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Abstract

As researchers increasingly use web-based surveys, the ease of dropping out in the

online setting is a growing issue in ensuring data quality. One theory is that

dropout or attrition occurs in phases that can be generalized to phases of high

dropout and phases of stable use. In order to detect these phases, several methods

are explored. First, existing methods and user-specified thresholds are applied to

survey data where significant changes in the dropout rate between two questions is

interpreted as the start or end of a high dropout phase. Next, survey dropout is

considered as a time-to-event outcome and tests within change-point hazard

models are introduced. Performance of these change-point hazard models is

compared. Finally, all methods are applied to survey data on patient cancer

screening preferences, testing the null hypothesis of no phases of attrition (no

change-points) against the alternative hypothesis that distinct attrition phases

exist (at least one change-point).
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Chapter 1

Introduction

1.1 Motivation

Web-based surveys have become an increasingly popular mode of collecting data on

patients and consumers alike due to the ease and cost-effectiveness of delivery as

well as the ability to reach large numbers of subjects. A drawback to this medium,

however, is the increased potential for and evidence of dropout [1,2]. Surveys ad-

ministered online are especially susceptible to dropout attrition, where a participant

starts but does not complete a survey or questionnaire. For the purposes of this dis-

sertation, both dropout and attrition will be used interchangeably to indicate this

phenomenon. Survey dropout presents a missing data problem and when dropout

is related to topics addressed in the survey itself, it may be considered missing at

random (MAR) or missing not at random (MNAR) [3]. Researchers should take this

into account when analyzing survey data in order to avoid biased results, though

methods for doing so are still under development.

Eysenbach’s call for a science of attrition introduced the idea that survey attri-

tion occurs in three distinct phases [1]. There is an initial curiosity plateau at the

beginning of a study where the participation rate remains high while respondents

1
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gauge their interest in the survey content. This is followed by a dropout or attrition

phase where participants exit the survey at a higher rate, presumably due to disin-

terest, poorly worded survey items, or a poorly constructed survey altogether. The

stable use phase is reached when most remaining participants are likely to complete

the survey. These can be seen in Figure 4 of Eysenbach’s manuscript [1], included

here as Figure 1.1.

Figure 1.1: Eysenbach’s attrition phases

To our knowledge, there has been no research attempting to directly estimate

Eysenbach’s attrition phases. The ability to directly estimate and identify phases of

attrition, elucidating the point(s) in the survey at which participants start dropping

out at a higher rate, may also reveal the survey content and participant charac-

teristics influencing these patterns. If we can identify clear attrition patterns, then

almost by definition we have data MNAR that require more attention [3]. In general,

the evaluation of dropout patterns can be used as a tool to help improve surveys

and questionnaires by highlighting “problem questions” that may be irrelevant, un-

2 Chapter 1 C. Hochheimer
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clear, or biased towards or against subsets of survey participants. In a study setting

where high rates of dropout are becoming the norm, this tool could also be used

to address the science of attrition and help manuscripts reach publication despite

high (but expected) dropout rates. We began to address this problem using visual

and standard statistical methods in our paper “Methods for Evaluating Respondent

Attrition in Web-Based Surveys” [4].

1.2 Current methods

Several standard methods could be applied to the problem of identifying attrition

phases. A generalized linear mixed model (GLMM) is one option, as one can fit the

model to the entire survey with the outcome being a binary indicator of whether or

not a participant drops out at a specific question and then use contrasts (specifically

successive differences contrasts) to test the hypothesis of a significant difference

between the proportion of dropouts between sequential questions. The issue with

this model, however, is the necessity to account for dependence between questions

within individuals as well as the discrete nature of the questions. When these

survey characteristics are taken into account within a GLMM, the complexity of

the variance-covariance structure can prohibit estimator convergence, ultimately

limiting the length of questionnaire that can be analyzed using existing software.

When fitting this model is possible, doing so is inefficient in terms of computation

time, even in scenarios with short surveys and reasonably small sample sizes.

Eysenbach suggests the use of survival analysis, a reasonable approach because

it assumes that individuals are followed over time by treating survey completion or

attrition as a time-to-event outcome where questions are viewed as sequenced in time

[1]. We have applied this method previously (see [4]) and in this dissertation we will

incorporate the discrete nature of survey questions by using discrete time survival

Chapter 1 C. Hochheimer 3
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analysis (DTSA). Just like with the GLMM, we can apply successive differences

contrasts to determine significant changes in hazard between sequential pairs of

questions. An advantage of this method is its ability to accommodate surveys with

more questions than the GLMM.

One drawback to both the GLMM and DSTA methods is that the successive

differences method of testing for significant changes in the hazard is a crude approach

to identifying phase transitions, as we are only able to zoom-in on each pair of

questions instead of looking for overall patterns. While we may be able to find

statistically significant differences in dropout by applying a GLMM or DTSA, the

differences may not be clinically meaningful to researchers. In other words, we are

linking phase transitions to hypothesis testing, which might not be an appropriate

assumption. For instance, with a large sample size, formal hypothesis testing might

declare differences in proportions as statistically significant, even if they are smaller

than what the researcher administering the survey would consider meaningful.

Change-point models could provide a more parsimonious approach to identifying

overall attrition trends. As opposed to performing a hypothesis test for every pair

of questions, we can fit a model to the entire survey and then interpret change

points as moments of phase transition. Whereas GLMM and DTSA models identify

transitions between attrition phases by searching for the first and last instances of

significant attrition, change-point models allow us to generalize Eysenbach’s phases,

seen in Figure 1.1, to phases of stable use and phases of high dropout [1]. This

would allow for several phases of high dropout, which may be present in longer

questionnaires.

Change-point models have been explored in many areas of statistics. Vexler and

Gurevich lead the research on this topic within the logistic regression framework,

although their models cannot account for repeated measures within individuals [5–8].

Several researchers have suggested Bayesian change-point models which calculate the

4 Chapter 1 C. Hochheimer
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posterior probability of change points, though few of these Bayesian models allow

for binary outcomes and/or discrete time points [9–13].

Current research on change-point hazard models for time-to-event outcomes fo-

cuses mostly on non-parametric and semi-parametric hazard estimation and testing

for one change point. These models are flexible and allow for the inclusion of co-

variates. This is important in order to look into factors potentially contributing

to large proportions of participants dropping out. Williams proposed a parametric

model, introducing a test for a single change-point within a Weibull hazard func-

tion [14]. This model is of specific interest as the Weibull model is flexible, able to

incorporate covariates, and satisfies the proportional hazards assumption, allowing

for a straightforward interpretation.

A few researchers have introduced tests for multiple change points [15–22].

Among them is Goodman, who proposed a test for multiple change-points within

the piecewise constant hazard or exponential change-point hazard model that uses

a sequential testing scheme to determine the best fitting change-point model [17]. It

is imperative that any test considered accommodate multiple change-points in order

to highlight multiple phases of attrition. Thus, multiple change-point hazard models

are of most interest in this dissertation as they accommodate multiple phases, are

reasonably easy to use, and have a meaningful interpretation to researchers who are

and are not familiar with the statistical details.

1.3 Aims

We propose several approaches to estimating phases of survey attrition: existing

statistical models and two types of change-point hazard models. We will compare

the ability of each method to detect phases of attrition through both simulation

studies and applications to an existing dataset from a survey administered by our

Chapter 1 C. Hochheimer 5
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research team.

In our framework, the overall null hypothesis is that there are no distinct phases

of attrition. This does not necessarily mean that there is no attrition, no statistically

significant attrition, or no clinically meaningful attrition. Indeed, we might observe

a linear pattern where attrition is not present or where attrition is high throughout

the survey. This pattern of constant attrition does not have distinct phases and,

thus, fits our definition of the null hypothesis. The alternative hypothesis is that at

least two phases of attrition are present in the survey data.

This research is ultimately intended to create a tool to identify where participants

drop out at a higher rate than anticipated during both the pilot and final analysis

stages of survey implementation, particularly by identifying questions that signify

the beginning and end of attrition phases.

1.3.1 Aim #1: Existing statistical models

We wanted to see if existing statistical methods can be successfully applied to iden-

tify multiple attrition phases within survey data. First, we applied a user-specified

threshold based on clinical meaningfulness to detect these phases. Second, we ap-

plied a generalized linear mixed model (GLMM) to the entire survey to find points

of significant attrition between sequential questions. Finally, we applied discrete

time survival analysis (DTSA) to find points of significant change in the hazard of

dropping out.

1.3.2 Aim #2: Test within a Weibull hazard model with

multiple change-points

Next, we treated survey dropout as a time-to-event process and developed a test

for multiple phase transitions. In order to do so, we extended William’s test to

accommodate more than one change-point within a Weibull hazard model [14].

6 Chapter 1 C. Hochheimer
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1.3.3 Aim #3: Test within an exponential hazard model

with multiple change-points

We then proposed an alternate test statistic and testing scheme for multiple change-

points within an exponential hazard function. This extension allowed us to bypass

Goodman’s sequential testing scheme in order to choose the best overall change-

point model [17].

1.3.4 Aim #4: Simulation study and data application

Models in Aims #2-3 were compared through a simulation study and models for

Aims #1-3 were applied to test case data. Specifically, we wanted to see whether

these methods correctly identified phases of attrition when they exist and how ef-

ficiently they accomplished this goal. By applying these methods to an existing

dataset on cancer screening, we demonstrated how these methods could be used to

identify attrition patterns and make recommendations for improving the survey.

1.4 Summary

In order to achieve the goals set in section 1.3, we first implemented the models in

Aim #1 using existing packages in the R statistical software [23]. The novelty in

this aim comes from both the user-specified approach and the application of these

existing models in a new setting: survey data. In order to achieve Aim #2, we gen-

eralized the test statistic proposed by Williams in order to accommodate more than

one change-point [14]. We also created an algorithm for testing for more than one

change-point based on optimal model fit as an alternative to Goodman’s progres-

sive testing approach [17]. We then derived an alternative test statistic for testing

for multiple change-points within an exponential hazard function based on overall

model fit as another alternative to Goodman’s sequential approach. A simulation

Chapter 1 C. Hochheimer 7
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study was performed in order to choose an appropriate method for simulating data

for a change-point distribution and to compare the performance of the proposed

methods. We also present the results of the application of these methods to an

existing dataset. A detailed discussion of the proposed methods to achieve each aim

can be found in Chapters 2-5.

There are many ways in which this research contributes to the existing body of

statistical knowledge. First, the completion of these aims helps to make Eysenbach’s

call for a science of attrition one step closer to realization. In line with this goal,

the specific focus on change-point models will help researchers from any field be

able to identify phases of attrition within survey data. This work also provides a

way to identify survey data MAR or MNAR. The extension of the Weibull model

to incorporate multiple change-points and extension of the exponential model test

statistic will additionally be applicable to any situation with time-to-event data.

8 Chapter 1 C. Hochheimer



Chapter 2

Using practical thresholds and

existing statistical methods to

identify attrition phases

2.1 Introduction

2.1.1 Motivation

Survey questions are discrete in nature and dependent within survey participants.

We are interested in seeing whether we can identify phases of attrition while ac-

counting for the features of these data within the framework of existing statistical

methods. Treating attrition as a response rate would allow for direct comparison of

these rates within the context of a GLMM. Treating dropout as a time-to-event out-

come is another possible and appealing approach, as these models already assume

subjects are followed over time. DTSA is especially appropriate because questions

occur as discrete time points in the process of participating in a survey or ques-

tionnaire; participants can only dropout at these distinct points. Eysenbach himself

suggests applying survival analysis to attrition patterns [1].

9
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In addition, we often see that statistical significance is not always indicative of

a clinically meaningful difference, as formal statistical tests may detect very small

changes (especially when there is a large sample). Investigators generally have an

idea of what they consider to be meaningful and this concept can be directly applied

to the identification of attrition phases. Therefore, it is of interest to develop a user-

specified approach to address this issue.

2.1.2 Current methods

Eysenbach originally proposed three phases as mentioned in Chapter 1 [1]. We previ-

ously demonstrated estimating these phases visually, using a GLMM applied to each

sequential pair of questions, a non-parametric log-rank test comparing Kaplan-Meier

curves between groups, and a semi-parametric Cox proportional hazards regression

to compare groups while adjusting for other characteristics [4]. We also mentioned

the future extension of our work to DTSA in our paper and here demonstrate how

this method can be applied to identify attrition phases.

2.1.3 Aim

We applied a user-specified and two existing statistical methods as our first ap-

proach to determine the phases of attrition within survey data. First, we applied

a user-specified threshold based on clinical meaningfulness to detect phase transi-

tions. Then we applied two hypothesis testing methods where significant differences

were interpreted as transitions between attrition phases. A generalized linear mixed

model (GLMM) was applied, using contrasts to identify significant changes in the

dropout rate from one question to the next. We also applied discrete time survival

analysis (DTSA) to the entire survey, using contrasts to identify significant changes

in the hazard rate between questions. Finally, we conducted a simulation study to

compare the performance of these three approaches.

10 Chapter 2 C. Hochheimer
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2.2 Statistical Methods

We propose an approach motivated by establishing meaningful dropout standards

and two additional approaches motivated by statistically significant attrition. The

first allows researchers to set thresholds based on what they consider a meaningful

or practical amount of dropout at any question. The second proposed approach

is based on formal hypothesis testing where we search for instances of statistically

significant differences in dropout between sequential questions. We apply two exist-

ing statistical models, the GLMM and DTSA, to survey dropout data. Statistical

significance is not always indicative of a meaningful difference, especially when the

sample size is large, as is often the case with web-based surveys. Thus, these serve

as complimentary methods to identify inflection points of the dropout rate. The R

statistical software version 3.5.0 was used to apply these methods [23].

2.2.1 User-specified attrition thresholds

For the first method, the user specifies the proportion of dropout at a single question

that is considered to be clinically meaningful. Specifically, they define ∆1 as the

threshold for the start and ∆2 as the threshold for the end of the dropout phase

of attrition. We directly calculate the proportion of dropout (pdr) in each survey

question and compare it to both thresholds. The dropout phase begins the first

time that dropout at a particular question exceeds the start threshold (pdr > ∆1).

