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Abstract

Delay differential equations have a wide range of applications in engineering. This
work is devoted to the analysis of delay Duffing equation, which plays a crucial role in
modeling performance on demand Micro Electro Mechanical Systems (MEMS). We start
with the stability analysis of a linear delay model. We also show that in certain cases
the delay model can be efficiently approximated with a much simpler model without
delay. We proceed with the analysis of a non-linear Duffing equation. This model
is a significantly more complex mathematical model. For instance, the existence of a
periodic solution for this equation is a highly nontrivial question, which was established
by Struwe [3]. The main result of this work is to establish the existence of a periodic
solution to delay Duffing equation. The paper [7] claimed to establish the existence of
such solutions, however their argument is wrong. In this work we establish the existence
of a periodic solution under the assumption that the delay is sufficiently small.



Chapter 1

Introduction to modeling MEMS via
delay equations

Micro Electro Mechanical Systems (MEMS) are nano devices which transfer electromag-
netic signals into mechanical vibrations. MEMS are widely used in various sensors, in-
cluding smartphones, inkjet printers, accelerometers in cars (airbag deployment), game
controllers, projectors etc. Typically, every MEMS responds to the electromagnetic sig-
nals in its own way. Therefore, since different applications can require different de-
sign parameters, the utility of a particular MEMS is often limited. Furthermore, the
MEMS performance is usually not deterministic, but is subject to various discrepan-
cies caused by process variations, packaging stresses, thermal drift, energy losses, and
various sources of noise. Identically-fabricated MEMS do not perform identically, and
their performance can vary by tens of percent. Prior efforts to compensate for such
process variation include post-fabrication mechanical or electrical tuning. Nevertheless,
dynamic and accurate means of tuning effective mass, damping, and stiffness are yet
to be proposed. The motivation behind the current project is modeling and studying

Figure 1.1: MEMS (figure from Wikipedia).

the properties of POD (Performance on Demand) MEMS, whose response to the elec-
tromagnetic signals can be controlled by the user. By being able to easily adjust the
properties of these MEMS, we aim at creating a universal MEMS device with a larger
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range of applications as compared to the conventional MEMS. Furthermore, improving
the performance of MEMS often requires pushing the limits of lithography, materials,
and structural mechanics. The control technology proposed in this project greatly im-
proves the dynamics of MEMS. This performance will expand the utility of MEMS far
beyond what is available to date.

We start with second order linear ordinary differential equations (ODE) with time
delay. Delay differential equations (DDEs) are a type of differential equation in which
the derivative of the unknown function at a certain time is given in terms of the values
of the function at previous times. Delay comes from the fact that it takes some time
for the signal to arrive from the controller to the device. Let a sinusoidal electrostatic
driving force Fdr = Fdr,0e

iωt be applied to the prove mass through the comb drives,
where ω is the drive frequency and Fdr,0 is the amplitude of the drive force. Electrical
tuning of stiffness, damping, and mass is applied by electrostatic feedback forces that are
proportional to displacement, velocity, and acceleration. Thus the equation of motion is

Mẍ+Dẋ+ Kx = F0 · cos(ω0t) −Deẋ(t− τ) − Kex(t− τ) (1.1)

which is an example of a second order linear delay differential equation with constant
coefficients.

This thesis is organized as follows. In Section 2 we will start with understanding
the stability properties of the linear model with delay, which may be found, e.g. in
[1]. We will then focus our attention on nonlinear models, such as Duffing equation.
Surprisingly enough, even the existence of a periodic solution in this case is a highly
nontrivial problem, which was done, e.g. by Struwe [3] using a variant of a fixed point
argument. We will summarize this idea here in Section 3. The presence of delay in
the nonlinear model makes it even more challenging. We were surprised to find out
how little is known about the classic Duffing equation with delay, despite its impor-
tance to applications, such as modeling MEMS devices. One result which we found [5],
decribed in Section 4 below, deals with the stability of the periodic solution for delay
Duffing equation with small nonlinearities. However, to the best of our knowledge the
comprehensive analysis of the delay Duffing equation (with not necessarily small non-
linearity) is missing. We were able to find one result [7], where the authors claimed to
had established the existence of periodic solution to such equation. However, we found
a mistake in their argument. Therefore the main result of this work, presented in Section
5, is Lemma 6, which “saves” the argument of [7] and thus leads to the existence of a
periodic solution for delay Duffing equation.
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Chapter 2

Stability Analysis for Linear Delay
Differential Equations

Our goal in this section is to understand for which parameter, the equation (1.1) is stable
or unstable. This is done in the professor’s Misiats paper [1]. To start with, let us recall
the stability with no delay.

2.1 Stability with no delay

EXAMPLE 1. Consider
ü+Du̇+ Ku = 0 (2.1)

The characteristic equation is
λ2 + λD+ K = 0;

λ1,2 =
−D±

√
D2 − 4K

2
;

If D2 − 4K > 0, the equation is stable if −D+
√
D2 − 4K 6 0, or K > 0

If D2 − 4K 6 0, the equation is stable if D > 0. Hence, we conclude that the equation is
stable if and only if D > 0 and K > 0.

2.2 D-subdivision method

We now consider the stability of Delay Differential Equations of type (1.1). We will ana-
lyze their stability by using so called D-subdivision method.

Zeros of the characteristc equation for (1.1) with a fixed delay τ, obtained from substi-
tuting x = eλt into the homogeneous version of equation (1.1), are continuous functions
of the coefficients. Let us bisect the space of coefficients into regions by hypersurfaces
points of which correspond to quasipolynomial having at least one zero on the imagi-
nary axis (the case of z=0 is not excluded). Such a partition is called D-subdivision. The
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points in each region for such a D-subdivision correspond to quasipolinomials with the
same number of zeros with a positive real part (counting multiplicity). This is true since
a change in the number of zeros with a positive real part can occur only when the zero
passes through the imaginary axis, that is, when a point at space of coefficients passes
through a boundary of a domain of a D-subdivision.

