
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2018

Neutronics Studies on the NIST Reactor Using the GA LEU fuel Neutronics Studies on the NIST Reactor Using the GA LEU fuel

Kyle A. Britton
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Nuclear Commons, and the Nuclear Engineering Commons

© Kyle Anthony Britton

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5702

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VCU Scholars Compass

https://core.ac.uk/display/215485564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/203?utm_source=scholarscompass.vcu.edu%2Fetd%2F5702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=scholarscompass.vcu.edu%2Fetd%2F5702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5702?utm_source=scholarscompass.vcu.edu%2Fetd%2F5702&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

© Kyle A. Britton 2018

All Rights Reserved

Neutronics Studies on the NIST Reactor Using the GA LEU fuel

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
at Virginia Commonwealth University.

By

Kyle Anthony Britton

Masters of Science at Virginia Commonwealth University 2018

Bachelors of Science at James Madison University 2017

Dr. Zeyun Wu

Assistant Professor Department of Mechanical and Nuclear Engineering

Virginia Commonwealth University

Richmond, Virginia

Fall, 2018

Acknowledgments

The author wishes to thank several people. I would like to thank my parents for their unending
love and support. I would like to thank my thesis advisor, Dr. Zeyun Wu, for his constant input,
direction, and patience with me on this project. I would like to thank Dr. Robert Williams at
NIST for the NBSR input deck. Last but not least I would like to thank Dr. Danyal Turkoglu at
NIST as well for his aid in developing the code needed for the equilibrium core.

ii

TABLE OF CONTENTS

List of Figures…………………………………………………………………..………….……iii

List of Tables…………………………………………………………………………..…..…… iv

List of Abbreviations…………………………………………………………………..…………v

Abstract……………………………………………………………………………..……………vi

Chapter 1 Introduction……..…………………………………………………………………..….1

1.1 Overview of the NBSR………………………………………………………………..3

1.2 General Atomics LEU fuel…………………………………………………......……..5

Chapter 2 Feasibility Studies……....………………………………………………...……………8

2.1 Results of the Feasibility Study………………………………………………...……10

Chapter 3 Equilibrium Core Generation..…………………………………….………..……......12

3.1 Equilibrium Core Methodology………………………………………………..…....15

3.2 Results of the Equilibrium Core……………………………………………………..17

3.3 Actinide build up and Consumption…………………………………………..……..19

Chapter 4 Neutronics Performance Characteristics………………………………………...……21

4.1 Flux Distributions………………………………………………………..…..………21

4.2 Power Distributions……………………………………………………………….....28

4.3 Neutron Lifetimes …………………………………….………………………..…....33

4.4 Shim Arm Worth……………………………………………………………………..34

Chapter 5 Summary………………………………………………………….……………....…..35

Chapter 6 Bibliography……………………………………………………………………....…..37

Appendices………………………………………………………………………..……….……..41

 MCNP input deck………………………………………………………………………..41

 Python codes……………………………………………………………………………..44

Vita…………………………………………………………………………………...…..60

iii

List of Figures

1. NBSR Core ...4

2. NBSR Fuel Element and Plate Dimensions ..4

3. TRIGA Fuel Rod Dimensions and Cross Section ...6

4. Cladding Compositions ...11

5. keff Values determined vs fuel compositions, Color coated for geometry.................................12

6. Fuel Shuffling Scheme in the NBSR...13

7. Multistep Equilibrium Core Diagram ...15

8. Fuel Management Scheme Using Python 3.6 ...17

9. keff results for 14 cycle core in each of the 4 states...18

10. Radial Flux Distribution for Thermal Flux..22

11. Radial Flux Distribution for Fast Flux ..23

12. Axial flux distributions for Fast Flux and thermal flux...24

13. Linear Flux……...26

14. Numbering system for power calculations..28

15. PPF per element in the hot spots for each state...30

16. Full Core Power Distribution in SU state at Z= -11..30

17. PPF for fuel rods at global max for each state...32

iv

List of Tables

1. HEU fuel vs GA TRIGA fuel
compositions..8

2. Reactivity of SS-304 Clad Rods..10

3. Reactivity of Incoloy 800 Clad Rods...10

4. Shim Angles in Degrees for Equilibrium Core in HEU and
LEU..15

5. Fuel Compositions in Equilibrium Core per
Element..18

6. Burnup and production rates for fissionable actinides ..19

7. Peaking power factors for different core
states...29

8. Neutron lifetime...33

9. Shim Arm Worth..34

v

List of Abbreviations

NIST: National Institute of Standards and Technology

NBSR: National Bureau of Standards Reactor

HEU: High Enriched Uranium

LEU: Low Enriched Uranium

RERTR: Reduced Enrichment for Research and Test Reactors

GTRI: Global Threat Reduction Initiative

GA: General Atomics

TRIGA: Training Research Isotopes General Atomics

HPRR: High Powered Research Reactor

ATR: Advanced Test Reactor

MITRR: Massachusetts Institute of Technology Research Reactor

MCNP: Monte Carlo N-Particle

SS-304: Stainless Steel Composition 304

SU: Start Up

BOC: Beginning Of Cycle

MOC: Middle of Cycle

EOC: End of Cycle

PPF: Peaking Power Factor

vi

ABSTRACT

Neutronics Studies on the NIST Reactor Using the GA LEU fuel

By Kyle Anthony Britton M.S.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Major Director: Dr. Zeyun Wu, Assistant Professor, Department of Mechanical and Nuclear
Engineering

The National Bureau of Standards Reactor (NBSR) located on the National Institute of Standards

and Technology (NIST) Gaithersburg campus, is currently underway of fuel conversion from

high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. One particular

challenging part of the conversion of the NBSR is the high average flux level (2.5×1014 n/cm2-s)

required to maintain experimental testing capabilities of the reactor, without significant changes

to the external structures of the reactor. Recently the General Atomics (GA) Training Research

Isotopes General Atomics (TRIGA) fuel has shown some promising features as a LEU candidate

for the high performance research reactors such as the NBSR. The GA fuel has a long history of

success in conversion of research reactors since it was developed in 1980s. The UZrH compound

in the GA fuel has seen success in long term TRIGA reactors, and is a proven safe LEU

alternative. This study performs a neutronics evaluation of the TRIGA fuel under the schema of

the NBSR’s heavy conversion requirements in order to examine whether the TRIGA fuel is a

viable option for conversion of the NBSR. To determine the most optimal path of conversion, we

performed a feasibility study with particular regard to the fuel dimensions, fuel rod

configurations, cladding, as well as fuel structure selection. Based on the outcome of the

vii

feasibility study, an equilibrium core is then generated following the NBSR’s current fuel

management schema. Key neutronics performance characteristics including flux distribution,

power distribution, control rod (i.e., shim arms) worth, as well as kinetics parameters of the

equilibrium core are calculated and evaluated. MCNP6, a Monte Carlo based computational

modeling software was intensively used to aid in these calculations. The results of this study will

provide important insight on the effectiveness of conversion, as well as determine the viability of

the conversion from HEU to LEU using the GA fuel.

1

CHAPTER 1. INTRODUCTION

The Global Threat Initiative (GTRI) enacted in the late 1950’s was enacted by the United

States in an effort to reduce the amount of High Enriched Uranium (HEU) around the world, a

nonproliferation anti-nuclear terrorism initiative. Under this umbrella initiative, the Reduced

Enrichment for Research and Test Reactors (RERTR) was formed in the late 1970’s to fulfill this

need in the context of research and test reactors. Typically the high enriched fuel used in

research and test reactors is near weapons grade (>90% enriched) posing a serious security risk

of the fuel being used for weapons of mass destruction. The RERTR has three main focuses, the

development of new LEU fuels to be used in reactors(<20% enriched), the safety, design, and

conversion analysis for these newly developed fuels, as well as a new means of producing the

medical isotope Molybdenum-99 with the LEU fuels(our study focusing on the second of the

three goals). Many power and research reactors have already been converted without issue, but

some High Powered Research Reactors (HPRR) pose greater challenges. One of these reactors is

the National Bureau of Standards Reactor (NBSR) located on the National Institute of Standards

(NIST) campus in Gaithersburg, Maryland. The NBSR is a 20MW HPRR moderated by heavy

water. The NBSR has not been converted, mainly due to its extremely high average thermal flux

(2.5×1014 n/cm2*s) required for the continued experimentation and operation at NIST [1,2].

Currently the NBSR is using material test reactor (MTR) HEU curved plate type fuel that is 93%

enriched. The fuel is U3O8 with aluminum cladding, and has been shown to be extremely

efficient. Other LEU fuels have been tested with some success in the NBSR, in particular the U-

10Molybdenum and U-7Molybdenum LEU plate type fuels. The fuels have shown similar

results, both being safe, efficient, and effective suffering a minor 10% loss in flux capabilities

2

over the course of its use [3,4]. The downside is that these fuels are still years away from being

able to be processed and used on the market. With many fuels failing to meet the high needs of

the NBSR, and the viable fuels still years away from being manufactured, a clear solution would

be to use a well-tested, well known, and already qualified fuel under the RERTR to perform this

conversion. The Training Research Isotope General Atomics (TRIGA) fuel is exactly this. The

TRIGA fuel [5] first commissioned in 1956, was developed by Edward Teller to be a fuel that

“Could be given to a bunch of high school children to play with without fear they would get

hurt”. Designed to be inherently safe the UZrH fuel is well known for its prompt negative

temperature coefficients, making a meltdown near impossible by design. The TRIGA fuel is also

well known for its long core lifetimes, by name it was designed specifically for use in HPPRS. A

250kW TRIGA reactor operating 200 days a year, 8 hours per day the 235U consumption is

approximately 20 grams per year[6]. Lastly the TRIGA fuel is operationally flexible and

currently available on the market. With minimal effort the fuel can be bought, and fit, into the

pre-existing fuel elements in the NBSR, or made to fit as over 7 different types of TRIGA fuel

exist around the world[7]. TRIGA fuel also comes in a variety of enrichments, ranging from

8.5% wt. total uranium for lower power reactors to 45% wt. uranium for more powerful research

reactors. Typically the TRIGA rods, because of their variety, range in radius and length. This

characteristic will be utilized later on in determining the optimal fuel by making the radius a key

design parameter.