Likewise, the dropout phase ends the last time that dropout at a survey question

exceeds the end threshold (pdr > ∆2). Different numerical values can be used for

the start and end thresholds.
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2.2.2 Hypothesis testing

GLMM

In order to test for statistically significant attrition, we apply a GLMM:

logit(p̂j) = β̂0 +

q∑
2

I(j)β̂1,j. (2.1)

Our binary outcome is whether or not a subject dropped out of the survey.

Survey question is included as the time-varying covariate β̂1j with the number of

levels j equal to the number of questions q and an indicator function I(j) to identify

the question of interest. This model accounts for within-subject dependence between

response rates through the incorporation of a random effect γi. In other words, once

a participant drops out they can no longer reenter the survey. In equation 2.1, this

is represented by the random intercept β̂0 which is different for each subject. This

model appropriate because we have repeated dependent outcomes within subjects

due to the fact that a participant must answer the previous question in order to

drop out in the current question.

The null hypothesis that the proportion of participants remaining in the survey

has not changed between questions (H0 : p̂j = p̂j+1) is rejected in favor of the

alternative hypothesis that this proportion is different between sequential questions

(H1 : p̂j 6= p̂j+1) if the p-value is significant at the five percent significance level.

We assumed that participants cannot re-enter the survey once they have dropped

out and that skipping a question does not count as dropout if the patient returns

to answer a later survey item.

We applied this model to the entire survey using the glmer function of the lme4

package [24]. This function uses an unstructured variance-covariance matrix. A

successive differences contrast was applied using the using the glht function of the

multcomp package to test each pairwise difference in the proportion of participants
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remaining in the survey (p̂j − p̂j+1) [25]. A false discovery rate correction based

on the Benjamini-Hochberg procedure was used to correct the p-value for multiple

comparisons [26].

DTSA

We applied DTSA as another hypothesis testing method. The logit link connects

the baseline hazard function θDti to the discrete time hazard function pti = P (yti =

1|yt−1,i = 0), where y is the event (dropout). This relationship can be written as

logit(pti) = θDti, where θDti is a step function with a dummy variable for each survey

question (θDti = θ1D1 + θ2D2 + . . .+ θnDn). Although we do not include covariates

in this particular instance, a useful feature of the discrete time survival model is the

ability to incorporate non-proportional hazards [27]. The null hypothesis that the

hazard of dropping out of the survey has not changed between questions (H0 : θj =

θj+1) is rejected in favor of the alternative hypothesis that the hazards are different

between sequential questions (H1 : θj 6= θj+1) if the p-value is significant at the five

percent significance level.

This model was implemented using the svyglm function of the survey package

[28,29]. We again applied successive differences contrasts using the glht function of

the multcomp package to determine significant differences in the hazards of pairs

of questions and adjusted for these differences also using the Benjamini-Hochberg

procedure [25,26].

In both the GLMM and DTSA models, we searched for the first and last instances

that the adjusted p-values drop below our pre-specified threshold of 0.05. These

points are interpreted as the beginning and end of the dropout phase.
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2.3 Simulation methods

In order to demonstrate the performance of these methods in detecting attrition

phases, we simulated a variety of dropout patterns. For each pattern, we simulated

10,000 datasets each with 200 simulated participants answering twenty questions.

Respondents had a random chance of dropping out at any point in the survey,

including the first question, and a participant could not reenter once they dropped

out.

Simulated dropout patterns corresponded to constant, two-phase, and three-

phase attrition. Constant attrition could be either the stable use or dropout phase

of attrition throughout the survey (see Figure 2.1a). Two-phase attrition either

began with the stable use phase and then transitioned into the dropout phase for

the remainder of the survey or began with the dropout phase with a transition

to the stable use phase (see Figure 2.1b and 2.1c). Three-phase attrition followed

Eysenbach’s proposed pattern in that there were stable use phases at the start and

end of the survey with a dropout phase in the middle (see Figure 2.1d and 2.1e).

We tested both mild and severe attrition rates for the dropout phase, where severe

attrition rates demonstrated a more pronounced difference in dropout rate between

phases, in order to determine the sensitivity of these methods. The location of the

phase transition was varied in order to see whether these methods better identified

phase transitions that occurred at the start, in the middle, or at the end of the

survey.

The overall null hypothesis we tested was that there are no phases of attrition,

represented by the constant attrition patterns in Figure 2.1a. When the dropout rate

was mild, we expected our proposed methods would not detect practically meaning-

ful or statistically significant attrition at any point in the survey. When this rate

was severe, we expected to see the first instance of meaningful attrition at ques-

tion one for the user-specified method and the first instance of significant attrition
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(a) Constant attrition (b) Mild two phase attrition

(c) Severe two phase attrition (d) Mild three phase attrition

(e) Severe three phase attrition

Figure 2.1: Simulated attrition patterns

between questions one and two for the GLMM and DTSA. Then, we hoped to see

this attrition phase last throughout the survey with the last instance of meaningful

attrition found at the final question and last instance of significant attrition found

between the last two questions.

Using the constraint ∆ = ∆1 = ∆2 for the user-specified method, we assessed the

performance of a three percent, five percent, and eight percent dropout threshold

(∆ = 0.03, 0.05, 0.08). We determined how well these methods achieved the goal
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of detecting attrition phases by calculating and comparing the type I error and

sensitivity of each method. Type I error was defined as when at least two phases

of attrition were detected when the underlying attrition pattern was constant (i.e.,

phases of attrition were detected when they did not exist). Sensitivity was defined

as finding the correct number of phase transitions when they did exist. Ideally, these

methods would achieve a type I error of 5% and higher sensitivity.

We also visually inspected how often each question was chosen as the start or

end of the attrition phase by plotting these distributions with histograms. The

histograms for the user-specified method highlight the first and last question at

which the amount of dropout at a question surpassed ∆. Those for the GLMM

and DTSA show the first and last comparisons between questions with a significant

adjusted p-value.

2.4 Results

The resulting type I error and sensitivity for each approach and simulated attrition

pattern are in Tables 2.1, 2.2 and 2.3. A selection of the histograms displaying

the distribution of questions chosen as the start and end of the attrition phase are

displayed in Figure 2.2.

2.4.1 User-specified thresholds

The three user-specified thresholds that we tested are compared in Table 2.1. The

five percent threshold was unable to control type I error with 0% type I error in the

mild constant case and 94% type I error in the severe constant case. Additionally

this threshold had lower sensitivity than the three percent threshold except for

three simulation scenarios, and in these cases the three percent threshold also had a

high sensitivity of over 90%. The eight percent threshold had low sensitivity (often
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Dropout threshold
Metric Dropout Attrition severity τ location 3% 5% 8%

Type I error Constant Mild 0.19 0.00 0.00
Severe 1 0.99 0.27

Sensitivity Two phases Mild Middle 0.47 0.42 0.01
Mild Start 0.48 0.43 0.02
Mild End 0.72 0.2 <0.01
Mild reverse Middle 0.44 0.34 <0.01
Mild reverse Start 0.51 0.04 0.00
Mild reverse End 0.41 0.39 0.01
Severe Middle 0.82 0.48 0.38
Severe Start 0.79 0.47 0.44
Severe End 0.90 0.74 0.14
Severe reverse Middle 0.88 0.46 0.26
Severe reverse Start 0.90 0.43 0.03
Severe reverse End 0.88 0.42 0.39

Three phases Mild Middle 0.66 0.02 0.00
Mild 1 start 0.96 0.13 0.00
Mild 1 end 0.96 0.16 0.00
Mild Ends 0.96 0.32 0.00
Severe Middle 0.98 0.64 0.01
Severe 1 start 0.96 0.97 0.07
Severe 1 end 0.96 0.98 0.11
Severe Ends 0.94 0.99 0.24

Table 2.1: User-specified results

Attrition severity User-specified 3% GLMM DTSA

Mild 0.19 0.01 0.74
Severe 1.00 0.98 0.96

Table 2.2: Aim 1 type I error

0%) to detect any phase transition. Seeing as the three percent threshold had the

best performance, we compared this threshold to the hypothesis testing methods in

Tables 2.2 and 2.3.

The 3% user-specified threshold had high type I error but also high sensitivity to

detect attrition phases, especially in scenarios with a severe dropout phase and three

phases of attrition. This threshold achieved higher sensitivity than the hypothesis
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Dropout Attrition severity τ location User-specified 3% GLMM DTSA

Two phases Mild Middle 0.47 0.22 0.90
Mild Start 0.48 0.17 0.94
Mild End 0.72 0.13 0.87
Mild reverse Middle 0.44 0.20 0.64
Mild reverse Start 0.51 0.01 0.69
Mild reverse End 0.41 0.14 0.58
Severe Middle 0.82 0.24 0.91
Severe Start 0.79 0.20 0.97
Severe End 0.90 0.56 0.88
Severe reverse Middle 0.88 0.02 0.58
Severe reverse Start 0.90 0.01 0.69
Severe reverse End 0.88 0.00 0.50

Three phases Mild Middle 0.67 0.12 0.08
Mild 1 start 0.96 0.32 0.07
Mild 1 end 0.96 0.35 0.05
Mild Ends 0.96 0.51 0.03
Severe Middle 0.98 0.84 0.08
Severe 1 start 0.96 0.99 0.07
Severe 1 end 0.96 0.99 0.06
Severe Ends 0.94 0.99 0.04

Table 2.3: Aim 1 sensitivity

testing methods when the simulated dropout pattern for two phases began with the

dropout phase and ended with the stable use phase. The user-specified method failed

to identify the start of the severe constant attrition phase immediately at question

one (see Figure 2.2a). In the majority of simulations, this method correctly detected

severe attrition phases simulated to last from questions one to ten and from questions

ten to twenty.

2.4.2 GLMM

The GLMM had a conservative type I error rate in the case of constant mild attrition

and high type I error in the case of constant severe attrition (Table 2.2). This method

demonstrated low sensitivity to detect two phases of attrition in general and three

phases with a mild dropout phase (Table 2.3). The GLMM had higher sensitivity to
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(a) User-specified 3%

(b) GLMM

(c) DTSA

Figure 2.2: Question or comparison where phase transitions were detected in differ-
ent patterns of severe attrition

detect all three of Eysenbach’s attrition phases in simulation patterns with a severe

dropout phase.

The histograms in Figure 2.2b reveal that the GLMM failed to identify the

start of the attrition phase immediately between questions one and two when the

simulated pattern was that of severe constant attrition. These plots also show that

when a severe attrition phase was simulated to begin in the middle of the survey
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and continue until the end of the survey, the GLMM most often detected the start

of the attrition phase correctly at question ten but detected the end of the attrition

phase before the end of the survey (resulting in the low sensitivity seen in Table 2.3).

When a severe attrition phase was simulated to begin at the start of the survey and

last until the middle of the survey, the GLMM failed to identify an immediate start

to the attrition phase but correctly distinguished the phase transition at question

ten.

2.4.3 DTSA

DTSA did not control type I error and had low sensitivity to detect three attri-

tion phases (Tables 2.2 and 2.3). For simulated patterns with two phases, DTSA

demonstrated high sensitivity to detect both phases. DTSA achieved higher sensi-

tivity than the user-specified and GLMM approaches for simulated patterns with

a mild change in attrition between phases as well as when the simulated dropout

pattern survey began with the stable use phase and transitioned to a severe dropout

phase (Table 2.3). Overall, we observed higher sensitivity for DTSA when the simu-

lated dropout pattern began with the stable use phase and then transitioned to the

dropout phase compared to patterns beginning with the dropout phase and ending

with the stable use phase. DTSA also consistently had higher sensitivity when the

simulated phase transition occurred towards the start of the survey.

Histograms displaying the accuracy of DTSA can be found in Figure 2.2c. The

comparison between questions one and two was correctly recognized as the first in-

stance of significant attrition but also incorrectly chosen as the last instance when

the dropout phase was simulated to last throughout the survey. Although this

method detected the correct number of phases in the majority of simulations with

two phases, it did not choose the correct questions as the start and end of the attri-

tion phase. Specifically, DTSA was unable to detect an abrupt change in dropout
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rate in the middle of the survey. The histograms suggest a dropout phase at the

beginning of the survey when the underlying simulated pattern had a dropout phase

in the second half of the survey and suggest constant attrition when the simulated

pattern had a dropout phase in the first half of the survey.

2.5 Discussion

In our simulation study, none of these three methods consistently detected the cor-

rect number of phases while controlling type I error. The 3% user-specified threshold

had a high type I error rate but also accurately detected the phases of attrition and

had moderate to high sensitivity for all simulated scenarios. While high sensitivity

estimates of DTSA in the case of two attrition phases appeared promising, his-

tograms revealed that this method consistently identified the wrong questions as

the start and end of the dropout phase. This explains the low sensitivity of DTSA

to detect all three phases of attrition. DTSA was extremely sensitive, finding a sig-

nificant difference between the first two questions even when the simulated dropout

rate was very small (e.g., 0.001).

We did not see any distinct patterns in sensitivity when the phase transition(s)

occurred towards the start or end of the survey compared to the middle of the

survey. Sensitivity was often higher for the hypothesis testing methods when there

was a sudden increase in attrition than when there was a sudden decrease in attrition.

This suggests that these methods do not consistently detect a phase transition when

dropout starts off at a high rate and then levels off at a certain point in the survey.

This issue persisted even when the change was more pronounced, as it was in the

severe cases. While this should limit the ability of the GLMM and DTSA to detect

three phases of attrition, we actually observed increased sensitivity for the GLMM

when three phases were present.
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Of the three thresholds tested, the three percent threshold had the best out-

comes in terms of type I error, sensitivity, and accuracy, suggesting that lower

user-specified thresholds perform better at identifying attrition phases than existing

methods employing a formal hypothesis test.