Thus, for each domain Uk of D-subdivision, there is a number k which is the number
of zeros with positive real parts of the quasipolynomial that is determined by the points
of this domain. Among the domains of this D-subdivision are regions u0 (if they exists)
that correspond to quazipolinomials that have no roots with a positive real parts. These
regions are regions of asymptotic stability.

EXAMPLE 2

ẍ+ a · ẋ(t− 1) + b · x(t− 1) = 0 (2.2)

We find the domain of stability in the space of coefficients a and b. The characteristic
equation is

λ2 + (aλ+ b) · e−λ = 0 (2.3)

Note that this transcendental equation has infinitely many solutions, which makes the
space of solutions of the delay equation infinite dimensional. This is a drastic difference
to the case with no delay, where the space is only two dimensional.

If we start with looking for real solutions for the equation (2.3), we may notice that
if b < 0 the equation λ2 = −(aλ + b) · e−λ always has a positive root λ0 > 0, which
automatically makes the equation unstable whenever b < 0.

We now look for pure imaginary solutions of (2.3) i.e. λ = iy since these solutions
form a borderline between stability and instability. Since, eiy = cosy+ isiny, we have:

−y2 + (aiy+ b)(cosy− isiny) = 0.

Separating real and imaginary parts, we have{
−y2 + aysiny+ bcosy = 0;
aycosy− bsiny = 0, y 6= 0;

or {
a = ysiny,

b = y2cosy, for y ∈ (0;∞)

This is a system of parametric equations in y. By plotting the curves for a and b, along
with the necessary condition b > 0 for stability, we are able to distinguish the region U0,
U1, U2 etc. in the (a, b) plane, with 0, 1, 2 etc. roots with positive real part. In particular,
U0 is the stability region.
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Figure 2.1: Stability domain.

2.3 Application to Linear Models of POD MEMS

.
The oscillations of POD MEMS can be accurately modeled by

Fdr = Mẍ(t) +Dẋ(t) + Kx(t) +Meẍ(t− τ) +Deẋ(t− τ) + Kex(t− τ). (2.4)

Here M, D and K are positive constant mass, damping and stiffness of the device (stan-
dard MEMS model), Me, De and Ke are the input from the user (i.e. the parameters
which we can control) , and τ is the delay. Note that the presence of Me, De and Ke is
what distinguishes a usual MEMS model from POD MEMS model. We also assume that
the driving force is oscillatory, i.e. Fdr = F0 · eiωt.

In this section we will investigate the stability of (2.4) as well as derive the existence
of so called effective equation. We will follow closely the ideas from [1]. By effective
equation we will mean the equation without delay, which yet shares the same features
as the equation with delay.

We can write the general solution of (2.4) as

x(t) = XTR(t) + XSS(t)

where XTR(t) is the general transient solution, which solves the homogeneous equation

0 = Mẍ(t) +Dẋ(t) + Kx(t) +Meẍ(t− τ) +Deẋ(t− τ) + Kex(t− τ) (2.5)

and XSS(t) is the steady - state (particular) solution of (2.4).

Definition 1. The equation

Fdr = Meffẍ+Deffẋ+ Keffx (2.6)

is called an effective equation, if:
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(I) Both (2.4) and (2.6) have the steady - state solution XSS;

(II) Both (2.4) and (2.6) are stable (that is transients decay with time)

Let start with checking the condition (I). Assuming the absence of resonance (i.e. eiωt

is not a solution of (2.5)), the steady - state solution of (2.4) can be found in the form:

XSS(t) = x0(ω) · ei(ωt−φ) (2.7)

Substituting (2.7) into (2.4), we have:

Fdr,0

x0
· eiφ = −Mω2 + iωD+ K+ e−iω · [−Meω

2eτ + iωDee
τ + Kee

τ] (2.8)

and substitute (2.7) into (2.6), we will have:

Fdr,0

x0
· eiφ = −Meffω

2 + iωDeff + Keff (2.9)

By comparing the real and imaginary parts of (2.8) and (2.9), we will have:

−Meff ·ω2 +Keff = −Mω2 +K−Meω
2 · cos(ωτ) +ωDesin(ωτ) +Kecos(ωτ) (2.10)

and
ωDeff = ωD+ωDecos(ωτ) − Kesin(ωτ) +Meω

2sin(ωτ) (2.11)

The effective damping is uniquely defined by (2.11) as

Deff = D+Decos(ωτ) − Keω
−1sin(ωτ) +Meωsin(ωτ) (2.12)

On the other hand, there is some freedom in formula (2.10), in choosing the effective
stiffness and mass. Another words, we can choose any real number to be the effective
mass, Meff = a ∈ R, in which case (2.10) becomes

Meff = a;
Keff = aω2 −Mω2 + K−Meω

2cos(ωτ)+
ωDesin(ωτ) + Kecos(ωτ)

(2.13)

Condition (II) is related to stability. Using D-section method, we start with the anal-
ysis of the characteristic equation for (2.4):

Mz2 +Dz+ K+ e−τz · (Mez
2 +Dez+ Ke) = 0 (2.14)

6



Substituting z = iy into the homogeneous equation (2.5) and solving for De and Ke,
will give us: {

De(y) = (My2 − K)sin((τy)/y) −Dcos(τy);
Ke(y) = (My2 − K)cos(τy) −Dysin(τy) +Mey

2.
(2.15)

where y > 0 is a parameter, by the equations (2.15) there is defined a spiral in (De, Ke) -
plane. Together with the line Ke = −K along which z = 0 solves (2.14), for fixed Me this
spiral defines a partition of the (De, Ke) - plane. By varying Me, we get a corresponding
partition of (Me, De, Ke) - space. Furthermore, since M, D and K are positive, due to
the result in Example 1 it remains to choose the subset from this partition that contains
(Me, De, Ke) = (0, 0, 0). Equation (9) is stable for any triple (Me, De, Ke) chosen from this
subset. Families of stability domains are plotted in Figs. 2 a and 2 b, and parameterized
for several Me and τ values, as a function of De/D versus Ke/K.

