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Approximately 16 million people in America are diagnosed with Alcohol Use Disorder 

(AUD) but no efficacious medical treatments exist. Alcohol-related behaviors can be 

studied in model organisms, and changes in these behaviors can be correlated with 

either (i) a risk for alcohol dependence or (ii) a symptom/feature of AUD itself. Although 

AUD is a disease of the central nervous system, a majority of research has focused on 

the neuronal underpinnings, leaving glial contributions largely undescribed. We used 

Drosophila melanogaster (fruit fly) to identify genes whose expression in glia regulates 

alcohol sedation. Mammals and Drosophila have conserved behavioral responses to 

alcohol and functionally similar adult glial cells, especially astrocytes. Since previous 

research in mammals and flies has demonstrated that glia respond to alcohol 
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administration, we hypothesized that glia are important regulators of alcohol-related 

behaviors. To pursue this, we characterized a pan-glial steroid-inducible GeneSwitch 

transgenic fly, which allows gene manipulation within glia during adulthood. We 

performed a targeted screen and manipulated genes that were known to be expressed 

within Drosophila glia and measured their alcohol sedation sensitivity using the ethanol 

sedation assay. We identified the genes Cysteine proteinase 1 (Cp1) and Tyramine 

decarboxylase 2 (Tdc2). Knocking down Cp1 in cortex glia, as well as all glia during 

adulthood, increased alcohol sedation sensitivity and may also enhance rapid tolerance 

development. We could not identify what pathway Cp1 was functioning within to 

mediate this response, suggesting that Cp1 may have a unique function within glia. 

Knockdown or overexpression of Tdc2 in glia increased or decreased alcohol sedation 

sensitivity, respectively. Tdc2 functions upstream of the vesicular monoamine 

transporter (VMAT) and the SNARE complex to regulate alcohol sedation. These results 

were specific to astrocytes, as well as all glia during adulthood. These results suggest 

that tyramine synthesis via Tdc2 and its release via vesicular exocytosis regulates 

alcohol sedation. Taken together, these results suggest that glia are important 

regulators of alcohol-related behaviors in flies. Interestingly, fly cortex glia and 

astrocytes are functionally similar to mammalian astrocytes, indicating that these results 

may be translatable to mammals.  
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CHAPTER 1: INTRODUCTION  

 

 

 

A. ALCOHOL ABUSE AND ALCOHOL USE DISORDER 

Approximately 86% of people have drunk alcohol at some point in their lifetime, and 

roughly 2.4 billion people are currently alcohol drinkers worldwide1. While these 

statistics may not be surprising, 2.8 million deaths were caused by alcohol use in 2016, 

making alcohol the leading cause of premature death of people ages 18-49 

worldwide1,2. Continued, problematic and severe alcohol consumption can lead to the 

diagnosis of an alcohol use disorder (AUD). Although AUD is a spectrum disorder, it is 

largely characterized by a (i) compulsive and uncontrolled use of alcohol and (ii) a 

negative emotional state when not using alcohol3. Depending on the number of DSM-5 

criteria met, AUDs can be classified as mild, moderate or severe3. In 2015, it was 

estimated that 16 million people in the United States were living with AUD. However, 

only 7% of this population received any medical treatment1. No new pharmacotherapies 

for AUD have been approved in over a decade, and the only Food and Drug 

Administration approved drug is naltrexone4. Together, these statistics highlight the 

need to better understand the biological progression from alcohol use to AUD so more 

efficacious treatments can be discovered.  

Alcohol use impacts central nervous system (CNS) function, and AUD is a disease 

of the central nervous system5. Since many parallels have been made between alcohol-

related behaviors and alcohol abuse and dependence, there is a continuing effort to use 



 

2 
 

model organisms to identify genes and mechanisms underlying alcohol-related 

behaviors to better understand the role of the CNS during alcohol use, abuse and 

dependence. Identifying novel genes and mechanisms may facilitate the discovery of 

novel treatments for humans with AUD. Although the central nervous system contains 

both glia and neurons, the majority of research to date has focused on the role of 

neuronal mechanisms in alcohol-related behaviors. Thus, there is likely much to be 

learned by investigating the role of glia in behavioral responses to alcohol. 

The model organism Drosophila melanogaster is a well-established model for 

identifying novel genes and mechanisms that regulate alcohol-related behaviors. 

Considering that flies and mammals have conserved behavioral responses to alcohol, 

as well as functionally homologous glial cells, we postulate that the fly is an excellent 

model to investigate how glial cells influence alcohol-related behaviors (reviewed in 

sections B and C). Additionally, previous research has demonstrated that glia in human 

alcoholic post-mortem tissue, rodents and flies are altered in the presence of alcohol 

(reviewed in section D). While there is still much to be learned, this body of work 

supports the notion that glia do respond to alcohol administration and influence alcohol-

related behaviors.  

 

B. DROSOPHILA MELANOGASTER AS A MODEL TO STUDY ALCOHOL-

RELATED BEHAVIORS 

In both humans and flies, lower doses of alcohol produce a stimulant effect, 

characterized by hyperactivity6,7. Conversely, higher doses of alcohol lead to 

depressant effects, such as motor impairment and sedation7,8.  Flies and humans can 
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both develop tolerance to alcohol, but rapid tolerance and chronic tolerance are typically 

measured in the fly. Flies can develop tolerance in the presence of a brief exposure to a 

high, sedating, dose of ethanol (rapid tolerance) or in the presence of a long exposure 

to a non-sedative dose of alcohol (chronic tolerance)9. It is largely accepted that chronic 

ethanol exposure can result in long term changes in the brain, and this is thought to be 

a sign of dependence, and can lead to withdrawal symptoms. In the absence of ethanol, 

as a sign of withdrawal, humans experience dysphoria, anxiety, cognitive impairment 

and seizures10. By electrically stimulating the brain and recording seizure like activity in 

the flight muscle, seizures can be studied in the fly11. The threshold for inducing 

seizures is lower in flies previously exposed to ethanol11. Another hallmark feature of 

alcohol dependence is uncontrolled use and continued consumption despite aversion7. 

Ethanol consumption can be measured in the fly, and when given a choice between 

food with or without ethanol, flies develop a preference for the ethanol containing food12. 

This preference persists when the aversive, bitter tasting compound quinine is added to 

the ethanol containing food12. Interestingly, by associating ethanol vapor with an odor, 

flies will even undergo an electric shock for the alcohol associated cue13.  

Additionally, there are conserved molecular mechanisms regulating alcohol-related 

behaviors in flies and mammals. For example, the same alcohol metabolism machinery 

exists in flies and mammals and it is essential to avoid ethanol toxicity14,15. Specifically, 

alcohol is converted to acetaldehyde by alcohol dehydrogenase (ADH), and 

acetaldehyde is converted to acetate by aldehyde dehydrogenase16. Mutations in the 

ADH gene reduce hyperactivity in response to a low dose of ethanol and increase 
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sensitivity to a high dose in flies6,17. In humans, ADH variants produce an inactive form 

of the enzyme, and protect against AUD development5.  

Various neurotransmitters have also been implicated in alcohol abuse, including -

Aminobutyric Acid (GABA), dopamine and neuropeptide Y. Antagonizing the GABA-B 

receptor in flies blunts the loss of postural control associated with a high dose of 

alcohol18. Interestingly, the GABA-B receptor has been associated with alcohol 

consumption and motivation in rats and alcohol withdrawal and cravings in humans19.  

Additionally, knocking out the dopamine D1-like receptor in flies decreases ethanol-

induced hyperactivity, suggesting that dopamine contributes to the stimulant effect of 

alcohol in flies20. In mammals, dopamine mediates the rewarding properties of drugs of 

abuse, including alcohol21 and the stimulating effect of alcohol is reported as 

rewarding7. Neuropeptide Y (NPY) has also been implicated in alcohol consumption and 

dependence in mammals22. The fly orthologue to NPY is neuropeptide F (NPF), and 

flies with decreased NPF signaling are resistant to alcohol sedation23. Together, this 

research supports that flies have a conserved behavioral response to alcohol, and that 

many genes that alter alcohol-related behavior in flies have also been implicated in 

mammalian, and even human, alcohol use and abuse.  

Additionally, many tools exist in the fly to manipulate gene expression, which makes 

it feasible to screen large sets of genes to determine if any influence alcohol behavior. 

For example, the Gal4-UAS system allows constitutive transgene expression in specific 

tissues or cell types24. The Gal4 “driver” is expressed via tissue-specific promoters, and 

only Gal4 can bind to and activate a specific upstream activator sequence (UAS) that is 

followed by a transgene of choice. Once the UAS is activated, that transgene is 
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transcribed24. Commercially available UAS-transgenes include RNAi’s to knockdown 

specific genes, dominant negatives to functionally silent genes, and duplicate copies to 

overexpress a specific gene. Similar systems exist with different “driver” proteins (i.e. 

LexA or Q), which recognize their own “UAS” sequences (i.e. LexAop or QUAS)25,26. 

When used together, unique manipulations can be made in different cell types at the 

same time27. These systems can also be temporally controlled by temperature shifts 

and drug treatments. For example, Gal80 proteins repress Gal4 proteins and can be 

temperature sensitive (Gal80ts)28. In the Gal4 restrictive temperature (18°C) the Gal80 

protein is activated, and the Gal4 protein is repressed. At the Gal4 permissive 

temperature (30°C) the Gal80 protein is inactive and the Gal4 protein is functional. 

Additionally, GeneSwitch (GS) drivers are tissue specific, steroid-inducible Gal4 drivers, 

which allow temporal control over UAS-transgene induction29. Utilizing this system, 

when the steroid is not present, the Gal4 protein is inactive and expression of the UAS-

transgene is not induced. When the steroid is present, however, the Gal4 protein is 

activated and can induce expression of the UAS-transgene. The steroid (RU486 or 

mifepristone) can be administered to flies through their food. Therefore, flies with GS- 

and UAS-transgenes fed steroid during adulthood will have the UAS-transgene 

expressed during adulthood. Conveniently, many tools exist to manipulate glia and glial 

cell subtypes in flies.  
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C. DROSOPHILA MELANOGASTER AS A MODEL TO STUDY ADULT CNS 

GLIAL CELLS 

The adult mammalian CNS has three major glial cell subtypes: oligodendrocytes, 

microglia and astrocytes, as well as other glial cells like NG2 cells and polydendrocytes. 

A core function of oligodendrocytes is forming myelin sheath around neuronal axons in 

the CNS, allowing fast conductance of action potentials and trophic support30. Microglia 

are the primary immune cell in the mammalian brain; they are constantly surveying their 

microenvironment for foreign pathogens or danger signals, and can secrete pro- or anti-

inflammatory molecules in response31. Astrocytes can interact with the blood brain 

barrier (BBB), other glia and neurons, and play a role in maintaining overall brain 

homeostasis32.  

The adult fly CNS contains five glial cell subtypes: subperineural glia, perineural glia, 

ensheathing cells, cortex glia and astrocytes. The subperineural and perineural glia 

(also termed surface glia) make up the BBB of the fly. While they express similar 

proteins found in the mammalian BBB33, they do not share any functional or molecular 

similarities with mammalian CNS glia. Like their name implies, ensheathing glia 

encapsulate axon bundles34. Ensheathing glia can also regulate neuronal excitability by 

metabolizing glutamate35, as well as engulf neuronal debris36-38. Cortex glia surround 

neuronal cell bodies and maintain the microenvironment39.  Additionally, fly astrocytes 

extend processes into the synapse and maintain the synaptic environment27. In the fly 

CNS, macrophages are the primary immune cell and it is currently believed that flies do 

not have microglia40.  
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In a healthy brain, fly ensheathing glia and mammalian oligodendrocytes share 

some similarities: they are both closely associated with neuronal axons and provide 

some support30,35. However, the fly CNS does not contain myelin40 and during trauma, 

ensheathing glia become highly phagocytic36, when oligodendrocytes typically become 

damaged and can die41-43. This suggests that ensheathing glia and oligodendrocytes 

are fundamentally different, and that studies using fly glia may not be translatable to 

mammalian oligodendrocytes. However, mammalian astrocytes share many 

morphological and functional similarities with fly cortex glia and fly astrocytes, 

suggesting that studying these cell types in flies may be translatable to mammals. 

Mammalian astrocytes and their fly counterparts will be reviewed in sections 1 and 2 

below.  

 

C.1 A FUNCTIONAL OVERVIEW OF MAMMALIAN ASTROCYTES 

Astrocytes are the most abundant cell type in the mammalian CNS and tile the entire 

CNS with fine processes in a non-overlapping manner44. One astrocyte can contact 

approximately 100,000 and 2,000,000 synapses in rodents and humans, respectively45. 

This allows astrocytes to function in close proximity with neurons, blood vessels, and 

other glial cells, therefore allowing these cells to regulate overall brain homeostasis. 

Astrocytes provide support to neurons through ion homeostasis, transmitter clearance 

and recycling, direct modulation of neuronal signaling and provide metabolites and 

nutrients32. Astrocytes also participate and maintain the BBB, where their perivascular 

end feet directly contact blood vessels and transfer metabolites from the blood to 

neurons46,47. Additionally, astrocytes function in a network and can communicate with 
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each other through gap junctions. In the hippocampus, there are approximately 15 

astrocytes per network in the rat48, and 18 astrocytes per network in the mouse49. While 

not electrically excitable like neurons, astrocytes display a form of excitability based on 

intracellular calcium variations50. Intracellular calcium can be transferred between gap 

junctions, allowing one calcium event which originated in one astrocyte to reach 

thousands of synapses51. These calcium events are in response to neurotransmitters, 

neuromodulators and changes in the extracellular space52, and can lead to the release 

of gliotransmitters. Astrocytes also respond to pathological insults, a process known as 

astrogliosis, which can alter their functions. Astrocyte functions in a healthy mature 

brain, as well as under pathological insults, will be reviewed in detail below.  

Among others, two ways astrocytes regulate synaptic activity is through 

neurotransmitter uptake and ion homeostasis. One of the defining features of astrocytes 

is their enrichment for glutamate and GABA transporters, which efficiently clear the 

respective neurotransmitters (NTs) from the extracellular space after neuronal 

activity53,54. Astrocyte expression of the excitatory amino acid transporters (EAAT) 

glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST), as well 

as the cysteine glutamate anti-transporter (xCT), prevents glutamate-derived neuronal 

excitotoxicity55,56.  These transporters also control glutamate spillover outside of the 

synapse, allowing glutamate to function solely in the synapse it was released into57. 

Additionally, once glutamate has been transported into the astrocyte, it can be 

converted to glutamine via glutamine synthetase and recycled back to the neuron58.  

The GABA transporters (GATs) 1 and 3 are expressed in astrocytes. GAT-1 reduces 

GABA spillover outside the synapse and GAT-3 regulates extracellular GABA 



 

9 
 

concentrations, consequently regulating tonic synaptic inhibition59. In the hippocampus, 

activation of GAT-3 leads to an increase in intracellular sodium (Na+) concentrations, 

and a sequential increase in calcium (Ca2+) via Na+/Ca2+ exchangers60.  

When neurons are undergoing an action potential, they release a large amount of 

potassium (K+) into the extracellular environment. To maintain neuronal activity, 

astrocytes engage in K+ buffering. While astrocytes express multiple K+ channels56, the 

most studied is the inwardly rectifying K+ (Kir) channel, Kir4.1, which controls the 

hyperpolarized resting potential of astrocytes61. Expression of Kir4.1 on astrocyte 

processes allows a rapid uptake of K+ from the synapse62 and reduced Kir4.1 

expression in astrocytes is associated with elevated extracellular K+ and an increase in 

neuronal membrane depolarization63.  Interestingly, the aquaporin-4 water channel is 

also highly expressed in the same subcellular regions as Kir4.1 on astrocytes. It is 

believed that K+ uptake via Kir4.1 generates a parallel water influx through aquaporin-4, 

which regulates osmotic changes within the astrocyte64. However, K+ clearance from the 

synaptic cleft is not limited to Kir4.1; astrocytic Na+/K+ ATPase activity in the 

hippocampus and optic nerve is also important for K+ buffering during neuronal 

activity65,66.  

Astrocyte membranes also express many calcium channels and exchangers which 

are important for Ca2+ mediated events. For example, transient receptor potential (TRP) 

channels allow Ca2+ influx in response to various changes in the environment. TRPA1 

mediated Ca2+ influx contributes to the astrocytes’ resting cytosolic Ca2+ levels67. 

Mechanical stimulation can activate Ca2+ influx via TRPC168, TRPC369 and TRPV4 

channels70. In vivo mechanical stimulation of astrocytes can occur in response to blood 
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flow, allowing astrocytes to be sensitive to local changes in vasomotion71. Temperature 

changes also activate Ca2+ influx via TRPV1 channels72. Local brain temperature can 

change in response to metabolic heat produced by physiological activity or 

pathology73,74. Additionally, astrocytes express voltage-gated Ca2+ channels (VGCCs) in 

vivo75,76. While VGCCs do not contribute to internal Ca2+ concentrations at rest, they 

may be recruited to the membrane to function under depolarizing or pathological 

conditions77,78, but this is controversial79. Although TRP channels and VGCCs are 

important for Ca2+ influx, the Na+/Ca2+ exchanger is important for Ca2+ efflux.  This 

exchanger brings three Na+ into, and one Ca2+ out, of the cell. However, when 

astrocytic intracellular Na+ is elevated, NCX can function in the opposite mode, and thus 

cause Ca2+ influx80.   

Astrocytes also express many NT receptors and their activation can lead to 

increases in intracellular calcium. These NTs include acetylcholine, ATP, GABA, 

endocannabinoids, and glutamate81. There is also evidence that astrocytes respond to 

the neuromodulators norepinephrine82,83 and dopamine84 as well as neuroendocrine 

molecules85. Activation of the ionotropic N-methyl-D-aspartate (NMDA) glutamate 

receptor and ionotropic purinergic P2X(1/5) ATP receptor causes an influx of cations, 

such as Ca2+86.  Additionally, many of these receptors are G-protein coupled receptors 

(GPRC), and activation of Gq GPRCs can lead to increases in intracellular calcium 

indirectly through increases in phospholipase C (PLC) production. PLC converts 

phosphatidylinositol biphosphate (PIP2) to diacylglycerol (DAG) and inositol 

triphosphate (IP3). The endoplasmic reticulum (ER) in astrocytes has IP3 receptors, 

which require Ca2+ and IP3 as co-agonists87,88. Upon activation, the IP3 receptors 
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release Ca2+ from the ER, thus raising intracellular Ca2+ levels within the astrocyte89. 

Gq GPCRs expressed on astrocytes include the metabotropic glutamatergic receptor 5 

(mGluR5)90, the purinergic P2Y receptor91, the serotonergic 5HT2A receptor92 and the 

adrenergic 1A receptor93.  

Outside of the ER, the mitochondria also regulate intracellular Ca2+ in astrocytes 

through the mitochondrial H+/Ca2+ exchanger (HCX), the mitochondrial Ca2+ uniporter 

(MCU) and the permeability transition pore (PTP)94. Although HCX and MCU both 

remove intracellular Ca2+ from the astrocyte cytosol, HCX is sensitive to nanomolar 

concentrations of Ca2+95 and MCU is sensitive to micromolar concentrations96. PTP, on 

the other hand, can produce spontaneous Ca2+ events when the IP3 receptors are not 

activated97.  

When the intracellular Ca2+ concentration reaches a certain threshold98,99, the 

astrocyte can release gliotransmitters (GTs). The widely accepted and frequently 

studied gliotransmitters are glutamate, D-serine, GABA, ATP and adenosine32. While 

still debated, evidence suggests that GTs can be released from astrocytes through (i) 

Ca2+ dependent vesicle release, (ii) transporters or (iii) the opening of channels, 

specifically hemichannels or pannexons. In astrocytes, GT release via vesicular 

exocytosis is a relatively slow process and is dependent on Ca2+ and SNARE 

proteins100,101. Interestingly, unique elements of the SNARE complex appear to regulate 

independent SNARE-dependent vesicular release pathways. Glutamate-containing 

vesicles require synaptobrevin II for their release, while neuropeptide Y containing 

vesicles require cellubrevin102. These data suggest that there is diversity within the 

astrocyte SNARE protein pathways. There is also evidence that transporters may be 
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able to release GTs under pathological and non-pathological conditions. Transporters 

can reverse their directionality and release gliotransmitters, specifically glutamate and 

GABA, into the synapse101,103. Lastly, astrocytes can release GTs through 

hemichannels and pannexons. Hemichannels are channels compromised of connexins, 

while pannexons are channels made of pannexins104. Both these channels are found in 

similar domains on the astrocyte105 and they both allow ions and small molecules, 

including ATP, glutamate, D-serine and possibly other GTs, to pass104,106,107.  Despite 

these similarities, the two channels have different opening properties. Hemichannels 

exhibit a low open probability under resting conditions108, whereas pannexons have a 

high open probability under resting conditions109.  

Once released, GTs can influence nearby neurons and glial cells. However, 

astrocyte communication with each other through GT is temporally limited by GT 

diffusion in the extracellular space, and is therefore relatively slow. A faster mechanism 

of astrocyte communication with their immediate neighbors is through gap junctions110. 

Gap junctions form from the docking of two hemichannels, creating a pore that connect 

the cytoplasm of the two cells106. Thus, ions, second messengers and small molecules 

up to 1.8 kiloDalton, including Ca2+, K+, Na+, cyclic adenosine monophosphate, inositol-

1,4,5 triphosphate, glutamate, ATP and energy metabolites can pass between the 

cells111,112. This allows metabolic and electric coupling and coordination of the 

astrocytes.    

Overall, astrocytes preform these functions to maintain their microenvironment and 

promote normal neuronal firing. Due to this, it is not surprising that astrocytes are a 

highly heterogeneous cell type. However, it is debated whether astrocyte heterogeneity 



 

13 
 

stems from distinct molecular differences during development or adaptations to the 

microenvironment.  In a healthy adult brain, astrocytes are morphologically distinct 

based on their location. Fibrous astrocytes are found in the white matter of the CNS and 

have numerous long branches that wrap around neuronal cell bodies and contact nodes 

of Ranvier on the axon. They can also extend their end-feet to blood vessels. 

Protoplasmic astrocytes are found in the grey matter and typically have shorter and 

stubbier processes. These processes surround virtually every synapse, and also 

contact blood vessels44. However, astrocytes also display heterogeneity in their protein 

expression in normal, healthy adult brains. For example, astrocytes have been identified 

as “passive” or “active” based on whether they express glutamate transporters or 

receptors. Passive astrocytes express glutamate transporters but not receptors, while 

active astrocytes express glutamate receptors but not transporters. Passive and active 

astrocytes can be found in the same brain region113.  

Research also suggests that layer-specific astrocytes exist as well. For example, 

astrocytes from cortical layer 2/3 take up a larger volume compared to astrocytes from 

cortical layers 1, 4, 5 and 6114. Likely due to their expansive processes, cortical layer 2/3 

astrocytes also surround more synapses than other cortical astrocytes114.  In vivo 

analysis revealed that cortical layer 1 astrocytes have twice as much Ca2+ activity 

compared to cortical layer 2/3 astrocytes115. Additionally, cortical layer 2/3 and 5 

astrocytes express higher levels of the K+ channel Kir4.1 compared to astrocytes in 

other cortical layers116. Taken together, these data suggest that astrocyte functions may 

reflect the needs of their neighboring neurons and that astrocytes can, therefore, 

differentially influence surrounding synapses.  
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Astrocytes also differ between brain regions. Astrocytes isolated from mouse 

cerebellum, thalamus, brainstem, olfactory bulb and cortex could be separated into five 

different subpopulations based on their immunoreactivity to several antibodies117.  

Additionally, astrocyte mRNA expression patterns from the cortex, hippocampus, 

thalamus, hypothalamus, caudate-putamen and nucleus accumbens revealed three 

molecularly distinct subpopulations with different, and sometimes complete opposite, 

profiles between regions118. A similar study found astrocyte transcriptome differences to 

be region and age dependent119. Besides RNA and protein expression differences, 

astrocytes in the hippocampus, striatum and ventral tegmental area also display 

difference in their K+ currents, spontaneous and evoked Ca2+ events, morphology and 

synapse proximity120,121.   

Not surprisingly, astrocytes also actively, and heterogeneously, respond to CNS 

insults, diseases and disorders. Under these conditions, astrocytes become activated 

and alter their morphology and gene expression, a process termed astrogliosis31. 

Activated astrocytes take on an A1 or A2 profile. A1 astrocytes exacerbate disease 

progression by killing neurons and oligodendrocytes, resulting in a largely negative 

effect on CNS function and recovery. However, A2 astrocytes upregulate neurotrophic 

genes and promote neuronal survival122. Interestingly, astrocytes also react uniquely in 

different disease states, and this heterogeneity has been heavily studied123. However, 

since this research focuses on alcohol use and AUD, astrocytic contributions to this will 

be reviewed below (Section D).  
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C.2 A FUNCTIONAL OVERVIEW OF DROSOPHILA MELANOGASTER CORTEX 

GLIA AND ASTROCYTES  

 In Drosophila melanogaster, cortex glia and astrocytes are morphologically and 

functionally similar to mammalian astrocytes. These parallels will be highlighted below. 

The basic anatomy between the mammalian and fly brain is very different, however. 

There are few structural similarities and the fly brain is divided into two major regions: 

the cortex and the neuropil. The fly cortex contains neuronal cell bodies and no 

synapses. The neuropil, on the other hand, contains neuronal axons and is a synaptic 

rich region.  

Cortex glia, as their name implies, reside in the cortex region of the Drosophila 

CNS124. However, one cortex glia cell can extend its fine processes to surround 

approximately 100 neuronal cell bodies125 and make significant contact with the BBB126. 

Through their non-overlapping spatial domains, cortex glia surround virtually every 

neuronal cell body in the adult fly brain124. Genetic ablation of these cells results in 

developmental lethality127 and disruption of cortex glial secretion of the neurotrophin 

Spätzle 3 leads to neuronal cell death39, demonstrating that these cells are important for 

neuronal health and maintenance, like their mammalian astrocyte counterparts.   

Given that cortex glia are positioned between the BBB and neuronal cell bodies, 

it has been assumed that cortex glia shuttle important metabolites to neurons39,128 

similarly to mammalian astrocytes, but this relationship has never been experimentally 

demonstrated.  However, components of the mammalian astrocyte neuron lactate 

shuttle are conserved in Drosophila glial cells, but the exact glial cell subtype(s) remain 

unidentified. For example, the monocarboxylate transporter (MCT) Chaski, which 
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shuttles lactate and pyruvate, is enriched in fly glia but is also expressed in neurons129. 

The mammalian MCT1 and MCT2 are also expressed on glia and neurons129, although 

these transporters are known to be expressed on mammalian astrocytes and 

oligodendrocytes130-132. Taken together, these data suggest that fly cortex glia may be 

equipped to provide trophic support to neurons.  

Additionally, like their mammalian counterparts, cortex glia display rapid, near 

membrane Ca2+ oscillations133. The change in intracellular Ca2+ is mediated by TRPA1 

channels, as well as zydeco, a Na+/Ca2+, K+ exchanger (NCKX)133. This suggests that 

cortex glia (i) have similar machinery as mammalian astrocytes to alter intracellular Ca2+ 

levels and (ii) can respond to and regulate ion concentrations in the extracellular space. 

