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ABSTRACT 

Spag17 DEFICIENCY IMPAIRS NEURAL CELL DIFFERENTIATION IN 

DEVELOPING BRAIN 

 

By Olivia Jeong Min Choi, B.S. 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2019 

 

Advisor: Maria E. Teves, Ph.D. 

Department of Obstetrics and Gynecology 

 

The development of the nervous system is a multi-level, time-sensitive process that relies heavily 

on cell differentiation. However, the molecular mechanisms that control brain development 

remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene 

Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of 

Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained 

by this role were also present. Recently, a mutation in Spag17 has been associated with brain 

malformations and severe intellectual disability in humans. Therefore, we hypothesized that 

Spag17 plays a crucial role in nervous system development. To investigate this possibility, we 

first characterized the spatiotemporal expression of Spag17 in the developing brain by using 

Beta-galactosidase staining and immunohistochemistry. Results showed Spag17 expression in 

the spinal cord in embryonic E11. By E11.5-12.5 the expression extends to the rhombic lip from 

the developing hindbrain, as well as to the forebrain and midbrain regions. E14.5-15.5 embryos 
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exhibit an intense expression in the developing ventricles as well as the cerebellum. From E17.5 

to birth (P0), the gene is more broadly expressed. We then used a global Spag17 KO mouse 

model to characterize the function of Spag17 during brain development. Immunohistochemical 

studies performed in brain sections from E15.5 and P0 time points showed increased expression 

of the neural progenitor marker Nestin, and reduced expression of mature neuron marker NeuN, 

increasing positive trend with the young neuron marker Tuj1. Altogether, these findings reveal 

that Spag17 has a unique spatiotemporal distribution and may be critical for the maturation of 

neural progenitor cells.  
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Chapter 1: Introduction 

1) Neurodevelopment and cell differentiation 

The development of central nervous system (CNS) and brain is a highly complex process 

involving cascades of molecular signaling and cellular differentiation (1-3). During early 

developmental phase, neuroepithelial cells or neural stem cells (NSC) undergo proliferation via 

symmetrical division to generate two identical daughter stem cells to increase their number. 

Later on, NSCs start losing multipotency and differentitate in either asymmetrical or symmetrical 

cell division to produce one daughter stem cell with a differentiated cell or two differentiated 

cells (1-2). It has been reported that mutations of genes that disrupt this transition between 

proliferative symmetrical and differentiative asymmetrical division at the germinal zone can 

affect the cortical size (3-7). Persisting defects in NSC division can result in neurodevelopmental 

disorders such as microcephaly (reduced brain size) or megalocephaly (enlarged brain size) that 

can affect the brain size and intellectual capacity associated with it (4, 7-8). It has been also 

noted that dysregulation in neurogenesis and maturation has been observed in brains of autistic 

patients, with heavier and bigger brain and excess number of neurons in the frontal cortex (9- 

11). 

2) Early structural development of brain 

Gastrulation phase starts the transition from blastula to gastrula around embryonic day 6 

(E6) after the conception for mouse, with tissue invagination to initiate epiblast cell migration 

and differentiation into three distinct stem cell lineage and body axis patterning (1, 12-13).  

Those cells who migrate into the deepest layer into primitive streak will form endodermal stem 

cell layer, which will later give rise to gut and respiratory tract organs. The layer right above the 

endoderm layer will become mesoderm and will later give rise to muscle, bone, cartilage, and the 
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vascular system. Lastly, the outermost layer will become ectoderm to give rise to skin, nails, 

sweat glands and CNS (1) (Figure 1). A subpopulation of ectoderm cell layer will receive 

additional signaling from the notochord, a cylinder of mesodermal cell aggregation, will 

differentiate into NSC and become a neuroectoderm layer to give rise to majority of CNS (12) 

(Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Three primary cell layers and their derivation. From gastrula, three germ cell 

layers form to give rise to various organs and cell types (1, 12-13) 

 

During the neurulation process, the neuroectoderm will continue to proliferate until they 

become neural plate, and eventually fold into neural tube that acts as first brain structure and 

primitive form of spinal cord (1, 13) (Figure 2). From this hollow cylinder organ formation, the 

cavities of neural tube will become primitive ventricular system of the brain, which leads to 

calling the most apical cell layer next to the ventricles with the highest number neural progenitor 

cell bodies as ventricular zone (VZ) (1-3). As the neural tube closes and increases in size and 
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complexity throughout the development, three primary pouches or vesicles are assembled: 

prosencephalon (forebrain), mesencephalon (midbrain), and rhombencephalon (hindbrain). The 

most anterior forebrain will later become telencephalon (cerebrum) and diencephalon (thalamus, 

hypothalamus), mesencephalon in the middle will become midbrain, and most posterior 

hindbrain will give rise to medulla, pons and cerebellum (1). Before hindbrain fully becomes 

cerebellum, they segment into units called rhombomeres, and form assembly of rhombomeres 

called rhombic lip. The rhombic lip includes most anterior segment called rhombomere 1, which 

will be the major source of cerebellar granule cell precursors that will eventually give rise to 

more than half of the neurons in the adult brain (14-15). Also, during the folding of neural tubes, 

a specialized cell group called neural crest cells will be generated, and migrate away farther than 

other cell layers to give rise to diverse cell progeny including bone, cartilage and melanocytes of 

skin (1, 13) (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic diagram of neural tube closure in the developing mouse. Some of the 

mesodermal cells will aggregate and form the notochord (Red) to give rise to neural plate and 

neural tube (Dark Green). Zone above the neural tube becomes neural crest cells (Blue). 

Modified with permission (16).  