Figure 2.2: Domains of PODMEMS stability (figures from [1])

Note that the effective coefficients, given by (2.13), are determined up to a constant
a. The freedom of choosing a is very important since this way we can always ensure
that the effective equation is stable whenever the delay equation is. In particular, if Deff
(which is independent of a) is positive, we choose a > 0 large enough so that both
Meff and Keff are positive. Vise versa, if Deff < 0, we choose a < 0 small enough to
ensureMeff and Keff are also negative. In either of the cases, the corresponding effective
equation will be stable due to the main result in the Example 1.
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Chapter 3

Nonlinear Duffing Equation.

We now consider a more accurate, as well as more mathematically rich, nonlinear model
of MEMS. At the heart of this model lies the Duffing equation

ü+Du̇+ Ku+ αu3 = Fcosω0t (3.1)

which is nonlinear due to the presence of the cubic term αu3. It is worth noting
that this cubic term completely changes the behavior of this system, as compared to the
linear case. In particular, the equation (3.1) with α = 0 can have only ω0- periodic steady
state solutions. Yet the numerical calculations for the equation

ü+ 0.3u̇− u+ u3 = Fcosω0t (3.2)

with u(0) = 1 and u̇(0) = 0 indicate a wide range of behaviors of the solutions [6].
Namely, this initial value problem has:

• ω0-periodic solution for F = 0.2;

• 2ω0-periodic solution for F = 0.28;

• 4ω0-periodic solution for F = 0.29;

• 5ω0-periodic solution for F = 0.37;

• chaotic behavior for F = 0.5 and

• 2ω0-periodic solution for F = 0.65.

Thus even establishing the existence of a periodic solution to a nonlinear Duffing equa-
tion is a highly nontrivial question.
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3.1 Analytic results with small nonlinearities

The natural simplification is the assumption that the paremeter |α| is small. This scenario
was considered, e.g. in the paper [2]. In this case, ignoring the high order terms, the first
two terms in the expansion of the solution in the powers of α are periodic:

u0(t) = a · cos(ω0t− γ) +
αa3

32K
· cos(3ω0t− 3γ) + o(α)

The amplitude a in then satisfies[
(ω0 −

√
K−

3αa2

8
√
K

)2 +
D2

4

]
· a2 =

F20
4K
.

The authors investigated the stability of the periodic solution of (3.1) with small α.
In particular, they showed that if

a? < a < a?? (3.3)

where a? and a?? are the two roots of the equation

F40
9α2K · a8

=
F20

4K · a2
−
D2

4
(3.4)

then the equation is unstable.

3.2 Periodic Solutions of Nonlinear Duffing Equation

In this subsection we will study the existence of periodic solutions to the Duffing
equation in the case when α is not necessarily small. More generally, we will outline the
main ideas how to establish the existence of periodic solution for

ẍ+ f(t, x, ẋ) = 0 (3.5)

using the method from the paper of Struwe [3]. Assume f satisfies the following condi-
tions:
(I) For fixed T > 0, the function f : [0, T ]× R2 → R satisfies the Caratheodory condition;
(II) ∃ a continuous g : R→ R, a function h ∈ L2([0, T ]), and a constant K > 0 such that

|f(t, x, y) − g(x)|6 K(|x|+|y|) + h(t),

g(x)/x→∞, as |x|→∞. (3.6)

The typical choice of g is g(x) = αx3(t).

9



We will state some lemmas which we will use to prove the main result of this sub-
section.

In what follows, denote ζ = (ξ, η), and let x = x(ζ, ·) be the solution of (3.5) with
x(τ) = ξ and x ′(τ) = η. We will also use the notation z = (x, x

′
) = z(ζ, ·)

Lemma 1. For any constant C > 0 there exists a constant C1 > 0 such that for any t ∈ I we
have |z(ζ; t)|> C whenever |ζ|> C1

Lemma 2. For any δ > 0 there exists a constantC = C(δ) such that any solution of equation (32)
has a zero in any interval J ∈ I of width |J|> δ, whenever ||x||W1,∞(J):= ‖x‖L∞(J)+‖x

′‖L∞(J)> C.

Theorem 1. [3] Assume conditions (I)-(II) are satisfied by f. Then there exists a periodic solution
of (3.5).

Proof. Firstly, let us assume that f is Lipschitz with respect to the phase space variables
and then we will be approximating f by Lipschitzian function in order to obtain the
general case. The mapping F : ζ → z(ζ; T) is a continuous mapping of R2 into R2.
According to Lemmas 1 and 2 there exist constant s1, s2 > s0 such that the mapping
Ψ : {ζ : |ζ|> s0}→ R, defined by Ψ(ζ) = |Θ(ζ; T)|−Θ(ζ; 0)| is continuous and such that

inf{Ψ(ζ) : |ζ|> s2}− sup{Ψ(ζ) : |ζ|6 s1} > 2π

Let M be the compact subset of R2, defined by

M = {ζ(s) : s1 6 |ζ(s)|6 s2, F(ζ(s)) = λζ(s) for some λ ∈ R}

The existence of a periodic solution for Lipshitzian f now is a consequence of the follow-
ing fixed point theorem

Theorem 2. [4]. Let F : Rn → Rn be a continuous mapping, M is a compact subset of Rn such
that 0 is contained in bounded component of the complement of M and such that F(m) = λm for
any m ∈M with some λ = λ(m) ∈ R. Then F has a fixed point.