Drosophila zydeco is homologous to mammalian NCKX2, which regulates intracellular 

Ca2+ in astrocytes, oligodendrocytes and neurons134,135.  Knockdown of zydeco in cortex 

glia decreased Ca2+ influx and increases seizure susceptibility133. Interestingly, several 

mammalian studies have correlated astrocyte Ca2+ oscillations with seizure initiation136-

138, suggesting that glial Ca2+ dysregulation may be a conserved seizure pathology. 

Cortex glial cells also contribute to seizure susceptibility when their plasma membrane 

structure is compromised, causing neuronal cell bodies to be abnormally 

encapsulated139. While this exact mechanism is unknown, these data further suggest 

that cortex glia can regulate neuronal excitability.  

Drosophila astrocytes, like their mammalian counterparts, maintain ion 

homeostasis, remove neurotransmitters from the synapse, produce Ca2+ oscillations 

and release gliotransmitters40,140. These cells also are morphologically similar; however, 

fly astrocytes are unique in that their fine processes are only found in synaptic rich 
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regions141. The approximately 4,600 fly astrocytes exist and tile to form a dense 

meshwork with very little overlap to cover the entire synaptic space124,125.  

Fly astrocytes express the EAAT1 (also known as GLAST) and GAT for the 

uptake of glutamate and GABA from the synapse. As seen in mammals, this allows the 

balance of excitatory and inhibitory synapses in the adult fly brain142,143. Previous work 

in the fly has demonstrated that EAAT1 and GAT expression on astrocytes is 

physiologically relevant. Loss of EAAT1 in fly astrocytes leads to neuronal firing 

dysregulation, axon degeneration, and a shortened lifespan141,144. Additionally, an 

increase in EAAT1 on fly astrocytes has been correlated with increased seizure 

susceptibility145. Conversely, downregulation of GAT endocytosis in astrocytes, and 

therefore an increase in GABA in the synaptic cleft, has been associated with a rapid 

onset of paralysis in flies146. Under normal conditions, astrocyte GAT expression on the 

plasma membrane is regulated by neuronal activity levels, indicating that flies engage in 

glia-neuron crosstalk147. Neuronal activity can increase astrocyte Ca2+ levels, leading to 

endocytosis of GAT146. Interestingly, mutations in EAAT’s and GAT have also been 

associated with seizures and paralysis in mammals148,149. Moreover, fly astrocytes, like 

mammalian astrocytes, express the enzymes and proteins necessary to break down 

glutamate and GABA into intermediates and recycle them back to neurons142-144.  

In mammals, astrocytes display Ca2+ oscillations, which can modulate the 

synaptic environment and neuronal function. Similar processes have been identified and 

studied in depth in Drosophila. Fly astrocytes can function in a tripartite synapse150, 

display Ca2+ transients 27,40,146, and directly modulate neuronal function27. Under normal 

conditions, fly astrocytes display spontaneous Ca2+ transients which are regulated by 
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synaptic activity and TRP channels27,146.  Specifically, the invertebrate catecholamines 

octopamine or tyramine binding to the Octopamine-Tyramine receptor (Oct-TyrR) on 

astrocytes leads to an increase in intracellular Ca2+. This Ca2+ transient stimulates 

adenosine release from the astrocyte, which binds to the adenosine receptor on a 

neighboring dopaminergic neuron to inhibit its function and alter locomotor behavior27.  

Mammalian astrocytes’ Ca2+ levels are modulated by the catecholamine 

norepinephrine83,151,152 demonstrating the utility of Drosophila to understand astrocyte-

neuronal communication and its physiological relevance in vivo.  

The Drosophila CNS also expresses innexins, which are structurally and 

functionally similar to mammalian pannexins and connexins, and they form 

hemichannels and gap junctions153. 8 innexins exist in flies, and innexin-2 and ogre are 

strongly expressed in glial cells153. Fly astrocytes can form gap junctions with each 

other141 and with cortex glia58. These couplings have been implicated in glutamate 

metabolism and sleep58. These data suggest that fly glia may be a useful model to study 

the physiological relevance of astrocyte communication through gap junctions.  

Fly astrocytes also express multiple inflammatory mediators, such as TNF and 

NF- homologues109,154. Due to this, fly models of Alzheimer’s disease, amyotrophic 

lateral sclerosis and Huntington’s disease have been developed and research has 

implicated astrocyte contributions to disease progression140. While activated profiles of 

astrocytes in flies have not been fully characterized, these data begin to suggest that 

Drosophila astrocytes can respond to pathology similarly to their mammalian 

counterparts.    
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As mentioned previously, mammalian astrocytes display robust heterogeneity123.  

Recently, fly astrocytes have been proposed as a model to study astrocyte 

heterogeneity as well155. For example, within the visual cortex of the adult fly, astrocyte 

morphology and orientation vary depending on the depth of the cell in the lamina and 4 

specific astrocyte subtypes in this region have been classified156,157. Additionally, 

different Gal4 drivers have been used to induce UAS-transgene expression in unique 

astrocyte populations, indicating that certain Gal4 promoters are specific to certain fly 

astrocytes24,125.   

Drosophila cortex glia and astrocytes are functionally homologous to mammalian 

fibrous and protoplasmic astrocytes, respectively39,40. Although heterogeneity within 

individual cortex glial cells has yet to be explored, fly astrocytes are emerging as a 

diverse cell type155. Taken together, this invites the speculation that Drosophila cortex 

glia and astrocytes have a common origin with mammalian astrocytes.  

 

D. GLIAL RESPONSES TO ALCOHOL ADMINISTRATION AND THEIR ROLE IN 

ALCOHOL-RELATED BEHAVIORS 

To date, the role of glial cells in alcohol use, abuse and dependence is not fully 

understood. However, previous literature has demonstrated that mammalian astrocytes, 

microglia, oligodendrocytes, as well as fly surface glia, can respond to adolescent and 

adult alcohol exposure and influence alcohol-related behaviors. This body of literature 

will be reviewed below.  
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D.1 MAMMALIAN ASTROCYTES AND ALCOHOL 

Astrocytes are robustly altered in human alcoholic post-mortem brain tissue 

samples. Increases in glial fibrillary acidic protein (GFAP) in the pre-frontal cortex158, as 

well as decreased astrocyte density in the pre-frontal cortex159,160 and hippocampus158 

have been observed, along with overall changes in astrocyte morphology161. 

Additionally, there is less connexin 43, a hemichannel precursor, in alcoholic brain 

tissue162. Microarray data also demonstrated that alcoholic postmortem brain tissue has 

upregulated immune-related genes, and microglia and astrocytes are historically major 

contributors to the neuroimmune response163-165.  These data suggest that astrocytes 

are robustly altered in the presence of chronic alcohol.  

Studies in the rodent have further demonstrated that astrocytes are altered in the 

presence of alcohol. For example, neurotransmitter uptake in astrocytes is influenced by 

alcohol administration. Acute ethanol blocks glutamate uptake166-168 and chronic ethanol 

downregulates the expression of the glutamate transporter GLT-1 and xCT169,170. 

Conversely, chronic ethanol treatment increased GLAST and GLT1 in cultured 

astrocytes171. Manipulating glutamate uptake in vivo also influences alcohol related 

behaviors. When GLAST was knocked out, mice had reduced voluntary alcohol 

consumption and did not exhibit motivation for alcohol172. Pharmacologically blocking 

glutamate uptake with dihydrokainic acid reduced binge drinking173, while 

pharmacologically enhancing GLT1 and xCT with N-acetylcysteine and clavulanic acid 

decreased ethanol consumption, ethanol seeking and ethanol reacquisition after 

abstinence174,175.  Additionally, upregulation of GLT1, but not GLAST, was seen in the 

nucleus accumbens core astrocytes following voluntary ethanol consumption176,177. 
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These results indicate that astrocytes may differentially regulate glutamate uptake as a 

response to alcohol.  

Transcriptomic data have revealed changes in astrocyte Ca2+ signaling in response 

to chronic ethanol consumption178. In cultured astrocytes, the presence of alcohol 

increases intracellular Ca2+ transients179,180. Increases in astrocytic Ca2+ are indicative 

of GT release32, suggesting that GT may be released in response to alcohol. In support 

of this, hemichannels, which release GTs, are also altered by alcohol treatment104. 

Interestingly, hemichannels are opened in the presence of alcohol, specifically, 

connexin 43 and pannexin 1 in hippocampal astrocytes181,182. Blocking hemichannels in 

the nucleus accumbens core increased ethanol seeking behavior, while activating these 

same astrocytes reduced motivation for ethanol after abstinence183.  

Research has also implicated that GTs respond to alcohol administration. For 

example, ethanol administration increases extracellular levels of the GT adenosine184. 

Increased adenosine activates the astrocyte-specific equilibrate nucleoside transporter, 

ENT1, which decreases glutamate uptake by downregulating GLT-1185.  

Ethanol also promotes immune signaling, specifically through the toll-like receptor 4 

(TLR4) and interleukin 1 receptor (IL1R), which increases expression of inflammatory 

cytokines186-190. Microglia and astrocytes regulate the neuroimmune response191 and 

this response can also influence alcohol related behaviors.  The chemokine C-C motif 

ligand 2 (CCL2) is increased in alcohol post-mortem brains163 as well as in mice after 

alcohol exposure192,193. Increased CCL2 expression in astrocytes led to increases in 

whole-brain CCL2 and reduced ethanol consumption, impaired spatial learning and 

improved associative learning in alcohol dependent mice194. However, increasing CCL2 
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with transgenics in astrocytes also increases endogenous CCL2 secretion from 

microglia, which complicates any conclusions about astrocytes directly modulating 

behavior194.  

D.2 MAMMALIAN MICROGLIA AND ALCOHOL  

 Microglia typically become activated when they sense threats, leading to 

morphological changes and the secretion of pro- or anti-inflammatory molecules195. In 

human alcoholic post-mortem brain tissue, markers of microglia activation are 

upregulated, including the Ionized calcium-binding adapter molecule 1 (Iba-1) and the 

antigen CD11b196, suggesting that microglia may regulate toxicity and 

neurodegeneration associated with chronic alcohol exposure197. Similar results were 

seen in the mouse brain following chronic and binge alcohol exposures186,198,199. 

Interestingly, after alcohol administration microglia in the prefrontal cortex200 and 

hippocampus201 were activated but there was no increase in inflammatory markers, 

suggesting that microglia may have a protective or homeostatic role in these brain 

regions after alcohol exposure.  

 Alcohol is predicted to activate microglia through the TLRs. Specifically, alcohol 

administration upregulates TLR4 and TLR2 and promotes the release of 

neuroinflammatory mediators202. In TLR4 knockout mice, alcohol administration did not 

increase Iba-1 and neurotoxicity development was blunted186.  Interestingly, microglia 

activation is associated with the nuclear factor kappa-light-chain enhancer of activated 

B cells (NF-κB) signaling and reactive oxygen species (ROS) production, which has 

also been correlated with neurodegeneration following ethanol treatment203.  
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 Pharmacologically inhibiting microglial activation with minocycline decreased 

alcohol self-administration in mice204 and alcohol relapse after abstinence in rats205. 

Chemically depleting microglia with the colony-stimulating factor 1 receptor antagonist, 

PLX33397, blocks the expression of anti-inflammatory genes that are typically 

unregulated during alcohol withdrawal, but did not alter alcohol induced motor 

impairment206. Taken together, these data suggest that microglial activation occurs in 

response to alcohol administration, and that this process may mediate alcohol-related 

behaviors, as well as ethanol-induced neurodegeneration and toxicity. 

 

D.3 MAMMALIAN OLIGODENDROCYTES AND ALCOHOL 

 Oligodendrocytes are characterized by forming myelin sheath around axons. 

Markers for myelin include myelin basic protein (MBP), proteolipid protein (PLP) and 

myelin associated glycoprotein (MAG), among others207. In human alcoholic post-

mortem brain, mRNA levels for MBP, PLP and MAG were decreased compared to non-

alcoholic brain samples163,208. Interestingly, these reductions were also significant in 

alcoholics with cirrhosis compared with alcoholics without cirrhosis208, suggesting 

nutritional or metabolic impairments caused by chronic alcohol consumption enhance 

myelin degeneration.  

 In adult mice, chronic alcohol exposure is correlated with reduction of myelin 

components in multiple brain regions, eventually leading to neurodegeneration. 

However, the addition of calpain inhibitors prevented Ca2+ activation of calpain and 

significantly blunted myelin reduction and neurodegeneration associated with alcohol 

administration209. Another proposed regulator of alcohol-associated myelin loss and 
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neurodegeneration is the alcohol metabolite acetaldehyde210. Although alcohol 

administration clearly leads to myelin pathology, more research is needed to determine 

how alcohol reduces myelin and how this process influences alcohol-related behaviors.  

  

D.4 DROSOPHILA MELANOGASTER SURFACE GLIA AND ALCOHOL 

Two studies using Drosophila as a model organism have demonstrated a causal 

relationship between the surface glial cells and alcohol sedation and tolerance211,212. 

The fly blood brain barrier is a layer of two glial cells, also known as the surface glia, 

which are comprised of the subperineural and the perineural glia213. The GPCR, Moody, 

is expressed in the BBB glia in fly larva and a mutation in the Moody gene blocks 

alcohol-induced motor impairments in adult flies211. While interesting, the gene Moody 

was never specifically altered in the BBB glia, and the Moody GPCR expression pattern 

wasn’t investigated in the adult brain as well as throughout the rest of the body. This is a 

concern, given that a mutation in the gene Moody causes a ubiquitous knock down, and 

not just reduced expression in the BBB. Taken together, how Moody functions 

specifically in the BBB to influence alcohol sedation remains elusive. An additional study 

indicated that expression of the A kinase anchoring protein AKAP200 in perineural glia 

is required for alcohol tolerance212. Similar results were observed when protein kinase 

A, actin and calcium signaling were manipulated in perineural glia, leading to 

conclusions that AKAP200 is coordinating these to control alcohol tolerance212. While 

possible, these molecular interactions were not tested formally, making this conclusion 

premature. These studies, however, begin to demonstrate the utility of the fly to 

manipulate glia in vivo and investigate the resulting behavioral changes to alcohol.  
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E. SIGNIFICANCE  

Previous research has demonstrated that adult CNS glia robustly respond to alcohol 

administration and can influence alcohol related behaviors. This supports our 

overarching hypothesis that adult CNS glia are important regulators of alcohol-related 

behaviors. However, to date, a causal relationship between any glial cell molecular 

pathway and an alcohol related behavior has not been demonstrated fully. Given that 

flies and mammals have (i) conserved behavioral responses to alcohol, (ii) conserved 

molecular responses to alcohol and (iii) conserved astrocyte function, we decided to use 

Drosophila melanogaster as a model to identify novel genes whose expression in glia 

regulates alcohol sedation. In pursuit of this, we characterized a novel GeneSwitch 

driver, GliaGS, to manipulate gene expression specifically in glia during adulthood 

(Chapter 3). Through targeted screens, we identified the genes cysteine proteinase 1 

(Cp1) and tyrosine decarboxylase 2 (Tdc2) as novel regulators of alcohol sedation 

sensitivity. Cp1 functions in cortex glia to regulate alcohol sedation (Chapter 4). Tdc2 is 

involved in the synthesis and release of tyramine in astrocytes, which mediates alcohol 

sedation (Chapter 5). This research demonstrates that glia are integral for normal 

alcohol-related behaviors, and could therefore be regulating alcohol abuse and 

dependence progression.  
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CHAPTER 2: MATERIALS AND METHODS 
 

 

A. UNIVERSAL METHODS 

Fly husbandry. All flies were reared under standard conditions as described 

previously214,215. Flies were grown on food medium containing 10% sucrose, 3.3% 

cornmeal, 2% yeast, 1% agar, 0.2% Tegosept, and antibiotics (0.1 g/L ampicillin, 0.02 

g/L tetracycline, 0.125 g/L chloramphenicol) with active dry yeast on top in 6-ounce 

polypropylene Drosophila bottles (Fisher Scientific, Hampton, NH).  Flies were housed 

in an environmental chamber kept at 25°C and 60% relative humidity with a 12-hour 

light/dark cycle. All comparisons between groups were based on studies with flies that 

were grown, handled, and tested side by side. 

 

Fly stocks. UAS-transgenic and Gal4 driver strains were obtained from either (i) other 

laboratories or (ii) one of the following commercial/public resources: Vienna Drosophila 

Resource Center (VDRC), Vienna, Austria and Bloomington Drosophila Stock Center 

(BDSC), Bloomington, IN. A w1118 reference stock from the VDRC (stock number 60000) 

was used to control the genetic background of all flies obtained from this stock center.  

Any UAS-transgene marked with y+ was backcrossed to a w1y1 strain (stock number 

1495, BDSC) for seven generations to normalize the genetic background. All Gal4 

stocks (marked with mini-w) were backcrossed to our standard reference strain, w[A] 
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(w1118 in an isogenic background; BDSC, stock number 5905) for seven generations to 

normalize the genetic background. All fly strain information is listed below.  

 

Ethanol sedation sensitivity. One day before behavioral studies, adult flies (1-4 days 

old) were placed under light CO2 anesthesia and sorted for sex. Eleven adult female 

flies were placed into fresh non-yeasted food vials (standard food medium without 

active dry yeast on top). Flies recovered in food vials stored upside down (food side up) 

overnight at 25°C and 60% relative humidity. Each vial of flies corresponded to n=1; up 

to 24 vials were tested in each single ethanol sedation experiment.  

Ethanol sedation studies were performed at 23-25°C and 55-65% relative 

humidity under standard office lighting as previously described214,215. Flies, after a 1-2 

hour acclimation period in the testing room, were transferred to empty polystyrene food 

vials (VWR, Radnor, PA) and trapped in the vials with a cellulose acetate Flug (FlyStuff, 

San Diego, CA) inserted approximately 2 cm into each vial. The number of inactive flies 

was recorded for each vial (typically 0-1 flies/vial). One mL of 85% ethanol (made fresh 

weekly) was added to each Flug, and the vials were immediately sealed with a silicone 

stopper. Once every 6 minutes, each vial was tapped gently on a table 3 times and the 

number of sedated flies (i.e. still on the bottom of the vial) was recorded 30 seconds 

later. The ethanol sedation experiments were terminated when all flies were sedated, 

typically after 60-90 minutes. The percentage of active flies was calculated for each vial 

at each time point, and the time required for 50% of the flies in each vial to become 

sedated (sedation time 50, ST50) was interpolated from sigmoidal curve fits using Excel 

(Microsoft, Redwood, WA)214,215.   
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Internal ethanol. Flies were exposed to vapor from 85% ethanol as described for 

measuring ethanol sedation8. After exposure to ethanol vapor for a duration equivalent 

to the ST50, flies were transferred to 1.5 mL snap-cap tubes and frozen at -80°C. 

Frozen flies were homogenized in 200 µL ice-cold ddH20 and then centrifuged at 14,000 

rpm at 4°C for 20 minutes. The internal ethanol concentration of the supernatant was 

determined using Alcohol Reagent Set (Pointe Scientific Inc., Canton, MI) according to 

the manufacturer’s instructions.  

 

GeneSwitch induction. 100 µl of 1 mM Mifepristone (RU486; Sigma Aldrich, St. Louis, 

MO) or vehicle (100% ethanol) was added to the surface of solidified food in vials and 

allowed to dry overnight. Flies were provided food medium topped with RU486 

(induced) or vehicle (control) for 6 days total. Flies were transferred to fresh drug- or 

vehicle-treated food vials after 3 days.  

 

Whole brain imaging and immunodetection. Whole brains from adult (4 day-old) female 

flies were dissected in 0.3% Phosphate buffer Triton X-100 (PBT) under a dissecting 

microscope. Dissected brains were fixed in 0.5 mL snap cap tubes containing 4% 

paraformaldehyde on ice and then for 20 minutes at room temperature on a tube 

rotator. Brains were then washed with 0.3% PBT and blocked with 5% normalized goat 

serum (NGS). Primary antibodies diluted in 5% NGS were added and brains were 

placed on a tube rotator at 4°C for 36-48 h. Brains were washed with 0.3% PBT and 

exposed to the secondary antibodies diluted in 5% NGS at 4°C for 36-48 h. Brains were 



 

29 
 

then washed with 0.3% PBT and mounted onto glass slides in SlowFade mounting 

medium (Invitrogen, Carlsbad, CA)216.  

 

Statistics. All statistical analyses (Student’s t-test, one-way ANOVA, two-way ANOVA 

and Bonferroni’s multiple comparison tests) were performed with Prism 6.04 (GraphPad 

Software, San Diego, CA, USA). Numerical data are mean ± S.E.M. 

 

B. CHAPTER SPECIFIC METHODS 

Chapter 3: GliaGS identification 

Fly stocks. 

 

 

β-Galactosidase activity. β-galactosidase activity was measured in whole body extracts 

of flies as previously described217. Three adult (4 day-old) female flies were 

homogenized in 250 µL buffer (1 X PBS with 1 X protease inhibitor cocktail (Sigma 

Aldrich, St. Louis, MO)). An additional 500 µL of extraction buffer was added, the 

extracts were vortexed and then centrifuged at 14,000 rpm for 5 minutes at room 

temperature.  100 µL of the resulting supernatant was added to 900 µL of 1 mM 

chlorophenol red-β-d-galactopyranoside (Sigma Aldrich, St. Louis, MO). β-
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galactosidase activity was observed as the change in absorbance at 562 nm over 6 

minutes in a Ultraspec 2000 spectrophotometer (Pharmacia Biotech, Piscataway, NJ).  

 

Chapter 4: Cysteine proteinase 1 regulates Drosophila alcohol sedation by functioning 

in adult cortex glia 

Fly stocks. 
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Trans-species rescue of the Cp1 RNAi in glia. FlyBase and NCBI were used to 

determine that D.melanogaster Cp1 and D. pseudoobscura GA25021 were orthologous. 

Fly stocks that express D. pseudoobscura GA25021 under UAS control were created 

via standard P-element-mediated transgenesis using pUAST218. The D. pseudoobscura 

GA25021 cDNA was cloned into the pUAST vector by GenScript (Piscataway, NJ, USA) 

and injected in w[A], our standard lab stock, by Rainbow Transgenic Flies (Camarillo, 

CA, USA).  We mapped the independent UAS-GA25021 insertions to autosomes. Flies 
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constitutively expressing the HMS00725 Cp1 RNAi transgene in all glia via repo-Gal4 

were generated through standard crosses.  

 

Rapid tolerance. Rapid tolerance to ethanol was assessed as the change in sensitivity 

to ethanol sedation due to a prior exposure to the drug. Flies were tested for ethanol 

sedation during a first ethanol exposure as described above (E1), returned to food vials 

to recover for 4 h, and then tested for ethanol sedation during a second ethanol 

exposure (E2)214. The development of rapid tolerance was quantitated as the ratio 

between the ST50 during E2 and the ST50 during E1.  

 

Locomotor behavior. Flies were collected as described above for ethanol sedation. On 

the test day, flies were transferred to empty polystyrene food vials. The positive control 

group vials (Gal4/+) were vortexed for four minutes prior to the experiment. Thereafter 

vials were handled as described for ethanol sedation studies, except for the following 

changes: (i) no ethanol was placed on the flug and (ii) no plug was used to seal the vial. 

The percentage of active flies was calculated for each vial at each time point.  

 

Immunodetection. The following primary antibodies at the indicated concentrations from 

the listed sources were used: polyclonal guinea pig anti-cp1 (1:250; donated from 

Patrick Dolph, Dartmouth College, NH); monoclonal mouse anti-repo (1:100, 

Developmental Studies Hybridoma Bank, Iowa City, IA); polyclonal rabbit anti-LacZ 

(1:25, Fisher Scientific). The following secondary antibodies were used: goat anti-
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guinea pig Alexa 568, rabbit anti-mouse Alexa 488 and chicken anti-rabbit Alexa 647 

(all at 1:1000; ThermoFisher, Waltham, MA).  

All images were collected using a Zeiss LSM 510 multi-photon microscope (Carl 

Zeiss Microscopy, LLC, Thornwood, NY) or a Zeiss LSM 700 confocal microscope (Carl 

Zeiss Microscopy, LLC, Thornwood, NY) housed in the VCU Department of Anatomy 

and Neurobiology Microscope Facility. Confocal images using a pin hole of 1 Airy disc 

unit and Nyquist sampling were collected from each adult brain. Images were taken with 

a 10X objective with a numerical aperture of 0.3 or a 63X oil-immersion objective with a 

numerical aperture of 1.4. The gain and offset values were kept constant for all images 

compared within an experiment.  

All images taken on the Zeiss LSM 510 multiphoton microscope were processed 

using Zeiss LSM Image Browser Version 4,2,0,121 and Inkscape 0.92 was used to 

adjust image orientation. All images taken on the Zeiss LSM 700 confocal microscope 

were processed using Zeiss Zen 2.3. Colocalization between glia (via endogenous repo 

expression) and LacZ was quantified using Volocity™ 3D Image Analysis Software 

version 6.3. All thresholds were automatically set and Pearson Correlation was 

reported. Mean pixel intensity of Z-stacks was quantified using ImageJ (NIH, Bethesda, 

MA, USA).   
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Chapter 5: Tyramine decarboxylase 2 
 
Fly stocks.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 
 

 

 

 

 

Tyramine feeding. 100 mL of 100 mg/mL tyramine (tyramine hydrochloride; Sigma 

Aldrich, St. Louis, MO) or vehicle (5% sucrose in diH2O) was added to the surface of 

solidified food in vials and allowed to dry overnight in an environmental chamber. Adult 

flies were collected and placed on food topped with tyramine or vehicle (control) for 2 

days total.  

 

Yohimbine feeding. Adult flies were collected and starved in empty food vials for 17 

hours. Whatman #1 filter papers (Cat. No 1001 125; Whatman International Ltd., 

Maidstone, England) were placed at the bottom of empty food vials, and the drug 

treatment was administered onto the filter paper. Vials were treated with either 1 mg/mL 

yohimhine (yohimbine hydrochloride; Sigma Aldrich, St. Louis, MO) or vehicle (5% 

sucrose in diH2O). Starved flies were transferred onto the drug treated vials for 1 hr and 

45 min.  