4 
 

3) Prenatal brain neurogenesis and gliogenesis 

The NSC and the progenitors go through neurogenesis to generate neurons throughout all 

regions of the neural tube, where they begin to construct spatiotemporal sensitive niche along the 

axes of body. This process is accompanied by gliogenesis that generate astrocytes and 

oligodendrocytes for support and myelination (17). Despite their distinct and diverse end 

functions by the end of differentiation process, some glial cells and neurons have been found to 

have same primary progenitor cells or NSC (18). These NSC exposed to cerebrospinal fluid 

(CSF) in the ventricle at the apical surface of ventricular zone (VZ) starts with symmetrical 

division to proliferate (2) (Figure 3). After building up thicker cell layer, the NSCs switch to 

neurogenesis by transforming into radial glial cells (RGCs) by downregulating epithelial features 

like tight junction, and upregulation of astroglial proteins such as Glutamate Aspartate 

Transporter (GLAST), Serum S100β and Brain lipid-binding Protein (BLBP) (2, 19-20). Unlike 

NSC, RGCs favor asymmetrical division that leads to fate-restricted progenitor with ability to 

give rise to neurons, oligodendrocyte progenitor cells (OPCs) and astrocytes (6,18, 21). Other 

than their potential to differentiate into various cell types, RGCs have been also known to 

provide their basal axons as scaffolding to guide neuron migration across the cerebral cortex, 

while their mitotically active nucleus stays at the VZ (22).  
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Figure 3: Temporal development of the neocortex. Neuroepithelial cells or NSCs go through 

symmetrical division initially, and then start taking form as radial glial cells (RGCs). RGCs can 

go through asymmetrical division to generate neurons, or oligodendrocyte progenitor cells 

(OPCs). At the end of embryonic development, RGCs detach from apical side of ventricle and 

become astrocytes. Modified with permission (18). 

 

Corticogenesis, or generation of cerebral cortex is heavily active around E11-E19, but the 

cells can start losing epithelial makers and start expressing NSC marker Nestin as early as the 

time of neural tube closure at E9 (18, 20). Although the cells can have RGC like feature and start 

differentiating into neurons as early as E10, they can reach plateau for neurogenesis around E14-

E15 (2, 20, 23-24) (Figure 4). During the corticogenesis, neurons and other cells will start 

forming transient multi-layered structure divided into several unique compartments on top of 

each other (24). Neurogenesis technically starts from ventricular zone (VZ), where the NSC with 

radial processes are exposed to cerebrospinal fluid filled with nutrients and morphogens, and will 

divide symmetrically to generate RGCs that will become precursor to actual neurons (6, 17-18, 

22-25). Subventricular zone (SVZ) above VZ is created from NSC and RGC mitosis at the basal 

Marginal Zone (MZ) 
 
 
Cortical Plate (CP) 
 
 
 
 
Intermediate Zone (IZ) 
 
 
 
 
Subventricular Zone (SVZ) 
 
 
 
Ventricular Zone (VZ) 
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surface of VZ and many cells in this layer are thought to undergo terminal symmetrical division 

to produce migrating neurons (25). Above SVZ, intermediate zone (IZ) contains migrating cells 

traveling via axons of RGCs or in tangential orientation, and axons that will eventually establish 

white matter in the brain (25-26). Cortical plate (CP) and marginal zone (MZ) are the major 

destinations for migratory cell terminal differentiation, with more newly differentiated neurons 

staying in MZ above and push older neurons to CP in mouse brain (25, 27). 

 

 
 

Figure 4: Timeline for cellular process in the developing mouse brain. Widely accepted 

starting date for neurogenesis is around E10-E11 when the neural tube closes, and then peak and 

persist through E14-E18. Astrogenesis starts around the end of neurogenesis and persist through 

P7. OPC generation wave occurs at E12.5, E15.5, and P0 (2, 20, 23-25, 28). 

 

 

 After RGCs complete asymmetrical division to produce neurons during the neurogenesis 

wave, they can either directly differentiate into astrocytes or produce intermediate cells that will 

become astrocytes (28). While neurogenesis occurs as early as E10, the astrocyte differentiation 

and maturation occur toward the end of neurogenic wave around E18 and last until 

approximately postnatal day 7 (P7) (28) (Figure 4). The distribution and migration pattern of 

neonatal astrocytes are still unknown due to lack of well targeted astrocyte marker (28-29). 

Currently widely used markers like Glial Fibrillary Acidic Protein (GFAP) showed similar cell 

distribution throughout the whole brain except the brain stem in both neonatal and adult rat brain, 

suggesting that after glial cells are born in the VZ or SVZ, they might self-distribute themselves 
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and stay in the same location after migration (28). After birth, most postnatal astrocytes are 

generated through local proliferation of already differentiated astrocytes that have migrated 

throughout the whole brain shortly after birth in the VZ or SVZ (29). On the other hand, 

oligodendrocyte progenitor cells (OPCs) comes in three major waves during prenatal period: 1) 

on E12.5 in mice at the VZ of the medial ganglionic eminence (MGE), 2) on E15.5 at the lateral 

ganglionic eminence (LGE), and 3) around birth at the cortex (21, 30) (Figure 4 and 5). 

 

Figure 5: Location of OPCs generation waves. Coronal view of mouse forebrain indicating 

which area of VZ goes through different waves of OPCs generation during development. 

Modified with permission (30).  

 

4) Postnatal brain neurogenesis and gliogenesis 

Even though the neurogenesis and gliogenesis peak during embryonic development and post-

natal developmental period, neurogenesis and gliogenesis do persist through adulthood. Once 

NSCs finish their set number of asymmetrical neurogenic divisions, they often undergo apoptosis 

or terminal division, or enter senescence and decrease proliferation leading to decrease in NSC 

numbers in post-embryonic animals, with only a few stem cells remaining in the adult brain (8). 