The simplicity of the search algorithm used in these approaches is both an advan-

tage in terms of being easy to apply and a drawback in terms of limiting the number

of possible dropout phases to only one. The user-specified approach leaves it up to

the discretion of the investigator to determine how sensitive the thresholds should

be to capture the beginning and end of the dropout phase. It also avoids compli-

cated statistical models and requires no further estimation other than dropout rates.

These are also weaknesses of the user-specified approach, as subjective thresholds

are likely not universally accepted by researchers and there is no statistical backing

to these conclusions.

The largest disadvantage of the GLMM is the complexity of the covariance ma-

trix, which poses both computational and convergence challenges. One important

difference between this research and our prior work is that participants were able

to drop out at the first question. Previously, having 100% compliance in the first

question limited the number of questions to ten when applying the GLMM due to

convergence issues. By assuming simulated participants could drop out in question

one, we were able to apply the GLMM to the entire survey and compare this method

to the other two discussed here.

When considering dropout as a time-to-event outcome, DTSA helps to allevi-

ate some of these issues by automatically assuming patients are followed over time.

Both hypothesis testing methods, however, search each sequential pair of questions

for significant differences in survey participation. As mentioned previously, this al-

gorithm provides only a zoomed-in look at attrition instead of looking at overall

attrition patterns. These methods do not allow us to test for two dropout phases
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of attrition and, more generally, they do not allow us to test for more than three

phases of attrition. In addition, it assumes that statistical significance implies at-

trition phase transition. This becomes an issue when large amounts of survey data

are present and dropout that would not be considered clinically relevant might be

detected by these models to be statistically significant.

These results suggests that when applying practical thresholds and existing sta-

tistical methods to the task of identifying Eysenbach’s phases of attrition, sensitive

user-specified methods correctly identify dropout phases at the cost of high type

I error whereas hypothesis testing methods are unable to correctly identify these

phases. These results strengthen the case for developing new methods to identify

attrition phases and model overall attrition patterns.
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Chapter 3

Testing for attrition phases using

a Weibull change-point hazard

model

3.1 Introduction

3.1.1 Motivation

As mentioned in Chapter 2, survival models are appealing due to the fact that they

inherently assume subjects are observed over time. While testing for significant

changes in hazard within the DTSA model may detect phases of attrition, this is a

crude approach to finding a change in the dropout rate and cannot account for more

than one dropout phase. A more practical approach might be to perform an overall

test for change-points within the hazard in order to identify phase transitions.

3.1.2 Current methods

Several authors have introduced estimators for one change-point (which we will re-

fer to as τ) within a constant hazard model, with some additionally incorporating
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censoring and covariates [30–34]. Testing for a change-point is unusual in that the

change-point parameter τ appears only in the case of alternative hypothesis [35].

This creates a challenge in identifying the underlying distribution needed to calcu-

late critical values for a likelihood ratio test. Different approaches to this challenge

characterize the literature in this field. Matthews and Farewell were the first to pro-

pose tests for one change-point within a constant hazard model [35,36]. Researchers

have since proposed several other tests, some with extensions to include both fixed

and time-dependent covariates [37–42]. Of particular interest is the likelihood ratio

based test for one change-point in a Weibull hazard model proposed by Williams et

al. due to the flexibility of the Weibull model to fit many different shaped hazards,

the fact that the Weibull hazard model satisfies the proportional hazards assump-

tion providing a straightforward interpretation, and the direct extension to include

covariates [14,43].

The Weibull hazard function with one change-point as proposed by Williams et

al. is

h(t) =


θ1t

γ−1 0 ≤ t < τ

θ2t
γ−1 t ≥ τ

(3.1)

The corresponding log-likelihood is

log L (θ1, θ2, τ) =G1(τ) log(θ1) +G2(τ) log(θ2)− T1(τ)θ1 − T2(τ)θ2

+
n∑
i=1

(γ − 1)δi log ti (3.2)

where G1(τ) =
n∑
i=1

1{ti < τ, δi = 1}, G2(τ) =
n∑
i=1

1{ti ≥ τ, δi = 1}, T1(τ) =

1
γ

n∑
i=1

min(tγi , τ
γ), and T2(τ) = 1

γ

n∑
i=1

max(0, tγi − τ γ). Notation has been changed

slightly for consistency in this dissertation and to reflect the change from Williams
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et al.’s accommodations for data with staggered entry [14]. The parameters of the

Weibull distribution include scale parameter θ and shape parameter γ. The shape

parameter is assumed known and does not change despite the presence of a change-

point. In the case of a Weibull hazard function with one change point, the scale

parameters before and after the change point are θ1 and θ2 respectively, both un-

known. Time (in our case question) is represented by t and an indicator for censoring

is represented by δ taking the value δ = 1 when the event (survey dropout) occurred

and δ = 0 when the subject was censored (here, survey completion). Williams et al.

consider only fixed Type I censoring at the end of the study. This translates directly

to the survey setting where participants who complete the survey are censored at

the last question; in other words, only Type I right censoring is possible for survey

data.

The basis of the test for one change-point is the profile log-likelihood ratio test

statistic

Λn(τ) = G1(τ) log

(
G1(τ)

T1(τ)
× 1

θ̂

)
+G2(τ) log

(
G2(τ)

T2(τ)
× 1

θ̂

)
, (3.3)

where θ̂ =

n∑
i=1

1{δi=1}

(1/γ)
n∑
i=1

tγi

. This statistic is calculated for each potential change point

within a pre-specified range [a, b]. Williams uses a Taylor series expansion to rewrite

Λn(τ) as a composite of statistics Zn(τ) and Rn(τ), namely

2Λn(τ) = Z2
n(τ) +Rn(τ), (3.4)

where Zn(τ) =

(
T1(τ)
G1(τ)

− T2(τ)
G2(τ)

)(
G1(τ)G2(τ)
G1(τ)+G2(τ)

)1/2(
G1(τ)+G2(τ)
T1(τ)+T2(τ)

)
. They prove in Propo-

sition 2.1 that supa≤τ≤b |Rn(τ)| p−→ 0 and then transforms Z(τ) in order to prove in

Corollary 2.1 that it is an Ornstein-Uhlenbeck process from which asymptotic critical

values can be computed [14].
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The null hypothesis of no change-point is rejected if supa≤τ≤b Z
2(τ) exceeds a

the approximate critical value c2 derived from Corollary 2.2, which is solved for by

using the equation

(b∗ − a∗) c√
2π
e−c

2/2 = α, (3.5)

where

a∗ = log[g(b)/(g(0)− g(b))]

b∗ = log[g(a)/(g(0)− g(a))]

g(t) = P (T ≥ t, δ = 1),

significance level α, and by choosing the maximum root of this equation [14]. The

change-point is determined to be at time τ where the maximum value of the test

statistic Z2(τ) occurred.

In order for change-point analysis to be applicable to the problem of testing for

phases of attrition, it is necessary to be able to test for multiple change-points. Now,

instead of τ we have τi where i = 1, . . . , K. Only a few authors have provided such

tests. Cai et al. and Kanavou propose tests specifically for two change-points [19,20].

Qian and Zhang propose a test for multiple change points using the piecewise linear

hazard model that accounts for covariates and long-term survivors [18]. Although

we are not focused on identifying long-term “survivors” in this dissertation, this

would be an interesting avenue for future research in order to predict the survey

adherence of participants with different characteristics. Han et al. suggest an ap-

proach within the piecewise exponential model allowing for small sample sizes, a

challenge generally not faced in large online surveys [22]. Liu et al. propose a test

for a multiple change-point model within the semi-parametric setting, however, this

model relies on knowing the number of change-points a priori [15]. Goodman et al.

propose a likelihood ratio and Wald-type test statistic for multiple change points
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within a piecewise constant hazard model (the discrete time hazard model described

above is also known as a piecewise constant hazard model), the latter of which has a

known limiting distribution [16,17]. Goodman et al.’s test allows for up to K change

points by testing whether a model with an additional change-point has significantly

better fit than the current model. He et al. propose a sequential test within the

semi-parametric hazard model that allows for the comparison of groups [21]. The se-

quential nature of these tests limits their applicability because once a non-significant

result is found, we can no longer test for a larger number of change-points even when

we suspect the best fitting model should have additional change-points.

3.1.3 Aim

We applied a change-point hazard model in a new setting: survey data. We extended

Williams’ parametric approach using a Weibull hazard to test for multiple change-

points [14]. A likelihood ratio test statistic was derived and we discuss the testing

algorithm.

3.2 Methods

First, we extended Williams’ approach by generalizing the likelihood ratio test statis-

tic to account for multiple change-points in order to test our hypothesis that the

current change-point model has significantly better fit than the no change-point
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model. The Weibull change-point pdf generalized for K change-points becomes

f(t) =



θ1t
γ−1 exp{− θ1

γ
tγ} 0 ≤ t < τ1

θ2t
γ−1 exp{− θ2

γ
(tγ − τ γ1 )− θ1

γ
τ γ1 } τ1 ≤ t < τ2

...

θK+1t
γ−1 exp{− θK+1

γ
(tγ − τ γK)− θK

γ
(τ γK − τ

γ
K−1)− . . .− θ1

γ
τ γ1 } t ≥ τK

(3.6)

with corresponding survival function

S(t) =



exp{− θ1
γ
tγ} 0 ≤ t < τ1

exp{− θ2
γ

(tγ − τ γ1 )− θ1
γ
τ γ1 } τ1 ≤ t < τ2

...

exp{− θK+1

γ
(tγ − τ γK)− θK

γ
(τ γK − τ

γ
K−1)− . . .− θ1

γ
τ γ1 } t ≥ τK .

(3.7)

Using Equations 3.6 and 3.7, we construct the log-likelihood for two change-points

in the following way:

L2 =
∏
t<τ1

{
[θ1t

γ−1 exp{−θ1
γ
tγ}]δ[exp{−θ1

γ
tγ}]1−δ

}
×

∏
τ1≤t<τ2

{
[θ2t

γ−1 exp{−θ2
γ

(tγ − τ γ1 )− θ1
γ
τ γ1 }]δ[exp{−θ2

γ
(tγ − τ γ1 )− θ1

γ
τ γ1 }]1−δ

}
×
∏
t≥τ2

{
[θ3t

γ−1 exp{−θ3
γ

(tγ − τ γ2 )− θ2
γ

(τ γ2 − τ
γ
1 )− θ1

γ
τ γ1 }]δ

× [exp{−θ3
γ

(tγ − τ γ2 )− θ2
γ

(τ γ2 − τ
γ
1 )− θ1

γ
τ γ1 }]1−δ

}
L2 =

∏
t<τ1

[θ1t
γ−1]δ exp{−θ1

γ
tγ}

∏
τ1≤t<τ2

[θ2t
γ−1]δ exp{−θ2

γ
(tγ − τ γ1 )− θ1

γ
τ γ1 }

×
∏
t≥τ2

[θ3t
γ−1]δ exp{−θ3

γ
(tγ − τ γ2 )− θ2

γ
(τ γ2 − τ

γ
1 )− θ1

γ
τ γ1 }
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log L2 =
∑
t<τ1

[δi log(θ1t
γ−1
i )− θ1

γ
tγi ] +

∑
τ1≤t<τ2

[δi log(θ2t
γ−1
i )− θ2

γ
(tγi − τ

γ
1 )− θ1

γ
τ γ1 ]

+
∑
t≥τ2

[δi log(θ3t
γ−1
i )− θ3

γ
(tγi − τ

γ
2 )− θ2

γ
(τ γ2 − τ

γ
1 )− θ1

γ
τ γ1 ]

log L2 = log(θ1)
∑
t<τ1

[δi] + (γ − 1)
∑
t<τ1

[δi log(ti)]−
θ1
γ

∑
t<τ1

[tγi ] + log(θ2)
∑

τ1≤t<τ2

[δi]

+ (γ − 1)
∑

τ1≤t<τ2

[δi log(ti)]−
θ2
γ

∑
τ1≤t<τ2

[tγi − τ
γ
1 ]− θ1

γ

∑
τ1≤t<τ2

[τ γ1 ] + log(θ3)
∑
t≥τ2

[δi]

+ (γ − 1)
∑
t≥τ2

[δi log(ti)]−
θ3
γ

∑
t≥τ2

[tγi − τ
γ
2 ]− θ2

γ

∑
t≥τ2

[τ γ2 − τ
γ
1 ]− θ1

γ

∑
t≥τ2

[τ γ1 ]

log L2 =(γ − 1)
∑

[δi log(ti)] + log(θ1)
∑

[δiI(ti < τ1)] + log(θ2)
∑

[δiI(τ1 ≤ ti < τ2)]

+ log(θ3)
∑

[δiI(ti ≥ τ2)]−
θ1
γ

∑
[min(tγi , τ

γ
1 )]− θ2

γ

∑
[max(min(tγi , τ

γ
2 )− τ γ1 , 0)]

− θ3
γ

∑
[max(tγi − τ

γ
2 , 0)]. (3.8)

More generally, we can write this as

log L =(γ − 1)
∑

[δi log(ti)] + log(θ1)
∑

[δiI(ti < τ1)] + log(θ2)
∑

[δiI(τ1 ≤ ti < τ2)] + . . .

+ log(θK+1)
∑

[δiI(ti ≥ τK)]− θ1
γ

∑
[min(tγi , τ

γ
1 )]− θ2

γ

∑
[max(min(tγi , τ

γ
2 )− τ γ1 , 0)]

− . . .− θK+1

γ

∑
[max(tγi − τ

γ
K , 0)]. (3.9)

We substitute in the MLEs

θ̂1 =
G1

T1
, θ̂2 =

G2

T2
, . . . , θ̂K+1 =

GK+1

TK+1

, θ̂0 =

∑
`=1...K+1G`∑
`=1...K+1 T`

, (3.10)

where G` =
∑

[δiI(τ`−1 ≤ ti < τ`)] and T` = 1
γ

∑
[max(min(tγi , τ

γ
` )− τ γ`−1, 0)], to get

the log-likelihood in terms of τ , which is

log L =(γ − 1)
∑

[δi log(ti)] +G1 log(
G1

T1
) +G2 log(

G2

T2
) + . . .+GK+1 log(

GK+1

TK+1

)

−G1 −G2 − . . .−GK+1. (3.11)
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Similarly, the log-likelihood when there are no change-points is

L0 =
∏

[θ0t
γ−1 exp{−θ0

γ
tγ}]δ[exp{−θ0

γ
tγ}]1−δ =

∏
[θ0t

γ−1]δ exp{−θ0
γ
tγ}

log L0 =
∑

[δi log(θ0t
γ−1
i )− θ0

γ
tγi ] = log(θ0)

∑
[δi] + (γ − 1)

∑
[δi log(ti)]−

θ0
γ

∑
[tγi ].