 
Immunodetection. The following primary antibodies at the indicated concentrations from 

the listed sources were used: rabbit anti-Tdc2 (1:200; Covalab, Villeurbanne, France), 

rabbit anti-VMAT (1:2000, David Krantz, University of California - Los Angeles.). The 

following secondary antibody was used: chicken anti-rabbit Alexa 647 (1:1000; 

ThermoFisher, Waltham, MA).  
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All images were collected using a Zeiss LSM 700 confocal microscope (Carl 

Zeiss Microscopy, LLC, Thornwood, NY) housed in the VCU Department of Anatomy 

and Neurobiology Microscope Facility. Confocal images using a pin hole of 1 Airy disc 

unit and Nyquist sampling were collected from each adult brain. Images were taken with 

a 10X objective with a numerical aperture of 0.3. The laser power, gain and offset 

values were kept constant for all images compared within an experiment. All images 

were processed using Zeiss Zen 2.3. Mean pixel intensity of individual Z-stacks were 

quantified using ImageJ (NIH, Bethesda, MA, USA).   
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CHAPTER 3: CHARACTERIZATION OF A CNS-GLIA SPECIFIC GENESWITCH FLY 
STOCK 

 
 
 

A. INTRODUCTION 

Development is an extremely sensitive time in any species, including in the fruit fly 

Drosophila melanogaster. Molecular expression changes can result in robust alterations 

in the neuronal circuitry, which can have an impact on the adult fly lifespan and 

behavior27,139,153. Glia are major regulators of neuronal migration and circuitry 

assembly27,153. While changes to CNS development are relevant for alcohol use 

disorder219-221, we were interested in investigating alcohol-related behavioral changes 

due to acute molecular mechanisms within glia, and not due to glia-dependent CNS 

developmental changes. Therefore, to bypass any developmental changes associated 

with glial gene manipulation, we utilized the GeneSwitch system29. The GeneSwitch 

protein is a steroid-inducible Gal4 driver, and therefore allows temporal control of UAS-

transgene expression. In the presence of steroid (mifepristone, referred to as RU486 

throughout), the GeneSwitch Gal4 driver is changed to an active confirmation, and is 

able to bind to the upstream activator sequence (UAS) and induce expression of the 

associated transgene. However, when RU486 is not present, the Gal4 driver is in an 

inactive confirmation, and therefore cannot bind to the UAS and induce transgene 

expression29. To bypass development and manipulate gene expression during 

adulthood, flies are fed RU486 during adulthood and not during development.  This 
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system has been used extensively previously to manipulate gene expression during 

adulthood in ubiquitous and pan-neuronal manners222-224, although when we started this 

project no glial-specific GeneSwitch reagent had been characterized. However, 

Nicholson and colleagues screened approximately 3,000 publically available 

GeneSwitch flies29. Each of these flies had a randomly inserted GeneSwitch p-element, 

and therefore the GeneSwitch expression pattern for many lines was unknown. In third-

instar larvae, 433 GeneSwitch lines induced GFP expression in neurons, glia or 

muscles29. Using this expression data, we selected candidate fly lines that induced GFP 

expression in larval glia, and not in other tissues. We wanted to determine if (i) the 

GeneSwitch induced transgene expression in adult flies fed 1 mM RU486 for 6 days, (ii) 

the GeneSwitch induced transgene expression in glia during adulthood and (iii) the 

RU486 feeding regimen did not influence alcohol sedation behavior in control flies. In 

total, we tested two transgenic lines: 59929 (GeneSwitch ID 7293) and 40262 

(GeneSwitch ID 1821).  

 

B. RESULTS 

B.1 IDENTIFYING GENESWITCH REAGENTS THAT INDUCE LACZ 

TRANSGENE EXPRESSION DURING ADULTHOOD 

Given that each GeneSwitch fly is unique, we wanted to determine if the 

candidate GeneSwitch transgenic flies were capable of inducing robust transgene 

expression. To measure relative amounts of transgene induction, we utilized the -

galactosidase activity assay to quantify the amounts of LacZ protein produced via UAS-

LacZ transgene induction. To validate this assay, we measured LacZ activity in flies 
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expressing a UAS-LacZ transgene ubiquitously (via da-Gal4), in all neurons (via elav-

Gal4) and in all glia (via repo-Gal4). As anticipated, we found that flies with both da-

Gal4 and UAS-LacZ had the most LacZ activity (Fig 1; green line, slope = 0.05). Flies 

with both elav-Gal4 and UAS-LacZ had a median amount of LacZ activity (Fig 1; purple 

line, slope = 0.03) and flies with both repo-Gal4 and UAS-LacZ had the least amount of 

LacZ activity (Fig 1; red line, slope = 0.005). Since the amount of LacZ activity 

correlated with size of the tissue represented by each Gal4 driver (i.e. presumably da-

Gal4 induces in the most cells, elav-Gal4 induces in the second highest and repo-Gal4 

induces in the smallest population of cells), we felt comfortable using this technique to 

measure how much LacZ each GeneSwitch driver induced when flies were fed RU486.  

We investigated whether flies expressing a GeneSwitch candidate transgene and 

the UAS-LacZ transgene had increased LacZ activity when fed RU486 compared to 

controls. For all experiments, flies were fed 1 mM RU486 for 6 days. Flies with the 

59929 GeneSwitch transgene and the UAS-LacZ transgene fed RU486 had an increase 

in LacZ activity (Fig 2A; black line, slope = 0.03) and control flies had no LacZ activity 

(slopes indistinguishable from zero). Control flies either had the 59929 GeneSwitch 

transgene and UAS-LacZ transgene and were fed vehicle, the UAS-LacZ transgene 

alone fed RU486 or vehicle and the 59929 GeneSwitch transgene alone fed RU486 or 

vehicle (Fig 2A). The 59929 GeneSwitch transgene induced LacZ activity well above the 

background of the controls, so we decided to characterize this reagent further. 

Additionally, flies with the 40262 GeneSwitch transgene and the UAS-LacZ transgene 

fed RU486 had an increase in LacZ activity (Fig 2B; black line, slope = 0.003) and 

control flies had no LacZ activity (slopes indistinguishable from zero). Control flies either 
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had the 40262 GeneSwitch transgene and UAS-LacZ transgene and were fed vehicle, 

the UAS-LacZ transgene alone fed RU486 or vehicle and the 40262 GeneSwitch 

transgene alone fed RU486 or vehicle (Fig 2B). However, the 40262 GeneSwitch 

transgene did not induce LacZ activity above the background of the controls, making 

this GeneSwitch transgene unattractive for use in behavioral studies; therefore, we 

decided not to move forward with characterizing this reagent.  
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Figure 3.1. LacZ induction can be measured in a tissue-size dependent manner. 

Using the -galactosidase activity assay, flies expressing UAS-Lacz ubiquitously via da-

Gal4 had the largest amount of LacZ activity (green line: slope = 0.05  0.04, p = 

0.0003, n = 3). Flies expressing UAS-LacZ in all neurons via elav-Gal4 had the second 

largest amount of LacZ activity (purple line: slope = 0.03  0.01, p = 0.0073, n = 3). Flies 

expressing UAS-LacZ in all glia via repo-Gal4 had the least amount of LacZ activity (red 

line: slope = 0.005  0.001, p = 0.0021, n = 3). P-values represent how different the 

slope is from zero. -galactosidase activity was measured for 6 minutes.  
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Figure 3.2. GeneSwitch transgenes induce different amount of UAS-LacZ. (A)  

Using the -galactosidase activity assay, flies expressing the 59929 GeneSwitch 

transgene and UAS-LacZ transgene fed 1mM RU486 for 6 days had significant LacZ 

activity (black line: slope = 0.03  0.004, p < 0.0001, n = 5). All other groups were 

controls and had insignificant slopes, indicating that there was no LacZ activity. (B) 

Using the -galactosidase activity assay, flies expressing the 40262 GeneSwitch 

transgene and UAS-LacZ transgene fed 1mM RU486 for 6 days had significant LacZ 

activity (black line: slope = 0.003  0.0009, p = 0.008, n = 5). All other groups were 

controls and had insignificant slopes, indicating that there was no LacZ activity. P-

values represent how different the slope is from zero. -galactosidase activity was 

measured for 6 minutes. 
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B.2 THE 59929 GENESWITCH TRANSGENE INDUCES UAS-TRANSGENE 

EXPRESSION IN CNS GLIA 

Flies with the GeneSwitch 59929 transgene and UAS-LacZ transgene were fed 

either RU486 or vehicle during adulthood. After exposure to RU486, we dissected their 

brains and labeled endogenous glial cells (in green via anti-repo; Fig 3A) and induced 

LacZ (in red via anti-LacZ; Fig 3B). Colocalization is represented in yellow (Fig 3C). 

When quantified, approximately 96 percent of green pixels expressed a red pixel, 

indicating that approximately 96 percent of glia also expressed LacZ (Mander’s 

correlation = 0.957; n = 7). Additionally, flies fed vehicle expressed no LacZ, suggesting 

that the 59929 GeneSwitch transgene induces UAS-transgene expression when RU486 

is present. Given that the 59929 GeneSwitch transgene induces transgene expression 

in glia, we termed this reagent “GliaGS”.  
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Figure 3.3. GliaGS drives expression in CNS glia during adulthood. Flies with the 

59929 GeneSwitch transgene and the UAS-LacZ transgene were fed 1 mM RU486 for 6 

days prior to brain dissection and immunolabeling. (A) Endogenous repo expression 

(green) indicating CNS glia (anti-repo 1:100, Alexa 488 1:1000) (B) GliaGS-driven LacZ 

expression labeled red (anti-LacZ 1:500, Alexa 568 1:1000) (C) Merged images of 

panels A and B; yellow indicates co-localization of repo and LacZ. Representative 

images from 10X and 63X oil. 

 

 

 

 



 

46 
 

B.3 THE RU486 FEEDING REGIMENT DOES NOT ALTER ALCOHOL SEDATION 

SENSITIVITY IN CONTROL FLIES 

To determine if feeding 1 mM RU486 to flies for 6 days altered their behavioral 

responses to alcohol in control flies, we measured the ST50’s of flies with the GliaGS 

transgene alone fed vehicle or RU486, a universal control for any behavioral experiment 

utilizing GliaGS. Compared to vehicle control, GliaGS/+ flies fed RU486 had no change 

in ST50, indicating that this regimen of RU486 exposure, which can induce transgene 

expression, does not impact ethanol sedation in control animals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 
 

 

 

Figure 3.4. RU486 feeding regiment does not alter alcohol sedation sensitivity. 

Flies with the GliaGS transgene (59929) alone were fed vehicle or 1mM RU486 for 6 

days. Treatment did not alter ST50 values (student’s t test, p = 0.264, n = 8).   
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CHAPTER 4: CYSTEINE PROTEINASE 1 REGULATES DROSOPHILA ALCOHOL 
SEDATION BY FUNCTIONING IN ADULT CORTEX GLIA 

 
 
 

A. INTRODUCTION  

In largely naïve alcohol drinkers, the initial level of response to alcohol correlates 

with their likelihood of becoming alcohol dependent225, a significant phenotype 

associated with AUD3. For example, men with an initially low sensitivity to alcohol are 

four times more likely to be an alcoholic by age thirty225. Therefore, investigating 

molecular-genetic mechanisms that influence alcohol sensitivity is a potentially 

promising approach for understanding the molecular underpinnings of AUD. 

The fruit fly Drosophila melanogaster, the nematode C. elegans and rodents 

have been used extensively to investigate the genetics of alcohol-related behaviors, 

including alcohol sedation. Numerous genes involved in alcohol-related behaviors in 

model organisms have human orthologues that have been implicated in human alcohol 

abuse, suggesting mechanistic connections between alcohol-related behaviors in model 

organisms and alcohol abuse in humans226,227. A majority of these genes are known or 

predicted to function in neurons226, leaving the contribution of glia and glial cell 

mechanisms to alcohol-related behavior largely unexplored. To the best of our 

knowledge, only three studies have investigated the direct contribution of glia in alcohol-

related behaviors. One study found that activation of calcium signaling in rat nucleus 

accumbens core astrocytes via DREADDS decreases motivation for alcohol after a 



 

49 
 

three week long alcohol abstenance183. Another study found that Drosophila with a 

mutation in the gene moody, a gene expresssed in surface glia as well as other cell 

types, have reduced sensitivity to ethanol-induced loss of postural control211. An 

additional study in Drosophila found that surface glia also contribute to alcohol 

tolerance212. Despite these pioneering studies, our understanding of the role of glia in 

alcohol-related behavior is woefully incomplete.  

The Drosophila central nervous system (CNS) is compartmentalized into two 

gross anatomical regions: an outer cortex (containing neuronal cell bodies) and a more 

central neuropil (containing neurites and synapses). Like mammals, the Drosophila 

CNS is composed of both neurons and glia. Drosophila CNS glia are functionally and 

molecularly similar to mammalian CNS glia27,40,142,228,229. Cortex glia, astrocytes and 

ensheathing cells are the main subtypes of CNS glia in adult flies40. Additionally, 

perineural and subperineural glia, often referred to as surface glia, surround the entire 

CNS and compose the blood brain barrier in flies128,230. Drosophila cortex glia and 

astrocytes are intimately associated with neurons in the CNS125. Cortex glia are located 

in the cortex region of the brain and encapsulate virtually all neuronal cell bodies with 

fine processes124. A single adult cortex glial cell is thought to be able to encapsulate up 

to 100 neurons125. Cortex glia aid in gas exchange, neuronal firing and nutrient transfer 

to neurons, similarly to mammalian protoplasmic astrocytes40,124,231. Cortex glia also 

exhibit calcium transients near membranes close to neurons, which appear to regulate 

neuronal cell function133. Physical associations between cortex glia and neurons are 

essential for normal nervous system function and behavior in Drosophila39. In contrast 

to cortex glia, the cell bodies of astrocytes reside at the cortex-neuropil interface and 
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extend processes into the neuropil36. Like mammalian astrocytes, Drosophila astrocytes 

are important for synapse formation and maintenance, clearing and recycling 

neurotransmitters from the synapse, and modulating neuronal physiology141,232. 

Drosophila astrocytes release gliotransmitters, which are regulated by transient 

intracellular calcium signaling; this mechanism can directly influence nearby cells and 

influence behavior27,143,146. The cell bodies of ensheathing glia are also located at the 

interface of the brain cortex and neuropil36. Under normal physiological conditions, 

ensheathing glia encase the entire neuropil region in the CNS and occasionally wrap 

axonal segments between the neuropil and the periphery34. Ensheathing glia can 

regulate neuronal excitability by metabolizing glutamate, and disruptions in this function 

can alter behavior35. Under pathological conditions, these cells extend processes into 

the neuropil to phagocytize debris36-38. Drosophila surface glia (i.e. subperineural and 

perineural glia) are less similar to mammalian glia, but they have been associated with 

alcohol-related behavior in flies211,212. Subperineural glia mediate most of the blood 

brain barrier chemoprotective functions, similar to mammalian brain vascular endothelial 

cells33. Interestingly, subperineural glia can extend processes which function at PNS 

synapses150. As their name implies, perineural glia reside on top of the subperineural 

glia, and protect against the entrance of larger molecules213. With macrophages, these 

cells secrete a dense lamella that covers the CNS and peripheral nerves213.  Despite 

being extensively investigated in numerous experimental settings, a role for glia in fly 

alcohol-related behavior has not been comprehensively explored.  

Here, we demonstrate that RNAi-mediated knockdown and rescue of the gene 

cysteine proteinase 1 (Cp1) constitutively in all CNS glia regulates alcohol sedation. 
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This behavioral effect appears specific to Cp1 expression in cortex glia, as well as all 

glia during adulthood. Cp1 is a hydrolase involved in protein degradation that is 

functionally and structurally homologous to mammalian Cathepsin L233. Our data 

suggest a novel role for cortex glia and Cp1 in the adult Drosophila CNS: regulation of 

sedation in response to acute administration of alcohol. 

 
B. RESULTS  

B.1 IDENTIFYING GLIAL GENES THAT INFLUENCE ALCOHOL-RELATED 

BEHAVIOR IN DROSOPHILA 

To begin exploring the role of central nervous system (CNS) glia in alcohol 

behavior, we performed a targeted screen in which we (i) compiled genes previously 

reported to be expressed in glia142, (ii) obtained RNAi reagents to manipulate the 

expression of those genes, and (iii) determined whether constitutive expression of RNAi 

targeting of those genes in glia influenced alcohol sedation. In total, we screened 13 

genes by RNAi and identified 5 genes whose expression in glia influenced alcohol 

sedation sensitivity (Table 4.1).  

Flies with pan-glial Gal4 (via repo-Gal4) driven expression of the Cp1 RNAi #1 

transgene had significantly decreased sedation time 50 (ST50) values compared to 

control flies containing the Gal4 or an RNAi transgene alone (Fig. 4.1A). Similar results 

were obtained with flies containing repo-Gal4 and an RNAi transgene for the genes axo 

(Fig 4.1B, 4.1C), Jhl-21 (Fig 4.1D), nemy (Fig 4.1E) and Ent2 (Fig 4.1F).  

To characterize the role of these genes in alcohol sedation further, we (i) 

determined if expression of RNAi against these genes in glia altered alcohol metabolism 

and (ii) determined if expression of RNAi against these genes in neurons influenced 
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alcohol sedation. To determine if these genes influenced alcohol metabolism, we 

measured the internal alcohol levels in these flies after an 30-minute alcohol exposure 

(approximating the ST50). We found no significant difference in the internal alcohol 

concentrations between flies expressing an RNAi transgene in glia (via repo-Gal4) 

compared to controls that expressed the respective RNAi transgene or repo-Gal4 

transgene alone (Table 4.2). These results suggest that Cp1, axo, Jhl-21, nemy and 

Ent2 might influence a pharmacodynamic mechanism that impinges on alcohol 

sedation. To determine if expression of RNAi against these genes in neurons influenced 

alcohol sedation, we compared the ST50 values of flies with both pan-neuronal Gal4 

(via elav-Gal4) and an RNAi transgene to control flies that had the elav-Gal4 transgene 

or the respective RNAi transgene alone. We found no significant difference in ST50 

between flies expressing an RNAi transgene individually for Cp1, axo, Jhl-21, nemy and 

Ent2 in neurons (via elav-Gal4) compared to controls (Table 4.3). While not fully 

conclusive, these data begin to suggest that expression of Cp1, axo, Jhl-21, nemy and 

Ent2 in glia, but not neurons, is important for alcohol sedation.  

Lastly, we aimed to determine whether expression of RNAi against these genes 

during adulthood influenced alcohol sedation because CNS glia play important roles 

during both development229,234,235 and adulthood125,229,236. To express the RNAi 

transgenes against Cp1, axo, Jhl-21, nemy and Ent2 in glia during adulthood, we used 

the steroid-inducible GeneSwitch (GS) system29. Specifically, we utilized GliaGS, a 

driver that induced transgene expression in glia. Flies with both the GliaGS driver and 

an RNAi transgene, and control flies with either GliaGS or the respective RNAi 

transgene alone, were reared to adulthood in the absence of the steroid mifepristone 
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(RU486) and then switched to food medium containing steroid (RU486) or vehicle for 6 

days, allowing induced transgene expression exclusively for 6 days during adulthood. 

Compared to vehicle control animals of the same genotype, flies containing both GliaGS 

and the Cp1 RNAi #1 transgene fed RU486 had significantly decreased ST50 values 

(Fig 4.2A). Exposure to RU486 in flies with either the GliaGS alone or the Cp1 RNAi 

transgene alone did not alter ST50 values (Fig 4.2A). However, compared to vehicle 

control animals of the same genotype, flies containing both GliaGS and an RNAi 

transgene against Axo, Jhl-21, nemy or Ent2 transgene fed RU486 had similar ST50 

values (Fig 4.2B-F). Taken together, these data suggest a role for Cp1 expression in 

adult glia. While follow-up experiments would be needed, our data begin to suggest that 

expression of axo, jhl-21, nemy and Ent2 function in glia during development to 

influence alcohol sedation.  

Since expression of the Cp1 RNAi transgene in glia during adulthood altered 

alcohol sedation, we postulated that Cp1 is likely functioning through an acute 

molecular pathway in glia to alter alcohol sedation. Due to this, we decided to pursue 

research on Cp1 further. Cysteine Proteinase 1 (Cp1) is known to function in Drosophila 

midgut, garland cells, salivary glands, macrophages, gonads and PNS neurons233,237-240 

and is expressed in glia142, but prior to our results no studies have demonstrated a 

functional role for Cp1 in glia. Cp1 is the only Drosophila cysteine proteinase that has 

been described and is functionally and structurally homologous to mammalian 

Cathepsin L238,241. Although cysteine proteinases play key roles in the lysosomes of 

phagocytic cells240 and mammalian Cathepsin L has been associated with multiple 

diseases including cancer242,243, Alzheimer Disease244 and retinal degeneration238, no 
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previous studies implicate this family of genes in alcohol-related behavior. In 

subsequent experiments, we aimed to (i) validate our previous findings by repeating 

experiments and/or using different methods to manipulate Cp1, (ii) determine which glial 

cell subtype Cp1 expression is required in for normal alcohol sedation and (iii) 

investigate whether Cp1 expression in glia is important for any other alcohol related 

behaviors.  
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Table 4.1. Screen results: expressing RNAi against genes known to be expressed 
in glia and measuring alcohol sedation sensitivity. 
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Table 4.1. Each gene and the RNAi reagent used to presumably manipulate gene 

expression are listed in the first two columns. The ST50 ± SEM are listed for each 

genotype: Gal4/+ (repo-Gal4/+), RNAi/+ (the respective RNAi transgene/+) and 

Gal4/RNAi (repo-Gal4/RNAi transgene). If the ANOVA is significant, we reported the 

Bonferonni multiple comparisons adjusted p-value. To determine if expression of the 

RNAi transgene in glia (via repo-Gal4) influences alcohol sedation, we compared the 

Gal4/RNAi group to the Gal4/+ group and the RNAi/+. $, #, @, ~, %, ^, + and = symbols 

represent common Gal4/+ controls ST50 and ANOVA values, due to multiple genotypes 

being tested in the same experiment. 
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Figure 4.1. Expression of RNAi against Cp1, axo, Jhl-21, nemy and Ent2 in glia 

alters alcohol sedation. (A) ST50 values were reduced in flies expressing the Cp1 

RNAi #1 transgene in glia (blue bar: repo-Gal4/Cp1 RNAi #1) compared to control flies 

with either repo-Gal4 alone (black bars: repo-Gal4/+) or the RNAi transgenes alone 

(black bars: Cp1 RNAi #1/+) (one-way ANOVA, p = 0.0352 ; *Bonferroni's multiple 

comparison vs controls, p < 0.05; n = 8). (B, C) ST50 values were reduced in flies 

expressing axo RNAi transgenes in glia (blue bars: repo-Gal4/axo RNAi #1, panel B; 

repo-Gal4/axo RNAi #2, panel C) compared to control flies with either repo-Gal4 alone 

or the respective RNAi transgene alone (black bars) (Panel A: one-way ANOVA, p < 

0.0001; *Bonferroni's multiple comparison vs controls, p < 0.05; n = 8; Panel B: one-way 

ANOVA, p < 0.0001; *Bonferroni’s multiple comparison vs control, p < 0.05; n = 8). (D) 

ST50 values were reduced in flies expressing a Jhl-21 RNAi transgene in glia (blue bar: 

repo-Gal4/Jhl-21 RNAi) compared to control flies with either repo-Gal4 alone or the 

RNAi transgene alone (black bars) (one-way ANOVA, p = 0.0004; *Bonferroni's multiple 

comparison vs controls, p < 0.05; n = 8). (E) ST50 values were reduced in flies 

expressing a nemy RNAi transgene in glia (blue bar: repo-Gal4/nemy RNAi) compared 

to control flies with either repo-Gal4 alone or the RNAi transgene alone (black bars) 

(one-way ANOVA, p = 0.018; *Bonferroni's multiple comparison vs controls, p < 0.05; n 

= 8). (F) ST50 values were reduced in flies expressing a Ent2 RNAi transgene in glia 

(blue bar: repo-Gal4/Ent2 RNAi) compared to control flies with either repo-Gal4 alone or 

the RNAi transgene alone (black bars) (one-way ANOVA, p < 0.0001; *Bonferroni's 

multiple comparison vs controls, p < 0.05; n = 8). 
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Table 4.2. Expression of RNAi against Cp1, axo, Jhl-21, nemy and Ent2 in glia 

does not alter internal alcohol concentrations. 

 

Flies expressing individual RNAi against Cp1, axo, Jhl-21, nemy and Ent2 in glia via 

repo-Gal4 (the Gal4/RNAi group) had similar internal alcohol concentrations compared 

to controls with either repo-Gal4 alone (the Gal4/+ group) or the respective RNAi 

transgene alone (the RNAi/+ group). The mean internal EtOH concentration for each 

group is reported  SEM. Results from individual one-way ANOVAs and (when 

appropriate) Bonferroni’s multiple comparisons are reported. @ and # represent 

common Gal4/+ controls. 
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Table 4.3. Expression of RNAi against Cp1, axo, Jhl-21, nemy and Ent2 in neurons 

does not alter alcohol sedation sensitivity. 

 

Flies expressing individual RNAi against Cp1, axo, Jhl-21, nemy and Ent2 pan-

neuronally via elav-Gal4 (the Gal4/RNAi group) had similar ST50 values compared to 

controls with either elav-Gal4 alone (the Gal4/+ group) or the respective RNAi 

transgene alone (the RNAi/+ group). The ST50 for each group is reported  SEM. 

Results from individual one-way ANOVAs and (when appropriate) Bonferroni’s multiple 

comparisons are reported. $ and # represent common Gal4/+ controls and one-way 

ANOVA values, because the genotypes were tested in the same experiment. 
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Figure 4.2. Expression of RNAi against Cp1, axo, Jhl-21, nemy and Ent2 in glia 

during adulthood. (A) Compared to vehicle, treatment with 1 mM RU486 for 6 days 

decreased ST50 values in flies with the GliaGS driver and Cp1 RNAi #1 transgene 

(GliaGS/Cp1 RNAi #1), but not in control flies with either GliaGS or the RNAi transgene 

alone (two-way ANOVA; RU486, p = 0.019; genotype, p < 0.0001; interaction, p = 

0.089; *Bonferroni's multiple comparisons between vehicle and RU486, p < 0.05; n = 8). 

(B-F) Compared to vehicle, treatment with 1 mM RU486 for 6 days did not alter ST50 

values in flies with the GliaGS driver and an RNAi transgene against either axo (Panels 

B, C), Jhl-21 (Panel D), nemy (Panel E) or Ent2 (Panel F) (tested individually). There 

were also no differences in ST50 between vehicle and drug treated control flies 

(GliaGS/+ and RNAi/+). (Panel B: two-way ANOVA; RU486, p = 0.03; genotype, p < 

0.0001; interaction, p = 0.62; Bonferroni's multiple comparisons between vehicle and 

RU486, p > 0.05; n = 8; Panel C: two-way ANOVA; RU486, p = 0.68; genotype, p = 

0.029; interaction, p = 0.16; Bonferroni's multiple comparisons between vehicle and 

RU486, p > 0.05; n = 8; Panel D: two-way ANOVA; RU486, p = 0.84; genotype, p = 

0.51; interaction, p = 0.65; n = 8; Panel E: two-way ANOVA; RU486, p = 0.75; genotype, 

p = 0.005; interaction, p = 0.17; Bonferroni's multiple comparisons between vehicle and 

RU486, p > 0.05; n = 8; Panel F: two-way ANOVA; RU486, p = 0.13; genotype, p < 

0.0001; interaction, p = 0.91; Bonferroni's multiple comparisons between vehicle and 

RU486, p > 0.05; n = 8).  
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B.2 Cp1 KNOCKDOWN IN ALL CNS GLIA ALTERS ALCOHOL SEDATION 

WITHOUT INFLUENCING INTERNAL ALCOHOL LEVELS 

Flies with pan-glial Gal4 (repo-Gal4) driven expression of two different Cp1 RNAi 

transgenes (Cp1 RNAi #1 (v13959) and Cp1 RNAi #2 (HMS00725), tested individually) 

had significantly decreased sedation time 50 (ST50) values compared to control flies 

containing the Gal4 or the respective RNAi transgene alone (Fig 4.3A, 4.3B). For 

reasons that are unclear, constitutive expression of a third RNAi transgene (Cp1 RNAi 

#3 (v110619)) in all glia did not consistently alter alcohol sedation (Fig 4.4A). To 

determine if Cp1 influenced alcohol metabolism, we measured the internal alcohol 

levels in these same genotypes after a 30-minute alcohol exposure (approximating the 

ST50). We found no significant difference in the internal alcohol concentrations between 

flies expressing Cp1 RNAi transgenes in glia compared to controls (Fig 4.3C, 4.3D), 

indicating that Cp1 might influence a pharmacodynamic mechanism that impinges on 

alcohol sedation. Interestingly, despite Cp1 being endogenously expressed in 

neurons239, pan-neuronal expression (via elav-Gal4) of the Cp1 RNAi #1 transgene did 

not alter ST50 values compared to Gal4 and RNAi transgene controls (Fig 4.5A). Taken 

together, these results suggest that Cp1 influences alcohol sedation via a role in glia. 