Remark. We may assert the existence of a fixed point of F in the convex hull of M; hence
there exists a periodic solution with norm 6 sup{b(ζ) : |ζ|6 s2}
To sum up, if a function measurable in the first and continuous with respect to the
remaining arguments and it satisfies the condition (3.6) then we have a periodic solution
of

ẍ+ f(t, x, ẋ) = 0.
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Chapter 4

Dynamics of a Time Delayed Duffing
Oscillator with small nonlinearities

In this section we will be focusing on the results of the article [5], devoted to the
primary resonance of the time delayed Duffing oscillator solved by means of the multiple
scales method. The classic Duffing oscillator with delayed displacement is governed by
a second order non-linear differential equation with delay:

Figure 4.1: Duffing system with a delay (figure from [5])

ẍ(t) + δẋ(t) +ω2x(t) + γx(t)3 = α(−µx(t) + x(t− τ)) + f · cos(λt) (4.1)

where as before, D is damping, ω is natural frequency of a linear system, γ is a small
coefficient representing non-linear stiffness, α is an amplitude of delay, f is an amplitude
of external force, λ is a frequency of external excitation, τ is a time delay and µ is a
switching parameter: if µ = 1, then term µx(t) produces only an increase of linear
stiffness of the system. Therefore (4.1) can be transformed using the substitution ω2

0 =
(ω2 + α):

ẍ(t) + δẋ(t) +ω2
0x(t) + γx(t)3 = αx(t− τ) + f · cos(λt) (4.2)

11



4.1 Existence of an approximate periodic solution.

Assuming that α is small, the authors in [5] found the approximate periodic solution
using the methods similar to [2] with no delay. By using of the multiple scale time
method the equation (4.2) is solved analytically. Let us introduce the fast scale T0 and
the two slow scales T1 and T2 of time:

T0 = t, T1 = εt, T2 = ε2t (4.3)

Then a solution in the second order approximation is in the form:

x(t) = x0(T0, T1, T2) + εx1(T0, T1, T2) + ε2x2(T0, T1, T2) (4.4)

x(t− τ) = xτ = x0τ(T0, T1, T2) + εx1τ(T0, T1, T2) + ε2x2τ(T0, T1, T2) (4.5)

Using the chain rule, the time derivative is transformed in accordance with the following
expressions:

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
(4.6)

d2

dt2
=
∂2

∂T 20
+ 2ε

∂2

∂T0∂T1
+ ε2

(
2

∂2

∂T0∂T2
+
∂2

∂T 21

)
(4.7)

Comparing the power of ε, we will have a set of equations in a successive perturbation
order:

ε0 :
∂2x0

∂T 20
+ x0 = 0 (4.8)

ε1 :
∂2x1

∂T 20
+ 2

∂2x0

∂T0∂T1
+D

∂x0

∂T0
+ x1 + Kx30 − αx0τ − F0 · cos(T0 + σT2) = 0 (4.9)

ε2 :
∂2x2

∂T 20
+ 2

∂2x1

∂T0∂T1
+ 2

∂2x0

∂T0∂T2
+
∂2x0

∂T 21
+D

∂x1

∂T0
+ 3Kx20x1 − αx1τ + x2 = 0 (4.10)

The solution of (4.9) can be expressed in the complex form :

x0(T0, T1, T2) = A(T1, T2)e
iT0 + Ā(T1, T2)e

−iT0 (4.11)

x0τ(T0, T1, T2) = A(T1, T2)e
i(T0−τ) + Ā(T1, T2)e

−i(T0−τ) (4.12)
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We may now find x1:

x1(T0, T1, T2) =
1

8
K ·A(T1, T2)e

3iT0 +
1

8
K · Ā(T1, T2)e

−3iT0 , (4.13)

x1τ(T0, T1, T2) =
1

8
K ·A(T1, T2)e

3i(T0−τ) +
1

8
K · Ā(T1, T2)e

−3i(T0−τ) (4.14)

Omitting the higher order terms, we may get the leading order expression for A. To
this end, write A in polar form:

A(T1) :=
1

2
a(T1)e

iβ(T1). (4.15)

We have

−
1

4
εifeiσT2−iβ(t) −

1

16
ε2iαfe−iτ+iσT2−iβ(t) +

1

16
ε2DfeiσT2−iβ(t) −

1

4
εiαa(t)e−iτ−

−
1

4
εDa(t) −

1

16
ε2iα2a(t)e−2iτ −

1

16
ε2iD2a(t) +

3

32
ε2iKfa(t)2eiσT2−iβ(t)−

−
3

64
ε2iKfa(t)2e−iσT2+iβ(t) +

3

16
εiKa(t)3 +

9

64
ε2iαKa(t)3e−iτ −

3

64
ε2iαKa(t)3eiτ+

+
3

32
ε2DKa(t)3 −

5

512
ε2iK2a(t)5 −

1

2
a
′
(t) −

1

2
ia(t)β

′
(t) = 0

(4.16)

Now we will separate real and imaginary parts and get a system of ODEs for a and φ:

ȧ = −
1

2
εDa+

3

16
ε2DKa3 +

1

8
ε2Dfcos(φ) −

1

2
εαa · sin(τ)+

+
3

8
ε2αKa3sin(τ) −

1

4
ε2α2acos(τ)sin(τ) −

1

8
ε2αfcos(φ)sin(τ) +

1

2
εfsin(φ)−

−
9

32
ε2Kfa2sin(φ) +

1

8
ε2αfcos(τ)sin(φ)

(4.17)

φ̇ = −
3

8
εKa2 +

15

256
ε2K2a4 +

1

8
ε2D2 + σ+

1

2
εαcos(τ) −

3

16
ε2αKa2cos(τ)+

+
1

8
ε2α2cos2(τ) +

1

2

εfcos(φ)

a
−

3

32
ε2Kf · acos(φ) +

1

8

ε2αfcos(τ)cos(φ)

a
−

−
1

8
ε2α2sin2(τ) −

1

8

ε2Dfsin(φ)

a
+

1

8

ε2αfsin(τ)sin(φ)

a

(4.18)

where

a(t) = a,

ȧ(t) = ȧ,

β̇(t) = σ− φ̇

(4.19)
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The amplitude and phase of the steady state solution may now be implicitly expressed
via f1 = 0 and f2 = 0, where

f1 := f11 +
3

16
DKa3 +

1

8
Dfcos(φ) +

3

8
αKa3sin(τ) −

1

4
α2acos(τ)sin(τ)−

−
1

8
αfcos(φ)sin(τ) −

9

32
Kf · a2sin(φ) +

1

8
αfcos(τ)sin(φ)

