+(0.5*...
334 (F(j)+F(j-1))))*rho_L)+(1-C/(C+(0.5*(F(j)+...
335 F(j-1)))))*eta_F/rho_F))/(1+C*eta_L/((C+...
336 (0.5*(F(j)+F(j-1))))*rho_L)+(1-C/(C+(0.5*...
337 (F(j)+F(j-1)))))*eta_F/rho_F))/(rho_F*(C+...
338 (0.5*(F(j)+F(j-1))))^2)-(lambda1(j)-...
339 h2*k21)*(1-C/(C+(0.5*(F(j)+F(j-1)))))*...
340 (-(gamma_F+(0.5*(EI(j)+EI(j-1)))*(-C*...
341 eta_L/((C+(0.5*(F(j)+F(j-1))))^2*rho_L)+...
342 C*eta_F/((C+(0.5*(F(j)+F(j-1))))^2*...
343 rho_F)))/(1+C*eta_L/((C+(0.5*(F(j)...
344 +F(j-1))))*rho_L)+(1-C/(C+(0.5*(F(j)+...
345 F(j-1)))))*eta_F/rho_F)+(K+gamma_F*...
346 (0.5*(F(j)+F(j-1)))+gamma_L*(0.5*(L(j)+...
347 L(j-1)))+((1-beta_TEF)*PAL-1)*(21.6*(0.5*...
348 (L(j)+L(j-1)))+370)+beta_TEF*(EI0-(0.5*...
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349 (EI(j)+EI(j-1))))+(0.5*(EI(j)+EI(j-1)))*...
350 (C*eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+...
351 (1-C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/rho_F))*...
352 (-C*eta_L/((C+(0.5*(F(j)+F(j-1))))^2*rho_L)+...
353 C*eta_F/((C+(0.5*(F(j)+F(j-1))))^2*rho_F))/...
354 (1+C*eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+...
355 (1-C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/rho_F)^2)/...
356 rho_F+(lambda2(j)-h2*k22)*C*((0.5*(EI(j)+...
357 EI(j-1)))-(K+gamma_F*(0.5*(F(j)+F(j-1)))+...
358 gamma_L*(0.5*(L(j)+L(j-1)))+((1-beta_TEF)*...
359 PAL-1)*(21.6*(0.5*(L(j)+L(j-1)))+370)+...
360 beta_TEF*(EI0-(0.5*(EI(j)+EI(j-1))))+(0.5*...
361 (EI(j)+EI(j-1)))*(C*eta_L/((C+(0.5*(F(j)+...
362 F(j-1))))*rho_L)+(1-C/(C+(0.5*(F(j)+...
363 F(j-1)))))*eta_F/rho_F))/(1+C*eta_L/((C+...
364 (0.5*(F(j)+F(j-1))))*rho_L)+(1-C/(C+(0.5*...
365 (F(j)+F(j-1)))))*eta_F/rho_F))/(rho_L*(C+...
366 (0.5*(F(j)+F(j-1))))^2)-(lambda2(j)-h2*k22)*...
367 C*(-(gamma_F+(0.5*(EI(j)+EI(j-1)))*...
368 (-C*eta_L/((C+(0.5*(F(j)+F(j-1))))^2*rho_L)+...
369 C*eta_F/((C+(0.5*(F(j)+F(j-1))))^2*rho_F)))/...
370 (1+C*eta_L/((C+(0.5*(F(j)+F(j-1))))*rho_L)+...
371 (1-C/(C+(0.5*(F(j)+F(j-1)))))*eta_F/rho_F)...
372 +(K+gamma_F*(0.5*(F(j)+F(j-1)))+gamma_L*...
373 (0.5*(L(j)+L(j-1)))+((1-beta_TEF)*PAL-1)*...
374 (21.6*(0.5*(L(j)+L(j-1)))+370)+beta_TEF*...
375 (EI0-(0.5*(EI(j)+EI(j-1))))+(0.5*(EI(j)+...
376 EI(j-1)))*(C*eta_L/((C+(0.5*(F(j)+...
377 F(j-1))))*rho_L)+(1-C/(C+(0.5*(F(j)+...
378 F(j-1)))))*eta_F/rho_F))*(-C*eta_L/((C+...
379 (0.5*(F(j)+F(j-1))))^2*rho_L)+C*eta_F/...
380 ((C+(0.5*(F(j)+F(j-1))))^2*rho_F))...
381 /(1+C*eta_L/((C+(0.5*(F(j)+F(j-1))))*...
382 rho_L)+(1-C/(C+(0.5*(F(j)+F(j-1)))))*...
383 eta_F/rho_F)^2)/(rho_L*(C+(0.5*(F(j)+...
384 F(j-1)))));
385

386

387 k32 = B+(lambda1(j)-h2*k21)*(1-C/(C+0.5*(F(j)+...
388 F(j-1))))*(gamma_L+21.6*(1-beta_TEF)*PAL-21.6)/...
389 (rho_F*(1+C*eta_L/((C+0.5*(F(j)+F(j-1)))*...
390 rho_L)+(1-C/(C+0.5*(F(j)+F(j-1))))*...
391 eta_F/rho_F))+(lambda1(j)-h2*k21)*r*0.5*...
392 (L(j)+L(j-1))^a*a/(rho_F*0.5*(L(j)+...
393 L(j-1))*(0.5*(L(j)+L(j-1))^a+...
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394 c^a)*(1+(0.5*(L(j)+L(j-1))/d)^b))-(lambda1(j)-...
395 h2*k21)*r*(0.5*(L(j)+L(j-1))^a)^2*a/(rho_F*...
396 (0.5*(L(j)+L(j-1))^a+c^a)^2*(1+(0.5*(L(j)+...
397 L(j-1))/d)^b)*0.5*(L(j)+L(j-1)))-(lambda1(j)-...
398 h2*k21)*r*0.5*(L(j)+L(j-1))^a*(0.5*(L(j)...
399 +L(j-1))/d)^b*b/(rho_F*(0.5*(L(j)+L(j-1))^a+...
400 c^a)*(1+(0.5*(L(j)+L(j-1))/d)^b)^2*0.5*(L(j)+...
401 L(j-1)))+(lambda2(j)-h2*k22)*C*(gamma_L...
402 +21.6*(1-beta_TEF)*PAL-21.6)/(rho_L*(C+0.5*...
403 (F(j)+F(j-1)))*(1+C*eta_L/((C+0.5*(F(j)+...
404 F(j-1)))*rho_L)+(1-C/(C+0.5*(F(j)+F(j-1))))*...
405 eta_F/rho_F))-(lambda2(j)-h2*k22)*...
406 r*0.5*(L(j)+L(j-1))^a*a/(rho_L*0.5*(L(j)+...
407 L(j-1))*(0.5*(L(j)+L(j-1))^a+c^a)*(1+(0.5*(L(j)...
408 +L(j-1))/d)^b))+(lambda2(j)-h2*k22)*r*(0.5*...
409 (L(j)+L(j-1))^a)^2*a/(rho_L*(0.5*(L(j)+...
410 L(j-1))^a+c^a)^2*(1+(0.5*(L(j)...
411 +L(j-1))/d)^b)*0.5*(L(j)+L(j-1)))+(lambda2(j)...
412 -h2*k22)*r*0.5*(L(j)+L(j-1))^a*(0.5*(L(j)+...
413 L(j-1))/d)^b*b/(rho_L*(0.5*(L(j)...
414 +L(j-1))^a+c^a)*(1+(0.5*(L(j)+L(j-1))/d)^b)^2*...
415 0.5*(L(j)+L(j-1)));
416

417 k33 = -(lambda1(j)-h2*k21)*(1-C/(C+0.5*(F(j)+...
418 F(j-1))))*(1-(-beta_TEF+C*eta_L/((C+0.5*...
419 (F(j)+F(j-1)))*rho_L)+(1-C/(C+0.5*(F(j)+...
420 F(j-1))))*eta_F/rho_F)/(1+C*eta_L/((C+0.5*...
421 (F(j)+F(j-1)))*rho_L)+(1-C/(C+0.5*(F(j)+...
422 F(j-1))))*eta_F/rho_F))/rho_F-(lambda2(j)-...
423 h2*k22)*C*(1-(-beta_TEF+C*eta_L/((C+0.5*...
424 (F(j)+F(j-1)))*rho_L)+(1-C/(C+0.5*(F(j)+...
425 F(j-1))))*eta_F/rho_F)/(1+C*eta_L/((C+...
426 0.5*(F(j)+F(j-1)))*rho_L)+(1-C/(C+0.5*...
427 (F(j)+F(j-1))))*eta_F/rho_F))/(rho_L*...
428 (C+0.5*(F(j)+F(j-1))));
429