Although our studies are consistent with the hypothesis that Cp1 function in neurons 

might not play a major role in alcohol sedation, further studies would be required to 

formally assess this possibility. 

The principal RNAi transgenes used in this study (Cp1 RNAi #1, #2) are 

predicted to target all four mRNA transcripts of Cp1 (Fig 4.6) and have no predicted off-

target effects245-247. We used whole brain immunofluorescence to address whether the 
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RNAi transgenes knockdown Cp1 expression in specific tissues. Overall Cp1 

immunofluorescence was substantially reduced (Cp1 RNAi #1: 55%; Cp1 RNAi #2: 

62%) in brains from flies with pan-glial expression of Cp1 RNAi transgenes (Fig 4.3F, 

4.3H) compared to brains from flies with the Cp1 RNAi transgenes alone (Fig 4.3E, 

4.3G).  The remaining Cp1 immunofluorescence is consistent with Cp1 expression in 

neurons, which should not be impacted by expression of Cp1 RNAi in glia. Additionally, 

overall Cp1 immunofluorescence was reduced 29% in brains expressing the Cp1 RNAi 

#1 transgene pan-neuronally (Fig 4.5C) compared to brains containing the Cp1 RNAi #1 

transgene alone (Fig 4.5B). The remaining Cp1 immunofluorescence is consistent with 

Cp1 expression in glia.  These results confirm that expression of the Cp1 RNAi 

transgenes knocked down Cp1 as expected in both glia and neurons. 
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Figure 4.3. Cp1 knockdown in CNS glia alters ethanol sedation sensitivity without 

affecting internal ethanol levels. (A, B) ST50 values were reduced in flies expressing 

Cp1 RNAi transgenes in glia (blue bars: repo-Gal4/Cp1 RNAi #1, panel a; repo-

Gal4/Cp1 RNAi #2, panel b) compared to control flies with either repo-Gal4 alone (black 

bars: repo-Gal4/+) or the RNAi transgenes alone (black bars: Cp1 RNAi #1/+ and Cp1 

RNAi #2/+) (Panel A: one-way ANOVA, p = 0.0352 ; *Bonferroni's multiple comparison 

vs controls, p < 0.05; n = 8; Panel B: one-way ANOVA, p < 0.0001; *Bonferroni’s 

multiple comparison vs control, p < 0.05; n = 8). (C, D) Expression of Cp1 RNAi 

transgenes in CNS glia (blue bars: Cp1 RNAi #1, panel C; Cp1 RNAi #2, panel D) did 

not alter internal ethanol levels compared to controls with either repo-Gal4 or the RNAi 

transgenes alone (black bars) (individual one-way ANOVAs, p > 0.05; n = 8). (E-H) 

Whole mount brain images immunolabeled for Cp1 expression. Whole brain Cp1 

detection was reduced in flies expressing Cp1 RNAi transgenes in glia (F,H) compared 

to brains from RNAi transgene control animals (E,G). (Anti-Cp1 1:250, Alexa 568 

1:1000). Representative images, 10X.  
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Figure 4.4. Ethanol sedation sensitivity in flies expressing Cp1 RNAi #3 in glia. (A) 

ST50 values were influenced by overall genotype and reduced in flies expressing the 

Cp1 RNAi #3 transgene in all CNS glia (blue triangles: repo-Gal4/Cp1 RNAi #3) 

compared to one  control  group  (black squares: Cp1 RNAi #3/+), but not the other 

control group (black circles, repo-Gal4/+) (one-way ANOVA, p = 0.0465; *Bonferroni's 

multiple comparisons, Cp1 RNAi #3/+ vs. repo-Gal4/Cp1 RNAi #3, p < 0.05; n = 8). (B) 

ST50 values were influenced by overall genotype (one-way ANOVA, p = 0.0015, n=8) 

but were not detectably different in planned comparisons between flies expressing Cp1 

RNAi #3 transgene in cortex glia (blue triangles: NP2222-Gal4/Cp1 RNAi #3) and 

control flies containing the NP2222-Gal4 alone (black circles) or the RNAi transgene 

alone (black squares) (C) Expression of Cp1 RNAi in CNS glia during adulthood 

increased ethanol sedation sensitivity. Compared to vehicle-treated controls, treatment 

with 1 mM RU486 for 6 days decreased ST50 values in flies with the GliaGS driver and 

Cp1 RNAi #3 transgene (GliaGS/Cp1 RNAi #3), but not in control flies with either 

GliaGS or the RNAi transgene alone (two-way ANOVA; RU486, p = 0.0341; genotype, p 

< 0.0001; interaction, n.s.; *Bonferroni's multiple comparisons between vehicle and 

RU486, p < 0.05; n = 8).  
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Figure 4.5. Expression of Cp1 RNAi in neurons did not influence ethanol sedation 

sensitivity. (A) ST50 values were not changed in flies expressing the Cp1 RNAi #1 

transgene in neurons (blue triangles: elav-Gal4/Cp1 RNAi #1) compared to control flies 

with either elav-Gal4 alone (black circles: elav-Gal4/+) or the RNAi transgene alone 

(black squares: Cp1 RNAi/+) (one-way ANOVA, p = 0.6508; n = 8). (B, C) Whole mount 

brains immunolabeled for Cp1 detection (Anti-Cp1 1:250, Alexa 568 1:1000). Cp1 

fluorescence was reduced 29% in flies with the Cp1 RNAi #1 transgene expressed pan-

neuronally (via elav-Gal4) (panel C) compared to flies that had the Cp1 RNAi transgene 

alone (panel B). Microscope settings were optimized for Cp1 RNAi #1/+ brains. Mean 

fluorescence intensity was calculated using Image J, n = 5. 10X, representative images.  
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Figure 4.6. The Cp1 region. Transcription is from left to right. Complementary 

sequences for UAS-Cp1 RNAi transgenes - Cp1 RNAi #1 (labeled as GD5803), Cp1 

RNAi #2 (labeled as HMS00725) and Cp1 RNAi #3 (labeled as KK107765) - are shown 

below the predicted transcripts. All 3 RNAis are predicted to cleave all 4 Cp1 transcripts. 

Image taken from the FlyBase genome browser (www.FlyBase.org).  
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B.3 EXPRESSION OF DROSOPHILA PSEUDOOBSCURA Cp1 RESCUES 

ALCOHOL SEDATION SENSITIVITY DUE TO KNOCKDOWN OF ENDOGENOUS 

DROSOPHILA MELANOGASTER Cp1 IN GLIA  

When expressed in glia, both of the main Cp1 RNAi transgenes used in our 

studies (Cp1 RNAi #1 and #2) make flies sensitive to alcohol sedation and knockdown 

Cp1 expression (Fig 4.3). The target sequence of Cp1 RNAi #2 is wholly encompassed 

by that of Cp1 RNAi #1 (Fig 4.6), raising the possibility that the sensitivity to alcohol 

sedation in flies expressing Cp1 RNAi might be due to knockdown of Cp1 or another, 

unidentified, gene. To address this possibility, we determined whether expression of a 

Cp1 orthologue from Drosophila pseudoobscura in glia could rescue the alcohol 

sedation sensitivity in flies expressing RNAi against endogenous melanogaster Cp1 

also in glia218.  We choose the Drosophila pseudoobscura Cp1 orthologue (GA25021) 

for these studies because (i) its primary amino acid sequence is 70-92 % similar to the 

four Drosophila melanogaster Cp1 isoforms and (ii) the Cp1 RNAi #2 siRNA target 

sequence is poorly conserved between Cp1 and GA25021 – there are 6 base pair 

mismatches (Fig 4.7). Taken together, these findings suggested that GA25021 protein 

would have a similar function to Cp1, but importantly the GA25021 mRNA would largely 

escape RNAi-mediated degradation by Cp1 RNAi #1. We therefore postulated that 

expression of GA25021 might rescue the alcohol sedation sensitivity observed in flies 

expressing RNAi against melanogaster Cp1 in glia.  

We generated UAS-GA25021 transgenic flies via P-element transgenesis and 

screened seven lines (i.e. flies with UAS-GA25021 inserted into different locations in the 

genome) to determine whether or not the expression of the individual UAS-GA25021 
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transgenes in glia altered ST50. Out of the seven lines screened, expression of UAS-

GA25021 #1, #3, #5, #6 and #7 in glia (via repo-Gal4) did not alter ST50 compared to 

control flies with either the respective UAS-GA25021 transgene or the repo-Gal4 

transgene alone (Fig 4.8). However, expression of UAS-GA25021 #2 and #4 in glia (via 

repo-Gal4) significantly decreased ST50 compared to control flies with either the 

respective UAS-GA25021 transgene or the repo-Gal4 transgene alone (Fig 4.8). We 

moved forward with the five transgenic lines (UAS-GA25021 #1, #3, #5, #6, #7) that 

didn’t impact ST50 values in the absence or presence of repo-Gal4.   

We assessed whether expression of UAS-GA25021 transgenes rescued alcohol 

sensitivity in constitutive glial Cp1 knockdown flies. repo-Gal4/+ flies were used as a 

representative control in our subsequent rescue experiments because their ST50 values 

were not significantly different from other control flies that had the RNAi transgene 

alone, the UAS-GA25021 transgene alone, or repo-Gal4 driven expression of a UAS-

GA25021 transgene (Fig 4.8; Fig 4.9A, 4.9C). Consistent with the data in Figure 4.3B, 

flies that constitutively expressed the Cp1 RNAi #2 transgene in all glia (via repo-Gal4) 

had significantly decreased ST50 values compared to control flies with repo-Gal4 alone 

(Fig 4.9B, 4.9D). In contrast, flies with pan-glial expression of both the Cp1 RNAi #2 

transgene and a UAS-GA25021 transgene had (i) significantly increased ST50 values 

compared to flies expressing only the Cp1 RNAi #2 transgene and (ii) statistically 

indistinguishable ST50 values compared to control flies with repo-Gal4 alone (Fig 4.9B, 

4.9D). In total, we tested five UAS-GA25021 transformants. The transgenes in four of 

the transformants rescued the glial Cp1 RNAi alcohol sedation phenotype, while one of 

the transgenes did not (Fig 4.9; Fig 4.10A-C). Additionally, we determined whether this 
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behavioral rescue was due to the Gal4 dilution phenomenon, which theorizes that a 

Gal4 driver cannot express two UAS-transgenes as efficiently as one UAS-transgene. If 

this were true, we would hypothesize that the addition of any UAS-transgene in the 

presence of repo-Gal4 and the Cp1 RNAi #2 transgene would lead to behavioral 

rescue. However, flies with pan-glial expression of both the Cp1 RNAi #2 transgene and 

a UAS-LacZ transgene had (i) similar ST50 values compared to flies expressing only 

the Cp1 RNAi #2 transgene and (ii) significantly decreased ST50 values compared to 

control flies with repo-Gal4 alone (Fig 4.10D). Taken together, these data demonstrate 

the ability of Drosophila pseudoobscura Cp1 to rescue alcohol sedation sensitivity due 

to knockdown of melanogaster Cp1, and strongly supports a role for Cp1 in glia in 

alcohol sedation. 

We used whole brain immunofluorescence to address whether the UAS-

GA25021 transgenes expressed detectable levels of immunoreactive Cp1-like protein. 

Endogenous Cp1 was readily detectable in control repo-Gal4/+ brains (Fig. 4.9E). This 

signal was reduced substantially by expression of the Cp1 RNAi #2 transgene in all glia 

(Fig. 4.9F; decreased 68%) and increased by expression of UAS-GA25021 transgene 

#1 in all glia (Fig. 4.9G; increased 37%). Expression of this same UAS-GA25021 

transgene concurrently with the Cp1 RNAi #2 transgene substantially increased the Cp1 

signal compared to brains that expressed only Cp1 RNAi #2 in all glia (Fig. 4.9H; 

increased 331%). Similarly, expression of UAS-GA25021 transgene #3 in all glia 

increased the Cp1 signal (Fig. 4.9I; increased 32% compared to repo-Gal4 alone) and 

expression of this same UAS-GA25021 transgene concurrently with the Cp1 RNAi #2 

transgene substantially increased the Cp1 signal compared to brains that expressed 
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only Cp1 RNAi #2 in all glia (Fig. 4.9J; 188%). Although we were surprised by— and do 

not at this time understand—the difference in Cp1 signal in flies with concurrent 

expression of GA25021 and Cp1 RNAi #2, these data indicate that the UAS-GA25021 

transgenes are functional and expressed at the protein expression level in the presence 

of the Cp1 RNAi transgene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

76 
 

 

Figure 4.7. Cp1 RNAi #2 siRNA target region on Drosophila melanogaster Cp1 and 

Drosophila pseudoobscura GA25021 alignment. The Drosophila melanogaster Cp1 

transcript is “Query 1” and the Drosophila pseudoobscura GA25021 transcript is “Sbjct 

1”. The Cp1 RNAi #2 siRNA target sequence on the Cp1 transcript is boxed in red. 

Comparing this region between Cp1 and GA25021, 6 base pairs are mismatched.  
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Figure 4.8. Expression of the Drosophila pseudoobscura UAS-GA25021 

transgenes in glia. (A) ST50 values were not changed in flies expressing both the 

UAS-GA25021 #1 transgene and repo-Gal4 (blue bar: repo-Gal4/UAS-GA25021 #1) 

compared to control flies with either repo-Gal4 alone (black bar: repo-Gal4/+) or the 

UAS-GA25021 #1 transgene alone (black bar: UAS-GA25021 #1/+). ST50 values were 

decreased in flies expressing both the UAS-GA25021 #4 transgene and repo-Gal4 (red 

bar: repo-Gal4/UAS-GA25021 #4) compared to control flies with either repo-Gal4 alone 

(black bar: repo-Gal4/+) or the UAS-GA25021 #4 transgene alone (UAS-GA25021 #4/+) 

(one-way ANOVA, p = 0.0008; *Bonferroni's multiple comparison vs controls, p < 0.05; n 

= 8). (B) ST50 values were decreased in flies expressing both the UAS-GA25021 #2 

transgene and repo-Gal4 (red bar: repo-Gal4/UAS-GA25021 #2) compared to control 

flies with either repo-Gal4 alone (black bar: repo-Gal4/+) or the UAS-GA25021 #2 

transgene alone (UAS-GA25021 #2/+) (one-way ANOVA, p = 0.022; *Bonferroni's 

multiple comparison vs controls, p < 0.05; n = 8). (C, D) ST50 values were not changed 

in flies expressing both a UAS-GA25021 transgene and repo-Gal4 (Panel C, blue bar: 

repo-Gal4/UAS-GA25021 #5, red bar: repo-Gal4/UAS-GA25021 #7; Panel D, blue bar: 

repo-Gal4/UAS-GA25021 #3, red bar: repo-Gal4/UAS-GA25021 #6) compared to 

control flies with either repo-Gal4 alone or the respective UAS-GA25021 transgene 

alone (black bars). (Panel C: one-way ANOVA, p = 0.12; n = 8; Panel D: two-way 

ANOVA, p = 0.57; n = 8).   
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Figure 4.9. Cross-species rescue of alcohol sedation in Cp1 RNAi flies. (A, C) 

Ethanol sedation in flies with repo-Gal4 alone, Cp1 RNAi #2 alone, UAS-GA25021 

transgenes alone, and repo-Gal4 with UAS-GA25021. Genotype did not impact ST50 

values (Panel A: one-way ANOVA, p = 0.4855, n = 8; Panel C: one-way ANOVA, p = 

0.1683, n = 8). (B, D) Ethanol sedation in flies with concurrent expression of Cp1 RNAi 

and UAS-GA25021. ST50 values were decreased in flies constitutively expressing the 

Cp1 RNAi #2 transgene in all glia via repo-Gal4 (blue squares) compared to control flies 

containing repo-Gal4 alone (black circles). ST50 values in flies that expressed a UAS-

GA25021 transgene and Cp1 RNAi #2 transgene in all glia via repo-Gal4 (grey 

triangles: UAS-GA25021 #1, Panel B; UAS-GA25021 #3, Panel D) were significantly 

elevated compared to flies expressing only Cp1 RNAi #2 in glia (blue squares: UAS-

GA25021 #1, Panel B; UAS-GA25021 #3, Panel D), but were not different than control 

flies containing repo-Gal4 alone (black circles) (Panel B: one-way ANOVA, p <0.0001, 

n=8, *Bonferroni's multiple comparison vs repo-Gal4;Cp1 RNAi #2 flies, p<0.05; Panel 

D: one-way ANOVA, p = 0.0019; *Bonferroni's multiple comparison vs repo-Gal4;Cp1 

RNAi #2 flies, p<0.05). (E-J) Whole mount brain images immunolabeled for Cp1. Whole 

brain fluorescence was reduced in flies constitutively expressing the Cp1 RNAi #2 

transgene in all glia via repo-Gal4 (F) compared to brains that contained repo-Gal4 

alone (E). Compared to brains that contained repo-Gal4 alone (E), whole brain 

fluorescence was increased when a UAS-GA25021 transgene was expressed in all glia 

via repo-Gal4 (UAS-GA25021 #1, panel G; UAS-GA25021 #3, panel I). Compared to 

brains that expressed the Cp1 RNAi #2 transgene in all glia via repo-Gal4 (F), whole 

brain fluorescence was increased when a UAS-GA25021 transgene was expressed with 

the Cp1 RNAi #2 transgene in all glia via repo-Gal4 (UAS-GA25021 #1, panel H; UAS-

GA25021 #3, panel J). Representative images from middle sections of adult brains, 10X 

(Anti-Cp1 1:250; Alexa 568 1:1000). 
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Figure 4.10. Cross-species rescue of alcohol sedation in Cp1 RNAi flies. (A, B) 

ST50 values were decreased in flies constitutively expressing the Cp1 RNAi #2 

transgene in all glia via repo-Gal4 (blue bar) compared to control flies containing repo-

Gal4 alone (black bar). ST50 values in flies that expressed a UAS-GA25021 transgene 

(Panel A: UAS-GA25021 #5; Panel B: UAS-GA25021 #6) and Cp1 RNAi #2 transgene 

in all glia via repo-Gal4 (grey bar) were significantly elevated compared to flies 

expressing only Cp1 RNAi #2 in glia (blue bar), but were not different than control flies 

containing repo-Gal4 alone (black bar) (Panel A: one-way ANOVA, p <0.0001; 

*Bonferroni's multiple comparison vs repo-Gal4;Cp1 RNAi #2 flies, p<0.05; n = 8; Panel 

B: one-way ANOVA, p = 0.003; *Bonferroni's multiple comparison vs repo-Gal4;Cp1 

RNAi #2 flies, p<0.05; n = 8). (C) ST50 values were decreased in flies constitutively 

expressing the Cp1 RNAi #2 transgene in all glia via repo-Gal4 (blue bar) compared to 

control flies containing repo-Gal4 alone (black bar). ST50 values in flies that expressed 

the UAS-GA25021 #7 transgene and Cp1 RNAi #2 transgene in all glia via repo-Gal4 

(grey bar) were similar to flies expressing only Cp1 RNAi #2 in glia (blue bar), and were 

decreased compared to control flies containing repo-Gal4 alone (black bar) (one-way 

ANOVA, p = 0.0003; *Bonferroni's multiple comparison vs repo-Gal4;Cp1 RNAi #2 flies, 

p<0.05; n = 8). (D) ST50 values were decreased in flies constitutively expressing the 

Cp1 RNAi #2 transgene in all glia via repo-Gal4 (blue bar) compared to control flies 

containing repo-Gal4 alone (black bar). ST50 values in flies that expressed the UAS-

LacZ transgene and Cp1 RNAi #2 transgene in all glia via repo-Gal4 (grey bar) were 

similar to flies expressing only Cp1 RNAi #2 in glia (blue bar), and were decreased 

compared to control flies containing repo-Gal4 alone (black bar) (one-way ANOVA, p < 

0.0001; *Bonferroni's multiple comparison vs repo-Gal4;Cp1 RNAi #2 flies, p<0.05; n = 

8). 
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B.4 Cp1 EXPRESSION SPECIFICALLY IN CORTEX GLIA REGULATES ALCOHOL 

SEDATION 

Adult Drosophila have five CNS glial subtypes: astrocytes, ensheathing cells, 

cortex glia, subperineural glia and perineural glia40. To address the possibility that Cp1 

influences alcohol sedation by functioning within one or more specific glial subtypes, we 

determined whether expression of Cp1 RNAi transgenes in individual glial subtypes (via 

a series of Gal4 drivers) altered alcohol sedation sensitivity. Flies expressing Cp1 RNAi 

#1 or Cp1 RNAi #2 transgenes in cortex glia (via NP2222-Gal436 or CtxGlia Split-Gal439) 

had significantly decreased ST50 values compared to control flies with the Gal4 and 

RNAi transgenes alone (NP2222-Gal4: Fig 4.11A, 11B; CtxGlia Split-Gal4: Fig 4.12). 

Flies expressing the Cp1 RNAi #3 transgene in cortex glia (via-NP2222-Gal4) had 

inconsistent results (Fig 4.4B). Additionally, ST50 values were not altered by expression 

of Cp1 RNAi #1 in the four other CNS glial subtypes (astrocytes, ensheathing cells, 

subperineural glia and perineural glia via Alrm-Gal440, TIFR-Gal436, mz0709-Gal436, Gli-

Gal4248 and Indy-Gal4212) (Table 4.4). The simplest interpretation of these data is that 

Cp1 influences alcohol sedation by functioning in cortex glia. 

We used whole brain immunofluorescence to determine if Cp1 is expressed in 

adult Drosophila cortex glia. Utilizing flies that constitutively express mCD8::GFP in 

cortex glia via NP2222-Gal4, we found that Cp1 immunofluorescence colocalized with 

GFP (Fig 4.11C-D). When quantified using Volocity™ 3D image analysis software, 

greater than 60% of the red and green pixels overlapped (average Pearson’s correlation 

= 0.622; n = 6). This result indicated that endogenous Cp1 is expressed in cortex glia, 

consistent with a role for Cp1 in acute alcohol sedation sensitivity.  
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Figure 4.11. Cp1 expression in cortex glia is required for normal ethanol sedation. 

(A,B) ST50 values were decreased in flies expressing Cp1 RNAi transgenes in cortex 

glia (blue bars: NP2222-Gal4/Cp1 RNAi #1, panel A; NP2222-Gal4/Cp1 RNAi #2, panel 

B) compared to control flies containing either the cortex glia Gal4 driver (black bars: 

NP2222-Gal4/+) or the RNAi transgenes (black bars: Cp1 RNAi #1/+ or Cp1 RNAi #2/+) 

alone (individual one-way ANOVAs, p ≤ 0.0001; *Bonferroni's multiple comparisons vs 

controls, p < 0.05; n = 8). (C-E) Cp1 is expressed in cortex glia. (C) Whole brain 

expression of UAS-GFP (green) driven by NP2222. (D) Endogenous Cp1 expression 

labeled red (anti-Cp1 1:250, Alexa 568 1:1000). (E) Merged image of panel C and panel 

D; GFP and Cp1 co-localization is yellow. Representative images from whole brain at 

10X (i) and 63X oil immersion (ii). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

86 
 

 
 

Figure 4.12. Cp1 expression in cortex glia is required for normal ethanol sedation. 

(A, B) ST50 values were decreased in flies expressing Cp1 RNAi transgenes in cortex 

glia (blue triangles: CtxGlia Split-Gal4/Cp1 RNAi #1, panel A; CtxGlia Split-Gal4/Cp1 

RNAi #2, panel B) compared to control flies containing either the cortex glia Gal4 driver 

(black circles: CtxGlia Split-Gal4/+) or the RNAi transgenes (black squares: Cp1 RNAi 

#1/+ or Cp1 RNAi #2/+) alone (Panel A: one-way ANOVA, p = 0.0029; *Bonferroni's 

multiple comparisons vs controls, p < 0.05; n = 16; Panel B: one-way ANOVA, p = 

0.0156; Bonferroni's multiple comparisons vs controls, p < 0.05; n = 8). 
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Table 4.4. Expression of Cp1 RNAi in each glial cell subtype individually. 

 

Expression of the Cp1 RNAi #1 transgene in ensheathing cells (via TIFR-Gal4 and 

mz0709-Gal4), subperineural glia (via Gli-Gal4), astrocytes (via Alrm-Gal4) and 

perineural glia (via Indy-Gal4) did not consistently alter alcohol sedation compared to 

both Gal4 driver (Gal4/+) and RNAi transgene (RNAi/+) controls. Results from individual 

one-way ANOVAs and (when appropriate) Bonferroni’s multiple comparisons are 

reported. $ and # represent common RNAi/+ controls. 

 

 

 

 

 

 

 

 

 

 



 

88 
 

B.5 Cp1 IN RAPID TOLERANCE DEVELOPMENT 

Flies develop rapid tolerance to alcohol, defined as increased ST50 values 

during a second alcohol exposure after recovering from a first alcohol exposure214. To 

determine whether Cp1 influences this aspect of alcohol behavior through its function in 

CNS glia, we expressed the Cp1 RNAi #1 transgene in all glia (via repo-Gal4) and then 

assessed rapid tolerance development. As anticipated, pan-glial knock down of Cp1 via 

the Cp1 RNAi #1 transgene significantly decreased ST50 values during the first ethanol 

exposure (black bars, E1) as compared to Gal4 and RNAi transgene alone controls (Fig 

4.13A). In contrast, ST50 values during the second alcohol exposure (grey bars, E2) 

were not affected by Cp1 knockdown (Fig 4.13A). When quantified as the ratio between 

the second and first ST50 values214, flies with Cp1 knocked down in all glia had an 

increase in the development of rapid tolerance compared to controls (Fig 4.13B). As we 

found during the first alcohol exposure (Fig 4.3C), there was no effect of knocking-down 

Cp1 in all glia on internal alcohol levels during the second alcohol exposure (Fig 4.13E). 

Knockdown of Cp1 specifically in cortex glia (via NP2222-Gal4) also reduced ST50 

values during the first, but not the second, alcohol exposure (Fig 4.13C), leading to an 

apparent increase in development of rapid tolerance compared to controls (Fig 4.13D). 

Given that Cp1 knockdown does not significantly impact ST50 values during the second 

alcohol exposure (Fig 4.13A and 4.13C), the most parsimonious interpretation of these 

data is that the increased development of rapid tolerance is likely a mathematical 

product of the enhanced sensitivity to alcohol during the first exposure. We therefore did 

not further investigate the potential role of Cp1 in rapid tolerance.  
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Figure 4.13. Cp1 in rapid tolerance development. (A) ST50 values from the first (E1) 

and second (E2) ethanol exposure when Cp1 is knocked down in all CNS glia. 