(4.20)

f2 := f12 +
15

256
K2a4 +

1

8
D2 −

3

16
αKa2cos(τ)+

+
1

8
α2cos2(τ) −

3

32
Kf · acos(φ) +

1

8

αfcos(τ)cos(φ)

a
−

−
1

8
α2sin2(τ) −

1

8

Dfsin(φ)

a
+

1

8

αfsin(τ)sin(φ)

a

(4.21)

Here f11 and f12 are obtained from the first approximation of the multiple scales method,
which are defined as follows:

f11 = −
1

2
Da−

1

2
αasin(τ) +

1

2
fsin(φ) (4.22)

f21 = −
3

8
Ka2 + (λ−ω0) +

1

2
αcos(τ) +

1

2

fcos(φ)

a
(4.23)

4.2 Stability of the approximate solutions

In order to analyse the stability of steady-state solutions, equations (4.20) and (4.21) are
linearized with respect to a and φ. The Jacobian matrix is defined as

J =


df1

da

df1

dφ
df2

da

df2

dφ

 (4.24)

where f1 and f2 are defined in (4.20) and (4.21). We can rewrite the characteristic equation
as follow

s2 + Tr(J)s+Det(J) = 0 (4.25)

where s is an eigenvalue of the Jacobian matrix. The trace (Tr) and the determinant
(Det) are defined as

Tr(J) = −
1

2
D+

9

16
a2KD−

fDcos(φ)

8a
−

1

2
αsin(τ) +

9

8
a2αKsin(τ)−

−
1

4
α2cos(τ)sin(τ) +

fαcos(φ)sin(τ)

8a
−
fsin(φ)

2a
−

−
15

32
afKsin(φ) −

fαcos(τ)sin(φ)

8a

(4.26)
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Det(J) = A · cosφ+ B · cos2φ+ C · sinφ+D · sin2φ+ E · cosφsinφ (4.27)

According the Routh-Hurwitz criterion, the system has:
1) stable solutions corresponding to a stable focus when Tr(J) < 0 and Det(J) > 0,
2) unstable solutions corresponding to unstable focus when Tr(J) > 0 and Det(J) > 0,
3) unstable solutions corresponding to saddle point at Det(J) > 0
Using the explicit expressions for f11 and f12, the trace (Tr1) and the determinant (Det1)
may be simplified as

Tr1(J) = −D− αsin(τ), (4.28)

Det1(J) =
1

64
(6a2K(3a2 − 8(ω0 − λ0) − 4αcosτ)+

+(3a2K− 8(ω0 − λ0) − 4αcosτ)2 + 16(D+ αsinτ)(D+ αsinτ))
(4.29)

Equation (4.28) is independent of non-linearity, the resonance amplitude,and hence the
excitation. The critical value of the delay amplitude (αcr) can be easily found from
equation (4.28)

αcr = D (4.30)

If α < αcr the system has only stable solutions. On the other hand, when α > αcr the
stability of a solution is influenced by the time delay parameter Ω = 2π

τ
.
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Chapter 5

Main Results: Existence of Periodic
Solution for General Delay Duffing

Equation

We are now ready to formulate the main result of this work. Consider

ẍ(t− τ) + g(x(t− τ)) = p(t) (5.1)

where g is a locally Lipschitz continuous function, τ is a positive constant, p : R → R is
continuous with T > 0 the minimal period.
Assume that g satisfies the superlinear growth condition

(Sp) (superlinear) g(x)/x→ +∞ as |x|→ +∞

We then have the following Theorem:

Theorem 3. Assume that condition Sp holds. Then, for τ small enough, there is at least one
periodic solution for (5.1).

The problem was originally posed in [7]. However, after the careful analysis, we discov-
ered a mistake in their argument (namely in Lemmas 2.6 and 2.7 [7], or Lemmas 7 and 8
presented below). We contacted the authors and they confirmed that their argument is
incomplete. In this section we suggest a way how to fix the problem in their argument.
Namely, we claim that the results of Lemmas 7 and 8 hold for τ small enough.

Let us rewrite (5.1) as a system

ẋ = y, ẏ = −g(x(t− τ)) + p(t) (5.2)

Consider the solution (x(t), y(t)) = (x(t; x0;y0), y(t; x0;y0)) of (5.2) satisfying the initial
value condition

x(0; x0;y0) = x0; y(0; x0;y0) = y0

We assume that g satisfies the following condition:

16



(g0) lim|x(t−τ)|→+∞ g(x(t− τ)) = +∞

It is easy to show that, superlinear condition (Sp) implies condition (g0), on the other
hand the inverse does not hold.

Lemma 3. Assume that condition (g0) holds. Then every solution (x(t), y(t)) of (5.2) is defined
on the whole t-axis.

Proof. Set

H(t) =
∫t
0 g(x(s− τ))y(s)ds, P(t) =

∫t
0 p(s)y(s)ds

Now we define the potential function

V(t) = V(x(t), y(t)) = 1
2
y2(t) +H(t) − P(t).

Then according to the fundamental theorem of calculus we have:

V ′(t) = y(t)y ′(t) + g(x(t− τ))y(t)− p(t)y(t) = y(t)(y ′(t) + g(x(t− τ))− p(t)) = 0 (5.3)

Therefore, V(T) = C.
Thus

|V ′(t)|6 V(t) +M2 (5.4)

where |C|6M2. From (5.4) we have that, for t ∈ [t0, t0 + τ) with t0 ∈ R, τ > 0,

V(t) 6 V(t0)e
τ +M2e

τ (5.5)

which implies that there is no blow-up for solution (x(t), y(t)) in any finite interval
[t0, t0 + τ).

