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ABSTRACT 

SPATIAL LEARNING AND MEMORY IN BRAIN-INJURED AND NON-INJURED MICE: 
INVESTIGATING THE ROLES OF DIACYLGLYCEROL LIPASE-α AND -β. 

 
Lesley D. Schurman, Master of Science 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University 
 

Virginia Commonwealth University, 2018 

Advisor: Aron H. Lichtman, PhD Professor of Pharmacology and Toxicology 

 

A growing body of evidence implicates the importance of the endogenous 

cannabinoid 2-arachidonyl glycerol (2-AG) in memory regulation. The biosynthesis of 2-

AG occurs primarily through the diacylglycerol lipases (DAGL-α and -β), with 2-AG 

serving as a bioactive lipid to both activate cannabinoid receptors and as a rate limiting 

precursor for the production of arachidonic acid and subsequent pro-inflammatory 

mediators. Gene deletion of DAGL-α shows decrements in synaptic plasticity and 

hippocampal neurogenesis suggesting this biosynthetic enzyme may be important for 

processes of normal spatial memory. Additionally, 2-AG is elevated in response to 

pathogenic events such as traumatic brain injury (TBI), suggesting its regulatory role 

may extend to conditions of neuropathology. As such, this dissertation investigates the 

in vivo role of DAGL-α and -β to regulate spatial learning and memory in the healthy 

brain and following neuropathology (TBI). 



 
 

The first part of this dissertation developed a mouse model of learning and 

memory impairment following TBI, using hippocampal-dependent tasks of the Morris 

water maze (MWM). We found modest, but distinct differences in MWM performance 

between left and right unilateral TBI despite similar motor deficits, histological damage, 

and glial reactivity. These findings suggest that laterality in mouse MWM deficit might be 

an important consideration when modeling TBI-induced functional consequences. The 

second part of this dissertation work evaluated DAGL-β as a target to protect against 

TBI-induced learning and memory deficit given its selective expression on microglia and 

the role of 2-AG as a precursor for eicosanoid production. The gene deletion of DAGL-β 

did not protect against TBI-induced MWM or motor deficits, but unexpectedly produced 

a survival protective phenotype. These findings suggest that while DAGL-β does not 

contribute to injury-induced memory deficit, it may contribute to TBI-induced mortality. 

The third and final set of experiments investigated the role of DAGL-α in mouse spatial 

learning and memory under physiological conditions (given the predominantly neuronal 

expression of DAGL-α). Complementary pharmacological and genetic manipulations 

produced task specific impaired MWM performance, as well as impaired long-term 

potentiation and alterations to endocannabinoid lipid levels. These results suggest that 

DAGL-α may play a selective role in the integration of new spatial information in the 

normal mouse brain. 

Overall, these data point to DAGL-α, but not DAGL-β, as an important contributor 

to hippocampal-dependent learning and memory. In contrast, DAGL-β may contribute to 

TBI-induced mortality.
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Chapter I 

General Introduction 

 

How our brains acquire, store, and later retrieve representations of our experience 

influence not only our behavior and basic survival, but fundamentally contribute to our 

sense of who we are. Our ability to learn impacts our perceived usefulness and in part 

enables us to imagine our future. Our ability to remember connects us to our past. The 

following body of work examines critical components of a neuromodulatory system, the 

endocannabinoid system; one key feature of which is its action on the neurobiology of 

learning and memory. The examination of two endocannabinoid biosynthetic enzymes 

was conducted in the context of memory pathology produced as a result of traumatic 

brain injury in a mouse model organism. 

 A historical perspective of memory pathology. At the end of the nineteenth 

century, French psychologist Théodule Ribot studied clinical cases of brain pathology in 

an attempt to understand the normal organization of memory. His classic work Diseases 

of Memory (Ribot, 1882) proposed that the dissolution of memory which accompanies 

pathology follows an orderly temporal progression. Ribot proposed that older memories 

are most resistant to dissolution, followed by habits and emotional memories, with more 

recent memories being the first to be lost (now referred to as Ribot’s Law). His insights, 

though now may seem obvious, were ground breaking for their implications toward the 

existence of different categories of memory, and in turn the possibility that they be 
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supported by different neural systems. He described various clinical cases of what 

might now be referred to as traumatic brain injuries (the most common causes of which 

in the 1880s seemed to be gentlemen being thrown out of carriages and thrown from 

horses) with descriptions of subsequent memory impairments mirroring deficits 

commonly familiar in the current century. A detailed description of the learning and 

memory deficits arising from traumatic brain injuries are presently described in detail in 

the Chapter Introduction for Chapter 2 (pages 39-40). 

 The endocannabinoid system as a memory modulator. Our basic 

understanding of the endocannabinoid system (as well as its name) arose from 

research investigating the pharmacological properties of the cannabis plant. Cannabis 

use has been recorded in China since 2727 BCE as medicinal (Booth, 2003), though 

cannabis has been widely used for centuries as a psychoactive drug. Most notably, ∆9-

tetrahydrocannabinol (∆9-THC, the major psychoactive component of the cannabis 

plant) shares a pharmacophore with the primary endocannabinoid ligands; anandamide 

(AEA) and 2-arachidonyl glycerol (2-AG, the most abundant endocannabinoid ligand) in 

that they bind and activate cannabinoid receptors. While a detailed description of the 

endocannabinoid system, its components and functional characteristics, is contained in 

the subsequent Chapter 1 “Endocannabinoids: A Promising Impact for Traumatic Brain 

Injury” pages 5-9, the endocannabinoid system can be most succinctly understood as a 

neuromodulator, a braking system used to restore physiology to states of homeostasis. 

The evidence which links the endocannabinoid system to the regulation of memory 

comes primarily from the ability of cannabinoid receptors to inhibit synaptic transmission 

(Kano et al, 2009) through the inhibition of neurotransmitter release. The understanding 
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specifically of 2-AG as a biologically active lipid in its own right, is however only part of a 

complicated memory story in which 2-AG also participates as an intermediate in a 

pathway which ultimately releases inflammatory mediators (Nomura et al, 2011). States 

of inflammation being intimately linked to impairments of learning and memory, 2-AG 

and its biosynthetic pathways are therefore the primary focus of the present work.  

 Summary. In the present dissertation, the enzymes responsible for 2-AG 

biosynthesis, the diacylglycerol lipases (DAGLs) are explored as targets to further 

understand the role this endocannabinoid system plays in learning and memory 

regulation. While Chapter 2 presents work completed to establish a mouse model of 

brain injury induced deficits, Chapter 3 explores considerations of 2-AG biosynthesis 

disruption (DAGL-β disruption) on mouse memory pathology as a result of traumatic 

brain injury. Finally, Chapter 4 examines 2-AG biosynthesis disruption (DAGL-α 

disruption) on mouse memory under conditions of normal physiology. First, a review of 

the present literature, concerning manipulations of the endocannabinoid system 

following traumatic brain injury, is evaluated. 
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Endocannabinoids: A Promising Impact for Traumatic Brain Injury 

(Front Pharmacol 8:69, 2017) 

 

Introduction 

Traumatic brain injury (TBI) accounts for approximately 10 million deaths and/or 

hospitalizations annually in the world, and approximately 1.5 million annual emergency 

room visits and hospitalizations in the US (Langlois et al., 2006). Young men are 

consistently over-represented as being at greatest risk for TBI (Langlois et al., 2006). 

While half of all traumatic deaths in the USA are due to brain injury (Mayer et al., 2010), 

the majority of head injuries are considered mild and often never receive medical 

treatment (Corrigan et al., 2010). Survivors of TBI are at risk for lowered life expectancy, 

dying at a 3.2 times more rapid rate than the general population (Baguley et al, 2012). 

Survivors also face long term physical, cognitive, and psychological disorders that 

greatly diminish quality of life. Even so-called mild TBI without notable cell death may 

lead to enduring cognitive deficits (Niogi et al, 2008; Rubovitch et al, 2011). A 2007 

study estimated that TBI results in $330,827 of average lifetime costs associated with 

disability and lost productivity, and greatly outweighs the $65,504 estimated costs for 

initial medical care and rehabilitation (Faul et al, 2007b), demonstrating both the long 

term financial and human toll of TBI. 

The development of management protocols in major trauma centers (Brain 

Trauma Foundation, 2007) has improved mortality and functional outcomes (Stein et al, 

2010). Monitoring of intracranial pressure is now standard practice (Bratton et al, 2007), 

and advanced MRI technologies help define the extent of brain injury in some cases 
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(Shah et al, 2012). Current treatment of major TBI is primarily managed through surgical 

intervention by decompressive craniotomy (Bullock et al., 2006) which involves the 

removal of skull segments to reduce intracranial pressure. Delayed decompressive 

craniotomy is also increasingly used for intractable intracranial hypertension (Sahuquillo 

and Arikan, 2006). The craniotomy procedure is associated with considerable 

complications, such as hematoma, subdural hygroma, and hydrocephalus (Stiver, 

2009). At present, the pathology associated with TBI remains refractive to currently 

available pharmacotherapies (Meyer et al, 2010) and as such represents an area of 

great research interest and in need of new potential targets. Effective TBI drug 

therapies have yet to be proven, despite promising preclinical data (Lu et al, 2007; 

Mbye et al, 2009; Sen and Gulati, 2010) plagued by translational problems once 

reaching clinical trials (Mazzeo et al, 2009; Tapia-Perez et al, 2008; Temkin et al, 2007).  

 The many biochemical events that occur in the hours and months following TBI 

have yielded preclinical studies directed toward a single injury mechanism. However, an 

underlying premise of the present review is an important need to address the multiple 

targets associated with secondary injury cascades following TBI. A growing body of 

published scientific research indicates that the endogenous cannabinoid 

(endocannabinoid; eCB) system possesses several targets uniquely positioned to 

modulate several key secondary events associated with TBI. Here we review the 

preclinical work examining the roles that the different components of the eCB system 

play in ameliorating pathologies associated with TBI. 

 

The Endocannabinoid (eCB) System 
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Originally, “Cannabinoid” was the collective name assigned to the set of naturally 

occurring aromatic hydrocarbon compounds in the Cannabis sativa plant (Mechoulam 

and Goani, 1967). Cannabinoid now more generally refers to a much more broad set of 

chemicals of diverse structure whose pharmacological actions or structure closely mimic 

that of plant-derived cannabinoids. Three predominant categories are currently in use; 

plant-derived phytocannabinoids (reviewed in Gertsch et al., 2010), synthetically 

produced cannabinoids used as research (Wiley et al, 2014) or recreational drugs (Mills 

et al., 2015), and the endogenous cannabinoids, N-arachidonoylethanolamine 

(anandamide) (Devane et al., 1992) and 2-arachidonyl glycerol (2-AG) (Mechoulam et 

al, 1995; Sugiura et al, 1995). 

These three broad categories of cannabinoids generally act through cannabinoid 

receptors, two types of which have so far been identified, CB1 (Devane et al, 1988) and 

CB2 (Munro et al, 1993). Both CB1 and CB2 receptors are coupled to signaling cascades 

predominantly through Gi/o-coupled proteins. CB1 receptors mediate most of the 

psychomimetic effects of cannabis, its chief psychoactive constituent Δ9-

tetrahydrocannabinol (THC), and many other CNS active cannabinoids. These 

receptors are predominantly expressed on pre-synaptic axon terminals (Alger and Kim, 

2011), are activated by endogenous cannabinoids that function as retrograde 

messengers, which are released from post-synaptic cells, and their activation ultimately 

dampens pre-synaptic neurotransmitter release (Mackie, 2006). Acting as a 

neuromodulatory network, the outcome of cannabinoid receptor signaling depends on 

cell type and location. CB1 receptors are highly expressed on neurons in the central 

nervous system (CNS) in areas such as cerebral cortex, hippocampus, caudate-
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putamen (Herkenham et al, 1991). In contrast, CB2 receptors are predominantly 

expressed on immune cells, microglia in the CNS, and macrophages, monocytes, CD4+ 

and CD8+ T cells, and B cells in the periphery (Cabral et al, 2008). Additionally, CB2 

receptors are expressed on neurons, but to a much less extent than CB1 receptors 

(Atwood and Mackie, 2010). The abundant, yet heterogeneous, distribution of CB1 and 

CB2 receptors throughout the brain and periphery likely accounts for their ability to 

impact a wide variety of physiological and psychological processes (e.g. memory, 

anxiety, and pain perception, reviewed in Di Marzo, 2008) many of which are impacted 

following TBI.  

 Another unique property of the endocannabinoid (eCB) system is the functional 

selectivity produced by its endogenous ligands. Traditional neurotransmitter systems 

elicit differential activation of signaling pathways through activation of receptor subtypes 

by one neurotransmitter (Siegel, 1999). However, it is the endogenous ligands of eCB 

receptors which produce such signaling specificity. Although several endogenous 

cannabinoids have been described (Chu et al., 2003; Heimann et al., 2007; Porter et al.,  

2002) the two most studied are anandamide (Devane et al., 1992) and 2-AG 

(Mechoulam et al, 1995; Sugiura et al, 1995). 2-AG levels are three orders of magnitude 

higher than those of anandamide in brain (Béquet et al., 2007). Additionally, their 

receptor affinity (Pertwee and Ross, 2002; Reggio, 2002) and efficacy differ, with 2-AG 

acting as a high efficacy agonist at CB1 and CB2 receptors, while anandamide behaves 

as a partial agonist (Hillard, 2000a). In addition, anandamide binds and activates 

TRPV1 receptors (Melck et al, 1999; Smart et al, 2000; Zygmunt et al, 1999), whereas 
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2-AG also binds GABAA receptors (Sigel et al, 2011). As such, cannabinoid ligands 

differentially modulate similar physiological and pathological processes.  

Distinct sets of enzymes, which regulate the biosynthesis and degradation of the 

eCBs and possess distinct anatomical distributions (see Figure 1), exert control over 

CB1 and CB2 receptor signaling. Inactivation of anandamide occurs predominantly 

through fatty acid amide hydrolase (FAAH) (Cravatt et al, 1996, 2001), localized to 

intracellular membranes of postsynaptic somata and dendrites (Gulyas et al, 2004), in 

areas such as the neocortex, cerebellar cortex, and hippocampus (Egertová et al, 

1998). Inactivation of 2-AG proceeds primarily via monoacylglycerol lipase (MAGL) 

(Blankman et al, 2007; Dinh et al, 2002), expressed on presynaptic axon terminals 

(Gulyas et al, 2004), and demonstrates highest expression in areas such as the 

thalamus, hippocampus, cortex, and cerebellum (Dinh et al, 2002). The availability of 

pharmacological inhibitors for eCB catabolic enzymes has allowed the selective 

amplification of anandamide and 2-AG levels following brain injury as a key strategy to 

enhance endocannabinoid signaling and to investigate their potential neuroprotective 

effects.  

 Finally, 2-AG functions not only as a major cannabinoid receptor signaling 

molecule, but also serves as a major precursor for arachidonic acid (AA), and therefore 

plays a role in inflammatory pathways (see Figure 2). Although AA is a degradative 

product of both 2-AG (Bell et al, 1979) and anandamide (Deutsch et al, 1997), MAGL 

represents a rate-limiting biosynthetic enzyme of this highly bioactive lipid in brain, liver, 

and lung (Nomura et al, 2011). Historically, cytosolic phospholipase A2 (cPLA2) was 

considered to be the primary rate-limiting enzyme in AA production (reviewed in 
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Buczynski et al., 2009). However, MAGL contributes ~80% and cPLA2 ~20% of LPS-

stimulated eicosanoids in mouse brain. In contrast, cPLA2 is the dominant enzyme to 

control AA production in spleen (Nomura et al, 2011). Therefore, MAGL and cPLA2 

appear to play differential roles in AA production, and concomitantly its eicosanoid 

metabolites in a tissue-specific manner (Nomura et al, 2011). As such, 2-AG functions 

not only as an endogenous CB1 and CB2 receptor ligand, but also an 

immunomodulator by virtue of its being a major precursor for AA, making it a versatile 

target for the treatment of TBI related pro-inflammatory pathologies. Understanding the 

biosynthesis mechanisms of eCBs may prove useful in modulating their entry into pro-

inflammatory pathways. While 2-AG is known to be synthesized by diacylglycerol lipase-

α and –β (DAGL-α and DAGL-β) (Bisogno et al, 2003b), the mechanisms mediating 

anandamide production are incompletely understood (Blankman and Cravatt, 2013). 

 

Traumatic Brain Injury Pathology 

Traumatic brain injuries are heterogeneous in their etiology, clinical presentation, 

severity, and pathology. The sequelae of molecular, biochemical, and physiological 

events that follow the application of an external mechanical force produce interacting 

acute and delayed pathologies, described as primary and secondary injuries. The initial 

insult produces an immediate mechanical disruption of brain tissue (Reilly, 2001). This 

primary injury consists of contusion, blood vessel disruption and brain oedema, 

localized necrotic cell death, as well as diffuse axonal injury producing degeneration of 

cerebral white matter (Adams et al., 1989; Gaetz, 2004).  
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 Secondary injury mechanisms are initiated within minutes, in which necrotic and 

apoptotic cell death in contused areas and pericontusional penumbra continue over a 

period of days to months (Raghupathi, 2004). Neuronal disruption spills excitatory 

amino acids into the interstitial space, producing glutamate-mediated excitotoxicity 

(Bullock et al, 1998). Massive influx of Ca2+ into cells (Floyd et al, 2010) produce 

mitochondrial dysfunction and the release of reactive oxygen species (ROS) which lead 

to further apoptosis (Zhao et al, 2005). Injury-induced activation of CNS resident glial 

cells, microglia, as well as recruitment of circulating inflammatory cells, e.g. 

macrophages, then produce secretion of inflammatory mediators, cytokines and 

chemokines (reviewed in Woodcock and Morganti-Kossmann, 2013). Increased 

intracranial pressure leads to reductions in cerebral blood flow (Shiina et al, 1998), while 

injury-induced breakdown of the cerebrovascular endothelium contributes to dysfunction 

of the blood brain barrier (BBB) (Chodobski et al, 2012). Extracranial pathologies are 

also evident following TBI with pulmonary complications being the most common (Pelosi 

et al, 2005). Neurogenic pulmonary oedema often develops early after brain injury, 

producing hypoxemia and further aggravating secondary brain injury (Brambrink and 

Dick, 1997; Oddo et al., 2010). These varied and interacting disease processes 

highlight the necessity to address the multiple targets associated with secondary injury 

cascades following TBI. 

 While there are many types of CNS injury models (e.g. spinal cord injury, lesion 

studies, focal and global ischemic injury etc. (Arai and Lo, 2009; Titomanlio et al, 2015), 

this review will focus primarily on the work investigating manipulations of the eCB 

system in preclinical models of traumatic brain injury. 
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Pre-Clinical Evaluation of Cannabinoids to Treat TBI 

While basal anandamide and 2-AG levels differ within various structures in the CNS, 

levels increase on demand in response to a given stimuli (e.g. the induction of nausea 

[Sticht et al., 2016] or pain states [Costa et al., 2008]). eCBs are lipid messengers not 

stored in synaptic vesicles (likely due to their hydrophobicity) but rather synthesized in 

an activity-dependent manner from membrane phospholipid precursors (Alger and Kim, 

2011). Consequently, endocannabinoid signaling is enhanced by a stimulus-response 

synthesis and release mechanism.  

eCB levels increase in selected CNS tissue following neuronal damage, which 

may reflect a self-neuroprotective response. NMDA excitotoxicity produces elevations of 

anandamide in ipsilateral cortex of rats by 4-fold at 4 h, and 14-fold at 24 h, but with no 

changes in 2-AG levels (Hansen et al, 2002). Concussive head trauma in rats produces 

a similar pattern of findings in which modest increases of anandamide levels occur in 

ipsilateral cortex, and again with no change in 2-AG levels (Hansen et al, 2002). This 

pattern was replicated by Tchantchou et al., 2014, who found a 1.5 fold increase of 

anandamide levels at three days post-TBI in ipsilateral mouse brain, and with no 

change in 2-AG. In contrast, Panikashvili et al., 2001 reported that TBI in mice led to 

increases of 2-AG in ipsilateral brain from 1 h to 24 h with elevations as high as 10-fold. 

Thus, further research is needed to discern whether species differences, the model 

used to elicit neurotrauma, and/or other procedural considerations contribute to the 

differential elevation of these eCBs (Mechoulam and Lichtman, 2003). 

A lack of studies systematically investigating the consequences of TBI on 

changes in eCB levels in specific brain regions perhaps point to the difficulty in 
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measuring changes in the volatile eCBs, prone to rapid degradation (Deutsch and Chin, 

1993; Dinh et al, 2002). While pharmacological and genetic manipulations of the eCB 

system continue to be evaluated following TBI; full characterization of how eCB 

biosynthetic and degradative enzymes, receptors, and endogenous ligands, their 

precursors and catabolic products, change as a consequence of TBI remains to be fully 

illuminated. 

 

Treatment of Cellular and Molecular Pathophysiology of TBI 

In this section, we review preclinical studies of cannabinoids in the context of their 

potential to protect against cellular and molecular TBI pathology, (see Table. 1). 

CNS Cell Death. TBI-induced neuronal loss occurs almost immediately as 

necrotic cell death and continues for months following the initial insult via both necrotic 

and apoptotic cell death (Raghupathi, 2004). From a traumatic insult, the initial contused 

area forms a regional primary lesion or infarct surrounding which is the pericontusional 

penumbra, the area immediately adjacent to the primary lesion and at risk for further 

neurodegeneration. The evolution of the pericontusional penumbra occurs largely due 

to secondary injury mechanisms and has long been considered a candidate for 

interventions to protect against, or salvage from, further injury (Wang et al, 2014). The 

investigation of cannabinoids on traumatic CNS cell death have thus far demonstrated 

efficacy in two areas; attenuated neurodegeneration and reduced lesion volume. 

Neurodegeneration, commonly measured by reductions in the neuronal marker 

fluoro-jade C, has been found to be readily attenuated in mice by CB2 receptor agonists 

(Amenta et al, 2012), as well as by inhibitors of FAAH (Tchantchou et al, 2014) and 
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MAGL (Zhang et al, 2014). Additionally, FAAH inhibitors produce reductions in lesion 

volume, and increased production of the heat shock proteins Hsp70, known to be 

structurally protective, and Hsp72, a negative regulator of apoptosis (Tchantchou et al, 

2014). Tchantchou et al., 2014 also showed that FAAH inhibition increased expression 

of the anti-apoptotic protein Bcl-2. 

Several enzymes hydrolyze 2-AG including MAGL, which accounts for an 

estimated 85% of its total hydrolysis, as well as α/β-hydrolase domain-6 (ABHD6) and 

ABHD12, which are responsible for much of the remaining 15% (Blankman et al, 2007). 

Tchantchou and Zhang, 2013 found that inhibition of ABHD6 also reduced lesion 

volume and lowered neurodegeneration in a mouse CCI model. A CB1 receptor 

antagonist attenuated the protective effects on lesion volume, while CB1 and CB2 

receptor antagonists prevented the protective effects on neurodegeneration 

(Tchantchou and Zhang, 2013). 

Combined, this evidence suggests that inhibitors of eCB hydrolysis offer 

protection against TBI-induced cell death which involve CB1 and CB2 receptors, though 

the distinction between the eCBs remains to be clarified. Few studies have evaluated 

interactions between anandamide and 2-AG in laboratory models of TBI. One study 

using a model of cerebral focal ischemia found that exogenously administered 

anandamide and 2-AG in combination reduced infarct size in rats, but with no facilitatory 

effects beyond anandamide or 2-AG alone (Wang et al, 2009). Given the recent 

availability of dual FAAH/MAGL inhibitors (Long et al, 2009; Niphakis et al, 2012), 

simultaneous blockade of these enzymes following TBI may further reveal some insight 

into the relationship between anandamide and 2-AG on TBI-induced cell death. 
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Excitotoxicity. Previous efforts to attenuate the effects of excitotoxicity following 

brain injury focused on NMDA receptor antagonists, presumably with the understanding 

that the induction of depressed NMDA receptor function would counteract TBI-induced 

excitotoxicity. This class of drugs showed promise in laboratory animal models of TBI 

(Shohami et al, 1995), but failed to produce long-term beneficial outcomes in clinical 

trials, despite some acute benefits of improved intracranial pressure and cerebral 

perfusion pressure (Knoller et al, 2002; Maas et al, 2006). Research investigating 

manipulations of the eCB system on glutamatergic functioning following TBI have thus 

far focused primarily on 2-AG, and paradoxically, its effectiveness to protect the integrity 

of glutamate receptor function.    

 Several studies investigating the effects of cannabinoids in laboratory animal 

models of TBI have focused on expression changes of metabotropic (mGluR1, mGluR5), 

AMPA (GluA1, GluA2), and NMDA (GluN1, GluN2A, GluN2B) glutamatergic receptors. 

Specifically, post-injury administration of the MAGL inhibitor JZL184 reversed TBI-

induced reductions of GluN2A, GluN2B, and GluA1 receptor expression, but with no 

impact on GluN1 or GluA2 receptors (Zhang et al, 2014). The CB1 receptor antagonist 

Rimonabant did not alter injury-induced lowered expression of mGluR1, but surprisingly 

reversed reduced mGluR5 receptor expression six weeks following TBI (Wang et al, 

2016). Both findings were completed 30 days post injury (Wang et al, 2016; Zhang et al, 

2014), suggesting long term changes in glutamatergic function following acute 

administration of cannabinoids post-injury. However, little overlap is found between 

receptor expression endpoints across papers. In an example of contradictory patterns of 

GluA1 expression after injury, GluA1 expression was reduced in a study that subjected 
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mice to a daily mild closed head injury on three consecutive days (Zhang et al., 2014), 

and was increased in rats subjected to a single lateral fluid percussion brain injury 

(Mayeux et al., 2016). In these studies, MAGL inhibition ameliorated both the reduced 

(Zhang et al., 2014) and increased (Mayeux et al., 2016) GluA1 expression. As 

discussed above (see Section 4), systematic investigation of species (mice vs. rat), 

brain injury model, number of injuries, and other experimental variables are needed to 

understand the consequences of brain injury on glutamate receptor changes. 

eCBs are known to depress glutamate release from pre-synaptic terminals, and 

in particular, 2-AG has been explored in its ability to influence the functioning of 

electrochemical neurotransmission. MAGL inhibition has been found to protect against 

injury-induced increases in frequency and amplitude of excitatory post-synaptic currents 

(EPSC) in pyramidal neurons at the site of injury (Mayeux et al, 2016), which may 

suggest changes in pre-synaptic transmitter release or post-synaptic strength (Zhang et 

al, 2005). MAGL inhibition has also protected against injury-induced long term 

potentiation (LTP) impairments at hippocampal CA3-CA1 synapses (Zhang et al, 2014), 

implicating the restoration of glutamate receptor function in protection against TBI-

induced memory impairments. 

Finally, the excitotoxicity resulting from TBI is part of the sequelae of events that 

lead to release of damaging ROS. Antioxidants are known to prevent oxidation of free 

radicals and thus protect against the cellular damage in response to sudden ROS 

elevation. Endocannabinoids have been linked to the neuroprotective production of 

antioxidants  as the administration of exogenous 2-AG following injury has been found 

to increase levels of antioxidants (Panikashvili et al, 2006).  
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Combined, these data suggest that MAGL represents a promising target to 

reduce the damaging effects of injury-induced excitotoxicity through complementary 

molecular pathways. 

Neuroinflammation. Hydrolytic enzymes of anandamide and 2-AG produce a 

shared metabolic product in the formation of free AA, the major substrate of the 

biosynthetic enzymes of pro-inflammatory eicosanoids (Nomura et al, 2011). Therefore, 

eCB oxidation not only produces inactivation at cannabinoid receptors, but also leads to 

the production of bioactive lipids involved in inflammatory responses during the early 

stages of injury. Manipulations of the endocannabinoid system have proved effective in 

downregulating inflammation in many experimental models, such as inflammatory pain 

(Ahn et al, 2009), and multiple sclerosis (Mestre et al, 2005). The use of cannabinoids 

following TBI have thus far been linked to two predominant features of inflammation; 

decreased inflammatory cell activation, and decreases in pro-inflammatory cytokine 

production. 

 Pro-inflammatory activated microglia are known to exacerbate TBI-induced 

neuroinflammation (Kigerl et al, 2009). Thus, decreasing TBI-inductions of inflammatory 

cell activation is an attractive treatment strategy. MAGL inhibition protects against TBI-

induced microglial activation (Katz et al, 2015; Zhang et al, 2014), while ABHD6 

inhibition promotes microglia/macrophage shift from a pro-inflammatory M1 to an anti-

inflammatory M2 phenotype (Tchantchou and Zhang, 2013). A parsimonious 

explanation for these findings is that prevention of 2-AG hydrolysis leads to reduced 

levels of AA and concomitant reductions of pro-inflammatory mediators. Given the 

contribution of 2-AG catabolism to eicosanoid production, it is unsurprising that several 
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studies have reported eCBs as demonstrating pro-inflammatory roles, some examples 

of which include models of nephropathy (Mukhopadhyay et al, 2010a), cardiomyopathy 

(Mukhopadhyay et al, 2010b), and experimental dermatitis (Oka et al, 2006). Most of 

such pro-inflammatory effects are attributed to 2-AG and not anandamide, likely due to 

its considerable abundance over anandamide. However, FAAH inhibition, similarly has 

been found to protect against TBI-induced microglial activation (Katz et al, 2015), as too 

has activation of CB2 receptors (Amenta et al, 2012). Thus, a need exists to disentangle 

the potential contributions of 2-AG to pro-inflammatory processes from its role as a 

substrate for AA production, versus anti-inflammatory effects through cannabinoid 

receptors, following TBI. 