After the birth, neurogenesis continues in area limited manner at the olfactory bulb (1) 

subgranular zone (SGZ) of the denate gyrus within hippocampus and SVZ of lateral ventricle 

that originated from embryonic radial glia (31) (Figure 6). In contrast to limited neurogenesis, 

proliferation and migration of glial progenitors will continue postnatally, and will persist in adult 
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brain in a wide anatomical distribution and can differentiate in response to injury, and can 

continue to proliferate as they migrate (1). OPCs will migrate toward the developing white 

matter and undergo differentiation into mature oligodendrocytes through expanding its processes 

and increase myelin protein expressing to begin myelination process (32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Schematic diagram of the mouse embryonic and adult brain.  

(A) Sagittal view of E14.5 mouse brain. Main germinal zone in neocortex (green) are VZ and 

SVZ near the ventricles (blue), IZ with migrating cells and axons, and CP encompassing post-

mitotic neurons. (B) Sagittal view of an adult mouse brain with neocortex developed into 

isocortex (green). In adult brain, stem cells reside in subventricular zone (SVZ) of lateral 

ventricle, and the sub-granular zone (SGZ) of the denate gyrus within the hippocampus. 

Reproduced with permission (33).  

 

5) Spag17  

Sperm-associated antigen-17 protein (SPAG17) is the mammalian orthologue of PF6, a 

protein present at the projection of C1 central pair microtubule in green algae, chlamydomonas 

reinhardtii (34) (Figure 7). PF6 has been found to be vital component for assembly of a central 

pair complex (CPC) and flagellar motility, confirmed by PF6 mutant’s ineffective flagella and 

missing C1a projection (35-37). It has been reported that C-terminal domain of PF6 are the 

essential key player for flagellar motility and assembly of the C1a projection, while the N-
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terminal half did more stabilization of the C1a complex members than assembly (37). Although 

the murine Spag17 gene also encode a 250 kDa protein present in the CPC, the mammalian gene 

show greater complexity in expression patterns and functions (36) . In this context, other 

SPAG17 isoforms have been described in mammals that are cell/tissue specific. The full-length 

250 kDa protein is found in testis and tissues with motile cilia like lung and brain, and a 97 kDa 

protein is present in testis and derived from an alternatively spliced variant (34, 36). The 97 kDa 

protein is cleaved to generate 72 kDa (N- terminal) and 28 kDa (C- terminal) fragments 

expressed in epididymal and ejaculated sperm (34, 36). These isoforms are believed to be 

important for motility of cilia and flagella, organelles known for having of axonemal central pair 

microtubule structure. 

 

 

 

Figure 7: Cross section of a Central Pair 

Complex. SPAG17/PF6 (Pink) is projecting 

off of C1 complex. Reproduced with 

permission (36). 

 

Dr. Teves’ lab has been studying the Spag17 gene for the last decade. Previous work done by 

Teves lab included first development of a knockout mouse model for this gene and report on how 

the gene plays role outside the tissues with motile cilia and flagella. The global Spag17 KO they 

created showed phenotypes consistent with Primary Ciliary Dyskinesia (PCD) noted by neonatal 

respiratory distress and bronchiectasis secondary to disrupted alveolar epithelium, immotile nasal 

and tracheal cilia, reduced clearance of mucus, and lung fluid accumulation (38-39). In addition 

to that, magnetic resonance imaging (MRI) and histological examination confirmed that null-
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mice had expanded cerebral ventricles consistent with hydrocephalus that are also associated 

with PCD, and neonatal demise within 12 hours of birth (38). Beside the classic phenotypes of 

PCD, the study of Spag17 KO mice showed unexpected phenotypes incompatible with the role 

of the SPAG17 protein in motile cilia. Remarkably, KO mice show skeletal deformities, bone 

mineralization defects, and shorter primary cilia despite them not having CPC (35). These 

unexpected phenotypes called attention to new roles for Spag17 in embryonic development and 

in tissues without motile cilia. In accordance with the finding in the murine model, a number of 

genome-wide association studies (GWAS) have reported an association between the human 

SPAG17 locus and short stature (40-47). Moreover, a homozygous SPAG17 mutation was found 

in a 7-year-old boy (48). The patient has multiple congenital anomalies including brain and bone 

deformities similar to those observed in the Spag17 knockout mice, affecting cerebellum, lateral 

ventricles and corpus callosum. These compelling evidences, strongly suggest the involvement 

of SPAG17 in embryonic development, and pleiotropic functions outside motile cilia and flagella 

(35). 

6) Hypothesis 

In this study, we hypothesize that Spag17 is crucial for cell differentiation during embryonic 

development of the brain, and the loss of Spag17 will result in altered differentiation rate of 

neural stem cells, neurons, and the progenitor for glial cells like astrocytes and oligodendrocytes. 

7) Specific Aims 

In our first aim, our goal is to characterize the expression pattern and the location of Spag17 

throughout the development in CNS.  

In our second aim, our goal is to determine how mice are affected by loss of the Spag17 gene 

in the context of neural cell differentiating into either neuron or glial cells.  
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Chapter 2: Materials and Methods 

1) Animal model 

All experimental protocols involving animal use were performed in accordance with the 

National Research Council’s Guide for the Care and Use of Laboratory Animals, and protocol 

AM10297 approved by the Virginia Commonwealth University Institutional Animal Care and 

Use Committee. All efforts were made to minimize the potential for animal pain and stress. 