Compared to controls (repo-Gal4/+ and Cp1 RNAi #1/+), expression of Cp1 RNAi in 

CNS glia (repo-Gal4/Cp1 RNAi #1) decreased ST50 values during E1, but not during E2 

(two-way ANOVA; genotype, n.s.; ethanol exposure, p < 0.0001; interaction, p = 0.015; 

*Bonferroni’s multiple comparisons vs controls for each ethanol exposure, p < 0.05; n = 

8). (B) Development of rapid tolerance (fold change in ST50 from E1 to E2) quantified 

from the data in panel A. Expression of Cp1 RNAi in glia (blue bar: repo-Gal4/Cp1 RNAi 

#1) increased rapid tolerance development compared to controls (black bars: repo-

Gal4/+, Cp1 RNAi #1/+) (one-way ANOVA, p = 0.0014; *Bonferroni’s multiple 

comparisons vs controls, p < 0.05; n = 8). (C) ST50 values from the first (E1) and 

second (E2) ethanol exposure when Cp1 is knocked down in cortex glia. Compared to 

controls (NP2222-Gal4/+ and Cp1 RNAi #1/+), expression of Cp1 RNAi in cortex glia 

(NP2222-Gal4/Cp1 RNAi #1) decreased ST50 during E1, but not during E2 (two-way 

ANOVA; ethanol exposure, p < 0.0001; genotype, p = 0.0034; interaction, p = 0.0001; 

*Bonferroni’s multiple comparisons vs controls for each ethanol exposure, p < 0.05; n = 

8).  (D) Development of rapid tolerance (fold change in ST50 from E1 to E2) quantified 

from the data in panel C. Expression of Cp1 RNAi in cortex glia (blue bar: NP2222-

Gal4/Cp1 RNAi #1) increased rapid tolerance development compared to controls (black 

bars: NP2222-Gal4/+, Cp1 RNAi #1/+) (one-way ANOVA, p = 0.0009; *Bonferroni’s 

multiple comparisons vs controls, p < 0.05; n = 8). (E) Expression of Cp1 RNAi 

transgenes in CNS glia (blue triangles: repo-Gal4/Cp1 RNAi #1) did not alter internal 

ethanol levels compared to controls with either repo-Gal4 alone (black circles: repo-

Gal4/+) or the RNAi transgenes alone (black squares: Cp1 RNAi #1/+) (one-way 

ANOVA, p = 0.85; n = 6). 
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B.6 Cp1 KNOCKDOWN IN CNS GLIA DURING ADULTHOOD ALTERS ALCOHOL 

SEDATION 

To determine if Cp1 expression in glia during adulthood is important for alcohol 

sedation, we used the steroid-inducible pan-glial driver, GliaGS29. Flies with both the 

GliaGS driver and a Cp1 RNAi transgene, and control flies with either GliaGS or the 

RNAi transgene alone, were reared to adulthood in the absence of the steroid 

mifepristone (RU486) and then switched to food medium containing steroid (RU486) or 

vehicle for 6 days. In this experimental design, the Cp1 RNAi transgene should be 

induced in RU486-exposed adult flies harboring both a GeneSwitch Gal4 driver and an 

RNAi transgene29, thereby allowing Cp1 knockdown during adulthood. Compared to 

vehicle control animals of the same genotype, flies expressing the GliaGS transgene 

and a Cp1 RNAi transgene fed RU486 had significantly decreased ST50 values (Cp1 

RNAi #1 and #2: Fig. 4.14A and 4.14B; Cp1 RNAi #3: Fig. 4.4C). Exposure to RU486 in 

flies with either the GliaGS alone or the respective Cp1 RNAi transgenes alone did not 

alter ST50 values (Fig. 4.14A, 4.14B; Fig. 4.4C). Manipulation of Cp1 in glia during 

adulthood was therefore sufficient to increase alcohol sedation. Interestingly, substantial 

overexpression of Cp1238 (87%, quantified via immunofluorescence) in glia during 

adulthood did not change ST50 values (Fig. 4.15). These results are consistent with a 

model in which endogenous, physiological levels of Cp1 in glia are required and 

sufficient for normal alcohol sedation in flies, suggesting that biologically relevant levels 

of Cp1 in glia contribute to alcohol behaviors.  
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Figure 4.14. Cp1 knockdown in CNS glia during adulthood increased ethanol 

sedation sensitivity. Compared to vehicle, treatment with 1 mM RU486 for 6 days 

decreased ST50 values in flies with the GliaGS driver and a Cp1 RNAi transgene 

(GliaGS/Cp1 RNAi #1, panel A; GliaGS/Cp1 RNAi #2, panel B), but not in control flies 

with either GliaGS or an RNAi transgene alone (Panel A: two-way ANOVA; RU486, p = 

0.0247; genotype, n.s.; interaction, n.s.; *Bonferroni's multiple comparisons between 

vehicle and RU486, p < 0.05; n = 8; Panel B: two-way ANOVA; RU486, n.s.; genotype, 

n.s.; interaction, p = 0.0411; *Bonferroni’s multiple comparisons between vehicle and 

RU486, p < 0.05; n = 16).  
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Figure 4.15. Over-expression of Cp1 in CNS glia during adulthood did not alter 

ethanol sedation sensitivity. (A) Over-expression of Cp1 in CNS glia during adulthood 

via UAS-Cp1 did not change ethanol sedation sensitivity. Compared to vehicle-treated 

controls, treatment with 1 mM RU486 for 6 days did not alter ST50 values in flies with 

the GliaGS driver and a UAS-Cp1 transgene (GliaGS/UAS-Cp1). Control flies with the 

UAS-Cp1 transgene alone also had no change in ST50 between vehicle and RU486 

treatment (UAS-Cp1/+) (two-way ANOVA; RU486, n.s.; genotype, n.s.; interaction, n.s; 

all Bonferroni's multiple comparisons between vehicle and RU486, p > 0.05; n = 8). (B, 

C) Whole mount brains immunolabeled for Cp1 (Anti-Cp1 1:250, Alexa 568 1:1000). 

Brains from flies with the UAS-Cp1 and repo-Gal4 transgenes had increased 

fluorescence (89%) compared to brains from flies with the UAS-Cp1 transgene alone. 

Microscope settings were optimized for repo-Gal4/UAS-Cp1 brains to avoid over-

saturation in the image analysis. Mean fluorescence intensity was calculated using 

Image J, n = 5-6.  10X, representative images.  
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C. DISCUSSION  

Our understanding of the molecular-genetic basis for alcohol-related behavior in 

Drosophila and other model systems is based primarily on the results of studies that 

have focused on neuronal genes and mechanisms226. The nervous systems of flies and 

mammals also contain numerous classes of glia with conserved cellular-molecular 

activities. Given that mammalian glia respond to alcohol administration249-251, that rodent 

astrocytes in the nucleus accumbens influence the motivation for alcohol consumption, 

and that surface glia influence alcohol sedation and tolerance in flies183,211,212, it is likely 

that glia play direct—but underappreciated—roles in behavioral responses to alcohol.  

Here, we used tissue specific RNAi-mediated knock down and trans-species 

rescue of RNAi to explore this possibility. Pan-glial Cp1 knockdown via RNAi 

significantly increased alcohol sedation. Expression of an orthologous gene, Drosophila 

pseudoobscura GA25021, in all glia rescued the alcohol sedation phenotype due to 

knockdown of endogenous Cp1. Taken together, these results indicate that Cp1 

expression in glia regulates alcohol sedation. Additionally, our studies found that Cp1 

expression specifically in cortex glia, and probably not other CNS glia, influences 

alcohol sedation. The magnitude and direction of change in alcohol sedation observed 

when Cp1 was knocked down in all glia versus only cortex glia were similar, suggesting 

that cortex glia are the principal cell type in which Cp1 functions to regulate alcohol 

sedation. These results reveal a novel role for Cp1 and cortex glia in Drosophila alcohol 

sedation. Thus, perineural glia211,212 and cortex glia (our results) influence behavioral 

responses to alcohol in Drosophila. 
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Glia have prominent roles in nervous system development in flies39,234. Major 

changes in Drosophila nervous system development—in response to altered glial cell 

function—could, in principle, alter alcohol sedation sensitivity. Our data indicate that 

manipulation of Cp1 in glia during adulthood is sufficient to alter alcohol sedation in flies. 

Our findings are therefore consistent with a model in which Cp1 dynamically regulates 

adult glial cell function, and those changes in adult glial cell function influence the 

response of the nervous system to alcohol. 

To date, a few studies have investigated the role of Drosophila cortex glia in 

behavior. One study suggests that innexin2 expression in cortex glia is required for 

normal sleep patterns58, and two studies have indicated that cortex glia function 

contributes to seizures133,139. Additionally, cortex glia morphology influences larval 

locomotor behaviors39. The results reported here add to the emerging literature on 

cortex glia and behavior by showing that cortex glia, via Cp1 function, influence alcohol 

sedation. It could be important to explore the role of cortex glia, in conjunction with Cp1 

and other candidate pathways, in behavioral responses to other drugs of abuse. 

   Cp1 knockdown in glia, specifically cortex glia, appeared to enhance alcohol 

rapid tolerance development. However, glial Cp1 knock down influenced sedation 

during the first exposure to alcohol only. These results suggest that Cp1 function in glia 

selectively influences alcohol sedation during an initial exposure to the drug and any 

interpretations regarding the role of Cp1 in rapid tolerance should be made with 

considerable caution. Importantly, though, since Cp1 knock down in glia did not 

influence alcohol sedation during a second alcohol exposure or alter locomotor abilities 

in the absence of alcohol (Fig. 4.16), it seems unlikely that the initial sedation sensitivity 
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of flies with Cp1 knockdown in glia is related to global sluggishness, a lack of overall 

behavioral fitness, or other experimental artifacts. We therefore posit that glial Cp1 

plays a direct role in response of the central nervous system to alcohol.   

Cp1 cleaves, and thereby activates, the transcription factor cut239. Additionally, 

the protein crammer binds to and inactivates the Cp1 protein233. We consequently 

predicted that altered expression of cut or crammer might alter sedation sensitivity. 

Surprisingly, constitutive expression of RNAi against cut or crammer in cortex glia or 

adult-specific expression of RNAi in all glia failed to substantively alter alcohol sedation 

(Fig. 4.17 and 4.18). Additionally, a recent study identified that Cp1 is required for 

synaptic vesicle degradation, and that this Cp1-mediated degradation was dependent 

on neuronal synaptobrevin (n-syb)252. Therefore, we tested whether expression of RNAi 

against n-syb in all glia altered alcohol sedation to investigate whether Cp1 and n-syb 

may be functioning similarly in glia to mediate alcohol sedation. Constitutive expression 

of n-syb RNAi in glia did not alter alcohol sedation (Fig 4.19), suggesting that Cp1 and 

n-syb are not functioning together in glia to influence alcohol sedation. However, it is 

possible that Cp1 and a glial version of syb may be functioning together, and this 

possibility would have to be investigated further. Although additional follow-up studies 

would be required to formally rule out a role for cut, crammer and n-syb in Cp1-

dependent alcohol sedation, our data suggest that Cp1 influences alcohol sedation 

independently of these three known genes. 

Cp1 is structurally and functionally homologous to mammalian Cathepsin L240. 

Cathepsins are powerful hydrolytic cysteine proteases and are inactively stored in the 

lysosomes of most tissues in mammalian cells253. When released from lysosomes in 
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their active form, they play roles in many physiological processes253. Although 

Cathepsin L has not been directly implicated in alcohol-related behaviors in mammals, 

Cathepsin L contributes to alcohol-induced cellular and/or organ damage. For example, 

Cathepsin L mediates alcohol-induced pancreatic damage and alcoholic liver 

fibrosis254,255. Following alcohol administration, Cathepsin L is activated in pancreatic 

lysosomes254,256 and down-regulated in the cellular matrix in the liver255, contributing to 

disease pathologies. However, it is unlikely that altered alcohol sedation in Cp1 

knockdown flies is caused by over-all cathepsin-related glial cell damage because (i) 

flies with Cp1 knockdown have normal locomotor responses in the absence of alcohol 

(Fig. 4.16), (ii) Cp1 knockdown selectively alters alcohol sedation during a first, but not a 

second, exposure to the drug (Fig. 4.13) and (iii) Cp1 overexpression in all glia during 

adulthood does not alter alcohol sedation (Fig. 4.15). Although our results do not rule 

out the possibility that Cp1 is involved in glial cell damage, they do suggest that alcohol 

sedation sensitivity in Cp1 knockdown animals is unrelated to cellular damage that 

potentially may be occurring. 

Cathepsin L also functions in secretory vesicles as a proneuropeptide 

processing257. Cathepsin L knockdown resulted in an 80-90% reduction of Neuropeptide 

Y (NPY) production in mammals257. Interestingly, NPY is synthesized in glia during 

development and adulthood in mammals. During adulthood, glial NPY is postulated to 

provide trophic support to neurons258. Mammalian NPY is homologous to Drosophila 

Neuropeptide F (NPF), which influences alcohol sedation in Drosophila23,259. While a 

role for Cp1 in NPF maturation in flies is possible, it seems unlikely that glial Cp1 

influences alcohol sedation via processing of NPF. When NPF synthesis was ablated in 
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all NPF-producing cells, alcohol sedation was blunted23, whereas knockdown of Cp1, 

which would also be predicted to decrease NPF production, increased alcohol sedation 

in our studies. These contradictory results make it very unlikely that Cp1 and NPF are 

working in conjunction to mediate alcohol sedation in Drosophila. Thus, additional 

studies, potentially involving approaches grounded in proteomics, are required to begin 

elucidating the molecular mechanisms involved in Cp1-dependent modulation of alcohol 

sedation in flies.  

In summary, our results indicate a novel and potentially direct role for Drosophila 

glia in alcohol-related behaviors and that Cp1 represents a functional entry point for 

further understanding of cortex glial mechanisms that underlie alcohol sedation. Given 

that Drosophila Cp1 is orthologous to mammalian Cathepsin L, and that fly cortex glia 

are functionally similar to mammalian protoplasmic astrocytes, our findings have the 

potential to be translatable to mammalian systems. Our findings also raise the 

possibility that glial cysteine proteinases might mediate behavioral responses to other 

drugs of abuse in both flies and mammals. 
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Figure 4.16. Expression of Cp1 RNAi in CNS glia did not alter locomotion. 

Expression of the Cp1 RNAi #1 transgene in CNS glia (via repo-Gal4) did not alter the 

percentage of active flies compared to controls with either repo-Gal4 or the RNAi 

transgene alone. Vortexing the repo-Gal4 control for 4 minutes reduced the percentage 

of active flies compared to the other groups (one-way ANOVA, p< 0.001; * Bonferronni’s 

multiple comparison, p < 0.05; n = 8) 
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Figure 4.17. Expression of cut RNAi in cortex glia and CNS glia during adulthood 

did not alter alcohol sedation sensitivity. (A, B) ST50 values were not changed in 

flies expressing cut RNAi transgenes in cortex glia (blue triangles: NP2222-Gal4/cut 

RNAi #1, panel A; blue triangles: NP2222-Gal4/cut RNAi #2, panel B) compared to 

control flies containing either the cortex glia Gal4 driver (black circles: NP2222-Gal4/+) 

or the RNAi transgenes (black squares: cut RNAi #1/+ or cut RNAi #2/+) alone (Panel 

A: one-way ANOVA, p > 0.05; n = 8; Panel B: one-way ANOVA, p = 0.0041; all 

Bonferroni’s multiple comparisons vs controls, p > 0.05; n = 8). (C, D) Expression of cut 

RNAi in CNS glia during adulthood did not alter ethanol sedation sensitivity. Compared 

to vehicle-treated controls, treatment with 1 mM RU486 for 6 days did not change ST50 

values in flies with the GliaGS driver and a cut RNAi transgene (GliaGS/cut RNAi #1, 

panel C; GliaGS/cut RNAi #2, panel D). Control flies with the RNAi transgene alone also 

had no change in ST50 between vehicle and RU486 treatment (individual two-way 

ANOVAs; RU486, n.s.; genotype, n.s.; interaction, n.s.; all Bonferroni's multiple 

comparisons between vehicle and RU486, p > 0.05; n = 8).   
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Figure 4.18. Expression of crammer RNAi in cortex glia and CNS glia during 

adulthood did not alter alcohol sedation sensitivity. (A) ST50 values were 

significantly decreased between flies expressing the crammer RNAi #2 transgene in 

cortex glia (blue triangles: NP2222-Gal4/crammer RNAi #2) compared to the RNAi 

alone (crammer RNAi #2/+) control. However, ST50 values were not changed in flies 

expressing crammer RNAi transgenes in cortex glia (blue triangles diamonds: NP2222-

Gal4/crammer RNAi #1; green diamonds: NP2222-Gal4/crammer RNAi #2) compared 

to control flies containing either the cortex glia Gal4 driver (black circles: NP2222-

Gal4/+) or the appropriate RNAi transgene alone (one-way ANOVA, p < 0.0001; 

*Bonferroni's multiple comparisons vs controls, p < 0.05; n = 8). (B, C) Expression of 

crammer RNAi in CNS glia during adulthood does not alter ethanol sedation sensitivity. 

(B) Compared to vehicle-treated controls, treatment with 1 mM RU486 for 6 days did 

not alter ST50 values in flies with the GliaGS driver and the crammer RNAi #1 

transgene (GliaGS/crammer RNAi #1). Control flies with either GliaGS or the RNAi 

transgene alone also had no differences in ST50 between vehicle and RU486 treatment 

(two-way ANOVA; interaction, n.s.; genotype, p = 0.0302; RU486, n.s.; all Bonferroni's 

multiple comparisons between vehicle and RU486, p > 0.05; n = 3-8). (C) Compared to 

vehicle-treated controls, treatment with 1 mM RU486 for 6 days did not alter ST50 

values in flies with the GliaGS driver and the crammer RNAi #2 transgene 

(GliaGS/crammer RNAi #2). (Student’s t-test, p > 0.05; n = 8).  
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Figure 4.19. Expression of n-syb RNAi in all glia did not alter alcohol sedation 

sensitivity. (A) ST50 values were significantly decreased between flies expressing the 

syb RNAi #1 transgene in all glia via repo-Gal4 (blue triangles: NP2222-Gal4/syb RNAi 

#1) compared to control flies expressing repo-Gal4 alone (black circles: repo-Gal4/+). 

However, ST50 values were not changed in flies expressing syb RNAi #1 transgene in 

all glia via repo-Gal4 (blue triangles) compared to control flies expressing the RNAi 

transgene alone (black squares: syb RNAi #1/+) (one-way ANOVA, p = 0.003; 

*Bonferroni's multiple comparisons vs controls, p < 0.05; n = 6-8). (B) ST50 values were 

similar between flies expressing the syb RNAi #2 transgene in all glia via repo-Gal4 

(blue triangles: syb RNAi #2/repo-Gal4) compared to control flies that had either the 

Gal4 alone (black circles: repo-Gal4/+) or the RNAi transgene alone (black squares: syb 

RNAi #2/+) (one-way ANOVA, p = 0.34; n = 7-8).  
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CHAPTER 5: TYRAMINE SYNTHESIS, VESICULAR PACKAGING AND THE SNARE 
COMPLEX FUNCTION COORDINATELY IN ASTROCYTES TO REGULATE 

DROSOPHILA ALCOHOL SEDATION 
 
 
 

A. INTRODUCTION 

Alcohol abuse impacts and is impacted by central nervous system (CNS) 

function5. There is consequently a large, continuing effort to use model organisms to 

identify mechanisms underlying alcohol-related behaviors to better understand the role 

of the CNS in alcohol abuse. Although the central nervous system contains both glia 

and neurons as principal cell types, the preponderance of research to date has focused 

on the role of neuronal mechanisms in alcohol-related behaviors. Thus, there is likely 

much to be learned by investigating the role of glia in behavioral responses to alcohol. 

Despite the somewhat limited focus on glia and alcohol, several studies offer 

intriguing insights into the effect of alcohol on these cells and the roles these cells play 

in alcohol-related behavior. For example, calcium signaling genes are upregulated in 

astrocytes after chronic alcohol administration in mice178, expression of the glial 

cytoskeletal protein GFAP can be altered by alcohol exposure in rodents and 

humans159,260, cultured astrocytes, in the presence of alcohol, can induce interferon 

expression in neurons190 and alcohol exposure correlates with increased hemichannel 

opening in mouse hippocampal astrocytes182. These studies indicate that glia are 

responding to alcohol administration and suggest that these responses might be 

required for normal alcohol-related behaviors. Consistent with the possibility that glia 
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are directly involved in behavioral responses to alcohol, increasing intracellular calcium 

in astrocytes via designer receptors exclusively activated by designer drugs 

(DREADDs) decreased motivation for alcohol after a 3-week abstinence period in 

rats183, mutation of the gene moody in flies, which is expressed in surface glia, blunts 

alcohol-induced loss of postural control211, and Drosophila perineural glia influence 

alcohol tolerance212. Thus, there is good evidence that glia respond to and are involved 

in the behavioral responses to alcohol. 

Here, we report the results of studies using the fruit fly, Drosophila melanogaster, 

to further explore the role of glia in alcohol-related behavior. Flies are a leading model 

for investigating the molecular-genetics of behavioral responses to alcohol for many 

reasons including (i) they have conserved behavioral responses to alcohol13, (ii) there is 

a large suite of genetic tools available to manipulate gene expression in flies24,261, and 

(iii) many genes that impact fly alcohol behavior have been implicated in various 

aspects of alcohol abuse in humans16,226. Flies are also emerging as a powerful model 

for studying the contribution of glia to physiology and disease. Flies have several glial 

cell subtypes in the central nervous system (astrocytes, cortex glia, ensheathing cells, 

perineural glia and subperineural glia) that collectively share many morphological and 

functional attributes of mammalian glia. For example, fly astrocytes maintain ion 

homeostasis, remove neurotransmitters from the synapse, have hemichannels and gap 

junctions, produce Ca2+ oscillations and release gliotransmitters like their mammalian 

counterparts40,140,153. Flies are therefore well-suited for investigating the contribution of 

astrocytes to behavioral responses to alcohol. 
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We identified the gene tyramine decarboxylase 2 (Tdc2) as a regulator of alcohol 

sedation in flies. Tdc2 is a brain-specific enzyme that converts the amino acid tyrosine 

to the catecholamine tyramine in invertebrates262. Manipulation of Tdc2 expression in all 

glia, selectively in astrocytes, or conditionally in glia during adulthood altered ethanol 

sedation. Additionally, manipulation of the vesicular monoamine transporter (VMAT) and 

the SNARE complex in all glia, astrocytes and in adult glia also influenced ethanol 

sedation by functioning downstream of Tdc2. Our studies support a model in which 

Tdc2 produces tyramine in astrocytes which is packaged into vesicles and released via 

the SNARE complex, thereby mediating alcohol sedation in Drosophila.  

 

B. RESULTS 

B.1 Tdc2 FUNCTIONS IN CNS GLIA, SPECIFICALLY ASTROCYTES, TO 

REGULATE ALCOHOL SEDATION SENSITIVITY 

To identify candidate genes that could influence alcohol-related behaviors by 

functioning in glia, we compiled a list of genes known to be expressed in Drosophila 

CNS glial cells263,264. We then determined whether manipulation of 33 of these genes 

individually in all CNS glia influenced alcohol sedation in Drosophila (Table 5.1). Flies 

with pan-glial Gal4 (via repo-Gal4) driven expression of two unique Tdc2 RNAi 

transgenes (Tdc2 RNAi #1 and #2) had significantly decreased sedation time 50 (ST50) 

values compared to control flies containing the Gal4 or RNAi transgene alone (Fig. 

5.1A, 5.1B), suggesting that Tdc2 might regulate alcohol sedation by functioning in glia. 

Tdc2 could, in principle, influence alcohol sedation through the collective effect of 

its role in all CNS glia or by a role in a single glial cell subtype. We consequently 
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assessed whether manipulating Tdc2 expression individually in astrocytes, ensheathing 

cells, cortex glia, perineural glia and subperineural glia impacted ST50 values. We 

found that expression of Tdc2 RNAi in astrocytes (via alrm-Gal4) significantly decreased 

ST50 values compared to controls (Fig. 5.1C, 5.1D; Table 5.2). Expression of Tdc2 

RNAi in other glial cell subtypes did not alter ST50 values (Table 5.2). Additionally, Tdc2 

RNAi expression in neurons did not alter ST50 values compared to controls (Fig. 5.2). 

Taken together, these data suggest that Tdc2 plays a role in alcohol sedation by 

functioning within astrocytes, but not other glial cell subtypes or neurons. 

We performed immunofluorescence studies to determine (i) whether the Tdc2 

RNAi transgenes we used knocked down expression of Tdc2 and (ii) whether Tdc2 is 

expressed in CNS glia. Consistent with a previous report265, we found that Tdc2 is 

robustly expressed throughout the brain (Fig. 5.3A, 5.3B). Additionally, the Tdc2 

immunofluorescence signal was significantly decreased by pan-neuronal elav-Gal4-

driven expression of Tdc2 RNAi transgenes (Figs. 5.3), confirming that Tdc2 is 

expressed in neurons265 and that the RNAi transgenes knockdown expression of Tdc2.  

  Tdc2 is known to be expressed in astrocytes, as characterized by TRAP-seq 

studies264. To confirm these results, we labeled astrocytes through mCD8:GFP 

expression driven by alrm-Gal4 and detected endogenous Tdc2 via 

immunofluorescence. GFP driven by alrm-Gal4 was found in astrocytes throughout the 

brain (Fig. 5.4A), as expected40. Endogenous Tdc2 was also expressed throughout the 

brain as expected (Fig. 2B). Using Manders colocalization coefficient266, we found that 

approximately 12% of the GFP (astrocytes) and red (Tdc2) pixels were colocalized (n = 

6), indicating that a subpopulation of astrocytes express Tdc2 (Fig 5.4). Collectively, the 
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data in Figs. 5.1, 5.3 and 5.4 indicate that Tdc2 influences alcohol sedation in 

Drosophila by functioning in astrocytes.  
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Table 5.1. Identifying glial genes that regulate alcohol sedation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genes were manipulated either by over-expression (UAS), dominant negative or RNAi 

transgenes. Manipulations were made in all glia during adulthood using GliaGS. ST50 

values for the GliaGS/transgene either fed RU486 or vehicle are reported. #, $, %, &, ~ 

and + represent genotypes that were tested together, and were therefore statistically 

compared in the two-way ANOVA. When appropriate, Bonferonni multiple comparisons 

adjusted p-values are reported.  
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Figure 5.1. Manipulating Tdc2 expression constitutively in all glia or specifically 

in astrocytes alters alcohol sedation. (A, B) ST50 values were reduced in flies with 

the pan-glial driver repo-Gal4 and a Tdc2 RNAi transgene (blue bars: repo-Gal4/Tdc2 

RNAi #1, panel A; repo-Gal4/Tdc2 RNAi #2, panel B) compared to control flies with 

either repo-Gal4 alone (black bars: repo-Gal4/+) or the respective RNAi transgene 

alone (black bars: Tdc2 RNAi #1/+ and Tdc2 RNAi #2/+) (Panel A: one-way ANOVA, p 

< 0.0001; *Bonferroni’s multiple comparison vs controls, p < 0.05; n = 8; Panel B:  one-

way ANOVA, p < 0.0001; *Bonferroni’s multiple comparison vs controls, p < 0.05; n = 

16). (C, D) ST50 values were decreased in flies expressing the astrocyte-specific driver 

alrm-Gal4 and a Tdc2 RNAi transgene (blue bars: alrm-Gal4/Tdc2 RNAi #1, panel C; 

alrm-Gal4/Tdc2 RNAi #2, panel D) compared to control flies containing either the 

astrocyte Gal4 driver (black bars: arlm-Gal4) or the respective RNAi transgene (black 

bars: Tdc2 RNAi #1/+, panel C; Tdc2 RNAi #2, panel D) alone (Panel C: one-way 

ANOVA, p < 0.0001; *Bonferroni’s multiple comparison vs controls, p < 0.05; n = 8; 

Panel D:  one-way ANOVA, p < 0.0001; *Bonferroni’s multiple comparison vs controls, p 

< 0.05; n = 16). 
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Table 5.2. Manipulating expression of Tdc2 in each glial cell subtype individually 

 
Expression of the Tdc2 RNAi #1 transgene in astrocytes (via alrm-Gal4) consistently 

altered alcohol sedation compared to both the Gal4 driver (Gal4/+) and RNAi transgene 

(RNAi/+) controls. Expression of the Tdc2 RNAi #1 transgene in ensheathing cells (via 

TIFR-Gal4 and mz0709-Gal4), cortex glia (via NP2222-Gal4), subperineural glia (via 

Gli-Gal4) and perineural glia (via Indy-Gal4) did not consistently alter alcohol sedation 

compared to both the Gal4 driver (Gal4/+) and RNAi transgene (RNAi/+) controls. 