 Inhibition of eCB degradative enzymes has also produced decreases in TBI-

induced pro-inflammatory mediators. Reductions in the expression of inducible enzymes 

that trigger eicosanoid production following brain injury, COX-2 enzyme (which converts 

free AA to prostaglandins) and iNos (which produces the free radical nitric oxide in 

response to cytokine signaling), are seen in response to ABHD6 inhibition (Tchantchou 

and Zhang, 2013) and FAAH inhibition (Tchantchou et al, 2014). Reductions in TBI-

induced pro-inflammatory cytokine mRNA (Il-1β, TNFα, and IL-6)  have also been found 

following treatment with exogenous 2-AG (Panikashvili et al, 2006). These findings 

seem counter-intuitive given the possibility of the rapid oxidation of 2-AG and its 

consequent contribution to eicosanoid production. However, exogenous 2-AG has also 

been shown to ameliorate TBI-induced transactivation of the nuclear factor NF-kB 

(linked to cytokine production) in wild type mice, but not in CB1 knockout mice, 
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suggesting that CB1 receptors mediate the protective effects of exogenous 2-AG 

(Panikashvili et al, 2005). 

Cerebrovascular Breakdown. The blood vessels which carry oxygen rich blood 

to the brain are lined by endothelial cells as well as astrocytes. These cells, combined 

with specific transport proteins and enzymes, strictly regulate movement between the 

general circulation and CNS extracellular fluid, and are collectively known as the blood 

brain barrier (BBB). TBI has been well documented in producing cerebral blood flow 

pathology (Kelly et al, 1997) as well as interfering with BBB integrity (Başkaya et al, 

1997). Given that cannabinoids are known to exert vascular effects, producing 

vasodilation as well as hypotension (reviewed in Hillard, 2000b), their manipulation may 

hold promise as protectants against cerebrovascular damage. Below, we review studies 

examining the effects of cannabinoids on TBI-induced disruption of BBB integrity. 

 Exogenous administration of 2-AG (Panikashvili et al, 2006),  as well as MAGL 

inhibition (Katz et al, 2015), and ABHD6 inhibition (Tchantchou and Zhang, 2013) 

administered post-injury protect against BBB breakdown. However, Panikashvili et al., 

2006 found that the expression of proteolytic enzymes implicated in BBB breakdown 

were unaffected by exogenous 2-AG post-injury. These enzymes include matrix 

metallopeptidase-9 (MMP9) involved in extracellular matrix degradation, and tumor 

necrosis factor-α-converting enzyme (TACE), which cleaves membrane-bound proteins. 

The mechanism by which 2-AG acts as a protectant of BBB integrity following traumatic 

insult is yet to be resolved.  

One study found that post-surgery administration of a FAAH inhibitor protected 

against BBB breakdown (Katz et al, 2015), suggesting that anandamide and/or other 
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substrates of this enzyme play a protective role. While the mechanism underlying the 

structural protection of the BBB was not explored following TBI, anandamide has been 

found to decrease BBB permeability in a model of ischaemic stroke by transient 

receptor potential cation channel, subfamily V, member 1 (TRPV1) (Hind et al, 2015). 

Given that activation of TRPV1 receptors disrupts BBB integrity (Hu et al, 2005), it is 

possible that anandamide, as a partial agonist at TRPV1 channels (Pertwee and Ross, 

2002), maybe be acting as a functional antagonist against a high efficacy endogenous 

agonist to produce its structurally protective effects of the cerebral microvascular 

endothelium. The exploration of how anandamide may be exerting its protective effects 

of BBB integrity may yet yield further novel targets for the treatment of TBI. 

 In cerebral circulation, CB1 receptor activation produces vasodilation. Indeed, the 

CB1 receptor antagonist rimonabant inhibited hypotension induced by endotoxin shock 

and hemorrhagic shock, as well as increasing survival (Varga et al, 1998). Though 

cannabinoids are yet to be explored in the context of TBI-induced changes in cerebral 

blood flow, CB1 receptor antagonism may prove to be a potential target for the 

treatment of TBI-induced hypotension. 

Cell Structure/Remodeling. The key biological idea that structure dictates 

function also holds true for the neurophysiology of TBI. The shearing and tearing forces 

of TBI and subsequent secondary injury cascades produce changes in cell architecture, 

extracellular matrices, and the balance of fluid homeostasis, that impair neuronal 

function often both in a focal and/or diffuse manner throughout the brain (Gaetz, 2004). 

The use of cannabinoids has thus far been linked to protection against several of the 
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CNS structural changes associated with TBI, with 2-AG being the most frequently 

studied eCB in this area. 

 While a traumatic insult can result in the rapid onset of cerebral oedema, 

exogenously administered 2-AG protects against TBI-induced oedema (Panikashvili et 

al, 2001, 2005). The observation that no such oedema protection was found following 2-

AG administration in CB1 receptor-/- mice (Panikashvili et al, 2005) suggests that this 

protection requires CB1 receptor activation. Changes in protein physiology have also 

been found to occur following TBI. Specifically, the presence of protein aggregates such 

as amyloid-β plaques (Johnson et al, 2010), hyperphosphorylated tau (p-tau) (Goldstein 

et al, 2012), and TAR DNA-binding protein 43 (TDP-43) (Smith et al., 1999), have been 

found within hours following TBI. These proteins are thought to accumulate from 

damaged axons and as a result of a disturbed balance between genesis and catabolism 

(Johnson et al, 2010). MAGL inhibitors decrease amyloid-β protein and its precursor 

molecule amyloid precursor protein (APP), as well as p-tau and TDP-43 (Zhang et al, 

2014). MAGL inhibition also decreases astrocyte activation (Mayeux et al, 2016), while 

exogenous 2-AG following TBI reduces hippocampal CA-3 neuron loss (Panikashvili et 

al, 2001). These consistent protective effects of 2-AG across varied TBI-related 

structural pathologies point to its important role in maintaining cell structure and 

promoting remodeling.  

Protective roles played by anandamide in injury-induced structural changes are 

yet to be ascertained. Though FAAH inhibition decreases APP expression post-injury, 

as well as increases synaptophysin (Tchantchou et al, 2014), a synaptic vesicle protein 

whose elimination impairs object recognition and spatial learning in mice (Schmitt et al, 
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2009). Furthermore, eCBs may not be working alone to offer protection from TBI-

induced structural impairments. For example, estradiol decreased the number of TBI-

induced immunoreacitve astrocytes, which was inhibited by CB1 and CB2 receptor 

antagonists, while also increasing cerebral cortex mRNA levels of CB2 receptors (Lopez 

Rodriguez et al, 2011). These findings suggest that the regulatory activity of the eCB 

receptors in response to TBI may be mediated by endocrine as well as paracrine 

signaling mechanisms. 

 TBI is well described to increase CB1 and CB2 receptor expression, which 

includes disruption of diurnal rhythms of CB1 receptor expression (Martinez-Vargas et 

al, 2013). Post-injury treatment with a CB1 receptor antagonist reduces CB1 receptor 

expression at 6 weeks following injury (Wang et al, 2016), whereas ABHD6 inhibition 

produces increased CB1 and CB2 receptor expression (Tchantchou and Zhang, 2013). 

As such, TBI-induced increases in cannabinoid receptor expression are perhaps 

facilitated by 2-AG. 

Neurogenic Pulmonary Oedema. Pulmonary complications are reported in 20-

25% of TBI patients (Holland et al, 2003), and its severity is related to brain injury 

magnitude (Alvarez et al, 2015). The exact CNS circuits involved in neurogenic 

pulmonary oedema (NPE) have yet to be identified, though a sudden rise in intracranial 

pressure, rapid sympathetic surge, increased systemic vascular resistance and increase 

in hydrostatic pressure in the pulmonary vasculature, as well as release of pro-

inflammatory mediators may all contribute to interstitial pulmonary oedema formation 

(Brambrink and Dick, 1997). NPE rapidly occurs within hours of TBI onset in clinical 

populations (Alvarez et al, 2015), and within minutes in animal models (Atkinson et al., 
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1998), producing CNS hypoxia (Oddo et al, 2010) which further contributes to 

secondary injury. NPE is a much needed area of interest in the study of TBI. 

 While at the present time there are no studies evaluating the contributions of, or 

protection by, the eCB system to NPE following TBI, this may prove an interesting area 

of future investigation. Specifically, the lung possesses a basal tone of 2-AG (Avraham 

et al, 2008; Nomura et al, 2008), and recently it has been shown that resident lung 

macrophages express major components of the eCB system, CB1 and CB2 receptors as 

well as anandamide and 2-AG (Staiano et al, 2015). Furthermore, MAGL inhibition has 

already been found to be protective against LPS-induced acute lung injury in mice, and 

attenuated with CB1 and CB2 receptor antagonists (Costola-de-Souza et al, 2013).  

 

Treatment of Behavioral Deficits of TBI 

The heterogeneous clinical presentation of TBI pathology in populations of survivors is 

reminiscent of its cellular and molecular pathophysiology described above. TBI patients 

report changes in mental health (depression, irritability, anxiety, and personality 

changes), sleep disturbance, post-traumatic headaches, persistent fatigue, epilepsy, 

learning and memory deficits (manifested also as impairments in attention and 

processing speed [Vakil, 2005]), and balance disorders (Stéfan et al, 2016). Most 

frequently investigated measures in the pre-clinical TBI literature include neurological 

motor, and learning and memory impairments, leaving a wide breadth of TBI clinical 

effects yet to be studied. Once again, components of the eCB system may become 

active to compensate for TBI symptomology given what is currently known of its 
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regulatory effects within these areas, two examples being pain, and anxiety and 

depression (Corcoran et al, 2015). 

In this section, we review what is currently known of cannabinoids in the context 

of their ability to alter post-traumatic animal behavior (see Table. 2). 

Learning and Memory. Learning and memory impairments are among the most 

frequently reported symptoms following TBI, and are slow to recover with deficiencies 

reported ten years later (Zec et al, 2001). The eCB system has been shown to play a 

well-documented role in memory regulation (reviewed in Mechoulam and Parker, 2011), 

and as such its manipulation holds considerable promise to address such a profound 

consequence of TBI.  

 Inhibition of the eCB hydrolytic enzymes FAAH (Tchantchou et al, 2014), MAGL 

(Zhang et al, 2014), and ABHD6 (Tchantchou and Zhang, 2013) have been shown to 

protect against TBI-induced memory impairments, suggesting that anandamide and 2-

AG elevation post-TBI may offer protection from TBI-induced learning and memory 

deficits. The protective effects of 2-AG appear to be task specific, with ABHD6 inhibition 

showing learning and memory protection in a Y-maze task, but not a Morris water maze 

task. To date, only a Y-maze task has been used to evaluate the memory protective 

effects of FAAH inhibition, and this task-specific effect did not occur with a MAGL 

inhibitor. Mice are a well-used pre-clinical model organism to study the memory effects 

of TBI; however, they are known to perform behavioral tasks more readily, and with less 

error, when the task does not rely on aversive motivation (Stranahan, 2011). This 

attribute of mice may, in some part, contribute to the task-related differences seen 

between the Y-maze task (which uses exploratory behaviors associated with novelty) 
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and the aversively motivated escape behavior necessary in the Morris water maze. 

Regardless, in clinical populations the most common memory process vulnerable to TBI 

involves difficulties applying active or effortful strategies in the learning or retrieval 

process (Vakil, 2005). Moving forward, the use of behavioral tasks able to selectively 

assess such frontal lobe-type memory impairments might improve the translational 

capacity of eCB TBI pre-clinical assessments (one such example being the Morris water 

maze Reversal Task, which evaluates cognitive flexibility). 

Neurological Motor. TBI-induced neurological motor impairments currently 

represent the most frequently studied behavioral outcome measure in the TBI-

cannabinoid literature. In clinical populations, neurological motor impairments seen as a 

result of TBI show spontaneous improvement over time, but one third of patients 

continue to experience neuromotor abnormalities two years after injury (Walker and 

Pickett, 2007). A variety of eCB system manipulations have thus far been found to be 

protective against the neurological motor deficits associated with murine models of TBI.  

 Both 2-AG and anandamide elevation provide protection against TBI-induced 

neurological motor deficits. MAGL inhibitors (Katz et al, 2015; Mayeux et al, 2016; 

Zhang et al, 2014), ABHD6 inhibitors (Tchantchou and Zhang, 2013), and exogenous 2-

AG administration (Panikashvili et al, 2001), improve Neurological Severity Score (NSS) 

in laboratory animal models of TBI. Moreover, ABHD6 inhibition also protects against 

TBI-induced rotarod deficits (Tchantchou and Zhang, 2013). Administration of 

exogenous 2-AG did not enhance NSS scores in CB1 receptor knockout mice subjected 

to TBI (Panikashvili et al, 2005), suggesting a CB1 receptor mechanism of action. FAAH 

inhibition has produced mixed findings in neurological motor tests, such as beam-walk 
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deficit protection (Tchantchou et al, 2014) but no improvement on TBI-induced NSS 

deficits (Katz et al, 2015). In support of anandamide being protective against TBI-

induced motor deficits, exogenous anandamide has also produced improved NSS 

performance (Martinez-Vargas et al, 2013). Full reversal, and partial reversal, of FAAH 

inhibitor mediated beam-walk deficit protection by respective CB2 and CB1 receptor 

antagonists (Tchantchou et al, 2014), suggest a role of both of these receptors in 

anandamide’s neuromotor deficit sparing effects. The involvement of the CB2 receptor is 

further supported by rotarod deficit protection from a CB2 receptor agonist (Amenta et 

al, 2012). 

 The role of entourage effects has also been evaluated in the area of TBI-induced 

neurological motor impairments. Co-release of endogenous fatty acid derivatives can 

potentiate 2-AG signaling, termed an entourage effect (Ben-Shabat et al, 1998; 

Lambert, D. M., Di Marzo, 1999; Lichtman et al, 2002). Administration of 2-AG with two 

related lipids that do not bind cannabinoid receptors, 2-linoleoyl-glycerol (2-LG) and 2-

palmitoyl-glycerol (2-PG), enhances recovery from TBI-induced NSS deficits 

(Panikashvili et al, 2001). Given FAAH is responsible for the degradation of various fatty 

acid amides in addition to anandamide (Boger et al, 2000), its various substrates may 

work in concert to ameliorate pathologies related to TBI. Thus any inferences drawn 

about anandamide through the use of FAAH inhibition need to consider contributions of 

noncannabinoid fatty acid amides. 

Anxiety and Post-Traumatic Seizures. The signs of post-traumatic anxiety 

have been difficult to replicate in murine models of TBI (Tucker et al, 2016). Also, as 

there is a limited number of studies evaluating eCBs in this area, no definitive 
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conclusions can be made. Thus far, only FAAH inhibition has been explored to address 

post-traumatic anxiety, and was found to protect against TBI-induced increases in 

anxiety-like behavior in mice (Tchantchou et al, 2014). This protection in the zero maze 

was unaffected by either CB1 or CB2 receptor antagonists, suggesting that these 

receptors are dispensable. Modeling post-traumatic epilepsy is time consuming and 

faces other challenges such as a low percentage of animals that develop epilepsy 

(Mazarati, 2006), however, recent models that produce consistent replication of 

spontaneous seizure activity following a TBI are available (Ping and Jin, 2016). Contrary 

to preclinical research demonstrating that the eCB system plays a protective roles 

against seizures (Marsicano et al., 2003; Wallace et al., 2001), a CB1 receptor 

antagonist has protected against injury-induced seizure threshold deficits as well as 

lowered seizure mortality (Wang et al, 2016), potentially through the disinhibition of 

GABAergic terminals. 

This nascent body of data suggests that eCB manipulations hold promise to treat 

injury-induced clinical symptoms outside of the more popular areas of learning and 

memory and neurological motor impairments. 

 

Primary Phytocannabinoids and Traumatic Brain Injury 

Although currently well over one hundred phytocannabinoids have been elucidated from 

the Cannabis Sativa plant (Elsohly et al, 2017), the most extensively studied of these 

are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). The investigation of 

phytocannabinoids on TBI pathology not only holds topical relevance, but also holds 

promise as potential treatment for TBI and other disorders. 
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Without exception, all of the experimental work reviewed and listed in Tables 1 

and 2 have used post-injury drug administration times ranging from 15 minutes to 

several days, clearly an attempt to simulate clinical intervention timing possibilities. 

However, clinical and pre-clinical findings provide evidence suggesting that the primary 

psychoactive constituent of Cannabis Sativa, THC, is neuroprotective when 

administered prior to a traumatic insult. In a three year retrospective study of patients 

who had sustained a TBI, urine toxicology screen results showed decreased mortality in 

individuals with a positive THC screen (Nguyen et al, 2014a). In two mouse models of 

CNS injury that yield cognitive deficits, pentylenetetrazole (an excitotoxic agent) and 

carbon monoxide induced hypoxic injury, prior administration of THC provided 

impairment protection (Assaf et al, 2011). Curiously, an extraordinarily low dose of THC 

(i.e. 0.002 mg.kg-1) reduced injury-induced cognitive deficits in mice (Assaf et al, 2011). 

The authors explained this effect through the known biphasic effects of THC producing 

analgesia, acute hypothermia, and decreased locomotion at high doses (10 mg.kg-1), 

and producing hyperalgesia, hyperthermia, and increased locomotion at a low dose 

(0.002 mg.kg-1) (reviewed in Sarne et al., 2011). Such low dose effects of THC have 

been found to potentiate calcium entry into cells in vitro (Okada et al., 1992), increasing 

glutamate release, and thus may be mildly neurotoxic. Therefore, Assaf et al., 2011 

hypothesized that low dose THC pre-treatment produced a pre-conditioning effect, 

where a mildly noxious stimulus becomes protective against a more severe subsequent 

insult, an effect known to occur in cardiology (Dirnagl et al, 2003) as well as cerebral 

ischaemia (kitagawa et al., 1991). Moreover, the molecular signalling cascades behind 

cardiac and cerebral ischaemia preconditioning include activation of ERK and Akt 
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(Dirnagl et al, 2003; Gidday, 2006), also shown to mediate the protective effects of 

ABHDB (Tchantchou and Zhang, 2013) and MAGL (Mayeux et al, 2016) inhibition 

following TBI.  

Even though 80-90% of THC is excreted from individuals within five days of 

administration, the remaining slow release of lipophilic THC from lipid-storage 

compartments result in its long terminal half-life in plasma (Huestis, 2007). As such, 

individuals may experience very low plasma THC concentrations for prolonged periods 

after each application. Although the clinical study of TBI-induced mortality reported no 

data to quantify levels of THC in the THC positive individuals, the low dose THC in CNS 

injured mice may mimic the pharmacokinetics of THC in humans. This presumed 

prolonged exposure of THC due to its pharmacokinetics, as well as other potentially 

neuroprotective cannabinoids, such as CBD (Perez et al, 2013), may be responsible for 

the survival effects found in cannabis-exposed TBI patients. A finding of increased 

clinical relevance, is that post-conditioning (when the mildly noxious stimulus is applied 

after the insult) with low dose THC also produced cognitive sparing effects in mice 

(Assaf et al, 2011). These findings, however, remain controversial, and are yet to be 

replicated in animal models of TBI. 

The phytocannabinoid CBD, currently being investigated in clinical trials for its 

seizure reduction potential in Tuberous Sclerosis Complex (GW Research Ltd, n.d.), 

has known anti-inflammatory properties. Although CBD does not bind CB1 and CB2 

receptors, it activates the G-protein coupled receptor GPR55 (Ryberg et al, 2007), 

inhibits nucleoside transporter 1 (Carrier et al, 2006), inhibits sodium channels (Hill et al, 

2014), and produces increased extracellular adenosine concentrations that 
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consequently downregulate inflammatory cells through the adenosine A2A receptor 

(Hasko and Pacher, 2008; Ohta and Sitkovsky, 2001). While there are no studies at 

present which have investigated the anti-inflammatory effects of cannabidiol following 

TBI, cannabidiol has reduced FosB expression following cryogenic spinal cord injury 

(Kwiatkoski et al, 2012), and lowered iNos expression in a mouse model of tauopathy 

(Casarejos et al, 2013). As such cannabidiol may be a promising future avenue of 

investigation in the study of neuroinflammation in response to brain injury. 

 

Concluding Remarks and Future Directions 

The eCB system, through release of its endogenous ligands or by changes in 

cannabinoid receptor constitutive activity, possesses promise in the treatment of diverse 

TBI pathology. An important step forward in understanding the role that the eCB system 

plays in TBI pathology includes not only the full characterization of ligands targeting 

cannabinoid receptors and eCB regulating enzymes, but also changes in cannabinoid 

receptors, eCB levels, and eCB regulating enzymes as a consequence of TBI. Another 

future area of therapeutic interest is non-CB1/CB2 receptor targets, such as TRPV1 

receptors, and their potential contribution to the protective effects following TBI. 

Furthermore, alternative activation of CB1/CB2 receptors, such as potential entourage 

effects from other fatty acid derivatives, antagonism, or allosteric modulation, might 

impact functional selectivity and thus TBI-related outcomes also warrants further 

investigation. So too do the plant-derived phytocannabinoids represent an understudied 

yet promising group of compounds given the neuroprotective results obtained from 
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other types of CNS injury. In particular, CBD as well as other phytocannabinoids which 

do not bind cannabinoid receptors, represent promising molecules to treat TBI. 

 To date, the only reported cannabinoid to be specifically evaluated for the 

treatment of TBI in patient populations is Dexanabinol, also known as HU211. While 

HU211 showed promise in animal models of TBI  (Shohami et al, 1995), it failed to 

produce long term patient outcomes in one clinical trial despite some acute benefits 

(Knoller et al., 2002), and in a second study showed no short or long term benefits 

(Maas et al, 2006). Although HU211 has been described as a cannabinoid by virtue that 

it is an enantiomer of the potent synthetic cannabinoid agonist HU210, it does not bind 

or activate cannabinoid receptors. Instead, HU211acts as a non-competitive NMDA 

receptor antagonist (Feigenbaum et al, 1989). This therefore brings to light an important 

consideration of the classification of cannabinoids.  

 One consistently overlooked area across the study of TBI is the evaluation of the 

central penetration of systemically administered drugs. Pharmacological treatments will 

need to be assessed for their ability to cross the BBB. Also, it should be noted that TBI 

rapidly disrupts the BBB and lasts for three days post-injury (Başkaya et al, 1997). 

Furthermore, given the often biphasic nature of cannabinoid drugs, it is critical to move 

away from single dose pharmacology to full dose-response assessments, which may 

yield an increased understanding of the mechanism and potential of cannabinoids to 

treat TBI. Overall, the abundant and growing pre-clinical research suggests that the 

eCB system possesses many promising targets for new and existing drugs that may 

ameliorate diverse TBI pathology. 
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Table 1-1. Effect of cannabinoids on TBI-induced cellular and molecular 

pathophysiology. Drug targets; CB2 receptor agonist (O-1966), FAAH inhibitor 

(PF3845), MAGL inhibitors (JZL184 & URB597), ABHD6 inhibitor (WWL70), and CB1 

receptor antagonist (Rimonabant). TBI Models; CCI (controlled cortical impact), CHI 

(closed head injury), and FPI (fluid percussion injury). 

 

 
Compound
/ mutant 

 
Dose 

 
Species 

 

TBI 
Model/ 
Severity 

 
Effect 

 
Receptor 
Mediated 

 
References 

 

 

CNS Cell Death 
 

O-1966 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
moderate 

↓ Neurodegeneration CB2 Amenta et al., 2012 

 

PF3845 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

↓ Lesion volume 
↓ Neurodegeneration 
↑ Bcl-2, Hsp70 & 72 

Not 
evaluated 

Tchantchou et al., 2014 

 

JZL184 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CHI, mild 
repetitive 

↓ Neurodegeneration Not 
evaluated 

Zhang et al., 2014 

 

WWL70 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

↓ Lesion volume 
↓ Neurodegeneration 

CB1 
CB1 & CB2

 

Tchantchou & Zhang, 
2013 

 

Excitotoxicity 
 

Rimonabant 
2 mg/kg, 
i.p. 

rat 
Sprague-
Dawley 

Lateral 
FPI, 
severe 

mGluR5 receptor 
recovery at 6 wks (no 
impact on mGluR1) 

CB1 Wang et al., 2016 

 

2-AG 
5 mg/kg, 
i.p. 

mouse 
Sabra 

CHI, 
severe 

↑ levels of weak 
antioxidants 

Not 
evaluated 

Panikashvili et al., 2006 

 

JZL184 10 mg/kg, 
i.p. 
 
 
 

16 mg/kg, 
i.p. 

mouse 
C57BL/6 
 
 
 

rat 
Wistar 

CHI, mild 
repetitive 
 
 
 

Lateral 
FPI, mild 

Glutamate receptor 
recovery 
Injury-induced ↓ in LTP 
protection 
 

GluA1 expression 
protection 
Injury-induced ↑ in 
EPSC protection 

Not 
evaluated 
 
 
 

Not 
evaluated 

Zhang et al., 2014 
 
 
 
 

Mayeux et al., 2016 

 

Neuroinflammation 
 

CB1 -/- 
N/A mouse 

C57BL/6 
CHI, 
severe 

No effect on NF-κB 
transactivation 

N/A Panikashvili et al., 2005 

 

CB1 -/- +  
2-AG 

N/A mouse 
C57BL/6 

CHI, 
severe 

No effect on NF-κB 
transactivation  

N/A Panikashvili et al., 2005 

 

O-1966 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
moderate 

Microglial activation 
protection 

CB2 Amenta et al., 2012 

 

PF3845 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

↓ COX-2 Expression 
↓ iNos expression 

Not 
evaluated 

Tchantchou et al., 2014 

 

URB597 0.3 mg/kg, 
i.p. 

rat 
Sprague-
Dawley 

Lateral 
FPI, mild 

Microglial activation 
protection 

Not 
evaluated 

Katz et al., 2015 

 

2-AG 

5 mg/kg, 
i.p. 
 

mouse 
Sabra 
 

CHI, 
severe 
 

↓ TNFα mRNA 
↓ IL-1β mRNA 
↓ IL-6 mRNA 

Not 
evaluated 
 

Panikashvili et al., 2006 
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Table 1-1. Continued 
 

 
Compound
/ mutant 

 
Dose 

 
Species 

 

TBI 
Model/ 
Severity 

 
Effect 

 
Receptor 
Mediated 

 
References 

 

2-AG 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CHI, 
severe 

↓ NF-κB translocation & 
transactivation 

 
CB1 

Panikashvili et al., 2005 

 

JZL184 10 mg/kg, 
i.p. 
 
 

16 mg/kg, 
i.p. 

mouse 
C57BL/6 
 
 

rat 
Sprague-
Dawley 

CHI, mild 
repetitive 
 
 

Lateral 
FPI, mild 

↓ TNFα mRNA 
Microglial activation 
protection 
 

Microglial activation 
protection 

Not 
evaluated 
 
 

Not 
evaluated 

Zhang et al., 2014 
 
 
 

Katz et al., 2015 

 

WWL70 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

↓ COX-2 Expression 
↓ iNos expression 
M1 to M2 phenotype 

Not 
evaluated 

Tchantchou & Zhang, 
2013 

 

Cerebrovascular Breakdown 
 

URB597 0.3 mg/kg, 
i.p. 

rat 
Sprague-
Dawley 

Lateral 
FPI, mild 

BBB integrity protection Not 
evaluated 

Katz et al., 2015 

 

2-AG 
5 mg/kg, 
i.p. 

mouse 
Sabra 

CHI, 
severe 

BBB integrity protection Not 
evaluated 

Panikashvili et al., 2006 

 

JZL184 16 mg/kg, 
i.p. 

rat 
Sprague-
Dawley 

Lateral 
FPI, mild 

BBB integrity protection Not 
evaluated 

Katz et al., 2015 

 

WWL70 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

BBB integrity protection Not 
evaluated 

Tchantchou & Zhang, 
2013 

 

CNS Cellular Structure/Remodeling 
 

Vehicle 
(saline-5% 
ETOH) 

4 µL rat 
Wistar 

CHI, 
moderate 

Diurnal CB1 expression 
abolished 
↑ contralateral CB1 & 
CB2 Expression 

 Martinez-Vargas et al., 
2013 

 

CB1 -/- 
N/A mouse 

C57BL/6 
CHI, 
severe 

No effect on oedema N/A Panikashvili et al., 2005 

 

CB1 -/- +  
2-AG 

N/A mouse 
C57BL/6 

CHI, 
severe 

No effect on oedema N/A Panikashvili et al., 2005 

 

Rimonobant 2 mg/kg, 
i.p. 

rat 
Sprague-
Dawley 

Lateral 
FPI, 
severe 

↓ CB1 Expression at 6 
weeks post-TBI 

CB1
 Wang et al., 2016 

 

PF3845 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

↓ APP 
↑ Synaptophysin 

Not 
evaluated 

Tchantchou et al., 2014 

 

2-AG 
5 mg/kg, 
i.v. 
 

5 mg/kg, 
i.p. 

mouse 
Sabra 
 

mouse 
C57BL/6 

CHI, 
severe 
 

CHI, 
severe 

↓ CA3 neuron loss 
Oedema protection 
 

Oedema protection 

 
CB1

 

 

CB1 

Panikashvili et al., 2001 
 
 

Panikashvili et al., 2005 

 

JZL184 10 mg/kg, 
i.p. 
 
 
16 mg/kg, 
i.p. 

mouse 
C57BL/6 
 
 
rat 
Sprague-
Dawley 

CHI, mild 
repetitive 
 
 
Lateral 
FPI, mild 

↓ APP  
↓ Amyloid-β peptide 
↓ TDP-43 & p-tau 
 
↓ astrocyte activation 

Not 
evaluated 
 
 
Not 
evaluated 

Zhang et al., 2014 
 
 
 
Mayeux et al., 2016 

 

WWL70 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

↑ CB1 & CB2 
Expression 

Not 
evaluated 

Tchantchou & Zhang, 
2013 
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Table 1-2. Effect of cannabinoids on TBI-induced behavioral impairments. Drug 

targets; CB2 receptor agonist (O-1966), FAAH inhibitor (PF3845), MAGL inhibitors 

(JZL184 & URB597), ABHD6 inhibitor (WWL70), and CB1 receptor antagonist 

(Rimonabant). TBI Model definitions; CCI (controlled cortical impact), CHI (closed head 

injury), and FPI (fluid percussion injury). 