Keeping this in mind, the overarching focus of our study is to answer the question “Can

the NBSR’s conversion needs be met by the TRIGA fuel, and can it be done without changes to

the structure of the reactor?” To answer this question, one would have three requirements to meet

the NBSR’s specialized needs. The first is the current core fuel holdings must be maintained.

3

The cost and time for heavy construction on the core would invalidate the TRIGA fuel as a

viable option for conversion. In this sense all changes inside the reactor must be restricted to

purely the fuel elements in order to maintain the integrity of the NBSR. The second requirement

for a successful conversion is to maintain the NBSR’s current irradiative testing capabilities. The

current flux (2.5×1014 n/cm2*s) must be maintained as it is vital for the continued

experimentation of the NIST facilities. Finally the last requirement for conversion is the fuel

must meet the appropriate safety requirements for its new core schema. Shut down margins,

moderator temperature coefficients, and other safety parameters must be examined to ensure the

safety of the NBSR. In this paper, we first perform a feasibility examination of the TRIGA fuel

in the NBSR. Varying fuel compositions, claddings, and fuel positions are examined to

determine the exact makeup of the fuel element that will fit the NBSR’s needs. The Monte Carlo

code MCNP6 is used to determine the optimal reactivity given these varying parameters. After

determining the optimal fuel element makeup using fresh fuel, the equilibrium core is evaluated

to determine the fuels effectiveness over time using the MCNP BURN card along with python

3.6 for the fuel management code. Finally key neutronics parameters are determined by

evaluating the equilibrium core for peaking power factors, flux, and other key neutronics

parameters. With this we hope to make a constructive argument on whether the TRIGA fuel can

meet the heavy demands of operation in the NBSR.

1.1 Overview of the NBSR

4

Figure 1. Core of NBSR labeled with shims.

Figure 2. Individual fuel element and plate dimensions.

5

The NBSR first went critical December 7, 1967, and is a 20 MW thermal research

reactor. The main focus of the NBSR is it is a neutron beam research and currently is equipped

with 28 neutron research instruments. The NBSR is well known currently hosting over 2000

guest researchers per year. One of the most unique aspects of the NBSR is the liquid hydrogen

cold moderator that is used to slow neutrons down to less than 5 meV to be transferred far away

and to be utilized by multiple neutron scattering instruments in the experimental hall. This cold

neutron source, only installed in the last 10 years, is currently used by 21 of the 28 instruments.

Four cadmium shim arms moderate the NBSR’s function, they are inserted at an angle through

the side of the reactor. The angle is adjusted to control moderation. The NBSR contains 30 fuel

elements arranged in 3 concentric rings as shown in the Figure 1. The fuel elements are split into

2 separate sections 15.2 cm apart as shown in Figure 2, allowing for the neutron beam

instruments to point directly to the center of the core without direct line of sight of the fuel. Each

element is currently fueled using 17 U3O8 curved MTR fuel plates with aluminum cladding,

height, width, and length of 27.94cm, 0.051cm ,and 6.25cm respectively. This gives the total fuel

volume in each element 296cm3 and at 93%wt enriched, 350 grams of 235U for fission. The entire

core is cooled by heavy water, allowing the core to have a “loose” makeup. The heavy water

moderation allows the fuel to be farther apart than other HPRR’s while still maintains the

integrity of its reactivity.

1.2 General Atomics LEU Fuel

As mentioned earlier, the TRIGA fuel is an attractive candidate for the conversion

because of its proven safety and long core lifetimes made especially for research reactor use.

TRIGA is also particularly attractive because of its history, TRIGA has been around for 50+

years giving it credibility and time to be tested in other research reactors. Currently the

6

Advanced Test Reactor (ATR) is analyzing the use of TRIGA fuel as a possible avenue of

conversion with promising results. Lyons found that the TRIGA fuel was able to maintain the 56

day cycle of the ATR, with the minimum fission rate and power density as set forth by the navy.

The reactor suffered only slight variations in the lobe power and the fast to thermal neutron flux

ratios[8]. The Massachusetts Institute of Technology Research Reactor (MITRR) is also

analyzing the use of the TRIGA fuel as a possible route for a quick conversion. Dunn’s safety

analysis of TRIGA fuel in the MITRR found that the fuel maintained the critical heat flux and

reactivity necessary for operation in the beginning of life state, but failed to maintain CHF into

the end of cycle[9]. TRIGA is used around the world, the Romanian IAN-R1 reactor has gone

through extensive neutronics analysis for its conversion. In Jose’s analysis , it was determined

that the LEU conversion of the reactor could maintain thermal neutron flux throughout the

lifetime of the core, as well acceptable multiplicative factor and cross sections.[10]

Figure 3. TRIGA Fuel Rod Dimensions and Cross Section.

The NBSR, unlike these previous studies, has unique problems and complications

involved with its own conversion. The NBSR is heavy water moderated, as well as no grid

flexibility, the geometry of the fuel is different, and the cladding must be more moderating for

safety reasons. The lack of grid flexibility will mean the LEU compact core with have difficulty

7

maintaining the flexibility and range of beam science experiments currently being conducted.

The fuel currently being used in the NBSR is a curved plate type fuel, as opposed to the rod type

TRIGA fuel with no bonding space between the fuel and cladding adding extra complications.

The cladding on the HEU is alumina, as opposed to the TRIGA which for safety reasons (more

in the procedure) must use stronger more moderating cladding. A more moderating cladding will

make it more difficult to maintain the reactivity over the core lifetime.

8

CHAPTER 2. FEASIBILITY STUDY

For all of our experiments, we used MCNP6[11], a Monte Carlo based neutron tracking

code, to model the reactor and determine the neutronics characteristics of the core with varying

cladding, fuel composition, and fuel rod configuration. MCNP6 offers an extremely powerful 3-

D neutron tracking, flexibility with calculations, and with statistical accuracy higher than its

competitors. MCNP only suffers the downside of high computational time typical with Monte

Carlo computations. MCNP6 is used often as a “benchmark” in industry to measure the accuracy

of other computational methods, lending credibility to the software. By gaining a wide view of

the parameter space of the TRIGA fuel, we hope to understand fully the effect of these

parameters on the core’s health. With proper understanding of the most optimal fuel element, we

can extend the analysis further into a view of the fuels effectiveness over the lifetime of the core.

Table 1. HEU Fuel vs GA TRIGA Fuel Compositions.

For each of the fuel element compositions used in the feasibility procedure, the amount of

235U in the LEU compositions matches the amount of 235U in the HEU with a tradeoff

consideration of performance and economy. TRIGA fuel comes in three commercially available

9

compositions, 35/20, 40/20, and 45/20. The first number represents the weight percent of

uranium in the fuel, while the second number represents 235U enrichment of the fuel (19.7%wt).

As shown in Table 1, the fuels individual compositions are shown in grams in comparison to

HEU for one fuel element. The UZrH1.6 ratio was chosen for this study, as shown in source [12].

The fuel can maintain its phase, and is the most popular ratio used for this type of fuel. Notice

the densities for each of the fuels in Table 1, the densities for the LEU compositions were

determined using the weight percent’s of each of the individual elements. The density of ZrH1.6

was determined to be 5.66 g/cc and natural uranium density as 19.1 g/cc [13], and the formula

used below.

Density of fuel = Weight% U × Density U + Weight% ZrH × Density ZrH

Stainless Steel-304(SS-304) and Incoloy-800, are the most common cladding materials used for

the TRIGA fuel, and they are the two considered in this study. As shown in the figure below, the

SS cladding is predominantly iron while the Incoloy is a mixture of predominantly iron and

nickel. Aluminum has been used in the past as a cladding, as it absorbs less neutrons and can be

useful in preserving flux. In this study it is not considered, due to safety concerns, as the long

lifetime requirement of the TRIGA fuels can lead to significant corrosion and blistering[13].

Four different homogenous fuel configurations were examined in this study, as shown in the

figure above, the rods were arranged in a 3 × 3, 4 × 4, 5 × 5, and 6 × 6 array each keeping the

amount of 235U at 350 grams per element. This was kept constant by limiting the radius of the

rods depending on the composition, and the fuel length was set at 33 cm in length to match the

length of the current HEU plates. The 15 inch gap distance in the HEU core is also kept constant

in the LEU core. Fuel rod configuration is generally considered vital to the neutronics of a

heterogeneous core. In thermal reactors the geometry of the fuel can lead to a difference in

10

neutron escape probability during the neutron slowing down process, leading to direct

differences to the reactivity of the core. It is likely that the more homogenous fuel cells will have

higher reactivity, due to less geometric shielding (higher surface area to volume ratios). The

material compositions and densities were determined using the PNNL compendium[14]. For

each criticality calculation in MCNP, the KCODE card was used with 10,000 particle histories

for a total of 110 cycles with 10 skipped in order to bring the standard error of the reactivity to

below .001(.1%).

2.1 Results of the Feasibility Study

The keff results of the LEU cores are summarized in Table 2 and Table 3.

Table 2. Reactivity of SS-304 Clad Rods.

Table 3. Reactivity of SS-304 Clad Rods.

Table 2 contains the results using the Incoloy-800 cladding while Table 3 is the results

using the Stainless steel-304 cladding. Examining the difference in keff values between the

11

graphs shows a general trend of the SS-304 cladding having a higher reactivity then the Incoloy-

800.

Figure 4. Cladding Compositions.