430 k41 = -A-(lambda1(j)-h*k31)*C*(EI(j-1)-...
431 (K+gamma_F*F(j-1)+gamma_L*L(j-1)+((1-...
432 beta_TEF)*PAL-1)*(21.6*L(j-1)+370)+...
433 beta_TEF*(EI0-EI(j-1))+EI(j-1)*(C*eta_L/...
434 ((C+F(j-1))*rho_L)+(1-C/(C+F(j-1)))*...
435 eta_F/rho_F))/(1+C*eta_L/((C+F(j-1))*...
436 rho_L)+(1-C/(C+F(j-1)))*eta_F/rho_F))/...
437 (rho_F*(C+F(j-1))^2)-(lambda1(j)-h*k31)*...
438 (1-C/(C+F(j-1)))*(-(gamma_F+EI(j-1)*...
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439 (-C*eta_L/((C+F(j-1))^2*rho_L)+C*eta_F/...
440 ((C+F(j-1))^2*rho_F)))/(1+C*eta_L/((C+...
441 F(j-1))*rho_L)+(1-C/(C+F(j-1)))*eta_F/...
442 rho_F)+(K+gamma_F*F(j-1)+gamma_L*L(j-1)+...
443 ((1-beta_TEF)*PAL-1)*(21.6*L(j-1)+370)+...
444 beta_TEF*(EI0-EI(j-1))+EI(j-1)*(C*eta_L/...
445 ((C+F(j-1))*rho_L)+(1-C/(C+F(j-1)))*eta_F/...
446 rho_F))*(-C*eta_L/((C+F(j-1))^2*rho_L)...
447 +C*eta_F/((C+F(j-1))^2*rho_F))/(1+C*eta_L/...
448 ((C+F(j-1))*rho_L)+(1-C/(C+F(j-1)))*eta_F/...
449 rho_F)^2)/rho_F+(lambda2(j)-h*k32)*C*...
450 (EI(j-1)-(K+gamma_F*F(j-1)+gamma_L*L(j-1)...
451 +((1-beta_TEF)*PAL-1)*(21.6*L(j-1)+370)+...
452 beta_TEF*(EI0-EI(j-1))+EI(j-1)*(C*eta_L/...
453 ((C+F(j-1))*rho_L)+(1-C/(C+F(j-1)))*...
454 eta_F/rho_F))/(1+C*eta_L/((C+F(j-1))*rho_L)...
455 +(1-C/(C+F(j-1)))*eta_F/rho_F))/(rho_L*...
456 (C+F(j-1))^2)-(lambda2(j)-h*k32)*C*...
457 (-(gamma_F+EI(j-1)*(-C*eta_L/((C+...
458 F(j-1))^2*rho_L)+C*eta_F/((C+F(j-1))^2*...
459 rho_F)))/(1+C*eta_L/((C+F(j-1))*rho_L)...
460 +(1-C/(C+F(j-1)))*eta_F/rho_F)+(K+gamma_F*...
461 F(j-1)+gamma_L*L(j-1)+((1-beta_TEF)*PAL-1)*...
462 (21.6*L(j-1)+370)+beta_TEF*(EI0-EI(j-1))+...
463 EI(j-1)*(C*eta_L/((C+F(j-1))*rho_L)...
464 +(1-C/(C+F(j-1)))*eta_F/rho_F))*(-C*eta_L/...
465 ((C+F(j-1))^2*rho_L)+C*eta_F/((C+F(j-1))^2*...
466 rho_F))/(1+C*eta_L/((C+F(j-1))*rho_L)+...
467 (1-C/(C+F(j-1)))*eta_F/rho_F)^2)/(rho_L*...
468 (C+F(j-1)));
469

470 k42 = B+(lambda1(j)-h*k31)*(1-C/(C+F(j-1)))*...
471 (gamma_L+21.6*(1-beta_TEF)*PAL-21.6)/(rho_F*...
472 (1+C*eta_L/((C+F(j-1))*rho_L)+(1-C/(C+...
473 F(j-1)))*eta_F/rho_F))+(lambda1(j)-h*k31)*r*...
474 L(j-1)^a*a/(rho_F*L(j-1)*(L(j-1)^a+c^a)*(1+...
475 (L(j-1)/d)^b))-(lambda1(j)-h*k31)*r*...
476 (L(j-1)^a)^2*a/(rho_F*(L(j-1)^a+c^a)^2*(1+...
477 (L(j-1)/d)^b)*L(j-1))-(lambda1(j)-h*k31)*r*...
478 L(j-1)^a*(L(j-1)/d)^b*b/(rho_F*(L(j-1)^a+...
479 c^a)*(1+(L(j-1)/d)^b)^2*L(j-1))...
480 +(lambda2(j)-h*k32)*C*(gamma_L+21.6*(1-...
481 beta_TEF)*PAL-21.6)/(rho_L*(C+F(j-1))*(1+C*...
482 eta_L/((C+F(j-1))*rho_L)+(1-C/(C+F(j-1)))*...
483 eta_F/rho_F))-(lambda2(j)-h*k32)*r*L(j-1)^a*...
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484 a/(rho_L*L(j-1)*(L(j-1)^a+c^a)*(1+(L(j-1)/...
485 d)^b))+(lambda2(j)-h*k32)*r*(L(j-1)^a)^2*a/...
486 (rho_L*(L(j-1)^a+c^a)^2*(1+(L(j-1)/d)^b)*...
487 L(j-1))+(lambda2(j)-h*k32)*r*L(j-1)^a*(L(j-1)/...
488 d)^b*b/(rho_L*(L(j-1)^a+c^a)*(1+(L(j-1)/...
489 d)^b)^2*L(j-1));
490

491 k43 = -(lambda1(j)-h*k31)*(1-C/(C+F(j-1)))*...
492 (1-(-beta_TEF+C*eta_L/((C+F(j-1))*rho_L)...
493 +(1-C/(C+F(j-1)))*eta_F/rho_F)/(1+C*eta_L/...
494 ((C+F(j-1))*rho_L)+(1-C/(C+F(j-1)))*...
495 eta_F/rho_F))/rho_F-(lambda2(j)-h*k32)*C*...
496 (1-(-beta_TEF+C*eta_L/((C+F(j-1))*rho_L)+...
497 (1-C/(C+F(j-1)))*eta_F/rho_F)/(1+C*...
498 eta_L/((C++F(j-1))*rho_L)+(1-C/(C+...
499 F(j-1)))*eta_F/rho_F))/(rho_L*(C+F(j-1)));
500

501 lambda1(j-1) = lambda1(j)- (h/6)*(k11 + 2*k21 + ...
2*k31 + k41);

502 lambda2(j-1) = lambda2(j)- (h/6)*(k12 + 2*k22 + ...
2*k32 + k42);

503 lambda3(j-1)= lambda3(j)- (h/6)*(k13 + 2*k23 + ...
2*k33 + k43);

504 end
505 %%
506

507 u1=3*lambda3;
508 u=0.5*(u1+oldu);
509

510 temp1=∆_test*sum(abs(u))-sum(abs(oldu-u));
511 temp2=∆_test*sum(abs(F))-sum(abs(oldF-F));
512 temp3=∆_test*sum(abs(L))-sum(abs(oldL-L));
513 temp4=∆_test*sum(abs(EI))-sum(abs(oldEI-EI));
514 temp5=∆_test*sum(abs(lambda1))...
515 -sum(abs(oldlambda1-lambda1));
516 temp6=∆_test*sum(abs(lambda2))...
517 -sum(abs(oldlambda2-lambda2));
518 temp7=∆_test*sum(abs(lambda3))...
519 -sum(abs(oldlambda3-lambda3));
520 test=min(temp1,min(temp2,min(temp3,min(temp4,...
521 min(temp5,min(temp6,temp7))))));
522

523 end
524

525 y(1,:) = t;
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526 y(2,:) = F;
527 y(3,:) = L;
528 y(4,:) = EI;
529 y(5,:) = lambda1;
530 y(6,:) = lambda2;
531 y(7,:) = lambda3;
532 y(8,:) = u;
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Appendix C

PERITONITIS MODEL

C.1 Experimental data

Table 15. Experimental data from mouse model of peritonitis. At each time
point, cells were harvested from a sample of n mice. Average cell counts
for neutrophils (N), M1 macrophages (M1), and M2 macrophages (M2) are
given in units of (107) cells. Standard error of the mean for each cell type x
is calculated as σx = σx/

√
n.

Hours n N M1 M2 σN σN σM1 σM1 σM2 σM2

16 8 0.868 0.835 0.214 0.316 0.112 0.311 0.110 0.063 0.022

20 8 0.798 0.834 0.266 0.302 0.107 0.322 0.114 0.136 0.048

24 8 1.034 1.106 0.380 0.363 0.128 0.388 0.137 0.145 0.051

40 5 0.653 0.816 0.349 0.378 0.169 0.499 0.223 0.244 0.109

48 8 0.800 0.890 0.457 0.350 0.124 0.396 0.140 0.245 0.087

72 4 0.600 0.625 0.409 0.425 0.213 0.396 0.180 0.106 0.053

96 8 0.185 0.083 0.174 0.109 0.039 0.033 0.012 0.112 0.040

120 8 0.076 0.035 0.081 0.055 0.019 0.022 0.008 0.067 0.024

144 8 0.146 0.0895 0.091 0.141 0.050 0.165 0.058 0.075 0.027

168 8 0.042 0.027 0.029 0.026 0.009 0.038 0.013 0.02 0.007

C.2 Code for the PottersWheel Matlab toolbox (model definition file)

Once this model is added to the PottersWheel toolbox in Matlab, it can also be

exported in SBML format.
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,
1 % PottersWheel model definition file
2

3 function m = m1m2_ode()
4

5 m = pwGetEmptyModel();
6

7 %% Meta information
8

9 m.name = 'm1m2_ode';
10 m.description = '';
11 m.authors = {};
12 m.dates = {'2019-03-17'};
13 m.modelFormat = 3.0;
14

15 %% Default sampling time points
16 m.t = 0:0.01:10;
17

18 %% X - Dynamic variables
19 % m = pwAddX(m, *ID, *startValue, fitSetting, minValue, ...

maxValue, unit, compartment, name, description, ...
typeOfStartValue, designerProps, classname)

20 m = pwAddX(m, 'P' , 0.003, 'fix', [], [], [], ...
'comp_1', 'P' );

21 m = pwAddX(m, 'M1', 0, 'fix', 0, [], [], ...
'comp_1', 'M1');

22 m = pwAddX(m, 'M2', 0, 'fix', 0, [], [], ...
'comp_1', 'M2');

23 m = pwAddX(m, 'N' , 0, 'fix', 0, [], [], ...
'comp_1', 'N' );

24 m = pwAddX(m, 'AN', 0, 'fix', 0, [], [], ...
'comp_1', 'AN');

25 m = pwAddX(m, 'B' , 1000, 'fix', 100, 10000, [], ...
'comp_1', 'B' );

26

27 %% K - Dynamic parameters
28 % m = pwAddK(m, *ID, *value, fitSetting, minValue, ...

maxValue, unit, name, description)
29 m = pwAddK(m, 'snr' , 16.4019920002305 , 'global', 10 ...