Spag17/CMV-Cre Knockout 

In order to generate global Spag17 KO mice, embryonic stem (ES) cells were obtained 

from the Knockout Mouse Program (KOMP) at the Jackson Laboratory (Davis, CA). First, the 

chimeric male mice were generated using embryonic stem cell. The resulting chimeric males 

with LoxP-Flippase recognition site (FRT) upstream of target exon 5, were bred to C57BL/6NJ 

WT females. Their heterozygous offspring were then crossed to 

129S4/SvJaeSorGt(ROSA)26Sortm1(FLP1)Dym/J (stock number: 003946) to introduce flippase 

(FLP) recombinase and remove section between two FRT sites. After that, Spag17 mice with 

exon 5 between two LoxP sites, or floxed site were mated with Cytomegalovirus-Cre (CMV-Cre) 

mice (B6.C-Tg(CMV-Cre)1Cgn/J, stock number: 006054). These mice with C57BL/6J 

background introduced Cre recombinase to remove exon 5 between LoxP sites to produce 

heterozygous Spag17/CMV-Cre mice (Figure 8). The heterozygous male and female 

Spag17/CMV-Cre mice were then mated to give birth to homozygous Spag17/CMV-Cre 

knockout mice at near expected Mendelian ratios. 

The global deletion of Spag17 resulted in either embryonic lethality or lethality within 12 

hours of birth after respiratory distress (38). All mice were bred in our animal colony to obtain 

mice at each age examined at embryonic age 15.5 and postnatal day 0 (P0). The day with plugs 
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were considered as the day 0.5 and P0 the day of birth. These Spag17/CMV-Cre mice were 

sacrificed at E15.5 and P0 for slide sectioning and primary cell culture, and were stained with 

Nestin, Tuj1, and NeuN primary antibodies. For immunohistochemistry, the slide sections from 

six different animals were tested and quantification were done two to three times on E15.5. For 

P0 mice, the slide sections from three different animals used for testing and quantification of 

IHC done with primary antibodies against Nestin, Tuj1, and NeuN.  

  Spag17/Sox2-Cre knockout 

The Spag17/Sox2-Cre knockout mice were obtained from the Knockout Mouse Program 

(KOMP) at the Jackson Laboratory (Stock Number: 026485). The Spag17/Sox2-Cre mice were 

generated using the same vector than Spag17/CMV-Cre mice. Unlike the Spag17/CMV-Cre mice 

that were crossed to mice with FLP recombinase and then Cre recombinase, Spag17/Sox2-Cre 

mice were bred to only Sox2-Cre mice to remove the exon 5 between LoxP sites (Figure 8). 

Therefore, heterozygous Spag17/Sox2-Cre mice retain the LacZ reporter upstream of exon 5 site, 

allowing Spag17 gene expression monitoring with beta-galactosidase assay.  For β -gal, embryos 

were sacrificed and collected at the age of E11, E11.5, E14.5, E15.5 and E17.5, at least twice for 

each time point.  



13 
 

  

 

 

 

 

 

 

 

 

Figure 8. Strategy for disruption of the Spag17 gene. (A) Schematic representation of CMV-

Cre mice FLP-FRT and Cre-Lox recombination for exon 5 deletion, (B) Schematic 

representation of tm1b mice cre-recombination for exon 5 deletion. Reprinted with permission of 

the American Thoracic Society. (38, 49) 

 

Genotyping 

First, the mouse DNA was isolated by incubating tissue in lysis buffer containing 1M pH 8 

Tris-HCL, 5M NaCl, 10% SDS, 0.5M EDTA pH8, 10 mg/mL proteinase K, and diH2O. After 

initial digestion overnight in 55°C incubator, DNA was precipitated using isopropanol and 

dissolved in Tris-EDTA pH 7.4 in 55°C incubator for 2 hours. Dissolved DNA was used for 

genotyping by PCR. For Spag17/CMV-Cre mice, the primer sequence used were forward: 5’-

GCACTCCAAAATTGGGCTAA-3’ and reverse: 5’-GAGTGAGCAACTTTCCTCAGGAG-3’ 

primers were used. For Spag17/Sox2-Cre mice, the set of primers used were forward 5′-

CTGTCTTGATGAGAATGTAATG-3’ and forward 5’-CCCTGAACCTGAAACATAAA-3’, 

and reverse 5’-GAGTGAGCAACTTTCCTCAGGAG-3’.  
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2) Beta-galactosidase staining 

To visualize the location of the Spag17 gene expression, heterozygous male and female 

Spag17/Sox2-Cre mice embryos were stained with whole mount β-Galactosidase. After the 

embryos were removed from mother, they were washed with PBS to remove blood. The embryos 

were then fixed in 1X fixation buffer with 20% formaldehyde and 2% glutaraldehyde in PBS for 

1-4 hours depending on embryonic age and size. After fixation, they were quickly rinsed with 

PBS and incubated in PBS for 30 minutes. The embryos were then kept in the staining solution 

with 200 mM MgCl2, 400 mM potassium ferricyanide, 400 mM potassium ferrocyanide, and 20 

mg/mL of X-gal in 1X PBS overnight in the dark at 37°C. To avoid endogenous β-Gal activity, 

pH was kept around 7.5 to 8.5. For older embryos between E13.5-15.5, the embryos were 

permeabilized with 0.02% NP-40 detergent added to the staining solution mentioned above. The 

stained embryos were rinsed with PBS next day and were then incubated in PBS for 30 minutes. 

Following the fixation and PBS rinsing, embryos that are E12.5 or older were dehydrated via 

immersion in increasing concentration of ethanol in glass vials for 30 minutes each and overnight 

in 100% ethanol (EtOH). After overnight incubation, the embryos were re-incubated in fresh 

100% EtOH for another 30 minutes and then transferred to 10 mL1:1 benzyl benzoate and 

benzyl alcohol for clearing.  