 

Compound/ 
mutant 

 

Dose 
 

Species 
 

TBI 
Model/ 
Severity 

 

Effect 
 

Receptor 
Mediated 

 

References 

 

Learning and Memory 
 

PF3845 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

Y-maze deficit 
protection 

CB1
 

Partial CB2
 

Tchantchou et al., 2014 

 

JZL184 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CHI, mild 
repetitive 

MWM deficit reduction Not 
evaluated 

Zhang et al., 2014 

 

WWL70 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

Y-maze deficit 
protection 
No impact on MWM 
deficit 

Not 
evaluated 

Tchantchou & Zhang, 
2013 

 

Neurological Motor Deficits 
 

CB1 -/- 
N/A mouse 

C57BL/6 
CHI, 
severe 

Impaired NSS score CB1
 Panikashvili et al., 2005 

 

CB1 -/- +  
2-AG 

N/A mouse 
C57BL/6 

CHI, 
severe 

Impaired NSS score CB1
 Panikashvili et al., 2005 

 

O-1966 5 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
moderate 

Rotarod deficit 
protection 

Not 
evaluated 

Amenta et al., 2012 

 

Anandamide 
1.25 µg/4 
µL, ICV 

rat 
Wistar 

CHI, 
moderate 

Improved NSS score Not 
evaluated 

Martinez-Vargas et al., 
2013 

 

PF3845 5 & 10 
mg/kg, i.p. 

mouse 
C57BL/6 

CCI, 
severe 

Beam-walk deficit 
protection 

Partial CB1
 

CB2
 

Tchantchou et al., 2014 

 

URB597 0.3 mg/kg, 
i.p. 

rat 
Sprague-
Dawley 

Lateral 
FPI, mild 

No impact on NSS or 
NBS 

Not 
evaluated 

Katz et al., 2015 

 

2-AG 
5 mg/kg, 
i.v. 

mouse 
Sabra 

CHI, 
severe 

Improved NSS score Not 
evaluated 

Panikashvili et al., 2001 

 

2-AG + 2-PG 
+ 2-LG 

1 mg/kg, 
i.v. 

mouse 
Sabra 

CHI, 
severe 

Improved NSS score Not 
evaluated 

Panikashvili et al., 2001 

 

JZL184 10 mg/kg, 
i.p. 
 

16 mg/kg, 
i.p. 
 
 

16 mg/kg, 
i.p. 

mouse 
C57BL/6 
 

rat 
Sprague-
Dawley 
 

rat 
Sprague-
Dawley 

CHI, mild 
repetitive 
 

Lateral 
FPI, mild 
 
 

Lateral 
FPI, mild 

Improved NSS score 
 
 

Improved NSS & NBS 
score, out to 1 d 
 
 

Improved NSS & NBS 
score, out to 14 d 

Not 
evaluated 
 

Not 
evaluated 
 
 

Not 
evaluated 

Zhang et al., 2014 
 
 

Katz et al., 2015 
 
 
 

Mayeux et al., 2016 

 

WWL70 10 mg/kg, 
i.p. 

mouse 
C57BL/6 

CCI, 
severe 

Improved NSS score 
Rotarod deficit 
protection 

Not 
evaluated 

Tchantchou & Zhang, 
2013 
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Table 1-2. Continued 

 

Compound/ 
mutant 

 

Dose 
 

Species 
 

TBI 
Model/ 
Severity 

 

Effect 
 

Receptor 
Mediated 

 

References 

 

Anxiety-Like Behavior 
 

PF3845 5 & 10 
mg/kg, i.p. 

mouse 
C57BL/6 

CCI, 
severe 

Zero-maze anxiety-like 
profile protection 

No CB1, 
CB2 
reversal 

Tchantchou et al., 2014 

 

Post-Traumatic Seizures 
 

Rimonabant 2 mg/kg, 
i.p. 

rat 
Sprague-
Dawley 

Lateral 
FPI, 
severe 

Protective against 
seizure threshold 
deficits 
Lowered seizure 
mortality 

CB1
 Wang et al., 2016 
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Figure 1-1. Endocannabinoid System Cell Localization by CNS Cell Type. 

Endocannabinoid functional specialization among CNS cell types is determined by the 

cellular compartmentalization of biosynthetic and catabolic enzymes (biosynthesis by 

NAPE and DAGL-α, -β, catabolism by FAAH and MAGL). Cellular level changes in eCB 

biosynthetic and catabolic enzymes as a result of brain injury have yet to be 

investigated, though morphological and molecular reactivity by cell type is well 

documented. 
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Figure 1-2. Enzymatic regulation of anandamide and 2-AG in normal brain, and 

following traumatic brain injury. 2-AG levels are approximately 1,000 fold higher than 

anandamide levels in brain. MAGL plays a rate-limited role in the production of AA in 

brain, lung, and liver (Nomura et al, 2008). Arrows represent known TBI-induced 

changes in eCBs, catabolic and downstream enzymes, and their metabolic products 

(arrow size has no relation to magnitude of change). 

 

 

 

 



37 
 

Dissertation Goals 

In light of the evidence that endocannabinoids both regulate processes of learning and 

memory and are produced in response to pathogenic events, it is likely their important 

contributions to memory function extend to conditions of memory pathology. As such, 

the present dissertation project had three goals. The first goal being to establish a 

preclinical mouse model of TBI-induced cognitive deficit, second to target diacylglycerol 

lipase-β (DAGL-β) as a novel target for the reduction of TBI-induced cognitive 

impairment, and the third and final goal was to understand the role of diacylglycerol 

lipase-α (DAGL-α) in spatial learning and memory regulation under physiological 

conditions. 

 The initial method development investigated functional deficits following TBI in 

mice using the fluid percussion injury model, as measured by spatial memory tasks of 

the Morris water maze and tasks of neurological motor impairment, as well as cellular 

changes evaluated in both histological outcomes and morphological changes to resident 

immune cells of the CNS. The development of this procedure and evaluation of these 

outcome measure differences following a left or a right unilateral insult, are described 

and discussed in Chapter 2. 

 Manipulations of endocannabinoid biosynthetic pathways may further reveal their 

role in compensatory repair pathways. The selective expression of diacylglycerol lipase-

β (DAGL-β) on resident immune cells of the CNS (microglia) and the role of 2-AG as a 

precursor for the production of pro-inflammatory eicosanoids, drove the consideration of 

this 2-AG biosynthetic production enzyme contribution to neuroinflammatory responses 

to TBI. Therefore a second goal of this dissertation was to focus on DAGL-β as a novel 
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target for the reduction of mouse TBI-induced cognitive impairment. Our working 

hypothesis was that disrupting DAGL-β activity would provide cognitive protection 

following brain injury by reducing pools of 2-AG metabolites (AA and pro-inflammatory 

eicosanoids) in microglia, and was funded by an F31 grant (1F31NS095628-01A1). 

These studies were conducted using the in vivo measures described in Chapter 2. An 

unexpected finding that DAGL-β disruption produced a survival phenotype following 

TBI, led us to continue the evaluation of this mortality protective effect. All of which is 

described in Chapter 3.  

 The neuronal expression of diacylglycerol lipase-α (DAGL-α), the second of two 

2-AG biosynthetic enzymes, drove the consideration of this enzyme contribution to the 

normal regulation of learning and memory processes. Therefore the third and final goal 

of this dissertation was to understand the in vivo role of DAGL-α in spatial learning and 

memory regulation in mice. This set of studies used complementary genetic and 

pharmacological approaches to investigate the role of DAGL-α in various hippocampal-

dependent memory processes. The dissertation concludes with a discussion of the 

overall implications of the entirety of these studies, as well as future directions. 
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Chapter II 

Chapter Introduction 

 

The first goal of this dissertation was to establish a preclinical mouse model of TBI-

induced cognitive dysfunction using the fluid percussion injury model, and learning and 

memory evaluation by the Morris water maze. 

 Memory dysfunction following TBI. TBI frequently results in a heterogeneous 

range of persistent comorbidities, with symptoms ranging from psychological (e.g. 

personality changes, anxiety, irritability, depression), to physiological (e.g. epilepsy, 

sleep disturbance, headache), motor (e.g. balance disorders), and cognitive deficits 

(e.g. impaired learning and memory). Learning and memory specifically is one of the 

most commonly experienced, and quality of life impacting impairments, following brain 

injury. Both retrograde amnesia (loss of event memory prior to TBI onset) and deficits in 

prospective memory (remembering to perform previously planned actions) are 

commonly reported following brain injury (Carlesimo et al, 1997; Groot et al, 2002). 

While very few experience global amnesia (total disruption of short term memory and 

impaired access to long term memory) after a TBI, the most commonly reported 

vulnerable memory processes include difficulties applying effortful strategies in learning 

and retrieval (Vakil, 2005) reminiscent of deficits associated with frontal lobe damage 

(della Rocchetta, 1986). Explicit memory (conscious recollection) is widely affected by 

TBI, with deficits seen in working memory tasks (Christodoulou et al, 2001; Stablum et 
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al, 1994) (during which neural activity becomes more bilateral and dispersed 

(Christodoulou et al, 2001), verbal and visual memory deficits (Zec et al, 2001), 

impaired learning rate (Zec et al, 2001), and accelerated forgetting rate (Haut et al, 

1990). Implicit memory (unconscious and procedural memory) is less consistently 

impacted, with well-practiced skills acquired prior to TBI being resistant to injury 

induced-impairments (Schmitter-Edgecombe and Nissley, 2000), whereas performance 

acquiring new skills post-TBI can be task and injury severity dependent (Vakil, 2005). 

Other cognitive domains which in turn affect learning and memory such as attention 

(Oddy et al, 1985) and processing speed (Ferraro, 1996) are also frequently negatively 

impacted by TBI. 

 While patients suffering from TBI are not an ideal group to study brain region-

behavior relationships (given the widespread diffuse pathophysiology of TBI), there is a 

great need to further understand the selective memory processes affected, as well as 

identify novel treatments. 

 Spatial memory evaluation in mice. To evaluate our primary functional 

endpoint, TBI-induced learning and memory deficits, we chose to use spatial memory 

tasks of the Morris water maze (MWM). The MWM was first described over 30 years 

ago (Morris, 1981) as a model to investigate spatial learning and memory in rats. It has 

since been used extensively in behavioral neuroscience, but has also become a well 

characterized tool in the study of memory impairments following TBI. Mice have been 

repeatedly and successfully used in the MWM, an important adaptation from its original 

design using rats, given the utility of transgenic mouse models. However, MWM 

performance is affected by mice strain differences. Injured C57BL/6 mice have been 
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found to demonstrate deficits in learning compared to their sham controls, whereas 

sham controls for 129/SvEMS and FVB/N strains could not acquire the task (Fox et al, 

1999). Thus C57BL/6 mice are a useful strain for the study of TBI-induced MWM 

impairments.  

 The MWM is considered a test of spatial memory given it is hippocampal-

dependent, particularly sensitive to the effects of hippocampal lesions (Morris, 1984). 

While alternative hippocampal-dependent learning and memory tasks have been 

characterized (e.g. the object in place paradigm; Mitchnick et al, 2016), a unique utility 

of the MWM is the number of task variations that can be used to study distinct memory 

processes. The fixed platform task is used to assess the acquisition of memory, the 

reversal task evaluates cognitive flexibility (a form of fluid intelligence whereby inhibitory 

responses are required to explore alternative solution paths, increasing cognitive 

demands), and the cued task is used to control for sensory-motor and motivational 

confounds (Vorhees and Williams, 2006); are but some examples of such task 

variations. As such the MWM is a useful and adaptable tool to study the various types of 

memory impairments that brain injury can produce. 

 Neurological-motor evaluation in mice. Measures of neurological impairment 

can also be useful when administered following brain injury as a correlate of injury 

severity (Tsenter et al, 2008). We chose to utilize both the Neurological Severity Score 

(NSS) assessment and the Rotarod assay to corroborate injury severity between and 

within cohorts, but also as control measures to assess motor impairments during 

learning and memory assay conditions. The NSS is a neurological motor impairment 

assessment battery specifically for mice (Beni-Adani et al, 2001), widely used in pre-
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clinical studies of TBI. The Rotarod is a measure of motor coordination with specific 

sensitivity to murine models of TBI (Hamm et al, 1994). While the Rotarod assay itself 

requires motor learning processes, the presently used accelerating schedule is 

designed to evaluate motor performance while minimizing motor skill learning (Jones 

and Roberts, 1968).  

 Traumatic brain injury induction. The fluid percussion injury (FPI) model of 

traumatic brain injury has been extensively used in murine pre-clinical models, where by 

an injury is induced by striking a fluid-filled column secured to the exposed dura of the 

animal. A FPI creates a mixed focal and diffuse axonal injury (Dixon et al, 1987), which 

replicates key features of clinical head injury, and produces motor and memory deficits 

commonly seen in clinical cases of TBI (Hamm, 2001). 

 A unique utility of the FPI is its adaptability in terms of scalable injury severity as 

well as injury location. The severity of a FPI can be manipulated by raising or lowering 

the height from which the mallet (which strikes the fluid-filled column) is released. Injury 

severity is measured by pressure transduction via an oscilloscope, as well as assessed 

using standardized outcome measures relating to the status of the animal, such as 

righting time, and the previously mentioned neurological motor assessments. The unit of 

pressure used to evaluate the injury magnitude (atmospheres (atm), with 1 atm = 14.70 

pounds per square inch) is relatable to a category of injury severity (mild, moderate, 

severe), though no current standardization exists in the literature. For the purpose of the 

present work in mice, a mild FPI is considered <1.5 atm (Spain et al, 2010), a moderate 

FPI is considered 1.5 to 2.0 atm (Mukherjee et al, 2013), and a severe FPI is 

considered > 2.0 atm (Bolkvadze and Pitkanen, 2012). Further ways to adapt the FPI 
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include changing the position of the craniectomy, commonly positioned for either a 

central injury (directly 

over the sagittal suture 

and in between bregma 

and lambda) or as 

either a right or a left 

lateral injury 

(craniectomy positioned 

approximately 1 mm to 

the left or right of the 

sagittal suture, between 

bregma and lambda). 

The lateral FPI is 

commonly used (Van 

and Lyeth, 2016) and 

produces degenerative 

cascades in selectively vulnerable brain regions, including the ipsilateral hippocampus 

(Hicks et al, 1996). An initial central mild (1.4 atm) FPI produced no change in our 

mouse learning and memory assessment behaviors (data not included). This finding 

prompted an increase in injury severity, and due to concerns over survivability of a 

central moderate FPI, a change to a lateral injury. Both left and right lateral injuries were 

then evaluated at a moderate (1.92 atm) injury severity following which modest but 

distinct differences in learning and memory assessment performance was noted. 

Figure 2-A: Example of a mouse left-lateral craniectomy 

position. Pictured is a DAGL-β transgenic mouse (mixed 

background), in a stereotaxic surgical frame under gaseous 

isoflurane anesthesia (2.7%, 250 mL/min). Ophthalmic 

ointment is applied to the eye area, and iodine and ethanol 

sterilized soft tissue prior to the surgical incision. 
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 Lateralization of brain function. The medial longitudinal fissure separates the 

human brain into two distinct cerebral hemispheres with subcortical structures 

frequently occurring in duplicate “mirrored” in the left and right hemispheres. 

Accordingly, neural functions and cognitive processes (e.g. language; Gazzaniga and 

Sperry, 1967) are frequently more dominant in one hemisphere than the other; referred 

to as lateralization of brain function. It has long been posited that such functional 

lateralization is beneficial, and more recently greater functional lateralization has been 

associated with improved cognitive ability (Gotts et al, 2013). Indeed, lateralization of 

higher order brain functions has been well described in humans, with the left 

hemisphere being dominant for language processing and the right for visuospatial 

attention (Hutsler and Galuske, 2003). The hippocampus also demonstrates 

lateralization with increased left hippocampal activity occurring in response to task 

relevant semantic information, whereas increased right hippocampal activity occurs 

from spatial information (Motley and Kirwan, 2012). Left-right hippocampal structures 

also support complementary functions in human episodic memory (Iglói et al, 2010). 

These unilateral specializations have been speculated to increase efficiency in available 

circuitry (Shipton et al, 2014), though the mechanisms by which bilateral neural 

structures support differences in cognitive function across hemispheres remains 

unknown. Evidence continues to mount in favor of lateralization of function not being a 

uniquely human characteristic, with left-right differences in neural processing also being 

widespread among vertebrates (Halpern et al, 2005). 

 Summary. The following work evaluates differences in functional outcome 

following a left or a right unilateral insult in mice, specifically; spatial memory tasks of 
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the MWM and tasks of neurological motor impairment, as well as cellular changes 

evaluated in both histological outcomes and morphological changes to resident immune 

cells of the CNS. This initial method development of mouse spatial learning and 

memory deficits following TBI thus also investigates functional lateralization and 

considers its relevance to pre-clinical models of injury-induced cognition dysfunction. 
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Investigation of Left and Right Lateral Fluid Percussion Injury in C57BL6/J Mice: 

In Vivo Functional Consequences 

(Neurosci Lett 653: 31-38, 2017) 

Disclosure: all glial reactivity immunohistochemistry experiments were conducted in the 

laboratory of Dr. Linda Phillips, primarily by Dr. Linda Phillips and Nancy Lee. 

 

Introduction 

The fluid percussion injury model of traumatic brain injury (TBI) in laboratory animals 

elicits functional and pathophysiological hallmarks of human TBI, including cognitive 

dysfunction, intracranial haemorrhage, oedema, and progressive grey matter damage 

(Graham et al, 2000). Originally developed as a midline injury in cats (Hayes et al, 

1987) and rabbits (Hartl et al, 1997), a lateral fluid percussion injury was used in rats 

(McIntosh et al, 1989), and further adapted for mice (Carbonell et al, 1998), now widely 

used given the utility of transgenic lines.  Lateral fluid percussion injury produces a 

combined focal cortical contusion and diffuse subcortical neuronal injury in rats (Hicks et 

al, 1996), the extent and location of which is subject to small changes in craniotomy 

position (Vink et al, 2001). It is noteworthy that small alterations in craniotomy position 

in rats lead to differences in cognitive performance (Floyd et al, 2002). In mice, left 

(Tchantchou and Zhang, 2013; Fox et al, 1999) and right (Carbonell et al, 1998; Spain 

et al, 2010) craniotomy placement generally differs across research groups; however, 

there are no systematic studies investigating craniotomy position on measures of 

learning and memory or motor effects in mice.  
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Several lines of evidence suggest existence of left-right hemisphere molecular 

(Kawakami et al, 2003; Shinohara and Hirase, 2009), morphological (Kawakami et al, 

2003; Shinohara et al, 2008), and functional differences (Kohl et al, 2011; Shipton et al, 

2014) at hippocampal synapses in mice. Left-right morphological differences exist in the 

mouse hippocampus where left originating CA3 inputs innervate small spines, whereas 

inputs originating from the right CA3 innervate larger, mushroom-shaped spines 

(Kawakami et al, 2003; Shinohara et al, 2008). The molecular composition of these 

smaller spines also differ, exhibiting a higher density of GluN2B subunits in postsynaptic 

spines receiving left CA3 input (Kawakami et al, 2003; Wu et al, 2005). Morphological 

differences; size of left infrapyramidal mossy fiber projections, also positively correlate 

with precision in swimming navigation (Bernasconi-Guastalla et al, 1994). Furthermore, 

long-term potentiation (LTP) reveals hemispheric specialization in which LTP induction 

of CA3 synaptic inputs to CA1 when input originates from the left, but not the right CA3, 

using spike timing-dependent LTP (Kohl et al, 2011), or conventional high-frequency 

stimulation-induced LTP (Shipton et al, 2014). Similarly, in behaving mice silencing of 

left, but not right, CA3 pyramidal neurons resulted in Y-maze task deficits (Shipton et al, 

2014), and inversus viscerum mice (bred to express only a right phenotype at CA3-CA1 

synapses) exhibited dry maze task deficits (Goto et al, 2010).This evidence of structural 

and behavioral hemispheric differences raises the question of whether left versus right 

hemisphere TBI will reveal differing patterns of cognitive deficits.  

The Morris water maze (MWM) is frequently used to assess TBI-induced spatial 

learning and memory impairments. Although hippocampal lesions (Gerlai et al, 2002) or 

TBI (Fox et al, 1999) severely impairs MWM performance, mice with bilateral 
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hippocampal lesions are still able to improve their performance (Gerlai et al, 2002). 

Accordingly, MWM performance may employ brain areas in addition to the 

hippocampus, such as the striatum (Whishaw et al, 1987), basal forebrain (Waite et al, 

1994), insular cortex (Gutiérrez et al, 1999), etc. making this task a useful model to 

study the functional consequences of a lateralized brain injury in mice. MWM task 

variations are also used to infer the underlying processes affecting performance. Here, 

the Fixed Platform task assesses reference memory acquisition, and the reversal task; 

cognitive flexibility. Moreover, the Cued task, where the location of the hidden platform 

is made visible, infers sensorimotor and motivational influences. Based on the 

established left-right molecular and morphological asymmetry in the mouse 

hippocampus, we examine whether unilateral TBI of the left and right hemisphere will 

elicit differential patterns of spatial memory and motor deficits in mice.  

 

Materials and Methods 

 Mice. All experiments used adult male C57BL/6J mice (Jackson Laboratories, 

Bar Harbor, Maine), left injury (n=10), left sham (n=10), right injury (n=8), right sham 

(n=7), (further described in the supplement), and complied with EC Directive 

86/609/EEC, conducted in accordance with the National Institute of Health (NIH) Guide 

for the Care and Use of Laboratory Animals (NIH Publications No. 8023, revised 1978), 

and were approved by the Virginia Commonwealth University Institutional Animal Care 

and Use Committee. 

 Craniotomy and Induction of Lateral Fluid Percussion Injury (FPI). Under 

isoflurane anesthesia (2.5%, 250 mL/min) a sagittal scalp incision was made and a 2.7 
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mm trephine craniectomy performed over the left or right parietotemporal cortex, further 

description of which is included in the supplement. After a 2 h recovery period, mice 

were anesthetized with isoflurane (4%, 400 mL/min) and immediately subjected to a 

moderate lateral fluid percussion injury (1.94±0.1 atm left lateral, 1.92±0.1 atm right 

lateral injury), described in the supplement. 

 Neurological Motor Impairment Evaluation. Mice were evaluated in Rotarod 

and Neurological Severity Score, 2 days prior to injury, and 1, 2, 3, 7, 14 and 21 days 

post-injury (see Figure 2-1). Single Rotarod (IITC Life Science Rota-Rod, Woodland 

Hills, CA, with 3 cm diameter rotating drums) trials per day used an accelerating 

protocol, a description of which appears in supplementary information. A 10-point 

Neurological Severity Score (NSS) assessed the functional neurological status of mice 

based on the presence of reflexes and the ability to perform motor and behavioral tasks 

(see Supplementary Table 2-1). Further description appears in supplementary 

information. 

 Learning and Memory Assessment. The MWM consisted of a circular, 

galvanized steel tank (1.8 m in diameter, 0.6 m height) filled with opaque water 

(maintained at 20ºC±2ºC) with a submerged platform (10 cm diameter) and distal and 

proximal visual cues, further described in the supplement. A description of the Fixed 

Platform, Reversal, and Cued Tasks also appears in supplementary information, (see 

Figure 2-1).  

 Histology and Lesion Volume Quantification. Animals were anesthetized, 

transcardially perfused with paraformaldehyde and brains extracted. Brains were 

sectioned (50μm thickness) on a Leica VT1000S vibratome, Nissl stained using cresyl 
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violet acetate, and digitally imaged. Microscopy was performed at the VCU Department 

of Anatomy and Neurobiology Microscope Facility. Further detail and the lesion volume 

quantification description appears in supplementary information. 

 Qualitative Assessment of Glial Cell Response to Injury. 

Immunohistochemistry (IHC) was performed in left and right injured and sham animals 

(n=3/group) surviving for 3 days post-injury. Mice were perfused as described for 

histology and 40 µm coronal brain sections cut by vibratome were processed for IHC 

(Reeves et al, 2016) using antibodies for IBA1 (Wako, Abcam; 1:300), and GFAP 

(Dako, Encor Biotechnology; 1:20,000). Images were collected on a Zeiss 700 confocal 

microscope for qualitative assessment of each protein. 

 Statistical Analysis. Differences were considered significant when P < 0.05, and 

analyses were conducted using IBM SPSS Statistics 22 (IBM Software, New York, NY). 

To assess TBI-induced changes to MWM performance, mean latency-to-goal (seconds) 

in left and right injury was compared to left or right sham, respectively. To directly 

compare the effects of right vs. left injury, mixed-factor ANOVA analyses were also 

conducted on MWM latencies normalized as percent-of-sham-control (using the 

corresponding hemisphere right and left sham group: injured animal score / mean sham 

score * 100%). This normalization approach increases sensitivity to detect the effects of 

TBI and reduces the influence of minor sham control differences (Townend, 2013). 

Normalized data were also analyzed using a one sample t-test to compare left or right to 

sham performance (value of 100). Motor differences and MWM acquisition were 

analyzed using a mixed factor ANOVA, probe trial measures by independent group t-

test, and righting times and lesion volume by 2-way ANOVA. Post hoc tests for MWM 
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acquisition (Fixed Platform and Reversal tasks) were conducted using a Bonferroni 

adjustment, and for NSS and Rotarod used a Tukey HSD adjustment. 

 

Results 

 Left and right hemisphere injury produced neurological motor deficits.  

NSS Measure. NSS scores increased for left and right lateral injury on post-injury day 

one. A significant interaction for both left (Figure 2-2A), F(6, 108) = 11.93, P < 0.001; 

and right lateral (Figure 2-2C) NSS, F(6, 78) = 2.39, P < 0.05, revealed an increased 

NSS in both left and right lateral injured animals on post-injury day 1 (P < 0.01) 

compared to day -1, not present in both left and right lateral sham animals.  

 Rotarod measure. Both left and right lateral Injury produced impaired rotarod 

performance, with no left-right performance differences. A significant interaction for both 

left lateral (Figure 2-2B), F(7, 126) = 2.47, P < 0.05; and right lateral (Figure 2-2D) 

latency to fall, F(7, 91) = 2.54, P < 0.05, revealed a significant decrease in latency to fall 

compared to sham in left lateral injury on post-injury day 1 (P < 0.01), and in right lateral 

injured animals on post-injury days 1 (P < 0.01), 2 (P < 0.05), 3 (P < 0.05), day 7 (P < 

0.05), and 14 (P < 0.05). Direct comparison of left and right cohorts on percent of sham 

control revealed no significant interaction (Figure 2-2E) P = 0.10, with no main effect of 

hemisphere P = 0.47 in latency to fall. 

 Both left and right lateral injury produced MWM task deficits, with modest 

left-right hemisphere differences. Fixed Platform Task. The right lateral injury group 

showed a small but significant delay in the acquisition of reference memory compared 

to sham; and poorer performance compared to left injured animals. Both left and right 
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lateral injured mice demonstrated reference memory expression impairments. The 

acquisition of reference memory showed no significant interaction for left lateral (Figure 

2-3A) P = 0.75; or right lateral (Figure 2-3B) P = 0.88 injuries. A significant main effect 

of injury was found for the right lateral cohort, F(1, 13) = 10.05, P < 0.01, but not left (P 

= 0.15), where the right lateral injured animals demonstrated longer latencies to the 

platform than sham animals. A comparison of normalized left-right acquisition 

performance revealed a significant main effect of hemisphere, F(1, 16) = 7.87, P< 0.05, 

indicating greater acquisition deficits in the right lateral cohort compared to the left 

(Figure 2-3C), while the Injury X Day interaction was not significant (P=0.07). The fixed 

platform probe trial revealed significantly longer latencies to the platform location in 

injured mice compared to sham animals for both left (Figure 2-3D), t(18) = 2.41, P < 

0.05, and right lateral injuries (Figure 2-3E), t(13) = 3.17, P < 0.01. Analyses of 

normalized probe trial measurements confirmed injury-induced increases in mean 

latency for both left, t(9) = 3.16, P< 0.05, and right, t(7) = 3.74, P< 0.01, cohorts relative 

to sham levels (one sample t-test), although normalized latencies did not differ between 

hemispheres (P=0.16, independent samples t-test). 

Reversal Task. No left vs. right performance differences were found in reversal 

task learning, however left lateral injury demonstrated modest impairments relative to 

sham in reversal acquisition and expression. Reversal acquisition learning revealed no 

significant interaction for either left lateral (Figure 2-4A), P = 0.92; or right lateral (Figure 

2-4B), P = 0.39; injury. However, a main effect of injury was found for the left lateral 

injury cohort, F(1, 18) = 7.93, P < 0.05, but not right, F(1, 13) = 1.89, P = 0.19, where 

left injured animals demonstrated longer latencies to the platform than sham animals. 
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Direct comparison of left and right injury revealed no significant interaction (Figure 2-4C) 

P = 0.39, and no significant main effect of hemisphere P < 0.28 on percent of sham 

control. The reversal probe trial revealed significantly longer latencies to the new 

platform location in left lateral injured mice compared to sham animals (Figure 2-4D), 

t(18) = 2.75, P < 0.05, and but not right (Figure 2-4E), P = 0.37. Direct comparison of 

left vs. right injury normalized reversal probe trial latencies, showed performance did not 

differ between these injury groups (P=0.17, independent samples t-test), although the 

left, t(9) = 2.90, P< 0.05, but not right (P=0.22), injury group differed from sham levels 

(one sample t-test) (Figure 2-4F). 

 Cued Task and Swim Speed. The injury-induced MWM performance impairments 

were likely not due to sensory-motor or motivational impairments measured by the Cued 

Task (Supplementary Figure 2-1), or swim speed (Supplementary Figures 2-2 and 2-3). 

 Injury severity and histological outcome in left and right hemisphere injury 

groups. The injury procedure produced a mortality rate of 20.8% for the left lateral 

cohort, and 22.7% for the right lateral cohort (dead mice were excluded from all 

subsequent measures).  

Righting Time. Neither the interaction between hemisphere and injury (Figure 2-

5A, 2-5D), P = 0.84, nor the main effect of hemisphere, P = 0.79, achieved significance; 

however, a main effect of injury, F(1, 31) = 44.58, P < 0.001, showed longer righting 

times in injured animals than shams.  