In Figure 4, the specific compositions of each of these claddings are defined, and with

careful examination, the Incoloy-800 cladding is made up of 32.5% nickel by weight. The higher

absorption cross section of the nickel in comparison to iron (the main metal in the SS-304

cladding), would lead to a total higher absorption cross section in the Incoloy-800, properly

justifying the keff difference. Careful comparison of the tables shows the case with the highest

reactivity, was the stainless steel 304 cladding with 45/20 fuel arranged in a 5 × 5

configuration(keff =1.08927). Likewise the lowest reactivity was exhibited by Incoloy-800 clad

45/20 fuel in the 3 × 3 configuration (keff = 1.06392). The highest reactivity case can be naturally

explained due to the higher uranium content of the rod, and the homogeneity of the

configuration. More Uranium by weight means less moderating hydride metal and a higher

reactivity. As mentioned before as well, the higher density fuel compositions have a significantly

smaller volume. This smaller volume and similar surface area leads to the fuel experiencing less

geometric self-shielding, and therefore a higher reactivity. The lowest reactivity is more difficult,

12

the high volume of the rods causing self-shielding and incoloy-800 cladding having a higher

absorption cross section appear to be the main factors in why it is the lowest. Figure 5 are the

results of the stainless steel-304 clad rods plotted on the same graph, the keff-variation curve

displays the linear relationship between the increase and decrease in fuel enrichment. For the 5×5

and 6×6 configurations the reactivity appears to increase linearly, while the 4×4 is in the middle

and the 3×3 decreases with enrichment. This is most likely due to the changes of the moderating

condition from over moderating (for 5×5 and 6×6 cases) to under moderating (for the 3×3 case)

and the 4×4 case is on the barrier between the two.

Figure 5. keff values determined vs fuel compositions, color coated for geometry.

In summary the results presented in tables 2 through 4 show the level of homogeneity in

the configuration of the rods can directly affect the reactivity. The higher absorption cross

section in the Incoloy-800 cladding had a negative effect on the reactivity of the rods, and the

45/20 fuel contained the highest amount of uranium and displayed the highest reactivity. The

results determined that the highest reactivity and therefore most attractive case for determining

the equilibrium core was the 5 x 5 configuration using SS-304 cladding with the 45/20 fuel

composition.

13

CHAPTER 3. EQUILIBRIUM CORE GENERATION

One of first tasks of any reactor physics analysis is determining the equilibrium core for a

given fuel. The equilibrium core is the fuel’s effectiveness over the course of its lifetime, and

involves burning and shuffling the fuel to maximize its efficiency. Determining the equilibrium

core is absolutely necessary as evaluation of a fuel’s effectiveness when its fresh, does not allow

an accurate analysis of the fuels performance in its steady state over years. The LEU TRIGA fuel

evaluated feasibility involved study of only fresh fuel elements, meaning for a proper neutronics

analysis an equilibrium core must be obtained to determine the steady state power and flux it

operates at. The TRIGA fuel element configuration determined to be most effective in the

previous study[15] will serve as the basis for our equilibrium core search.

Figure 6. Fuel shuffling scheme in NBSR.

14

The NBSR contains 30 fuel elements, and under its current shuffling schema, this means

16 elements will be burned for eight cycles while 14 elements are burned for seven cycles. The

fuel management scheme for the NBSR is shown in Figure 6, with all thirty elements labeled.

Each fuel position is identified with two numbers and a letter, the first number denoting how

many cycles the fuel will be in the core, with the second designating the current cycle the fuel

cell is in. The letter designates the side of the reactor, as the shuffling is symmetric. This means

that at the beginning of the cycle, the 8.1 and 7.1 fuel elements are the fresh newly loaded fuel,

and the 8.8 and 7.7 fuel elements have been burned for their full lifetime. At the end of the cycle

the 8.8 L and 7.7 L fuel elements will be disposed of, and the 8.7 Land 7.6 L fuel elements will

be moved into their place, and up the line the fuel elements are all moved to the new position to

be until the 8.1 L and 7.1 L positions are filled with new fuel and the cycle restarts. This means

at the beginning of each cycle 4 fresh elements are loaded and 4 elements are removed. Each

cycle in the NBSR is split into 4 separate sections, each with an individual shim are position as

well as burn time. The first the startup (SU) state is 1.5 days long, and is necessary to allow

burnable neutron poisons such as Xe-135 to reach an equilibrium before the beginning of core

(BOC) and transitioning to the middle of core (MOC) states. The BOC and MOC are 18.5 days

long each, and transition into the end of core (EOC) state, in which the reactor is shut down and

allowed to cool for 14 days. The MOC state marks the point at which the shim arms are halfway

inserted, and the EOC is when the shims are completely out.

Currently the NBSR operates on a 38.5 day cycle using its HEU fuel. This is absolutely

necessary to maintain for continued ease of operation and experimental capabilities of the

facilities. Keeping this in mind, our study has prioritized that the conversion between the HEU

and LEU fuels are economic and as timely as possible. For this reason, the HEU fuel shuffling

15

scheme is kept and used in for the TRIGA fuel, as it is proven and effective in the NBSR. The

cycle length and cycle states are also similar. Table 4 shows a comparison between the cycles for

the HEU and LEU case. As shown the only difference in the methodology between the two

shuffling schema, are the shim angles at which each cycle state rests as well as the difference in

fuel. The fuel rods were split into six axial zones in each of the 30 fuel elements for homogeneity

in the burn (three above the 15 inch gap and three below). The fuel rods are clad in 0.04 cm of

SS-304, and are arranged in a 5×5 configuration at 0.5 cm in diameter. This is the same as what

was determined in the feasibility study above.

Table 4. The Control Shim Positions of HEU and LEU Core at Equilibrium States.

 HEUa LEU

SU 19.7b 23.0

BOC 14.6 14.0

MOC 9.20 7.00

EOC 0.00 0.00
aThe results for HEU were obtained from Ref. [16].

bThe position is shown in the unit of angle of degrees.

3.1 Equilibrium Core Generation Methodology

Figure 7. A multi-step diagram to generate the equilibrium core.

16

The fuel inventories were calculated using the MCNP6 BURN card feature. MCNP6 marked the

merge of MCNPX and MCNP5, creating a neutron transport code all in one package. On top of

that the MCNP6 is significantly faster, boasting speeds from 30-50% faster with the combination

of MPI and threading[17]. The MCNP input deck gifted from NIST was modified with the

appropriate BURN parameters. A fuel management code was used to automate this process for

Python 3.6 on Windows 10. Shown in Figure 7 is a flow diagram to help illustrate the iterative

schema developed. The process automates the creation of MCNP input decks, writing a text file

for each cycle state depending on the individual shim position, burn time, and runs MCNP

remotely. The process also automates the shuffling and refueling of the fuel elements by reading

the output file created by MCNP, allowing nearly full automation of the equilibrium core

process. MCNP6 suffers from a small bug in its BURN feature. When an isotope is not

recognized as a part of the MCNP library, it is ignored resulting in a non-physical loss of mass in

the core (<<1%).To compensate this, the fuel management scheme sums the masses at the end of

a state, and does a comparison. If there is a difference, it will make up for it using bismuth, as

this was found to have little to no effect of the BURN process[16].The MCNP input used 180

materials for the burn(30 fuel elements* 6 axial zones) and operated with 10,000 particle

histories per cycle, for 100 cycles and 10 skipped cycles. This was decided so the standard error

on the keff would be less than 0.001. The MCNP command line was also adjusted to run using all

8 cores. During the calculations, an element in the fuel is disregarded if it reaches below 10-10

grams, and each of the four states are given 14 days rest to properly adjust the keff.

17

Figure 8. A flowchart to perform fuel management in Python 3.6.

3.2 Results of the Equilibrium Core

The results of the equilibrium core are shown below in Figure 9, the individual

reactivities determined for each of the four states are plotted vs number of cycles to illustrate the

convergence of the keff value. In initial testing, the fuel rods were failing to maintain criticality

over the full length of the cycle, and consequently to the full time it takes to achieve equilibrium.

The cycle length and the shuffling scheme must be maintained as a part of the conversion, so to

remedy this, the diameter of the fuel rods were increased from 0.51 cm to 0.70 cm. The new fuel

compositions per fuel element are listed below for clarity on this adjustment in table 5. This is

very common in many of these LEU fuel conversion studies, maintaining the amount of 235U

consistent between the HEU and LEU cores has not seen success yet without trading cycle length

or shortening the shuffling scheme[4,16,18].

18

Table 5. Fuel Compositions in Equilibrium Core per Element

Fuel Type HEU Old LEU
element

New LEU
element

235U(g) 350.00 350.00 483.88

238U(g) 26.00 1426.65 1972.38

O(g) 68.00 0.00 0.00

Al(g) 625.00 0.00 0.00

Zr(g) 0.00 2134.03 2950.35

H(g) 0.00 37.43 51.74

Total mass(g) 1069.00 3948.11 5458.36

Density(g/cc) 3.76 11.71 11.71

Fuel volume(cc) 296.00 337.22 466.52

Figure 9. The keff changes along the iteration cycle number for all states in the equilibrium core

search procedure.

19

As shown in Figure 9, the keff gradually approaches unity (keff = 1) for each of the states,

bringing the core to a state of equilibrium. The calculation above took approximately 500 hours

using 8 cores in Windows. The error bars are on the graph above, but with the error at 士 0.0006

they are currently not visible on the scale of the graph. Note the the SU keff is lower than the

other states in the cycle. This may seem conceptually backwards, but this is due to the position of

the control rods. The SU state may be slightly over moderated, explaining it's particularly low

equilibrium keff.The temperatures used in the core were the nominal temperatures provided in the

original input deck from NIST.

3.3 Actinide Build Up and Consumption

The burnup and buildup of some key actinides at the end of equilibrium cycle (using

results obtained in the Cycle 12) are shown in Table 6.

Table 6. Burnup and production rates for fissionable actinides 8 cycles.

Fuel 235U % 235U (g) 238U (g) 239Pu (g)

TRIGA 59.50 207.10 21.00 8.38

U3O8 75.00 N/A N/A N/A

A post-processing code was developed in Python to extract the burned fuel inventories.

Then using these fuel inventories the code sorts through for the element of interest and calculates

the burned fuel. The burnup percent was calculated by taking the amount of uranium in the fresh

fuel elements (fuel 8.1 and 7.1 in Fig. 4) and subtracting the amount of uranium in discharged

fuel elements (fuel 8.8 and 7.7 in Fig. 4). The difference was then divided by the starting

uranium to determine the percent of uranium burned. One interesting point to note from Table 3

20

is the comparison of the percent burnup between the HEU and TRIGA fuel. The TRIGA fuel

nearly performed as well as the HEU in terms of efficiency, exceeding most typical LEU fuels.