According to our conditions, the function g is locally Lipschitz continuous, from
previous lemma, we know that (x(t), y(t)) exists on the entire t-axis. Let us define a
function R : R× R→ R+

R(x, y) = x2 + y2. (5.6)

Lemma 4. Assume that condition g0 holds. Then there exists a positive constant m ∈ N+ such
that R(x(t), y(t))→ +∞ for t ∈ [0,mT ] as R(x0, y0)→ +∞.

Proof. From (5.5), it is easy to see that

(V(0) +A1)e
−T 6 V(t) 6 (V(0) +A1)e

T , (5.7)

for t ∈ [0,mT ], which shows that R(x(t), y(t)) → +∞ uniformly for t ∈ [0, T ] as
R(x0, y0)→ +∞

Remark 1. For a fixed constant R1 > 0 there is a constant R2 > R1 such that

R(x0, y0) 6 R1 =⇒ R(x(t), y(t)) 6 R2, for t ∈ [0,mT ];

17



R(x0, y0) > R2 =⇒ R(x(t), y(t)) > R1, for t ∈ [0,mT ]

From previous lemma we know that if R(x0, y0) is a sufficiently large number, then
x2(t)+y2(t) 6= 0, t ∈ [0,mT ]. Therefore, we can make a polar coordinate transformation:{

x(t) = r(t) · cos θ(t);
y(t) = r(t) · sin θ(t).

(5.8)

(when R(x0, y0) is a sufficiently large number). Under this transformation, (5.2) becomes{
ṙ = [rcosθ− g(r(t− τ)) · cosθ(t− τ)) − p(t)] · sinθ,

θ̇ = −
[
sin2θ+ 1

r
(g(r(t− τ) · cosθ(t− τ)) − p(t)) · cosθ

]
.

(5.9)

The main idea of establishing the periodic solution of (5.9) is based on a fixed point
argument. We will summarize this idea below.

For R2 > R1 let A be an annular region B(0, R2) \ B(0, R1).

Definition 2. F := (F1, F2) : A→ R2 \ {0} is called a twist if(
F1(r, θ)
F2(r, θ)

)
=

(
f(r, θ)

θ+ g(r, θ)

)
where f and g are continuous and periodic in θ, and g satisfies the twist condition

g(R1, θ)g(R2, θ) < 0

The following Lemma was proved in [8]

Lemma 5. If F is a twist in A, then F has at least one fixed point in B(0, R2).

Denote by (r(t), θ(t)) = (r(t, r0, θ0), θ(t, r0, θ0)) the solution of (5.9) satisfying r(0) =
r0 and θ(0) = θ0. Denote D = {(r, θ) : r > 0, θ ∈ R}. Then the map P : D→ D defined by

P : (r0, θ0)→ (r1, θ1) = (r(T, r0, θ0), θ(T, r0, θ0))

is a continuous homeomorphism from D to itself. Furthermore, fixed point of P cor-
respond to periodic solutions of (5.1). In order to proceed, we will need the following
Lemma, which is the main result of this work:

Lemma 6. (Misiats, Ospanov) Let x(t) be a solution of (5.1) with g(y) = y3, satisfying

x ′(T) < 0, x(T) > N (5.10)

for some N > 1. Then there is τ = τ(N) > 0 such that x(t) > 1
2

for t ∈ [T, T + τ].

Proof. Let x0 be the periodic solution of the Duffing equation with no delay

ẍ0(t) + x30(t) = p(t)

such that x0(T) > N. This solution exists by the main result of Struwe. What do we
know about x0(t)?
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• x0(t) is periodic (continuously differentiable);

• max |x ′0(t)|6 c;

• So, if x0(T) > N⇒ x0(T + τ) > 1 for τ small enough.

Also x0(t) satisfies ẍ0(t) + x30(t − τ) = ẍ0(t) + x30(t) + τa(t) = p(t), where a(t) is some
periodic function (depending only on x0) satisfying |a(t)|6 c, t ∈ [T, T + τ]. So,

ẍ0(t) + x30(t− τ) = p(t) + τa(t) (5.11)

Now let x1 be the solution of (5.1) with the same boundary conditions as x0 on [T − τ, T ],
i.e.

ẍ1(t) + x31(t− τ) = p(t). (5.12)

Subtracting (5.11) and (5.12) we have

ẍ1(t) − ẍ0(t) + x31(t− τ) − x
3
0(t− τ) = τa(t) (5.13)

or

ẍ1(t) − ẍ0(t) + (x1(t− τ) − x0(t− τ)) · (x21(t− τ) + x1(t− τ) · x0(t− τ)+
x20(t− τ)) = τa(t)

(5.14)

Using the elementary inequality

|ab|6
a2

2
+
b2

2

we have

x21(t− τ) + x1(t− τ) · x0(t− τ) + x20(t− τ) >
x21(t− τ)

2
+
x20(t− τ)

2
>
N2

2
>

1

2
(5.15)

since x0(t− τ) > 1
2
. On the other hand, in view of the condition (5.10),

x21(t− τ) + x1(t− τ) · x0(t− τ) + x20(t− τ) 6 C0 (5.16)

for some C > 0. Denote y(t) := x1(t) − x0(t). We claim that this difference is small for
small τ. More precisely, y(t) solves

ÿ(t) + y(t− τ) · b(t) = τa(t). (5.17)

Generally speaking, (5.17) is a nonlinear equation since both a and b depend on x0 and
x1, and therefore on y, i.e. a = a(t, y) and b = b(t, y). However, a priori estimates on a
and b, namely

|a(t)|6 c,
1

2
6 b(t) 6 3N2 (5.18)

(which follows from (5.15)) allow us to treat (5.17) as semilinear. Namely, for a fixed
solution y consider the linear equation

¨̃v(t) + ṽ(t− τ) · b(t, y) = τa(t, y). (5.19)

19



The change of variables τv := ṽ yields

v̈(t) + v(t− τ) · b(t, y) = a(t, y). (5.20)