(3.12)

Using Equations 3.8 and 3.12, we construct the log-likelihood ratio test statistic as

log(
L2

L0

) = log L2 − log L0 = (γ − 1)
∑

[δi log(ti)] + log(θ1)
∑

[δiI(ti < τ1)]

+ log(θ2)
∑

[δiI(τ1 ≤ ti < τ2)] + log(θ3)
∑

[δiI(ti ≥ τ2)]−
θ1
γ

∑
[min(tγi , τ

γ
1 )]

− θ2
γ

∑
[max(min(tγi , τ

γ
2 )− τ γ1 , 0)]− θ3

γ

∑
[max(tγi − τ

γ
2 , 0)]− log(θ0)

∑
[δi]

− (γ − 1)
∑

[δi log(ti)] +
θ0
γ

∑
[tγi ]

Let G1 =
∑

[δiI(ti < τ1)], G2 =
∑

[δiI(τ1 ≤ ti < τ2)], G3 =
∑

[δiI(ti ≥ τ2)],

T1 =
1

γ

∑
[min(tγi , τ

γ
1 )], T2 =

1

γ

∑
[max(min(tγi , τ

γ
2 )− τ γ1 , 0)],

T3 =
1

γ

∑
[max(tγi − τ

γ
2 , 0)]

log(
L2

L0

) =G1 log(θ1) +G2 log(θ2) +G3 log(θ3)− (G1 +G2 +G3) log(θ0)− T1θ1 − T2θ2 − T3θ3

+ (T1 + T2 + T3)θ0

=G1 log(
θ1
θ0

) +G2 log(
θ2
θ0

) +G3 log(
θ3
θ0

) + T1(θ0 − θ1) + T2(θ0 − θ2) + T3(θ0 − θ3).

(3.13)

We substitute the MLEs for θ1, θ2, θ3, and θ0 (see Equation 3.10) into Equation 3.13

to get the test statistic

log(
L2

L0

) =G1 log(
G1

T1
× T1 + T2 + T3
G1 +G2 +G3

) +G2 log(
G2

T2
× T1 + T2 + T3
G1 +G2 +G3

)

+G3 log(
G3

T3
× T1 + T2 + T3
G1 +G2 +G3

) + T1(
G1 +G2 +G3

T1 + T2 + T3
− G1

T1
)
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+ T2(
G1 +G2 +G3

T1 + T2 + T3
− G2

T2
) + T3(

G1 +G2 +G3

T1 + T2 + T3
− G3

T3
)

=G1 log(
G1

T1
× T1 + T2 + T3
G1 +G2 +G3

) +G2 log(
G2

T2
× T1 + T2 + T3
G1 +G2 +G3

)

+G3 log(
G3

T3
× T1 + T2 + T3
G1 +G2 +G3

). (3.14)

More generally, we can write Equation 3.14 as

Λ =G1 log(
G1

T1
×
∑K+1

j=1 Tj∑K+1
j=1 Gj

) +G2 log(
G2

T2
×
∑K+1

j=1 Tj∑K+1
j=1 Gj

) + . . .

+GK+1 log(
GK+1

TK+1

×
∑K+1

j=1 Tj∑K+1
j=1 Gj

) (3.15)

When applying this method, the first step is to plot overall dropout as suggested

in Hochheimer et al. [4]. We then get an initial estimate of γ by fitting a Weibull

distribution with no change-points to the data. If the plot suggests a change-point

model would be more appropriate, we estimate γ based on this change-point model.

For example, if a bar chart of the dropout at each question suggests a two change-

point model, we estimate γ by fitting the negative log-likelihood with these two

change-points to the data. Using that estimate, we maximize Equation 3.11 with

respect to τi for each potential number of change-points, choosing the model that

results in the smallest BIC. The values of τi from this chosen change-point model

are used to again estimate γ by fitting the log-likelihood corresponding to the cho-

sen change-point model. We then repeat the process of maximizing Equation 3.11

for each potential number of change-points, choose the change-point model with

the smallest BIC, calculate the test statistic in Equation 3.15 for this model, and

compare it to a critical value defined through Monte Carlo simulations [44].

BIC was chosen over other modes of model comparison, such as AIC, in order

to apply a stricter penalty to models with a higher number of change-points and

to avoid overfitting. We define BIC as p log(n)− 2 log L where p is the number of
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parameters maximized in Equation 3.9 (including τs, θs, and γ), n is the sample size,

and log L is the value of the log-likelihood at the change-points τi that maximize

Equation 3.11.

Using this model, we test the hypothesis that the best fitting change-point model

has significantly better fit than the no change-point model. Seeing as too many phase

transitions would render the results difficult to interpret, we introduce a maximum

number of potential phases in a survey based on the length of the survey itself. As

a rule of thumb, we tested for up to (q − 1)/4 change-points, that is the number of

survey questions minus the first question and divided by four. There is no meaningful

interpretation for a change-point at the first question, thus it is not eligible to be a

change-point. A ten question survey, for example, would be eligible for a maximum

of two change-points.

Monte Carlo simulations are applied to obtain a critical value [44]. The null

distribution for this test is that with no change-points but with the same amount

of overall dropout and value of γ. We simulate 10,000 replications of the null dis-

tribution and calculate the value of the log-likelihood ratio test statistic (Equation

3.15) for each one. Using these 10,000 values of the test statistic, we calculate the

percentile corresponding to the alpha level to get the critical value. In order to see

whether our result is significant, we compare the test statistic calculated for our test

data to this critical value. If our test statistic is more extreme, we reject the null

hypothesis in favor of the current change-point model. Using the resulting values

of θi, we determine whether the phases are of higher dropout or stable use relative

to the surrounding dropout phases. This method was implemented using the R

statistical software version 3.5.0 [23]. R code demonstrating how this method was

implemented can be found in Appendix A.
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Chapter 4

Testing for attrition phases using

an exponential change-point

hazard model

4.1 Introduction

4.1.1 Motivation

While the Weibull method introduced in Chapter 3 allows for a more flexible para-

metric hazard, assuming a constant hazard (i.e., exponential) model may more ef-

fectively identify changes in the hazard of dropping out. We derived a test for up

to (q − 1)/4 change-points using the exponential distribution.

4.1.2 Current methods

Goodman proposes a likelihood ratio and Wald-type test for multiple change points

within a piecewise constant hazard model (the discrete time hazard model described

above is also known as a piecewise constant hazard model) [16,17]. She applies the

latter due to the fact that the limiting distribution for the likelihood ratio test
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statistic is unknown as discussed previously. Goodman’s test allows for up to K

change points, represented by the hazard function

h(t) =



θ1 0 ≤ t < τ1

θ2 τ1 ≤ t < τ2

...
...

θK+1 t ≥ τK .

(4.1)

The corresponding log-likelihood is

log L (θ1, . . . , θK+1, τ1, . . . , τK) =X(τ1) log θ1 + [X(τ2)−X(τ1)] log θ2 + . . .+ [nu −X(τK)] log θK+1

− θ1
n∑
i=1

min(ti, τ1)− θ2
n∑
i=1

(min(ti, τ2)− τ1)I(ti > τ1)

− . . .− θK+1

n∑
i=1

(ti − τK)I(ti > τK), (4.2)

where nu is the total number of events (or survey dropouts) and X(τ) =
n∑
i=1

I(ti <

τ)δi, the total number of events before time τ . Notation has changed slightly for

consistency in this dissertation. The Wald type test statistic for the hypothesis

H0 : θK − θK+1 = 0 is

XW =
(θ̂K − θ̂K+1)

2

V ar(θ̂K − θ̂K+1)
∼ χ2

1, (4.3)

where the variance is derived from a Hessian matrix consisting of only the parameters

included in the test statistic. In order to correct for multiple comparisons and choose

the most parsimonious model, the significance level for the Kth hypothesis test is

α∗(K) = α
2K−1 . In this way, each additional change point is subject to a more

stringent significance level.
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Estimates for θ̂K and θ̂K+1 are found by first substituting the MLEs for all θ̂s;

θ̂1 =
X(τ1)

n∑
i=1

min(ti, τ1)
, θ̂2 =

X(τ2)−X(τ1)
n∑
i=1

(min(ti, τ2)− τ1)I(ti > τ1)
, . . . ,

θ̂K =
X(τK)−X(τK−1)

n∑
i=1

(min(ti, τK)− τK−1)I(ti > τK−1)
, θ̂K+1 =

nu −X(τK)
n∑
i=1

(ti − τK)I(ti > τK)
; (4.4)

into equation 4.2. The log-likelihood becomes

log L (τ1, . . . , τK) =X(τ1) log

(
X(τ1)

n∑
i=1

min(ti, τ1)

)

+ [X(τ2)−X(τ1)] log

(
X(τ2)−X(τ1)

n∑
i=1

(min(ti, τ2)− τ1)I(ti > τ1)

)
+ . . .

+ [X(τK)−X(τK−1)] log

(
X(τK)−X(τK−1)

n∑
i=1

(min(ti, τK)− τK−1)I(ti > τK−1)

)

+ [nu −X(τK)] log

(
nu −X(τK)

n∑
i=1

(ti − τK)I(ti > τK)

)
− nu. (4.5)

Equation 4.5 is then maximized with respect to τ1, . . . , τK , with the resulting esti-

mates τ̂1, . . . , τ̂K used to maximize equation 4.2 with respect to θ1, . . . , θK+1. Finally,

the estimates for θK and θK+1 are used to calculate the test statistic in equation 4.3.

Goodman’s testing approach starts with the no change-point model and com-

pares it to a model with one change-point. If the test statistic is significant, the

one change-point model becomes the null model and is then compared to a model

with two change-points. This process continues until we no longer have a significant

test statistic. The model with K change points that last produced a significant test

statistic is considered the final model. This approach both detects the number of

change-points and estimates all unknown parameters, including the change-points

themselves [16,17].
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4.1.3 Aim

We assumed the dropout rate in each attrition phase is constant, thus applying

the exponential change-point hazard model. Within this framework, we derived a

test statistic and describe the testing scheme for multiple change-points within the

exponential hazard model.

4.2 Methods

Instead of testing Goodman’s hypothesis, H0 : θK = θK+1, we are interested in

testing the same hypotheses as in Chapter 3, with a null hypothesis of no change-

points and an alternative hypothesis of between one and (q − 1)/4 change-points.

In order to derive the appropriate test-statistic, we start with the exponential pdf

f(t) =



θ1 exp{−θ1t} 0 ≤ t < τ1

θ2 exp{−θ1τ1 − θ2(t− τ1)} τ1 ≤ t < τ2

...

θK+1 exp{−θ1τ1 − θ2(τ2 − τ1)− . . .− θK+1(t− τK)} t ≥ τK

(4.6)

and corresponding survival function

S(t) =



exp{−θ1t} 0 ≤ t < τ1

exp{−θ1τ1 − θ2(t− τ1)} τ1 ≤ t < τ2

...

exp{−θ1τ1 − θ2(τ2 − τ1)− . . .− θK+1(t− τK)} t ≥ τK .

(4.7)
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Using the 4.6 and 4.7, we construct the log-likelihood for two change-points as

L2 =
∏
t<τ1

{
[θ1 exp{−θ1t}]δ[exp{−θ1t}]1−δ

}
×

∏
τ1≤t<τ2

{
[θ2 exp{−θ1τ1 − θ2(t− τ1)}]δ[exp{−θ1τ1 − θ2(t− τ1)}]1−δ

}
×
∏
t≥τ2

{
[θ3 exp{−θ1τ1 − θ2(τ2 − τ1)− θ3(t− τ2)}]δ

× [exp{−θ1τ1 − θ2(τ2 − τ1)− θ3(t− τ2)}]1−δ
}

L2 =
∏
t<τ1

θδ1 exp{−θ1t}
∏

τ1≤t<τ2

θδ2 exp{−θ1τ1 − θ2(t− τ1)}

×
∏
t≥τ2

θδ3 exp{−θ1τ1 − θ2(τ2 − τ1)− θ3(t− τ2)}

log L2 = log θ1
∑
t<τ1

δi + log θ2
∑

τ1≤t<τ2

δi + log θ3
∑
t≥τ2

δi − θ1
n∑
i=1

min(ti, τ1)

− θ2
n∑
i=1

(min(ti, τ2)− τ1)I(ti ≥ τ1)− θ3
∑
t≥τ2

(ti − τ2). (4.8)

This can be generalized to

log L = log θ1
∑
t<τ1

δi + log θ2
∑

τ1≤t<τ2

δi + . . .+ log θK+1

∑
t≥τK

δi − θ1
n∑
i=1

min(ti, τ1)

− θ2
n∑
i=1

(min(ti, τ2)− τ1)I(ti ≥ τ1)− . . .− θK+1

∑
ti≥τK

(t− τK). (4.9)

We substitute the MLEs for all θs;

θ̂1 =
X(τ1)∑n

i=1 min(ti, τ1)
, θ̂2 =

X(τ2)−X(τ1)∑n
i=1(min(ti, τ2)− τ1)I(ti ≥ τ1)

, . . . ,

θ̂K+1 =
nu −X(τK)∑n

i=1(ti − τK)I(ti ≥ τK)
, θ̂0 =

nu∑n
i=1 ti

; (4.10)

where X(τ) =
∑n

i=1 δiI(ti < τ) and nu =
∑n

i=1 δi, the total number of events or
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dropouts. Equation 4.9 becomes

log L =X(τ1) log

(
X(τ1)∑n

i=1 min(ti, τ1)

)
+ [X(τ2)−X(τ1)] log

(
X(τ2)−X(τ1)∑n

i=1(min(ti, τ2)− τ1)I(ti ≥ τ1)

)
+ . . .+ [nu −X(τK)] log

(
nu −X(τK)∑n

i=1(ti − τK)I(ti ≥ τK)

)
−X(τ1)− [X(τ2)−X(τ1)]− . . .