, 100 );
30 m = pwAddK(m, 'smr' , 21.4404 , 'fix' , 8 ...

, 100 );
31 m = pwAddK(m, 'umr' , 5.15642 , 'fix' , 5 ...

, 80 );
32 m = pwAddK(m, 'um1' , 6.82554344214172 , 'global', 1 ...
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, 20 );
33 m = pwAddK(m, 'um2' , 8.27065197319285 , 'fix' , 1 ...

, 20 );
34 m = pwAddK(m, 'uan' , 1.30931317432207 , 'fix' , 1 ...

, 15 );
35 m = pwAddK(m, 'km1m2', 8.61724199879709 , 'global', 0.1 ...

, 100 );
36 m = pwAddK(m, 'km1p' , 1.00850022175004 , 'fix' , 1 ...

, 5 );
37 m = pwAddK(m, 'km1m1', 0.000993236136020421, 'fix' , ...

0.0001, 5 );
38 m = pwAddK(m, 'km2m2', 1.59253772151022 , 'global', ...

0.001 , 5 );
39 m = pwAddK(m, 'kan' , 7.10822919836749 , 'fix' , 1 ...

, 30 );
40 m = pwAddK(m, 'knp' , 3.10009325649014 , 'global', ...

.001 , 50 );
41 m = pwAddK(m, 'km1an', 0.997407471438622 , 'fix' , ...

0.001 , 5 );
42 m = pwAddK(m, 'kpg' , 35 , 'fix' , 10 ...

, 35 );
43 m = pwAddK(m, 'kpn' , 0.295024146368882 , 'fix' , ...

0.11 , 5 );
44 m = pwAddK(m, 'kpm' , 6.1103824249136 , 'fix' , 1 ...

, 10 );
45 m = pwAddK(m, 'unr' , 3.97753517990732 , 'fix' , 1 ...

, 10 );
46 m = pwAddK(m, 'n_inf', 0.156384088195465 , 'fix' , ...

0.01 , 5 );
47 m = pwAddK(m, 'kanm1', 2.89808017283302 , 'fix' , 0.1 ...

, 1000);
48 m = pwAddK(m, 'kanm2', 90.9575626487555 , 'global', 5 ...

, 1000);
49 m = pwAddK(m, 'km2m1', 0.117354199532277 , 'fix' , ...

0.01 , 1 );
50 m = pwAddK(m, 'km1n' , 0.025086814972565 , 'fix' , ...

0.01 , 5 );
51 m = pwAddK(m, 'p_inf', 0.003 , 'fix' , ...

1e-06 , 100 );
52 m = pwAddK(m, 'kb' , 10 , 'fix' , 0.5 ...

, 100 );
53 m = pwAddK(m, 'knan' , 0.607651029250834 , 'fix' , ...

0.0001, 5 );
54 m = pwAddK(m, 'kann' , 0.000600657675376788, 'fix' , ...

1e-06 , 0.01);
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55 m = pwAddK(m, 'kc' , 0.0125, 'fix' , 1e-06 , 0.1);
56

57 %% O - Ordinary differential equations
58 % m = pwAddO(m, *ID, *rhs)
59 m = pwAddO(m, 'P' , ...

'kpg*P*(1-P/(p_inf+B))-kpn*P*N-kpm*P*M1/(1+(N/n_inf)^2)...
60 -kpm*P*M2/(1+(N/n_inf)^2)');
61 m = pwAddO(m, 'M1' , ...

'smr*(km1p*P+km1n*N+km1m1*M1+km1an*uan*AN)/(umr...
62 +km1p*P+km1n*N+km1m1*M1+km1an*uan*AN+km2m2*M2+sc)...
63 -um1*M1-km1m2*kanm1*AN*M1/(1+(N/n_inf)^2)+km2m1*M2');
64 m = pwAddO(m, 'M2' , ...

'smr*(km2m2*M2+kc)/(umr+km1p*P+km1n*N+km1m1*M1...
65 +km1an*uan*AN+km2m2*M2+kc)-um2*M2+km1m2*kanm1*AN*M1/(1...
66 +(N/n_inf)^2)-km2m1*M2');
67 m = pwAddO(m, 'N' , ...

'snr*(knp*P+knan*uan*AN)/(unr+knp*P+knan*uan*AN)-kan*N');
68 m = pwAddO(m, 'AN' , 'kan*N-kanm1*AN*M1/(1+(N/n_inf)^2)...
69 -kanm2*AN*M2/(1+(N/n_inf)^2)-kann*N-uan*AN');
70 m = pwAddO(m, 'B' , '-kb*B*P');
71

72 %% C - Compartments
73 % m = pwAddC(m, *ID, *size, outside, spatialDim, name, ...

unit, constant, designerProps, classname, description)
74 m = pwAddC(m, 'comp_1', 1);
75

76 %% Y - Observables
77 % m = pwAddY(m, *ID, *rhs, errorModelRhs, noiseType, unit, ...

name, description, alternativeIDs, designerProps, classname)
78 m = pwAddY(m, 'N_obs' , 'N' );
79 m = pwAddY(m, 'M1_obs', 'M1');
80 m = pwAddY(m, 'M2_obs', 'M2');
81

82 %% Constraints
83 % m = pwAddCS(m, 'CS01', 'p_inf', '=', 'P(t==0)', 100);

C.3 XPP files

C.3.1 Simplified model used for numerical analysis of equilibria

,
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1

2 #N as a function of AN
3 N=snr*knan*uan*AN/(kan*(unr+knan*uan*AN))
4

5 #Equations:
6 M1'=smr*km1m1*M1/(umr+km1m1*M1+km2m2*M2+kc)
7 -km1m2*kanm1*AN*M1/(1+(N/n_inf)^2)-um1*M1+km2m1*M2
8 M2'=smr*(km2m2*M2+kc)/(umr+km1m1*M1+km2m2*M2+kc)
9 +km1m2*kanm1*AN*M1/(1+(N/n_inf)^2)-um2*M2-km2m1*M2

10 AN'=kan*N-kanm1*AN*M1/(1+(N/n_inf)^2)
11 -kanm2*AN*M2/(1+(N/n_inf)^2)-kann*N-uan*AN
12

13 #Initial conditions
14 init M1=0, M2=0,AN=.5
15

16 #Parameters
17 par smr=21.4404,umr=5.15642,um1=6.83,um2=8.27065197319285
18 par km1m1=0.000993236136020421,km2m2=1.59
19 par km2m1=0.117354199532277,kc=0
20 par snr=16.4,knan=0.607,uan=1.309,unr=3.978,kan=7.108
21 par kanm1=2.898,kanm2=87.08,kann=0.001,n_inf=0.156,km1m2=8.281
22

23 #Numerics:
24 @ method=qrk, tol=0.0001, dt=0.01, total=45, bounds=10000000
25 @ xlo=0, xhi=12, ylo=0, yho=2
26 @ maxstore=10000000

C.3.2 Full model

,
1 #Parameters
2

3 par snr=15.88906,smr=21.4404,umr=5.156,um1=6.956,um2=8.27
4 par uan=1.309,km1m2=8.28,km1p=1.0085,km1m1=0.00099
5 par km2m2=1.624,kan=7.108,knp=3.703,km1an=0.997,kpg=35
6 par kpn=0.295,kpm=6.11,unr=3.9775,n_inf=0.156
7 par kanm1=2.898,kanm2=87.08,km2m1=0.117,km1n=0.025
8 par p_inf=0.003,kb=10,knan=0.608,kann=0.0006
9

10 # Inhibition functions
11 #f_i_M1 = M1/(1+(N/n_inf)^2)
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12 #f_i_M2 = M2/(1+(N/n_inf)^2)
13

14 #Equations:
15 P'=kpg*P*(1-P/(p_inf+B))-kpn*P*N-kpm*P*M1/(1+(N/n_inf)^2)
16 -kpm*P*M2/(1+(N/n_inf)^2)
17 B'=-kb*B*P
18 M1'=smr*(km1p*P+km1n*N+km1m1*M1+km1an*uan*AN)/
19 (umr+km1p*P+km1n*N+km1m1*M1+km1an*uan*AN
20 +km2m2*M2)-um1*M1-km1m2*kanm1*AN*M1/(1+(N/n_inf)^2)+km2m1*M2
21 M2'=smr*km2m2*M2/(umr+km1p*P+km1n*N+km1m1*M1+km1an*uan*AN+ ...

km2m2*M2)-um2*M2+km1m2*kanm1*AN*M1/(1+(N/n_inf)^2)-km2m1*M2
22 N'=snr*(knp*P+knan*uan*AN)/(unr+knp*P+knan*uan*AN)-kan*N
23 AN'=kan*N-kanm1*AN*M1/(1+(N/n_inf)^2)
24 -kanm2*AN*M2/(1+(N/n_inf)^2)-kann*N-uan*AN
25

26 #Initial conditions
27 init P=0.003,B=1000,M1=0,M2=0,N=0,AN=0
28

29 #Numerics:
30 @ method=qrk, tol=0.0001, dt=0.01, total=100, bounds=10000000
31 @ xlo=0, xhi=12, ylo=0, yho=2
32 @ maxstore=10000000
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Appendix D

SBML CODE FOR THE ATHEROSCLEROSIS MODEL

This .xml file in Systems Biology Markup Language (SBML) can be imported into the

Matlab Simbiology toolbox [200] or any other SBML-compatible software package.

,
1 <?xml version="1.0" encoding="UTF-8"?>
2 <sbml xmlns="http://www.sbml.org/sbml/level2/version4" ...

level="2" version="4">
3 <annotation>
4 <SimBiology xmlns="http://www.mathworks.com">
5 <Version Major="5" Minor="6" Point="0"/>
6 </SimBiology>
7 </annotation>
8 <model id="athero_1comp" name="athero_1comp">
9 <notes>

10 <body xmlns="http://www.w3.org/1999/xhtml">
11 <p>SBML model exported from PottersWheel on ...