Results from individual one-way ANOVAs and (when appropriate) Bonferroni’s multiple 

comparisons are reported. $ represent common RNAi/+ controls.  
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Figure 5.2. Tdc2 knockdown in neurons does not alter alcohol sedation. ST50 

values were not altered in flies containing both the pan-neuronal driver elav-Gal4 and 

the Tdc2 RNAi #1 transgene (blue bar: elav-Gal4/Tdc2 RNAi #1) compared to control 

flies containing either elav-Gal4 or the Tdc2 RNAi #1 transgene alone (black bars) (one-

way ANOVA, p = 0.189, n = 8).  
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Figure 5.3. Tdc2 RNAi knocks down Tdc2 expression. Whole mount brain images 

immunolabeled for Tdc2 expression (anti-Tdc2 1:200, Alexa-647 1:1000). All 

representative images, 10X. (A, B) Tdc2 expression in brains of flies with a Tdc2 RNAi 

transgene alone. (C, D) Tdc2 expression in brains of flies with the pan-neuronal driver 

elav-Gal4 and a Tdc2 RNAi. (E, F) Brains with both the elav-Gal4 and a Tdc2 RNAi 

transgene had significantly lower pixel intensity compared to control flies with the Tdc2 

RNAi transgene alone (Panel E: students t test, p = 0.0059, n = 4-5; Panel F: students t 

test, p = 0.0002, n = 4).  
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Figure 5.4. Tdc2 expression in astrocytes. (A) Expression of UAS-GFP (green) 

driven by alrm-Gal4. (B) Endogenous Tdc2 expression labeled red (anti-Tdc2 1:200, 

Alexa 647 1:1000). (C) Overlay and colocalization. Column i and ii are representative 

10X Z-stack slices from the same whole brain. Column iii is representative 63X oil 

immersion.  

 

 

 

 

 

 



 

117 
 

B.2 Tdc2 REGULATES ALCOHOL SEDATION SENSITIVITY IN CNS GLIA DURING 

ADULTHOOD THROUGH A PHARMACODYNAMIC MECHANISM 

To determine if Tdc2 expression in glia during adulthood is important for alcohol 

sedation, we used GliaGS to conditionally express UAS-transgenes. GliaGS is a steroid 

(mifepristone, RU486)-inducible pan-glial Gal4 driver29. Compared to vehicle, induction 

of the two independent Tdc2 RNAi transgenes in all glia during adulthood (i.e. in flies 

with GliaGS and a Tdc2 RNAi transgene fed RU486) significantly decreased ST50 

values (Fig. 5.5A, 5.5B). Conversely, conditional overexpression of Tdc2 via two 

independent, previously validated267, transgenes in all glia during adulthood (i.e. in flies 

with GliaGS and a UAS-Tdc2 transgene fed RU486) significantly increased ST50 values 

(Fig. 5.5C). Treatment with RU486 did not significantly alter ST50 values in control flies 

with either the GliaGS driver, the Tdc2 RNAi transgenes or the UAS-Tdc2 transgenes 

alone (Fig. 5.5). Additionally, internal alcohol levels were not altered by adult-specific 

Tdc2 knockdown or over-expression in glia (Fig. 5.6A). Thus, knocking down or 

overexpressing Tdc2 in glia during adulthood respectively decreased or increased ST50 

values without altering the net uptake or metabolism of alcohol. Therefore, the level of 

Tdc2 expression in adult glia is a key regulator of alcohol sedation in flies. 

Interestingly, overexpressing Tdc2 (via UAS-Tdc2) constitutively in all glia (via repo-

Gal4) and constitutively in astrocytes (via alrm-Gal4) caused developmental lethality. To 

determine if Tdc2 overexpression in astrocytes alters alcohol sedation, we utilized 

Gal80ts, an inducible temperature sensitive Gal4 repressor28, to express UAS-Tdc2 in 

astrocytes during adulthood. Flies developed in the Gal80ts permissive temperature 

(18°C), repressing UAS-Tdc2 expression during development (i.e. Gal80ts on, alrm-
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Gal4 off, UAS-Tdc2 off). During adulthood, flies were switched to the Gal80ts restrictive 

temperature (30°C), which allows UAS-Tdc2 to be expressed in astrocytes via alrm-

Gal4 (i.e. Gal80ts off, alrm-Gal4 on, UAS-Tdc2 on). Switching flies to the restrictive 

temperature (30°C), and consequently overexpressing Tdc2 in astrocytes during 

adulthood, significantly increased ST50 compared to control flies that experienced the 

same temperature shift (30C, Fig 5.7). However, for reasons that we do not understand, 

rearing flies in the permissive temperature (18°C), and not switching temperatures (no 

30°C exposure), differentially altered flies behavioral responses to alcohol (18C, Fig 

5.7). While difficult to fully interpret, these data begin to suggest that overexpressing 

Tdc2 in astrocytes during adulthood also alters alcohol sedation in flies.  
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Figure 5.5. Manipulating Tdc2 expression in all glia during adulthood influences 

alcohol sedation. (A, B) Compared to vehicle, treatment with RU486 decreased ST50 

values in flies with the GliaGS driver and a Tdc2 RNAi transgene (GliaGS/Tdc2 RNAi 

#1, panel A; GliaGS/Tdc2 RNAi #2, panel B), but not in control flies with either GliaGS 

or the respective RNAi transgene alone (Panel A: two-way ANOVA; RU486, p = 0.059; 

genotype, p < 0.0001; interaction, p = 0.13; *Bonferroni’s multiple comparisons between 

vehicle and RU486, p < 0.05; n = 8; Panel B: two-way ANOVA; RU486, p = 0.4; 

genotype, p < 0.0001; interaction, p = 0.045; *Bonferroni’s multiple comparisons 

between vehicle and RU486, p < 0.05; n = 8). (C) Compared to vehicle, treatment with 

RU486 increased ST50 values in flies with the GliaGS driver and a UAS-Tdc2 

transgene (GliaGS/UAS-Tdc2 #1 and GliaGS/UAS-Tdc2 #2), but not in control flies with 

either GliaGS or the UAS-Tdc2 transgene alone (two-way ANOVA; RU486, p = 0.0012; 

genotype, p = 0.0004; interaction, p = 0.0003; *Bonferroni’s multiple comparisons 

between vehicle and RU486, p < 0.05; n = 6-7). 
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Figure 5.6. Internal ethanol concentrations. (A) Compared to vehicle, treatment with 

RU486 did not alter internal ethanol levels in flies with the GliaGS driver and the Tdc2 

RNAi transgenes (GliaGS/Tdc2 RNAi #1; GliaGS/Tdc2 RNAi #2) or in flies with the 

GliaGS driver and the UAS-Tdc2 transgenes (GliaGS/UAS-Tdc2 #1; GliaGS/UAS-Tdc2 

#2) (two-way ANOVA; RU486, p = 0.871; genotype, p < 0.0001; interaction, p = 0.286; 

Bonferroni’s multiple comparisons between vehicle and RU486, p = 0.66-0.9999; n = 5-

6). (B) Compared to vehicle, treatment with RU486 did not alter internal ethanol levels 

in flies with the GliaGS driver and the VMAT RNAi #1 transgene (GliaGS/VMAT RNAi 

#1), but RU486 treatment decreased internal ethanol levels in flies with the GliaGS 

driver and the VMAT RNAi #2 transgene (GliaGS/VMAT RNAi #2) (two-way ANOVA; 

RU486, p = 0.035; genotype, p < 0.0001; interaction, p = 0.022; *Bonferroni’s multiple 

comparisons between vehicle and RU486, p < 0.05; n = 5-6). (C) Compared to vehicle, 

treatment with RU486 did not alter internal ethanol levels in flies with the GliaGS driver 

and the UAS-TeTx transgene (GliaGS/UAS-TeTx) (student’s t test, p = 0.126; n = 5). 
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Figure 5.7. Tdc2 overexpression in astrocytes alters alcohol sedation. Gal80ts 

represses Gal4 in 18C and is permissive to Gal4 in 30C. Compared to controls within 

the same temperature treatment, exposure to 30C significantly increased ST50 values 

in alrm-Gal4/Gal80ts, UAS-Tdc2 flies (blue bars). A second group of flies, which did not 

experience a temperature shift, also served as a control (labeled 18C). UAS-Tdc2/+ 

(dark grey bar) and Gal80ts, UAS-Tdc2/+ (light grey bar) flies had significantly 

increased ST50 values compared to alrm-Gal4/Gal80ts (black bars) and alrm-

Gal4/Gal80ts, UAS-Tdc2 flies (blue bars) (two-wat ANOVA; temperature, p < 0.0001; 

genotype, p < 0.0001; interaction, p < 0.0001; *Bonferroni’s multiple comparisons 

between vehicle and RU486, p < 0.05; n = 8).  
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B.3 MANIPULATION OF TYRAMINE SYNTHESIS IN ASTROCYTES IMPACTS 

ALCOHOL SEDATION 

Tyrosine is converted to tyramine by Tdc2 and to dopamine by tyrosine 

hydroxylase (Th). Tyramine produced by Tdc2 can be converted to octopamine by 

tyramine -hydroxylase (Tbh)262 (Fig 5.8). We postulated that manipulation of Tdc2 

might influence alcohol sedation by impacting tyramine levels directly or through 

secondary effects on dopamine or octopamine synthesis. To test this, we targeted Tbh 

and Th expression in glia during adulthood using GliaGS and previously validated RNAi 

and UAS transgenes109,268-272. Induction of Tbh RNAi or UAS transgenes (Fig. 5.9) and 

induction of Th RNAi or UAS transgenes (Fig. 5.10) individually in all glia during 

adulthood did not alter ST50 values. While follow-up studies would be needed to fully 

rule out a role for glial Tbh and Th in alcohol sedation, our results support the 

hypothesis that manipulation of Tdc2 expression in glia influences alcohol sedation by 

altering tyramine levels. 

 If Tdc2 impacts alcohol sedation through tyramine synthesis, we predicted that 

alcohol sedation sensitivity in Tdc2 knockdown flies might be rescued by 

supplementation with dietary tyramine. In vehicle-fed (i.e. no tyramine supplementation) 

flies, expression of Tdc2 RNAi in astrocytes via alrm-Gal4 decreased ST50 values (Fig. 

5.11A, 5.11B), consistent with our previous studies (Fig. 5.1C, 5.1D). Providing flies with 

a diet supplemented with tyramine eliminated (Fig. 5.11A) or partially reversed (Fig. 

5.11B) the effect of Tdc2 knockdown in astrocytes on ST50 values. Collectively, the 

data in Figs. 5.9, 5.10 and 5.11 are consistent with a model in which tyramine produced 

in astrocytes by Tdc2 regulates alcohol sedation.  
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Figure 5. 8. The invertebrate catecholamine synthesis pathway. The amino acid 

tyrosine can be converted to L-Dopa by tyramine hydroxylase (Th, also known as pale). 

L-Dopa is converted to dopamine by dopamine decarboxylase (Ddc). Tyrosine can also 

be converted to tyramine by tyramine decarboxylase 2 (Tdc2). Tyramine can be 

converted to octopamine by tyramine β hydroxylase (Tbh). Adapted from Cole, 2005262. 
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Figure 5.9. Manipulation of Tbh in glia does not alter normal alcohol sedation. (A, 

B) Compared to vehicle, treatment with RU486 did not alter ST50 values in flies with the 

GliaGS driver and a Tbh RNAi transgene (panel A: GliaGS/Tbh RNAi #1, GliaGS/Tbh 

RNAi #2; panel B: GliaGS/Tbh RNAi #3, GliaGS/Tbh RNAi #4) or in control flies with 

either GliaGS or the Tbh RNAi transgene alone (Panel A: two-way ANOVA; RU486, p = 

0.003; genotype, p < 0.0001; interaction, p = 0.875; Bonferroni’s multiple comparisons 

between vehicle and RU486, p = 0.15-0.9999; n = 8; Panel B: two-way ANOVA; RU486, 

p = 0.147; genotype, p < 0.0001; interaction, p = 0.48; Bonferroni’s multiple 

comparisons between vehicle and RU486, p = 0.55-0.9999; n = 6). (C) Compared to 

vehicle, treatment with RU486 did not alter ST50 values in flies with the GliaGS driver 

and the UAS-Tbh transgene (GliaGS/UAS-Tbh) or in control flies with either GliaGS or 

the UAS-Tbh transgene alone (two-way ANOVA; RU486, p = 0.005; genotype, p = 

0.0009; interaction, p = 0.81; Bonferroni’s multiple comparisons between vehicle and 

RU486, p = 0.16-0.77; n = 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

128 
 

 



 

129 
 

Figure 5.10. Manipulation of Th in glia does not alter alcohol sedation. (A, B) 

Compared to vehicle, treatment with RU486 did not alter ST50 values in flies with the 

GliaGS driver and a Th RNAi transgene (panel A: GliaGS/Th RNAi #1; panel B: 

GliaGS/Th RNAi #2, GliaGS/Th RNAi #3, GliaGS/Th RNAi #4) or in control flies with 

either GliaGS or the Th RNAi transgene alone (Panel A: two-way ANOVA; RU486, p = 

0.16; genotype, p < 0.0001; interaction, p = 0.902; Bonferroni’s multiple comparisons 

between vehicle and RU486, p = 0.86-0.9999; n = 8; Panel B: two-way ANOVA; RU486, 

p = 0.885; genotype, p = 0.007; interaction, p = 0.503; Bonferroni’s multiple 

comparisons between vehicle and RU486, p > 0.9999; n = 6). (C) Compared to vehicle, 

treatment with RU486 did not alter ST50 values in flies with the GliaGS driver and the 

UAS-Th transgene (GliaGS/UAS-Th) or in control flies with either GliaGS or the UAS-Th 

transgene alone (two-way ANOVA; RU486, p = 0.23; genotype, p = 0.749; interaction, p 

= 0.504; n = 6). 
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Figure 5.11. Tyramine feeding rescues Tdc2 RNAi-associated alcohol sedation 

sensitivity. (A) ST50 values were decreased in vehicle-fed flies expressing the 

astrocyte specific driver alrm-Gal4 and the Tdc2 RNAi #1 transgene (blue bar: alrm-

Gal4/Tdc2 RNAi #1) compared to vehicle-fed control flies containing either the astrocyte 

Gal4 driver (black bar: arlm-Gal4) or the RNAi transgene (grey bar: Tdc2 RNAi #1/+) 

alone. ST50 values were not different in tyramine-fed flies expressing alrm-Gal4 and 

Tdc2 RNAi transgene #1 (blue bar: alrm-Gal4/Tdc2 RNAi #1) compared to tyramine-fed 

control flies containing either the astrocyte Gal4 driver (black bar: arlm-Gal4) or the 

Tdc2 RNAi transgene alone (grey bar: Tdc2 RNAi #1/+) (two-way ANOVA; tyramine 

treatment, p = 0.77; genotype, p = 0.029; interaction, p = 0.28; *Bonferroni’s multiple 

comparisons within treatments, p < 0.05; n = 14-16). (B) ST50 values were decreased 

in vehicle-fed flies expressing the astrocyte specific driver alrm-Gal4 and the Tdc2 RNAi 

#2 transgene (blue bar: alrm-Gal4/Tdc2 RNAi #2) compared to vehicle-fed control flies 

containing either the astrocyte Gal4 driver (black bar: arlm-Gal4) or the RNAi transgene 

(grey bar: Tdc2 RNAi #2/+) alone. ST50 values were not different in tyramine-fed flies 

expressing alrm-Gal4 and the Tdc2 RNAi transgene #2 (blue bar: alrm-Gal4/Tdc2 RNAi 

#2) compared to tyramine-fed control flies containing the Tdc2 RNAi transgene alone 

(grey bar: Tdc2 RNAi #2/+). ST50 values were higher in tyramine-fed control flies with 

the astrocyte Gal4 driver alone (black bar: alrm-Gal4/+) compared to tyramine-fed flies 

containing the Tdc2 RNAi transgene alone (grey bar: Tdc2 RNAi #2/+) and flies 

containing both alrm-Gal4 and Tdc2 RNAi transgene (blue bar: alrm-Gal4/Tdc2 RNAi 

#2) (two-way ANOVA; tyramine treatment, p = 0.57; genotype, p < 0.0001; interaction, p 

= 0.02; *Bonferroni’s multiple comparisons within treatments, p < 0.05; n = 8). 
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B.4 ALCOHOL SEDATION IS INFLUENCED BY VESICULAR PACKAGING AND 

RELEASE MACHINERY IN GLIA 

In fly neurons, tyramine is released into the synapse through vesicular exocytosis 

and then functions as a neurotransmitter27,267,273. If tyramine production in glia mediates 

alcohol sedation, we predicted that manipulating the vesicular packaging machinery 

might have the same effect on alcohol sedation as Tdc2 knockdown. We therefore 

assessed whether the vesicular monoamine transporter (VMAT) in glia regulates 

alcohol sedation because this transporter (i) packages monoamines, including tyramine, 

into vesicles in neurons274, (ii) is expressed in mammalian astrocytes76 and (iii) is 

expressed in fly glia275,276. Constitutive expression of two unique VMAT RNAi 

transgenes individually in all glia via repo-Gal4 significantly decreased ST50 (Fig. 

5.12A, 5.12B). Similarly, flies expressing VMAT RNAi in astrocytes (via alrm-Gal4) had 

significantly decreased ST50s compared to controls (Fig. 5.12C, 5.12D). RU486-

induced expression of VMAT RNAi in all glia during adulthood significantly decreased 

ST50s, whereas treatment with RU486 had no effect in control genotypes (Fig. 5.12E, 

5.12F). Internal alcohol levels were not consistently altered by expression of VMAT 

RNAi transgenes (Fig. 5.6B), indicating that that VMAT is mediating alcohol sedation 

through a pharmacodynamic mechanism. Expression of the RNAi transgenes used in 

these experiments in neurons significantly decreased the detection of VMAT in whole fly 

brains (Fig 5.13), indicating that the transgenes are capable of knocking down VMAT 

expression. Thus, knocking down Tdc2 (Figs. 5.1 and 5.5) and VMAT (Fig. 5.12), using 

three different expression strategies targeting all glia, astrocytes or adult glia, have 

similar effects on alcohol sedation.  
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 Given that manipulation of Tdc2 and VMAT in glia produced similar changes in 

alcohol sedation, we postulated that they might function in the same pathway. To 

address this possibility, we assessed alcohol sedation in flies with Tdc2 over-expressed 

and VMAT knocked down using three approaches: pan-glial expression via repo-Gal4, 

astrocyte-specific expression using alrm-Gal4, and adult-induced expression in all glia 

using GliaGS. Over-expression of Tdc2 in all glia and in astrocytes was lethal (missing 

bars in Fig. 5.14A, 5.14B). Expression of VMAT RNAi in all glia (Fig. 5.14A) or in 

astrocytes (Fig. 5.14B) significantly decreased ST50 values as described above (Fig. 

5.12). Interestingly, expression of only the VMAT RNAi, and not a UAS-GFP transgene, 

suppressed the lethality associated with Tdc2 over-expression (quantified for repo-Gal4 

in Table 5.3). More importantly, the ST50 values in flies over-expressing Tdc2 in 

conjunction with the VMAT RNAi were statistically indistinguishable from flies 

expressing only VMAT RNAi (Fig. 5.14A, all glia; Fig. 5.14B, astrocytes). Similarly, 

RU486-induced over-expression of Tdc2 during adulthood increased ST50 values, 

expression of VMAT RNAi decreased ST50 values, and flies with concomitant over-

expression of Tdc2 and VMAT RNAi had decreased ST50s that were comparable to 

ST50s in flies expressing only VMAT RNAi (Fig. 5.14C). Taken together, these data 

strongly support a model in which knockdown of VMAT is epistatic to over-expression of 

Tdc2, thereby placing VMAT biochemically downstream of Tdc2 and suggesting that 

alcohol sedation might be influenced by tyramine packaging into vesicles within glia.  

 Synaptic vesicles loaded with transmitters dock to the plasma membrane prior to 

releasing their contents into the synapse102. This process is, in part, mediated by the 

SNARE complex in both glia and neurons102,252,277. We therefore reasoned that the 
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SNARE complex in glia might be required for normal alcohol sedation and that this 

complex might function downstream of Tdc2. We used two expression strategies to test 

these possibilities: constitutive expression in astrocytes via alrm-Gal4 and RU486-

induced expression in glia during adulthood via GliaGS. Additionally, we used tetanus 

toxin, which cleaves synaptobrevin, to inhibit the SNARE complex and block synaptic 

transmission278. Expression of tetanus toxin (UAS-TeTx) in astrocytes (Fig. 5.15A) and 

adult glia (Fig. 5.15B) decreased ST50 values. Internal ethanol levels were not altered 

by expressing UAS-TeTx in glia during adulthood (Fig. 5.6C), suggesting that the 

SNARE complex in glia influences alcohol sedation through a pharmacodynamic 

mechanism. However, ST50 was not altered when RNAi expression for individual 

components of vesicular release machinery was induced in glia during adulthood (Table 

5.4). While surprising, this may suggest that compensatory mechanisms occur in 

response to the RNAi expression to keep vesicular exocytosis in glia occurring. 

Nonetheless, the effect of expressing the tetanus toxin in astrocytes and in adult glia 

was similar to that of knocking down Tdc2 (Figs. 5.1, 5.5), suggesting that the SNARE 

complex might function in the same pathway as Tdc2. To formally address this 

possibility, we assessed alcohol sedation in flies with Tdc2 over-expression and tetanus 

toxin expression. Expression of tetanus toxin in astrocytes suppressed the lethality due 

to Tdc2 over-expression and these flies had significantly decreased ST50s. Additionally, 

the ST50 value of these flies was indistinguishable from flies that expressed tetanus 

toxin alone in astrocytes (Fig. 5.15C). Similarly, RU486-induced over-expression of 

Tdc2 in adult glia increased ST50s, expression of tetanus toxin decreased ST50s, and 

flies with concomitant over-expression of Tdc2 and expression of tetanus toxin had 



 

135 
 

decreased ST50s that were indistinguishable from that of flies expressing tetanus toxin 

alone (Fig. 5.15D). Taken together, these data strongly support a role for the SNARE 

complex regulating alcohol sedation by functioning within astrocytes and adult glia. 

Additionally, these data argue that SNARE-dependent vesicle-mediated release is 

functionally downstream of Tdc2 in glia within the context of alcohol sedation. 
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Figure 5.12. VMAT expression in glia is required for normal alcohol sedation. (A, 

B) ST50 values were reduced in flies with the pan-glial driver repo-Gal4 and a VMAT 

RNAi transgene (blue bars: repo-Gal4/VMAT RNAi #1, panel A; repo-Gal4/VMAT RNAi 

#2, panel B) compared to control flies with either repo-Gal4 alone (black bars: repo-

Gal4/+) or the respective RNAi transgene alone (black bars: VMAT RNAi #1/+ and 

VMAT RNAi #2/+) (Panel A: one-way ANOVA, p = 0.003; *Bonferroni’s multiple 

comparison vs controls, p < 0.05; n = 8; Panel B:  one-way ANOVA, p = 0.002; 

*Bonferroni’s multiple comparison vs controls, p < 0.05; n = 8). (C, D) ST50 values were 

decreased in flies expressing the astrocyte-specific driver alrm-Gal4 and a VMAT RNAi 

transgene (blue bars: alrm-Gal4/VMAT RNAi #1, panel C; alrm-Gal4/VMAT RNAi #2, 

panel D) compared to control flies containing either the astrocyte Gal4 driver (black 

bars: arlm-Gal4) or the respective RNAi transgene (black bars: VMAT RNAi #1/+, panel 

C; VMAT RNAi #2, panel D) alone (Panel C: one-way ANOVA, p < 0.001; *Bonferroni’s 

multiple comparison vs controls, p < 0.05; n = 8; Panel D: one-way ANOVA, p = 0.0001; 

*Bonferroni’s multiple comparison vs controls, p < 0.05; n = 8). (E, F) Compared to 

vehicle, treatment with RU486 decreased ST50 values in flies with the GliaGS driver 

and a VMAT RNAi transgene (GliaGS/VMAT RNAi #1, panel E; GliaGS/VMAT RNAi #2, 

panel F), but not in control flies with either GliaGS or the respective RNAi transgene 

alone (Panel E: two-way ANOVA; RU486, p = 0.04; genotype, p = 0.23; interaction, p = 

0.003; *Bonferroni’s multiple comparisons between vehicle and RU486, p < 0.05; n = 8; 

Panel F: two-way ANOVA; RU486, p = 0.051; genotype, p = 0.284; interaction, p = 

0.018; *Bonferroni’s multiple comparisons between vehicle and RU486, p < 0.05; n = 8). 
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Figure 5.13. VMAT RNAi knocks down VMAT expression. Whole mount brain 

images immunolabeled for VMAT expression (anti-VMAT 1:2000, Alexa-647 1:1000). All 

representative images, 10X. (A, B) VMAT expression in brains of flies with a VMAT 

RNAi transgene alone. (C, D) VMAT expression in brains of flies with the pan-neuronal 

driver elav-Gal4 and a VMAT RNAi. (E, F) Brains with both the elav-Gal4 and a VMAT 

RNAi transgene had significantly lower pixel intensity compared to control brains of flies 

with the VMAT RNAi transgene alone (Panel E: students t test, p = 0.0005, n = 5-6; 

Panel F: students t test, p = 0.0448, n = 4).  
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Figure 5.14. VMAT functions downstream of Tdc2. (A) ST50 values were decreased 

in flies with the pan-glial driver repo-Gal4 and a VMAT RNAi transgene (blue bar: repo-

Gal4/VMAT RNAi #1) and in flies with repo-Gal4, the VMAT RNAi and the UAS-Tdc2 

transgenes (red bar: repo-Gal4/VMAT RNAi #1; UAS-Tdc2 #1) compared to control flies 

(black bars). ST50 values were not different between flies with the repo-Gal4 and the 

VMAT RNAi transgenes (blue bar: repo-Gal4/VMAT RNAi #1) and flies with the repo-

Gal4, the VMAT RNAi and the UAS-Tdc2 transgenes (red bar: repo-Gal4/VMAT RNAi 

#1; UAS-Tdc2 #1) (one-way ANOVA, p = 0.003; *Bonferroni’s multiple comparison vs 

controls, p < 0.05; n = 8). Flies with both the pan-glial driver repo-Gal4 and the UAS-

Tdc2 transgene did not emerge as adults (no bar: repo-Gal4/UAS-Tdc2 #1). (B) ST50 

values were decreased in flies with the astrocyte-specific driver alrm-Gal4 and the 

VMAT RNAi transgene (blue bar: alrm-Gal4/VMAT RNAi #1) and in flies with alrm-Gal4, 

the VMAT RNAi transgene and the UAS-Tdc2 transgene (red bar: alrm-Gal4/VMAT 

RNAi #1; UAS-Tdc2 #1) compared to control flies (black bars). ST50 values were not 

different between flies with the alrm-Gal4 and the VMAT RNAi transgenes (blue bar: 

alrm-Gal4/VMAT RNAi #1) and flies with the alrm-Gal4, the VMAT RNAi and the UAS-

Tdc2 transgenes (red bar: alrm-Gal4/VMAT RNAi #1; UAS-Tdc2 #1) (one-way ANOVA, 

p < 0.0001; *Bonferroni’s multiple comparison vs controls, p < 0.05; n = 8). Flies 

expressing both alrm-Gal4 and UAS-Tdc2 transgenes did not emerge as adults (no bar: 

alrm-Gal4/UAS-Tdc2 #1). (C) Compared to vehicle, treatment with RU486 increased 

ST50 values in flies with the GliaGS driver and a UAS-Tdc2 transgene (GliaGS/UAS-

Tdc2 #1), decreased ST50 values in flies with the GliaGS driver and a VMAT RNAi 

transgene (GliaGS/VMAT RNAi #1) and decreased ST50 values in flies with the GliaGS 

driver, a VMAT RNAi transgene and a UAS-Tdc2 transgene (GliaGS/VMAT RNAi #1; 

UAS-Tdc2 #1). Treatment with RU486 did not alter ST50 in control flies with GliaGS 

alone (GliaGS/+) or both the VMAT RNAi and the UAS-Tdc2 transgenes (VMAT RNAi 

#1; UAS-Tdc2 #1/+) compared to controls (two-way ANOVA; RU486, p = 0.543; 

genotype, p = 0.006; interaction, p = 0.0007; *Bonferroni’s multiple comparisons 

between vehicle and RU486, p < 0.05; n = 8). 
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Table 5.3. Lethality associated with UAS-Tdc2 expression in glia 

 
Progeny from the indicated crosses were counted and recorded as the “observed n”. 