The general solution of the linear equation (5.20) now has the form:

v(t) := vSS(t) + vTR(t)

where vSS(t) is a fixed steady state (particular) solution of the nonhomogeneous equation
(5.20), which is periodic given when a is periodic, and the transient solution vTR(t) solves
the homogeneous equation

v̈TR(t) + vTR(t− τ) · b(t, y) = 0. (5.21)

Equation (5.21) is a linear delay equation with non-constant coefficients. However,
the a priori estimates (5.18) enable us to apply the delay analog of Sturm-Picon com-
parison principle [9] which states that all the solutions of (5.21) are oscillatory (and
hence bounded on finite time intervals). Furthermore, the zeros of the solutions of
(5.21) are confined between the zeros of the solutions of ẅ(t) + 1

2
w(t − τ) = 0 and

ẅ(t)+3N2w(t−τ) = 0, which may be found explicitly. Thus we may conclude that there
is a constant C > 0 such that for |v(t)|6 C, t ∈ [T, T + τ], hence

|ṽ(t)|6 Cτ, t ∈ [T, T + τ].

But since y is also a solution of (5.19), due to uniqueness of solution y must coincide
with ṽ, hence

|y(t)|6 Cτ, t ∈ [T, T + τ].

Therefore, we have |y(t)|= |x1(t) − x0(t)|6 Cτ. Since x0(t) > 1, we have

x1(t) > x0(t) − Cτ > 1 − Cτ >
1

2
, t ∈ [T, T + τ],

which is what we wanted to prove.

We may now resume the argumemts from [7].

Lemma 7. Assume that condition g0 holds. Then there exists a positive constant ρ0 such that,
for R(x0, y0) > ρ0, θ ′(t) < 0, t ∈ [0,mT ].

Proof. From the condition g0 we can say that there exists a positive, large enough, con-
stant N such that

g(x(t− τ)) − p(t) > 0, |x(t− τ)|> N, t ∈ [0,mT ]

Step 1. If x(t− τ) > N, we know that cosθ(t− τ) > 0, and y(t) > 0 or y(t) 6 0
Case 1. If y(t) > 0, from first equation of (5.2) and Taylor expansion, namely: x(t −

τ) = x(t) − x ′(t) · τ we know that x(t) > x(t− τ) > N since τ > 0. So, cosθ(t) > 0, then

dθ

dt
= −

[
sin2θ+

g(x(t− τ)) − p(t)

r(t)
· cosθ

]
< 0
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At this point we noticed the mistake in their argument. The authors claimed, in case
2, that if y(t) 6 0 then θ(t) ∈ [−π

2
, 0]. This is simply incorrect, since when inequality

y(t) 6 0 is equivalent to θ(t) ∈ [−π, 0]. Thus the case θ(t) ∈ [−π,−π
2
] has to be ruled

out, which is the case for τ small enough due to our Lemma 6.

Case 2. If y(t) 6 0, we know that θ(t) ∈ [−π, 0]. So, cosθ(t) > 0, then

dθ

dt
= −

[
sin2θ+

g(x(t− τ)) − p(t)

r(t)
· cosθ

]
< 0

Step 2. Similarly, if x(t− τ) 6 −N, we have

dθ

dt
= −

[
sin2θ+

g(x(t− τ)) − p(t)

r(t)
· cosθ

]
< 0

Step 3. If |x(t − τ)|6 N, for a sufficiently large (then r is sufficiently large), we have
sin2θ > 1/2

sin2θ > 1/2
|g(x(t− τ)) − p(t)|

r(t)
6

1

4
, t ∈ [0,mT ]

So we get,

dθ

dt
= −

[
sin2θ+

g(x(t− τ)) − p(t)

r(t)
· cosθ

]
< 0

Now we conclude, that we have
dθ

dt
< 0 whenever r� 1

The lemma implies that θ(t) decreases strictly when r is large enough. Let’s denote
by τ(r0, θ0) the time its take for the solution (r(t), θ(t)) to makes one turn around the
origin.

Lemma 8. Assume that condition (Sp) holds, let m ∈ N+. Then for an arbitrary large integer
N ∈ N+, there exists a large enough constant Λ0 > 0 such that

θ(mT ; r0, θ0) − θ0 < −2Nπ

for (x0, y0) = (r0cosθ0, r0sinθ0) ∈ {(x, y) | R(x, y) = Λ,Λ > Λ0}

Proof. Let z = (x, y) and set Γz0 be such that z = z(t) = (x(t), y(t)), t ∈ R, is a solution
of (72) satisfying the initial value condition z(0) = z0 = (x0, y0).

Without loss of generality, we can say that there exist a large enough constant c0 and
a positive constant ε � 1 such that R1 := R1(ε) > ((2c0)

2 + ε2c20)/ε
2. Furthermore, let

R2 := R2(ε) > R1. From remark 1, we know that R(x, y) > R1 if R(x0, y0) > R2.
When 0 6 t 6 mT , we choose 0 = t0 < t1 < ... < t6 so that

• D1 = {(x, y) ∈ R× R : |x(t− τ)|6 c0, y(t) > 0, t ∈ [t0, t1]};

• D2 = {(x, y) ∈ R× R : x(t− τ) > c0, 0 6 y(t) < +∞, t ∈ [t1, t2]};
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• D3 = {(x, y) ∈ R× R : x(t− τ) > c0, −∞ < y(t) 6 0, t ∈ [t2, t3]};

• D4 = {(x, y) ∈ R× R : |x(t− τ)|6 c0, y(t) 6 0, t ∈ [t3, t4]};

• D5 = {(x, y) ∈ R× R : x(t− τ) 6 −c0, −∞ < y(t) 6 0, t ∈ [t4, t5]};

• D6 = {(x, y) ∈ R× R : x(t− τ) 6 −c0, 0 6 y(t) < +∞, t ∈ [t5, t6]}

From previous lemma, we know that there exist ti, i = 0, ..., 6, such that tI satisfy the
above properties for large enough R(x0, y0). Next we shall estimate t1− t0, t2− t1, t3− t2,
t4 − t3, t5 − t4, t6 − t5, respectively.