3) Immunohistochemistry (IHC) 

For postnatal IHC sample collection, mice were anesthetized using isoflurane and then 

decapitated. For embryo samples, their gestational mother was sacrificed using isoflurane and 

then extracted through surgical incision. The brains were fixed in 10% formalin for 3 days in 4°C. 

After paraffin embedding at the Virginia Commonwealth University Massey Cancer Center 



15 
 

Cancer Mouse Models core, each head was then sagittal sectioned with microtome at 15 μm 

thickness and placed on charged-slides in the water bath.  

Immunohistochemical staining 

For staining, the sections of samples were obtained from identical regions of the wild-

type and knockout brains that were selected based on structural and anatomical landmarks. Those 

selected slides were incubated in 55°C for 1 hour, and then deparaffinized with xylene, and then 

rehydrated through decreasing concentration of ethanol. The slides were then treated with 3% 

H2O2 for 30 min to remove endogenous peroxidase. Antigen retrieval was performed in citrate 

buffer at 95C for 20 min. After washing several times in PBS, slides were blocked with 10% 

goat serum, 0.2% triton X-100 buffer in PBS for 1 hour in room temperature. Following the 

blocking, the slides were incubated overnight with primary antibodies against Nestin (catalog 

#14-5843-82, Invitrogen), Tuj1 (catalog #T8578, Sigma-Aldrich), and NeuN (catalog #MAB377, 

Millipore) diluted in blocking buffer at 4°C. After washing slides with PBS thrice for five 

minutes each, the slides were incubated in biotinylated species-specific secondary antibody 

(Vector laboratories, Burlingame, CA) diluted in blocking buffer for 1 hour in room temperature. 

Following the incubation, the slides were washed with PBS thrice for 5 minutes each to remove 

excess antibody. The slides were then incubated with Vectastain Avidin-Biotin-Complex (ABC) 

reagent for 30 minutes in room temperature. The slides were again washed with PBS thrice for 5 

minutes. The staining was developed with ImmPACT Diaminobenzidine (DAB) for 2-10 

minutes (depending of the primary antibody used) and were rinsed with cold tap water to stop the 

reaction. WT and KO samples were processed in parallel to ensure the same conditions for these 

samples. The stained slides were dehydrated using increasing concentration of ethanol and 

xylene and were mounted using Vectastain mounting media.  



16 
 

4) Cell culture and immunofluorescence (IF) 

For neuronal cell culture, E14.5 WT and Spag17/CMV-Cre KO mouse brains were collected 

to observe cell differentiation in vitro. After pregnant mouse was anesthetized using isoflurane 

and cervical dislocated, uterus with embryos were surgically removed and checked for age 

specific characteristic. Removed uterus was washed in cold sterile PBS twice, and embryos were 

removed from amniotic sac using curved forceps. Those individual embryos were transferred to 

separate petri dishes, emerged in PBS while head was decapitated. After removal of meninges 

with forceps, the entire brain was transferred to DMEM with antibiotic to be dissected with 

scissor. Subsequently, minced brain fragments were transferred to conical tube with DMEM, 

antibiotic and trypsin to be incubated in 37 for 30 min with occasional gentle agitation. The 

tubes were then centrifuged, resuspended in media with DMEM, FBS and antibiotic, and strained 

through 100 μm mesh strainers. After one more centrifuge and re-suspension in cell media, they 

were seeded onto 8 well chamber slides coated with gelatin 0.1%. Media was changed every 48 

hours until the cell culture were confluent by 80-90% and ready for fixation and IF.  

For IF, the cell culture within chamber slides were washed with PBS twice, and were 

incubated in 10% formalin for 1 hour in room temperature (RT). After 1 hour in formalin and 

PBS washing for 10 minutes thrice, the cells were incubated with blocking buffer containing 10% 

goat serum, 3% BSA, and 0.2% Triton X-100 for 1 hour in RT. The cells were then incubated 

with blocking buffer diluting the primary antibodies against Tuj1 at 4°C overnight. Next day, the 

cells were washed with PBS for 10 minutes thrice, and were incubated with secondary antibodies 

labeled with Alexa Fluor 594. After last PBS washing for 10 minutes thrice, the well divider for 

chamber slides were removed and the slides were mounted with DAPI mounting media. 
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5) Data analysis 

The representative images were obtained from independent experiments, repeated at least in 

duplicate. The slide images were viewed and captured with Vectra Polaris Automated 

Quantitative Pathology imaging system (Perkin Elmer), Phenochart (Perkin Elmer), Olympus 

BH-2 microscope (Olympus, Center Valley, PA), LSM 710 (Zeiss), and Discovery V20 Stereo 

zoom fluorescence stereoscope (Zeiss). The quantification and analysis of stained slides were 

done using image analysis software (cellSense, Olympus). Relative differences in staining at the 

region of interest were measured by highlighting specific stained areas with red overlay. Data 

were quantified as area stained (μm2) and presented as relative percentage ± SEM. The 

differences between two groups were analyzed with unpaired, two-tailed Student’s t-test. p-value 

of less than 0.05 was considered as statistically significant for this study. Statistical analysis was 

performed using GraphPad QuickCalcs software (https://www.graphpad.com/quickcalcs/ttest1/). 
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Chapter 3: Results 

1) Spag17 is expressed in several tissues throughout the embryonic development  

Expression of Spag17 in the areas with known presence of motile cilia like ependymal cells 

lining the ventricles of brain, respiratory epithelial cells as well as in the sperm flagella were 

already known (38). However, there were still questions regarding the expression of Spag17 in 

the developing brain and tissues without motile cilia (35).  