The closest competitor would be the U-10Mo fuel that achieved a 40% burnup in the new core,

nearly 20% less burnup than the TRIGA fuel 16. . The TRIGA fuel produces on average 8.38

grams of 239Pu as shown in Table 3, this was determined by the same method as the 235U.

Having a larger 239Pu production and 238U burned is very typical of LEU fuels as seen in

earlier studies [15, 17], most likely due to the higher U238 content.

MCNP does not normalize the flux it generates, so in order to calculate the physical flux,

the generated flux must be normalized. By using the NBSR’s power, and assuming 200 MeV per

fission with 2.44 neutrons per fission, we have determined a normalization factor of 1.523×1018

neutrons/s [7]. By incorporating the material inventories generated from the multicycle

equilibrium core, key neutronics characteristics can be calculated using MCNP. Fast and thermal

flux, power, neutron lifetimes, and shim worth are all calculated using these inventories following.

This factor is used here after to normalize all talleys to the reactors power to determine the

absolute flux.

21

CHAPTER 4. NEUTRONICS PERFORMANCE CHARACTERISTICS

4.1 Flux Distributions

As mentioned earlier in the study, the flux of the reactor is absolutely necessary to

properly determine the viability of the TRIGA fuel conversion. The flux is the key factor in the

experimental studies currently being performed at NIST, and thus a thorough evaluation is

needed. In calculating the flux for each of the 4 states, the 13th cycle of the equilibrium core was

used. The material composition was extracted, and the FMESH tally was used to determine the

flux. FMESH allow the user to imaginably break the 3D space into small tally bins following

different geometric setting, and tally the flux for each of those bins. A right cylindrical geometry

setting is adopt for the flux calculation as it is most close to a reactor shape. Using FMESH, the

inner reactor was split into 50 radial segments, 80 z segments, and 50 theta, for a total mesh of

125,000 bins. The flux was also split into fast and thermal at 20 and 0.625E-6eV respectively.

The radius was from 0 to 56cm, the theta from 0 to 2π, and the Z from -40.7 to 40.7, where the

center of the reactor is at z=0. The coordinates and flux were then extracted using MATLAB and

plotted on a mesh plot to show the reactor from an x-y view as well for each state. 36,000

particle histories and 2000 cycles were used to reduce the error on the flux to on average 1.3%.

22

Figure 11. Radial Flux Distribution for core states for Z= 40 cm for thermal flux.

23

Figure 12. Radial Flux Distribution for core states for Z= 20 cm for fast flux.

24

 Thermal Fast

Figure 13. Axial flux distributions for fast and thermal flux at azimuthal θ = π.

 As the physical plots appear very similar, the flux is much higher in these spots in the

beginning stages of the core. The thermal flux has a max at 2.5×1014 n/cm2-s in the startup,

trailing off over the course of the cycle to 2.4×1014 n/cm2-s in the EOC state for the places of

interest. The thermal flux reaches a max of 2.45×1014 n/cm2-s in BOC and a minimum of

2.40×1014 n/cm2-s in the EOC. This is of particular interest in reference to the current operating

capacity (2.5×1014 n/cm2-s) as the average flux must be of merit for its considered use in the

NBSR. As a comparison to the current, the thermal flux would suffer a 5% when measured in

reference to the center of the core. The areas of high flux activity in the fast flux plots are the

fuel elements. Fission primarily being the source of fast flux, the fuel elements are highlighted

by the fast flux plots. The thermal flux from slow neutrons primarily highlighting the heavy

water in the reactor. Thermal neutron cross sections mean the heavy water will absorb the

25

majority of that flux. As shown above, the flux is noticeably concentrated in the northern sector

of the reactor. This is likely due to the location of the NBSR’s cold neutron source located in

between the middle northernmost elements 7.2L and 7.2R. This was by design, as flux

concentrated near the cold neutron source (CNS) can be captured more easily for experimental

purposes. Another worthy of merit comparison is how the flux changes with z, the height. In the

figure shown above, the fast and thermal flux are plotted for each state to show the flux

concentration as a function of height. The thermal flux is noticeably concentrated in the center,

likely due to the amount of heavy water and lack of fuel. This is of more interest, as the states

progress, it appears the flux changes from being concentrated in the lower half of the core, to the

upper half of the core. This may be due to the retraction of the control elements throughout the

cycle’s timeline. The shims are retracted from the bottom up, creating an area of no moderation

below the reactor, and normal moderation above the middle of the reactor. This is likely the

cause of the migration of the flux from the bottom to the top of the reactor.

26

Figure 14. One-dimension flux distribution for all four states. Fast Z=20cm Thermal

Z=40cm.

Above the radial flux for each of the 4 states are plotted linearly to better visualize the

relationship with the radial distance. Note the fast flux peaking at 17.5, 35.0 cm, and 50 cm, this

radius is the location of fuel elements in the core. The thermal flux peaks at the center of the

core, with a slow drop off in all four states, likely because that again is the largest volume of

heavy water in the core. The fast flux is clearly larger in the earlier stages because of the fresh

fuel, but sinks to the thermal flux magnitude by the end of cycle. The larger amount of fissile

material meaning more fissions and more fast flux. Another explanation for the larger fast flux in

the early cycle, would be solely from the moderation. The cadmium shim arms (known for

absorbing slow neutrons), absorb enough of the thermal flux that the fast flux needs to

27

compensate. Over the course of the cycle there is less moderation and therefore less fast flux.

Above the thermal and fast flux are plotted linearly in respect to height to better illustrate the

relationship in all four states. The fast flux peaks at z = 20cm and z = 60 cm for all four states,

most likely because this is the location of the center of the fuel rods. The fast flux has a

minimum, and the thermal flux has a maximum at Z = 40cm for all four states. This is likely

because of the gap between the fuel rods that is filled with heavy water. Graphed in color on the

contour plot, as well as shown here the thermal flux will peak in places of high moderation. The

thermal flux concentration at the center of the core is not ideal, but very typical of LEU fuels.

Flux concentrated farther out radially is easier to capture and use by the instruments. In previous

studies, U-10Mo and U-7Mo/Al performed similarly with flux peaking near the center, making it

more difficult to harvest the neutrons. The flux peaking in the center axially is ideal, the neutron

tubes are centered meaning it is easier axially for them to be harvested.

28

4.2 Power Distributions

Figure 15: Labeling system for a fuel element for power calculations.

Calculating the power in the core is important to the safety to the reactor, hot spots need

to be found and determined to properly evaluate the behavior of the fuel. The rods were each

split into 12 axial sections, and with each rod evaluated separately throughout the reactor. This

means the mesh for the power has a volume of 1.154cm3 with a total of 18,000 meshes. The

power distribution was calculated using MCNP6, with the table 128 method[18]. Table 128 is a

summary of the neutrons that enter, collide, and fission in every cell. The fission number in a cell

is directly related to the power, and can be determined by normalizing the number of fissions on

29

average per cell. The 13th cycle of the equilibrium core was used to determine the power, the

material compositions at each of the four states were extracted and the table 128 was produced

with 36,000 particle histories along with 2,000 cycles unlike previous studies, but still too keep

error below 100 pcm. Python 3.6 was used to extract the contents of the results, and to normalize

and calculate the power. Python was also used to sort and graph the power distribution at the

peaking factors shown below. The fission numbers were normalized by the average per cell

(4,000 particles per bin at 18,000 bins).

30

Figure 16. Power factors at the hottest element for each burnup state.

Figure 17. Full Core Power Distribution in SU state at Z=-11.

31

Table 7: Peaking power factors for different core states

Core State SU BOC MOC EOC

PPF 2.80 2.37 2.26 2.24

Z-position -11 11 11 11

Fuel Rod (x,y) (-2, 2) (-2,-2) (-2,-2) (-2,-2)

Fuel Element 7.2L 7.2R 7.2R 7.2R

From Table 7, the first figure of merit are the peaking power factors for the differing

states. When determining the safety of a fuel, a PPF of 2.5 or below for a state is considered an

acceptable standard. The SU state is the only state that does not meet this standard, diverging by

10.7%. This is as expected, the SU state has the freshest fuel of the four states, and therefore

should have the highest peaking power factor. Generally larger PPF are allowed at 0% power

because the core is not producing heat. This would mean that even though the SU is hot, there is

no threat to the cladding integrity.The Z position of the PPF is in reference to the center of the

core. In the SU state, the power peaks in the lowest part of the reactor, while in the other three

states, the power peaks in the highest section of the reactor. This is likely due to the control

shims being drawn out over the course of the cycle. As the shims exit the lower core, the power

shifts from the lower to upper core. An interesting note for the peaking power, after the SU state,

the power peaks in the same fuel element, and the same rod, for the remainder of the cycle. The

coordinates for the rod position are designate above in Figure 15, with the (0, 0) coordinate

representing the middle rod in a fuel element. This can be seen more readily in Figure 17, as the

power is clearly concentrated in the northern core. This is likely due to the beam tubes being

located in the north left side. Unlike any other LEU fuel, the TRIGA fuel power appears to be

32

concentrated to the top edges of the reactor. Generally in LEU fuels, such as U10Moly and

U7Moly, the power tends to be concentrated towards the center of the reactor. This is a problem

because the central based power decreases the amount of neutrons that enter the beam tubes[19].

Having the power concentrated at the edges of the reactor creates less of a hotspot and a safer

reactor, as well as allowing the maximum amount of neutrons to the beam tubes.

Figure 18: PPF for fuel rods at global max fuel each state. Note PPF above 2.0 are highlighted

33

Above in Figure 18, the hottest fuel rods for each cycles are shown with their peaking

power factors at each Z. Note there are 12 sections per rod, with a space in the middle just as

there is a space in the NBSR. The power appears to be centered in the bottom half of the reactor

for the initial stages. SU has the hottest rod below, BOC is clearly comparable between the top

and bottom. This evolves over time to the power moving upward for the MOC and EOC cycles.

This is most likely due to the position of the shim arms in the reactor.