 Lesion Volume Percentage. Neither the injury by hemisphere interaction (Figure 

2-5B, 2-5E), P = 0.53, nor main effect of hemisphere, P = 0.86, achieved significance; 
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however, there was a main effect of injury, F(1, 12) = 23.08, P < 0.001, in which lesion 

volumes were significantly larger in injured animals than in shams. 

 Hippocampal glial cell response to left and right hemisphere injury. 

Hippocampal IHC of microglial (IBA1) and astrocytes (GFAP) showed robust glial 

response to TBI. IBA1 imaging in the dentate gyrus revealed prominent shift from 

ramified microglial phenotype in sham brains (Figure 2-6A), to a reactive state with 

larger cell bodies and multiple lobular processes, a phenotype seen ipsilateral to both 

left and right hemisphere injury.  Similarly, GFAP imaging revealed a reactive astrocyte 

response ipsilateral to both left and right hemisphere injury compared to sham (Figure 

2-6B), with extensive hypertrophy of cellular processes. Contralateral left and right 

injured hippocampus also showed both microglial (Figure 2-6A) and astrocyte (Figure 2-

6B) reactivity, but at a much reduced level. 

 

Discussion 

The present study revealed that both left and right hemisphere TBI produce cognitive 

deficits. During the Fixed Platform task probe trial, the expression of reference memory 

was impaired by both left and right lateral injury, though acquisition was delayed only in 

the right lateral injury. In contrast, cognitive flexibility deficits measured by reversal 

acquisition and the reversal probe trial did not differ between left and right hemisphere, 

yet modest left hemisphere impairments were seen relative to sham. 

The left and right lateral injury deficits seen in the Fixed Platform probe trial are 

consistent with existing left (Chen et al, 1998) and right (Shinohara et al, 2012) lateral 

injury reference memory expression deficits. These results support findings that both 
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hippocampal hemispheres contribute to spatial learning (Shinohara et al, 2012). MWM 

Fixed Platform acquisition deficits (Carbonell et al, 1998; Spain et al, 2010) have been 

shown in right hemisphere injury, though contrary to the present findings, others have 

noted acquisition deficits also from left lateral injuries (Tchantchou and Zhang, 2013; 

Fox et al, 1999). Comparison of left-right hemisphere injury across studies is difficult 

due to methodological differences, such as post-injury training timing, injury magnitude 

and model, and varying numbers of training days or trials per day. Accordingly, one 

unique contribution of the present work was the identical experimental conditions under 

which left and right hemisphere injury was studied.  

 The reversal task finding where left lateral injury produced modest MWM 

performance impairments only relative to sham controls would be intriguing to further 

investigate at increased injury magnitudes to determine if unilateral injury would reveal a 

differential vulnerability to cognitive flexibility disruption. Although few rodent TBI studies 

have employed the MWM reversal task, a left lateral controlled cortical impact injury 

study reported deficits in a similar task in mice (Zhao et al, 2012). Furthermore, superior 

MWM reversal task accuracy was reported to correlate with larger left mossy fiber 

projections (Schöpke et al, 1991), also true in Collins High-lateralized mice known to 

exhibit larger left mossy fiber projections (Bernasconi-Guastalla et al, 1994). As such, 

the MWM reversal tasks ability to assess changes in cognitive flexibility may yet prove 

useful in the study of TBI.  

Although the present study did not address mechanisms underlying left and right 

hemisphere TBI behavioral deficits, the observations reported are consistent with the El-

Gaby et al. (2014) theoretical model which accounts for differential use of distinct left-
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right hippocampal synapse populations during learning and memory in mice (El-Gaby et 

al, 2014). Specifically, pre-configured CA3-CA1 synapses attributed to stable cell 

assemblies of the right hippocampus function to facilitate rapid incorporation of spatial 

information (Nakashiba et al, 2008). Left hippocampal CA3-CA1 synapses, however, 

recruit new place cells to instruct the formation of de novo cell assemblies (Hollup et al, 

2001) facilitating representation of salient new locations (Leutgeb et al, 2007). 

Consequently, the fixed platform acquisition impairments of right injured mice may 

reflect a heavier reliance on plastic but slower left CA3-CA1 hippocampal synapses. 

Whereas left lateral injury reversal task impairments could be explained by heavier 

reliance on right CA3-CA1 hippocampal assemblies still pre-assigned to the previous 

Fixed Platform location. An adaptive advantage of such anatomical dissociation could 

be an efficient division of labor between left and right hemisphere hippocampi.  

Neurological motor behavior was also impaired by both left and right lateral 

injury, though neither the NSS nor Rotarod performance revealed differential left-right 

hemisphere motor vulnerability to TBI. Despite acute post-injury motor impairments, 

assessments of sensorimotor and motivational performance in the MWM cued task and 

MWM swim speeds revealed no impairment for either left or right lateral injuries. This 

suggests that left-right hemisphere injuries which produced cognitive impairments did 

not impact MWM sensorimotor performance or impair learning of MWM procedural 

components. 

Left and right hemisphere injury elicited equivalent injury severity as measured 

by post-injury righting time. Also, neurodegeneration in response to injury measured by 

cortical lesion volume was not found to differ between left and right hemisphere injury. 
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Qualitative assessment of the glial response to left and right hemisphere injury 

demonstrated robust activation of hippocampal microglia and astrocytes ipsilateral to 

left and right hemisphere injury, reflecting a significant level of traumatic insult. 

Contralateral hippocampal structures in both left and right injured mice also evidenced 

modest glial reactivity, consistent with previous reports (Shitaka et al, 2012). These data 

indicate that left and right hemisphere injury generate a similar cellular response to 

trauma pathology, and suggest that variance in left-right behavioral outcome is not 

correlated with overt differences in glial reactivity. 

 Conclusions. Left and right lateral TBI both produced MWM performance deficits 

in mice, with modest left-right differences. The investigation of left versus right lateral 

injuries contributes to the understanding of the mouse TBI model. Consequently, 

laterality in mouse MWM learning and memory impairments may be worthy of 

consideration for future study design and interpretation in the investigation of TBI-

induced cognitive consequences.  
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Figure 2-1. Experimental timeline. Experimental timeline (relative to injury) of 

neurological motor battery (indicated by down arrows) and spatial learning and memory 

tasks of the MWM, for left lateral and right lateral fluid percussion injuries. 
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Figure 2-2. Left and right hemisphere injury produced neurological motor deficits. 

NSS scores increased for left (Panel A) and right (Panel C) lateral injury on post-injury 

day one. Injury also produced impaired rotarod performance in both left (Panel B) and 

right (Panel D) lateral hemispheres, with no significant difference in performance 

between hemispheres (Panel E, represents main effect of injury marginal means). 

Values represent means ±SEM; Panels A and C **P<0.01 vs. injury day -1. Panels B 

and D *P<0.05, **P<0.01 vs. sham. 
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Figure 2-3. Both left and right lateral injury produced MWM Fixed Platform task 

deficits. 

During Fixed Platform acquisition (Panels A, B, C) only the right lateral injury (Panel B) 

showed a small but significant delay in the acquisition of reference memory compared 

to sham; and compared to left injured animals (Panel C, represents main effect of injury 

marginal means). During the Fixed Platform Probe trial (Panels D, E, F), both left and 

right lateral injured mice demonstrated latency impairments relative to sham (Panels D, 

E, F), but with no left-right differences (Panel F). Values represent mean ±SEM; 

*P<0.05, **P<0.01 vs. sham; #P<0.05, ##P<0.01 vs. 100 (sham performance). 
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Figure 2-4. The MWM Reversal Task did not reveal any left-right differential 

vulnerability to cognitive flexibility. 

Both reversal task acquisition (Panels A, B, C) and reversal probe trial (Panels D, E, F) 

produced no left-right performance differences in reversal task learning (Panels C [main 

effect of injury marginal means] and F). However left lateral injury demonstrated modest 

latency impairments relative to sham in both reversal acquisition (Panel A), and reversal 

probe trial (Panel D, F). Values represent mean ±SEM; *P<0.05 vs. sham; #P<0.05 vs. 

100 (sham performance). 
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Figure 2-5. Left and right hemisphere injury produced impaired righting time and 

histological outcome. 

Both left and right lateral injury produced significantly greater righting times (Panels A, 

D) and lesion volume %’s (Panels B, E) compared to sham animals. No left-right 

differences were found in righting time or lesion volume %. Representative coronal 

sections of left (Panel C) and right (Panel F) lateral injury-induced lesion are shown. 

Values represent mean ±SEM; *P<0.05, **P<0.01, ***P<0.001 vs. sham. 
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Figure 2-6. Hippocampal glial cell response to left and right hemisphere injury. 

Microglial (IBA1 +; green) morphology (Panel A) showed non-reactive, ramified state 

within the dentate gyrus of sham controls (see insets for cell detail). A robust reactive 

phenotype was observed in the dentate gyrus ipsilateral to both left and right 

hemisphere injury, where microglia exhibited enlarged, rounded cell bodies and lobular 

processes (arrows; inset).  Astrocyte (GFAP +; red) morphology (Panel B) showed thin 

process bearing stellate cells within the dentate gyrus of sham controls (see insets for 

cell details).  Reactive hypertrophic phenotype, with enlarged cell bodies and increased, 

thick cell processes (arrows; inset) was seen in the dentate gyrus ipsilateral to both left 

and right hemisphere injury. Cell nuclei co-stained with DAPI.  IPSI= ipsilateral to injury; 

CON= contralateral to injury; H= hilus; GCL= granule cell layer; ML= molecular layer; 

Bar = 30 µm large images, 20 µm insets. 
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Appendix 2. Supplementary Material 

 

Table 2-I. Neurological Severity Score (NSS) for mice 

Task Description 
Points 

Success/Failure 

Exit Circle Ability & initiative to exit a circle of 30 cm diameter (2 min)    0 1     

Mono-/Hemiparesis Paresis of upper &/or lower limb of the contralateral side    0 1 

Straight Walk Alertness, initiative, & motor ability to walk straight    0 1 

Startle Reflex Innate reflex: mouse will bounce or wince to a loud hand clap    0 1 

Seeking Behavior Physiological behavior as exploration of the environment    0 1 

Beam Balancing Balance on a 7 mm width beam, 25 cm high (10 s)    0 1 

Round Stick Balancing Balance on a 5 mm diameter round stick, 25 cm high (10 s)    0 1 

Beam Walk: 3cm Cross a 30 cm long beam of 3 cm width, 25 cm high    0 1 

Beam Walk: 2cm Cross a 30 cm long beam of 2 cm width, 25 cm high    0 1 

Beam Walk: 1cm Cross a 30 cm long beam of 1 cm width, 25 cm high    0 1 

 Maximal Score  10 

 

 

Table 2-I. Neurological Severity Score test battery items. 

The modified neurological severity score (NSS) battery of motor, sensory, reflex, and 

balance tests to assess neurological damage following closed head trauma in mice. 
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Materials and Methods 

Mice. Adult male C57BL/6J mice weighed 24-29 g and age 10-11 weeks at the time of 

injury. Mice were pair-housed under a 12 h light/12 h dark cycle (0600 to 1800 h), at a 

constant temperature (22ºC) and humidity (50-60%), with food and water available ad 

libitum. 

Craniotomy and Induction of Lateral Fluid Percussion Injury (FPI). The left 

or right parietotemporal craniectomy was performed between lambda and bregma, 

approximately 1 mm from the sagittal suture. A 3.5 mm (inside diameter) Leur-Loc 

syringe hub (modified from a 20G needle) was secured over the craniotomy and 

surrounded with dental acrylic. After a 2 h recovery period, mice were anesthetized with 

isoflurane (4%, 400 mL/min). The injury cap was attached to a Leur-Loc fitting and filled 

with 0.9% NaCl. Mice were then connected to transducer housing of the fluid percussion 

injury device (AmScien Instruments, Richmond, VA), and immediately subjected to a 

moderate lateral fluid percussion injury (1.94±0.1 atm left lateral, 1.92±0.1 atm right 

lateral injury). 

The injury was produced by a metal pendulum that struck the piston, transiently 

injecting a small volume of saline into the cranial cavity and briefly deforming the brain 

tissue (20-millisecond pulse duration). Immediately following the delivery of the injury, 

mice were placed on their backs to assess the righting reflex, which was scored as the 

duration of time to right itself, and was used as an index of traumatic unconsciousness 

and a correlate of injury severity. In succession, mice were again anesthetized with 

isoflurane (4%, 400 mL/min), the hub removed, the injury site checked for intactness of  
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the dura, and the skin sutured. Mice were placed in a recovery cage atop a heating pad 

for 1 h, then returned to their home cage. Sham-injured controls underwent identical 

anesthetic and surgical procedures, as well as connection to the injury device, except 

that the intracranial pressure pulse was not applied. 

Rotarod Assay. Each mouse was placed on the device facing the experimenter 

(forward direction), rotating the drum in the opposite direction. The mice were given one 

habituation trial to adapt to the testing equipment using a fixed speed of 4 rpm for 60 s. 

All subsequent single trials per day used an accelerating protocol, starting at 4 rpm and 

ending at 40 rpm ramping over 60 s, with a 120 s test period. Each trial ended prior to 

the 120 s cut-off if the mouse fell off the rod, or gripped the device and spun around one 

full revolution without attempting to walk on the drum.  

Neurological Severity Score. In the 10-point Neurological Severity Score 

(NSS), one point is awarded for failing to perform a particular task, and no points for 

succeeding. The points of each of the 10 individual tasks are summed to achieve the 

NSS, in which a score of zero represents a naïve uninjured mouse, whereas a maximal 

score of 10 indicates severe neurological dysfunction. The NSS (Albert-WeiBenberger 

et al, 2012) has been shown to correlate with severity of brain damage as determined 

by in vivo magnetic resonance studies in mice (Tsenter et al, 2008). 

Learning and Memory Assessment. The Morris water maze consisted of a 

circular, galvanized steel tank (1.8 m in diameter, 0.6 m height). The tank was filled with 

water (maintained at 20ºC±2ºC) with a white platform (10 cm diameter) submerged 1 

cm below the water’s surface. A sufficient volume of white paint (Valspar 4000 latex  
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paint, Lowe’s Companies Inc., Mooresville, NC) was added to render the water opaque 

and the platform invisible. In addition to distal visual cues on the walls of the laboratory 

(shapes), five sheets of laminated paper with distinct black-and-white geometric designs 

were attached to the sides of the tank serving as proximal cues. Dependant measures 

were collected using an automated tracking system (ANY-maze, San Diego 

Instruments, Inc., San Diego, CA). 

Fixed Platform Task. The Fixed Platform task was used to assess acquisition of 

reference memory to a spatial location in the water maze. On post-injury day 6, mice 

were given a pre-training acclimation session (habituation) during which they were 

allowed to swim in the pool for 4 min without the platform present. Beginning on post-

injury day 7, mice were given eight daily acquisition sessions consisting of four-120 s 

duration trials per day with an inter-trial interval of 10±2 min. Throughout the course of 

this acquisition period the hidden platform remained in a fixed position for all mice. Mice 

were released facing the tank wall from four starting points along the perimeter of the 

maze arbitrarily designed as N, S, E, W, the order of which was counterbalanced across 

trials. Once a mouse located the hidden platform, it was allowed to remain there for 15 s 

before being removed from the tank. If a mouse failed to locate the platform within 120 

s, it was manually guided to it and removed 15s later. On post-injury day 15 (i.e., one 

day following the eighth acquisition day), the platform was removed from the tank, and 

the mice were subjected to a 60 s probe trial to measure spatial bias for the previous 

platform location. The percentage of time spent in the target quadrant (where the 

platform used to be) and control quadrant (the quadrant directly opposite the target  
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quadrant) was measured, as well as latency to the prior platform location and the 

number of times the mouse traversed the prior platform location. Given that the Fixed 

Platform probe trial acts as an extinction trial for prior learning, on post-injury day 16 

mice were given a further day of Fixed Platform training in which the hidden platform 

was returned to the same fixed position as during the acquisition procedure. 

Reversal Task. The Reversal task assesses cognitive flexibility, in which the 

initiation of inhibitory responses is required to explore alternative solution paths. 

Beginning on post-injury day 18, mice were subjected to a reversal procedure in which 

the submerged platform was moved to the opposite side of the tank (now within the 

control quadrant of the Fixed Platform task). Mice were given four daily reversal 

sessions, with all other task parameters identical to the acquisition procedure. On post-

injury day 22, the mice were subjected to another 60 s probe trial, with task parameters 

identical to the acquisition probe.  

Sensorimotor-Motivational Procedure (Cued Task). The Cued task assesses 

the sensorimotor and motivational capacity of the mice to find the submerged platform 

irrespective of cognitive ability. Beginning on post-injury day 24, the location of the 

submerged platform was made known to the mice by the placement of a black cylinder 

(12 cm height; 4 cm diameter) which extended approximately 11 cm out of the water. 

Mice were given three cued sessions, during which the location of the submerged 

platform was changed daily. The first two daily cued sessions consisted of four-120 s 

length trials each, with an inter-trial interval of 10±2 min, and release was 

counterbalanced across the four possible start positions (N, S, E, W). The third cued  
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session consisted of two-120 s length trials, with start positions counterbalanced across 

the two start positions furthest from the cued platform location. 

An automated tracking system (ANY-maze, San Diego Instruments, Inc., San 

Diego, CA) analyzed the swim path of each subject and calculated escape latencies 

(the time between being placed in the water and finding the hidden platform), average 

swim speed, number of platform crossings, and percentage of time spent in each 

quadrant. 

Histology and Lesion Volume Quantification. Animals were anesthetized with 

sodium pentobarbital, 360 mg/kg, i.p. (administered at 6 ml/kg [60 mg/ml]), and then 

transcardially perfused with 0.9% saline followed by 4% paraformaldehyde in 0.1 M 

NaHPO4, pH=7.4. Immediately following, brains were extracted and placed in 4% 

paraformaldehyde for 24 h before transfer to storage in 0.03% NaN3 (Sigma Chemical 

Co., St. Louis, MO, USA) in 1.0 M phosphate-buffered saline (PBS).  

Brains were sectioned (50μm thickness) in PBS on a Leica VT1000S vibratome 

in the coronal plane throughout the rostro-caudal extent of the lesion, extending from 

approximately -0.5 to -3.5 relative to bregma, and mounted on bovine gelatin and 

chromium potassium sulfate-treated Superfrost slides (ThermoFisher Scientific, 

Waltham, MA). Every fifth section was processed with a Nissl stain using cresyl violet 

acetate and digitally imaged with a Zeiss Discovery V20 StereoZoom microscope using 

AxioVision.  

The area of normal staining (lacking necrosis, cavitation, or hemorrhage), was 

measured in each section using NIH ImageJ software and a Wacom Intuos4 Digitizing  
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Tablet. The lesion area was calculated as the area of normal staining on the 

contralateral side minus that of the ipsilateral side, and then used to calculate the full 

lesion volume as previously described (Dash et al, 2010) using; (A1+A2)*0.5 + (A2 

+A3)*0.5 + … + (A6 +A7)*0.5; in which A is the lesion area (mm2) for each slice and 0.5 

(mm) is the distance between two sequential slices. Lesion volume was then expressed 

as a percentage of remaining normal staining (contralateral + ipsilateral) within whole 

brain using; [(C-I) / (C+I)] * 100%. 

 

Results 

Neurological Motor Deficits: Rotarod main effect of day. The non-significant Mixed-

factor ANOVA (2x8) investigating percent of sham control in latency to fall between left 

and right cohorts also revealed a significant main effect of day F(7, 112) = 9.82, P < 

0.001, with a Bonferroni adjustment revealing significant differences from day -1 to day 

1 (P < 0.01), day 2, 3, and 7 (P < 0.05), and significant differences from day -2 to day 1 

(P < 0.001), day 2 and 3 (P < 0.01), and day 7 (P < 0.05). 

Fixed Platform Task: main effect of day. In the non-significant Mixed-factor 

ANOVA (2x8) investigating the acquisition of reference memory, main effects of day 

were found for left lateral, F(7, 126) = 13.90, P < 0.001, and right lateral injury, F(7, 91) 

= 16.07, P < 0.001.  Left and right cohorts demonstrated significantly faster latencies to 

the platform on days 4-8 than on day 1 (P values < 0.01). The non-significant Mixed-

factor ANOVA (2x8) investigating percent of sham control in latencies to the platform 

between left and right cohorts also did reveal a significant main effect of day F(7, 112) =  
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2.31, P < 0.05, despite a Bonferroni adjustment revealing no significant differences 

between days. 

Reversal Task: main effect of day. In the non-significant Mixed-factor ANOVA 

(2x4) investigating the acquisition of reversal learning, Left lateral, F(3, 54) = 5.24, P < 

0.01, and right lateral, F(3, 39) = 12.27, P < 0.001, injury cohorts showed a significant 

main effect of day, with the left cohort demonstrating significantly shorter latencies to 

the platform on days 3 and 4 compared to day 1 (P < 0.05), and the right cohort 

demonstrating significantly shorter latencies to the platform on day 4 compared to day 1 

(P < 0.001). 

 Search strategy. Also, a visual inspection of swim paths suggests that injured 

animals utilized a looping rather than spatial swim strategy (Zhao et al, 2012), though 

they did not appear to differ between unilateral injury cohorts (left; Supplemental Figure 

4G and 5G, right; Supplemental Figure 4H and 5H). 
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Supplementary Figure 2-1. MWM Cued task. 

Left and right hemisphere injury produced no difference in sensorimotor and/or 

motivational performance in the Cued Task of the MWM, as measured by latency to a 

cued platform location. An independent groups t-test demonstrated no significant 

difference in latency between either left lateral (Panel 3A; P = 0.10), or right lateral injury 

(Panel 3B; P = 0.06), and their respective sham controls. Also, when analyzed using a 2 

x 2 ANOVA no significant interaction, P = 0.40, and no main effects of lateralization, P = 

0.22, and injury, P = 0.80 were found. Values represent mean ±SEM. 
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Supplementary Figure 2-2. Swim speed during the Fixed Platform task. 

Left and right hemisphere injury produced no difference in swimming ability in the Fixed 

Platform Task of the MWM, as measured by swim speed. Both left lateral injury (Panel 

4A) and right lateral injury (Panel 4B) produced no significant difference in swim speed 

between injured and sham animals across any of the Fixed Platform acquisition days or 

probe trial. Specifically, in a 2 x 8 mixed factor ANOVA left lateral injury (Panel 4A) had 

no effect on swim speed during Fixed Platform acquisition, as the interaction between 

day and injury, F(7, 126) = 1.39, P = 0.21, main effect of day, F(7, 126) = 2.02, P = 0.06, 

and main effect of injury, F(1, 18) = 0.08, P = 0.78, failed to achieve significance, 

revealing no difference in swim speed between left lateral injury and sham groups. An 

independent groups t-test was used to analyze the Fixed Platform probe trial where no 

difference was found in swim speed between a left lateral injury and sham controls, 

t(18) = 0.24, P = 0.81. The right lateral cohort (Panel 4B) also showed no swim speed  
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differences during Fixed Platform acquisition. In a 2 x 8 mixed factor ANOVA the 

interaction, F(7, 91) = 0.41, P = 0.89, main effect of day, F(7, 91) = 0.83, P = 0.56, and 

main effect of injury, F(1, 13) = 2.44, P = 0.14, failed to achieve significance. An 

independent groups t-test found no difference in swim speed between a right lateral 

injury and sham controls during the Fixed Platform probe trial, t(13) = 0.68, P = 0.51. 

Values represent mean ±SEM. 
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Supplementary Figure 2-3. Swim speed during the Reversal task. 

Left and right hemisphere injury produced no difference in swimming ability in the 

Reversal Task of the MWM, as measured by swim speed. Both left lateral injury (Panel 

5A) and right lateral injury (Panel 5B) produced no significant difference in swim speed 

between injured and sham animals during the Reversal acquisition days or probe trial. 

Specifically, A left lateral injury (Panel 5A) had no effect on swim speed during Reversal 

acquisition, as the interaction between day and injury, F(3, 54) = 0.56, P = 0.65, main 

effect of day, F(3, 54) = 0.46, P = 0.71, and main effect of injury, F(1, 18) = 0.03, P = 

0.86, failed to achieve significance, revealing no difference in swim speed between left 

lateral injury and sham groups. An independent groups t-test also found no difference in 

swim speed between a left lateral injury and sham controls during the Reversal probe 

trial, t(18) = 0.11, P = 0.91. In contrast, the right lateral injury group (Panel B) 

demonstrated a significant main effect of day, F(3, 39) = 7.68, P < .001, but the  
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interaction, F(3, 39) = 1.02, P = 0.39, and main effect of injury, F(1, 13) = 0.12, P = 0.73, 

failed to achieve significance. Post-hoc tests did not detect significant differences 

across Reversal acquisition days (day 1, P = 0.96; day 2, P = 0.95; day 3, P = 0.61; day 

4, P = 0.43). An independent groups t-test also found no difference in swim speed 

between a right lateral injury and sham control groups during the Reversal probe trial, 

t(13) = 0.06, P = 0.95. Values represent mean ±SEM. 
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Supplementary Figure 2-4. Fixed Platform Probe task additional measures. 

Independent samples t-tests showed significantly fewer platform crossings in injured 

animals than sham animals for both left lateral (Panel 1A), t(18) = 2.75, P < 0.05, and 

right lateral injuries (Panel 1B), t(13) = 3.54, P < 0.01. When directly comparing left and 

right cohorts (Figure 1C), an independent samples t-test revealed no significant percent 

of sham control difference for platform crossings between left and right hemisphere 

injury (P = 0.80), and a one sample t-test confirmed that both left, t(9) = 6.04, P < 0.001,  

 



78 
 

Appendix 2. Supplementary Material (cont’d) 

and right, t(7) = 6.58, P < 0.001, lateral injuries showed significantly poorer performance 

to their sham controls. 

Independent sample t-tests revealed a spatial preference for the target quadrant 

by sham animals through an increase in percent time spent in the target quadrant in the 

right (Panel 1E) lateral injury cohort, t(13) = 2.63, P < 0.05, but not the left lateral (Panel 

1D;  P = 0.70). When directly comparing left and right cohorts (Figure 1F), an 

independent samples t-test revealed no significant percent of sham control difference in 

preference for the target quadrant between left and right hemisphere injury (P = 0.36), 

though a one sample t-test found that right, t(7) = 4.17, P < 0.01, but not left, (P = 0.12), 

lateral injuries showed significantly less of a target quadrant preference to their sham 

controls. Values represent mean ±SEM; *P<0.05, **P<0.01 vs. respective control; 

##P<0.01, ###P<0.001 vs. 100 (sham performance).  

A visual inspection of swim paths suggests that injured animals (left; Figure 1G, right; 

Figure 1H) utilized a looping rather than spatial swim strategy, though they did not 

appear to differ between unilateral injury cohorts. 
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Supplementary Figure 2-5. Reversal Probe task additional measures. 

Independent samples t-tests showed significantly fewer platform crossings in left injured 

animals than sham animals (Panel 2A), t(18) = 2.75, P < 0.05, but not right (Panel 2B), 

(P = 0.54). When directly comparing left and right cohorts (Figure 2C), an independent 

samples t-test revealed no significant percent of sham control difference for platform 

crossings between left and right hemisphere injury (P = 0.13), yet a one sample t-test 

showed that left, t(9) = 3.90, P < 0.01, but not right, (P = 0.41), lateral injuries showed 

significantly poorer performance to their sham controls. 
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Independent sample t-tests revealed no spatial preference for the target quadrant 

by sham animals over right (Panel 2E) lateral injury cohort, (P = 0.39), or left (Panel 2D;  

P = 0.22). When directly comparing left and right cohorts (Figure 2F), an independent 

samples t-test revealed no significant percent of sham control difference in preference 

for the target quadrant between left and right hemisphere injury (P = 0.89), also, a one 

sample t-test found that neither right, (P = 0.25), nor left, (P = 0.17), lateral injuries were 

significantly different in target quadrant preference to their sham controls. Values 

represent mean ±SEM; *P<0.05 vs. respective control; ##P<0.01 vs. 100 (sham 

performance).  

 A visual inspection of swim paths suggests that injured animals (left; Figure 

2G, right; Figure 2H) utilized a looping rather than spatial swim strategy, though again 

they did not appear to differ between unilateral injury cohorts. 
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Chapter III 

Chapter Introduction 

 

The second goal of this dissertation was to investigate the 2-AG biosynthetic production 

enzyme, DAGL-β, as a novel target for the reduction of TBI-induced cognitive 

impairment, using DAGL-β-/- mice. 

 Endogenous cannabinoids and inflammatory signaling. The biological 

processes that drive inflammation act as a protective mechanism in response to 

pathology (through debris clearing etc), yet they can also lead to tissue damage and 

neurodegeneration if chronic and self-perpetuating. The eCB system plays important 

dual roles in inflammation; indirectly through the production of precursors for soluble 

immunoactive molecules, as well as directly through synaptic cannabinoid receptor 

signaling. It is possible that the eCB system may possess biphasic roles; resolution of 

inflammation through cannabinoid receptors, yet perpetuate chronic states of 

inflammation (often still present years following a TBI) through pro-inflammatory 

downstream eCB metabolites. While the biological role played by the eCB system has 

frequently been described as pro-homeostatic, the full implications of the interaction 

between inflammatory mechanisms and the eCB system are thus still unfolding. 

 One of the main mediators of the eCB-eicosanoid signaling pathway is the 

endogenous cannabinoid ligand 2-arachidonoylglycerol (2-AG), which serves as a major 

precursor for the formation of free arachidonic acid (AA) in brain. 2-AG is formed from 
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diacylglycerol lipase (DAGL) (Nomura et 

al, 2011) and hydrolyzed to AA 

predominantly by monoacylglycerol 

lipase (MAGL) (Nomura et al, 2011) but 

also to a lesser extent by serine 

hydrolase α-β-hydrolase domain 6/12 

(ABHD6/12) (Blankman et al, 2007). In 

turn, AA is a major substrate for the 

biosynthetic enyzmes of pro-

inflammatory prostanoids (e.g. 

prostaglandins), which play a role in 

cytokine release (Nomura et al, 2011). 