To outline the spatiotemporal expression of Spag17, β-galactosidase (β-Gal) assay was 

performed on heterozygous Spag17/Sox2-Cre embryos consisting of a LacZ reporter linked to 

the Spag17 gene. The embryos were collected from pregnant females at different embryonic 

stages (E11.0 to E17.5) and the appearance of blue staining was considered a marker for 

expression of Spag17.  

β-Gal blue staining was observed in embryonic day 11 at the neural tube, a structure that will 

later become spinal cord and brain (Figure 9A). Few hours later when embryo become E11.5, the 

expression of Spag17 was expanded to rhombic lip and still present in neural tube at the same 

time (Figure 9B). As previously discussed, rhombic lip can further segment into smaller region 

called rhombomeres, and most anterior hindbrain segment rhombomere 1 (R1) will become the 

primary source of cerebellar granule cell precursors, which will constitute more than half of the 

adult neuron cell population (14-15). When the embryos reach E14.5-E15.5, Spag17 expression 

was present at the frontal cortex, lateral ventricle and intensified even further at the rhombic lip 

(Figure 9C). At E17.5, Spag17 was intensely visualized at the cerebral cortex, corpus callosum 

between cortices, midbrain, cerebellum, and still present throughout the neural tube (Figure 9D).  



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  β-galactosidase assay 

showing expression of Spag17 at 

different embryonic stages. 

 

A1) Lateral view of E11.0 embryo 

with β-Gal staining at the neural 

tube (Red). A2) Transverse section 

at black dotted line on A1. The 

staining is visible at the neural tube 

(Black) as well as neural crest cell 

within the dotted circle (Blue).  

 

 

B1) Dorsal and B2) lateral view of 

E11.5 embryo with β-Gal staining 

at the rhombic lip (Black) and optic 

vesicle indicated by arrow (Red). 

 

 

C1) Lateral and C2) Cranial view 

of E14.5-E15.5 embryo head with 

Spag17 expression at frontal cortex 

(Blue), lateral ventricle (Red) and 

rhombic lip (Black). 

  

 

D1) Lateral view of E17.5 embryo 

head with β-Gal staining at the 

frontal cortex (Blue), midbrain 

(Red), and cerebellum (Black). 

D2) dorsal view of the of body with 

expression at spinal cord (Black).  

D3) frontal view of head with 

Spag17 expression across the 

corpus callosum (Black)  

D4) Dorsal view of head with 

expression at the cerebellum 

(Black). 
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After β-Gal assay was used to characterize Spag17 expression in the embryo, IHC was 

performed on P0 WT mouse brain to profile expression of SPAG17 protein in post-natal brain. 

SPAG17 was observed throughout the brain, but especially at the cerebral cortex, hippocampus, 

olfactory bulb, midbrain, and cerebellum, consistent with areas visualized in β-Gal (Figure 10). 

 

Figure 10. P0 Spag17 WT brain stained with SPAG17 antibody (A) Sagittal section of P0 

WT mouse brain stained with 1° ab against SPAG17. (B) Sagittal section of P0 WT brain 

negative control. Strong protein expressions are seen at 1-Olfactory bulb, 2-Cerebral Cortex, 3-

Hippocampus, 4-Midbrain, and 5-Cerebellum on (A). 

 

 

 

 

 

 

 

 

2) Spag17 mutants exhibit delay in neuronal cell differentiation and maturation 

IHC was performed in WT and Spag17/CMV-Cre knockout E15.5 embryos and P0 neonates 

to determine whether Spag17 may be important for cell differentiation and maturation. Both WT 

and KO brain samples were sagitally sectioned and were stained with primary antibodies tagging 

proteins expressed at the different stages of neuronal maturation. The sections were selected 

based upon the presence of anatomical landmarks and similar sectioning depth.  
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Neural Stem Cell and Radial Glial Cell 

 Nestin is a class VI intermediate filament protein uniquely expressed in neural stem cells 

and radial glial cells, and are known to be involved in cytoskeleton developmental remodeling 

regulation (50). They initially appear in NSC when they start losing epithelial characteristic after 

neural tube closing at E11, and persist until they differentiate into other cell types like neuron or 

glial cells (2, 19). As previously discussed, NSC are expected to be present at the VZ and SVZ 

apical to the lateral ventricle. In P0, they are expected to be near SVZ and dentate gyrus of 

hippocampus. Nestin was used in our experiments to detect NSC and RGCs to see if they are 

expressed differently in WT and KO at the same stage during the development. Also, it was 

tested on P0 to see if KO will have same pattern persisting after the birth.  

Throughout two to three independent experiments done on E15.5 embryo brains, the most 

significant differences between WT and Spag17/CMV-Cre KO were observed at cerebral cortex 

and R1, with KO brain showing 2.2 times more Nestin positive area than WT at the cerebral 

cortex, and 1.5 times more at the R1 (Figure 11-12). This suggests that in the absence of Spag17, 

NSC and RGCs at the cerebral cortex and R1 are affected, consistent with E15.5 β-Gal staining 

showing presence of Spag17 gene at the lateral ventricle, cerebral cortex and rhombic lip (Figure 

9). This relative Nestin positive area differences between WT and KO trend persist in P0 cerebral 

cortex and rhombomere 1 (not shown), as well as hippocampus. In the hippocampus, both WT 

and KO had strong positive Nestin signal at the dentate gyrus, a known neurogenic area, but KO 

had overall 2.5-fold of positive Nestin signal in KO (Figure 13). Similar to E15.5, P0 Nestin 

staining at the hippocampus is supported by P0 WT IHC showing strong presence of SPAG17 at 

the same area (Figure 10). 
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Figure 11. E15.5 Cortex stained with Nestin. Representative sections of E15.5 Cortex from 

WT (Top) and KO (Bottom) immunostained with NSC and RGC marker Nestin. The region of 

interest (ROI) and the specific antigen staining within the area has been highlighted and 

overlayed with red using cellSens software. With WT as 1, KO had about 2.2-fold of positive 

signal within same area of interest. Each data point was compared using unpaired t-test. Data are 

means +/- SEM of experiments. *P<0.05. n=3 
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Figure 12. E15.5 Rhombomere 1 (R1) area stained with Nestin. Representative sections of 

E15.5 R1 from WT (Top) and KO (Bottom) immunostained with NSC and RGC marker Nestin. 