− [nu −X(τK)]. (4.11)

Similarly, the log-likelihood for no change-points is

L0 =
∏

[θ0 exp{−θ0t}]δ[exp{−θ0t}]1−δ =
∏

θδ0 exp{−θ0t}

log L0 = log θ0
∑

δi − θ0
∑

ti. (4.12)

Using Equations 4.8 and 4.12, we construct the log-likelihood ratio test statistic

log(
L2

L0

) = log L2 − log L0 =X(τ1) log θ1 + [X(τ2)−X(τ1)] log θ2 + [nu −X(τ2)] log θ3

− θ1
n∑
i=1

min(ti, τ1)− θ2
n∑
i=1

(min(ti, τ2)− τ1)I(ti ≥ τ1)

− θ3
n∑
i=1

(ti − τ2)I(ti ≥ τ2)− nu log θ0 + θ0

n∑
i=1

ti.

(4.13)

We substitute the MLEs from Equation 4.10 for θ1, θ2, θ3 and θ0 into Equation 4.13,

giving us

log(
L2

L0

) =X(τ1) log

(
X(τ1)∑n

i=1 min(ti, τ1)

)
+ [X(τ2)−X(τ1)] log

(
X(τ2)−X(τ1)∑n

i=1(min(ti, τ2)− τ1)I(ti ≥ τ1)

)
+ [nu −X(τ2)] log

(
nu −X(τ2)∑n

i=1(ti − τ2)I(ti ≥ τ2)

)
−X(τ1)−X(τ2) +X(τ1)− nu +X(τ2)

− nu log(
nu∑n
i=1 ti

) + nu

=X(τ1) log

(
X(τ1)∑n

i=1 min(ti, τ1)

)
+ [X(τ2)−X(τ1)] log

(
X(τ2)−X(τ1)∑n

i=1(min(ti, τ2)− τ1)I(ti ≥ τ1)

)
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+ [nu −X(τ2)] log

(
nu −X(τ2)∑n

i=1(ti − τ2)I(ti ≥ τ2)

)
− nu log(

nu∑n
i=1 ti

). (4.14)

More generally, we can write the log-likelihood ratio test statistic in Equation 4.14

as

X(τ1) log

(
X(τ1)∑n

i=1 min(ti, τ1)

)
+ [X(τ2)−X(τ1)] log

(
X(τ2)−X(τ1)∑n

i=1(min(ti, τ2)− τ1)I(ti ≥ τ1)

)
+ . . .

+ [X(τK)−X(τK−1)] log

(
X(τK)−X(τK−1)∑n

i=1(min(ti, τK)− τK−1)I(ti ≥ τK−1)

)
+ [nu −X(τK)] log

(
nu −X(τK)∑n

i=1(ti − τK)I(ti ≥ τK)

)
− nu log(

nu∑n
i=1 ti

). (4.15)

In order to apply this method, we start by maximizing equation 4.11 with respect

to τi for each potential number of change-points, choosing that with the smallest

BIC. As in Chapter 3, we define BIC as p log(n)−2 log L . We then compare the best

fitting change-point model to the no change-point model by comparing the statistic

to a critical value, which is calculated using 10,000 Monte Carlo simulations of the

null distribution (no change-points but same amount of overall dropout, see Chapter

3 for more details) [44]. If the test statistic is more extreme than the critical value,

this suggests significant change-points at the τi that maximize the likelihood. The

resulting values of θi are then used to determine whether the resulting attrition

phases are of higher dropout or stable use relative to surrounding phases. This

method was implemented using the R statistical software version 3.5.0 [23]. R code

demonstrating how it was implemented can be found in Appendix A.
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Chapter 5

Simulation study and data

application

5.1 Introduction

In order to determine how well the methods proposed in Chapters 3 and 4 detect

change-points, we simulated data from the Weibull distribution with multiple change

points (Equation 3.6) and the exponential distribution with multiple change-points

(Equation 4.6).

Simulating data for change-point distributions was complicated by the need to

simulate data assuming a constant value of γ for each phase of the Weibull change-

point distribution and to incorporate the discrete nature of survey data. We con-

sidered two methods of simulating data: an inverse CDF method and a memoryless

method. In the survival setting, the relationship between the CDF and cumulative

hazard function can be used to simulate data [45]. The alternative technique takes

advantage of the memoryless property of survival data by simulating each phase from

an independent Weibull or exponential distribution. We compared these methods

using a separate simulation study, the details and conclusions of which are included
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in this chapter.

Next, we applied the chosen simulation method to perform a simulation study

evaluating the performance of our proposed tests for change-points within the Weibull

and exponential hazard functions. Finally, we introduce our test case data, a survey

on patients’ preferences surrounding the decision to be screened for breast, prostate,

or colon cancer. All methods proposed in this dissertation were applied to this sur-

vey and we compared their performance in identifying attrition phases in a real-life

dataset.

5.1.1 Aim

We performed a simulation study to choose the most accurate method for simulating

data from change-point hazard models. Methods proposed in Chapters 3 and 4 are

compared using a simulation study implementing the chosen method. We then

applied all methods proposed in this dissertation to test case data and compared

their performance in identifying attrition phases in real-life survey data.

5.2 Comparing simulation methods

5.2.1 Methods

Inverse CDF

In order to determine how well the method detects change-points, we wanted to

simulate data from the Weibull and exponential change-point hazard models with

multiple change points (Equations 3.6 and 4.6). In order to simulate data, we use

the relationship of the CDF and cumulative hazard function F (t) = 1− exp(−H(t))

where H(t) =
∫
h(t)dt and h(t) is the hazard function.

For the Weibull distribution, the hazard function corresponding to Equation 3.6
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is

h(t) =


θ1t

γ−1 0 ≤ t < τ1

θ2t
γ−1 τ1 ≤ t < τ2

θ3t
γ−1 t ≥ τ2

(5.1)

with cumulative hazard function

H(t) =



θ1
γ
tγ 0 ≤ t < τ1

θ1
γ
τ γ1 + θ2

γ
(tγ − τ γ1 ) τ1 ≤ t < τ2

θ1
γ
τ γ1 + θ2

γ
(τ γ2 − τ

γ
1 ) + θ3

γ
(tγ − τ γ2 ) t ≥ τ2.

(5.2)

Noting that F (t) = U where U is a uniform random variable on (0, 1), we derive the

inverse cumulative hazard function

H−1(x) =



(
γ
θ1
x
)1/γ

0 ≤ x < θ1
γ
τ γ1(

γ
θ2

(x− θ1
γ
τ γ1 ) + τ γ1

)1/γ
θ1
γ
τ γ1 ≤ x < θ1

γ
τ γ1 + θ2

γ
(τ γ2 − τ

γ
1 )(

γ
θ3

(
x− θ1

γ
τ γ1 − θ2

γ
(τ γ2 − τ

γ
1 )
)

+ τ γ2

)1/γ

x ≥ θ1
γ
τ γ1 + θ2

γ
(τ γ2 − τ

γ
1 ),

(5.3)

where x ∼ Exp(1) and t = H−1(− log(1 − U)). In this case, we see that x =

−log(1 − U) ∼ Exp(1) so we can simulate random variables from the exponential

distribution.

The R code for implementing H−1(x) for the Weibull distribution with two

change-points can be found in Appendix B. This derivation as well as R code for

implementing this within the exponential distribution is available from Walke [45].
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Memoryless method

Another way to visualize this data is the scenario where we have an independent

Weibull or exponential distribution for each attrition phase. In this case, we treat the

initial phase as Weibull or exponential survival with fixed type I right censoring. If

the participant “survives” to phase two, the second phase is treated as left truncated

with a different scale parameter θ and fixed type I right censoring. Any subsequent

phase is treated similarly.

For example, if the interval of time 0-20 is split into two phases with a change-

point at time 10 and a person survives until time 11 we have: P (t > 10)P (t =

11|t > 10) = P (t > 10)P (t=11)
P (t>10)

= P (t = 11). In other words, this simulation method

exploits the memoryless property of survival.

Thus, we simulate each phase from an independent Weibull or exponential dis-

tribution with selected θi. Participants whose simulated survival time is past the

end of the time interval for each phase are considered surviving to that change-point

and then an additional survival time is simulated for them in the next phase. Time

in the survey is calculated as the sum of time in each phase, with those who survive

all phases censored at the end. Example R code implementing this method for the

Weibull hazard model with two change-points can be found in Appendix B.

Simulation study methods

Data were simulated using both proposed methods including two change-points and

a sample size of 500. We simulated 10,000 datasets with either 500 or 1,000 simu-

lated participants. γ was set at 2 for the Weibull distribution and θ was chosen so

that there was either a smaller or more pronounced difference in the dropout rate

between attrition phases. In order to mimic survey data, simulated dropout time

was truncated and simulated participants with a dropout time less than one were

considered to have dropped out at the first question. The methods were assessed in
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terms of which more closely resembled the “true” simulated distribution, specifically

the mean estimated values of γ and θ.

5.2.2 Results

Average estimates of γ and θ for the Weibull simulations using different simulation

schemes, sample sizes, and attrition patterns are compared in Table 5.1. The mem-

oryless method achieved estimates of γ closer to 2 than the inverse CDF method.

Estimates of γ were most biased for this method when there was a severe dropout

phase in between questions 10 and 16. The CDF method consistently underesti-

mated γ, with values closer to 1 that resulted in much higher dropout than expected.

Values of γ were most extreme for the CDF method when there was a severe dropout

phase and phase transitions at either questions 4 and 10 or questions 10 and 16.

When simulating Weibull change-point data using the CDF method, values of

θ were inflated. θ was particularly biased when the phase transitions occurred

later in the survey at questions 10 and 16. Coupled with underestimated values

of γ, this resulted in a dropout rate inflated by between 57% and 69%. While

estimates of θ were less biased for simulated data using the memoryless method,

θ1 was overestimated while θ2 and θ3 were underestimated when there was a mild

dropout phase in between the change-points. In simulation scenarios with a severe

dropout phase, all values of θ were underestimated when using the memoryless

method, coupled with an inflated value of γ. These deviations, however, did not

affect the amount of dropout, which achieved the target dropout rate when we

employed the memoryless method.

When simulating data for the exponential change-point distribution, both meth-

ods had similar performance and achieved the same amount of overall dropout (see

Table 5.2).
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Mild change N=500 N=1000
τ Parameter Actual CDF Memoryless CDF Memoryless

4,10 γ 2 1.30 1.74 1.30 1.73
θ1 0.02022 0.03476 0.02578 0.03483 0.02580
θ2 0.0198 0.08144 0.01437 0.08104 0.01436
θ3 0.00345 0.02400 0.00241 0.02380 0.00240

4,16 γ 2 1.46 1.81 1.46 1.81
θ1 0.02023 0.03162 0.02441 0.03161 0.02444
θ2 0.004958 0.01790 0.00473 0.01779 0.00471
θ3 0.0215 0.12967 0.00438 0.12768 0.00431

10,16 γ 2 1.37 1.87 1.36 1.86
θ1 0.00325 0.00954 0.00436 0.00960 0.00431
θ2 0.0198 0.11492 0.00705 0.11390 0.00681
θ3 0.0219 0.17534 0.00412 0.17175 0.00391

Severe change

4,10 γ 2 1.09 2.10 1.09 2.09
θ1 0.00642 0.01224 0.00607 0.01228 0.00607
θ2 0.0323 0.020113 0.01238 0.19852 0.01215
θ3 0.00124 0.01578 0.00037 0.01535 0.00035

4,16 γ 2 1.54 2.21 1.54 2.21
θ1 0.00644 0.00947 0.00546 0.00945 0.00544
θ2 0.0081 0.02491 0.00318 0.02443 0.00312
θ3 0.0077 0.03406 0.00053 0.03287 0.00051

10,16 γ 2 0.98 2.45 0.97 2.43
θ1 0.00102 0.00518 0.00059 0.00525 0.00054
θ2 0.0323 0.53224 0.00367 0.52180 0.00316
θ3 0.0073 0.16854 0.00040 0.15975 0.00033

Table 5.1: Comparing simulation methods for the Weibull hazard with two change-
points

5.2.3 Discussion

The results of this simulation study suggest that we should proceed with the mem-

oryless simulation method for the Weibull distribution simulations. This method

generated values of γ closer to the true value. This is important because this shape

parameter affects the dropout rate. When γ is underestimated, the dropout rate

more closely resembles exponential dropout, resulting in a higher dropout rate than

desired. Furthermore, values of θ were less biased using the memoryless method for
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Mild change N=500 N=1000
τ Phase θ CDF Memoryless CDF Memoryless

4,10 1 0.02022 0.02035 0.02034 0.02033 0.02031
2 0.0198 0.02002 0.02006 0.02001 0.02001
3 0.00345 0.00345 0.00345 0.00346 0.00346

4,16 1 0.02023 0.02040 0.02034 0.02037 0.02034
2 0.004958 0.00496 0.00498 0.00498 0.00498
3 0.0215 0.02174 0.02173 0.02175 0.02177

10,16 1 0.00325 0.00327 0.00326 0.00327 0.00326
2 0.0198 0.02006 0.02004 0.02001 0.02002
3 0.0219 0.02213 0.02213 0.02210 0.02221

Severe change

4,10 1 0.00642 0.00642 0.00644 0.00643 0.00643
2 0.0323 0.03290 0.03295 0.03286 0.03288
3 0.00124 0.00125 0.00124 0.00124 0.00124

4,16 1 0.00644 0.00647 0.00646 0.00645 0.00644
2 0.0081 0.00813 0.00815 0.00813 0.00815
3 0.0077 0.00779 0.00778 0.00772 0.00776

10,16 1 0.00102 0.00103 0.00102 0.00102 0.00102
2 0.0323 0.03290 0.03288 0.03279 0.03287
3 0.0073 0.00734 0.00737 0.00733 0.00733

Table 5.2: Comparing simulation methods for the exponential hazard with two
change-points

the Weibull distribution. When we are not concerned with simulating both shape

and scale parameters (i.e., the exponential distribution), these methods performed

similarly.