The “observed genotype percentage” was calculated by dividing the number of flies of 

each genotype by the total number of flies from the indicated cross. The “expected n” 

was used for the comparison between that group (observed) and the group indicated in 

the “Group Compared to” column (expected). It was calculated by multiplying the total 

number of progeny by the expected percentage of the genotype from the cross being 

compared to. The chi-square statistic compared the “expected n” and the “observed n” 

to determine if they were different. All chi-square values and their associated p-values 

are reported (df = 3). Driving VMAT RNAi with repo-Gal4 (Group B) did not impact 

lethality, whereas expression of Tdc2 (Group C) was 100% lethal. Expression of VMAT 

RNAi significantly suppressed the lethality due to Tdc2 expression (Group D). 

Expression of UAS-GFP did not suppress the lethality due to Tdc2 expression (Group 

E) 
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Figure 5.15. Expression of tetanus toxin in glia alters alcohol sedation and is 

epistatic to of Tdc2. (A) ST50 values were decreased in flies expressing the astrocyte-

specific driver alrm-Gal4 and the UAS-TeTx transgene (blue bar: alrm-Gal4/UAS-TeTx) 

compared to control flies containing either the astrocyte Gal4 driver (black bar: arlm-

Gal4/+) or the UAS-TeTx transgene (black bar: UAS-TeTx/+) alone (one-way ANOVA, p 

= 0.0004; *Bonferroni’s multiple comparison vs controls, p < 0.05; n = 15-16). (B) 

Compared to vehicle, treatment with RU486 decreased ST50 values in flies with the 

GliaGS driver and the UAS-TeTx transgene (GliaGS/UAS-TeTx), but not in control flies 

with either GliaGS or the UAS-TeTx transgene alone (two-way ANOVA; RU486, p = 

0.0002; genotype, p < 0.0001; interaction, p = 0.0009; *Bonferroni’s multiple 

comparisons between vehicle and RU486, p < 0.05; n = 8) (C) ST50 values were 

decreased in flies with the astrocyte-specific driver alrm-Gal4 and the UAS-TeTx 

transgene (blue bar: alrm-Gal4/UAS-TeTx) and in flies with alrm-Gal4, the UAS-TeTx 

transgene and the UAS-Tdc2 transgene (red bar: alrm-Gal4/UAS-TeTx; UAS-Tdc2 #1) 

compared to control flies (black bars). ST50 values were not different between flies 

containing the alrm-Gal4 and the UAS-TeTx transgenes (blue bar: alrm-Gal4/UAS-

TeTx) and flies containing the alrm-Gal4, the UAS-TeTx and the UAS-Tdc2 transgenes 

(red bar: alrm-Gal4/UAS-TeTx; UAS-Tdc2 #1) (one-way ANOVA, p < 0.0001; 

*Bonferroni’s multiple comparison vs controls, p < 0.05; n = 8). Flies expressing both 

alrm-Gal4 and UAS-Tdc2 transgenes did not emerge as adults (no bar: alrm-Gal4/UAS-

Tdc2 #1). (D) Compared to vehicle, treatment with RU486 increased ST50 values in 

flies with the GliaGS driver and a UAS-Tdc2 transgene (GliaGS/UAS-Tdc2 #1), 

decreased ST50 values in flies with the GliaGS driver and the UAS-TeTx transgene 

(GliaGS/UAS-TeTx) and decreased ST50 values in flies with the GliaGS driver, the 

UAS-TeTx transgene and a UAS-Tdc2 transgene (GliaGS/UAS-TeTx; UAS-Tdc2 #1). 

Compared to vehicle, treatment with RU486 did not alter ST50 in control flies with 

GliaGS alone (GliaGS/+) or both the UAS-TeTx and the UAS-Tdc2 transgenes (UAS-

TeTx; UAS-Tdc2 #1/+) (two-way ANOVA; RU486, p = 0.036; genotype, p < 0.0001; 

interaction, p < 0.0001; *Bonferroni’s multiple comparisons between vehicle and RU486, 

p < 0.05; n = 6-8). 
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Table 5.4. Expressing RNAi against individual components of the vesicular 

release machinery in adult glia does not alter alcohol sedation 

 
 

 

 



 

146 
 

Manipulations were made in all glia during adulthood using GliaGS. ST50 values for the 

GliaGS/transgene either fed RU486 or vehicle are reported. @, #, $, %, &, ~, +, = 

represent genotypes that where tested together, and therefore were statistically 

compared in the two-way ANOVA. When appropriate, Bonferonni multiple comparision 

adjusted p-values are reported 
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B.5 THE TYRAMINE RECEPTOR IS IMPORTANT FOR ALCOHOL SEDATION 

 When tyramine is released from neurons, it binds to a tyramine receptor on a 

post-synaptic membrane273. Three tyramine receptor subtypes exist in the fly: TyrR, 

TyrRII and TAR1 (also known as Oct-TyrR)279. If tyramine production in glia mediates 

alcohol sedation, we predicted that pharmacologically antagonizing the tyramine 

receptors might have the same effect on alcohol sedation as Tdc2 knockdown. We 

utilized the drug Yohimbine, which efficiently blocks all tyramine receptors280. Flies fed 

Yohimbine had a decreased ST50 compared to vehicle fed flies, suggesting that the 

tyramine receptors are important for alcohol sedation (Fig 5.16). Thus knocking down 

Tdc2 (Fig 5.1) and antagonizing tyramine receptors (Fig 5.16) have similar effects on 

alcohol sedation.  

 Tyramine could, in principle, influence alcohol sedation through the collective 

effect of binding to each tyramine receptor subtype or by a role in a binding to an 

individual receptor subtype. Since the tyramine receptors are expressed on both 

neurons and glia279, we consequently expressed RNAi against each tyramine receptor 

individually in neurons and glia via elav- and repo-Gal4, respectively. Expression of 

multiple RNAi against TyrR, TyrRll and TAR1 in neurons (via elav-Gal4) did not alter 

alcohol sedation and expression of one RNAi (identifier 27670) against TyrRII 

significantly increased ST50 compared to controls (Table 5.5). Given that Tdc2 

knockdown in glia decreased ST50 (Fig 5.1), these data suggest that (i) the tyramine 

receptors on neurons are not regulating alcohol sedation or (ii) TyrRII may be regulating 

alcohol sedation independently of glial tyramine. Interestingly, expression of RNAi 

against TAR1 (identifier v26876) in glia (via repo-Gal4) significantly decreased ST50 
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compared to controls, while expression of a second RNAi (identifier 28332) did not alter 

ST50 values (Table 5.6). Glial expression of RNAi against TyrR either significantly 

decreased, significantly increased, or did not alter ST50 compared to control (Table 

5.6). Expression of RNAi against TyrRII in glia did not alter ST50 compared to controls 

(Table 5.6). Taken together, these data suggest that expression of TAR1 on glia may 

regulate alcohol sedation, while the expression of TyrR and TyrRII on glia may not 

mediate alcohol sedation. Since individual expression of RNAi against Tdc2 and TAR1 

in glia (via repo-Gal4) lead to significant decreases in ST50, it is possible that glial 

tyramine is binding to a glial TAR1 receptor to mediate alcohol sedation. Additional 

studies are needed to formally assess this possibility.  
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Figure 5.16. Antagonizing tyramine receptors with Yohimbine alters alcohol 

sedation sensitivity. Our labs standard fly, w[A], was fed Yohimbine or vehicle (5% 

sucrose). Flies fed Yohimbine (blue bar) had a significantly decreased ST50 compared 

to vehicle control (black bar) (Students t test, p = 0.039, n = 8).   
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Table 5.5. Pan-neuronal expression of RNAi’s against each tyramine receptor 

subtype 

 

Expression of RNAi against TyrR, TyrRII and TAR1 in neurons (via elav-Gal4) did not 

consistently alter alcohol sedation compared to both the Gal4 driver (Gal4/+) and RNAi 

transgene (RNAi/+) controls. Only expression of the 27670 RNAi transgene against 

TyrRII had a significantly increased ST50 compared to controls. Results from individual 

one-way ANOVAs and (when appropriate) Bonferroni’s multiple comparisons are 

reported. @, # and % represent common Gal4/+ controls.  
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Table 5.6. Pan-glial expression of RNAi’s against each tyramine receptor subtype 

 

Expression of RNAi against TyrR, TyrRII and TAR1 in glia (via repo-Gal4) did not 

consistently alter alcohol sedation compared to both the Gal4 driver (Gal4/+) and RNAi 

transgene (RNAi/+) controls. Expression of the TyrR RNAi 25857 significantly 

decreased ST50 compared to controls, while expression of the TyrR RNAi 57496 

significantly increased ST50 compared to controls. Expression of the TAR1 RNAi 

v26876 significantly decreased ST50 compared to controls. Results from individual one-

way ANOVAs and (when appropriate) Bonferroni’s multiple comparisons are reported. 

@ and # represent common Gal4/+ controls. 
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C. DISCUSSION 

A more detailed understanding of the genes and mechanisms that influence 

behavioral responses to alcohol could ultimately facilitate the development of novel 

diagnostic and treatment options for individuals that abuse the drug. Understandably, 

much of the genetic analysis of alcohol behavior in model organisms (mainly mice, flies 

and worms) has focused on genes that function in neurons, leaving mechanisms driven 

by other cell types largely unexplored. Our studies on Tdc2, glia and fly alcohol sedation 

help fill this gap. Here, we show that (i) knockdown and overexpression of Tdc2 in glia 

makes flies sensitive and resistant, respectively, to alcohol sedation, (ii) feeding flies 

tyramine can rescue the ethanol sedation sensitivity in Tdc2 knockdown flies, (iii) VMAT 

and the SNARE complex influence alcohol sedation by functioning in glia, (iv) VMAT 

and the SNARE complex impact alcohol sedation by functioning downstream of Tdc2 in 

glia, and (v) these findings map to astrocytes and adulthood. Our data support a model 

in which astrocytes, during adulthood, influence alcohol sedation by synthesizing and 

releasing tyramine into the synapse through SNARE-dependent vesicular exocytosis. 

Given that resistance to alcohol responses is linked to the propensity to abuse it225, our 

findings raise the possibility that astrocytes may be key contributors to AUD and 

problematic alcohol consumption through their role in mediating alcohol sensitivity 

through synthesis and release of transmitters. 

Although synaptic vesicle exocytosis is a slower process in astrocytes than in 

neurons, the SNARE complex is used by both cell types to release synaptic vesicle 

contents101. Whether vesicular exocytosis is a physiologically relevant mechanism in 

astrocytes, however, is somewhat controversial. Our studies on VMAT and the SNARE 
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complex strongly suggest that synaptic vesicle loading and release within astrocytes are 

required for normal alcohol sedation in flies, thereby supporting the hypothesis that 

synaptic vesicle exocytosis in astrocytes could have important physiological roles. 

Our data suggest that a small fraction of astrocytes expresses Tdc2 and 

synthesize/release tyramine, potentially as a gliotransmitter. The presence of or level of 

expression of Tdc2 could therefore represent astrocyte heterogeneity, which could be 

relevant for normal behavioral responses to alcohol. Given that the fly brain contains 

approximately 4,600 astrocytes total 125, it is intriguing to speculate how a minor fraction 

of such a small number of cells could impact alcohol sedation in an organism whose 

brain contains roughly 100,000 neurons 281. One possibility is that the astrocytes 

engaged in tyramine synthesis are physically associated with numerous neurons 

involved in regulating alcohol sedation, and the tyramine released from the astrocytes 

binds to G protein-coupled tyramine receptors on neurons 279, thereby influencing the 

response of those neurons to alcohol. Another possibility is that tyramine released from 

a minor fraction of astrocytes permeates the brain as a whole, thereby influencing the 

physiological properties of nearby, as well as distant, neurons. However, these 

possibilities seem unlikely since expression of RNAi again the tyramine receptors in 

neurons did not produce a consistent alcohol sedation response (Table 5.5). 

Additionally, tyramine released from a minor fraction of astrocytes could function as an 

autocrine/paracrine factor to alter calcium signaling within nearby astrocytes, influencing 

their physiology, which can lead to altered responses of neurons to alcohol. This 

possibility is supported by our findings, since expressing TAR1 RNAi in glia significantly 

decreased ST50 (Table 5.6). Yet another possibility is that astrocytes contain direct 
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pharmacological targets of alcohol, and the binding of ethanol to these targets alters the 

release of tyramine which influences alcohol sedation. Although these models are 

speculative (and not mutually exclusive), they emphasize the need for additional studies 

to better understand the role of astrocytes in behavioral responses to ethanol. 

 Glia in flies and rodents, as well as in human alcoholic post-mortem tissue, are 

molecularly and morphologically altered by the presence of alcohol 158,159,211,212,249,282. In 

flies, surface glia can regulate initial alcohol sedation and rapid tolerance development 

211,212. In rodents, blocking astrocyte hemichannels, increasing astrocyte intracellular 

calcium, and increasing astrocyte cytokine release has been associated with changes in 

alcohol related behaviors 183,194.  This study, however, is the first to identify an astrocyte 

molecular pathway that directly influences any alcohol-related behavior in any model 

organism. While research has demonstrated that astrocytes respond to alcohol 

administration and can influence behavioral responses after alcohol administration 

182,183,190,194, but none of these identify a molecular pathway responsible for the 

changes. Given that astrocytes are major regulators of the synaptic environment, this 

finding is not particularly surprising. However, since alcohol use disorder is a disease of 

the central nervous system 5, our data stress the importance to consider both neurons 

and glia when investigating the genetic and molecular contributions to alcohol-related 

behaviors.  
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CHAPTER 6: DISCUSSION  
 
 
 
 

A. SUMMARY AND FUTURE DIRECTIONS 
 

 Studies in model organisms, such as the worm, fly and rodents, have led to the 

discovery of many novel genes and pathways that regulate alcohol-related behaviors226. 

A majority of this work has focused on neurons, leaving glial contributions to alcohol-

related behaviors overlooked. However, previous research using human alcohol post-

mortem tissue, as well as rodents and flies, has demonstrated that glial cells do respond 

to alcohol administration and can influence alcohol related behaviors. For this reason, 

we hypothesized that glia are important and direct regulators of alcohol related 

behavior. Since flies and mammals have conserved behavioral responses to alcohol, as 

well as conserved glial cell function, we used Drosophila melanogaster as a model to fill 

this gap in the alcohol field13. Drosophila have an expansive toolkit to manipulate genes 

in specific tissues and cell types, including all glia as well as each glial cell subtype 

individually24,125. However, prior to this research, no pan-glial steroid-inducible 

GeneSwitch transgenic fly had been characterized. By measuring B-galactosidase 

activity, and using immunohistochemistry, we characterized a fly that induces robust 

transgene expression in adult CNS glia, and termed it GliaGS (Chapter 3). Using these 

glial gene manipulation methods, we conducted targeted screens to identify genes 

whose expression in glia is important for the alcohol-related behavior, sedation. From 
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these screens, we investigated the genes Cysteine proteinase 1 (Chapter 4) and 

Tyramine decarboxylase 2 (Chapter 5) further.  

 Our data suggests that expression of Cp1 in cortex glia during adulthood 

regulates alcohol sedation sensitivity and possibly rapid tolerance development to 

alcohol. This was the first research to associate Cp1, as well as cortex glia, with an 

alcohol-related behavior. Although the role of Cp1 in glia had not been studied 

previously, Cp1 function in neurons had. We used this data to try to identify pathways 

Cp1 was functioning within to mediate alcohol sedation, and specifically screened the 

transcription factor cut, the Cp1 inhibitor crammer, and the synaptic vesicle marker 

neuronal-synaptobrevin233,239,252. Unfortunately, manipulating these genes in glia did not 

alter alcohol sedation, suggesting that they were not functioning in the same pathway as 

Cp1 to mediate this response. Given that Cp1 is involved in protein degradation241, it is 

possible that Cp1 is interacting with different proteins in cortex glia to regulate alcohol 

sedation. To identify these proteins, future studies should utilize mass spectrometry.  

 Additionally, our data suggests that Tdc2 is synthesizing tyramine in astrocytes 

during adulthood, and that tyramine is being release through vesicular exocytosis to 

regulate alcohol sedation. This was the first research to identify a molecular pathway 

within astrocytes that directly influences an alcohol related behavior. Additionally, these 

data suggest that astrocyte vesicular exocytosis is physiologically relevant, and that 

astrocyte heterogeneity may exist within the fly. Interestingly, our preliminary data 

suggests that a tyramine receptor on astrocytes (TAR1, also referred to the Oct-TyrR) 

may be involved in this pathway. While additional studies are necessary, this result 

invites the speculation that astrocytic tyramine may be functioning in an 
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autocrine/paracrine loop to regulate alcohol sedation, since it is known that astrocytes 

can communicate with each other through GTs32. Future studies should investigate this, 

as well as determine how glial TAR1 is regulating alcohol sedation. Previous literature 

has demonstrated that activating TAR1 on astrocytes leads to an increase in 

intracellular calcium and adenosine release, which inhibits nearby dopaminergic 

neurons27. Since dopamine is heavily involved in addiction, and has been previously 

implicated in fly alcohol-related behaviors5,6, this may be an interesting pathway to 

pursue.   

 

B. TRANSLATABILITY TO MAMMALS 

Cp1 is orthologous to mammalian Cathepsin L, which has been previous implicated 

in alcohol-induced tissue damage and is known to be expressed in astrocytes and 

microglia283,284. Our data suggest that glial Cathepsin L may have a role in mediating the 

behavior response to an acute dose of alcohol. Interestingly, chronic alcohol 

administration leads to neurodegeneration191, and Cathepsin L is involved in alcohol-

induced cell damage outside the CNS253. Given that glial cell damage or death can lead 

to neurodegeneration32, future studies in mammals should investigate whether glial 

Cathepsin L contributes to alcohol-induced neurodegeneration, which is a hallmark 

feature in severe alcoholic brains163. If true, then glial Cathepsin L may mediate both 

acute behavioral responses to alcohol, as well as CNS changes due to chronic alcohol 

administration.  

Invertebrate tyramine is functionally homologous to mammalian norepinephrine, and 

the tyramine receptors are closely related to the vertebrate adrenergic receptors279. 



 

158 
 

Both molecules have been associated with the “fight or flight” or arousal response, 

which can be measured as aggression and courtship in flies285. To date, norepinephrine 

has not been identified as a GT, but it has been implicated in alcohol dependence. 

Specifically, norepinephrine is elevated during alcohol withdrawal in mice and 

humans286, and blocking norepinephrine neurotransmission also blunts alcohol 

withdrawal symptoms in mice. This result suggests that norepinephrine may regulate 

the negative emotional state associated with alcohol dependence, which is a criteria for 

AUD diagnosis in humans287. In our research, overexpressing Tdc2, and presumably 

overexpressing tyramine, leads to alcohol sedation resistance. Given that there is an 

inverse correlation between initial sensitivity and risk of alcohol dependence in 

humans225, our data suggests that increases in tyramine, and therefore norepinephrine, 

may correlate with alcohol dependence development. Taken together, this suggests that 

increased norepinephrine levels are associated with alcohol dependence risk and 

progression.  

Interestingly, tyramine is a trace amine in mammals. Trace amines are 

endogenously found monoamines in mammals, and are approximately 100-fold less 

abundant than catecholamines288. Trace amines have been implicated in many 

disorders, such as schizophrenia, bipolar disorder, depression, addiction and 

narcolepsy289. However, the invertebrate and mammalian receptors for tyramine are 

evolutionarily distinct, suggesting that tyramine in invertebrates and mammals is also 

functionally distinct289. For this reason, tyramine research in invertebrates is not 

translatable to tyramine function in mammals.  
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The principle cell types implicated in this research are Drosophila cortex glia and 

astrocytes. As described earlier, these cell types are morphologically and functionally 

similar to mammalian astrocytes (Chapter 1C). While previous literature has 

demonstrated that the mammalian orthologue of Cp1 functions in astrocytes283, it is 

unknown whether the enzyme responsible for norepinephrine synthesis does. However, 

utilizing human RNA-sequencing data, this enzyme, Dopamine β-hydroxylase (DBH), is 

expressed in mature astrocytes290. Taken together, this suggests that our results 

studying Cp1 and Tdc2 in fly cortex glia and astrocytes may be translatable to 

mammalian astrocytes.  

Based on the assumption that our studies in the fly are wholly translatable to 

mammals, it is possible that DBH and Cathepsin L may be functioning together in 

mammalian astrocytes to regulate alcohol-related behaviors. Our studies suggest that 

astrocytes contain synaptic vesicles that release norepinephrine, and that the release of 

these vesicles is important for alcohol sedation. Previous literature has demonstrated 

that Cp1 is required for synaptic vesicle degradation252. Therefore, it is possible that the 

synthesis and release of norepinephrine via DBH and the degradation of the vesicles 

that contain norepinephrine via Cathepsin L are functioning together in astrocytes to 

influence alcohol sedation. Degraded synaptic vesicles can be processed into new 

synaptic vesicles252, therefore allowing norepinephrine to be released from the astrocyte 

though vesicular exocytosis. In flies, knocking down Cp1 (i.e. blocking synaptic vesicle 

degradation) and knocking down Tdc2 (i.e. blocking tyramine synthesis) produced the 

same behavioral effect: decreased ST50, or increased alcohol sedation sensitivity. It is 

possible that the studies looking at a relationship between Cp1 and neuronal-
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synaptobrevin in cortex glia did not work because fly cortex glia do not have synaptic 

vesicles. However, in mammals, Cp1 (i.e. Cathepsin L) would be expressed in a cell 

type where this interaction could occur. Future studies in mammals would be needed to 

test this possibility.  

Our data suggests that glia are important regulators of alcohol sedation in 

Drosophila melanogaster. Given that alcohol use, abuse and dependence effects the 

central nervous system, future research within the field should consider both neuronal 

and glial contributions. Since glia and neuron function is reliant on the other, it seems 

likely that differences in behavioral responses to alcohol may, in part, be due to 

impairments in the synchrony of glia and neurons. This impairment can lead to overall 

CNS dysfunction, which over time may contribute to alcohol dependence development.  
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APPENDIX 

 
 
 

Basic Fly Handling and Husbandry 
 
A. Standard Fly Lab Lingo: 
1. Stock or strain: a culture of flies with a particular genotype. Balanced stocks have a 
special chromosome called a balancer that is marked with a dominant phenotype and 
suppresses recombination on the corresponding sister chromosome. Balanced stocks 
are often weak (i.e. grow poorly). 
 
2. Seeding: putting adult flies into a new bottle or vial. Also called ‘setting-up’. 
 
3. Transfer: moving flies without anesthesia from one vial or bottle to another. One-to-
one transfer means moving flies from one bottle/vial to one new bottle/vial. Two-to-one 
transfer means moving flies from 2 vials/bottles to 1 new vial/bottle. Also called ‘flipping’. 
 
4. Clearing: removing all of the adults from a bottle or vial. Can be done with or without 
anesthesia. 
 
5. Anesthesia: CO2 used to temporarily immobilize flies. 
 
6. Brood: refers to the number of times a set of adults has been used to seed bottles. 
Using flies for 2 broods is common, with 3 broods being possible in some cases. 
 
7. white plus (w+): indicates eye color. white minus (w-) flies have white eyes. w+ flies 
have eyes that can vary from light peach to deep red. 
 
8. Food: All of our fly food currently has antibiotics on it (ampicillin, tetracycline and 
chloramphenicol, ATC). Yeasted (Y) food vials and bottles have live yeast on added. 
Yeasted food should be used for seeding new vials and bottles for growing flies. 
Nonyeasted (NY) food has no yeast on it and should be used to house flies prior to 
behavioral studies and for storing virgin females and males prior to setting-up crosses. 
 
B. Standard Fly Husbandry 
1. Remove necessary number of yeasted bottles or vials from the cold room. Use 
bottles to grow lots of flies for behavioral, stress or other large experiments. Use vials 
for smaller numbers of flies in limited scale crosses or other small scale experiments. 
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2. Before putting in new flies, bottles and vials must be dried 2 hours to overnight in the 
environmental chamber so that all condensation on the walls evaporates. The food will 
pull away from the wall of the bottle or vial if they are over-dried. It is poor practice to 
use over-dried food. 
 