2019-03-26 09:07:01.</p>
12 <pre>
13 % PottersWheel model definition file
14

15 function m = athero_1comp()
16

17 m = pwGetEmptyModel();
18

19 %% Meta information
20

21 m.name = &apos;athero_1comp&apos;;
22 m.description = &apos;&apos;;
23 m.authors = {};
24 m.dates = {&apos;2018-11-21&apos;};
25 m.modelFormat = 3;
26

27 %% Default sampling time points
28 m.t = 0:0.01:80;
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29

30 %% X - Dynamic variables
31 % m = pwAddX(m, *ID, *startValue, fitSetting, minValue, ...

maxValue, unit, compartment, name, description, ...
typeOfStartValue, designerProps, classname)

32 m = pwAddX(m, &apos;M_rb&apos;, 0.65, &apos;global&apos;, ...
[], [], [], &apos;comp_1&apos;, ...

&apos;M_rb&apos;, [] , [] , [] , ...
&apos;protein.generic&apos;);

33 m = pwAddX(m, &apos;N_rb&apos;, 0.07, &apos;global&apos;, ...
[], [], [], &apos;comp_1&apos;, ...

&apos;N_rb&apos;, [] , [] , [] , ...
&apos;protein.generic&apos;);

34 m = pwAddX(m, &apos;M1&apos; , 0, &apos;fix&apos; , ...
0, [], [], &apos;comp_1&apos;, ...

&apos;M1&apos; , [] , [] , [] , ...
&apos;protein.generic&apos;);

35 m = pwAddX(m, &apos;M2&apos; , 0, &apos;fix&apos; , ...
0, [], [], &apos;comp_1&apos;, ...

&apos;M2&apos; , [] , [] , [] , ...
&apos;protein.generic&apos;);

36 m = pwAddX(m, &apos;N&apos; , 0, &apos;fix&apos; , ...
0, [], [], &apos;comp_1&apos;, &apos;N&apos; ...

, [] , [] , [] , ...
&apos;protein.generic&apos;);

37 m = pwAddX(m, &apos;AN&apos; , 0, &apos;fix&apos; , ...
0, [], [], &apos;comp_1&apos;, ...

&apos;AN&apos; , [] , [] , [] , ...
&apos;protein.generic&apos;);

38 m = pwAddX(m, &apos;L&apos; , 1, &apos;global&apos;, ...
0, 1000, [], &apos;comp_1&apos;, &apos;L&apos; ...

, [] , [] , [] , ...
&apos;protein.generic&apos;);

39 m = pwAddX(m, &apos;FC&apos; , 1e-06, &apos;fix&apos; , ...
0, [], [], &apos;comp_1&apos;, ...

&apos;FC&apos; , [] , [] , [] , ...
&apos;protein.generic&apos;);

40 m = pwAddX(m, &apos;FC_A&apos;, 0, &apos;fix&apos; , ...
0, [], [], &apos;comp_1&apos;, ...

&apos;FC_A&apos;, [] , [] , [] , ...
&apos;protein.generic&apos;);

41 m = pwAddX(m, &apos;C_f&apos; , 0, &apos;global&apos;, ...
0, [], [], &apos;comp_1&apos;, ...

&apos;C_f&apos; , [] , [] , [] , ...
&apos;protein.generic&apos;);
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42 m = pwAddX(m, &apos;C_e&apos; , 0, &apos;global&apos;, ...
0, [], [], &apos;comp_1&apos;, ...

&apos;C_e&apos; , [] , [] , [] , ...
&apos;protein.generic&apos;);

43 m = pwAddX(m, &apos;A&apos; , 0, &apos;fix&apos; , ...
0, [], [], &apos;comp_1&apos;, &apos;A&apos; ...

, [] , [] , [] , ...
&apos;protein.generic&apos;);

44

45

46 %% K - Dynamic parameters
47 % m = pwAddK(m, *ID, *value, fitSetting, minValue, ...

maxValue, unit, name, description)
48 m = pwAddK(m, &apos;snrb&apos; , 1 , ...

&apos;global&apos;, 10 , 100 );
49 m = pwAddK(m, &apos;smrb&apos; , 0.75 , ...

&apos;global&apos;, 8 , 100 );
50 m = pwAddK(m, &apos;umrb&apos; , 1.4 , ...

&apos;global&apos;, 5 , 80 );
51 m = pwAddK(m, &apos;um1&apos; , 6.82554 , ...

&apos;global&apos;, 1 , 20 );
52 m = pwAddK(m, &apos;um2&apos; , 8.27065 , ...

&apos;global&apos;, 1 , 20 );
53 m = pwAddK(m, &apos;uan&apos; , 1.30931 , ...

&apos;global&apos;, 1 , 15 );
54 m = pwAddK(m, &apos;km1m2&apos; , 8.61724 , ...

&apos;global&apos;, 0.1 , 100 );
55 m = pwAddK(m, &apos;km1m1&apos; , 0.000993236 , ...

&apos;global&apos;, 0.0001, 5 );
56 m = pwAddK(m, &apos;km2m2&apos; , 1.59254 , ...

&apos;global&apos;, 0.001 , 5 );
57 m = pwAddK(m, &apos;kan&apos; , 7.10822919836749 , ...

&apos;fix&apos; , 1 , 30 );
58 m = pwAddK(m, &apos;km1an&apos; , 0.997407471438622 , ...

&apos;fix&apos; , 0.001 , 5 );
59 m = pwAddK(m, &apos;unrb&apos; , 16.402 , ...

&apos;global&apos;, 1 , 10 );
60 m = pwAddK(m, &apos;n_inf&apos; , 0.156384088195465 , ...

&apos;fix&apos; , 0.01 , 5 );
61 m = pwAddK(m, &apos;kanm1&apos; , 2.89808017283302 , ...

&apos;fix&apos; , 0.1 , 1000 );
62 m = pwAddK(m, &apos;kanm2&apos; , 90.9575626487555 , ...

&apos;global&apos;, 5 , 1000 );
63 m = pwAddK(m, &apos;km2m1&apos; , 0.117354199532277 , ...

&apos;fix&apos; , 0.01 , 1 );
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64 m = pwAddK(m, &apos;km1n&apos; , 0.025086814972565 , ...
&apos;fix&apos; , 0.01 , 5 );

65 m = pwAddK(m, &apos;knan&apos; , 0.607651029250834 , ...
&apos;fix&apos; , 0.0001, 5 );

66 m = pwAddK(m, &apos;kann&apos; , 0.000600657675376788, ...
&apos;fix&apos; , 1e-06 , 0.01 );

67 m = pwAddK(m, &apos;sc&apos; , 0.0125 , ...
&apos;fix&apos; , 1e-06 , 0.1 );

68 m = pwAddK(m, &apos;rL&apos; , 0.001 , ...
&apos;global&apos;, 1e-06 , 0.1 );

69 m = pwAddK(m, &apos;klm1&apos; , 1 , ...
&apos;global&apos;, 1e-06 , 0.1 );

70 m = pwAddK(m, &apos;klm2&apos; , 1 , ...
&apos;global&apos;, 1e-06 , 0.1 );

71 m = pwAddK(m, &apos;kafc&apos; , 100000000000 , ...
&apos;global&apos;, 1e-06 , 0.1 );

72 m = pwAddK(m, &apos;ucf&apos; , 0.125 , ...
&apos;global&apos;, 1e-06 , 0.1 );

73 m = pwAddK(m, &apos;a&apos; , 1 , ...
&apos;global&apos;, 1e-06 , 100 );

74 m = pwAddK(m, &apos;km1fc&apos; , 0.0125 , ...
&apos;global&apos;, 1e-06 , 0.1 );

75 m = pwAddK(m, &apos;km2fc&apos; , 0.0125 , ...
&apos;global&apos;, 1e-06 , 0.1 );

76 m = pwAddK(m, &apos;kfcm2&apos; , 0.0125 , ...
&apos;global&apos;, 1e-06 , 0.1 );

77 m = pwAddK(m, &apos;uafc&apos; , 0.000125 , ...
&apos;global&apos;, 1e-06 , 0.1 );

78 m = pwAddK(m, &apos;L_b&apos; , 1 , ...
&apos;global&apos;, 1e-06 , 0.5 );

79 m = pwAddK(m, &apos;b&apos; , 1 , ...
&apos;global&apos;, 1e-06 , 100 );

80 m = pwAddK(m, &apos;d&apos; , 10000 , ...
&apos;global&apos;, 1e-06 , 100 );

81 m = pwAddK(m, &apos;e&apos; , 10000 , ...
&apos;global&apos;, 1e-06 , 100 );

82 m = pwAddK(m, &apos;H&apos; , 0 , ...
&apos;global&apos;, 1e-06 , 100 );

83 m = pwAddK(m, &apos;ke&apos; , 0.1 , ...
&apos;global&apos;, 1e-06 , 5 );

84 m = pwAddK(m, &apos;cfc&apos; , 0.0125 , ...
&apos;global&apos;, 1e-06 , 5 );

85 m = pwAddK(m, &apos;kce&apos; , 0.001 , ...
&apos;global&apos;, 1e-06 , 5 );

86 m = pwAddK(m, &apos;kmrl&apos; , 0.125 , ...

192



&apos;global&apos;, 1e-06 , 5 );
87 m = pwAddK(m, &apos;kmrg&apos; , 0.125 , ...

&apos;global&apos;, 1e-06 , 5 );
88 m = pwAddK(m, &apos;knrg&apos; , 0.125 , ...

&apos;global&apos;, 1e-06 , 5 );
89 m = pwAddK(m, &apos;G_b&apos; , 1 , ...

&apos;global&apos;, 1e-06 , 5 );
90 m = pwAddK(m, &apos;kafcm1&apos;, 10 , ...

&apos;global&apos;, 1e-06 , 5 );
91 m = pwAddK(m, &apos;kafcm2&apos;, 10 , ...

&apos;global&apos;, 1e-06 , 5 );
92 m = pwAddK(m, &apos;km1l&apos; , 0.125 , ...