Although using the inverse CDF is a common method for generating data, this

simulation study suggests that this approach is inadequate when simulating data

from change-point hazard distributions with multiple change-points and at least

one parameter in addition to a scale parameter, such as the Weibull or gamma

distributions.
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5.3 Simulation study comparing tests for change-

points within the Weibull and exponential haz-

ard models

5.3.1 Simulation methods

Data were simulated for a twenty question survey with no, one, two and three change-

points using the memoryless simulation method. Although the simulation method

did not affect estimates for the exponential distribution, we used the same simulation

method for both distributions for consistency. The methods from Chapters 3 and

4 allow us to test for more general attrition phases and more than one attrition

phase within a survey. Seeing as it is only possible to dropout at distinct points in

a survey, simulated dropout time was truncated and simulated participants with a

dropout time less than one were considered to have dropped out at the first question

(as was done in the simulation study above). The hazard of dropping out was pre-

specified based on the amount of desired dropout in each phase. Overall dropout

for all simulations was 50%, representing high but realistic dropout for a web-based

survey.

We varied the location of the change-points to see whether our tests consistently

detected change-points when they occurred at different points throughout the sur-

vey; specifically at the beginning (question 4), in the middle (question 10), or to-

wards the end (question 16). The differences between the θis, and thus the amount

of dropout between phases, were varied to see if our tests detected change-points

when differences in θi were both small and large. For each dropout pattern, we sim-

ulated 10,000 datasets for each potential sample size, 500 and 1,000. Participants

could not reenter the survey once they dropped out and all simulated participants

who completed the survey were censored at the last question.
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Once these data were simulated, we calculated the BIC for up to four change-

points (the maximum possible based on the (q − 1)/4 rule), choosing that with the

smallest BIC to compare to the null model with no change-points. Based on our

simulation template, we tested only models identifying distinct change-points that

were not at the first or last survey question. Thus, we ensured the values of τi that

maximized the likelihood were distinct by verifying that τi+1− τi ≥ 1, else we chose

the model with one less change-point. Additionally, if the first or last questions were

identified as change-points, we tested the model with one less change-point.

The null hypothesis was that there is only one phase, in other words that there

are no change-points and θis are the same for all i. For each simulation, we compared

the selected change-point model to the critical value from the Monte Carlo simula-

tions (see Appendix C for R code demonstrating how this was implemented). To

further penalize models with larger number of change-points, we applied Goodman’s

alpha spending function α∗(K) = α
2K−1 and rejected the null hypothesis if the test

statistic was more extreme than the percentile from the Monte Carlo simulations

corresponding to α∗(K) [17]. This simulation study was implemented in R using the

optim function to minimize the negative test statistics as opposed to maximizing

the test statistics in Equations 3.15 and 4.15. A significant result, therefore, would

be smaller than the α∗(K)th percentile.

We evaluated these two methods in terms of type I error, sensitivity and power.

Similar to Chapter 2, a type I error (α) was defined as when at least one change-point

was detected when the known attrition pattern had no change-points (i.e. phases

of attrition were detected when they do not exist) and sensitivity was defined as

finding the correct number of change-points when they do exist. Power (1− β) was

defined as finding any number of change-points to be significantly better than the

null model when the true model had at least one change-point. Ideally, we hoped

to see a type I error level close to but not above the nominal level of 0.05, high
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sensitivity, and high power. We are currently unable to make scenarios to achieve

a desired nominal rate of power or sensitivity (e.g., 80%). Additionally, we used

histograms to visualize the distribution of τ , that is how often each survey item

was chosen as a change-point, in order to assess and compare the accuracy of these

methods.

When conducting this simulation study, we used a range of (1, 20) to estimate

one change-point and used starting points of 4 and 16 to estimate two change-points.

Thus, we tested to see if a more informative starting range or value would increase

the sensitivity to find exactly one or two change-points. We narrowed the range to

(τ − 2, τ + 2) for estimating one change-point and used the known change-points

as the initial values when estimating two change-points. Seeing as the first step

suggested in Hochheimer et al. is to visually inspect the dropout pattern, we would

(and do in the next section) use more informative starting points based on this plot

when applying these methods in a real life setting [4].

All simulations were completed using the R statistical software and histograms

were created using the ggplot2, reshape2, tidyr, and hablar packages [23,46–49].

5.3.2 Results

Type I error for both methods and sample sizes can be found in Table 5.3. The

Weibull method had slightly higher type I error than the exponential method but

both achieved or were very close to the target type I error rate of 0.05. Sample size

did not affect type I error.

N=500 N=1000

Weibull 0.06 0.06
Exponential 0.05 0.05

Table 5.3: Comparing type I error for the Weibull and exponential tests

Power and sensitivity of the Weibull and exponential methods with a simulated
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sample size of 500 are compared in Table 5.4. The Weibull method achieved at

least 80% power in 8/20 scenarios while the exponential method achieved at least

80% power in 9/20 cases. Power for the Weibull method ranged between 44% and

99% with all one change-point simulations except one achieving at least 80% power.

There was a broader range in power for the exponential method from 5% to 99%.

Weibull Exponential
# of change-points τ Dropout pattern 1− β Sensitivity 1− β Sensitivity

One 4 10%, 44.4% 0.86 0.38 0.05 0.03
44.4%, 10% DNC DNC DNC DNC
25%, 33.3% 0.98 0.74 0.99 0.56
33.3%, 25% 0.99 0.88 0.99 0.62

10 10%, 44.4% 0.94 0.83 0.88 0.44
44.4%, 10% 0.95 0.53 DNC DNC
25%, 33.3% 0.63 0.07 0.12 0.09
33.3%, 25% 0.87 0.29 0.58 0.52

16 10%, 44.4% DNC DNC 0.99 0.96
44.4%, 10% 0.90 0.63 0.24 0.20
25%, 33.3% DNC DNC 0.99 0.92
33.3%, 25% 0.99 0.72 0.98 0.87

Two 4, 10 5%, 44%, 6% DNC DNC DNC DNC
15%, 30%, 16% 0.84 0.47 0.98 0.28

4,16 5%, 44%, 6% 0.67 0.11 0.96 0.82
15%, 30%, 16% 0.78 0.12 0.35 0.11

10, 16 5%, 44%, 6% DNC DNC 0.72 0.53
15%, 30%, 16% 0.49 0.05 0.85 0.44

Three 4, 10, 16 5%, 30%, 20%, 6% 0.44 0.38 0.90 0.26
30%, 5%, 20%, 6% 0.49 0.36 0.65 0.64

Table 5.4: Comparing the Weibull and exponential tests, n=500

When the change-point occurred closer to the start of the survey at question

4, the Weibull method had higher sensitivity to detect exactly one change-point.

When the change-point occurred later in the survey at question 10 or 16, the Weibull

method had higher sensitivity to detect one change-point when there was a large

difference in attrition (10% to 44% or vice versa) whereas the exponential method

had higher sensitivity when there was a mild change in attrition (25% to 33% or
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vice versa). The exponential method had similar or better sensitivity as the Weibull

method to detect two change-points except when a there was a modest dropout phase

of 30% in between questions 4 and 10. When there was a large change in attrition at

the beginning and end of the survey with a mild change in the middle for a total of

three change-points, the Weibull method was more sensitive. When the dropout rate

alternated between low and high at three change-points, the exponential method was

more sensitive to detect exactly three change-points.

Table 5.5 displays the power and sensitivity of these two methods when the

sample size was increased to 1,000. There was a larger range in power for the

Weibull method from 19% to 98% while the exponential method again had a large

range from 4% to 100%. Only 6/20 scenarios achieved at least 80% power for the

Weibull method while half of the scenarios achieved at least 80% power when the

exponential method was applied.

The Weibull method was more sensitive to detect exactly one change-point when

it was simulated to occur at question 4. The exponential method was more sensitive

to detect a change-point at later questions except when the dropout rate increased

from 10% to 44% at question 10 and decreased from 44% to 10% at question 16.

The exponential method was universally more sensitive to detect two change-points.

When there were three change-points corresponding to a large change in attrition at

the start and end of the survey and a mild change in the middle, the Weibull method

was more sensitive. Meanwhile, three change-points with a dropout rate alternating

between low and high were more often detected by the exponential method.

Figure 5.1 displays the distribution of τ when applying the Weibull test. In

general, this method underestimated τ when the change-point occurred at question

4 whether this was the only change-point or the first of two or three change-points

(see Figure 5.1a, 5.1d, 5.1e, and 5.1g). Question 10 was underestimated with some

noise after the change-point (see Figure 5.1b, 5.1d, 5.1g) except when the two change-
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Weibull Exponential
# of change-points τ Dropout pattern 1− β Sensitivity 1− β Sensitivity

One 4 10%, 44.4% 0.56 0.03 0.04 0.02
44.4%, 10% DNC DNC 1 0.98
25%, 33.3% 0.87 0.36 0.97 0.35
33.3%, 25% 0.98 0.72 0.99 0.53

10 10%, 44.4% 0.50 0.44 0.69 0.12
44.4%, 10% 0.96 0.21 0.99 0.53
25%, 33.3% 0.37 <0.01 0.16 0.09
33.3%, 25% 0.58 0.05 0.73 0.62

16 10%, 44.4% 0.98 0.15 0.99 0.96
44.4%, 10% 0.67 0.41 0.28 0.20
25%, 33.3% 0.94 0.67 0.98 0.85
33.3%, 25% 0.21 0.04 0.94 0.76

Two 4, 10 5%, 44%, 6% 0.96 0.10 0.99 0.97
15%, 30%, 16% 0.72 0.24 0.94 0.44

4,16 5%, 44%, 6% 0.51 0.02 0.92 0.83
15%, 30%, 16% 0.56 0.04 0.49 0.17

10, 16 5%, 44%, 6% 0.34 0.25 0.47 0.41
15%, 30%, 16% 0.37 0.06 0.68 0.44

Three 4, 10, 16 5%, 30%, 20%, 6% 0.39 0.34 0.76 0.25
30%, 5%, 20%, 6% 0.19 0.18 0.49 0.48

Table 5.5: Comparing the Weibull and exponential tests, n=1,000

points were simulated to occur at questions 10 and 16, in which case the method

was unable to detect question 10 as the first change-point (Figure 5.1f). Question 16

was underestimated when it was the only change-point or the second of two change-

points (Figure 5.1c, 5.1e, 5.1f) but overestimated when it was the third change-point

(Figure 5.1g).

Although the distribution of τ had more variability using the exponential model,

this method was more likely to choose the known change-point(s) (see Figure 5.2).

Of the one change-point simulations, this method best estimated a change-point

at question 16 (Figure 5.2c). When we simulated two change-points, the exponen-

tial method distinguished two separate change-points when they were further apart

(Figure 5.2e) or later in the survey (Figure 5.2f). When two change-points oc-
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curred in the first half of the survey, this method had difficulty identifying the first

change-point at question 4 (Figure 5.2d). In the three change-point simulations,

the exponential test underestimated the first change-point and overestimated the

last two change-points, however, it did identify three distinct change-points (Figure

5.2g).

Surprisingly, the use of more informative starting points for τ decreased the

sensitivity of the Weibull method in many cases (Table 5.6). On the other hand,

the sensitivity of the exponential method was almost equivalent or higher when

using more informative starting points except in one case, when the dropout rate

decreased slightly from 33% to 25% at question 16 (Table 5.6).

Weibull Exponential
# of change-points τ Dropout pattern Power Sensitivity Power Sensitivity

One 4 10%, 44.4% 0.56 0.03 0.04 0.02
44.4%, 10% DNC DNC 1 0.98
25%, 33.3% 0.87 0.36 0.99 0.91
33.3%, 25% 0.98 0.71 0.99 0.93

10 10%, 44.4% 0.13 0.01 0.69 0.11
44.4%, 10% 0.96 0.21 0.99 0.56
25%, 33.3% 0.37 0.01 0.17 0.11
33.3%, 25% 0.58 0.05 0.75 0.63

16 10%, 44.4% 0.99 0.96 0.99 0.96
44.4%, 10% 0.68 0.43 0.45 0.38
25%, 33.3% 0.95 0.75 0.98 0.80
33.3%, 25% 0.27 0.10 0.91 0.38

Two 4, 10 5%, 44%, 6% 0.84 0.74 0.99 0.99
15%, 30%, 16% 0.79 0.40 0.98 0.74

4,16 5%, 44%, 6% 0.51 0.02 0.92 0.83
15%, 30%, 16% 0.56 0.04 0.49 0.17

10, 16 5%, 44%, 6% 0.41 0.34 0.55 0.53
15%, 30%, 16% 0.57 0.47 0.70 0.56

Table 5.6: Comparing the Weibull and exponential tests with informative starting
points, n=1,000
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5.3.3 Discussion

Overall, simulating and analyzing data assuming a constant hazard (the exponential

model) performed better at identifying changes in the dropout rate than doing so

using the Weibull model. Both methods had similar performance with a smaller

sample size. When the sample size increased, the exponential method had higher

sensitivity than the Weibull method, especially in simulations with two change-

points in a pattern representing Eysenbach’s three phases. In the online setting,

it is reasonable to expect a sample size of 1,000 or more, making the exponential

approach more appropriate. Although the Weibull model had higher sensitivity

to detect three change-points when there was a large change in the dropout rate

towards the beginning and end of the survey with a smaller change in the middle,

histograms of the distribution of τ suggest that the exponential better identifies

three distinct change-points (Figure 5.2g).