Cytokines further regulate inflammation, 

influence microglial activation sates, induce the activation of neurotoxic astrocytes, as 

well as contribute to neurodegeneration following TBI, one such example being that IL-

1β release stimulates glutamate-mediated synaptic transmission (Viviani et al, 2003) 

and limits GABA-mediated inhibitory transmission (Rossi et al, 2012), resulting in 

hyperexcitation and potential excitotoxic neurodegeneration. Although the second main 

endogenous cannabinoid ligand anandamide (AEA) is also metabolized to AA, it does 

not account for appreciable free AA in brain, likely due to its being 1000 times less 

abundant than 2-AG (Blankman and Cravatt, 2013; Sugiura et al, 1995).  

 The prostanoids produced by eCB catalysis exist under physiological conditions 

in almost trivial amounts, their biological importance being marginal (Ricciotti and 

Figure 3A: 2-AG-Eicosanoid Signaling 

Pathway 
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FitzGerald, 2011). However, in response to acute inflammation as occurs immediately 

following neurotrauma, prostanoid levels rapidly increase prior to the infiltration of 

immune cells  – perhaps a consequence of 2-AG’s dynamic production capacity, e.g. 

increases being found two minutes following an inflammatory challenge (Liu et al, 

2003). Therefore, this eCB-eicosanoid signaling pathway can also be understood as a 

primed homeostatic rapid-response system. 

 DAGL-β: 2-AG biosynthesis and localization. Compelling evidence suggesting 

that the eCB system plays a distinct immunomodulatory role outside of receptor 

signaling, is the expression of DAGL in species that do not express cannabinoid 

receptors (e.g. Drosophila) (Elphick and Egertova, 2005). The DAGL enzyme is a multi-

domain serine hydrolase, the family of which consists of approximately 200 enzymes. 

Two DAGL isoforms exist, both of which produce 2-AG, DAGL-α and DAGL-β, and are 

found in a wide range of species including rodents and man (Bisogno et al, 2003a). 

Both DAGL-α and DAGL-β have 4-transmembrane domains and are expressed at the 

plasma membrane in ordered 

microdomains. A great deal of 

structural conservation exists 

between these isoforms, with the 

main difference being the 

substantial carboxy-terminal tail 

of DAGL-α. 

 The relative contribution of 

each isoform to 2-AG production 

Figure 3B: The exon structure and schematics of DAGL-α 

and DAGL-β. The transmembrane domain is in blue, the 

catalytic domain in red (with a cysteine rich area in 

yellow), the regulatory loop in green, and the C-terminal 

tail in grey. (Adapted from Reisenberg et al, 2012). 
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is determined by their respective cellular location. DAGL-α is found predominantly on 

neurons (with a major role in synaptic plasticity (Gao et al, 2010) and DAGL-β is most 

highly expressed on CNS microglia and peritoneal macrophages (playing an important 

role in inflammatory responses (Hsu et al, 2012). While DAGL-α is expressed on 

neurons and especially in areas important for learning and memory (hippocampus, 

striatum, and prefrontal cortex (Katona et al, 2006; Lafourcade et al, 2007), the 

expression pattern of DAGL-β is less well understood (Oudin et al, 2011), though 

DAGL-β mRNA has been found to be high in hippocampus (Gao et al, 2010) and the 

cerebellar granular layer (Yoshida et al, 2006). 

 Microglia: function, and the endocannabinoid system. The term “microglia” 

was first coined by Pio del Río-Hortega early in the 20th century (Del Río-Hortega, 

1932). Unlike other CNS resident cells such as neurons and astrocytes (which are 

derived from CNS resident progenitor cells), microglia arise from hematopoietic stem 

cells in blood islands of the yolk sac during early embryogenesis, and then migrate 

through the embryo vascular system to the brain (Naito et al, 1990). As such, microglia 

share a common myeloid progenitor cell lineage with monocytes/macrophages and 

have common properties, such as expression of similar markers (e.g. CD11b) (Perry et 

al, 1985). Classified as mononuclear phagocytes, microglia act under the protection of 

the BBB in response to neuroinflammation, moderating CNS damage and favoring 

tissue repair, as well as participating in the resolution of inflammation. In the healthy 

CNS, microglia also control neuronal proliferation and differentiation, as well as the 

formation of new synapses (Graeber, 2010; Hughes, 2012).  
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 To perform their assorted functions, microglia adopt various phenotypic activation 

states characterized by changes in morphology, cytokine secretion, and marker 

expression, largely depending on local environmental cues (Martinez and Gordon, 

2014). The M0 phenotype is that of the surveillant microglia, ramified in morphology and 

present under homeostatic conditions. In CNS pathology, microglia become activated to 

an M1 pro-inflammatory/phagocytic phenotype in which the cell acquires an ameboid 

morphology with diminished number and length of processes and enlarged soma 

(Stence et al, 2001). M2a and M2b phenotypes are used to describe alternatively 

activated microglia, associated with tissue remodeling and immunoregulation 

Figure 3C: Microglial phenotypes, markers, and actions (Adapted from Mecha et al, 2016) 
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(Ponomarev et al, 2007). The acquired deactivated phenotype of M2c is induced by 

immunosuppressive cytokines and further contributes to inflammation resolution (Mecha 

et al, 2016). 

 Microglia express functional components of the eCB system: cannabinoid 

receptors (CB1 and CB2) and machinery for the biosynthesis and degradation of 2-AG 

and AEA (Mecha et al, 2016), suggesting novel functions of eCBs in autocrine and/or 

paracrine control of neuroinflammation. Specifically, microglial 2-AG increases 2- to 3- 

fold in response to calcium ionophore exposure, and increases microglial proliferation 

via the CB2 receptor (Carrier et al, 2004). Other components of the eCB system also 

change with microglial activation states. CB2 receptors, which in healthy brain tissue are 

present only in trace amounts (Maresz et al, 2005), show increased expression during 

M2 polarization with IL-4 (Mecha et al, 2015). Also, some evidence suggests that 

DAGL-β may be a dynamically regulated enzyme. Mecha et al, 2015 found that DAGL-β 

expression showed non-significant decreases during M1 phenotypes, and elevations 

during M2c (acquired deactivated) phenotypes in primary cell culture. However, the 

contributions eCB microglial expression have on processes of neuroinflammation 

remains to be determined. This avenue of inquiry is of particular interest following TBI 

given the potential for increased intracellular pools of 2-AG to act as substrate for 

microglial eicosanoid production. 

 Microglia and neurotrauma. A rapid and controlled activation of the immune 

system following TBI is necessary to minimize injury and repair damage. The 

phenotypes and subsequent functional profiles of microglia change in response to 

signals detected in the brain parenchyma. Release of adenosine triphosphate (ATP) 
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(Davalos et al, 2005) and extracellular calcium wave propagation (Sieger et al, 2012) 

following injury promote polarization from surveillant (M0) to pro-inflammatory (M1) 

microglia, as well as proliferation and migration to the site of injury. At the lesion site, 

microglia fuse to form a barrier between healthy and damaged cells (microgliosis), 

perform cell debris removal (phagocytosis), and release various effector substances 

including nitric oxide, proteases, and cytokines. Microglia play a central role in 

secondary injury processes when a shift to the anti-inflammatory M2 phenotype (of 

angiogenesis, extracellular matrix reconstruction etc) is not prompted, perpetuating pro-

inflammatory responses associated with further CNS damage, compromised BBB, 

enhanced peripheral macrophage infiltration, and chronic release of further cytokines, 

cytotoxic superoxide, nitric oxide, and proteases. Increased microglia activation can be 

present for decades following a TBI (Donat et al, 2017; Ramlackhansingh et al, 2011), 

and has been associated with increased risk of neurodegenerative disease such as 

Alzheimer’s Disease (Plassman et al, 2000). 

 Targeting DAGL-β to treat TBI. Studies of enzyme inhibition downstream of 2-

AG production have thus far produced mixed results in attenuating TBI functional 

deficits. Inhibition of 2-AG degradative enzymes has shown both improvement and a 

lack of improvement in neurological motor (Katz et al, 2015; Zhang et al, 2014) and 

learning and memory assessments (Tchantchou and Zhang, 2013; Zhang et al, 2014).  

This contradictory evidence is perhaps attributable to the direct oxidation of 2-AG by 

COX-2 (Straiker et al, 2011), which produces prostaglandin glycerol esters (Hu et al, 

2008; Sang et al, 2007). COX inhibition has also shown both improvement and a lack of 

improvement in neurological motor assessments (Cernak et al, 2002; Girgis et al, 2013) 
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and learning and memory assessments (Cernak et al, 2002; Dash et al, 2000), perhaps 

a consequence of the availability of alternative AA metabolism pathways such as the 

lipoxygenases (Maccarrone et al, 2000) and cytochrome P450 enzymes (Chen et al, 

2008). Given the complex degradation pathways of 2-AG, we propose that targets 

upstream of production, specifically the biosynthetic enzymes of 2-AG synthesis, 

warrant further investigation as to their injury-protective potential when disrupted.  

 The spatial specificity of 2-AG production provided by the distinct cellular 

expression of DAGL-α and -β might be particularly useful following traumatic brain 

injury. We anticipated that disruption of DAGL-β would not significantly impede neuronal 

2-AG production. Indeed, DAGL-α deletion leads to profound adverse phenotypic 

consequences such as memory impairment and changes in neuronal excitability in mice 

(Sugaya et al, 2013), as well as impairing AA signaling and function, such as membrane 

fluidity and regulation of ion channels (Piomelli, 1996). However, deactivating 2-AG 

production specifically in microglial cells through DAGL-β could reduce the capacity for 

pro-inflammatory signaling by 2-AG in its role as metabolic intermediate thus affording 

cognitive deficit protection following TBI. As such, DAGL-β inactivation could reduce 

inflammatory processes in microglial cells, without disrupting other adaptive functions of 

2-AG and its downstream pathways. 

 Summary. The following work evaluates DAGL-β as a novel target for the 

reduction of TBI-induced cognitive deficit, using the working hypothesis that disrupting 

DAGL-β activity will provide cognitive protection from brain injury by reducing pools of 2-

AG pro-inflammatory metabolites, specifically in microglia. An unexpected finding that 

DAGL-β deletion produced a survival protective phenotype prompted further 
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investigation into the extent of this mortality protective effect. This investigation of the 

neuroprotective effects of DAGL-β following TBI thus considers the unexpected and 

provocative possibility that DAGL-β contributes to acute brain injury pathology. 
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Targeting diacylglycerol lipase-β to treat traumatic brain injury 

 

Introduction 

A rapid and controlled immune response to traumatic brain injury (TBI) is necessary to 

minimize further injury and initiate repair processes. The increase of brain endogenous 

cannabinoid (eCB) levels following TBI (Panikashvili et al, 2001) suggests the eCB 

system may play a role in such essential repair mechanisms. Shortly following an initial 

injury, acute neuroinflammatory processes are triggered as part of a cascade of 

secondary injury mechanisms. The acute neuroinflammatory response includes 

activation of resident central nervous system (CNS) immune cells, microglia, to an M1 

profile and the release of proinflammatory mediators (as well as proliferation and 

migration to the injury site (microgliosis), and cell debris removal (phagocytosis). 

 TBI can be thought of not only in terms of an acute event, but fundamentally as a 

chronic disease. Adaptive inflammatory immune responses to TBI can be perpetuated 

over time by high levels of pro-inflammatory eicosanoids (prostaglandins and cytokines) 

in damaged tissue, prompting a continued state of chronic inflammation. An 

unsuccessful resolution of inflammation is frequently seen following TBI in which 

persistent and dysfunctional inflammation promotes a failure to shift microglia from a 

pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype (which would 

prevent angiogenesis, and promote extracellular matrix integrity resolution and tissue 

repair, Sica and Mantovani, 2012; Mantovani et al., 2013). An increase in 

neuroinflammation accompanied by activated microglial phenotypes has been observed 

in humans for years after injury (Johnson et al, 2013), as well as chronically in murine 
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TBI models (Holmin and Mathiesen, 1999). The prolonged nature of chronic 

neuroinflammation is then linked to further neurodegeneration through synaptic 

alterations (Centonze et al, 2009) as well as a compromised blood brain barrier 

(enhancing CNS infiltration of peripheral macrophages further promoting inflammation). 

Neuroinflammation is widely linked to learning and memory deficits, producing changes 

in expression and composition of AMPA receptors (Stellwagen et al, 2005), promoting 

neuronal hyperexcitability (Rossi et al, 2012), and impairing long-term potentiation 

induction and maintenance (Murray and Lynch, 1998). The learning and memory 

deficits commonly seen in clinical TBI cases can persist for decades after injury, 

consistent with such neuroinflammatory temporal profiles. 

Understanding of the eCB system has recently evolved to include important 

contributions toward inflammatory eicosanoid production. The most abundant eCB in 

brain, 2-arachidonyl glycerol (2-AG), serves not only as a signaling molecule during 

neurotransmission (Hillard, 2000a), but also as an intermediate during lipid metabolism 

(Nomura et al, 2011). The hydrolysis of 2-AG by its predominant catabolic enzyme 

monoacylglycerol lipase (MAGL) provides the major pool of arachidonic acid (AA) for 

the generation of inflammatory eicosanoids in brain (Nomura et al, 2011). 2-AG 

production is regulated by two distinct enzymes in a cell specific manner. Diacylglycerol 

lipase-α (DAGL-α) is responsible for 2-AG biosynthesis in neurons and astrocytes 

whereas diacylglycerol lipase-β (DAGL-β) regulates 2-AG predominantly on immune 

cells (microglia in brain and peritoneal macrophages in the periphery) (Bisogno et al, 

2003a). DAGL-β regulates pro-inflammatory responses in mammalian macrophages, 

with DAGL-β disruption attenuating pro-inflammatory responses in peripheral tissues 
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(Hsu et al, 2012; Wilkerson et al, 2016). Given DAGL-β is readily expressed in brain 

(Gao et al, 2010; Yoshida et al, 2006), and its disruption perturbs microglia eCB-

eicosanoid crosstalk (Viader et al, 2015a), this enzyme is also likely to play a role in 

CNS neuroinflammation. Bulk levels of brain 2-AG are controlled predominantly via 

DAGL-α, as DAGL-α-/- mice show a 90% reduction of brain 2-AG (Gao et al, 2010; 

Tanimura et al, 2010), whereas DAGL-β-/- mice show either a 50% reduction (Gao et al, 

2010) or no change (Hsu et al, 2012; Tanimura et al, 2012; Viader et al, 2015a). DAGL-

β likely plays a smaller role in establishing bulk 2-AG levels than DAGL-α as microglia 

compose only 5-12% of CNS cells (Lawson et al, 1990). As such, DAGL-β could 

represent a target to attenuate neuroinflammation given its unique expression profile on 

microglia in brain without producing global CNS alterations of 2-AG tone. 

 We hypothesize that DAGL-β participates in TBI-induced neuroinflammation 

contributing towards subsequent learning and memory deficits. We therefore 

investigated DAGL-β as a novel target for the reduction of TBI-induced spatial learning 

and memory impairments in mice, predicting that disruption of DAGL-β activity would 

provide cognitive protection from TBI by reducing pools of microglial 2-AG pro-

inflammatory metabolites. Given that selectivity and brain permeability of subtype 

selective DAGL inhibitors are yet to be optimized (Janssen and van der Stelt, 2016), we 

utilized DAGL-β-/- and -β+/+mice in the present studies. We also investigated if blocking 

2-AG production on other cell types would offer protection from TBI functional deficits. 

DAGL-α is primarily expressed on neurons (and also astrocytes) (Katona et al, 2006), 

therefore we conducted an experiment to assess if DAGL-α-/- mice would be protected 
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against TBI-induced spatial memory deficit, however high mortality rates precluded 

systematic investigation. 

 

Materials and Methods 

Animals. Subjects consisted of adult male DAGL-β-/-, and -β+/+ mice (females were 

included in the mortality experiment only) and male DAGL-α-/-, and -α+/+ mice, on a 

mixed 99% C57BL/6 (50% J [Jackson Laboratories, Bar Harbor, Maine], 50% N 

[Charles River, Wilmington, Massachusetts]) and 1% 129/SvEv background, as 

previously described (Hsu et al, 2012). DAGL-β+/- and -α+/- mouse breeding pairs were 

originally generated in the Cravatt laboratory and transferred to Virginia Commonwealth 

University. All mice (age 8-10 weeks) were pair-housed under a 12 h light/12 h dark 

cycle (0600 to 1800 h), at a constant temperature (22ºC) and humidity (50-60%), with 

food and water available ad libitum. All experiments were conducted in accordance with 

the National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals 

(NIH Publications No. 8023, revised 1978), and were approved by the Virginia 

Commonwealth University Institutional Animal Care and Use Committees.  

 Craniectomy and induction of lateral fluid percussion injury (FPI). Mice were 

anesthetized with isoflurane (2.7%, 250 mL/min) and inserted into a stereotaxic frame. 

A sagittal incision was made in the scalp and a 2.7 mm craniotomy was performed with 

a trephine over the left parietotemporal cortex between lambda and bregma and 

approximately 1 mm from the sagittal suture, keeping the dura intact. A 3.5 mm (inside 

diameter) luer-Lok syringe hub (modified from a 20G needle) was secured over the 
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craniotomy and surrounded with dental acrylic. Mice were then placed in a recovery 

cage atop a heating pad. 

After a 2 h recovery period, mice were anesthetized with isoflurane (4%, 400 

mL/min). An injury cap was attached to the Leur-Lock fitting and filled with 0.9% NaCl. 

Mice were then connected to transducer housing of the FPI device (AmScien 

Instruments, Richmond, VA), and immediately subjected to lateral FPI (behavioral 

assessment experiment; 1.94±0.1 atm, mortality experiments; 2.0±0.1 atm and 2.17±0.1 

atm). The injury was produced by a metal pendulum that struck the piston, transiently 

injecting a small volume of saline into the cranial cavity and briefly deforming the brain 

tissue (20-millisecond pulse duration). The pressure pulse force was measured 

extracranially with a transducer, recorded on a storage oscilloscope, (expressed in 

atmospheres of pressure). In succession, mice were again anesthetized with isoflurane 

(4%, 400 mL/min), the hub removed, the injury site checked for intactness of the dura, 

and the skin sutured. Mice were placed in a recovery cage atop a heating pad for 1 h, 

after which they were returned to their home cage. Sham-injured controls underwent 

identical anesthetic and surgical procedures, as well as connection to the injury device, 

except that the intracranial pressure pulse was not applied. 

Physiological Measures.  Immediately following the delivery of the injury, mice 

were placed on their backs to assess the righting reflex, which was scored as the 

duration of time to right itself, and was used as an index of traumatic unconsciousness. 

When mortality occurred it did so within 2 min following the initial injury, otherwise mice 

survived until the end of the 34 day experiment. Therefore, during the separate mortality 

experiments at increased injury severity, mortality was considered acute mortality and a 
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2 min post-injury cut off was applied. Body weight was taken prior to craniectomy 

surgery (day 0) and considered baseline, and then recorded daily for the duration of the 

MWM assessments (until day 30 post-TBI). On day 34 post-TBI, rectal temperature was 

taken to evaluate body temperature by inserting a thermocouple probe (2 cm) into the 

rectum. A baseline rectal temperature was recorded, then further assessments were 

made at 1, 3, 10, and 30 min post-2 min MWM swim.  

Morris water maze assessments. The MWM consisted of a circular, galvanized 

steel tank (1.8 m in diameter, 0.6 m height). The tank was filled with water (maintained 

at 20º C ± 2º C) with a white platform (10 cm diameter) submerged 1 cm below the 

water’s surface. A sufficient volume of white paint (Valspar 4000 latex paint, Lowe’s 

Companies Inc., Mooresville, NC) was added to render the water opaque and the 

platform invisible. In addition to distal visual cues (shapes) on curtains surrounding the 

tank (30 cm from the tank wall), five sheets of laminated paper with distinct black-and-

white geometric designs were attached to the sides of the tank serving as proximal 

cues. An automated tracking system (ANY-maze, San Diego Instruments, Inc., San 

Diego, CA) analyzed the swim path of each subject and calculated distance (path length 

between being placed in the water and finding the hidden platform), average swim 

speed, number of platform crossings, and percentage of time spent in each quadrant as 

well as in the outer ring.  

After induction of the FPI, mice were given a five day post-injury recovery period 

prior to commencing learning and memory assessment (see Fig. 1A). On post-injury 

day 6, mice were given a pre-training acclimation session (habituation) during which 

they were allowed to swim in the pool for 4 min without the platform present. To assess 
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reference memory DAGL-β-/- and -β+/+ mice received 8 MWM Fixed Platform acquisition 

training days (i.e. a submerged platform remained in the same location across days) 

each day consisting of four-120 s duration trials separated by 10±2 min inter-trial 

intervals. Four points along the perimeter of the maze arbitrarily designed as N, S, E, W, 

served as starting points from where the mice were released, facing the tank wall. The 

order of release location was counterbalanced across trials with each point used only 

once per acquisition day. Once a mouse located the hidden platform, it was allowed to 

remain there for 15 s before being removed from the tank. If a mouse failed to locate the 

platform within 120 s, it was manually guided to it. 

Assessment for the expression of spatial memory occurred the next day (post-

injury day 17) in a single MWM Fixed Platform Probe Trial (to measure spatial bias for 

the previous platform location where the submerged platform was removed from the 

tank). Given that the Fixed Platform probe trial acts as an extinction trial for prior 

learning, on post-injury day 18 mice were given a further day of Fixed Platform training 

in which the hidden platform was returned to the same fixed position as during the 

acquisition procedure. 

Reversal learning and cognitive flexibility were assessed using a Reversal task in 

which the submerged platform was moved to a new location. Thus, mice first must 

inhibit responses swimming to the original platform location before exploring alternative 

solution paths. In the Reversal training task, mice were given four daily reversal 

sessions, with all other task parameters identical to the acquisition procedure, followed 

again by a 2 min probe trial on day 25 post-injury.  
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A cued task assessed mice for potential sensori-motor/motivational deficits. The 

platform location was made visible by placing a 10 cm high, 4 cm diameter black 

cylinder on the submerged platform (assessing the capacity of the mice to find the 

submerged platform irrespective of reliance on spatial cues). Mice were given three 

cued sessions, during which the location of the submerged platform was changed daily. 

On two Cued training days mice were given four-120 s trials separated by 10±2 min 

inter-trial intervals (release counterbalanced across the four possible start positions N, 

S, E, and W). On the third cued session, mice were given two-120 s trials separated by 

10±2 min inter-trial intervals (released from the farthest two release points). 

Neurological motor assessments. Mice were trained in assays of neurological 

motor impairment, Rotarod and Neurological Severity Score (NSS), 2 days prior to 

injury, and 1, 2, 3, 7, 14 and 21 days post-injury (see Fig. 1A).  

The Rotarod assay used an IITC Life Science Rota-Rod (Woodland Hills, CA) 

with 3 cm diameter rotating drums. Each mouse was placed on the device facing the 

experimenter (forward direction), rotating the drum in the opposite direction. The mice 

were allowed to remain stationary for 10 s at 0 rpm prior to the start of the test. Mice 

were given one habituation trial to adapt to the testing equipment using a fixed speed of 

4 rpm for 60 s. All subsequent trials used an accelerating protocol, starting at 4 rpm and 

ending at 40 rpm ramping over 60 s, with a 2 min test period. Each trial ended prior to 

the 2 min cut off if the mouse fell off the rod, or gripped the device and spun around two 

full revolutions without attempting to walk on the drum. Mice were given one test per 

day. 
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The NSS is a 10-point task battery assessment to evaluate the functional 

neurological status of mice based on the presence of reflexes and the ability to perform 

motor and behavioral tasks (see Schurman et al., 2017 for NSS task battery 

description). One point is awarded for failing to perform a particular task, and no points 

for succeeding. The points of each of the 10 individual tasks are summed to achieve the 

NSS, in which a score of zero represents a naïve uninjured mouse, whereas a maximal 

score of 10 indicates severe neurological dysfunction. 

Tests of Affective Behavior. Mice were assessed for affective behavior using 

the light-dark box and the elevated plus maze on day 32 and 33 post-injury respectively 

(see Fig. 1A).  

The light-dark box consisted of a small enclosed dark box (36 x 10 x 34 cm) with 

an opening (6 x 6 cm) to a larger brightly lit area (36 x 21 x 34 cm). Mice spent 1 h 

acclimatization to the testing room, then were placed in the light side of the apparatus to 

explore freely for 5 min. An automated tracking system (ANY-maze, San Diego 

Instruments, Inc., San Diego, CA) recorded time spent in the light area for each subject, 

number of entries into the light side, and the total distance travelled.  

The elevated plus maze (Hamilton-Kinder, Poway, CA) consisted of a plus-

shaped platform elevated 60 cm above the floor, with a central platform (5 x 5 cm) 

allowing access to each of the four arms. Two opposing arms (35 x 5 cm) were 

enclosed by 15 cm high walls, the further two arms had no walls. Mice were 

acclimatized to the testing room for 1 h, then placed on the central platform facing an 

open arm and allowed to explore the apparatus for 5 min. An array of photocells 
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connected to a MotorMonitor® system (Hamilton-Kinder, Poway, CA) recorded time in 

the open arms, number of open arm entries, and the total distance travelled. 

Experimental design and statistical analysis. Behavioral data are presented 

as mean + SEM, The criterion for significance in all experiments was set at p < 0.05, 

and all analyses were conducted using IBM SPSS Statistics 22 for Windows (IBM 

Software, New York, NY).  

All changes in body temperature, % baseline weight, MWM Fixed Platform and 

Reversal acquisition, MWM swim speed, Rotarod, and NSS data were analyzed using a 

mixed factor ANOVA (°C, grams, distance, cm/s, and latency measures). All probe trial 

and cued task analyses, righting time, baseline temperature, light-dark box, and 

elevated plus maze data were analyzed using a two-way ANOVA (% time in quadrant, 

% time in outer ring, cm/s, temperature, time, entries, and distance measures). Baseline 

weight was analyzed by an independent groups t-test. All survival analyses were 

conducted using a Chi Square analyses by each injury severity. 

 

Results 

Figure 1: DAGL-β deletion increased FPI survival and injury-induced 

righting times, with no impact on body temperature or TBI-induced weight loss. 

Per the experimental timeline (Figure 1A), DAGL-β-/- mice were significantly spared from 

FPI-induced mortality (day 0) compared to DAGL-β+/+ mice, (X2
(1, N=28) = 4.53, p = 0.033, 

Chi Square, Figure1B). However, a significant righting time interaction (F(1,51) = 4.63, p = 

0.036, ANOVA, Figure 1C) revealed that TBI-DAGL-β-/- mice took longer to recover from 

post-traumatic unconsciousness than TBI-DAGL-β+/+ mice (p = 0.003). DAGL-α-/- mice, 
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approximately 30-60 min post-surgery, exhibited tonic-clonic seizure-like movements 

followed by spontaneous death. Of eight mice tested (DAGL-α+/+ n=1, DAGL-α-/- n=7), 

only three lived to receive a TBI (one DAGL-α+/+ and two DAGL-α-/- mouse, all of which 

survived) (data not graphed). 

No differences in body temperature were seen between DAGL-β+/+ and DAGL-β-/- 

mice at baseline (non-significant 3-way interaction; F(1,51) = 0.004, p = 0.953, ANOVA, 

Figure 1D), and no main effect of injury (F(1,51) = 0.532, p = 0.469, ANOVA). However, a 

significant main effect of time (F(3,153) = 795, p = 0.000, ANOVA, Figure 1E) revealed 

that body temperature recovery (following a 2-min MWM swim) changed over time, with 

greater ∆ body temperature  at 1 min (p = 0.000), 3 min (p = 0.000), and 10 min (p = 

0.000) post-swim compared to 30 min. Although a significant 2-way ∆ body temperature 

time by injury status interaction occurred (F(3,153) = 2.95, p = 0.035, ANOVA), sidak post-

hoc testing revealed no significant difference between sham and injured mice at any 

time point (1 min; p = 0.957, 3 min; p = 0.364, 10 min; p = 0.088, 30 min; p = 0.527), 

suggesting no relevant effect of injury on body temperature recovery.  

Post-injury weight evaluation revealed a main effect of injury (F(1,51) = 16.4, p = 

0.000, ANOVA, Figure 1F) in that TBI lowered percent baseline weight, though a main 

effect of day showed that all mice increased their percent baseline weight by day 13 

through day 30 (consecutively; p = 0.009, p = 0.000, p = 0.001, p = 0.000, p = 0.001, p 

= 0.002, p = 0.000, p = 0.000, p = 0.000, p = 0.038, p = 0.002) compared to day 1 post-

injury. No pre-existing phenotypic weight differences were seen between DAGL-β+/+ and 

DAGL-β-/-mice at baseline (t (53) = 1.14, p = 0.2605, T-test, Figure 1G). 
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Figure 2: DAGL-β deletion did not protect against TBI-induced reference 

memory deficits or altered search strategy. In MWM Fixed Platform acquisition, a 

main effect of injury showed that TBI mice had longer swim distances to the platform 

than sham mice (F(1,51) = 0.237, p = 0.000, ANOVA, Figure 2A). This TBI-induced deficit 

also occurred in DAGL-β-/- mice (non-significant 3-way interaction; F(7,357) = 0.613, p = 

0.745, ANOVA) with no main effect of genotype (F(1,51) = 0.730, p = 0.397, ANOVA), 

demonstrating that TBI produced reference memory deficits are irrespective of DAGL-β 

deletion. A significant main effect of day (F(7,357) = 32.2, p = 0.000, ANOVA) showed that 

all mice had significantly reduced swim distances on Fixed Platform days 2 through 8 

(all p = 0.000) compared to day 1. In the evaluation of swim speed, a significant main 

effect of injury (F(1,51) = 8.69, p = 0.005, ANOVA, Figure 2B) showed that TBI mice 

swam slower than sham mice during Fixed Platform acquisition trials. 