The region of interest (ROI) and the specific antigen staining within the area has been 

highlighted and overlayed with red using cellSens software. With WT as 1, KO had about 1.5-

fold of positive signal within same area of interest. Each data point was compared using unpaired 

t-test. Data are means +/- SEM of experiments. *P<0.05. n=2 
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Figure 13. P0 Hippocampus area stained with Nestin. Representative sections of P0 

hippocampus from WT (Top) and KO (Bottom) immunostained with NSC and RGC marker 

Nestin. The region of interest (ROI) and the specific antigen staining within the area has been 

highlighted and overlayed with red using cellSens software. With WT as 1, KO had about 2.5-

fold of positive signal within same area of interest. Each data point was compared using unpaired 

t-test. Data are means +/- SEM of experiments performed in triplicate. *P<0.05. n=3 
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Immature Neurons 

 Tuj1, or Neuron-Specific Class III beta-tubulin, is expressed in the cytoplasm and axons 

of immature neurons that are migrating from SVZ to CP. Their immunoreactivity first appears at 

the cerebral cortex around E13-E14 at the CP near the basal surface of the cortex, and increases 

even further in the area between VZ and SVZ after E14 (23). Tuj1 is known to be expressed in 

immature neurons who are either very early, during or immediately after mitotic cycle (23). 

However, they are even more unique subset of population different from other post-mitotic 

migrating neurons by migrating in non-radial orientation without using radial glial processes 

(23). Other than expressing Tuj1, immature neurons are distinctive from mature neurons in 

morphology with less complex dendritic tress and reduced spine density (51). Tuj1 staining was 

used to highlight newly generated post-mitotic cells to examine what steps might be heavily 

affected by Spag17 KO. 

 Tuj1 positive signals were detected on the E15.5 cerebral cortex using IHC. Figure 14 

shows normal distribution of immature Tuj1 positive neurons mostly distributed at the SVZ, IZ, 

and CP, with very little number of cells at the VZ indicating that the cells were normally 

migrating towards the CP. However, Spag17/CMV-Cre KO animals showed lightly differences 

in the pattern of expression of Tuj1. It appears that KO brains may have more Tuj1 positive cells 

at the VZ and SVZ compared to WT animals of same age group. Although, KO had 1.3-fold of 

positive Tuj1 signal than WT, quantification of the image using the IHC analysis program 

cellSens did not show statistically significant different between WT and KO (Figure 14). This 

might be due to lower number of samples analyzed and increased variation between animals. For 

Tuj1, IHC done on some of the E15.5 and P0 were not eligible for quantification due to the lack 

of tissues with matching anatomical features and area. 
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Figure 14. E15.5 Cortex stained with Tuj1. Representative sections of E15.5 Cortex from WT 

(Top) and KO (Bottom) immunostained with immature neuron marker Tuj1. The region of 

interest (ROI) and the specific antigen staining within the area has been highlighted and 

overlayed with red using cellSens software. With WT as 1, KO had about 1.3-fold of positive 

signal within same area of interest. Each data point was compared using unpaired t-test. Data are 

means +/- SEM of experiments performed in triplicate. *P<0.05. n=3 
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Later, we collected neuronal cells from E14.5 WT and Spag17/CMV-Cre KO brains and 

proliferated them to study cell differentiation and maturation ex vivo. The expression of 

immature neuron cell marker Tuj1 on neuronal cell culture of WT and Spag17 KO brains were 

evaluated under the confocal fluorescence microscope after IF. Figure 15 shows Spag17 KO 

having more Tuj1 positive signals than WT cells. This is similar to what was observed in the 

IHC with 1.3-fold increased signal of Tuj1-positive cells in the cortex, suggesting that Spag17 

KO brains have more immature neurons than WT of same age group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Immunofluorescence evaluation of Tuj1 expression in cultured neurons. 

Representative images of immature neurons collected from E14.5 WT and Spag17 KO 

brains. WT (Top) and KO (Bottom) cells were immunostained with Anti-Tuj1 antibody 

(red). Differences in area with positive signal and morphology were observed under 

confocal microscope. 
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Mature Neurons 

 As immature neurons expressing Tuj1 start to exit from the cell cycle and initiate 

terminal differentiation near the CP, the cells will downregulate Tuj1 and will upregulate mature 

neuron-specific nuclear protein called Neuronal Nuclei or NeuN (52). NeuN is known for their 

high specificity to nervous tissue and does not detect immature neural progenitor cells as long as 

they are completely out of cell cycle (53). NeuN will be observed in most neuronal cell types 

within the brain except cerebellar Purkinje cells, olfactory bulb mitral cells, and retinal 

photoreceptor cells (52-53).  