The histograms in Figures 5.1 and 5.2 suggest that the Weibull model better

identifies a change-point in the first half of the survey for one and two change-point

scenarios. The exponential model more accurately detects a change-point later in

the survey when it is the only change-point but the Weibull model better identifies

this later change-point when it is the latter of two change-points. The Weibull

model better distinguishes two change points except when they both occur in the

second half of the survey, in which case the exponential model better distinguishes

these change-points. When there are three change-points, the exponential model

identifies three distinct change-points whereas the distributions of the three change-

points overlap using the Weibull model. This last finding is important as the goal

of these tests is to allow for up to K change-points and as the number of change-

points increased, the exponential model was generally more sensitive to detecting

the correct number of change-points.

Although the Weibull method may appear more accurate, it is interesting to
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note that it rarely chose exactly question 4 or question 10 as a change-point. While

the distributions of τ had higher variation when using the exponential method, the

known change-points were more often chosen by this method. This translates to

the higher sensitivity of the exponential model as the correct change-points were

detected.

Concerned that the final model chosen would be that with the most change-

points, we implemented a strict BIC penalizing a model with an additional change-

point for estimating additional values of both θ and τ . We also used Goodman’s al-

pha spending function α∗(K) = α
2K−1 after finding that using a threshold of α = 0.05

for all change-point models resulted in 100% power for the majority of simulations.

Whereas type I error was closer to 0.10 when using α = 0.05, the alpha spend-

ing function achieved a type I error level at or close to the nominal level for both

methods.

In our simulation study, we did not simulate any phase to be shorter than four

questions, thus we did not allow for any one question to be its own attrition phase

(interpreted as a one-question spike or drop in attrition). Additionally, we did not

simulate a phase transition later than question 16 and thus did not accept a one-

question change-point at the end of the survey. These restrictions, while necessary in

this case where we cannot individually inspect attrition plots for 10,000 simulations,

are not reasonable when these methods are applied to actual survey data as we will

see in the next section.

We also demonstrated how more informative starting values influence sensitivity.

While this approach may seem biased by prior information, the first step to analyzing

dropout is to plot dropout patterns. It follows that one would have an idea of where

potentially significant changes in the dropout rate occurred and it would be logical

to use those as starting points for where the test statistic might be maximized.

Interesting enough, in our simulation study using this information was detrimental
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when applying the Weibull model.

While simulations for both methods had change-points at the same questions,

data were simulated from different distributions (Weibull and exponential). We

cannot conclude that assuming a constant hazard in each phase performs better in

general before applying both methods to actual dropout data.

5.4 Data application

5.4.1 IDM module description

Our test case data are from an online survey entitled the Informed Decision-Making

(IDM) module. This seventeen-question survey explored how patients approach de-

cisions regarding screening for breast, colorectal, and prostate cancers. Here we focus

exclusively on the results for colorectal cancer, where there were 1,249 participants.

Questions addressed awareness of screening eligibility, screening options, primary

concerns about cancer screening, and planned next steps [50]. This survey was de-

signed by the Virginia Commonwealth University Department of Family Medicine

and Population Health research team and administered from January to August

of 2014 in twelve primary care practices throughout northern Virginia through the

interactive online patient portal MyPreventiveCare [51–54]. More specific details

regarding the survey, including screenshots of the questionnaire itself, can be found

in Hochheimer et al. and Woolf et al. [4,55].

5.4.2 IDM application results

First, we inspected a plot of the number of dropouts at each question of the IDM

module for colorectal cancer as suggested in Hochheimer et al., which can be seen in

Figure 5.3 [4]. This plot suggests high attrition from Questions 3 to 5 with another

spike at Question 9. We hypothesized that our methods from Chapter 2 would
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detect a dropout phase between Questions 3 and 9 while our methods from Chapters

3 and 4, which can detect more phases of attrition, would find four change-points

at Questions 3, 5, 9 and 10.

Practical thresholds and existing statistical methods

As hypothesized, the 3% user-specified method detected a dropout phase between

Questions 3 and 9. The GLMM was unable to detect any significant changes in

dropout rate throughout the survey. Finally, DTSA only detected the start of the

dropout phase. The results suggested a significant increase in the hazard of dropping

out between Questions 2 and 3 but also that the dropout phase lasted until the end

of the survey. This is inconsistent with the pattern seen in Figure 5.3, where we see

visual proof of the stable use phase from Questions 10 to 17.

Test within a Weibull change-point hazard model

When applying the Weibull change-point model, we used the method outlined in

Chapter 3 to estimate γ = 2.22. We tested for up to four change-points and found

that the BIC for the four change-point model was smaller than that of the one, two

and three change-point models. The change-points were detected at Questions 5, 9,

9 and 11. Whereas in our simulation study we did not allow one question to be its

own attrition phase, in this case it is plausible. When looking at Figure 5.3, we see

a spike in dropout at Question 9 relative to the questions around it. Using the alpha

spending function, the critical value was calculated as the 0.625th percentile of the

test statistic calculated for 10,000 simulations of a sample with the same amount of

dropout (716/1249 participants) and no change-points. The test statistic of -1029.42

was less extreme than the critical value of -1629.24, thus we failed to reject our null

hypothesis and concluded that the no change-point model is the best fitting model.
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Test within an exponential change-point hazard model

The test within the exponential model also suggested that the four change-point

model had the best fit based on BIC. This method estimated change-points at

Questions 6, 9, 9 and 11. As with the Weibull method, the critical value was

calculated as the 0.625th percentile of the test statistic calculated for simulated

Monte Carlo samples with the same amount of overall dropout and no change-

points. The four change-point model had a likelihood ratio test statistic of -2078.79,

which was more extreme than the critical value of -1598.92. Thus, we concluded

that the four change-point model is the best fit for these data.

5.4.3 Discussion

When applied to our test case data, the 3% user-specified threshold was the only

method from Chapter 2 able to detect the dropout phase from Question 3 through

Question 9. The GLMM was not sensitive enough to detect the attrition pattern

highlighted in Figure 5.3 and DTSA was able to detect the abrupt increase in the

hazard of dropping out between Questions 2 and 3 but not the abrupt decrease

between Questions 9 and 10. These methods are limited in that they do not allow

us to test for more than three attrition phases/two change-points.

While our methods from Chapters 3 and 4 allowed for more phases of attrition,

only the exponential method allowed us to reject the null hypothesis that there were

no attrition phases. The values of θi corresponding to change-points at Questions 6,

9, 9, and 11 suggest a phase of dropout from the start of the survey until Question 6,

a spike in attrition at Question 9, and then another decrease in dropout at Question

11, with stable use lasting until the end of the survey. Using this conclusion, we

suspect that there is content in Question 9 as well as Questions 1-5 driving the

overall dropout rate of 57%. While we limited the number of change-points based

on the survey length, a fifth change-point may be appropriate to further distinguish
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differences in the hazard of dropping out in the first few survey items.

The test within the Weibull hazard function yielded a similar, although not

significant, conclusion. The four change-point model had the best fit and suggested

change-points at Questions 5, 9, 9 and 11.
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(a) Question 4 (b) Question 10

(c) Question 16 (d) Questions 4 & 10

(e) Questions 4 & 16 (f) Questions 10 & 16

(g) Questions 4, 10, 16

Figure 5.1: Questions chosen as change-points using the Weibull model
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(a) Question 4 (b) Question 10

(c) Question 16 (d) Questions 4 & 10

(e) Questions 4 & 16 (f) Questions 10 & 16

(g) Questions 4, 10, 16

Figure 5.2: Questions chosen as change-points using the exponential model
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Figure 5.3: Dropouts at each question of the IDM
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Chapter 6

Conclusion

6.1 Discussion

In this dissertation we proposed two novel approaches using existing methods and

three novel methods to identify attrition phases in survey data. Using simulation

studies and a test case data application to compare these methods, we observed

variable results suggesting the exponential change-point hazard model as the best

of these approaches.

The approaches in Chapter 2 were overly sensitive, resulting in high type I error.

The GLMM had low sensitivity to detect exactly two phases (one change-point) and

three phases (two change-points) where the second phase was a mild dropout phase.

This method only had high sensitivity when there was a phase of severe attrition

between two stable use phases. With the exception of the first question, the GLMM

often accurately detected the start of the dropout phase but not the end of the

dropout phase.

DTSA had high sensitivity to detect two but not three attrition phases (or one

but not two change-points). Plots showing where phase transitions were detected,

however, revealed the extreme sensitivity and inaccuracy of the method to choose
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the correct change-points.

Of the three methods proposed in Chapter 2, the least statistically rigorous

performed the best. Choosing a low threshold of 3% dropout and searching for the

first and last time the amount of dropout at a question exceeded this threshold had

the highest sensitivity and accuracy to identify change-points both in the simulation

study and IDM data.

Unlike the methods from Chapter 2, the tests within the Weibull and exponen-

tial change-point hazard models controlled type I error at around 0.05. When we

performed a simulation study with a smaller sample size of 500, these methods had

similar performance in terms of power and sensitivity whereas the exponential ap-

proach performed better than the Weibull test when the sample size was increased.

This is meaningful in the field of online survey research because sample sizes are

usually much larger, like in our test case data with 1,249 participants. Addition-

ally, this result suggests that it is reasonable to assume a constant dropout rate (or

hazard) in each phase.

Whereas the approaches in Chapter 2 were limited by their ability to detect

high dropout at the first survey question, a change-point at this question was not

interpretable nor accepted in Chapters 3 and 4. Thus, these two methods were not

limited by their ability to pick up the start of a dropout phase right away since they

model overall patterns instead of looking at question by question attrition.

When we plotted the distribution of τ , a first look suggested that the Weibull

method did a better job of identifying one and two change-points except when the

two change-points occurred in the second half of the survey. The exponential model,

on the other hand, was able to clearly distinguish three distinct change-points. We

realized, however, that while the distribution of τ was less variable using the Weibull

method, estimated values of τ more accurately reflected the known values using the

exponential method. In some cases the Weibull model never chose the known change-
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point even though the estimates were less variable. When applying the exponential

model, the distribution of τ had higher variability but the known change-point was

identified in more simulations. Finding the actual change-point may be the driving

factor behind the increased sensitivity of the exponential method as these results

likely had more extreme test statistics.

It is worth taking into consideration when applying these methods that the

sensitivity of the Weibull method decreased when using more informative starting

points. Perhaps we are better off not using information from plotting dropout

a priori when applying this method. On the other hand, the sensitivity of the

exponential method almost universally increased when using prior information. One

should explore potential dropout patterns before using this test.

One of the biggest strengths of the tests within change-point hazard models was

revealed in the test case data application. A bar plot of dropout revealed a spike

at a single question and both methods correctly detected a dropout phase within

this question. This question is now of interest as our team revises the IDM before

fielding this survey to another sample of patients seeing as dropout had otherwise

leveled out at this point in the survey.

Finally, our methods from Chapters 3 and 4 achieved reasonable power and

sensitivity despite a high rate of dropout. By simulating a dropout rate of 50%, we

know our methods are appropriate for the online setting where such high attrition

is realistic, as in the case of the IDM module.

6.2 Limitations

We used a smaller sample size for the simulation study comparing the three methods

in Chapter 2 than in Chapters 3 and 4. Seeing as these methods are very sensitive

with a relatively small sample size, we suspect this would not be improved by using a
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larger sample size. The GLMM and DTSA specifically rely on pairwise significance

tests where we would only be more likely to find a significant result with a larger

sample.

All of the methods in Chapter 2 are limited by the number of change-points we

are able to identify, which is only two. Thus, we looked to the methods proposed in

Chapters 3 and 4 to extend our testing scheme to look for up to K change-points.

The Weibull method was originally appealing based on the flexibility of the

hazard function, however, estimation of the shape parameter γ proved to be one of

the largest challenges of this research. In the end, it appeared that the exponential

model, which is equivalent to the Weibull model with a fixed γ = 1, had slightly

better performance and was simpler to implement because we did not need to create

an algorithm for estimating the shape parameter.

There are many alternative ways to estimate γ when applying the Weibull test

in Chapter 3. A simple solution would’ve been to use the value of γ estimated from

applying a no change-point Weibull distribution to the data as a starting point.

Williams applies separate Weibull distributions to each phase to estimate γ for each

phase [14]. An advantage of this approach is that it allows one to confirm that γ

is constant across phases as assumed by the method. Estimation of these intervals

becomes complicated in our case, however, by the use of discrete data. A hybrid of

these approaches, where we fit a change-point model and allowed γ to vary between

the phases, resulted in convergence challenges.

We suspect that more likelihood ratio tests have not been explored due to the

difficulty of finding the limiting distribution for a change-point hypothesis test as

mentioned in Chapter 3. In order to surpass this issue, we suggest the use of Monte

Carlo simulations demonstrated in Appendix C. A drawback of this approach, how-

ever, is the computation time necessary to simulate the null distribution and estimate

the test statistic for all simulations. The Monte Carlo simulations for our test case
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data applications took between 5-5.5 hours.

The methods discussed in this dissertation apply specifically to dropout attri-

tion and do not address nonresponse or longitudinal attrition (see discussion in

Hochheimer et al [4]). By assuming dropout monotonically accumulates throughout

the survey, these methods do not account for the functionality to skip questions.

6.3 Future directions

Perhaps one of the most interesting findings of this research was the results of the

simulation study comparing the CDF and memoryless simulation methods. We

intend to dive deeper into this issue, perhaps exploring the effect of these different

methods on estimating other parametric survival models.

A direct extension of this research would allow γ to vary by phase. Although

this will likely pose convergence issues and increase computation time, this would

allow for users to take full advantage of the flexibility of the Weibull distribution

and may increase the accuracy of the results for this method.

While change-point models identify specific points and phases of increased or de-

creased attrition, characteristics of survey participants may provide insight into why

rates have changed. Williams proposes the addition of covariates to his model [43].

Change-points could also be a function of these covariates and, thus, their location

driven by characteristics of survey participants. We are interested in exploring the

possibility of treating change-points as a function of covariates.