&apos;global&apos;, 1e-06 , 5 );
93 m = pwAddK(m, &apos;km1a&apos; , 0.125 , ...

&apos;global&apos;, 1e-06 , 5 );
94 m = pwAddK(m, &apos;knrl&apos; , 0.125 , ...

&apos;global&apos;, 1e-06 , 5 );
95 m = pwAddK(m, &apos;knl&apos; , 0.125 , ...

&apos;global&apos;, 1e-06 , 5 );
96 m = pwAddK(m, &apos;n_cf&apos; , 1 , ...

&apos;global&apos;, 1e-06 );
97

98

99 %% O - Ordinary differential equations
100 % m = pwAddO(m, *ID, *rhs)
101 m = pwAddO(m, &apos;M_rb&apos;,&apos;smrb...
102 +kmrl*L_b+kmrg*G_b-umrb*M_rb-(km1l*L...
103 +km1n*N+km1m1*M1+km1fc*FC+km1a*A)*M_rb...
104 -(km2m2*M2+sc)*M_rb&apos;);
105 m = pwAddO(m, &apos;N_rb&apos;,&apos;...
106 snrb+knrl*L_b+knrg*G_b-unrb*N_rb...
107 -(knan*uan*AN+knl*L)*N_rb&apos;);
108 m = pwAddO(m, &apos;M1&apos; , &apos;...
109 (km1l*L+km1n*N+km1m1*M1+km1fc*FC...
110 +km1a*A)*M_rb-um1*M1-km1m2*kanm1*AN*M1/...
111 (1+(N/n_inf)^2)+km2m1*M2-klm1*M1*L^2/...
112 (a^2+L^2)-km1fc*kafcm1*FC_A*M1/(1+...
113 (N/n_inf)^2)&apos; );
114 m = pwAddO(m, &apos;M2&apos; , &apos;...
115 (km2m2*M2+sc)*M_rb-um2*M2...
116 +km1m2*kanm1*AN*M1/(1+(N/n_inf)^2)...
117 -km2m1*M2-klm2*M2*L^2/(b^2+L^2)...
118 -km2fc*kafcm2*FC_A*M2/(1+(N/n_inf)^2)...
119 +kfcm2*ucf*H^2/(d^2+H^2)*C_f*FC&apos; );
120 m = pwAddO(m, &apos;N&apos; , &apos;...
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121 (knan*uan*AN+knl*L)*N_rb-kan*N&apos; );
122 m = pwAddO(m, &apos;AN&apos; , &apos;...
123 kan*N-kanm1*AN*M1/(1+(N/n_inf)^2)...
124 -kanm2*AN*M2/(1+(N/n_inf)^2)-kann*N...
125 -uan*AN&apos;);
126 m = pwAddO(m, &apos;L&apos;&apos;...
127 rL*L_b-klm1*M1*L^2/(a^2+L^2)...
128 -klm2*M2*L^2/(b^2+L^2)+uafc*C_f&apos;);
129 m = pwAddO(m, &apos;FC&apos;&apos;...
130 klm1*M1*L^2/(a^2+L^2)+klm2*M2*L^2/...
131 (b^2+L^2)-kafc*C_f^2/(e^2+C_f^2)*FC...
132 -kfcm2*ucf*H^2/(d^2+H^2)*FC...
133 +km1fc*kafcm1*FC_A*M1/(1+(N/n_inf)^2)...
134 +km2fc*kafcm2*FC_A*M2/(1+(N/n_inf)^2)&apos;);
135 m = pwAddO(m, &apos;FC_A&apos;, &apos;...
136 kafc*C_f^2/(e^2+C_f^2)*FC...
137 -kafcm1*FC_A*M1/(1+(N/n_inf)^2)...
138 -kafcm2*FC_A*M2/(1+(N/n_inf)^2)&apos;);
139 m = pwAddO(m, &apos;C_f&apos; , &apos;...
140 n_cf*klm1*M1*L^2/(a^2+L^2)...
141 +n_cf*klm2*M2*L^2/(b^2+L^2)-ke*C_f...
142 +kce*C_e-ucf*H^2/(d^2+H^2)*FC+cfc*FC&apos;);
143 m = pwAddO(m, &apos;C_e&apos; ,...
144 &apos;ke*C_f-kce*C_e&apos;);
145 m = pwAddO(m, &apos;A&apos; ,...
146 &apos;uan*AN+uafc*FC_A&apos;);
147

148 %% C - Compartments
149 % m = pwAddC(m, *ID, *size, outside, spatialDim, name, ...

unit, constant, designerProps, classname, description)
150 m = pwAddC(m, &apos;comp_1&apos;, 1);
151

152 %% CS - Constraints
153 % m = pwAddCS(m, *ID, *lhs, *operator, *rhs, lambda)
154 m = pwAddCS(m, &apos;CS01&apos;, &apos;M_rb(t==0)&apos;, ...

&apos;=&apos;, &apos;0&apos;, 100);
155

156 %% Y - Observables
157 % m = pwAddY(m, *ID, *rhs, errorModelRhs, noiseType, unit, ...

name, description, alternativeIDs, designerProps, classname)
158 m = pwAddY(m, &apos;N_obs&apos; , &apos;N&apos; );
159 m = pwAddY(m, &apos;M1_obs&apos;, &apos;M1&apos;);
160 m = pwAddY(m, &apos;M2_obs&apos;, &apos;M2&apos;);
161

162
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163 </pre>
164 </body>
165 </notes>
166 <listOfCompartments>
167 <compartment id="mw85534cb3_656e_4ae6_853a_...
168 b669adddf273" name="comp_1" size="1" constant="true"/>
169 </listOfCompartments>
170 <listOfSpecies>
171 <species id="M_rb" name="M_rb" ...

compartment="mw85534cb3_656e_4ae6_853a_b669adddf273" ...
initialConcentration="0.65" ...
boundaryCondition="false" constant="false"/>

172 <species id="N_rb" name="N_rb" ...
compartment="mw85534cb3_656e_4ae6_853a...

173 _b669adddf273" initialConcentration="0.07" ...
boundaryCondition="false" constant="false"/>

174 <species id="M1" name="M1" ...
compartment="mw85534cb3_656e_4ae6_853a_...

175 b669adddf273" initialConcentration="0" ...
boundaryCondition="false" constant="false"/>

176 <species id="M2" name="M2" ...
compartment="mw85534cb3_656e_4ae6_853a_...

177 b669adddf273" initialConcentration="0" ...
boundaryCondition="false" constant="false"/>

178 <species id="N" name="N" ...
compartment="mw85534cb3_656e_4ae6_853a_...

179 b669adddf273" initialConcentration="0" ...
boundaryCondition="false" constant="false"/>

180 <species id="AN" name="AN" ...
compartment="mw85534cb3_656e_4ae6_853a_...

181 b669adddf273" initialConcentration="0" ...
boundaryCondition="false" constant="false"/>

182 <species id="L" name="L" ...
compartment="mw85534cb3_656e_4ae6_853a_...

183 b669adddf273" initialConcentration="0.5" ...
boundaryCondition="false" constant="false"/>

184 <species id="FC" name="FC" ...
compartment="mw85534cb3_656e_4ae6_853a_...

185 b669adddf273" initialConcentration="1e-06" ...
boundaryCondition="false" constant="false"/>

186 <species id="FC_A" name="FC_A" ...
compartment="mw85534cb3_656e_4ae6_853a_...

187 b669adddf273" initialConcentration="0" ...
boundaryCondition="false" constant="false"/>

188 <species id="C_f" name="C_f" ...
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compartment="mw85534cb3_656e_4ae6_853a_...
189 b669adddf273" initialConcentration="0" ...

boundaryCondition="false" constant="false"/>
190 <species id="C_e" name="C_e" ...

compartment="mw85534cb3_656e_4ae6_853a_...
191 b669adddf273" initialConcentration="0" ...

boundaryCondition="false" constant="false"/>
192 <species id="A" name="A" ...

compartment="mw85534cb3_656e_4ae6_853a_...
193 b669adddf273" initialConcentration="0" ...

boundaryCondition="false" constant="false"/>
194 <species id="N_obs" name="N_obs" ...

compartment="mw85534cb3_656e_4ae6_853a_...
195 b669adddf273" initialConcentration="0" ...

boundaryCondition="false" constant="false"/>
196 <species id="M1_obs" name="M1_obs" ...

compartment="mw85534cb3_656e_4ae6_853a_...
197 b669adddf273" initialConcentration="0" ...

boundaryCondition="false" constant="false"/>
198 <species id="M2_obs" name="M2_obs" ...

compartment="mw85534cb3_656e_4ae6_853a_...
199 b669adddf273" initialConcentration="0" ...

boundaryCondition="false" constant="false"/>
200 <species id="mwdddccd99_fb4a_48c0_b494_4e11af1d6dc3" ...

name="Cf_per_FC" ...
compartment="mw85534cb3_656e_4ae6_853a_...

201 b669adddf273" initialConcentration="0" ...
boundaryCondition="false" constant="false"/>

202 <species id="mw3f564d8f_5efe_4e65_8b69_5a225f077cef" ...
name="C_e_per_FC" ...
compartment="mw85534cb3_656e_4ae6_853a_...