4.3 Neutron Lifetimes

The prompt neutron lifetime is defined as the average time between the generation of

fission neutrons and when they are absorbed [4]. The neutron lifetime is particularly important

when examining a fuel because it gives insight into the multiplicative process. A higher neutron

lifetime means there is more time between emission and absorption giving the reactor operator

more control over the reactor. The contrast of this the lower the lifetime the less control over the

reactor. The MCNP KOPTS card was used to determine the lifetimes using the equilibrium

material makeup for all four states, and the results are summarized in Table 8.

Table 8. Neutron lifetime (microseconds) at each state between HEU and LEU[4,20]

Fuel type SU BOC MOC EOC

TRIGA 519 ± 15 476 ± 11 494 ± 12 538 ± 13

U3O8 698 NA NA 731

As shown in the table, the neutron lifetime for the TRIGA LEU fuel ranges from 550 to

650 microseconds, while a typical value of HEU for the heavy water reactor is ~700 microseconds.

34

4.4 Shim Arm Worth

Control shim worth allows an evaluation of the shims ability for reactor operation and safety

management. The shim worth at different burnup state indicates what percent of the shims were

used over the course of the cycle. The shim worth results for the TRIGA fuel is summarized in

Table 9. The shim arm worth is calculated for all four cycles. The worth is calculated by

determining the keff with all the shim arms in, as well as with the shim arms fully withdrawn.

The shim worth is important as it allows insight into how much control the operator has over the

core using the shims. Higher percent shim worth indicates more control and the reverse for less

percent.

Table 9: Total Shim Arm Worth (Δk/k) Between LEU and HEU[4]

Fuel SU BOC MOC EOC

TRIGA 15.9 16.5 16.8 17.1

U3O8 24.9 NA NA 27.2

As shown in the table, the control worth for the TRIGA fuel is lower than the HEU. This

is as expected, as LEU fuel historically has shown to have lower shim worth [4]. The shims have

lower worth, but this is still within the acceptable margin of use in the NBSR

35

CHAPTER 5. SUMMARY

In conclusion the initial feasibility study performed determined that the TRIGA fuel can

be used in the NBSR fuel elements. It also determined that the optimal conditions for operation

using the TRIGA fuel are using a 5x5 configuration, stainless steel 304 cladding, and the 45/20

fuel composition. The 5x5 configuration was likely due to the reduced self-shielding of the fuel

from the smaller radius and high surface area that came with the more homogeneous positioning.

The stainless steel 304 cladding was chosen because of its material makeup, less weight percent

of Ni allowed the cladding to absorb less neutrons while still acting as a sturdy cladding. The

fuel composition directly related to the amount of 235U present, leading to the highest weight

percent, the 45/20 fuel, to be the optimized choice. The results of this study were absolutely

necessary for the determination of the equilibrium core and behavior of the fuel over time. Using

the optimized fuel element, it was found that the TRIGA fuel can maintain reactivity, and

achieve equilibrium by the 9th cycle, with a slight increase in 235U for each element. The fuel

was determined to have a burnup of nearly 60% in the 12 cycle, over 20% more burnup then its

leading LEU competitors. This fuel make-up determined from the equilibrium core was

necessary for the determination of related neutronics parameters. The peaking power factors for

the core were found to be well below 2.5, well within the acceptable safety margin for the cores

activity. The thermal flux was found to have a minimum of 2.45*1014 n/cm2*s in the center of

the core, a mere 5% loss in integrity from the NBSRs current operating capacity. The neutron

lifetimes and shim worths were found to be comparable to other LEU fuels on the market. Given

the results, the TRIGA fuel can be considered a very viable option, in comparison to its

competitors. In the schema of LEU fuel, the TRIGA fuel has outperformed all others in the

36

NBSR. Keeping this in mind, there was still a loss of flux integrity for the NBSR. With this

reduced flux, NIST will lose some of its experimental capabilities, an unacceptable result of the

conversion. For future work, we may plan out the process of the conversion as in source [21] as

well as [22]. The conversion would require a steady transition into the new fuel with a mixed

core state, this would require extensive neutronics evaluation. Our group may also explore the

effectiveness of the CNS when using the TRIGA fuel. CNS performance would give a clearer

picture as to the fluxes behavior in the core. Another possibility for a future project would me an

analysis of the fuels performance in the newly proposed core at NIST. The core was redesigned

to be able to use LEU fuels more effectively, and using the TRIGA fuel in the new core may

open up some interesting results. More safety analysis on temperature and power coefficients

needs to be performed. The negative temperature coefficients means these would likely breed

promising results but none the less they need to be calculated to be thorough.

37

BIBLIOGRAPHY

[1] Stahl D.,”Fuels for research and test reactors, status review”,July 1982 (ANL--83-5). United
States.

[2] Stevens J., 2010, Technical challenges for conversion of US High-Performance Research
Reactors (USHPRR), Argonne National Laboratory.

[3] Hanson A., and Diamond D., 2011, “Calculation of Design Parameters for an equilibrium
LEU core in the NBSR,” Brookhaven National Laboratory ,September 30, 2011.

[4] Hanson A., and Diamond D., 2014, “Calculation of Design Parameters for an Equilibrium
LEU core in the NBSR using a U7Mo Dispersion Fuel,” Brookhaven National Laboratory.

[5] Negut G., Mladin M., Prisecaru I., Danila N.,2006,”Fuel Behavior comparison for a research
reactor”, Journal of Nuclear Materials 352(1-3):157-164,June 2006.

 [6] Brown N.,Hanson A., and Diamond D, 2013”Local Burn-Up Effects in the NBSR Fuel
Element”,Brookhaven National Laboratory.

[7] Simnad M.T.,1981,”The U-ZRHx alloy: its properties and use in TRIGA fuel”,Nuclear
Engineering and Design, April 1981, Pages 403-422

[8] Lyons J., et al., 2014, “Reactor physics scoping and characterization study on implementation
of TRIGA fuel in the Advanced Test Reactor”, Nuclear Technology, Vol. 189,202 – 217

[9] Dunn F., Wilson E., Feldman E., Sun K., Wang C., Hu L.,2017, “Evaluation of a uranium
zirconium hydride fuel rod option for conversion of the MIT Research Reactor(MITR) from
highly enriched uranium to low enriched uranium”, Argonne National Laboratory

[10] Jose A.,Sarta F.,Castiblanco L.,2005,”Neutronic calculations in core conversion of the IAN-
R1 Research reactor from MTR HEU to TRIGA LEU fuel”,2005.

38

[11] “MCNP- A General Monte Carlo N-Particle Transport Code, Version 6.1.1,” LA-UR-03-
1987, Los Alamos National Laboratory, August 1, 2017.

[12] Olander D., Greenspan E., Hans D.,Bojan P.,2009,”Uranium-zirconium hydride fuel
properties”, Nuclear Engineering and Design 239(8):1406-1424 , August 2009.

[13] Bowman R., Craft B., Cantrell J., Venturini, E., 1985, “Effects of thermal treatments on the
lattice properties and electronic structure of ZrHx,” Physical Review B. 31 (9): 5604–5615.

[14] McConn R. J. Jr. et al., 2011 “Compendium of Material Compositions Data for Radiation
Transport Modeling,” PNNL-15870 Rev. 1, Pacific Northwest National Laboratory.

[15] Britton K., Wu Z.,”A neutronics feasibility study of the TRIGA LEU fuel in the 20mwt nist
research reactor”,2018 26th International Conference on Nuclear Engineering,July 22–26, 2018.

[16] Turkoglu D., Wu Z., Williams R., Newton T.,”Comparison of neutronics performance
characteristics of the proposed Nist reactor with different LEU fuels”

[17] Fensin M., et al.,”The New MCNP6 Depletion Capability”,LA-UR-12-22314 (2012).

[18] Wu Z., Williams R., Rowe J., Newton T., and O'Kelly S., 2017. “Neutronics and Safety
Studies on a Research Reactor Concept for an Advanced Neutron Source,” Nuclear Technology,
199(1), 67-82.

[19] Hanson A., and Diamond D.,2011,”A neutronics methodology for the NIST research reactor
based on mcnpx”,International Conference on Nuclear Engineering Chiba, Japan May 16-19,
2011.

[20] Hanson A., Ludewig H.,Diamond D.,2005,”Calculation of the prompt neutron lifetime in
the NBSR.”,Brookhaven National Laboratory, September 2005.

39

[21] Hanson A., Diamond D., 2011, “Planning the HEU to LEU transition for the NBSR”,
Brookhaven National Laboratory.

[22] Bretscher M., Snelgrove J.,1991,”Transition from HEU to LEU fuel in Romania's 14-MW
TRIGA Reactor”, XIV International Meeting on Reduced Enrichment For Research and Test
Reactors, November 4-7, 1991.

[23] Hanson A., Diamond D.,2010,”Calculation of inventories, power distributions and neutronic
parameters for the NBSR using MCNPX.”, TRTR/IGORR Joint meeting, Knoxville,
Tennessee,Sept 19-23.

[24] Wu Z., Williams R.,2015,”Reactor Power Distribution Calculation in Research Reactors
Using MCNP”,Transactions of the American Nuclear Society, Vol. 113, Washington, D.C.,
November 8–12.

[25] Snoj L., Matjaz R.,2006,”Calculation of power density with mcnp in TRIGA reactor”,
International Conference Nuclear Energy for New Europe 2006 Portorož, Slovenia, September
18-21, 2006.

[26] Wu Z., and Williams R. E., 2015 “A Fast and Self Consistent Approach for Multi-cycle
Equilibrium Core Studies Using Monte Carlo Models,” the Joint International Conference on
Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the
Monte Carlo (MC) Method, Nashville, TN, April 19-23, on CD ROM.

[27] Wu Z. et al., 2017, “Neutronics and Safety Studies on a Research Reactor Concept for an
Advanced Neutron Source,” Nuclear Technology, 199(1), 67-82

[28] KOPETKA P., WILLIAMS R. E., and ROWE J. M., 2008, “NIST Liquid Hydrogen Cold
Source,” NIST Internal Report, NISTIR-7352

[29] “Generic Procedures for Response to a Nuclear or Radiological emergency at Research
Reactors-Training Material,” International Atomic Agency (2011).

40

 [30] Brewer R., 2009, “Criticality Calculations with MCNP5: a Primer,” Los Alamos National
Laboratory.