Step 1. Estimate of t1 − t0, t4 − t3. From the first equation in 5.2 and the choice of R1, we
have

x ′(t− τ) = y(t− τ) > (R1 − c
2
0)

1
2 >

2c0
ε
,

and thus we obtain

2c0 > x(t1 − τ) − x(t0 − τ) =
∫t1
t0
x ′(t− τ)dt >

2c0(t− t1)

ε
,

hence t1 − t0 6 ε. With obvious changes in the proof, we can obtain the estimate
t4 − t3 6 ε.

Step 2. Estimate of t2 − t1, t6 − t5. For x2 + y2 = r2, 0 6 y < +∞, we know that there
exist large enough B such that 0 6 y(t) 6 B < +∞. Once again, the statement y(t) > 0
is justified by our Lemma 6. Originally it was not justified in the paper [7]. From (Sp)
we know that there exist large enough K such that

g(x(t− τ))

x(t− τ)
>
K(c0 + Bτ)

c0
:= K1, |x(t− τ)|> c0.

Let t ∈ [t2, t1].

t2 − t1 =
∫θ(t0)
θ(t1)

dt =
∫θ(t0)
θ(t1)

dθ
dθ
dt

=
∫θ(t0)
θ(t1)

dθ

sin2θ+ (g(x(t− τ)) − p(t)/r(t))cosθ
.

As x(t) is increasing and 0 6 y(t) 6 B < +∞, we have x(t) > x(t− τ) > c0 and

x(t) − x(t− τ) =
∫t
t−τ x

′(s)ds 6 Bτ,

i.e.
x(t)

x(t− τ)
− 1 6

Bτ

x(t− τ)
6
Bτ

c0
.

So,
x(t− τ)

x(t)
>

c0

c0 + Bτ
(5.22)
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From (76), for r(t) large enough we have

sin2θ+
g(r(t− τ)cosθ(t− τ)) − p(t)

r(t)
· cosθ = sin2θ+

g(r(t− τ)cosθ(t− τ))

r(t− τ)cosθ(t− τ)
×

r(t− τ)cosθ(t− τ)

r(t)cosθ(t)
cos2θ−

p(t)

r(t)
cosθ > sin2θ+ K1 ·

c0

c0 + Bτ
cos2θ−

p(t)

r(t)
cosθ =

= sin2θ+ Kcos2θ−
p(t)

r(t)
cosθ >

1

2
(sin2θ+ Kcos2θ)

(5.23)

For the initial data large enough, namely as R(x0, y0)→∞.
So,

t2 − t1 6
∫π/2
0

2dθ

sin2θ+ Kcos2θ
=

2√
Karctg(tgθ/

√
K)

∣∣∣∣π/2
0

= 2
π

2
√
K

=
π√
K
� 1

Similarly, we can estimate:

t6 − t5 6
π√
K
� 1

Step 3. Estimate of t3 − t2, t5 − t4.

t3 − t2 =
∫θ(t2)
θ(t3)

dt =
∫θ(t2)
θ(t3)

dθ
dθ
dt

=
∫θ(t2)
θ(t3)

dθ

sin2θ+ (g(x(t− τ)) − p(t)/r(t))cosθ
.

Since y(t) 6 0, we have 0 < x(t) 6 x(t− τ), so there exists a constant σ > 1 such that So,

x(t− τ)

x(t)
> σ (5.24)

From (78), for r(t) large enough we have

sin2θ+
g(r(t− τ)cosθ(t− τ)) − p(t)

r(t)
· cosθ = sin2θ+

g(r(t− τ)cosθ(t− τ))

r(t− τ)cosθ(t− τ)
×

r(t− τ)cosθ(t− τ)

r(t)cosθ(t)
cos2θ−

p(t)

r(t)
cosθ > sin2θ+ K1 · σ cos2 θ−

p(t)

r(t)
cosθ =

= sin2θ+ K1σ cos2 θ−
p(t)

r(t)
cosθ >

1

2
(sin2θ+ K1 · σcos2θ)

(5.25)

For the initial data large enough, namely as R(x0, y0)→∞.
So,

t3 − t2 6
∫π/2
0

2dθ

sin2θ+ K1σ cos2 θ
=

2√
K1σarctg(tgθ

√
K1σ)

∣∣∣∣π/2
0

= 2
π

2
√
K1σ

=
π√
K1σ

� 1

Similarly, we can estimate:

t5 − t4 6
π√
K1σ

� 1
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We are now ready to establish the existence of a periodic solution.

Let z(t) = (x(t), y(t)) satisfies (5.2) with the initial conditions z0 = (x0, y0) = (r0cosθ, r0sinθ) =
(r0, θ0). Then θ(T ; r0, θ0) = θ0(T, z0). Consider

∆1(z0) = θ(T, z0) − θ(0, z0)

It is continuous at z0. Firstly, we take an appropriately large constant a1. Then there
exists a positive integer K1 such that inf∆1(z0) > −2K1π, |z0|= a1, So

θ(T, z0) − θ(0, z0) > −2K1π, |z0|= a1 (5.26)

On the other hand, from Lemma 8, there exists a constant b1 > a1, such that

θ(T, z0) − θ(0, z0) < −2K1π, |z0|= b1 (5.27)

Consider the Poincare map associated to (5.2):

P : 〈r0, θ〉 → 〈r(T, z0), θ(T, z0)〉,

in the annular region A∞, such that a∗1 6 |z|6 b∗1 . From (5.26) and (5.27), it is twist in
A∞. Therefore, by Lemma 5, there exists at least one fixed point for the map P, that is
to say ζ = 〈φ,ψ〉 ∈ B(0, b∗1), with

θ(T, ζ) − θ(0, ζ) = −2K1π. (5.28)

Thus z = (t, ζ) is a T-periodic solution of (5.1).
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