203 b669adddf273" initialConcentration="0" ...
boundaryCondition="false" constant="false"/>

204 </listOfSpecies>
205 <listOfParameters>
206 <parameter id="snrb" name="snrb" value="1" ...

constant="true"/>
207 <parameter id="smrb" name="smrb" value="0.75" ...

constant="true"/>
208 <parameter id="umrb" name="umrb" value="1.4" ...

constant="true"/>
209 <parameter id="um1" name="um1" value="6.82554" ...

constant="true"/>
210 <parameter id="um2" name="um2" value="8.27065" ...

constant="true"/>
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211 <parameter id="uan" name="uan" value="1.30931" ...
constant="true"/>

212 <parameter id="km1m2" name="km1m2" value="8.61724" ...
constant="true"/>

213 <parameter id="km1m1" name="km1m1" ...
value="0.000993236" constant="true"/>

214 <parameter id="km2m2" name="km2m2" value="1.59254" ...
constant="true"/>

215 <parameter id="kan" name="kan" ...
value="7.10822919836749" constant="true"/>

216 <parameter id="unrb" name="unrb" value="16.402" ...
constant="true"/>

217 <parameter id="n_inf" name="n_inf" ...
value="0.156384088195465" constant="true"/>

218 <parameter id="kanm1" name="kanm1" ...
value="2.89808017283302" constant="true"/>

219 <parameter id="kanm2" name="kanm2" ...
value="90.9575626487555" constant="true"/>

220 <parameter id="km2m1" name="km2m1" ...
value="0.117354199532277" constant="true"/>

221 <parameter id="km1n" name="km1n" ...
value="0.025086814972565" constant="true"/>

222 <parameter id="knan" name="knan" ...
value="0.607651029250834" constant="true"/>

223 <parameter id="kann" name="kann" ...
value="0.000600657675376788" constant="true"/>

224 <parameter id="sc" name="sc" value="0.0125" ...
constant="true"/>

225 <parameter id="rL" name="rL" value="0.001" ...
constant="true"/>

226 <parameter id="klm1" name="klm1" value="1" ...
constant="true"/>

227 <parameter id="klm2" name="klm2" value="1" ...
constant="true"/>

228 <parameter id="kafc" name="kafc" ...
value="100000000000" constant="true"/>

229 <parameter id="ucf" name="ucf" value="0.125" ...
constant="true"/>

230 <parameter id="a" name="a" value="1" constant="true"/>
231 <parameter id="km1fc" name="km1fc" value="0.0125" ...

constant="true"/>
232 <parameter id="km2fc" name="km2fc" value="0.0125" ...

constant="true"/>
233 <parameter id="kfcm2" name="kfcm2" value="0.0125" ...

constant="true"/>
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234 <parameter id="uafc" name="uafc" value="0.000125" ...
constant="true"/>

235 <parameter id="L_b" name="L_b" value="1" ...
constant="false"/>

236 <parameter id="b" name="b" value="1" constant="true"/>
237 <parameter id="d" name="d" value="10000" ...

constant="true"/>
238 <parameter id="e" name="e" value="10000" ...

constant="true"/>
239 <parameter id="H" name="H" value="1" constant="true"/>
240 <parameter id="ke" name="ke" value="0.1" ...

constant="true"/>
241 <parameter id="kce" name="kce" value="0.001" ...

constant="true"/>
242 <parameter id="kmrl" name="kmrl" value="0.125" ...

constant="true"/>
243 <parameter id="kmrg" name="kmrg" value="0.125" ...

constant="true"/>
244 <parameter id="knrg" name="knrg" value="0.125" ...

constant="true"/>
245 <parameter id="G_b" name="G_b" value="1" ...

constant="false"/>
246 <parameter id="kafcm1" name="kafcm1" value="10" ...

constant="true"/>
247 <parameter id="kafcm2" name="kafcm2" value="10" ...

constant="true"/>
248 <parameter id="km1l" name="km1l" value="0.125" ...

constant="true"/>
249 <parameter id="km1a" name="km1a" value="0.125" ...

constant="true"/>
250 <parameter id="knrl" name="knrl" value="0.125" ...

constant="true"/>
251 <parameter id="knl" name="knl" value="0.125" ...

constant="true"/>
252 <parameter id="n_cf" name="n_cf" value="1" ...

constant="true"/>
253 <parameter ...

id="mw6c599f7d_e448_4ea2_b9ed_835769597483" ...
name="cm1" value="0.0125" constant="true"/>

254 <parameter ...
id="mw834ed067_5f95_40fe_b737_c027a32d22f0" ...
name="cm2" value="0.0125" constant="true"/>