3. Turn on the CO2. Clean microscope, CO2 pad and counter with ethanol. Clean before 
starting, between each genotype and after you are finished. Be sure the CO2 is on 
before putting ethanol on the pad. 
 
4. Open CO2 to pipette, invert bottle or vial, insert pipette along cotton plug and tap 
bottle/vial gently. Flies will become anesthetized quickly and should fall onto the plug 
and/or the neck of the bottle/vial. 
 
5. Clic off CO2 to pipette, remove CO2 pipette from vial/bottle. Hold inverted bottle/vial 
over CO2 pad. Remove plug and gently shake/tap flies onto pad into a pile. Return plug 
to bottle/vial and set aside. 
 
6. Place anesthetized flies in a row and sort flies according to needs. Short CO2 times 
are important. For collecting flies that will be used in behavioral studies, goals are (1) all 
genotypes experience the same CO2 exposure and (2) all flies are anesthetized for less 
than 5 minutes. 
 
7. Set-up new bottles/vials by putting sorted flies from step 6 into dried bottles/vials. 
Anesthetized flies should be kept on the wall of the bottle/vial. If they fall into the food, 
many of them will stick there and die. Robust strains such as w[A], CS, etc. will do well 
with 10 females (♀, see below) per bottle or 3 females per vial. It is good practice to 
include a comparable number of males (♂, see below). Weaker stocks will need more 
females, up to as many as 50 per bottle and 15 per vial. When working with a stock that 
is new to you it is good practice to seed bottles or vials with a range of females (10-
25/bottle for example) and then use an optimum number thereafter based on how the 
various bottles/vials grow. 

 
8. Insert cotton plug, invert new bottle/vial and tap anesthetized flies onto the plug. Lay 
the bottle/vial on its side, label with genotype and date. First broods (i.e. bottles or vials 
in which the flies are new parents) are marked with a single slash. 
 
9. Wait for flies to regain locomotor activity. Turn bottles/vials upright and place in 
environmental chamber to grow. 
 
10. Beginning at around 4 days after seeding, check bottles/vials daily for larval activity. 
When larval activity is obvious, transfer adults to new bottles/vials (dried appropriately). 
Label second brood with genotype, date and two slashes. 
 
11. Beginning at around 4 days after seeding the second brood, check bottles/vials daily 
for larval activity. Discard adults when larval activity is obvious. If necessary, a third 
brood is possible in some cases. 
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12. You should expect to see obvious larval activity 4 to 7 days after seeding and 
obvious pupae 5-10 days after seeding. New adults should begin emerging ~10 days 
after seeding. Some strains, especially balanced strains, can take up to 4 additional 
days to emerge. Perfectly seeded bottle/vials will have robust larval activity followed by 
large numbers of pupae that populate the bottom three-fourths of the wall. Pupae will 
not typically be in the food or on the plug in these bottles. Large numbers of healthy 
adults suitable for experiments will emerge from perfectly seeded bottles/vials. 
 
13. Common Problems: If your bottles/vials are too dry or wet (as described below), the 
resulting adults should not be used for behavioral, stress or gene expression studies. 
The resulting adults are fine genotype-wise and reproduction-wise, though, and can be 
used to set-up new bottles/vials as necessary. 
 a. Food too dry after 4-7 days of new adults in bottle/vial: The food should not be 
so dry that it detaches from the wall of the bottle of vial and the pupae are in the food. In 
cases like this, the food was either over-dried, there were not enough females placed in 
the bottle/vial, or possibly both. If this occurs across several strains that have grown well 
in the past, it is likely due to over-drying. If it occurs with a subset of strains, it is more 
likely due to insufficient numbers of females being used for those specific strains. The 
appropriate fixes are to decrease drying time, add more females, or both.  

When you transfer flies from the first to second brood or when clearing the second 
brood, note the quality of the culture and food. If the food in some bottle/vials is 
detached from the wall after 7 days, go ahead and transfer/clear the adults and then 
add ddH2O (NOT ETHANOL!) to the bottle/vial until the gap between the food and the 
wall is filled. In many cases this will help the larvae quite a lot and you still might get a 
decent yield of adults, although they might be delayed a few days due to lack of water. 
 b. Food too wet after 4-7 days of new adults in bottle/vial: The food should not be 
so wet that it runs down the wall of the bottle/vial when it is inverted and the pupae are 
on the plug. If this happens, the food was not dried sufficiently before adults were 
added, too many adults were added, or possibly both. If this occurs across several 
strains that have not had this problem in the past, it is likely due to under-drying the 
food. If it occurs with only a subset of strains, it is more likely due to too many females 
being added in those specific strains. The fixes are to increase the drying time for 
bottles/vials, decrease the number of females used, or both. 
 If you notice that your bottles are too wet when transferring from the first to 
second brood or when clearing the second brood, you can put a folded Kim wipe in the 
bottle/vial so that it touches both the food and the plug. This will not result in a 
miraculous drying of the bottle/vial, but it can convert a bottle/vial that is far too wet into 
one that can be managed with some care. 
 
C. The Basics of Setting-Up Crosses 
1. You will need males (♂, mated or unmated) and females (♀ with a ‘v’ on top, 
unmated or virgin) for your crosses. Grow bottles or vials as above for strains required 
to generate males and virgin females. For planning purposes, you can comfortably 
collect 100 males and/or 50 virgin females from a robust bottle. Likewise, you can 
probably count on collecting 20 males and 10 virgin females from each well-seeded vial. 
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2. Around day 10 after seeding, begin to collect virgin females, identified by their light 
body pigmentation and female genitalia (see below). Typically, one would collect virgin 
females first thing in the morning, again around noon, and again last thing before 
leaving for the day. 
 
3. Keep virgin females in nonyeasted vials with no more than 25 females/vial. Label 
each vial with genotype, date and number collected. Keep collected females in 
environmental chamber until ready to use. One will often collect virgin females over 
several days or until a sufficient number of virgin females has been collected. Also, it is 
convenient to store virgin females in upside-down vials. 
 
4. When sufficient numbers of virgin females have been collected (~10% more than you 
plan to use) or when it is obvious that you will be able to collect all the virgin females 
you will need, collect all males into nonyeasted vials needed for your crosses. Males are 
identified by their male genitalia (see below). 
 
5. Set-out yeasted bottles or vials to warm and dry as described above. On the day of 
the cross, check all virgin female vials for larvae using the microscope. Any vials with 
larvae MUST be discarded because at least one of the females has mated. Use only 
virgin females from vials with no larvae. 
 
6. To set-up a cross, anesthetize the males and check them, anesthetize the virgin 
females on the same plate and check them, and put appropriate numbers of males and 
females into yeasted bottles/vials as described in steps B7-B9 above. Handle them 
thereafter as described in B10-B12 above. 
 
7. Make sure that you know what progeny to expect from your crosses before you set 
them up. 
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Simple Ethanol Sedation Assay 
 
A. Day before assay 
 
1. Collect flies (reared for behavioral assays) in groups of 11 (single sex) under brief 
CO2 following standard procedures for behavioral assays. 
 
2. Allow flies to recover overnight in non-yeasted food vials in the environmental 
chamber. It is possible to test a maximum of 24 vials of flies in a single experiment. 
 
3. Dilute ethanol solution as necessary (85% is our standard concentration). ~250 ml of 
ethanol solution can be stored in a sealed 500ml bottle or other sealed container for a 
week without a problem. Make ethanol fresh weekly. Diluted ethanol is exothermic and 
should be stored overnight at room temperature before use. 
 
B. Day of assay 
  
1. For each vial of flies to be tested, you will need (a) a clean, empty food vial; i.e. 
testing vial, (b) a new Flug, (c) a silicone #4 stopper and (d) 0.9 ml of ethanol solution 
(85% ethanol is our standard concentration). 
 
2. Turn on humidifier and allow relative humidity in testing room to rise to 55-65%.  
 
3. Have someone else in the lab assign a unique code to each group of vials for each 
genotype and—IMPORTANTLY—record the code for later. Place coded vials with flies 
in testing room to acclimate. 
 
3. Label empty testing vials with tape to match codes on fly vials from B.3. 
 
4. Construct a testing log by entering the code for each vial into the Test Log E sheet 
within the Excel Sedation file SA E EE 6 min SIGMOIDAL 2015.03.02. Use a random or 
cycling order. Add other pertinent information (% ethanol, sex, etc.) to the Test Log 
worksheet and print for use during testing. 
 
5. Using the Test Log as a guide, arrange coded food vials with flies and empty testing 
vials into matching arrays in the testing room. I have found that it is possible to test 6 
sets of 4 vials simultaneously, so arrange 24 vials (maximum) in 6 sets or rows 
containing 4 vials each. 
 
6. Transfer all flies from all food vials into matched/labeled testing vials one at a time 
and immediately insert Flugs into testing vials until Flugs are a uniform distance below 
the vial tops. Use the Fluginator to push Flugs down into vials. 
 
7. Time 0 assessment: For each vial individually, grasp with thumb and forefinger, tap 
gently on the table three times to knock flies to the bottom of the vial, wait 30 seconds 
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and then count the number of flies that are immobile. Typically, this is 0 or 1 at time 0. 
Record the number of immobile flies for each vial at time 0 in the printed Testing Log. 
 
8. Hereafter, each row of four vials will be handled as a set at staggered one-minute 
intervals.  
 
Start timer counting up at time 0 and immediately begin adding 1 ml of ethanol to the 
Flug in the vials for the first row/set of 4 vials. Add ethanol to the vials at 5 second 
intervals in the order they will be tested. Add ethanol to the Flugs in a circular motion so 
that all ethanol is absorbed. When ethanol has been added to all four testing vials in the 
set, insert a silicone #4 plug in each vial to seal it. 
 
At times 1, 2, 3, 4 and 5 minutes, add 1 ml of ethanol to the second, third, fourth and 
fifth sets of 4 vials, respectively. Continue inserting #4 stoppers after adding ethanol to 
each set of 4 vials. 
9. At time 6 minutes, test the first set of 4 vials by grasping each vial with thumb and 
forefinger, tapping gently on the table three times to knock flies to the bottom of the vial, 
waiting 30 seconds and then counting and recording the total number of flies that are 
sedated. Flies are scored as sedated if they do not appear to have productive 
locomotion. 
 
Handle each vial within the set at 5 second intervals. The specific schedule is: 

Vial Tap Assess 

1 6 min 0 s 6 min 30 s 

2 6 min 5 s 6 min 35 s 

3 6 min 10 s 6 min 40 s 

4 6 min 15 s 6 min 45 s 

 
At times 7, 8, 9, 10 and 11 minutes, test the second, third, fourth, fifth and sixth sets of 
vials, respectively, as done for the first set. 
 
10. At time 12 minutes, test the first set of 4 vials again as described in B9 and continue 
testing the second, third, fourth, fifth and sixth sets of vials at 13, 14, 15, 16 and 17 
minutes, respectively.  
 
Continue testing flies as described in B9 and B10 for 60 minutes (single ethanol 
exposure) or 90 min (2 ethanol exposures, rapid tolerance). 
 
Clean-up is (a) turn off humidifier, (b) remove #4 plugs for washing and reuse, (c) 
discard Flugs containing ethanol, (d) dispose of flies in morgue, (e) place testing vials 
on sink to be washed, (f) remove any trash from and straighten up testing room and (g) 
turn off light in testing room. 
 
11. Enter the total number of flies in each vial in the Test Log within the Excel 
worksheet. Percent Active flies will be automatically calculated and graphed below the 
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Test Log. Press ‘Ctrl + s’ to calculate ST50s for each vial and sort the data by group in 
the Sorted Data worksheet. 
 
12. Note any flagged data in Sorted Data worksheet. Consider excluding data that looks 
qualitatively poor. 
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Internal Ethanol Content  
 
**Use pre-chilled solutions throughout assay for consistency** 
 
1.  Grow/collect flies and prepare Flugged vials as you normally would for eRING 
assays.  Use 11 flies/vial and typically 1 vial/genotype with 3-5 vials total per test.  
Expose one group to ddH2O (0 minutes) and other groups to ethanol during SSAs for 
15-45 minutes or other times as appropriate. 
 
2.  After each water or ethanol exposure, transfer flies to labeled 1.5 ml snap-cap tubes 

and store at -70C.  Continue water and ethanol exposures until you have a complete 
set of frozen flies from each genotype at each time-point. 
 
3.  Homogenize frozen flies with drill/pestle in 200 μl ice-cold ddH2O for 30 seconds.  
Keep flies on ice before and after homogenization. 
 

4.  Centrifuge homogenized flies at maximum speed at 4C for 20 minutes.  Prepare 25 
mM standard by adding 4.37 μl of 100% ethanol (17.16 M) to 2996 μl ice-cold ddH2O.  
Prepare remaining standards using the table below.  Store standards on ice. 
 
5.  Transfer 100 μl of clear supernatant to new labeled 1.5 ml snap-cap tube.  Lipid or 
other crud will stick to the outside of the pipette tip.  DO NOT TOUCH PIPPETTE TIP 
TO NEW TUBE!  Store 100 μl supernatants on ice. 
 
6.  Add 300 μl of cold ethanol reagent to 1.5 ml snap-cap tubes for each sample (in 
triplicate, 3 tubes/sample) and standard (in duplicate, 2 tubes/standard). 
 
7.  Add 10 μl of each sample supernatant and standard to the corresponding tube from 
step 6.  Mix by single pulse vortexing. 
 

8.  Incubate at 30C in heat block for 5 minutes. 
 
9.  Read absorbance of 100 μl of each reaction at 340 nm and print out results. 
 
10.  Final ethanol concentration in samples determined in Internal Ethanol BLANK Excel 
sheet as:   
 
mM interpolation x (200 µl + [# flies x µl/fly])/(# flies x μl/fly) 
 
Fly water volume in µl is determined as indicated on next page.  Each vial of flies is an 
N of one. 
 
Notes: 

1. Standards 
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Standard Volume of ddH2O Volume of 25 mM 

0 mM 1000 μl 0 

2 mM 920 μl 80 μl 

4 mM 840 µl 160 µl 

6 mM 760 μl 240 μl 

8 mM 680 µl 320 µl 

10 mM 600 μl 400 µl 

 
2.  Alcohol Reagent:  Dilute per manufacturer’s instructions.  Good for at least 2 weeks 

at 4C. 
3.  Reaction is maximal at ~2 minutes and has a stable product (i.e. A340) out to at 
least 12 minutes. 
4.  Use all cold reagents for consistency. 
5.  A 30 minute exposure to vapor from 2 mL of 50% ethanol in a SSA should lead to a 
final internal ethanol concentration of 100-150 mM in control flies. 
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Fixation Protocol for whole adult Drosophila brains 
Dissection: 
1. Anesthetize flies and place adults of the appropriate age, genotype and gender into a three 

well dish on ice 
 

2. Fill another three well dish with PBT and place it under the dissecting microscope 
 
3. Place a 0.5mL snap cap tube containing 500µL of freshly prepared 4% paraformaldehyde 

on ice 
 
4. With gentle, SHARP forceps, remove the brain from the head cuticle in the PBT solution. 

Place it into the 4% paraformaldehyde on ice 
 
5. Repeat for the remaining flies 
 
Staining: 1-20 tubes at a time 
Day 1 (~3 hours) 
1. Place the 0.5mL tube containing brains in 4% paraformaldehyde onto a nutator. Allow the 

brains to fix for 20 min at room temperature 
 

2. Remove the tube from the nutator and place it into a tube rack at room temperature. Allow 
the brains to settle to the bottom of the tube. Use a P-200 pipet to remove the 
paraformaldehyde. Dispose appropriately.  

 
3. Add 0.5mL PBT to the tube. Close and invert the tube. Allow the brains to settle to the 

bottom. Remove the PBT. Repeat once more (=2 quick washes at room temp) 
 
4. Add 0.5mL PBT to the tube. Place on nutator to wash for 20 min. Repeat twice (=3 20min 

washes at room temp) 
 
5. Remove the PBT from the brains and add 0.5mL block solution (5% NGS). Place brains on 

nutator to block for atleast 30 min at room temp 
 
6. Remove block solution from the brains. Add the primary antibody solution. Place on nutator 

at 4°C for 2 nights.  
** can be increased to 1 week 

 
Day 3 (~1.5 hours) 
7. Remove primary antibody and store it at 4°C. The antibody can be reused roughly three 

more times 
 
8. Add 0.5mL PBT to the tube. Close and invert the tube. Allow the brains to settle to the 

bottom. Remove the PBT. Repeat once more (=2 quick washes at room temp) 
 
9. Add 0.5mL PBT to the tube. Place on nutator to wash for 20 min. Repeat twice (=3 20min 

washes at room temp) 
 
10. Remove PBT. Add secondary antibody. Place on nutator at 4°C for 2 nights.  
** can be increased to 1 week 
 
Day 5 (~1.5 hours) 
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11. Remove the secondary antibody and discard 
 
12. Add 0.5mL PBT to the tube. Close and invert the tube. Allow the brains to settle to the 

bottom. Remove the PBT. Repeat once more (=2 quick washes at room temp) 
 
13. Add 0.5mL PBT to the tube. Place on nutator to wash for 20 min. Repeat twice (=3 20min 

washes at room temp) 
** DAPI can be added to one of the 20 min washes to stain nuclei for analyses such as counting 
cell numbers 

 
14. Remove PBT and add 200µL SlowFade. Allow brains to settle in SlowFade at 4°C  
** brains can be left at this stage for up to 1 week at 4°C 
 
Mount brains: 
1. Use a P-200 pipet tip to transfer the brains from the tube and transfer them onto a mounting 

slide. Avoid adding excess SlowFade. Excess SlowFade can be removed with a P-200 pipet 
or kimwipe.  

 
2. Using forceps, carefully align the brains for ease of imaging.  
 
3. Arrange two broken coverslips on the microscope slide to form a bridge around the brains. 

This prevents the brains from becoming too compressed under the top coverslip. For adult 
brains, use broken no. 2 coverslips 

 
4. Gently place a no. 1 coverslip on top of the bridge to cover the brains 
 
5. Slowly pipet SlowFade, starting from one side of the coverslip, until the sample is covered. 
 
6. Seal the edges of the coverslip with nail polish. Store at 4°C in a dark slide holder 
** mounted slides are good for several months at 4°C and several years (3+) at -20 or -80°C 
 
7. Image using multi-photon confocal microscope 
 
Notes: 
0.3% (vol/vol) PBT solution: 
Add 1.5 Triton-X 100 to 498.5mL 1 X PB. Store at room temperature 
 
4% (vol/vol) paraformaldehyde: 
In a 0.5mL snap cap tube, add 100µL 20% w/v paraformaldehyde to 400µL PBT. Prepare fresh 
and place on ice.  
 
5% (vol/vol) normal goat serum (NGS): Add 50µL normal goat serum to 950µL PBT. Store this 
block solution for short periods at 4°C (24 hour max) 
 
Primary antibody: Dilute the primary antibody in freshly prepared 5% NGS. A 0.5mL tube 
requires 400µL of diluted antibody. Diluted primary antibodies can be reused up to 3 times. 
Store in 4°C for up to 1 month 
 

Secondary antibody: Dilute the secondary antibody in freshly prepared 5% NGS. A 

0.5mL tube required 400µL of diluted antibody. Prepare fresh and discard after use 
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Primary Antibody Information  

 

 Stored in -80°C 

Primary Antibody Mono/Poly? Source 
Dilution - 
whole brain 

Mouse Anti-Repo Monoclonial Developmental Studies Hybridoma Bank 1:100 

Mouse Anti-GFP Monoclonial Fischer 1:100 

Rat Anti-axotactin Monoclonial Barry Ganetzky (1999) ?? 

Guinea pig Anti-Cp1 Polyclonal Dolph 1:250 

Rabbit Anti-Cp1 Polyclonal Kuo 1:20 

Mouse anti-lacZ Monoclonial Developmental Studies Hybridoma Bank 1:20 

Rabbit anti-lacZ Polyclonal Fischer 1:25 

Rabbit anti-Tdc2 Polyclonal Covalab (Pech,2013) 1:200 

rabbit anti-VMAT ?? Krantz (Romero-Calderon, 2008) 1:2000 

rabbit anti-Tbh ?? Budnik (Koon, 2011) 1:500 

mouse anti-Th Monoclonial Developmental Studies Hybridoma Bank ?? 

rabbit anti-Mef2 polyclonal Bruce Paterson 1:10,000 

mouse anti-elav Monoclonial 
Developmental Studies Hybridoma Bank 
(supernant) 1:500 

 

 

Secondary Antibody Information 

 Stored in 4°C 

 

Secondary Antibody Fluorophore Source Cat. Number 

Rabbit Anti-Mouse Alexa 488 (Green) ThermoFisher A-11059 

Goat Anti-Guinea Pig  Alexa 568 (red) ThermoFisher A-21450 

Chicken Anti-Rabbit Alexa 647 (red) ThermoFisher  
Goat anti-mouse Alexa 647 (red) ThermoFisher A-21235 
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Quantitative measurement of β-gal activity in flies 

 

1) Homogenize (with drill/pestle in 1.5 ml snap-cap tubes) 10 lacZ-expressing flies of 

desired age and gender in 250 µl of extraction buffer (1X PBS with 1X protease 

inhibitor cocktail) for 25 seconds. 

 if using rotating spec, can only test 6 samples at a time  

(1 every 10 seconds for a minute) 

2) Add 500 µl extraction buffer to each tube from step 1, mix by vortexing for 30 sec 

3) Centrifuge extracts for 5 min at 14,000 rpm at room temperature 

4) Transfer supernatants from step 3 into new labeled 1.5 ml snap-cap tubes 

5) Set spectrophotometer at 562 nm. 

6) Add 900 µL of 1 mM CPRG to 100 µl of water to a plastic cuvette for the blank. Set 

spec reference with the blank (water sample + CPRG). 

7) Transfer 100 µl of each fly extract to an individual plastic cuvette. Add 900 µL of 1 

mM CPRG to each of the fly extracts. Stagger the addition of CPRG to coincide with 

the order and timing of absorbance measurements. 

8) Record absorbance of each cuvette every minute for 6 mins 

 

CPRG 

*CPRG is more sensitive than X-GAL and product measurement at 562 not interfered 

with by fly pigment 

*CPRG solution is only good for 24 hours 

Final volume 
of 1mM 

CPRG (mL) 

CPRG 
added 

(g) 

10 0.005 

15 0.008 

35 0.0205 

 

Protease inhibitor cocktail 

Stored in the -20 

Sigma (P8340) 
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Simple Locomotor Assay 
 
A. Day before assay 
 
1. Collect experimental flies (reared for behavioral assays) in groups of 11 (single sex) 
under brief CO2 following standard procedures for behavioral assays.  A maximum of 24 
vials, 6 groups of 4, can be tested during the assay. You will need to collect 4 additional 
vials of controls flies to be the vortexed group. 
 
2. Allow flies to recover overnight in non-yeasted food vials in the environmental 
chamber.   
 
 
B. Day of assay – Flugged Vial Experiment 
  
1. Turn on humidifier(s) and allow relative humidity in testing room to become/remain 
between 55-65%.  
 
2. Prior to the experiment, print the locomotor test log sheet. For each vial of flies to be 
tested, you will need: a clean, empty testing vial and a new Flug 
 
3. Transfer flies from all food vials into matched testing vials one at a time and 
immediately insert Flugs into testing vials until the bottom of the Flugs are just below the 
vial tops. For vials used for vortexing, use “The Fluginator” to force Flugs further down 
into vials until the tape is in contact with the vial. 
 
4. Vortex the control vials for 4 minutes. Up to four vials will be vortexed at once. In 
order to prevent vial destruction during the vortex, use a couple of rubber bands on 
each vial and a few rubber bands to hold all four vials together. (See Below)  
 
5. Have someone else in the lab assign a unique code to each vial for each genotype 
and—IMPORTANTLY—record the code for later*. Place coded vials with flies in testing 
room to acclimate. 
 
6. Label empty testing vials to match codes on fly vials from B5 
 
7. Using the Test Log as a guide, arrange coded food vials with flies and empty testing 
vials into matching arrays in the testing room. It is possible to test 6 sets of 4 vials 
simultaneously, so arrange 24 vials (maximum) in 6 sets or rows containing 4 vials 
each.  Then transfer flies from food vials to the matching testing vials. 
 
8. Time 0 assessment (# dead): For each vial individually: grasp with thumb and 
forefinger, tap the vial on the table three times to knock flies to the bottom of the vial, 
wait 30 seconds and then count the number of flies that are dead (no movement 
whatsoever). Record this number of flies for each vial at time 0 in the printed Testing 
Log. 
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9. Hereafter, each row of four vials will be handled as a set at staggered one-minute 
intervals.  
 
Start timer counting up at time 0 upon completion of recording the number of dead flies. 
 
10. At time 6 minutes, test the first set of 4 vials by grasping each vial individually with 
thumb and forefinger, tapping on the table three times to knock flies to the bottom of the 
vial. Then wait 30 seconds to count and record the total number of flies that are on the 
bottom.  
 
The specific schedule is: 

Vial Tap Assess 

1 6 min 0 s 6 min 35 s 

2 6 min 5 s 6 min 40 s 

3 6 min 10 s 6 min 45 s 

4 6 min 15 s 6 min 50 s 

 
At times 7, 8, 9, 10 and 11 minutes, test the second, third, fourth, fifth and sixth sets of 
vials, respectively, as done for the first set. 
 
11. At time 12 minutes, test the first set of 4 vials again as described in B10 and 
continue testing the second, third, fourth, fifth and sixth sets of vials at 13, 14, 15, 16 
and 17 minutes, respectively.  
 
Continue testing flies as described in B10 and B11 for 60 minutes. 
 
12. Record the total number of flies in each vial on the locomotor assay sheet. 
 
13. Fill out the locomotor assay file. Percent Active flies will be automatically calculated. 
Compile the data as directed on the sheet to calculate aggregate percent active and 
fraction alive for each vial and sort the data by group in the Sorted Data worksheet. 
 
Clean-up is (a) turn off humidifier, (b) discard vials containing flies, (c) remove any trash 
from and straighten up testing room, and (d) turn off light in testing room. 
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Tyramine feeding assay 
 

1. Make tyramine vials. Pipet 100mL of 100 mg/mL of tyramine onto vials. Tyramine 

will readily dissolve in diH20. Control vials only contain 100 mL of diH20 

 
2. Let vials dry in environmental chamber overnight 

 
 

3. Sedation, sort and place 11 female flies in each tyramine or vehicle treated vial (as 

you would for a sedation assay). Store vials food-side down in environmental 

chamber for two nights  
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Yohimbine administration protocol 
 

Day before experiment: 
1. Collect flies (10-20) and place in food vials in the environment chamber 
 
Day of experiment: 
2. Place 5 pieces of Whatman filter paper in bottom of vial 

 
3. Administer drug (400uL??) to filter paper: 

 Control = 5% sucrose 

 Drug = 5% sucrose, 10mg/mL yohimbine 
 
4. Flip flies from food vials into vials with treatment 
 
5. Let flies consume treatment for 2 hours 
 
6. Test flies in sedation assay 

 
For a 16 vial experiment: Make 8mL sucrose solution 

 5% sucrose = 8mL diH20, 0.4g sucrose 
4mL of sucrose solution = control 
4mL of sucrose solution = Add 10mg/mL yohimbine 

 Add 40mg yohimbine to the 4mL of 5% sucrose solution  
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