We could also apply Qian and Zhang’s test accounting for covariates along with

long-term survivors to predict the survey adherence of participants with different

characteristics [18].
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6.4 Conclusion

Of the methods proposed in this dissertation, our results suggest that assuming

a constant hazard of dropping out within each phase and applying a likelihood

ratio test using the exponential change-point hazard model is the best approach for

identifying attrition phases within survey data. Although our proposed methods

leave much room for improvement, our work contributes several new approaches to

a relatively sparse field of research to identify attrition phases in survey data.
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Appendix A

R code for applying the Weibull

and exponential tests

A.1 R code for applying the test for change-points

within the Weibull hazard function

#### pull in data ####

dta<-data.frame(time=question, censor=dropout)

#get initial estimate for gamma

gamma<-optim(c(2,0.0035),nll)$par[1]

#guess tau based on plot of dropouts

tau<-c(3,5,9,10)

gamma<-optim(c(rep(0.05,5),gamma),cp4.nll.full,control=list(maxit=10000))$par[6]

#### evaluate data ####

#LRT for one change-point

LRT.1cp.out<-optimise(LRT.1cp,c(2,6),gamma=gamma)

LRT.1cp.value<-LRT.1cp.out$objective
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LRT.1cp.tau<-LRT.1cp.out$minimum

BIC.1cp.out<-BIC.1cp(tau=LRT.1cp.tau)

#LRT for two change-points

par2cp<-c(5,9)

LRT.2cp.out<-optim(par=par2cp, fn=LRT.2cp, gamma=gamma)

LRT.2cp.value<-LRT.2cp.out$value

LRT.2cp.tau<-LRT.2cp.out$par

BIC.2cp.out<-BIC.2cp(tau=LRT.2cp.tau)

#LRT for three change-points

par3cp<-c(5,8,10)

LRT.3cp.out<-optim(par=par3cp, fn=LRT.3cp, gamma=gamma)

LRT.3cp.value<-LRT.3cp.out$value

LRT.3cp.tau<-LRT.3cp.out$par

BIC.3cp.out<-BIC.3cp(tau=LRT.3cp.tau)

#LRT for four change-points

par4cp<-c(5,9,10,11)

LRT.4cp.out<-optim(par=par4cp, fn=LRT.4cp, gamma=gamma)

LRT.4cp.value<-LRT.4cp.out$value

LRT.4cp.tau<-LRT.4cp.out$par

BIC.4cp.out<-BIC.4cp(tau=LRT.4cp.tau)

#### which results are best? ####

c(BIC.1cp.out, BIC.2cp.out, BIC.3cp.out, BIC.4cp.out)

min(BIC.1cp.out, BIC.2cp.out, BIC.3cp.out, BIC.4cp.out)
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#chooses 4cp

#### going back to look at gamma

tau<-LRT.4cp.tau

gamma<-optim(c(rep(0.05,5),gamma),cp4.nll.full,control=list(maxit=10000))$par[6]

#### evaluate data ####

#LRT for one change-point

LRT.1cp.out<-optimise(LRT.1cp,c(4,6),gamma=gamma)

LRT.1cp.value<-LRT.1cp.out$objective

LRT.1cp.tau<-LRT.1cp.out$minimum

BIC.1cp.out<-BIC.1cp(tau=LRT.1cp.tau)

#LRT for two change-points

par2cp<-c(5,11)

LRT.2cp.out<-optim(par=par2cp, fn=LRT.2cp, gamma=gamma)

LRT.2cp.value<-LRT.2cp.out$value

LRT.2cp.tau<-LRT.2cp.out$par

BIC.2cp.out<-BIC.2cp(tau=LRT.2cp.tau)

#LRT for three change-points

par3cp<-c(5,9,10)

LRT.3cp.out<-optim(par=par3cp, fn=LRT.3cp, gamma=gamma)

LRT.3cp.value<-LRT.3cp.out$value

LRT.3cp.tau<-LRT.3cp.out$par

BIC.3cp.out<-BIC.3cp(tau=LRT.3cp.tau)
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#LRT for four change-points

par4cp<-c(6,9,9.1,11)

LRT.4cp.out<-optim(par=par4cp, fn=LRT.4cp, gamma=gamma)

LRT.4cp.value<-LRT.4cp.out$value

LRT.4cp.tau<-LRT.4cp.out$par

BIC.4cp.out<-BIC.4cp(tau=LRT.4cp.tau)

#### which results are best? ####

c(BIC.1cp.out, BIC.2cp.out, BIC.3cp.out, BIC.4cp.out)

min(BIC.1cp.out, BIC.2cp.out, BIC.3cp.out, BIC.4cp.out)

#chooses 4cp

#### simulate null distribution ####

## choose theta knowing dropout rate is 50%

nsim<-10000

theta<-0.0035

q<-

n<-

seed<-

alpha<-0.05

set.seed(seed)

dropout<-rep(NA,nsim)

thetaout<-rep(NA,nsim)

for(i in 1:nsim){

s<-n

sim.dta<-data.frame(id=c(1:n))

x1<-runif(s)
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p1<-icdf(u=x1,t=theta)

sim.dta$time<-ifelse(p1>=q,q,p1)

sim.dta$censor<-ifelse(sim.dta$time==q,0,1)

thetaout[i]<-sum(sim.dta$censor)/((1/gamma)*sum(sim.dta$time^gamma))

dropout[i]<-sum(sim.dta$censor)

}

mean(thetaout)

mean(dropout)

## conduct monte carlo simulation using these values

## compare results

c(LRT.4cp.value, probs4cp.spending)

min(LRT.4cp.value, probs4cp.spending)

#getting values of theta

tau<-LRT.4cp.tau

optim(c(rep(0.05,5),gamma),cp4.nll.full,control=list(maxit=10000))$par[6]

A.2 R code for applying the test for change-points

within the exponential hazard function

#### pull in data ####

dta<-data.frame(time=question, censor=dropout)

#### evaluate data ####

#LRT for one change-point

LRT.1cp.out<-optimise(LRT.1cp,c(2,6))
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LRT.1cp.value<-LRT.1cp.out$objective

LRT.1cp.tau<-LRT.1cp.out$minimum

BIC.1cp.out<-BIC.1cp(tau=LRT.1cp.tau)

#LRT for two change-points

par2cp<-c(5,9)

LRT.2cp.out<-optim(par=par2cp, fn=LRT.2cp)

LRT.2cp.value<-LRT.2cp.out$value

LRT.2cp.tau<-LRT.2cp.out$par

BIC.2cp.out<-BIC.2cp(tau=LRT.2cp.tau)

#LRT for three change-points

par3cp<-c(5,8,10)

LRT.3cp.out<-optim(par=par3cp, fn=LRT.3cp)

LRT.3cp.value<-LRT.3cp.out$value

LRT.3cp.tau<-LRT.3cp.out$par

BIC.3cp.out<-BIC.3cp(tau=LRT.3cp.tau)

#LRT for four change-points

par4cp<-c(5,9,10,11)

LRT.4cp.out<-optim(par=par4cp, fn=LRT.4cp)

LRT.4cp.value<-LRT.4cp.out$value

LRT.4cp.tau<-LRT.4cp.out$par

BIC.4cp.out<-BIC.4cp(tau=LRT.4cp.tau)

#### which results are best? ####

c(BIC.1cp.out, BIC.2cp.out, BIC.3cp.out, BIC.4cp.out)
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min(BIC.1cp.out, BIC.2cp.out, BIC.3cp.out, BIC.4cp.out)

#chooses 4cp

#### simulate null distribution ####

## choose theta knowing dropout rate is 50%

nsim<-10000

theta<-0.05

q<-

n<-

seed<-

alpha<-0.05

set.seed(seed)

dropout<-rep(NA,nsim)

thetaout<-rep(NA,nsim)

for(i in 1:nsim){

s<-n

sim.dta<-data.frame(id=c(1:n))

x1<-runif(s)

p1<-icdf(u=x1,t=theta)

sim.dta$time<-ifelse(p1>=q,q,p1)

sim.dta$censor<-ifelse(sim.dta$time==q,0,1)

### how many people dropping in each phase?

thetaout[i]<-sum(sim.dta$censor)/sum(sim.dta$time)

dropout[i]<-sum(sim.dta$censor)

}

mean(thetaout)

mean(dropout)
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## conduct monte carlo simulation using these values

## compare results

c(LRT.4cp.value, probs4cp.spending)

min(LRT.4cp.value, probs4cp.spending)

# getting values of theta to determine type of phases

tau<-LRT.4cp.tau

optim(c(rep(0.05,5)),cp4.nll.full,control=list(maxit=10000))
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Appendix B

R code for the CDF and

memoryless simulation methods

for the Weibull distribution

B.1 R code for implementing inverse hazard func-

tion

The R code for implementing H−1(x) with two change-points using the Weibull

distribution is as follows:

x<-rexp(n)

first<-(theta[1]/gamma)*tau[1]^gamma #set interval 1

second<-first+(theta[2]/gamma)*(tau[2]^gamma-tau[1]^gamma) #set interval 2

t<-vector(mode="numeric",length=length(x)) #vector to hold times

for(i in 1:length(x)){

if(x[i]<first) t[i]<-((gamma/theta[1])*x[i])^(1/gamma) #if in first interval

if(x[i]>=first && x[i]<second)

t[i]<-((gamma/theta[2])*(x[i]-first)+tau[1]^gamma)^(1/gamma) #if in second interval
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if(x[i]>=second)

t[i]<-((gamma/theta[3])*(x[i]-second)+tau[2]^gamma)^(1/gamma) #if in third interval

}

C <- rep(q,length(x)) #all censored at time q

time <- pmin(t,C) #observed time is min of censored and true

censor <- as.numeric(time!=q) #if time isn’t q then dropout

B.2 R code for implementing memoryless method

The R code for implementing this method with two change-points is as follows:

##user chooses these values

n<-

q<-

gamma<-

theta<-c(,,)

tau<-c(,)

seed<-1234

##memoryless simulation

icdf<-function(u,t){((-gamma/t)*log(1-u))^(1/gamma)}

set.seed(seed)

s<-n

alltime<-c(0,tau,q)

tau.diff<-alltime[2:length(alltime)]-alltime[1:(length(alltime)-1)]

#phase 1

sim.dta1<-data.frame(id=c(1:n))

x1<-runif(s)

p1<-icdf(u=x1,t=theta[1])
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sim.dta1$phase1<-ifelse(p1<1,1,trunc(p1))

s<-sum(sim.dta1$phase1>=tau.diff[1])

#phase 2

sim.dta2<-subset(sim.dta1, phase1>=tau.diff[1], select=id)

x2<-runif(s)

p2<-icdf(u=x2,t=theta[2])

sim.dta2$phase2<-trunc(p2)

s<-sum(sim.dta2$phase2>=tau.diff[2])

#phase 3

sim.dta3<-subset(sim.dta2, phase2>=tau.diff[2], select=id)

x3<-runif(s)

p3<-icdf(u=x3,t=theta[3])

sim.dta3$phase3<-trunc(p3)

#combine

library(plyr)

sim.dta<-join_all(list(sim.dta1,sim.dta2,sim.dta3), by = ’id’, type = ’full’)

sim.dta$phase1<-ifelse(sim.dta$phase1>=tau.diff[1],tau.diff[1],sim.dta$phase1)

sim.dta$phase2<-ifelse(sim.dta$phase2>=tau.diff[2],tau.diff[2],sim.dta$phase2)

sim.dta$phase3<-ifelse(sim.dta$phase3>=tau.diff[3],tau.diff[3],sim.dta$phase3)

for(i in 1:n){

sim.dta$time[i]<-sum(sim.dta$phase1[i],sim.dta$phase2[i],sim.dta$phase3[i], na.rm=TRUE)

}

sim.dta$censor<-ifelse(sim.dta$time==q,0,1)
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Appendix C

R code for applying the Monte

Carlo simulations

C.1 R code for Monte Carlo simulations

### settings- user chooses these

q<-

n<-

gamma<-

theta<-

nsim<-

seed<-

alpha<-0.05

#suggest starting points for finding change-points

range1cp<-c(1,q)

par2cp<-c(,)

par3cp<-c(,,)

par4cp<-c(,,,)
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### conducting simulation

# omit gamma when using exponential distribution

outstat<-matrix(NA,nrow=nsim,ncol=4)

is.error <- function(x) inherits(x, "try-error")

for(j in 1:nsim){

dta<-cp0.Msim(n=n,q=q,theta=theta)

outstat[j,1]<-optimise(LRT.1cp,range1cp,gamma=gamma)$objective

outall2<-try(optim(par=par2cp, fn=LRT.2cp, gamma=gamma),silent=T)

failed<-sum(is.error(outall2))

while(failed==1){

par2cp<-par2cp+0.01

outall2<-try(optim(par=par2cp, fn=LRT.2cp, gamma=gamma),silent=T)

failed<-sum(is.error(outall2))

}

outstat[j,2]<-outall2$value

outall3<-try(optim(par=par3cp, fn=LRT.3cp, gamma=gamma),silent=T)

failed<-sum(is.error(outall3))

while(failed==1){

par3cp<-par3cp+0.01

outall3<-try(optim(par=par3cp, fn=LRT.3cp, gamma=gamma),silent=T)

failed<-sum(is.error(outall3))

}

outstat[j,3]<-outall3$value
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outall4<-try(optim(par=par4cp, fn=LRT.4cp, gamma=gamma),silent=T)

failed<-sum(is.error(outall4))

while(failed==1){

par4cp<-par4cp+0.01

outall4<-try(optim(par=par4cp, fn=LRT.4cp, gamma=gamma),silent=T)

failed<-sum(is.error(outall4))

}

outstat[j,4]<-outall4$value

}

# calculate percentiles using alpha spending function

alpha2<-alpha/2

alpha3<-alpha/4

alpha4<-alpha/8

probs1cp.spending<-quantile(outstat[,1], probs=alpha)

probs2cp.spending<-quantile(outstat[,2], probs=alpha2)

probs3cp.spending<-quantile(outstat[,3], probs=alpha3)

probs4cp.spending<-quantile(outstat[,4], probs=alpha4)
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