255 </listOfParameters>
256 <listOfRules>
257 <rateRule variable="M_rb">
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258 <math xmlns="http://www.w3.org/1998/Math/MathML">
259 <apply>
260 <minus/>
261 <apply>
262 <minus/>
263 <apply>
264 <minus/>
265 <apply>
266 <plus/>
267 <ci> smrb </ci>
268 <apply>
269 <times/>
270 <ci> kmrl </ci>
271 <ci> L_b </ci>
272 </apply>
273 <apply>
274 <times/>
275 <ci> kmrg </ci>
276 <ci> G_b </ci>
277 </apply>
278 </apply>
279 <apply>
280 <times/>
281 <ci> umrb </ci>
282 <ci> M_rb </ci>
283 </apply>
284 </apply>
285 <apply>
286 <times/>
287 <apply>
288 <plus/>
289 <apply>
290 <times/>
291 <ci> km1l </ci>
292 <ci> L </ci>
293 </apply>
294 <apply>
295 <times/>
296 <ci> km1n </ci>
297 <ci> N </ci>
298 </apply>
299 <apply>
300 <times/>
301 <ci> km1m1 </ci>
302 <ci> M1 </ci>
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303 </apply>
304 <apply>
305 <times/>
306 <ci> km1fc </ci>
307 <ci> FC </ci>
308 </apply>
309 <apply>
310 <times/>
311 <ci> km1a </ci>
312 <ci> A </ci>
313 </apply>
314 </apply>
315 <ci> M_rb </ci>
316 </apply>
317 </apply>
318 <apply>
319 <times/>
320 <apply>
321 <plus/>
322 <apply>
323 <times/>
324 <ci> km2m2 </ci>
325 <ci> M2 </ci>
326 </apply>
327 <ci> sc </ci>
328 </apply>
329 <ci> M_rb </ci>
330 </apply>
331 </apply>
332 </math>
333 </rateRule>
334 <rateRule variable="N_rb">
335 <math xmlns="http://www.w3.org/1998/Math/MathML">
336 <apply>
337 <minus/>
338 <apply>
339 <minus/>
340 <apply>
341 <plus/>
342 <ci> snrb </ci>
343 <apply>
344 <times/>
345 <ci> knrl </ci>
346 <ci> L_b </ci>
347 </apply>
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348 <apply>
349 <times/>
350 <ci> knrg </ci>
351 <ci> G_b </ci>
352 </apply>
353 </apply>
354 <apply>
355 <times/>
356 <ci> unrb </ci>
357 <ci> N_rb </ci>
358 </apply>
359 </apply>
360 <apply>
361 <times/>
362 <apply>
363 <plus/>
364 <apply>
365 <times/>
366 <ci> knan </ci>
367 <ci> uan </ci>
368 <ci> AN </ci>
369 </apply>
370 <apply>
371 <times/>
372 <ci> knl </ci>
373 <ci> L </ci>
374 </apply>
375 </apply>
376 <ci> N_rb </ci>
377 </apply>
378 </apply>
379 </math>
380 </rateRule>
381 <rateRule variable="M1">
382 <math xmlns="http://www.w3.org/1998/Math/MathML">
383 <apply>
384 <minus/>
385 <apply>
386 <minus/>
387 <apply>
388 <plus/>
389 <apply>
390 <minus/>
391 <apply>
392 <minus/>
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393 <apply>
394 <times/>
395 <apply>
396 <plus/>
397 <apply>
398 <times/>
399 <ci> km1l </ci>
400 <ci> L </ci>
401 </apply>
402 <apply>
403 <times/>
404 <ci> km1n </ci>
405 <ci> N </ci>
406 </apply>
407 <apply>
408 <times/>
409 <ci> km1m1 </ci>
410 <ci> M1 </ci>
411 </apply>
412 <apply>
413 <times/>
414 <ci> km1fc </ci>
415 <ci> FC </ci>
416 </apply>
417 <apply>
418 <times/>
419 <ci> km1a </ci>
420 <ci> A </ci>
421 </apply>
422 </apply>
423 <ci> M_rb </ci>
424 </apply>
425 <apply>
426 <times/>
427 <ci> um1 </ci>
428 <ci> M1 </ci>
429 </apply>
430 </apply>
431 <apply>
432 <divide/>
433 <apply>
434 <times/>
435 <ci> km1m2 </ci>
436 <ci> kanm1 </ci>
437 <ci> AN </ci>
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438 <ci> M1 </ci>
439 </apply>
440 <apply>
441 <plus/>
442 <cn type="integer"> 1 </cn>
443 <apply>
444 <power/>
445 <apply>
446 <divide/>
447 <ci> N </ci>
448 <ci> n_inf </ci>
449 </apply>
450 <cn type="integer"> 2 </cn>
451 </apply>
452 </apply>
453 </apply>
454 </apply>
455 <apply>
456 <times/>
457 <ci> km2m1 </ci>
458 <ci> M2 </ci>
459 </apply>
460 </apply>
461 <apply>
462 <divide/>
463 <apply>
464 <times/>
465 <ci> klm1 </ci>
466 <ci> M1 </ci>
467 <apply>
468 <power/>
469 <ci> L </ci>
470 <cn type="integer"> 2 </cn>
471 </apply>
472 </apply>
473 <apply>
474 <plus/>
475 <apply>
476 <power/>
477 <ci> a </ci>
478 <cn type="integer"> 2 </cn>
479 </apply>
480 <apply>
481 <power/>
482 <ci> L </ci>
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483 <cn type="integer"> 2 </cn>
484 </apply>
485 </apply>
486 </apply>
487 </apply>
488 <apply>
489 <divide/>
490 <apply>
491 <times/>
492 <ci> km1fc </ci>
493 <ci> kafcm1 </ci>
494 <ci> FC_A </ci>
495 <ci> M1 </ci>
496 </apply>
497 <apply>
498 <plus/>
499 <cn type="integer"> 1 </cn>
500 <apply>
501 <power/>
502 <apply>
503 <divide/>
504 <ci> N </ci>
505 <ci> n_inf </ci>
506 </apply>
507 <cn type="integer"> 2 </cn>
508 </apply>
509 </apply>
510 </apply>
511 </apply>
512 </math>
513 </rateRule>
514 <rateRule variable="M2">
515 <math xmlns="http://www.w3.org/1998/Math/MathML">
516 <apply>
517 <plus/>
518 <apply>
519 <minus/>
520 <apply>
521 <minus/>
522 <apply>
523 <minus/>
524 <apply>
525 <plus/>
526 <apply>
527 <minus/>
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528 <apply>
529 <times/>
530 <apply>
531 <plus/>
532 <apply>
533 <times/>
534 <ci> km2m2 </ci>
535 <ci> M2 </ci>
536 </apply>
537 <ci> sc </ci>
538 </apply>
539 <ci> M_rb </ci>
540 </apply>
541 <apply>
542 <times/>
543 <ci> um2 </ci>
544 <ci> M2 </ci>
545 </apply>
546 </apply>
547 <apply>
548 <divide/>
549 <apply>
550 <times/>
551 <ci> km1m2 </ci>
552 <ci> kanm1 </ci>
553 <ci> AN </ci>
554 <ci> M1 </ci>
555 </apply>
556 <apply>
557 <plus/>
558 <cn type="integer"> 1 </cn>
559 <apply>
560 <power/>
561 <apply>
562 <divide/>
563 <ci> N </ci>
564 <ci> n_inf </ci>
565 </apply>
566 <cn type="integer"> 2 </cn>
567 </apply>
568 </apply>
569 </apply>
570 </apply>
571 <apply>
572 <times/>
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573 <ci> km2m1 </ci>
574 <ci> M2 </ci>
575 </apply>
576 </apply>
577 <apply>
578 <divide/>
579 <apply>
580 <times/>
581 <ci> klm2 </ci>
582 <ci> M2 </ci>
583 <apply>
584 <power/>
585 <ci> L </ci>
586 <cn type="integer"> 2 </cn>
587 </apply>
588 </apply>
589 <apply>
590 <plus/>
591 <apply>
592 <power/>
593 <ci> b </ci>
594 <cn type="integer"> 2 </cn>
595 </apply>
596 <apply>
597 <power/>
598 <ci> L </ci>
599 <cn type="integer"> 2 </cn>
600 </apply>
601 </apply>
602 </apply>
603 </apply>
604 <apply>
605 <divide/>
606 <apply>
607 <times/>
608 <ci> km2fc </ci>
609 <ci> kafcm2 </ci>
610 <ci> FC_A </ci>
611 <ci> M2 </ci>
612 </apply>
613 <apply>
614 <plus/>
615 <cn type="integer"> 1 </cn>
616 <apply>
617 <power/>
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618 <apply>
619 <divide/>
620 <ci> N </ci>
621 <ci> n_inf </ci>
622 </apply>
623 <cn type="integer"> 2 </cn>
624 </apply>
625 </apply>
626 </apply>
627 </apply>
628 <apply>
629 <times/>
630 <apply>
631 <divide/>
632 <apply>
633 <times/>
634 <ci> kfcm2 </ci>
635 <ci> ucf </ci>
636 <apply>
637 <power/>
638 <ci> H </ci>
639 <cn type="integer"> 2 </cn>
640 </apply>
641 </apply>
642 <apply>
643 <plus/>
644 <apply>
645 <power/>
646 <ci> d </ci>
647 <cn type="integer"> 2 </cn>
648 </apply>
649 <apply>
650 <power/>
651 <ci> H </ci>
652 <cn type="integer"> 2 </cn>
653 </apply>
654 </apply>
655 </apply>
656 <ci> C_f </ci>
657 <ci> FC </ci>
658 </apply>
659 </apply>
660 </math>
661 </rateRule>
662 <rateRule variable="N">
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663 <math xmlns="http://www.w3.org/1998/Math/MathML">
664 <apply>
665 <minus/>
666 <apply>
667 <times/>
668 <apply>
669 <plus/>
670 <apply>
671 <times/>
672 <ci> knan </ci>
673 <ci> uan </ci>
674 <ci> AN </ci>
675 </apply>
676 <apply>
677 <times/>
678 <ci> knl </ci>
679 <ci> L </ci>
680 </apply>
681 </apply>
682 <ci> N_rb </ci>
683 </apply>
684 <apply>
685 <times/>
686 <ci> kan </ci>
687 <ci> N </ci>
688 </apply>
689 </apply>
690 </math>
691 </rateRule>
692 <rateRule variable="AN">
693 <math xmlns="http://www.w3.org/1998/Math/MathML">
694 <apply>
695 <minus/>
696 <apply>
697 <minus/>
698 <apply>
699 <minus/>
700 <apply>
701 <minus/>
702 <apply>
703 <times/>
704 <ci> kan </ci>
705 <ci> N </ci>
706 </apply>
707 <apply>
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708 <divide/>
709 <apply>
710 <times/>
711 <ci> kanm1 </ci>
712 <ci> AN </ci>
713 <ci> M1 </ci>
714 </apply>
715 <apply>
716 <plus/>
717 <cn type="integer"> 1 </cn>
718 <apply>
719 <power/>
720 <apply>
721 <divide/>
722 <ci> N </ci>
723 <ci> n_inf </ci>
724 </apply>
725 <cn type="integer"> 2 </cn>
726 </apply>
727 </apply>
728 </apply>
729 </apply>
730 <apply>
731 <divide/>
732 <apply>
733 <times/>
734 <ci> kanm2 </ci>
735 <ci> AN </ci>
736 <ci> M2 </ci>
737 </apply>
738 <apply>
739 <plus/>
740 <cn type="integer"> 1 </cn>
741 <apply>
742 <power/>
743 <apply>
744 <divide/>
745 <ci> N </ci>
746 <ci> n_inf </ci>
747 </apply>
748 <cn type="integer"> 2 </cn>
749 </apply>
750 </apply>
751 </apply>
752 </apply>
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753 <apply>
754 <times/>
755 <ci> kann </ci>
756 <ci> N </ci>
757 </apply>
758 </apply>
759 <apply>
760 <times/>
761 <ci> uan </ci>
762 <ci> AN </ci>
763 </apply>
764 </apply>
765 </math>
766 </rateRule>
767 <rateRule variable="L">
768 <math xmlns="http://www.w3.org/1998/Math/MathML">
769 <apply>
770 <plus/>
771 <apply>
772 <minus/>
773 <apply>
774 <minus/>
775 <apply>
776 <times/>
777 <ci> rL </ci>
778 <ci> L_b </ci>
779 </apply>
780 <apply>
781 <divide/>
782 <apply>
783 <times/>
784 <ci> klm1 </ci>
785 <ci> M1 </ci>
786 <apply>
787 <power/>
788 <ci> L </ci>
789 <cn type="integer"> 2 </cn>
790 </apply>
791 </apply>
792 <apply>
793 <plus/>
794 <apply>
795 <power/>
796 <ci> a </ci>
797 <cn type="integer"> 2 </cn>
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798 </apply>
799 <apply>
800 <power/>
801 <ci> L </ci>
802 <cn type="integer"> 2 </cn>
803 </apply>
804 </apply>
805 </apply>
806 </apply>
807 <apply>
808 <divide/>
809 <apply>
810 <times/>
811 <ci> klm2 </ci>
812 <ci> M2 </ci>
813 <apply>
814 <power/>
815 <ci> L </ci>
816 <cn type="integer"> 2 </cn>
817 </apply>
818 </apply>
819 <apply>
820 <plus/>
821 <apply>
822 <power/>
823 <ci> b </ci>
824 <cn type="integer"> 2 </cn>
825 </apply>
826 <apply>
827 <power/>
828 <ci> L </ci>
829 <cn type="integer"> 2 </cn>
830 </apply>
831 </apply>
832 </apply>
833 </apply>
834 <apply>
835 <times/>
836 <ci> uafc </ci>
837 <ci> C_f </ci>
838 </apply>
839 </apply>
840 </math>
841 </rateRule>
842 <rateRule variable="FC">
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843 <math xmlns="http://www.w3.org/1998/Math/MathML">
844 <apply>
845 <plus/>
846 <apply>
847 <minus/>
848 <apply>
849 <minus/>
850 <apply>
851 <plus/>
852 <apply>
853 <divide/>
854 <apply>
855 <times/>
856 <ci> klm1 </ci>
857 <ci> M1 </ci>
858 <apply>
859 <power/>
860 <ci> L </ci>
861 <cn type="integer"> 2 </cn>
862 </apply>
863 </apply>
864 <apply>
865 <plus/>
866 <apply>
867 <power/>
868 <ci> a </ci>
869 <cn type="integer"> 2 </cn>
870 </apply>
871 <apply>
872 <power/>
873 <ci> L </ci>
874 <cn type="integer"> 2 </cn>
875 </apply>
876 </apply>
877 </apply>
878 <apply>
879 <divide/>
880 <apply>
881 <times/>
882 <ci> klm2 </ci>
883 <ci> M2 </ci>
884 <apply>
885 <power/>
886 <ci> L </ci>
887 <cn type="integer"> 2 </cn>
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888 </apply>
889 </apply>
890 <apply>
891 <plus/>
892 <apply>
893 <power/>
894 <ci> b </ci>
895 <cn type="integer"> 2 </cn>
896 </apply>
897 <apply>
898 <power/>
899 <ci> L </ci>
900 <cn type="integer"> 2 </cn>
901 </apply>
902 </apply>
903 </apply>
904 </apply>
905 <apply>
906 <times/>
907 <apply>
908 <divide/>
909 <apply>
910 <times/>
911 <ci> kafc </ci>
912 <apply>
913 <power/>
914 <ci> C_f </ci>
915 <cn type="integer"> 2 </cn>
916 </apply>
917 </apply>
918 <apply>
919 <plus/>
920 <apply>
921 <power/>
922 <ci> e </ci>
923 <cn type="integer"> 2 </cn>
924 </apply>
925 <apply>
926 <power/>
927 <ci> C_f </ci>
928 <cn type="integer"> 2 </cn>
929 </apply>
930 </apply>
931 </apply>
932 <ci> FC </ci>
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933 </apply>
934 </apply>
935 <apply>
936 <times/>
937 <apply>
938 <divide/>
939 <apply>
940 <times/>
941 <ci> kfcm2 </ci>
942 <ci> ucf </ci>
943 <apply>
944 <power/>
945 <ci> H </ci>
946 <cn type="integer"> 2 </cn>
947 </apply>
948 </apply>
949 <apply>
950 <plus/>
951 <apply>
952 <power/>
953 <ci> d </ci>
954 <cn type="integer"> 2 </cn>
955 </apply>
956 <apply>
957 <power/>
958 <ci> H </ci>
959 <cn type="integer"> 2 </cn>
960 </apply>
961 </apply>
962 </apply>
963 <ci> FC </ci>
964 </apply>
965 </apply>
966 <apply>
967 <divide/>
968 <apply>
969 <times/>
970 <ci> km1fc </ci>
971 <ci> kafcm1 </ci>
972 <ci> FC_A </ci>
973 <ci> M1 </ci>
974 </apply>
975 <apply>
976 <plus/>
977 <cn type="integer"> 1 </cn>