41

Appendices

UZRH rod input deck for MCNP

c U=70 IS THE D-7 ELEMENT
2200 0 -940 939 -942 941 -922 920 imp:n,p=1 fill=200 u=70 $ Top Fuel Section
2230 3 -1.0977 -934 933 -946 945 -924 925 imp:n,p=1 u=200 lat=1 $ lat cell 3x3 and 5x5
c 2230 3 -1.0977 934 -933 946 -945 -924 925 imp:n,p=1 u=200 lat=1 $ lat cell 4x4 and 6x6
c fill= 240
 fill=-2:2 -2:2 0:0 240 24r
c ******* TOP FUEL RODS ******
c Fuel types
c Fuel Split into 12 sections for power
10000 1162 -11.708 -4799 -4999 5001 imp:n,p=1 vol=0.562 u=240
10001 1162 -11.708 -4799 -5001 5002 imp:n,p=1 vol=0.562 u=240
10002 1162 -11.708 -4799 -5002 5003 imp:n,p=1 vol=0.562 u=240
10003 1162 -11.708 -4799 -5003 5004 imp:n,p=1 vol=0.562 u=240
10004 2162 -11.708 -4799 -5004 5005 imp:n,p=1 vol=0.562 u=240
10005 2162 -11.708 -4799 -5005 5006 imp:n,p=1 vol=0.562 u=240
10006 2162 -11.708 -4799 -5006 5007 imp:n,p=1 vol=0.562 u=240
10007 2162 -11.708 -4799 -5007 5008 imp:n,p=1 vol=0.562 u=240
10008 3162 -11.708 -4799 -5008 5009 imp:n,p=1 vol=0.562 u=240
10009 3162 -11.708 -4799 -5009 5010 imp:n,p=1 vol=0.562 u=240
10010 3162 -11.708 -4799 -5010 5011 imp:n,p=1 vol=0.562 u=240
10011 3162 -11.708 -4799 -5011 5012 imp:n,p=1 vol=0.562 u=240
c
c cladding
2300 290 -8.0 -4899 4799 -4999 5012 imp:n,p=1 u=240 $ cladding ss-304
2330 3 -1.0977 4899 imp:n,p=1 u=240 vol=55.98958 $ d2o vol=344.407
c
c
1200 0 -940 939 -942 941 -921 923 imp:n,p=1 fill=100 u=70 $ Bottom Fuel Section
1230 3 -1.0977 -934 933 -946 945 -929 930 imp:n,p=1 u=100 lat=1 $ lat cell 3x3 and 5x5
c 1230 3 -1.0977 934 -933 946 -945 -929 930 imp:n,p=1 u=100 lat=1 $ lat cell 4x4 and 6x6
c fill= 140
 fill=-2:2 -2:2 0:0 140 24r
c ******* BOTTOM FUEL RODS ******
c Fuel Types
c Fuel Split into 12 sections for power
20000 4162 -11.708 -4799 5999 -6001 imp:n,p=1 vol=0.562 u=140
20001 4162 -11.708 -4799 6001 -6002 imp:n,p=1 vol=0.562 u=140
20002 4162 -11.708 -4799 6002 -6003 imp:n,p=1 vol=0.562 u=140
20003 4162 -11.708 -4799 6003 -6004 imp:n,p=1 vol=0.562 u=140
20004 5162 -11.708 -4799 6004 -6005 imp:n,p=1 vol=0.562 u=140
20005 5162 -11.708 -4799 6005 -6006 imp:n,p=1 vol=0.562 u=140
20006 5162 -11.708 -4799 6006 -6007 imp:n,p=1 vol=0.562 u=140
20007 5162 -11.708 -4799 6007 -6008 imp:n,p=1 vol=0.562 u=140

42

20008 6162 -11.708 -4799 6008 -6009 imp:n,p=1 vol=0.562 u=140
20009 6162 -11.708 -4799 6009 -6010 imp:n,p=1 vol=0.562 u=140
20010 6162 -11.708 -4799 6010 -6011 imp:n,p=1 vol=0.562 u=140
20011 6162 -11.708 -4799 6011 -6012 imp:n,p=1 vol=0.562 u=140
c Cladding and D20
1300 290 -8.0 -4899 4799 -6012 5999 imp:n,p=1 u=140 $ cladding ss-304
1330 3 -1.0977 4899 imp:n,p=1 vol=55.98958 u=140 $ d2o
c
c

c surfaces
921 pz -7.62 $window for bottom rods
923 pz -40.62 $window for bottom rods
927 px -3.8964
928 px 3.8964
929 pz -7.50 $lattice for bottom rods
930 pz -40.70 $lattice for bottom rods
c
c
920 pz 7.62 $window surface top of rods
922 pz 40.62 $window surface top of rods
939 py -3.3325 $window y
940 py 3.3325 $window y
941 px -3.7313 $window x
942 px 3.7313 $window x
945 py -0.6665 $lattice in y 5x5
946 py 0.6665 $lattice in y 5x5
924 pz 40.70 $lattice
925 pz 7.50 $lattice
c ROD DIMENSIONS
c
4799 cz 0.35 $ Fuel meat radius 3x3 5x5
4899 cz 0.39 $ Radius with cladding 3x3 5x5
c
c
4999 pz 42.5 $ Top of rod
5001 pz 39.5
5002 pz 36.5
5003 pz 33.5
5004 pz 30.5
5005 pz 27.5
5006 pz 24.5
5007 pz 21.5
5008 pz 18.5
5009 pz 15.5
5010 pz 12.5

43

5011 pz 9.5
5012 pz 6.5 $ bottom of the rod
c _
c BOTTOM RODS
c
5999 pz -42.5 $ bottom of bottom
6001 pz -39.5
6002 pz -36.5
6003 pz -33.5
6004 pz -30.5
6005 pz -27.5
6006 pz -24.5
6007 pz -21.5
6008 pz -18.5
6009 pz -15.5
6010 pz -12.5
6011 pz -9.5
6012 pz -6.5 $ Top of bottom

c Data
kcode 36000 1 10 2000
m1152 $
 92235 -0.08865 $ U-235
 92238 -0.36135 $ U-238
 1001 -0.00948 $ H
 40091 -0.54052 $ Zrc
m2152 $
 92235 -0.08865 $ U-235
 92238 -0.36135 $ U-238
 1001 -0.00948 $ H
 40091 -0.54052 $ Zrc
m3152 $
 92235 -0.08865 $ U-235
 92238 -0.36135 $ U-238
 1001 -0.00948 $ H
 40091 -0.54052 $ Zrc
m4152 $
 92235 -0.08865 $ U-235
 92238 -0.36135 $ U-238
 1001 -0.00948 $ H
 40091 -0.54052 $ Zrc
m5152 $
 92235 -0.08865 $ U-235
 92238 -0.36135 $ U-238
 1001 -0.00948 $ H
 40091 -0.54052 $ Zrc

44

m6152 $
 92235 -0.08865 $ U-235
 92238 -0.36135 $ U-238
 1001 -0.00948 $ H
 40091 -0.54052 $ Zrc

Python code for equilibrium core

import os
import sys
import datetime as dt
import fnmatch
import traceback, sys
import fileinput
import numpy as np
import subprocess
from os import remove
from shutil import move

class EquilCore():

 def __init__(self):

 self.user_specified_parameters()

 self.setup()

 def user_specified_parameters(self):
 self.fuel_type = ['UZrH'][0]
 #self.fuel_type = ['NBSR'][0]

 self.model_name = 'UZrH_EQ'
 #self.model_name = 'HEU_EQ'

 self.number_of_cycles = 14

 self.mat_str = '*'*4

 self.transverse_zones = False

 self.new_fuel = 9999

45

 self.fuel_MATs=[1151,1152,1153,1154,1155,1156,1157,1161,1162,1163,1164,1165
 ,1166,1167,1168,1171,1172,1173,1174,1175,1176,1177,1181,1182,1183
 ,1184,1185,1186,1187,1188,2151,2152,2153,2154,2155,2156,2157,2161
 ,2162,2163,2164,2165,2166,2167,2168,2171,2172,2173,2174,2175,2176
 ,2177,2181,2182,2183,2184,2185,2186,2187,2188,3151,3152,3153,3154
 ,3155,3156,3157,3161,3162,3163,3164,3165,3166,3167,3168,3171,3172
 ,3173,3174,3175,3176,3177,3181,3182,3183,3184,3185,3186,3187,3188
 ,4151,4152,4153,4154,4155,4156,4157,4161,4162,4163,4164,4165,4166
 ,4167,4168,4171,4172,4173,4174,4175,4176,4177,4181,4182,4183,4184
 ,4185,4186,4187,4188,5151,5152,5153,5154,5155,5156,5157,5161,5162
 ,5163,5164,5165,5166,5167,5168,5171,5172,5173,5174,5175,5176,5177
 ,5181,5182,5183,5184,5185,5186,5187,5188,6151,6152,6153,6154,6155
 ,6156,6157,6161,6162,6163,6164,6165,6166,6167,6168,6171,6172,6173
 ,6174,6175,6176,6177,6181,6182,6183,6184,6185,6186,6187,6188]

 # fuel management scheme
 self.fuel_MATs_shuffle = {}
 for fuel_MAT in self.fuel_MATs:
 cycle_number = str(fuel_MAT)[-1]
 if cycle_number == '1':
 self.fuel_MATs_shuffle[fuel_MAT] = self.new_fuel
 else:
 self.fuel_MATs_shuffle[fuel_MAT] = fuel_MAT-1

 def setup(self):

 self.delete_extra_mcnp_files()

 self.total_mass = {'UZrH':658.0176992,'NBSR':178.171291}[self.fuel_type] # g, fuel
mass/axial zone- found in mcnp calculation

 if not self.restart:
 self.start_cycle_number = 1
 self.today = dt.datetime.today()
 self.run = '%d-%02d-%02d_%s_Run__1' % (self.today.year, self.today.month,
self.today.day, self.fuel_type)
 if 'runs' not in os.listdir('.'):