The probe trial (Figure 2C, 2D, 2E) test also revealed significant performance 

deficits in TBI mice. Specifically, these mice spent a reduced percentage of time in the 

target quadrant (main effect of injury; F(1,51) = 8.33, p = 0.006, ANOVA, Figure 2C), a 

concomitantly increased percentage of time in the control quadrant (main effect of 

injury; F(1,51) = 12.2, p = 0.001, ANOVA, Figure 2C), and had reduced platform location 

entries (main effect of injury; F(1,51) = 6.25, p = 0.016, ANOVA, Figure 2E) compared to 

sham mice. DAGL-β deletion did not affect any of these indices. No impact of TBI was 

evident in probe trial distance to the prior platform location (non-significant main effect; 

F(1,51) = 2.42, p = 0.126, ANOVA, Figure 2D). TBI mice also demonstrated altered probe 

trial search strategy in which they spent significantly more time in the MWM outer ring 

than sham mice (F(1,51) = 5.87, p = 0.019, ANOVA, Figure 2F). 
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The absence of significant differences in cued task performance (F(1,51) = 0.323, 

p = 0.572, ANOVA; Figure 4H) or cued task swim speed (F(1,51) = 0.159, p = 0.692, 

ANOVA; Figure 4I) suggests that TBI mice did not produce overt sensorimotor or 

motivational alterations. 

Figure 3: DAGL-β deletion did not protect against TBI-induced reversal task 

memory deficits or altered reversal search strategy. During MWM Reversal 

acquisition, TBI mice had longer swim distances to find the Reversal platform than 

sham mice (main effect of injury; F(1,51) = 4.64, p = 0.036, ANOVA, Figure 3A). This 

deficit in reversal acquisition was not spared in DAGL-β-/- mice (non-significant 3-way 

interaction; F(3,153) = 0.075, p = 0.973, ANOVA: non-significant main effect of genotype; 

F(1,51) = 3.64, p = 0.062, ANOVA), demonstrating that while TBI produces deficits in 

cognitive flexibility, DAGL-β deletion affords no such protection. A significant main effect 

of day (F(3,153) = 14.9, p = 0.000, ANOVA) showed that all mice had significantly reduced 

distances to the platform on Reversal days 2 (p = 0.003), 3 (p = 0.004), and 4 (p = 

0.000) compared to day 1. In the evaluation of swim speed, a significant main effect of 

injury (F(1,51) = 5.72, p = 0.020, ANOVA, Figure 3B) showed that TBI mice swam slower 

than sham mice during Reversal acquisition trials. Although a significant 2-way Reversal 

swim speed day by genotype interaction occurred (F(3,153) = 4.20, p = 0.007, ANOVA), 

sidak post-hoc testing revealed no significant difference between DAGL-β+/+ and DAGL-

β-/- mice at any time point (day 1; p = 0.329, day 2; p = 0.708, day 3; p = 0.901, day 4; p 

= 0.691), suggesting that genotype did not relevantly affect Reversal swim speed. 

The Reversal probe test (Figure 3C, 3D, 3E) also revealed that TBI elicited a 

significant performance deficit. Specifically, injury resulted in an increased distance to 
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the prior Reversal platform location (main effect of injury; F(1,51) = 6.13, p = 0.017, 

ANOVA, Figure 3D), and a reduction in the number of Reversal platform location entries 

(main effect of injury; F(1,51) = 11.1, p = 0.002, ANOVA, Figure 3E) compared to sham 

mice. Again, DAGL-β-/- mice did not differ from DAGL-β+/+ mice. However, none of the 

factors affected the percentage of time spent in the target or control quadrants in the 

Reversal probe trial test (non-significant main effect of injury Target quadrant; F(1,51) = 

0.782, p = 0.381, non-significant main effect of injury Control quadrant; F(1,51) = 3.07, p = 

0.086, ANOVA, Figure 3C). TBI mice also demonstrated an increased duration of time 

spent in the MWM outer ring during the probe trial compared with the sham mice (F(1,51) 

= 4.61, p = 0.037, ANOVA, Figure 3F). 

Figure 4: DAGL-β deletion did not protect against TBI-induced neurological 

motor impairments. During Rotarod testing, a significant 2-way interaction of day by 

injury (F(7,357) = 6.20, p = 0.000, ANOVA, Figure 4A), irrespective of genotype, revealed 

that TBI mice had reduced latencies to fall on post-injury days 1 (p = 0.000), 2 (p = 

0.000), and 3 (p = 0.000) compared to sham mice, suggesting that TBI produced 

neurological motor Rotarod deficits, which resolved by day 7 post-injury. Similarly, 

DAGL-β-/- mice undergoing TBI mice showed Rotarod performance deficits (non-

significant 3-way interaction; F(7,357) = 0.916, p = 0.494, ANOVA: non-significant main 

effect of genotype; F(1,51) = 0.449, p = 0.506, ANOVA), suggesting that DAGL-β deletion 

did not protect against neurological motor impairments as measured by the Rotarod.  

A significant 2-way interaction of day by injury (F(6,306) = 8.04, p = 0.000, ANOVA, 

Figure 4B) revealed increased NSS scores in TBI mice on post-injury days 1 (p = 

0.002), 2 (p = 0.028), and 7 (p = 0.010) compared to sham mice, irrespective of 
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genotype. These findings suggest that TBI produced neurological motor NSS deficits 

resolved by day 14 post-injury.  The finding that genotype did not affect NSS scores 

(non-significant 3-way interaction; F(6,306) = 0.243, p = 0.962, ANOVA: non-significant 

main effect of genotype; F(1,51) = 1.20, p = 0.279, ANOVA) suggests that DAGL-β 

deletion did not protect against neurological motor impairments as measured by the 

NSS. 

Figure 5: Anxiety-like behavior was unaffected by DAGL-β deletion or TBI. 

In the light-dark box assay, neither TBI nor DAGL-β deletion produced any change in 

time spent in the light area (non-significant main effect of injury; F(1,51) = 0.002, p = 

0.964, ANOVA: non-significant main effect of genotype; F(1,51) = 2.69, p = 0.107, 

ANOVA, Figure 5A), or entries into the light area (non-significant main effect of injury; 

F(1,51) = 0.137, p = 0.713, ANOVA: non-significant main effect of genotype; F(1,51) = 

0.005, p = 0.943, ANOVA), suggesting that when evaluated at post-injury day 32 neither 

TBI nor DAGL-β deletion affected behavior in this assay. No changes in Light-Dark box 

activity were seen between groups as measured by total distance traveled (non-

significant 2-way interaction; F(1,51) = 0.571, p = 0.453, ANOVA). 

Likewise, the elevated plus maze test failed to reveal effects of either TBI or 

DAGL-β deletion in time spent in the open arms (non-significant main effect of injury; 

F(1,51) = 2.90, p = 0.095, ANOVA: non-significant main effect of genotype; F(1,51) = 0.046, 

p = 0.832, ANOVA, Figure 5B), or entries into the light area (non-significant main effect 

of injury; F(1,51) = 0.422, p = 0.519, ANOVA: non-significant main effect of genotype; 

F(1,51) = 0.355, p = 0.554, ANOVA). These findings suggest that when evaluated at post-

injury day 33 neither TBI nor DAGL-β deletion impacted performance in the elevated 
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plus maze, a common test used to infer anxiety-related behavior. No changes in 

elevated plus maze activity were seen between groups as measured by total distance 

traveled (non-significant 2-way interaction; F(1,51) = 1.63, p = 0.207, ANOVA). 

Figure 6: The survival protective phenotype of mouse DAGL-β deletion 

persisted at increased injury severity. Male DAGL-β-/- mice were significantly spared 

from FPI-induced mortality compared to male DAGL-β+/+ mice when injury magnitude 

was increased to 2.0 atm, (X2
(1, N=31) = 4.31, p = 0.038, Chi Square, Figure1A), as well 

as at 2.17 atm, (X2
(1, N=28) = 4.09, p = 0.043, Chi Square), suggesting that the survival 

protective phenotype of DAGL-β-/- mice persists with increased injury severity. In 

contrast, female DAGL-β-/- and -β+/+ mice showed high survival rates at either 2.0 atm 

(X2
(1, N=30) = 1.03, p = 0.309, Chi Square) or 2.17 atm (X2

(1, N=28) = 2.15, p = 0.142, Chi 

Square). The high survival rates of females (2.0 atm; DAGL-β+/+ 93%, DAGL-β-/- 100%, 

2.17 atm; DAGL-β+/+ 86%, DAGL-β-/- 100%) suggest that being female was generally 

protective. 

 

Discussion 

TBI disrupted Fixed Platform and Reversal task performance accompanied by non-

spatial search strategies, irrespective of genetic deletion of DAGL-β. Thus, contrary to 

our hypothesis, deletion of this enzyme did not provide protection from TBI-induced 

spatial learning and memory impairments. Injury also produced changes in neurological 

motor function and body weight, but without impacting temperature regulation or 

performance in common assays used to infer anxiety. In addition, no phenotypic 

differences from DAGL-β disruption were evident in these measures. Unexpectedly, 
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DAGL-β deletion produced a survival protective phenotype, which persisted at 

increased injury severities in male mice. However, female mice did not display injury-

related mortality, regardless of genotype. 

 While the disease state following a TBI is composed of heterogeneous 

secondary injury mechanisms, chronic neuroinflammation has been a popular 

neuroprotective target, perhaps given the neuroinflammatory temporal profile providing 

intervention opportunities following the primary insult. Yet, thus far, all late phase clinical 

trials have failed to yield an effective anti-inflammatory neuroprotective treatment 

(Chakraborty et al, 2016; Narayan et al, 2002). The modulation of neuroinflammation in 

murine models of TBI have seen mixed success. While high dose anti-inflammatories 

(NSAIDs and glucocorticosteroids) can exacerbate learning and memory deficits (Brown 

et al, 2006; Chen et al, 2009, 2010b), isolated stand-alone drugs targeting 

neuroinflammation (antibiotics, COX-1 inhibitors, a plant-based alkaloid, and an 

apolipoprotein mimetic peptide) attenuate memory impairment (Ferguson et al, 2017; 

Laskowitz et al, 2007; Shang et al, 2014; Siopi et al, 2012). The mixed results of anti-

inflammatory drug targets in preclinical research and the failed translation to clinical 

learning and memory protection is perhaps a consequence of the necessity to promote 

the beneficial effects of acute neuroinflammation, while minimizing detrimental chronic 

effects. The temporal profile of microglia activation phenotypes may also be of 

relevance. Specifically, increased 2-AG production during M2a (alternatively activated) 

and M2c (acquired deactivated) microglial phenotypes occurs in concert with increased 

CB2 receptor expression, driving the acquisition of further M2 phenotypes and 

promoting inflammation resolution (Mecha et al, 2015). Furthermore, DAGL-β 
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expression is upregulated during an M2c phenotype (Mecha et al, 2015), suggesting 

that DAGL-β may play a temporal dependent role with regards to inflammation 

pathology. The current constitutive genetic deletion of DAGL-β may therefore mask time 

dependent protective effects of DAGL-β disruption. Future experiments using 

pharmacological tools would be valuable to manipulate the timing of DAGL-β disruption, 

but are currently challenging given the lack of availability of selective and brain 

penetrant DAGL-β inhibitors. Furthermore, 2-AG is a potent CB2 receptor agonist 

(Hillard, 2000a), consequently DAGL-β gene deletion may also result in decreased 

activation of microglial CB2 receptors. Such reduced CB2 receptor signaling could offset 

any presumed beneficial effects of reduced AA metabolites. 

 The high mortality rates of DAGL-α-/- mice following the craniectomy surgery 

precluded systematic investigation of neuronal DAGL disruption. DAGL-α-/- mice are 

vulnerable to increased mortality in general (Powell et al, 2015) as well as being more 

susceptible to seizures (Sugaya et al, 2016) than DAGL-α+/+ mice. This pre-existing 

phenotype may be a consequence of alterations across ontogeny (e.g. decreased 

neurogenesis and altered inflammatory responses (Gao et al, 2010; Shonesy et al, 

2014; Tanimura et al, 2010) and may lead to increased vulnerability to survival 

surgeries that compromise the integrity of the CNS. 

 The unexpected finding that DAGL-β disruption produced a survival protective 

phenotype, although not a frequently explored outcome measure in preclinical studies of 

TBI, might point to a surprising and novel understanding of DAGL-β as contributing 

towards acute TBI pathology. Despite otherwise susceptible DAGL-β-/- mice surviving 

the acute injury period (perhaps represented by the increased righting times of DAGL-β-
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/- mice compared to -β+/+ mice), no potentiated learning and memory deficits in the 

DAGL-β-/- mice suggest these mice were not prone to increased functional impairment. 

Interestingly, a clinical study exploring the relationship of cannabinoids to TBI mortality 

used urine toxicology screen results and showed decreased mortality in individuals with 

a positive THC screen (Nguyen et al, 2014b), the primary psychoactive constituent of 

the Cannabis sativa plant. The authors hypothesized that chronic low-dose THC was 

mildly pro-inflammatory, producing a pre-conditioning effect where a mildly noxious 

stimulus proves to be protective against a more severe subsequent insult. Yet this logic 

seems contrary to DAGL-β disruption, found to be anti-inflammatory in vitro (Hsu et al, 

2012). The observed mortality in the present study occurred within a 2-min post-injury 

window. Therefore, consideration of the processes responsible in terms of secondary 

injury mechanisms should also be relevant to such a time scale. Both reactive oxygen 

species (ROS) production (e.g. peroxynitrite, hydroxyl radical, etc.) and glutamate 

excitotoxicity occur within minutes following injury (Nilsson et al, 1990; Singh et al, 

2006). Though few studies have examined injury-induced ROS production at time points 

earlier than 30 minutes, evidence suggests that TBI-induced ROS elevation magnitude 

is subject to injury force manipulations (Marklund et al, 2001), leaving the investigation 

of DAGL-β disruption on injury-induced ROS elevations at 2 min post-TBI as an 

interesting future experimental direction. Furthermore, a future avenue of investigation 

could include in vivo microdialysis measurement of extra-cellular glutamate at 2-min 

post injury. 

 Another mechanism of consideration, which may contribute towards the survival 

protective phenotype of DAGL-β-/- mice, includes ceramides, belonging to the family of 
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spingolipids. Spingolipids are essential constituents of all eukaryotic cell membranes, of 

which ceramide is composed of sphingosine and a fatty acid and its generation occurs 

within minutes through the hydrolysis of sphingomyelin by sphingomyelinases 

(Kolesnick and Kronke, 1998). Increases in ceramides have been linked to glutamate 

toxicity, mitochondrial dysfunction, and extrinsic apoptotic pathways (Novgorodov et al, 

2018). In cancer, the reduction of ceramide accumulation is frequently observed (Morad 

and Cabot, 2013) and many chemotherapeutic drugs elevate ceramide (Radin, 2004) to 

promote cell death. While there is no reported link between DAGL-β activity and 

ceramide production, 2 to 3-fold increases in ceramide levels occur following TBI in rats 

(Barbacci et al, 2017; Roux et al, 2016). Of future interest would be to measure 

ceramide levels in TBI-DAGL-β-/- mice, which if contributing to the survival phenotype of 

these animals we would predict lower accumulation of ceramide in brain compared to 

TBI-DAGL-β+/+ mice, providing a neurochemical lipid correlate of TBI survival and 

mortality. 

 A growing body of work implicates the importance of sex differences in response 

to TBI. While TBI frequently occurs in young males (Langlois et al, 2006) resulting from 

automotive accidents, war, etc., the elderly are also a highly vulnerable population 

(Thompson et al, 2006) due mostly as a result of falls, in which men and women are 

impacted equally. The present observation that female DAGL-β-/- and -β+/+ mice showed 

survival phenotypes after injury is consistent with female mice and rats being generally 

protected from TBI-induced mortality compared to male mice/rats (Neese et al, 2010; 

Umeano et al, 2017). The high rates of survival in both genotypes of females is likely 

occurring through alternative mechanisms than DAGL-β gene deletion. The 
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mechanisms behind female protection from TBI mortality as of yet, remain unclear; here 

we consider several possibilities. Pre-clinical studies show female mice have differing 

inflammatory profiles than male mice following TBI. Female mice demonstrate a 

biphasic pro-inflammatory response, whereas male mice show a prolonged single 

phase increase in inflammatory mediators (Villapol et al, 2017). Inflammation resolution 

profiles also differ, with female mice showing a delayed peak of anti-inflammatory 

mediators, whereas male mice again show a single phase  (Villapol et al, 2017). Pre-

clinical studies also show a potential hormonal role driving sex differences in TBI 

mortality profiles. Umeano et al., 2017 using ovariectomized female mice showed 

similar mortality rates to males and concluded that female gonadal hormones may 

influence murine TBI mortality outcomes. While both estrogen and progesterone are 

neuroprotective when administered to male mice in functional and molecular endpoints 

(Lopez-Rodriguez et al, 2015; Meltser et al, 2008; Pascual et al, 2013; Schaible et al, 

2014), no known work to date has shown a link to mortality protection by these 

hormones in murine studies. Future experiments to evaluate if survival phenotypes in 

DAGL-β+/+ male mice could be rescued by estrogen/progesterone pre-treatment might 

prove a useful addition to our understanding of sex driven differences in mouse TBI 

mortality outcomes. However, female mortality in clinical populations differs to male only 

when cohorts are evaluated by age, with pubescent (Ley et al, 2013) and post-

menopausal women (Berry et al, 2009; Davis et al, 2006) showing mortality protection, 

both being life cycle times of estrogen dominance unbalanced by progesterone. 

Furthermore, two large randomized clinical trials found no protection of progesterone 

(Skolnick et al, 2014; Wright et al, 2014). As such, the mechanisms by which females 
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are protected from TBI mortality compared to males strongly suggest the involvement of 

estrogen.  

 Despite the present finding that DAGL-β deletion was not protective against 

mouse spatial learning and memory deficits, continued investigation of 

neuroinflammation on TBI outcomes is arguably pertinent. The predisposition of TBI 

patients to develop other neurological pathologies such as Alzheimer’s disease, thought 

to be a product of prolonged neuroinflammation, support the necessity of further 

investigation in this area. In sum, while DAGL-β deletion did not protect against TBI-

induced learning and memory deficits nor motor deficits, these findings suggest the 

provocative possibility that DAGL-β activity contributes towards TBI-induced acute 

mortality in males, implicating this enzyme in acute TBI pathology. 
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Figure 3-1. Physiology: DAGL-β-/- mice showed increased survival and longer 

righting times. A, Experimental timeline, days relative to injury (Sham-DAGL-β+/+ n = 

12, Sham-DAGL-β-/- n = 15, TBI-DAGL-β+/+ n = 12, TBI-DAGL-β-/- n = 16). TBI lowered 

body weight and increased righting times, with no change in body temperature 

regulation. DAGL-β-/- mice showed increased survival and longer righting times with no 

change in weight loss. B, DAGL-β-/- mice showed increased survival from TBI compared 

to DAGL-β+/+ mice (* p < 0.05, vs. DAGL-α+/+ mice), as well as C, increased righting 

times (** p < 0.01, vs. TBI-DAGL-α+/+ mice). No changes between experimental groups 

were seen in either D, baseline body temperature or E, body temperature recovery 

following a 2-min MWM swim. F, TBI produced lowered % baseline body weights with 

no effect of genotype (*** p < 0.001, TBI vs. Sham mice), and G, DAGL-β-/- mice 

showed no phenotypic body weight differences to DAGL-β+/+ mice prior to TBI. Values 

represent mean + or ± SEM. 
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Figure 3-2. DAGL-β-/- mice showed no TBI-induced reference memory deficit 

protection. DAGL-β deletion did not protect against TBI-induced MWM Fixed Platform 

task impairments or altered search strategy (Sham-DAGL-β+/+ n = 12, Sham-DAGL-β-/- 

n = 15, TBI-DAGL-β+/+ n = 12, TBI-DAGL-β-/- n = 16). A, During MWM Fixed Platform 

acquisition TBI mice demonstrated greater distances to find the platform with no 

performance difference evident between genotype (*** p < 0.001, TBI vs. Sham mice) 

as well as B, slower swim speeds (** p < 0.01, TBI vs. Sham mice). During a MWM 

Fixed Platform probe trial C, TBI mice showed less spatial preference for the target 

quadrant with no performance difference evident between genotype (** p < 0.01, TBI vs. 

Sham mice), while D, no group differences were seen in distance to the prior platform 

location, but E, TBI mice showed fewer platform crossings of the prior platform location 

(* p < 0.05, TBI vs. Sham mice). During probe trial F, TBI mice also spent more time in 

the outer ring of the MWM (* p < 0.05, TBI vs. Sham mice) suggesting that TBI changes 

MWM search strategy, illustrated by also by G, representative swim paths of TBI and 

Sham, DAGL-β+/+ and DAGL-β-/- mice, where TBI mice show circular search strategies. 

During a MWM Cued task H, no differences in distance to a cued platform were evident, 

or I, swim speed, suggesting no senori-motor or motivational confounds were present. 

Values represent mean + or ± SEM. 
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Figure 3-3. DAGL-β-/- mice showed no TBI-induced cognitive flexibility deficit 

protection. DAGL-β deletion did not protect against TBI-induced MWM Reversal task 
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impairments or altered Reversal search strategy (Sham-DAGL-β+/+ n = 12, Sham-

DAGL-β-/- n = 15, TBI-DAGL-β+/+ n = 12, TBI-DAGL-β-/- n = 16). A, During MWM 

Reversal acquisition TBI mice demonstrated greater distances to find the platform with 

no performance difference evident between genotype (** p < 0.01, TBI vs. Sham mice) 

as well as B, slower swim speeds (* p < 0.05, TBI vs. Sham mice). During a MWM 

Reversal probe trial C, All groups showed no spatial preference for the Reversal target 

quadrant, while D, TBI mice showed greater distances to the prior Reversal platform 

location (* p < 0.05, TBI vs. Sham mice) E, as well as fewer platform crossings of the 

prior Reversal platform location (** p < 0.01, TBI vs. Sham mice). During Reversal probe 

trial F, TBI mice also spent more time in the outer ring of the MWM (* p < 0.05, TBI vs. 

Sham mice) suggesting that TBI changes MWM Reversal search strategy, illustrated by 

also by G, representative swim paths of TBI and Sham, DAGL-β+/+ and DAGL-β-/- mice, 

where TBI mice show circular search strategies. Values represent mean + SEM. 
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Figure 3-4. DAGL-β-/- mice showed no TBI-induced neurological motor deficit 

protection. DAGL-β deletion did not protect against TBI-induced neurological motor 

deficits (Sham-DAGL-β+/+ n = 12, Sham-DAGL-β-/- n = 15, TBI-DAGL-β+/+ n = 12, TBI-

DAGL-β-/- n = 16). A, During the Rotarod assay, TBI mice demonstrated reduced 

latencies to fall on post-surgery days 1, 2, and 3, with no performance difference 

evident between genotype (*** p < 0.001, TBI vs. Sham mice days 1-3 post-injury). B, 

During NSS evaluation, TBI mice demonstrated greater NSS scores on post-injury days 

1, 2, and 7 (** p < 0.01, TBI vs. Sham mice on day 1, and * p < 0.05, TBI vs. Sham mice 

on days 2 and 7). Values represent mean + SEM. 
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Figure 3-5. Neither DAGL-β-/- deletion nor TBI altered performance on tests of 

affective behavior. Both light-dark box and elevated plus maze performance was 

unaffected by DAGL-β deletion or TBI (Sham-DAGL-β+/+ n = 12, Sham-DAGL-β-/- n = 

15, TBI-DAGL-β+/+ n = 12, TBI-DAGL-β-/- n = 16). In the light-dark box no performance 

difference was evident as a result of TBI or between genotype for either A, time spent in 

the light area, B, entries into the light area, or C, distance travelled. The elevated plus 

maze also saw no performance differences as a result of TBI or between genotype for 

either D, time spent in the open arms, E, entries into the open arms, or F, distance 

travelled. Values represent mean + SEM. 
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Figure 3-6. DAGL-β-/- mice exhibit a survival protective phenotype. The survival 

protective phenotype of DAGL-β-/- mice persisted at increased injury severity in male 

mice (male TBI mice; [2.0 atm]-DAGL-β+/+ n = 16, [2.0 atm]-DAGL-β-/- n = 15, [2.17 

atm]-DAGL-β+/+ n = 14, [2.17 atm]-DAGL-β-/- n = 14), whereas being female was 

generally protective (female TBI mice; [2.0 atm]-DAGL-β+/+ n = 15, [2.0 atm]-DAGL-β-/- n 

= 15, [2.17 atm]-DAGL-β+/+ n = 14, [2.17 atm]-DAGL-β-/- n = 14). In male TBI mice A, at 

both 2.0 atm and 2.17 atm DAGL-β-/- mice demonstrated increased survival (* p < 0.05, 

DAGL-β-/- vs DAGL-β+/+ mice). Whereas female TBI mice B, showed no significant 

difference in survival rates between DAGL-β-/- and DAGL-β+/+ mice. 



121 
 

 

 

Chapter IV 

Chapter Introduction 

 

The third and final goal of this dissertation was to understand the in vivo role of 

diacylglycerol lipase-α (DAGL-α), the second of the two 2-AG biosynthetic enzymes, in 

hippocampal-dependent mouse learning and memory regulation under physiological 

conditions.  

 Hippocampal-dependent learning and memory. The hippocampus and its 

connection to other brain regions is fundamental to the memory of our experiences, 

their content, and our ability to re-play them. That is, episodic memory. The 

hippocampus specifically supports the storage and recollection of temporal-spatial 

contextual information. The study of 

several patients with selective damage 

to the hippocampus has helped provide 

insight into the function of this brain 

structure in learning and memory. One 

such patient, R.B., had complete loss of 

neurons from bilateral hippocampal 

CA1 region(see Figure 4-A) (where 

previously processed information by 

other hippocampal regions is sent out 

Figure 4-A. Hippocampal regional connectivity: 

DG; dentate gyrus, Sub; subiculum, Pre; 

presubiculum, Para; parasubiculum, EC; 

entorhinal cortex (adapted from publically 

available lecture slides by Dr. David S. 

Touretzky). 
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via the subiculum and entorhinal cortex and projects back to the neocortex, among 

other structures) as a result of complications from an artery bypass surgery (Zola-

Morgan et al, 1986). R.B. experienced anterograde amnesia, with difficulty acquiring 

new information. Specifically R.B. had difficulty remembering word lists and story recall, 

and he reported loss of knowledge of events from a previous day such as talking to his 

children. A second example, V.C., is a patient who experienced loss of entire rostral-

caudal length hippocampal volume as a result of an epileptic seizure (Cipolotti et al, 

2001). V.C. also experienced severe anterograde amnesia, profoundly impairing his 

ability to acquire new information (story recall, word associations, newly experienced 

events and their contexts). While such selective and restricted brain damage to the 

hippocampus is rare, these cases support the assertion of Dr. Brenda Milner, who 

argued the critical importance of the 

hippocampus for episodic memory through 

her revolutionary work with H.M. (whose 

personal tragedy and removal of his 

bilateral temporal lobes led to testable 

hypotheses about what regions of the brain 

were critical for memory) (Milner, 1970; 

Scoville and Milner, 1957). 

 The ways in which the hippocampus 

contributes toward memory storage and 

retrieval has been described by the 

indexing theory of memory (Teyler and 

Figure 4-B. Structures adjacent to the Human 

Hippocampus (adapted from publically available 

lecture slides by Dr. David S. Touretzky). 
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DiScenna, 1986), and since extensively supported by human and murine research 

(Teyler and Rudy, 2007). An experience activates patterns of neocortical activity which 

project to the hippocampus and responding hippocampal synapses are strengthened by 

long-term potentiation mechanisms (see next section). No memory content is stored in 

the hippocampus, but it acts as a system to retrieve neocortical stored information 

through activation of a hippocampal representation projecting back to the neocortex to 

activate patterns representing the entire experience. The neocortex alone is perhaps 

not well suited to the acquisition and retrieval of single memory episodes given its low 

associative connectivity (which might produce difficulty in distinguishing separate yet 

similar experiences) (Rudy, 2014). 

Long-term potentiation. The tri-synaptic loop organization of the hippocampus 

makes it uniquely suited to the study of neuronal connections, where the stimulation of 

fibers known to synapse onto a particular subfield can be measured using a recording 

electrode placed near to neurons of that subfield. 

The original work by Bliss and Lomo, 1973 

stimulated fibers in the perforant path, and then 

recorded from dentate gyrus neurons. They 

found that a strong stimulus applied after a weak 

stimulus produced an enduring increase in the 

synaptic response to the same weak stimulus, 

which they termed long-term potentiation (see 

Figure 4-C). It is now considered that experience 

is stored in the brain because it modifies the 

Figure 4-C. Graphical representation 

of long-term potentiation. A strong 

stimulus (SS) produced an enduring 

increase in the synaptic response to 

the weak stimulus (WS). 
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strength of synapses of connecting neurons. As such, Long-term potentiation is the idea 

that experience can be stored by altering the strength of neuron to neuron synaptic 

connections within networks of neurons, and is currently the best proposed molecular 

basis of memory. 

DAGL-α and hippocampal-dependent learning and memory. The dominant 

production enzyme of 2-AG in brain is DAGL-α (Bisogno et al, 2003a; Jung et al, 2007), 

yet the biosynthetic pathways of 2-AG are almost as diverse as its catabolism. Two 

further biosynthetic pathways exist (see Figure 4-D), one through LPA phosphatase 

(Nakane et al, 2002) and the other through PLA1/lyso-PLC (Higgs and Glomset, 1994). 

While the involvement of 

these latter and secondary 

pathways in the production of 

2-AG is yet to be fully 

evaluated, they have been 

hypothesized as being 

responsible for some 

endocannabinoid-mediated 

synaptic plasticity found to be 

insensitive to DAGL inhibitors 

(Zhang et al, 2011), and 

perhaps are also responsible 

for low basal 2-AG levels 

Figure 4-D. 2-AG biosynthetic pathways: 2-AG; 2-arachidonyl 

glycerol; 2-arachidonoyl-LPA; 2-arachidonoyl-lysophosphatidic 

acid, 2-arachidonoyl-LPI; 2-arachidonoyl 

lysophosphatidylinositol, 2-LPA phosphatase; 2-

lysophosphatidic acid phosphatase, DAGL-α/β; diacyglycerol 

lipase-α/β; lyso-PLC; lyso-phospholipase C, PIP2; 

phosphatidylinositol biphosphate, PIP2 phosphatase; 

phosphatidylinositol biphosphate phosphatase, PI; 

phosphatidylinositol, PLA1; Phospholipase A1, PLCβ; 

phospholipase Cβ. 
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measurable in DAGL-α-/- mice. 