214



978 <apply>
979 <power/>
980 <apply>
981 <divide/>
982 <ci> N </ci>
983 <ci> n_inf </ci>
984 </apply>
985 <cn type="integer"> 2 </cn>
986 </apply>
987 </apply>
988 </apply>
989 <apply>
990 <divide/>
991 <apply>
992 <times/>
993 <ci> km2fc </ci>
994 <ci> kafcm2 </ci>
995 <ci> FC_A </ci>
996 <ci> M2 </ci>
997 </apply>
998 <apply>
999 <plus/>

1000 <cn type="integer"> 1 </cn>
1001 <apply>
1002 <power/>
1003 <apply>
1004 <divide/>
1005 <ci> N </ci>
1006 <ci> n_inf </ci>
1007 </apply>
1008 <cn type="integer"> 2 </cn>
1009 </apply>
1010 </apply>
1011 </apply>
1012 </apply>
1013 </math>
1014 </rateRule>
1015 <rateRule variable="FC_A">
1016 <math xmlns="http://www.w3.org/1998/Math/MathML">
1017 <apply>
1018 <minus/>
1019 <apply>
1020 <minus/>
1021 <apply>
1022 <times/>
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1023 <apply>
1024 <divide/>
1025 <apply>
1026 <times/>
1027 <ci> kafc </ci>
1028 <apply>
1029 <power/>
1030 <ci> C_f </ci>
1031 <cn type="integer"> 2 </cn>
1032 </apply>
1033 </apply>
1034 <apply>
1035 <plus/>
1036 <apply>
1037 <power/>
1038 <ci> e </ci>
1039 <cn type="integer"> 2 </cn>
1040 </apply>
1041 <apply>
1042 <power/>
1043 <ci> C_f </ci>
1044 <cn type="integer"> 2 </cn>
1045 </apply>
1046 </apply>
1047 </apply>
1048 <ci> FC </ci>
1049 </apply>
1050 <apply>
1051 <divide/>
1052 <apply>
1053 <times/>
1054 <ci> kafcm1 </ci>
1055 <ci> FC_A </ci>
1056 <ci> M1 </ci>
1057 </apply>
1058 <apply>
1059 <plus/>
1060 <cn type="integer"> 1 </cn>
1061 <apply>
1062 <power/>
1063 <apply>
1064 <divide/>
1065 <ci> N </ci>
1066 <ci> n_inf </ci>
1067 </apply>
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1068 <cn type="integer"> 2 </cn>
1069 </apply>
1070 </apply>
1071 </apply>
1072 </apply>
1073 <apply>
1074 <divide/>
1075 <apply>
1076 <times/>
1077 <ci> kafcm2 </ci>
1078 <ci> FC_A </ci>
1079 <ci> M2 </ci>
1080 </apply>
1081 <apply>
1082 <plus/>
1083 <cn type="integer"> 1 </cn>
1084 <apply>
1085 <power/>
1086 <apply>
1087 <divide/>
1088 <ci> N </ci>
1089 <ci> n_inf </ci>
1090 </apply>
1091 <cn type="integer"> 2 </cn>
1092 </apply>
1093 </apply>
1094 </apply>
1095 </apply>
1096 </math>
1097 </rateRule>
1098 <rateRule variable="C_f">
1099 <math xmlns="http://www.w3.org/1998/Math/MathML">
1100 <apply>
1101 <minus/>
1102 <apply>
1103 <plus/>
1104 <apply>
1105 <minus/>
1106 <apply>
1107 <plus/>
1108 <apply>
1109 <divide/>
1110 <apply>
1111 <times/>
1112 <apply>
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1113 <plus/>
1114 <ci> n_cf </ci>
1115 <ci> mw6c599f7d_e448_4ea2_b9ed_...
1116 835769597483 </ci>
1117 </apply>
1118 <ci> klm1 </ci>
1119 <ci> M1 </ci>
1120 <apply>
1121 <power/>
1122 <ci> L </ci>
1123 <cn type="integer"> 2 </cn>
1124 </apply>
1125 </apply>
1126 <apply>
1127 <plus/>
1128 <apply>
1129 <power/>
1130 <ci> a </ci>
1131 <cn type="integer"> 2 </cn>
1132 </apply>
1133 <apply>
1134 <power/>
1135 <ci> L </ci>
1136 <cn type="integer"> 2 </cn>
1137 </apply>
1138 </apply>
1139 </apply>
1140 <apply>
1141 <divide/>
1142 <apply>
1143 <times/>
1144 <apply>
1145 <plus/>
1146 <ci> n_cf </ci>
1147 <ci> mw834ed067_5f95_40fe_b737_...
1148 c027a32d22f0 </ci>
1149 </apply>
1150 <ci> klm2 </ci>
1151 <ci> M2 </ci>
1152 <apply>
1153 <power/>
1154 <ci> L </ci>
1155 <cn type="integer"> 2 </cn>
1156 </apply>
1157 </apply>
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1158 <apply>
1159 <plus/>
1160 <apply>
1161 <power/>
1162 <ci> b </ci>
1163 <cn type="integer"> 2 </cn>
1164 </apply>
1165 <apply>
1166 <power/>
1167 <ci> L </ci>
1168 <cn type="integer"> 2 </cn>
1169 </apply>
1170 </apply>
1171 </apply>
1172 </apply>
1173 <apply>
1174 <times/>
1175 <ci> ke </ci>
1176 <ci> C_f </ci>
1177 </apply>
1178 </apply>
1179 <apply>
1180 <times/>
1181 <ci> kce </ci>
1182 <ci> C_e </ci>
1183 </apply>
1184 </apply>
1185 <apply>
1186 <times/>
1187 <apply>
1188 <divide/>
1189 <apply>
1190 <times/>
1191 <ci> ucf </ci>
1192 <apply>
1193 <power/>
1194 <ci> H </ci>
1195 <cn type="integer"> 2 </cn>
1196 </apply>
1197 </apply>
1198 <apply>
1199 <plus/>
1200 <apply>
1201 <power/>
1202 <ci> d </ci>
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1203 <cn type="integer"> 2 </cn>
1204 </apply>
1205 <apply>
1206 <power/>
1207 <ci> H </ci>
1208 <cn type="integer"> 2 </cn>
1209 </apply>
1210 </apply>
1211 </apply>
1212 <ci> FC </ci>
1213 </apply>
1214 </apply>
1215 </math>
1216 </rateRule>
1217 <rateRule variable="C_e">
1218 <math xmlns="http://www.w3.org/1998/Math/MathML">
1219 <apply>
1220 <minus/>
1221 <apply>
1222 <times/>
1223 <ci> ke </ci>
1224 <ci> C_f </ci>
1225 </apply>
1226 <apply>
1227 <times/>
1228 <ci> kce </ci>
1229 <ci> C_e </ci>
1230 </apply>
1231 </apply>
1232 </math>
1233 </rateRule>
1234 <rateRule variable="A">
1235 <math xmlns="http://www.w3.org/1998/Math/MathML">
1236 <apply>
1237 <plus/>
1238 <apply>
1239 <times/>
1240 <ci> uan </ci>
1241 <ci> AN </ci>
1242 </apply>
1243 <apply>
1244 <times/>
1245 <ci> uafc </ci>
1246 <ci> FC_A </ci>
1247 </apply>
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1248 </apply>
1249 </math>
1250 </rateRule>
1251 <assignmentRule variable="N_obs">
1252 <math xmlns="http://www.w3.org/1998/Math/MathML">
1253 <ci> N </ci>
1254 </math>
1255 </assignmentRule>
1256 <assignmentRule variable="M1_obs">
1257 <math xmlns="http://www.w3.org/1998/Math/MathML">
1258 <ci> M1 </ci>
1259 </math>
1260 </assignmentRule>
1261 <assignmentRule variable="M2_obs">
1262 <math xmlns="http://www.w3.org/1998/Math/MathML">
1263 <ci> M2 </ci>
1264 </math>
1265 </assignmentRule>
1266 <assignmentRule ...

variable="mwdddccd99_fb4a_48c0_b494_4e11af1d6dc3">
1267 <math xmlns="http://www.w3.org/1998/Math/MathML">
1268 <apply>
1269 <divide/>
1270 <ci> C_f </ci>
1271 <ci> FC </ci>
1272 </apply>
1273 </math>
1274 </assignmentRule>
1275 <assignmentRule ...

variable="mw3f564d8f_5efe_4e65_8b69_5a225f077cef">
1276 <math xmlns="http://www.w3.org/1998/Math/MathML">
1277 <apply>
1278 <divide/>
1279 <ci> C_e </ci>
1280 <ci> FC </ci>
1281 </apply>
1282 </math>
1283 </assignmentRule>
1284 </listOfRules>
1285 </model>
1286 </sbml>
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