46

 os.mkdir('runs')
 else:
 while self.run in os.listdir('./runs/'):
 self.run = self.run.split('__')[0] + '__' + str(int(self.run.split('__')[1]) + 1)
 self.runPath = './runs/' + self.run + '/'
 os.mkdir(self.runPath)
 self.logfile = self.runPath + 'logfile.txt'
 os.system('touch "%s"' % self.logfile)
 os.mkdir(self.runPath+'/cycles')
 os.mkdir(self.runPath+'/iterations')

 os.system('cp "%s" "%s"' % (os.path.basename(__file__), self.runPath))
 os.system('cp "%s" "%s"' % (self.model_name, self.runPath)) #
 else:
 self.logfile = self.runPath + 'logfile.txt'

 self.delete_extra_mcnp_files()
 self.refuel = False
 self.current_state = 'SU'
 self.model_names = {'SU':self.model_name+ '_SU' +"_cycle",
 'BOC':self.model_name+'_BOC'+"_cycle",
 'MOC':self.model_name+'_MOC'+"_cycle",
 'EOC':self.model_name+'_EOC'+"_cycle",}

 self.connect_cycles = {'BOC':'SU', 'MOC':'BOC', 'EOC':'MOC'}

 self.major_isotopes = [['92235','U-235'],
 ['92238','U-238'],
 ['94239','Pu-239'],
 ['94241','Pu-241'],
 ['93239','Np-239'],
 ['53135','I-135'],
 ['54135','Xe-135'],
 ['61149','Pm-149'],
 ['62149','Sm-149']]
 self.major_isotopes += {'UZrH':[['1001', 'Hydrogen'],
 ['40091', 'Ziconium']],
 'U7Mo13Al':[['13027','Al-027'],
 ['42092', 'Mo-92'],
 ['42094', 'Mo-94'],

47

 ['42095', 'Mo-95'],
 ['42096', 'Mo-96'],
 ['42097', 'Mo-97'],
 ['42098', 'Mo-98'],
 ['42100', 'Mo-100']],
 'NBSR':[['8016','O'],
 ['13027','Al-027']]}[self.fuel_type]

 if not self.restart:
 self.write_to_logfile("Constants and parameters:\n")

 self.write_to_logfile(" Fuel (Plates/FE): %s " % (self.fuel_type))
 self.write_to_logfile(" Model name : %s " % (self.model_name))

 def write_to_logfile(self, string_to_add):
 subprocess.check_output('echo "%s" >> "%s"' % (string_to_add,
self.logfile),shell=True).decode()

 def cat_to_inputfile(self, file1, file2):
 subprocess.check_output('type "%s" >> "%s" ' % (file1, file2),shell=True).decode()

 def append_to_inputfile(self, string_to_add, filename):
 subprocess.check_output('echo "%s" >> "%s"' % (string_to_add, filename)
,shell=True).decode()

 def move_files(self, files, path):
 for file in files:
 subprocess.check_output('mv "%s" "%s"' % (file, path),shell=True).decode()

 def create_file(self, filename):
 subprocess.check_output('type NUL > ' + filename,shell=True).decode()

 def delete_extra_mcnp_files(self):
 files = os.listdir('.')
 for file in files:
 if (len(file) == 4) and (file[:3] == 'out'):
 os.remove(file)

48

 elif (len(file) == 5) and (file[:3] == 'src'):
 os.remove(file)
 elif (len(file) == 6) and (file[:3] == 'run'):
 os.remove(file)
 elif (len(file) == 6) and (file[:3] == 'com'):
 os.remove(file)

 def run_mcnp(self, input_name):
 self.write_to_logfile(" Running MCNP6 with input: %s" % input_name)
 subprocess.check_output('mcnp6 i="%s" o="%s.o" tasks 8 ' % (input_name,
input_name.split('.')[0]), shell=True).decode()

 def get_keff_from_mcnp_output(self, output_file):
 get_keff = False
 found_keff = False
 with open(output_file) as f:
 for line in f:
 if found_keff:
 continue
 else:
 if line.startswith(" the estimated average keffs"):
 get_keff = True
 elif get_keff and line.startswith(" col/abs/trk len"):
 keff, keff_unc = float(line.split()[2]), float(line.split()[3])
 found_keff = True
 return keff, keff_unc

 def substitute_parameters(self, input_model, parameters,run_type='burn'):
 f = fileinput.FileInput(input_model, inplace=True)

 for line in f:
 if run_type == 'kcode' and '$x1' in line:
 continue
 elif run_type == 'burn' and '$x2' in line:
 continue
 line_printed = False
 for key, value in parameters.items():
 if key in line:

49

 if type(value) is not type({}):
 print(line.replace(key, str(value))),
 else:
 print(line.replace(key, str(value[self.current_state]))),
 line_printed = True
 if not line_printed:
 print(line),
 f.close()

 def read_mat_composition_from_tally(self, filepath):

 self.new_compositions = {}

 begin_reading_mat = False
 if self.current_state == 'EOC':
 step = 2
 else:
 step = 1
 self.write_to_logfile(" Processing output file: %s" % filepath)
 skip_lines = 1000
 get_keff = False
 with open(filepath) as f:
 line_number = 0
 for line in f:
 line_number += 1
 if skip_lines > 0:
 skip_lines -= 1
 else:
 if fnmatch.fnmatch(line[:54], ' actinide inventory for material'+self.mat_str+' at end
of step %d' % step):
 mat = int(line[32:36].strip())
 self.new_compositions[mat] = {'totals': 0, 'zaids' : {}}
 begin_reading_mat = True
 skip_lines = 3

 elif fnmatch.fnmatch(line[:57], ' nonactinide inventory for material'+self.mat_str+' at
end of step %d' % step):
 mat = int(line[35:39].strip())
 begin_reading_mat = True
 skip_lines = 3

50

 elif begin_reading_mat:
 line_split = line.split()
 num = line_split[0]
 zaid = line_split[1]
 mass = float(line_split[2])
 if num == 'totals':
 begin_reading_mat = False
 self.new_compositions[mat]['totals'] += float(line_split[1])

 elif mass > 0.0: # mass is greater than 0
 self.new_compositions[mat]['zaids'][zaid] = mass# add zaid and mass to
dictionary for mat
 elif line.startswith(" the estimated average keffs"):
 get_keff = True
 elif get_keff:
 if line.startswith(" col/abs/trk len"):
 keff, keff_unc = float(line.split()[2]), float(line.split()[3])
 subprocess.check_output('echo " keff: %.6f +/- %.6f \n" >> "%s"' % (keff,
keff_unc, self.logfile), shell=True).decode()
 get_keff = False
 total_mass_in_core = 0.
 for mat, zaids in self.new_compositions.items():
 total_mass_in_core += zaids['totals']
 self.write_to_logfile(" Total mass in core at end of step: %f g" % total_mass_in_core)
 print("Successfully read tally data!")

 def add_fresh_fuel(self, MAT):

 self.fresh_fuel = "c\
 \nm%d $ \
 \n 92235 -0.08865 $ U-235\
 \n 92238 -0.36135 $ U-238\
 \n 1001 -0.00948 $ H\
 \n 40091 -0.54052 $ Zr" % MAT
 #os.system('echo "%s" >> "%s"' % (self.fresh_fuel, self.inputfile_name))
 with open(self.inputfile_name, 'a') as the_file:
 the_file.write(self.fresh_fuel)

 def New_fresh_fuel(self, MAT):

 self.fresh_fuel = "c\
 \nm%d $ \
 \n 92235 -0.08865 $ U-235\

51

 \n 92238 -0.36135 $ U-238\
 \n 1001 -0.00948 $ H\
 \n 40091 -0.54052 $ Zr" % MAT
 #os.system('echo "%s" >> "%s"' % (self.fresh_fuel, self.inputfile_name))
 with open(self.inputfile_name, 'a') as the_file:
 the_file.write(self.fresh_fuel)

 def add_used_fuel(self, MAT, new_MAT):
 total_mass = self.new_compositions[new_MAT]['totals']
 nominal_total_mass = self.total_mass

 self.updated_mat = "c\nm%d" % MAT
 total_mass_fraction = 0.0
 for isotope in self.major_isotopes:
 try:
 mass_fraction =
self.new_compositions[new_MAT]['zaids'].pop(isotope[0])/nominal_total_mass
 mass_fraction=float(format(mass_fraction,"2.2E"))
 total_mass_fraction += mass_fraction
 if mass_fraction > 0.99e-10:
 self.updated_mat += '\n %s -%.10f $ %s' % (isotope[0], mass_fraction,
isotope[1])

 except Exception as e:
 print(isotope[1] + " not in MAT %d" % new_MAT, isotope[0] not in
self.new_compositions[new_MAT]['zaids'])

 continue
 for zaid, mass in self.new_compositions[new_MAT]['zaids'].items():
 mass_fraction = mass/nominal_total_mass
 mass_fraction=float(format(mass_fraction,"2.2E"))
 if zaid == '83209':
 continue
 elif mass_fraction > 0.999e-10:
 self.updated_mat += "\n %s -%.10f $" % (zaid, mass_fraction)
 total_mass_fraction += mass_fraction
 #print("Mass fraction for MAT %s is %.10f") % (new_MAT, total_mass_fraction)
 if total_mass_fraction < 1.0:
 #print("Mass fraction of Bi-209 added as filler: %.10f" % (1-total_mass_fraction))
 self.updated_mat += "\n 83209 -%.10f $ Bi-209 filler" % (1.0-
total_mass_fraction)