 DAGLs are expressed in bacteria, fungi, plants, and animals. Mammalian DAGLs 

are widely expressed in the CNS, and specifically DAGL-α is abundantly expressed in 

the hippocampus (Katona et al, 2006; Yoshida et al, 2006). The distinct cellular 

expression patterns of DAGLs in part determine their physiological functions. DAGL-α is 

expressed on neurons, specifically hippocampal pyramidal cell dendritic spines 

(Yoshida et al, 2006), with a growing body of evidence to support its importance for the 

modulation of neurotransmission (Gao et al, 2010; Tanimura et al, 2010). While DAGL-

α-/- mouse models have pointed to the importance of this enzyme in a variety of 

physiological/psychological functions; anxiety, seizure activity, and sociability (Shonesy 

et al, 2014, 2018; Sugaya et al, 2016), the present work considers the importance of 

DAGL-α for hippocampal-dependent spatial memory in the mouse model organism. 

Summary. The following work evaluates the hippocampal-dependent learning 

and memory contributions of DAGL-α, using pharmacological and genetic manipulations 

under the working hypothesis that DAGL-α is necessary for spatial learning and memory 

in mice under normal physiological conditions. The present chapter tests this hypothesis 

under three levels of investigation; cellular responses to LTP, in vivo spatial learning 

and memory deficits, and neurochemical correlates of behavior (eCB lipid levels) in 

brain areas important for learning and memory. The unique findings that DAGL-α 

disruption impairs acquisition and reversal tasks, but not expression, extinction or 

forgetting, implicates DAGL-α as being selectively important for the integration of new 

spatial information. 

 



126 
 

Diacylglycerol lipase-alpha regulates hippocampal-dependent learning and 

memory processes in mice 

(Submitted for publication) 

Disclosure: all electrophysiology experiments were conducted in the laboratory of Dr. 

Qing Song Lui, primarily by Laikang Yu and Xiaojie Liu, and Mass Spectrometry 

analysis was conducted by Justin Poklis. 

 

Introduction 

A growing body of evidence implicates the importance of 2-arachidonoyl glycerol (2-

AG), the most highly expressed endogenous cannabinoid in brain, in regulating learning 

and memory. Diacylglycerol lipase (DAGL) forms 2-AG through the hydrolysis of 

diacylglycerols (Chau and Tai, 1981; Okazaki et al, 1981) and exists as two distinct 

biosynthetic enzymes, DAGL-α and DAGL-β (Bisogno et al, 2003a) that are expressed 

on distinct cell types, as well as in brain areas important for learning and memory 

(Katona et al, 2006; Lafourcade et al, 2007). Within the central nervous system, DAGL-

β is highly expressed on microglia, while DAGL-α, expressed on synapse-rich plasma 

membranes of dendritic spines (Yoshida et al, 2006), serves as the principal synthetic 

enzyme of 2-AG on neurons (Viader et al, 2015a). 

 DAGL-α modulates neurotransmission through distinct processes of 

neurogenesis and endocannabinoid-mediated short-term synaptic plasticity, implicating 

it in learning and memory processes. Adult neurogenesis represents a form of cellular 

plasticity in the developed brain. Two prominent brain areas showing adult 

neurogenesis, the subventricular zone and the hippocampus, that express high levels of 
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DAGL-α (Goncalves et al, 2008) undergo marked reductions in the proliferation of 

neuronal progenitor cells in DAGL-α-/- mice (Gao et al, 2010). Similarly, the non-

selective DAGL inhibitors RHC80267 and tetrahydrolipstatin reduce proliferation of 

neuronal progenitor cells in the subventricular zone (Goncalves et al, 2008). DAGL-α 

also plays an essential role in endocannabinoid-mediated retrograde synaptic 

suppression in which 2-AG synthesized at post-synaptic terminals acts as a retrograde 

messenger to activate the pre-synaptic cannabinoid receptor type 1 (CB1), which 

inhibits synaptic transmission. Tanimura et al. (2010) reported that deletion of DAGL-α, 

but not DAGL-β, annihilated two forms of endocannabinoid-mediated short-term 

synaptic plasticity, depolarization-induced suppression of excitation (DSE) and inhibition 

(DSI) in hippocampus, striatum, and cerebellum. Similarly, Gao et al. (2010) replicated 

these findings in hippocampus, and Yoshino et al. (2011) reported that DAGL-β plays a 

necessary role in DSI in prefrontal cortex (PFC). Furthermore, the DAGL inhibitor DO34, 

blocked DSE in cerebellar slices and DSI in hippocampal slices in a concentration 

dependent manner (Ogasawara et al, 2016). 

The cell signaling events that occur after learning are frequently studied in terms 

of long-term potentiation (LTP). Carlson et al. (2002) demonstrated that transient 

release of endocannabinoids by depolarization facilitated the induction of LTP when 

preceded by DSI, suggesting that endocannabinoids may enhance plasticity at Schaffer 

collateral-CA1 synapses through a disinhibitory action. However, the role that the major 

2-AG biosynthetic enzyme DAGL-α plays in the induction of LTP remains unknown. 

Here we hypothesize that this enzyme plays a necessary role in the induction of LTP. 
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Accordingly, we predict that pharmacological inhibition or genetic deletion of DAGL-α 

will disrupt LTP. 

The present study also investigated the in vivo role of DAGL-α in learning and 

memory. Specifically, we evaluated whether endocannabinoid-regulated short-term 

synaptic plasticity disruption caused by deletion or inhibition of this enzyme translates to 

deficits in Morris water maze model (MWM) of learning and memory. Given the 

important role of hippocampal neurogenesis in the processing of spatial memory 

(Lieberwirth et al, 2016), we investigated the consequences of DAGL-α disruption on 

spatial memory processes of acquisition, expression, extinction, forgetting, and reversal 

in the MWM. To circumvent known pitfalls related to constitutive genetic deletions, such 

as the role of DAGL-α in axonal guidance during development (Williams et al, 2003), we 

utilized the DAGL-α/β inhibitor, DO34, and DAGL-α-/- mice. Because DO34 also inhibits 

other serine hydrolases (i.e., ABHD2, ABHD6, CES1C, PLA2G7, PAFAH2), we also 

evaluated DO53, a structural analog of DO34 that cross-reacts with these off-targets but 

does not inhibit DAGL (Ogasawara et al, 2016).  

In the present study, we ascertain the consequences of DAGL-α disruption at 

three levels of investigation; cellular responses to LTP, in vivo spatial learning and 

memory deficits, and alterations of endocannabinoid lipids, their substrates and 

metabolites, in hippocampus, prefrontal cortex, striatum, and cerebellum (brain areas 

important for learning and memory showing high DAGL-α activity [Baggelaar et al., 

2017]). 
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Materials and Methods 

Animals. Subjects consisted of adult male C57BL/6J mice (Jackson 

Laboratories, Bar Harbor, Maine), and DAGL-α-/-,-α+/-, and -α+/+ mice on a mixed 99% 

C57BL/6 (30% J, 70% N) and 1% 129/SvEv background, as previously described (Hsu 

et al, 2012). DAGL-α+/- mouse breeding pairs were originally generated in the Cravatt 

laboratory and transferred to Virginia Commonwealth University. All mice (age 8-10 

weeks) were pair-housed under a 12 h light/12 h dark cycle (0600 to 1800 h), at a 

constant temperature (22ºC) and humidity (50-60%), with food and water available ad 

libitum. All experiments were conducted in accordance with the National Institute of 

Health (NIH) Guide for the Care and Use of Laboratory Animals (NIH Publications No. 

8023, revised 1978), and were approved by the Virginia Commonwealth University and 

Medical College of Wisconsin Institutional Animal Care and Use Committees.  

Electrophysiology. For LTP experiments, DAGL-α+/+, -α+/-, -α-/- and C57BL/6J 

mice were anaesthetized under isoflurane inhalation and decapitated. Hippocampi were 

dissected (in C57BL/6J mice 2 h post vehicle [VEH], DAGL-α inhibitor DO34 (Cravatt 

Laboratory, La Jolla, CA) [30 mg/kg], or its control analog and ABHD6 inhibitor DO53 

[30 mg/kg] administration) and were embedded in low-melting-point agarose (3%, 

Sigma-Aldrich A0701). Transverse hippocampal slices (400 μm thick) were prepared 

using a vibrating slicer (Leica VT1200s) (Pan et al, 2011; Zhang et al, 2015). Slices 

were prepared at 4-6°C in a solution containing (in mM): 68 sucrose, 2.5 KCl, 1.25 

NaH2PO4, 5 MgSO4, 26 NaHCO3, and 25 glucose. The slices were transferred to and 

stored in artificial cerebrospinal fluid containing (in mM): 119 NaCl, 3 KCl, 2 CaCl2, 1 
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MgCl2, 1.25 NaH2PO4, 25 NaHCO3, and 10 glucose at room temperature for at least 1 

hour before use. All solutions were saturated with 95% O2 and 5% CO2. 

Field excitatory postsynaptic potentials (fEPSPs) were recorded with patch clamp 

amplifiers (Multiclamp 700B) under infrared-differential interference contrast 

microscopy. The recordings were made blind to drug treatment and mouse genotype. 

Data acquisition and analysis were performed using digitizers (DigiData 1440A and 

DigiData 1550B) and the analysis software pClamp 10 (Molecular Devices). Signals 

were filtered at 2 kHz and sampled at 10 kHz. Field recordings were made using glass 

pipettes filled with 1 M NaCl (1-2 MΩ) placed in the stratum radiatum of the CA1 region 

of the hippocampal slices, and fEPSPs were evoked by stimulating the Schaffer 

collateral/commissural pathway at 0.033 Hz with a bipolar tungsten electrode (WPI). 

Stable baseline fEPSPs were recorded for at least 20 minutes at an intensity that 

induced ~40% of the maximal evoked response. LTP was induced by theta burst 

stimulation (TBS), which consisted of a series of 15 bursts, with 4 pulses per burst at 

100 Hz with a 200 ms inter-burst interval. TBS is designed to mimic the in vivo firing 

patterns of hippocampal neurons during exploratory behavior (Larson et al, 1986). All 

recordings were performed at 32 ± 1°C by using an automatic temperature controller. 

Morris water maze (MWM) assessments. The MWM consisted of a circular, 

galvanized steel tank (1.8 m in diameter, 0.6 m height). The tank was filled with water 

(maintained at 20º C ± 2º C) with a white platform (10 cm diameter) submerged 1 cm 

below the water’s surface. A sufficient volume of white paint (Valspar 4000 latex paint, 

Lowe’s Companies Inc., Mooresville, NC) was added to render the water opaque and 

the platform invisible. In addition to distal visual cues (shapes) on curtains surrounding 
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the tank (30 cm from the tank wall), five sheets of laminated paper with distinct black-

and-white geometric designs were attached to the sides of the tank serving as proximal 

cues. An automated tracking system (ANY-maze, San Diego Instruments, Inc., San 

Diego, CA) analyzed the swim path of each subject and calculated distance (path length 

between being placed in the water and finding the hidden platform), average swim 

speed, number of platform crossings, and percentage of time spent in each quadrant.  

To assess MWM acquisition DAGL-α+/+, -α+/-, -α-/- mice received 10 Fixed 

Platform training days (i.e. a submerged platform remained in the same location across 

days), and then were assessed for expression of spatial memory on day 11 in a single 

MWM Fixed Platform Probe Trial (i.e. the submerged platform was removed). C57BL6/J 

Mice received a 2 h pretreatment of the DAGL-α inhibitor DO34 (0.3, 3, and 30 mg/kg 

(Wilkerson et al, 2017), or its inactive analog and ABHD6 inhibitor DO53 (30 mg/kg), or 

VEH on each of 10 Fixed Platform training days. A cued task test assessed sensori-

motor/motivational confounds by placing a 10cm high black cylinder on the submerged 

platform and mice were released from the farthest two release points. In order to assess 

whether DO34 affects the expression of spatial memory, separate groups of mice were 

given 10 days of drug-free Fixed Platform training. On day 11, each subject was 

administered 30 mg/kg DO34 or VEH, and 2 h later underwent a single 2 min MWM 

Fixed Platform Probe Trial. The extinction of spatial memory was assessed in drug-

naïve acquisition trained mice, which received injections of 30 mg/kg DO34 or VEH (2 h 

pretreatment) and tested in 2 min probe trials at 1, 2, 3, 4 and 6 weeks post-acquisition. 

To assess forgetting, a group of drug-naïve acquisition trained mice were administered 

30 mg/kg DO34 or VEH on day 11 and then returned to their home cage, given DO34 or 
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VEH at 6 weeks post-acquisition and administered a probe trial 2 h later. Reversal 

learning was assessed in drug-naïve acquisition trained mice, which received injections 

of 30 mg/kg DO34 or VEH (2 h pretreatment) and trained in reversal task trials where 

the submerged platform was moved to the opposite side of the tank over 5 days post-

acquisition, followed by a 2 min drug-free probe trial on day 6 post-acquisition. 

Lipid extraction and mass spectrometry. DAGL-α+/+, -α+/-, -α-/- mice, and 

C57BL6/J mice receiving a 2 or 24 h pretreatment of DO34 (30 mg/kg) or VEH, were 

anaesthetized under isoflurane inhalation and decapitated. Hippocampi, prefrontal 

cortex, striatum, and cerebellum were dissected out from brain, flash frozen in liquid 

nitrogen, and stored at −80°C until assay. On the day of lipid extraction, as previously 

described (Kwilasz et al, 2015), the pre-weighed mouse brains were homogenized with 

1.4 ml chloroform:methanol (containing 0.0348 g PMSF/ml). Six point calibration curves 

ranged from 0.078 pmol to 10 pmol for AEA, 0.125 nmol to 16 nmol for 2-AG, AA, and 

SAG, a negative control and blank control were also prepared. Internal standards 

(Cayman Chemicals, Michigan, USA) (50 µl of each of 8 nmol SAG-d8, 1 pmol AEA-d8, 

1 nmol 2-AG-d8, 1 nmol AA-d8) were added to each calibrator, control, and sample, 

except the blank control. Each calibrator, control, and sample was then mixed with 0.3 

ml of 0.73% w/v NaCl, vortexed, and centrifuged (10 min at 4000 × g and 4°C). The 

aqueous phase plus debris were collected and extracted again twice with 0.8 ml 

chloroform, the organic phases were pooled and organic solvents were evaporated 

under nitrogen gas. Dried samples were reconstituted with 0.1 ml chloroform, mixed 

with 1 ml cold acetone, and centrifuged (10 min at 4000 × g and 4°C) to precipitate 
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proteins. The upper layer of each sample was collected and evaporated to dryness and 

reconstituted with 0.1 ml methanol and placed in auto-sample vials for analysis.  

An Ultra performance liquid chromatography-tandem mass spectrometer (UPLC-

MS/MS) was used to identify and quantify the DAGL-α substrate 1-Stearoyl-2-

Arachidonoyl-sn-Glycerol (SAG, a nuclear diacyglycerol [Deacon et al., 2001] 

preferentially used by DAGLs [Balsinde et al., 1991; Allen et al., 1992]), the DAGL-α 

metabolites 2-AG and arachidonic acid (AA), and anandamide (AEA, a biosynthetically 

distinct endogenous cannabinoid ligand), in brain. Sciex 6500 QTRAP system with an 

IonDrive Turbo V source for TurbolonSpray® (Ontario, Canada) attached to a Shimadzu 

UPLC system (Kyoto, Japan) controlled by Analyst software (Ontario, Canada). 

Chromatographic separation was performed on a Discovery® HS C18 Column 15cm x 

2.1mm, 3µm (Supelco: Bellefonte, PA) kept at 25°C with an injection volume of 10 µL. 

The mobile phase consisted of A: acetonitrile and B: water with 1 g/L ammonium 

acetate and 0.1% formic acid. The following gradient was used: 0.0 to 2.4 minutes at 

40% A, 2.5 to 6.0 minutes at 40% A, hold for 2.1 minutes at 40% A, then 8.1 to 9 min 

100% A, hold at 100% A for 3.1 min and return to 40% A at 12.1 min with a flow rate 

was 1.0 mL/min. The source temperature was set at 600°C and had a curtain gas at a 

flow rate of 30 ml/min. The ionspray voltage was 5000 V with ion source gases 1 and 2 

flow rates of 60 and 50 ml/min, respectively. The mass spectrometer was run in positive 

ionization mode for AEA and 2-AG and in negative ionization mode for AA, and the 

acquisition mode used was multiple reaction monitoring. The following transition ions 

(m/z) were monitored with their corresponding collection energies (eV) in parentheses: 

AEA: 348>62 (13) and 348>91 (60); AEA-d8: 356>63 (13); 2-AG: 379>287 (26) and 
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379>296 (28); 2-AG-d8: 384>287 (26); AA: 303>259 (-25) and 303>59 (-60); AA-d8: 

311>267 (-25). The total run time for the analytical method was 14 min. 

Chromatographic analysis of SAG was performed on a Hypersil Gold® 3 X 50mm, 5 µ 

column (Thermo Scientific, Waltham, MA)  kept at 25°C with an injection volume of 2 

µL. The mobile phase consisted 10:90 mM ammonium formate: methanol mobile with a 

flow rate of 0.5 mL/min. The source temperature, curtain gas at a flow rate, ionspray 

voltage and source gas flow rates were the same as indicated above. The mass 

spectrometer was run in positive ionization mode. The following transition ions (m/z) 

were monitored with their corresponding collection energies (eV) in parentheses: SAG: 

646>341 (34) and 646>287 (38); SAG-d8: 654>341 (34). The total run time for the 

analytical method was 5 min. Calibration curves were analyzed with each analytical 

batch for each analyte. A linear regression ratio of the peak area analyte counts with the 

corresponding deuterated internal standard versus concentration was used to construct 

the calibration curves. 

Experimental design and statistical analysis. Electrophysiological data are 

presented as mean ± SEM. The magnitude of LTP (%) was calculated as follows: 100 × 

[mean fEPSP slope during the final 10 min of recording/mean baseline fEPSP slope]. 

Post-tetanic potentiation was calculated as the magnitude of the fEPSP slope relative to 

baseline for the first 5 min after TBS. Results were analyzed with one-way ANOVA 

followed by Tukey’s post hoc analysis.  

Behavioral data are presented as mean + SEM. All MWM acquisition, extinction, 

forgetting, reversal, and swim speed data, were analyzed using a mixed factor ANOVA 

(distance, percent time in outer ring, and cm/s measures). All probe trial analyses 
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focused on the first minute of exploration, with all gene deletion measures analyzed by 

one-way ANOVA and Sidak post hoc test, and DO34 measures analyzed by 

independent groups t-test. All MWM cued task data were analyzed by one-way ANOVA. 

MWM swim path selection metrics were assigned per Wagner et al., 2013 into three 

categories; spatial (direct, indirect, and self-orienting), non-spatial (scanning, circling, 

and random) and thigmotaxic, and were analyzed for gene deletion using a Chi Square 

analysis with pairwise comparisons and Bonferroni corrections (MacDonald and 

Gardner, 2000), and for drug-treatments using a Kruskall Wallis analysis. From the 

sample sizes, power was calculated using G*power 3 (Faul et al, 2007a) and was 

found, with alpha at .05, to range from 0.67 to 0.84 for mixed factor ANOVAs, from 0.45 

to 0.99 for one-way ANOVAs, and from 0.34 to 0.51 for independent group t-tests. 

Prior to data analysis, brain level data were transformed to pmol/g of brain tissue 

for AEA, and nmol/g of brain tissue for SAG, 2-AG and AA, and AEA. Drug and gene 

manipulations on brain endocannabinoids were evaluated by one-way ANOVA, for each 

lipid in each brain area, followed by a Sidak post hoc test. The criterion for significance 

in all experiments was set at p < 0.05, and all analyses were conducted using IBM 

SPSS Statistics 22 for Windows (IBM Software, New York, NY). 

 

Results 

Experiment 1: Genetic deletion or pharmacological blockade of DAGL-α 

attenuates LTP in CA1 region of the hippocampus. In hippocampal slices prepared 

from DAGL-α+/+ and DAGL-α+/- mice (n = 9-11), TBS induced robust LTP that remained 

stable during the 60 min recording period (Figure 4-1A). The fEPSP slope in 

hippocampal slices from DAGL-α-/- mice (n = 8) subjected to the same TBS stimulation 
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slowly decayed toward baseline. The magnitude of LTP as measured between 50-60 

min after TBS stimulation significantly differed among the three groups (F(2,27) = 5.37, p 

= 0.011, ANOVA), and post hoc tests indicated that TBS-induced LTP was significantly 

greater in DAGL-α+/+ and DAGL-α+/- mice than in DAGL-α-/- mice (DAGL-α+/+ vs. DAGL-

α-/-, p = 0.039; DAGL-α+/- vs. DAGL-α-/-, p = 0.013). However, the magnitude of LTP did 

not differ between DAGL-α+/+ mice and DAGL-α+/- mice (p = 0.926). 

Hippocampal slices from C57BL/6J mice treated with VEH, DO34 (30 mg/kg), or 

DO53 (30 mg/kg) showed significant differences in the magnitude of LTP (F(2,23) = 7.90, 

p = 0.003, ANOVA; Figure 4-1B). Post hoc tests indicated that TBS induced similar LTP 

in hippocampal slices prepared from VEH-treated (n = 9) and DO53-treated mice (n = 8; 

p = 0.514 vs. vehicle), but slices prepared from DO34-treated mice displayed a 

significantly decreased magnitude of LTP (n = 7; p = 0.002 vs. vehicle; p = 0.031 vs. 

DO53). Moreover, the magnitude of post-tetanic potentiation (PTP) during the first 5 min 

of LTP induction significantly differed among the three treatment groups (F(2,23) = 7.17, p 

= 0.004, ANOVA), in which DO34 administration produced a significant decrease in the 

PTP compared with vehicle (p = 0.007) and DO53 (p = 0.011).  

Experiment 2.1: DAGL-α-/- mice display profound phenotypic MWM spatial 

memory deficits and altered MWM search strategies. Per the experimental timeline 

(Figure 4-2A), the first acquisition day of fixed platform training (extended data Figure 4-

2-1A) yielded no significant differences among groups and across trials (F(6,114) = 1.67, p 

= 0.135, ANOVA). However, across the ten days of MWM fixed platform acquisition 

training (Figure 4-2B), a significant interaction (F(18,342) = 2.48, p = 0.001, ANOVA) 

revealed DAGL-α-/- mice (n = 13) had longer distances to the platform than DAGL-α+/+ (n 
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= 15) or DAGL-α+/- mice (n = 15) on acquisition days 2 (p = 0.001, p = 0.005), 3 (p = 

0.000, p = 0.000), 4 (p = 0.000, p = 0.000), 5 (p = 0.000, p = 0.000), 6 (p = 0.000, p = 

0.000), 7 (p = 0.000, p = 0.001), 8 (p = 0.001), 9 (p = 0.000, p = 0.001), and 10 (p = 

0.000, p = 0.000) respectively. Also, DAGL-α+/+ mice and DAGL-α+/- mice, respectively, 

showed significant reductions in distances to the platform on days 4 (p = 0.005, p = 

0.014), 5 (p = 0.000, p = 0.025), 6 (p = 0.001, p = 0.004), 7 (p = 0.000, p = 0.000), 8 

(α+/+; p = 0.000), 9 (p = 0.000, p = 0.007), and 10 (p = 0.000, p = 0.001) compared to 

day 1. In contrast, DAGL-α-/- mice showed no significant difference in distance 

compared to day 1 across subsequent fixed platform acquisition days (2; p = 1.000, 3; p 

= 1.000, 4; p = 1.000, 5; p = 1.000, 6; p = 1.000, 7; p = 0.625, 8; p = 0.399, 9; p = 0.373, 

and 10; p = 0.0670). Furthermore, during the fixed platform probe trial (Figure 4-2C,D,E) 

DAGL-α-/- mice demonstrated significantly longer distances to the platform location 

(F(2,38) = 5.81, p = 0.006, ANOVA) than DAGL-α+/+ mice (p = 0.022) and DAGL-α+/- mice 

(p = 0.011), significantly fewer platform entries (F(2,38) = 7.40, p = 0.002, ANOVA) than 

DAGL-α+/+ mice (p = 0.001), and a lower spatial preference for the target quadrant 

(F(2,38) = 7.73, p = 0.002, ANOVA) than DAGL-α+/+ mice (p = 0.002) and DAGL-α+/- mice 

(p = 0.016). No significant difference in cued task performance (Figure 4-2F), (F(2,38) = 

0.926, p = 0.405, ANOVA), or swim speed (Figure 4-2G), (F(18,342) = 0.648, p = 0.860, 

ANOVA), suggest the DAGL-α-/- mice performance deficits were unaffected by 

sensorimotor or motivational impairments. Also, no significant differences in body 

weight (extended data Figure 4-2-2A,C) at baseline (F(2,38) = 3.08, p = 0.057, ANOVA) 

or during fixed platform acquisition (F(2,38) = 2.84, p = 0.071, ANOVA) were evident 

among the genotypes. 



138 
 

On Fixed Platform day 10 (Figure 4-3A), DAGL-α-/- mice used significantly more 

non-spatial and thigmotaxic swimming strategies than DAGL-α+/+ or DAGL-α+/- mice, 

(X2
(4, N=41) = 21.9, p = 0.000, Chi Square). The change in DAGL-α-/- mice strategy 

proportion was indicated by pairwise comparisons (p = 0.001). Furthermore, during 

Fixed Platform acquisition (Figure 4-3B) a significant main effect of genotype (F(2,38) = 

7.29, p = 0.002, ANOVA) indicated that DAGL-α-/- mice spent more time in the MWM 

outer ring than DAGL-α+/+ mice (p = 0.002) and DAGL-α+/- mice (p = 0.028). A significant 

main effect of day (F(9,342) = 13.9, p = 0.000, ANOVA) also showed that collectively 

DAGL-α+/+, -α+/-, and -α-/- mice spent a decreased proportion of their time in the outer 

ring on days 4 (p = 0.015), 5 (p = 0.034), 6 (p = 0.001), and 7-10 (p = 0.000) compared 

to day 1. 

Experiment 2.2: Pharmacological inhibition of DAGL-α produces impaired 

MWM spatial acquisition. Per the experimental timeline (Figure 4-4A), fixed platform 

day 1 (extended data Figure 4-2-1B), yielded no significant differences among groups 

and across trials (F(12,171) = 1.65, p = 0.082, ANOVA). During MWM fixed platform 

acquisition (Figure 4-4B) a significant main effect of drug (F(4,57) = 8.77, p = 0.000) 

revealed 30 mg/kg DO34-treated mice (n = 12) required longer swim path distances to 

the platform than mice in the VEH (n = 15, p = 0.000), 0.3 mg/kg DO34 (n = 12, p = 

0.002), and 30 mg/kg DO53 (n = 12, p = 0.000) conditions, However, these mice did not 

statistically differ from mice in the 3 mg/kg DO34 group (n = 11, p = 0.103). Also, mice 

treated with VEH (F(9,126) = 12.7, p < 0.001, repeated measures ANOVA), 30 mg/kg 

DO34 (F(9,99) = 12.3, p = 0.000, repeated measures ANOVA), 3 mg/kg DO34 (F(9,90) = 

8.01, p = 0.000, repeated measures ANOVA), 0.3 mg/kg DO34 (F(9,99) = 8.48, p = 0.000, 
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repeated measures ANOVA), and 30 mg/kg DO53 (F(9,99) = 15.8, p = 0.000, repeated 

measures ANOVA) showed significantly reduced distances to the platform days 3 (VEH 

p = 0.022), 4 (VEH p = 0.000), 5 (VEH p = 0.005; 30 mg/kg DO34 p = 0.021; 3 mg/kg 

DO34 p = 0.019; 30 mg/kg DO53 p = 0.005), 6 (VEH p = 0.001; 30 mg/kg DO34 p = 

0.004; DO53 p = 0.003), 7 (VEH p < 0.001; 30 mg/kg DO34 p = 0.003; 3 mg/kg DO34 p 

= 0.008; DO53 p = 0.002), 8 (VEH p = 0.003; 30 mg/kg DO34 p = 0.034; 3 mg/kg DO34 

p = 0.038; DO53 p = 0.001), 9 (VEH p = 0.001; 30 mg/kg DO34 p = 0.000; 3 mg/kg 

DO34 p = 0.002; DO53 p = 0.000), and 10 (VEH p = 0.000; 30 mg/kg DO34 p = 0.000; 3 

mg/kg DO34 p = 0.024; 0.3 mg/kg DO34 p = 0.011; DO53 p = 0.000) compared to day 

1. 

In order to test whether DO34 affects memory of the platform location (Figure 4-

4C), a probe trial revealed similar distances to the platform location (t(15) = 0.0880, p = 

0.931, independent t-test; Figure 4-4D) in DO34-treated and VEH-treated mice, similar 

number of platform entries (t(15) = 1.17, p = 0.260, independent t-test; Figure 4-4E), and 

similar percentages of time spent in the target quadrant (t(15) = 1.28, p = 0.220, 

independent t-test; Figure 4-4F). The absence of significant differences in cued task 

performance (F(4,57) = 1.09, p = 0.368, ANOVA; Figure 4-4G), suggests that DO34 does 

not elicit sensorimotor or motivational impairments. 