 In our three independent experiments done on E15.5 embryo brains, NeuN positive cells 

were detected on E15.5 cerebral cortex, with KO having 60% less NeuN expression than WT of 

same age group (Figure 16). This suggests that loss of Spag17 may be associated with defects in 

the maturation of neurons. Similar to Tuj1, NeuN IHC done on some of the E15.5 and P0 were 

not eligible for quantification due to the lack of tissues with matching anatomical features and 

area. 
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Figure 16. E15.5 Cortex stained with NeuN. Representative sections of E15.5 Cortex from WT 

(Top) and KO (Bottom) immunostained with mature neuron marker NeuN. The region of interest 

(ROI) and the specific antigen staining within the area has been highlighted and overlayed with 

red using cellSens software. With WT as 1, KO had about 0.4 of positive signal within same area 

of interest. Each data point was compared using unpaired t-test. Data are means +/- SEM of 

experiments performed in triplicate. *P<0.05. n=3 



30 
 

Chapter 4: Discussion 

Previous findings from our lab illustrated involvement of Spag17 in motile cilia and its 

central pair microtubule (38, 49). However, unexpected expression in the tissues without motile 

cilia like bone, and disrupted development in the absence of Spag17 suggested that it might have 

broader influence (35). With the use of β-Gal assay and IHC, we were able to observe Spag17 is 

also expressed throughout the development of the brain from embryonic day 11 and up to birth.  

This is consistent with anomalous brain phenotypes like hydrocephaly, corpus callosum and 

cerebellum underdevelopment presented on both on murine model and a patient with 

homozygous Spag17 mutation (38, 48). 

1) Spag17 in cellular differentiation and maturation 

Based on previously published data on Spag17/CMV-Cre KO showing changes in 

differentiation rate of chondrocytes and osteoblasts, we hypothesized that neural stem cells and 

neurons in the brain of Spag17 KO will also have alternated differentiation rate. Consistent with 

our proposal, there was significant difference between WT and KO in relative area of positive 

signals for both NSC and mature neurons, signifying changes in differentiation. Via IHC on 

E15.5 and P0 WT and Spag17 KO brain, we observed 1.5 to 2.5-fold increase in NSC and RGC 

positive signal in KO brain than WT, and mature neuron signal in KO brain being 60% less than 

WT. Similar trend was noted on the Glycogen Synthase Kinase 3 or GSK-3, a serine-threonine 

kinase that is heavily involved in regulating the transcription factor level in multiple signaling 

pathways (54). In their research, IHC on Gsk3-KO mice brain showed expansion of neural 

progenitor throughout rostro-caudal level, upregulated by 100-200% while number of mature 

neurons were decreased by 70% (54). Despite the increase in overall number of NSC and 
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progenitors like RGCs, number of mature cells being much less than the WT brains imply 

impeded neurogenesis process.  

Right after exiting the mitotic cell cycle, immature neurons generated from NSC and RGCs 

need to go through subsequent maturation process before they start expressing mature neuronal 

cell markers (55). This newly formed neurons can be marked with antibodies against Tuj1, while 

more mature neurons can be highlighted with antibodies against MAP2 or NeuN. In the IHC 

performed on E15.5 WT and Spag17/CMV-Cre KO brain using Tuj1, we were able to observe a 

trend of more positive signal of immature neurons in KO than WT by 1.3 times. This 

phenomenon was also detected in the study done on Arx, a transcription factor that have been 

associated with neurodevelopmental disease including West Syndrome and lissencephaly both 

exhibiting mental retardation and spasmic episodes (55). In basal ganglia of mouse brain, they 

observed normal early differentiation from stem cell to immature neuron, but failure to mature or 

subsequent differentiation. Moreover, tangential migration and radial migration of those neurons 

were markedly reduced, leading to overall accumulation of immature neuron and decreased 

mature neuron in periventricular area (55). Even though our data did not have statistical 

significance, we prospect increasing sample numbers in future will show consistent trend with 

significance. Overall, combination of decreased mature neurons and buildup of immature 

neurons in Spag17 KO uphold our initial hypothesis that Spag17 plays critical role in neural cell 

differentiation and maturation, possibly hindering proper neurogenesis.  

Interestingly, there have been comparable studies on changed rate of neurogenesis from 

overexpression or silencing of cytoskeletal gene similar to Spag17. In the study done on Tctex-1, 

a subunit of cytoplasmic dynein interacting with microtubule, silencing of the gene showed 

decrease in neural progenitor cells and increase in premature neuronal differentiation marked by 
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Tuj1 (56).  Opposing the Tctex-1, overexpression of SPAG6, another protein associated with C1 

microtubule of CPC, and known close and collaborator of SPAG17 led to inhibition of NSC 

proliferation and induced differentiation into neurons marked by Brn2 (57).  

2) Conclusion and Future Directions 

Our current findings support the premise that Spag17 is important for cell differentiation and 

maturation. However, it is not yet known what is the mechanism of how this protein may play 

this role. Our lab has been studying this protein for several years and discovered that the protein 

may also be involved in primary cilia development. Primary cilia are an antenna like organelle 

that coordinates multiple morphogen signaling pathways and it is essential for developmental 

processes, in particular cell differentiation and maturation (4, 15, 58). In this context, future 

studies will investigate whether the role of Spag17 in the development of the brain is associated 

with cell differentiation via a mechanism involving primary cilia. Future molecular studies will 

involve IHC on oligodendrocyte progenitor and astrocyte markers to see if non-neuronal cells 

differentiation rate is affected, western blot to confirm IHC and quantification data, and 

evaluation of primary cilia signaling pathways, including Wnt and HH signaling and the 

interaction with Spag17. Moreover, RNAseq studies in cells isolated from both WT and Spag17 

KO embryos at different stages will inform the transcriptional profile of these cells and how Wnt 

and HH signaling are regulated in the presence and absence of Spag17. Additional studies will 

evaluate the possible role of Spag17 in the migration of cells during neuronal cell maturation and 

development. 
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