52

 with open(self.inputfile_name, 'a') as the_file:
 the_file.write(self.updated_mat)

 def update_parameters(self, shim_position):

 self.parameters_to_substitute_in_input_file = {'{shim_angle1}': shim_position,
 '{shim_angle2}': 90+shim_position,
 '{shim_angle3}': 90-shim_position,
 '{burn_time}':{'SU':'1.5, 7.','BOC':'18.5, 7.','MOC':'18.5,
7.','EOC':'0.01, 14.'}}

 def adjust_shim_positions(self, model_name):
 if self.current_state == 'SU':
 shim_position=23.0
 elif self.current_state == 'BOC':
 shim_position=14.0
 elif self.current_state == 'MOC':
 shim_position=7.0
 elif self.current_state == 'EOC':
 shim_position=0

 self.update_parameters(shim_position)

 def write_next_input_file(self, model_name, inputfile_name):

 print("Writing input file name: %s" % inputfile_name)
 self.create_file(inputfile_name)
 self.cat_to_inputfile(model_name, inputfile_name)

 if self.current_state == 'SU' and self.current_cycle==1:
 print('Loading all new fuel')
 for MAT in self.fuel_MATs:
 self.New_fresh_fuel(MAT)
 if self.current_state == 'SU' and self.current_cycle==1:
 return

 if self.current_state == 'SU' and self.current_cycle>1:
 self.refuel=True

53

 if self.refuel:
 print("Refueling (add fresh fuel and shuffle)")
 for MAT in self.fuel_MATs:
 new_MAT = self.fuel_MATs_shuffle[MAT]
 if new_MAT == 9999:
 self.add_fresh_fuel(MAT)
 else:
 self.add_used_fuel(MAT, new_MAT)
 self.refuel = False

 elif not self.refuel:
 print("Using existing fuel.")
 for MAT in self.fuel_MATs:
 self.add_used_fuel(MAT, MAT)
 print("Successfully wrote input file " + inputfile_name)

 def go(self):

 for cycle in range(self.start_cycle_number, self.number_of_cycles+1):
 self.cycle_path = self.runPath+'cycles/cycle%d/' % cycle
 if not os.path.isdir(self.cycle_path):
 os.mkdir(self.cycle_path)

 self.cycle = cycle
 self.current_cycle = cycle

 for state in ['SU','BOC','MOC','EOC']:

 if self.restart:
 if state != {'SU':'BOC', 'BOC':'MOC', 'MOC':'EOC', 'EOC':'SU'}[self.current_state]:
 continue
 else:
 if state != 'SU':
 self.refuel = True
 self.restart = False

 self.current_state = state

 self.write_to_logfile("Cycle %d - %s" % (self.cycle, self.current_state))

 self.inputfile_name = self.model_names[self.current_state] + str(self.current_cycle) +
'.inp' # designates new input file name

54

 self.write_next_input_file(self.model_name, self.inputfile_name)
creates new input file and loads fuel

 self.adjust_shim_positions(self.inputfile_name) #
determines shim angle based on state

 self.substitute_parameters(self.inputfile_name,
self.parameters_to_substitute_in_input_file) # substitutes shim angle and burn time into
input

 self.delete_extra_white_rows(self.inputfile_name) #
reformats input file to be accepted into mcnp

 self.run_mcnp(self.inputfile_name) # runs
mcnp

 self.read_mat_composition_from_tally(self.model_names[state]+str(cycle)+'.o')
reads output file and captures burned fuel in temporary dictionary

 self.move_files([self.inputfile_name.split('.')[0] + ext for ext in ['.inp','.o']],
self.cycle_path) # moves the input and output to there special designated folders

 self.delete_extra_mcnp_files() # deletes the
excess mcnp files in the working directory

 def delete_extra_white_rows(self,inputfile_name):
 self.tem_inputfile_name = self.inputfile_name
 with open(self.tem_inputfile_name,'r') as infile, open(self.tem_inputfile_name+'.o','w') as
outfile:
 for line in infile:
 if not line.strip(): continue # skip the empty line
 outfile.write(line) # non-empty line. Write it to output
 remove(inputfile_name) # removes old file
 move(self.tem_inputfile_name+'.o', inputfile_name)# renames new file as old file

55

 # adding spaces where you need them
 with open(self.tem_inputfile_name,'r') as infile, open(self.tem_inputfile_name+'.o','w') as
outfile:
 for line in infile:
 if line.startswith('c SURFACES Block:') or line.startswith('c DATA Block:'): #checks
to se if the line starts with a Block point
 outfile.write('\n') # if so it ads a space
 outfile.write(line) #if not continues
 remove(inputfile_name)
 move(self.tem_inputfile_name+'.o', inputfile_name)

 def delete_extra_mcnp_files(self):

 files = os.listdir('.')
 for file in files:
 if (len(file) == 4) and (file[:3] == 'out'):
 os.remove(file)
 elif (len(file) == 5) and (file[:3] == 'src'):
 os.remove(file)
 elif (len(file) == 6) and (file[:3] == 'run'):
 os.remove(file)
 elif (len(file) == 6) and (file[:3] == 'com'):
 os.remove(file)

if __name__ == '__main__':
 print("Searching for equilibrium core with MCNP6")
 equil_core = EquilCore(debug=False)

 equil_core.go()

Python code for Power distribution

import os
import sys
import datetime as dt
import fnmatch
import traceback, sys
import fileinput
import numpy as np
import subprocess
from os import remove

56

from shutil import move
from operator import itemgetter
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pyplot
#Kyle Britton

with open('SU_pow') as f:
 line_number = 0
 power = []
 cell =[]
 lat1 =[]
 lat2 =[]
 lat3 = []
 norm_pow=[]
 fe=[]
 for line in f:
 line_split = line.split()
 power.append(float(line_split[0]))
 cell.append(float(line_split[3]))
 lat1.append(float(line_split[7]))
 lat2.append(float(line_split[8]))
 # Normalize power
 norm_array=np.full(len(power),3980)
 norm_pow= np.divide(power, norm_array)
#assign cordinates to each power depending on arrays
 num_bins=18000
 z=[]
 m=0
 r=m
 n=m
 t=m
 e=m
 #creates z cordinates list
 while (n < num_bins):
 if cell[n]<20000:
 z.append(int((abs(cell[n]) % 100))+1)
 n=n+1
 elif cell[n]>=20000:
 z.append(-int((abs(cell[n]) % 100))-1)
 n=n+1

 #creates a fe list
 while (t < num_bins):
 num =str(cell[t])

57

 fe.append(int(num[1]+num[2]))
 t=t+1

 #places the created lists into one large one
 tot_power=[]
 power=np.zeros(len(norm_pow))
 while (e<num_bins):
 power=[norm_pow[e],lat2[e],lat1[e],z[e],fe[e]]
 tot_power.append(power)
 e=e+1
 #sorts the list and prints the maximum power with cordinates
 tot_power.sort(key=itemgetter(0), reverse=True)
 global_max=tot_power[0]
 global_min=tot_power[num_bins-1]
 print("The Global Max Power is %s located in x=%s y=%s z=%s Fuel element %s"
%(global_max[0],global_max[1],global_max[2],global_max[3],global_max[4]))
 print("The Global Min Power is %s located in x=%s y=%s z=%s Fuel element %s"
%(global_min[0],global_min[1],global_min[2],global_min[3],global_min[4]))
#sort and place into individual FE lists. list name corresponds to element
 i=0
 tot_power.sort(key=itemgetter(4), reverse=True)

 j1=tot_power[0:600]
 h1=tot_power[600:1200]
 f1=tot_power[1200:1800]
 d1=tot_power[1800:2400]
 k2=tot_power[2400:3000]
 i2=tot_power[3000:3600]
 e2=tot_power[3600:4200]
 c2=tot_power[4200:4800]
 l3=tot_power[4800:5400]
 h3=tot_power[5400:6000]
 f3=tot_power[6000:6600]
 b3=tot_power[6600:7200]
 m4=tot_power[7200:7800]
 k4=tot_power[7800:8400]
 i4=tot_power[8400:9000]
 e4=tot_power[9000:9600]
 c4=tot_power[9600:10200]
 a4=tot_power[10200:10800]
 l5=tot_power[10800:11400]
 h5=tot_power[11400:12000]
 f5=tot_power[12000:12600]
 b5=tot_power[12600:13200]
 k6=tot_power[13200:13800]

58

 i6=tot_power[13800:14400]
 e6=tot_power[14400:15000]
 c6=tot_power[15000:15600]
 j7=tot_power[15600:16200]
 h7=tot_power[16200:16800]
 f7=tot_power[16800:17400]
 d7=tot_power[17400:18000]

 xval=-2 #input here
 yval=2 #input here
 zval=-11 #input here
 FE=f1 #input here
 fe_graph='f1' #input here

Sort by Z value
 FE.sort(key=itemgetter(3), reverse=True)
 j1plt=[]
 tot_powerj1=[]
 while (i<len(FE)):
 j1plt= FE[i]
 if j1plt[3]==zval:
 j1plt2=j1plt[:4]
 tot_powerj1.append(j1plt2)
 i=i+1
 tot_powerj1.sort(key=itemgetter(2,1), reverse=True)
 tot_powerj1= np.array(tot_powerj1)
Reformat data for heat map of element
 i=4
 j=0
 k=0
 j1p1 = np.zeros((5,5))
 while (j<5):
 while (i>-1):
 j1plt= tot_powerj1[k]
 j1plt2=j1plt[:1]
 j1p1[(j,i)]=j1plt2
 i=i-1
 k=k+1
 i=4
 j=j+1

 u = np.linspace(-2, 2, 6)
 v = np.linspace(-2, 2, 6)

 j1p1=j1p1[[4,3,2,1,0],:]
 plt.pcolor(u,v,j1p1,vmin=global_min[0], vmax=global_max[0])

59

 plt.colorbar()
 plt.title('Power Distribution for %s Element at Z=%s' %(fe_graph,zval))
 plt.ylabel('Y Coordinate')
 plt.xlabel('X Coordinate')
 plt.show()

Determining the power in the Z
 Zpow=[]
 i=0
 while (i<len(FE)):
 j1plt= FE[i]
 if j1plt[1]==xval and j1plt[2]==yval:
 j1plt2=(j1plt[0],j1plt[3])
 Zpow.append(j1plt2)
 i=i+1
plot in z
 print(Zpow)

60

Vita

Kyle Anthony Britton was born December 6, 1994, in Baltimore, Maryland, and is an American
citizen. He graduated from Glen Allen High school, Glen Allen, Virginia in 2013. He received
his Bachelor of Science in Physics from James Madison University, Harrisonburg, Virginia in
2017 before traveling the world. He received Masters of Science in Mechanical and Nuclear
Engineering in 2018.

	Neutronics Studies on the NIST Reactor Using the GA LEU fuel
	Downloaded from

	tmp.1545322690.pdf.4r1tf