During fixed platform acquisition, a significant swim speed interaction (F(36,513) = 

1.60, p = 0.016, ANOVA; Figure 4-4H), showed that mice administered 30 mg/kg DO34 

swam faster than VEH-treated mice on days 1 (p = 0.019), 2 (p = 0.010), 4 (p = 0.042), 

5 (p = 0.009), and 8 (p = 0.003), but 0.3 mg/kg DO34-treated mice swam slower than 

VEH-treated mice on days 7 (p = 0.026), 9 (p = 0.044), and 10 (p = 0.022). Also, while 
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no significant difference in body weight was evident at baseline (F(4,57) = 2.03, p = 0.103, 

ANOVA; extended data Figure 4-2-2B,D), a significant interaction between drug and 

day for this measure occurred throughout acquisition training (F(56,798) = 7.06, p = 0.000, 

ANOVA). DO34 elicited body weight reductions compared to VEH at 30 mg/kg DO34 

(days 2 through 15, p = 0.000), 3 mg/kg DO34 (days 4, p = 0.006; 8, p = 0.032; and 13, 

p = 0.015), 0.3 mg/kg DO34 (day 4, p = 0.001), and 30 mg/kg DO53 (days 2, p = 0.000; 

3, p = 0.000; days 4, p = 0.041; 5, p = 0.003; 7, p = 0.008; and 13, p = 0.000). 

On Fixed Platform day 10, DO34-treated mice showed no significant change in 

swim path strategy (X2
(3, N=49) = 7.0;97, p = 0.069, chi square; Figure 4-5A). However, a 

significant main effect of drug was found for time spent in the outer ring of the MWM 

throughout the ten acquisition sessions (F(4,57) = 2.96, p = 0.027, ANOVA; Figure 4-5B). 

DO34 (30 mg/kg) produced a modest increase in the time spent in the MWM outer ring 

compared with VEH-treated mice (p = 0.035). A significant main effect of day (F(9,513) = 

59.4, p = 0.000, ANOVA) also showed that mice spent a smaller proportion of their time 

in the outer ring on all subsequent days, 2, 3, 4, 5, 6, 7, 8, 9, and 10 (p < 0.001) than on 

day 1. 

Experiment 2.3: Pharmacological inhibition of DAGL-α impairs MWM 

reversal, but not extinction or forgetting. The next experiments examined the effects 

of DO34 (30 mg/kg; n = 8) vs. VEH (n = 9) on extinction (Figure 4-6A), forgetting (Figure 

4-6B), and reversal learning (Figure 4-6D, 30 mg/kg; n = 15, VEH; n = 15). As shown in 

Figure 6C, subjects displayed evidence of extinction following fixed platform day 10 and 

exposure to six sessions (including probe trial) in the MWM without the hidden platform 

present via a main effect of day (F(5,75) = 3.08, p = 0.014, ANOVA). Subjects had 
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significantly longer distances to the previous platform location on extinction weeks 4 (p 

= 0.047), and 6 (p = 0.027) compared to probe trial. The lack of a statistical interaction 

between drug and day (F(5,75) = 0.292, p = 0.916, ANOVA) and lack of significant main 

effect of drug (F(1,15) = 1.98, p = 0.180, ANOVA) indicate that DO34 did not affect 

extinction. In the probe trial assessment of forgetting (Figure 4-6C), the lack of a 

statistically significant interaction between drug and day (F(1,10) = 0.638, p = 0.443, 

ANOVA) or a main effect of drug (F(1,10) = 2.50, p = 0.145, ANOVA) indicates DO34 did 

not impact forgetting performance. In the evaluation of reversal learning (Figure 4-6E), 

the statistically significant interaction between drug and day (F(5,140) = 4.43, p = 0.001, 

ANOVA) indicates that DO34 delayed reversal, specifically on days 1 (p = 0.007), 2 (p = 

0.007), and 5 (p = 0.016). Yet all subjects displayed evidence of reversal learning after 

exposure to five reversal sessions (and probe trial) via a main effect of day in VEH 

(F(5,70) = 6.05, p = 0.000, repeated measures ANOVA) and DO34 (F(5,70) = 13, p = 0.000, 

repeated measures ANOVA) mice. VEH-treated subjects had significantly reduced 

distances to the new platform location on reversal days 2 (p = 0.011), 3 (p = 0.0005) 

and 5 (p = 0.000) compared to day one. Similarly, DO34-treated subjects showed 

reduced distance to the platform on days 2 through probe (2, p = 0.033; 3, p = 0.000; 4, 

p = 0.008; 5, p = 0.010; and probe p = 0.001) compared to day one.  

Experiment 3.1: Genetic deletion of DAGL-α produces profound alterations 

to eCB and related lipid profiles. DAGL-α-/- mice (n = 8) possessed elevated levels of 

the DAGL-α substrate, SAG, across all four brain regions; hippocampus, (F(2,21) = 174, p 

= 0.000, ANOVA; Figure 4-7A), PFC (F(2,21) = 753, p = 0.000, ANOVA; Figure 4-7B), 

striatum (F(2,21) = 52, p = 0.000, ANOVA; Figure 4-7C), and cerebellum (F(2,21) = 32, p = 
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0.000, ANOVA; Figure 4-7D), compared to both DAGL-α+/+ (n=8, p = 0.000) and DAGL-

α+/- mice (n=8, p = 0.000). DAGL-α-/- mice also showed profound reductions of 2-AG and 

its metabolite AA, respectively, across each brain region: hippocampus, (F(2,21) = 246, p 

= 0.000, ANOVA; Figure 4-7E; F(2,21) = 156, p = 0.000, ANOVA; Figure 4-7M), PFC 

(F(2,21) = 29, p = 0.000, ANOVA; Figure 4-7F; F(2,21) = 207, p = 0.000, ANOVA; Figure 4-

7N), striatum (F(2,21) = 48, p = 0.000, ANOVA; Figure 4-7G; F(2,21) = 126, p = 0.000, 

ANOVA; Figure 4-7O), and cerebellum (F(2,21) = 70, p = 0.000, ANOVA; Figure 4-7H; 

F(2,21) = 155, p = 0.000, ANOVA; Figure 4-7P), compared to both DAGL-α+/+ (p = 0.000) 

and DAGL-α+/- mice (p = 0.000). DAGL-α+/- mice showed only modest reductions in 

striatal (p = 0.04), hippocampal (p = 0.002), and cerebellar (p < 0.002) 2-AG compared 

to DAGL-α+/+ mice. Also, region selective reductions of AEA were found in DAGL-α-/- 

mouse hippocampus (F(2,21) = 51, p = 0.000, ANOVA; Figure 4-7I), and cerebellum 

(F(2,21) = 10.2, p = 0.001, ANOVA; Figure 4-7L), but not in PFC (Figure 4-7J) or striatum 

(Figure 4-7K) compared to both DAGL-α+/+ and DAGL-α+/- mice. 

Experiment 3.2: Pharmacological inhibition of DAGL produces brain region 

selective alterations in eCB and related lipid profiles. DO34-treated mice possessed 

elevated levels of SAG at 2 h post-injection (n = 5) across all four brain regions; 

hippocampus, (F(2,15) = 7.48, p = 0.006, ANOVA; Figure 4-8A), PFC (F(2,15) = 30, p = 0.000, 

ANOVA; Figure 4-8B), striatum (F(2,15) = 5.46, p = 0.017, ANOVA; Figure 4-8C), and 

cerebellum (F(2,15) = 6.83, p = 0.008, ANOVA; Figure 4-8D) compared to VEH (n = 5, p = 

0.005, p = 0.000, p = 0.038, and p = 0.006 respectively), but not at 24 h post-injection (n 

= 8) compared to VEH (p = 0.232, p = 0.992, p = 0.999, p = 0.145). PFC and striatal SAG 

was also lower at 24 h compared to 2 h (p = 0.000, p = 0.027 respectively). DO34-treated 
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mice also showed consistent reductions of 2-AG in hippocampus (F(2,15) = 37, p = 0.000, 

ANOVA; Figure 4-8E), PFC (F(2,15) = 11.6, p = 0.001, ANOVA; Figure 4-8F), striatum 

(F(2,15) = 4.82, p = 0.024, ANOVA; Figure 4-8G), and cerebellum (F(2,15) = 94, p = 0.000, 

ANOVA; Figure 4-8H) at 2 h (p = 0.000, p = 0.001, p = 0.036, p = 0.000 respectively), and 

hippocampus and cerebellum at 24 h (p = 0.000, p = 0.000). PFC and cerebellar 2-AG 

was also higher at 24 h compared to 2 h (p = 0.008, p = 0.013 respectively).While no 

significant change in AEA was found in hippocampus (F(2,15) = 0.92, p = 0.421, ANOVA; 

Figure 4-8I), PFC (F(2,15) = 3.04, p = 0.078, ANOVA; Figure 4-8J), striatum (F(2,15) = 2.70, 

p = 0.099, ANOVA; Figure 4-8K), or cerebellum (F(2,15) = 2.44, p = 0.121, ANOVA; Figure 

4-8L), reductions of AA following DO34-treatment were seen in all brain regions; 

hippocampus (F(2,15) = 13.8, p = 0.000, ANOVA; Figure 4-8M) at 2 h (p = 0.005) and 24 h 

(p = 0.000), PFC (F(2,15) = 65, p = 0.000, ANOVA; Figure 4-8N) at 2 h (p = 0.000) and 24 

h (p = 0.000), striatum (F(2,15) = 145, p = 0.000, ANOVA; Figure 4-8O) at 2 h (p = 0.000) 

and 24 h (p = 0.000), and cerebellum (F(2,15) = 59, p = 0.000, ANOVA; Figure 4-8P)  at 2 

h (p = 0.000) and 24 h (p = 0.000). AA levels were also significantly greater at 24 h than 

2 h in PFC (p = 0.000) and striatum (p = 0.000).  

 

Discussion 

The present study makes the novel observations that either genetic deletion or 

pharmacological inhibition of DAGL-α profoundly disrupts hippocampal LTP 

accompanied by varying magnitudes of learning and memory deficits in the mouse 

MWM Fixed Platform and Reversal tasks. Specifically, DAGL-α-/- mice display non-

spatial search strategies and concomitantly disrupted Fixed Platform acquisition, 
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whereas DO34-treated mice show significantly delayed MWM acquisition and reversal 

learning but performance is spared in probe trial memory, extinction, and forgetting 

tasks. Additionally, these alterations in LTP and in vivo learning and memory paradigms 

occur in concert with distinct altered patterns of endocannabinoids and related lipids, 

across brain areas integral to learning and memory. 

The observation that DAGL-α disruption decreases CA1 LTP is consistent with 

non-selective DAGL inhibitors blocking CA1 pairing-induced potentiation in rats (Xu et 

al, 2012). The lowered production of 2-AG following DAGL-α disruption implicates 2-AG 

as a possible LTP facilitator, corroborated also by 2-AG catabolism inhibition facilitating 

CA1 LTP (Silva-Cruz et al, 2017). Given that endogenously produced 

endocannabinoids facilitate LTP at CA1 hippocampal synapses through stimulation of 

astrocyte-neuron signaling (Gomez-Gonzalo et al, 2015), as well as when preceded by 

DSI (Carlson et al, 2002), suggests that endocannabinoids enhance plasticity by 

disinhibition. 2-AG is well recognized as an integral retrograde modulator of short-term 

CB1 receptor-mediated synaptic plasticity (i.e., DSE/DSI), (Tanimura et al., 2010; 

Yoshino et al., 2011). Furthermore CB1 receptor activation correlates with enhanced 

CA1 LTP (Chevaleyre and Castillo, 2004). Thus, reducing 2-AG production decreases 

CB1 receptor signaling and thereby disrupting LTP. However, CB1 receptor deletion or 

antagonism leads to a different pattern of behavioral impairments compared with 

analogous DAGL-α disruption in the present study. Specifically, wild type mice 

administered the CB1 receptor antagonist Rimonabant or CB1
-/- mice acquired MWM 

Fixed Platform at a similar rate as control mice, but showed impaired MWM extinction 

(Varvel et al, 2005; Varvel and Lichtman, 2002). In the case of DAGL-α, its close spatial 
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localization to excitatory CB1 receptor synapses (and adjacent to group I metabotropic 

glutamate receptors) and distance from inhibitory synapses (Katona et al, 2006; 

Yoshida et al, 2006), may account for the resilience of DAGL-α compromised mice in 

the MWM extinction task. 

Contrary to the present work, Sugaya et al., 2013 found DAGL-α-/- mice show no 

change in CA1 LTP, while facilitating entorhinal cortex-dentate gyrus LTP. The lack of 

CA1 LTP change was observed in DAGL-α-/- mice with in-dwelling electrodes in vivo, 

where lipid profile disruption interacts with on-going milieu changes in an awake brain, 

suggesting the possible involvement of model system differences with the present work. 

The impairment by DO34 of post-tetanic potentiation within minutes of TBS suggests 

that pharmacological inhibition of DAGL-α reduced Ca2+ buildup in presynaptic axon 

terminals (Zucker and Regehr, 2002). Furthermore, off-target effects of DO34 (e.g. 

ABDH6) are unlikely to be responsible for the observed decrease in LTP magnitude 

given DO53 did not impact SC-CA1 LTP, consistent with its inability to alter 

hippocampal DSI (Ogasawara et al, 2016). As DO34 also inhibits DAGL-β, a 

contribution of this 2-AG biosynthetic enzyme cannot be ruled out. Yet its low 

expression on neurons and high expression on microglia (Hsu et al, 2012) argues 

against its involvement in the present study.  

 The phenotypic MWM deficits displayed by DAGL-α-/- mice and impaired 

acquisition and reversal learning performance in DO34-treated mice, represent the first 

evidence supporting a role of DAGL-α in a laboratory animal model of spatial learning 

and memory, specific to the integration of new information, but not memory retrieval, 

extinction, or forgetting. The findings show deletion of DAGL-α profoundly disrupt fixed 
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platform MWM learning, compatible with the body of evidence highlighting the necessity 

of hippocampal neurogenesis for spatial memory processing (Snyder et al., 2005; 

Sahay et al., 2011), to which this enzymes significantly contributes (Gao et al, 2010; 

Goncalves et al, 2008). The altered search strategy may reflect a stress-induced shift 

from utilizing hippocampal-cognitive to striatal-habit learning (Wirz et al, 2017). The 

anxiety-like phenotype of DAGL-α-/- mice (Jenniches et al, 2016; Shonesy et al, 2014) 

as well as the stress-inducing component of the MWM may drive a heavier reliance on 

non-spatial circular search strategies after DAGL-α disruption. 

 The difference in behavioral impairment magnitude between DAGL-α-/- and 

DO34-treated mice warrants discussion. Previous DSI/DSE disparities between DAGL-α 

inhibition and gene deletion have been explained by insufficient inhibitor slice 

penetration (Ohno-Shosaku and Kano, 2014), yet DO34 is brain penetrant (Ogasawara 

et al, 2016), and both inhibitor and gene deletion led to impaired LTP. The relatively 

modest 2-AG lipid profile differences between DO34-treated mice and DAGL-α-/- mice 

may contribute, in part, to the profound disruption of spatial learning in DAGL-α-/- mice 

compared with the delay-related deficits observed following DO34 treatment. However, 

developmental alterations in the brains of the DAGL-α-/- mice across ontogeny may also 

be a contributing factor. In the developing brain DAGL-α is expressed at presynaptic 

terminals (Bisogno et al, 2003a), participating in the control of axonal growth and 

guidance (Brittis et al, 1996; Williams et al, 1994), but is expressed on post-synaptic 

neurons in the adult brain. As such, DAGL-α switches roles from growth and guidance 

during development, to a modulator of synaptic signaling. The present phenotypic 
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learning and memory deficits and altered search strategy in DAGL-α-/- mice, may 

therefore be influenced by both roles of this enzyme. 

The unique finding that DAGL-α inhibition selectively impairs acquisition and 

reversal learning, but not expression, extinction, or forgetting, suggests that DAGL-α is 

selectively important for the integration of new spatial information. While DAGL-α 

disruption has not previously been evaluated in reversal learning, contrary to the 

present findings DAGL-α disruption by DO34 (Cavener et al, 2018) and in DAGL-α-/- 

mice (Cavener et al, 2018; Jenniches et al, 2016) produces extinction, but not 

acquisition, deficits in fear memory. While DAGL-α is expressed in areas important 

during fear conditioning such as the basolateral amygdala (Yoshida et al, 2011), stress 

reduces amygdala-hippocampal connectivity (Wirz et al, 2017). Accordingly, DAGL-α 

may yet differentially modulate memory processes based on brain region or neuronal 

type.  

 The spatial memory impairments of DAGL-α-/- mice were accompanied by 

profound lipid profile changes, specifically reductions of 2-AG across all four brain 

areas. Likewise, other lines of DAGL-α-/- mice show 80% reductions in whole brain 2-AG 

(Gao et al., 2010; Tanimura et al., 2010), as well as in PFC, amygdala, striatum 

(Shonesy et al, 2014), and hippocampus (Jenniches et al, 2016). Yet the modest DAGL-

α+/- mice reductions in striatal, hippocampal, and cerebellar 2-AG did not translate to 

fixed platform acquisition or probe trial deficits. Previous studies showed that DO34 

produces large reductions in whole brain 2-AG (Ogasawara et al, 2016; Wilkerson et al, 

2017), consistent with the current finding that DO34 reduced 2-AG in all four brain 

regions evaluated. Given the region dependent reductions of AEA in DAGL-α-/- mice, 
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DAGL-α substrates and metabolites may also play a more complex role in the 

biosynthetic pathway of AEA. Similarly, reduced AEA levels in DAGL-α-/- mice were 

seen in forebrain (Shonesy et al, 2014) and hippocampus, but not striatum (Jenniches 

et al, 2016). Unexpectedly, DO34 did not significantly reduce AEA levels in any brain 

region investigated, despite 50% reductions of AEA in whole brain (Ogasawara et al, 

2016; Wilkerson et al, 2017).  Reductions of AEA in hippocampi of DAGL-α-/- mice must 

be considered, given elevations of AEA impair LTP (Basavarajappa et al, 2014) and 

enhance acquisition in aversively motivated spatial memory tasks (Varvel et al, 2007). 

As inhibiting the primary hydrolytic AEA enzyme fatty acid amide hydrolase (FAAH) 

elevates brain levels of this endocannabinoid and concomitantly accelerates extinction 

rates (Varvel et al, 2007), we might expect that region specific reductions of AEA in 

DAGL-α-/- mice would manifest with impaired MWM extinction learning phenotype. 

However, this outcome is not observed, and furthermore FAAH inhibition failed to 

reverse fear extinction deficits in DAGL-α-/- mice (Cavener et al, 2018). To fully exclude 

the role of lowered AEA after DAGL-α deletion, future experiments to evaluate the 

administration of a FAAH inhibitor to DAGL-α-/- mice prior to MWM assessment and LTP 

would be necessary. 

Another consideration for the present results is the impact of DAGL-α blockade 

on downstream and upstream lipid signaling molecules. The expression of DAGL in 

invertebrate species without cannabinoid receptors (e.g. Drosophila; Elphick and 

Egertova, 2005) underscores the important role of this enzyme in regulating lipid 

signaling molecules independent of substrate production for cannabinoid receptor 

activation. As anticipated, both DAGL-α-/- mice and DO34-treated mice showed 
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consistent elevations of the DAG substrate for DAGL-α, SAG, across all four brain 

areas, previously seen in forebrain of DAGL-α-/- mice (Shonesy et al, 2014) and whole 

brain following DO34 (Ogasawara et al, 2016). Diacylglycerols such as SAG are known 

protein kinase C (PKC) activators (Hindenes et al, 2000), and while PKC activation 

facilitates memory (Bonini et al, 2007) little is known of the effects following sustained 

activation through elevated SAG. The dramatically reduced levels of AA across all four 

brain regions in DAGL-α-/- mice and after DO34 suggest DAGL-α is an important 

intermediate for the maintenance of basal AA levels in brain, previously seen in whole 

brain (Gao et al, 2010) and forebrain (Shonesy et al, 2014). DO34-induced reductions of 

AA were often still evident at 24 h (consistent with 24 h partial DAGL-α activity recovery 

following DO34 (Ogasawara et al, 2016). Given hippocampal neurons also activate PKC 

through AA cascades (Hama et al, 2004), the DAGL-α disruption-induced AA reductions 

may also contribute to the observed learning and memory deficits. 

Collectively this work supports the importance of DAGL-α in modulating 

hippocampal learning and memory. Thus, reductions in DAGL-α expression or function 

may contribute to cognitive pathologies, consistent with this idea are correlations 

between decreased DAGL-α expression and impaired verbal memory (Bioque et al, 

2016). Age-related decreases in DAGL-α expression (Piyanova et al, 2015), and 

decreased neurogenesis in DAGL-α rich areas (Goncalves et al, 2008; Knoth et al, 

2010), suggest DAGL-α dysregulation may be a fruitful area of study, particularly with 

respect to age-related cognitive decline (Bilkei-Gorzo et al, 2017). In sum, the present 

findings that DAGL-α disruption lead to learning and memory impairments at cellular 
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and selective behavioral levels implicate this enzyme as playing a key role in spatial 

learning and memory. 
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Figure 4-1. DAGL-α-/- mice and C57BL/6 mice treated with the DAGL inhibitor DO34 

show disrupted TBS-induced LTP in CA1 of the hippocampus. The magnitude of 

LTP was significantly decreased in both A, DAGL-α-/- mice (n = 8) compared to DAGL-

α+/+ (n = 9) and DAGL-α+/- mice (n = 11), as well as in slices from B, DO34-treated 

C57BL/6J mice (n = 7) compared with VEH-treated (n = 9) or DO53-treated mice (n = 

8). The magnitude of PTP during the initial induction phase was also significantly 

decreased in the DO34 group compared with VEH or DO53. Values represent mean ± 

SEM. 
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Figure 4-2. DAGL-α -/- mice are profoundly impaired in MWM fixed platform task 

performance. A, Fixed platform task experimental timeline (days). B, During MWM 

fixed platform acquisition, DAGL-α-/- mice (n = 13) exhibited longer distances to the 

platform than both DAGL-α+/+ mice (n = 15) and DAGL-α+/- mice (n = 13), as well as 

showed probe trial performance deficits of C, longer distances to the prior platform 

position D, fewer platform entries and E, a lower spatial preference for the target 

quadrant. No significant difference in F, cued task performance or G, swim speed 

suggest the DAGL-α-/- mice performance deficits were unaffected by sensorimotor or 

motivational impairments. No significant differences were evident between genotype on 

fixed platform training day one across trials (extended data Figure 2-1A), or in body 

weight at either baseline or during fixed platform acquisition (extended data Figure 2-

2A,C). Values represent mean +SEM; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. DAGL-

α+/+ mice, and $ p < 0.05, $$ p < 0.01, $$$ p < 0.001 vs. DAGL-α+/- mice. 
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Figure 4-3. DAGL-α -/- mice exhibit altered MWM search strategy. DAGL-α-/- mice (n 

= 13) A, used more non-spatial and thigmotaxic swim paths than DAGL-α+/+ mice (n = 

15) on fixed platform day 10, as well as B, spent more time in the MWM outer ring than 

both DAGL-α+/+ and DAGL-α+/- mice (n = 13) during fixed platform acquisition. C, Fixed 

platform day 10 representative swim traces show spatial (direct and self-orienting) swim 

paths in DAGL-α+/+ mice, spatial (direct) and non-spatial (circling) swim paths in DAGL-

α+/- mice, and non-spatial (circling and thigmotaxic) swim paths in DAGL-α-/- mice. 

Values represent mean +SEM; ** p < 0.01, *** p < 0.001 vs. DAGL-α+/+ mice, and $ p < 

0.05 vs. DAGL-α+/- mice. 
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Figure 4-4. DO34 delays MWM fixed platform acquisition, but does not affect 

probe trial performance. A, Fixed platform task acquisition experimental timeline 

(days). B, During MWM fixed platform acquisition, mice treated with 30 mg/kg DO34 (n 

= 12) exhibited longer distances to the platform than VEH (n = 15), 0.3 mg/kg DO34 (n = 

12), and 30 mg/kg DO53 (n = 12). C, Fixed platform task probe trial (expression) 

experimental timeline (days). Following drug-free MWM fixed platform acquisition 

training, no change in performance was seen at probe trial between drug treatments 

(VEH n = 9 or 30 mg/kg DO34 n = 8) for any measure; D, distances to the prior platform 

position E, platform entries or F, spatial preference for the target quadrant. No 

difference in G, cued task performance suggest the high dose DO34 did not affect 

sensorimotor or motivational components of MWM performance. H, Mice administered 

30 mg/kg DO34 showed increased swim speeds during fixed platform acquisition 

compared to VEH-treated mice on days 1, 2, 4, 5, and 8, but 0.3 mg/kg DO34 reduced 

swim speeds on days 7, 9, and 10. No significant differences were evident between 

groups on fixed platform training day 1 across trials (extended data Figure 2-1A), or in 

body weight at baseline, yet a significant interaction between drug and day on body 

weight throughout acquisition training showed reductions compared to VEH at 30 mg/kg 

DO34 (days 2 through 15), 3 mg/kg DO34 (days 4, 8,13), 0.3 mg/kg DO34 (day 4), and 

30 mg/kg DO53 (days 2, 3, 4, 5, 7, 13) (extended data Figure 2-2A,C). Values represent 

mean +SEM; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. VEH; $$$ p < 0.001 vs. 0.3 mg/kg 

DO34; and ## p < 0.01 vs. 30 mg/kg DO53. 
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Figure 4-5. DO34 produces modest and selective changes to MWM search 

strategy. DO34-treated mice (0.3 mg/kg; n = 12, 3 mg/kg; n = 11, 30 mg/kg; n = 12) A, 

showed no significant change in swim path strategy than VEH-treated mice (n = 15) on 

fixed platform day 10 B, but mice administered 30 mg/kg DO34 showed a modest 

increase in the time spent in the MWM outer ring during fixed platform acquisition, than 

VEH-treated mice. C, Fixed platform day 10 representative swim traces show spatial 

(self-orienting and direct) and non-spatial (circling and scanning) swim paths in VEH, 

and DO34-treated (0.3, 3, 30 mg/kg) mice. Values represent mean +SEM; * p < 0.05 

DO34 (30 mg/kg) vs VEH-treated mice. 



158 
 

 



159 
 

Figure 4-6. DO34 delays reversal learning but does not affect extinction or 

forgetting MWM tasks. A, Experimental timeline for the extinction (days/weeks) of 

mice trained drug-free in fixed platform task (same cohort as per probe trial [expression] 

Figure 4). B, Experimental timeline for additional mice trained drug-free in fixed platform 

task prior to a forgetting task (days/weeks). C, No change in either the extinction of the 

fixed platform task, or forgetting performance, was seen between VEH (n = 9 and n = 6 

respectively) and 30 mg/kg DO34-treated mice (n = 8 and n = 6 respectively), (MWM 

fixed platform acquisition day 1 and 10 of VEH and 30 mg/kg DO34 for both extinction 

and forgetting tasks included for comparison). D, Experimental timeline for mice trained 

in a reversal task (days) following drug-free fixed platform training. E, During MWM 

reversal, mice treated with 30 mg/kg DO34 (n = 15) exhibited longer distances to the 

platform than VEH (n = 15) on reversal days one, two, and five (MWM fixed platform 

acquisition day 1 and 10 of VEH and 30 mg/kg DO34 included for comparison). Values 

represent mean +SEM; * p < 0.05, ** p < 0.01. 
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Figure 4-7. Lipid profile changes in DAGL-α -/- mice show consistently elevated 

SAG, and lowered 2-AG and AA across all four brain regions. A, B, C, D, The 

DAGL-α substrate SAG, was elevated in all four brain regions in DAGL-α-/- mice (n = 8) 

compared to both DAGL-α+/+ (n = 8) and DAGL-α+/- mice (n = 8). DAGL-α-/- mice 

possessed decreased levels of 2-AG and AA, respectively in, E and M, hippocampus, F 

and N, PFC, G and O, striatum, and H and P, cerebellum. DAGL-α+/- mice showed 

modest 2-AG reductions in striatum, hippocampus, and cerebellum compared to DAGL-

α+/+ mice. AEA levels of DAGL-α-/- mice were significantly reduced in I, hippocampus, 

and L, cerebellum, but not in J, PFC, or K, striatum. Values represent mean +SEM; * p 

< 0.05, ** p < 0.01, *** p < 0.001 vs DAGL-α+/+ mice, and $$ p < 0.01, $$$ p < 0.001 vs 

DAGL-α+/- mice. 
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Figure 4-8. Lipid profile changes in DO34-treated mice show consistently elevated 

SAG, and lowered 2-AG and AA across all four brain regions. A, B, C, D, The 

DAGL-α substrate SAG, was elevated in all four brain regions at 2 h post-DO34 

injection (n = 5) compared to VEH (n = 5), and compared to 24 h (n = 8) in PFC and 

striatum. At 2 h post-DO34 injection, 2-AG and AA were reduced respectively in, E and 

M, hippocampus, F and N, PFC, G and O, striatum, and H and P, cerebellum, while at 

24 h post-DO34 injection, 2-AG was reduced only in E, hippocampus and H, 

cerebellum, whereas AA showed reductions across M, N, O, P, all four brain areas. No 

changes in, I, J, K, L, AEA were evident compared to VEH. Values represent mean 

+SEM; * p < 0.05, ** p < 0.01, *** p < 0.001 vs VEH, and # p < 0.05 vs 24 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 



164 
 

Appendix 4. Extended Data 

 

 

 

Extended Data Figure 4-2-1 Both genetic deletion and pharmacological inhibition 

of DAGL-α produce no change in MWM fixed platform day one performance. A, 

During MWM fixed platform day one, no performance difference was seen across the 

four acquisition trials between DAGL-α-/- (n = 13), DAGL-α+/- (n = 13), and DAGL-α+/+ 

mice (n = 15). B, Also during MWM fixed platform day one, no performance difference 

was seen across the four acquisition trials between DO34-treated mice (30 mg/kg 

DO34, n = 12; 3 mg/kg DO34, n = 11; 0.3 mg/kg DO34, n = 12), DO53 treatment (30 

mg/kg, n = 12), and VEH (n = 15). Values represent mean +SEM. 
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Appendix 4. Extended Data (cont’d) 

 

Extended Data Figure 4-2-2. High dose DAGL-α inhibition produces body weight 

loss, not evident in mice with DAGL-α genetic deletion. On day 0 prior to MWM 

habituation, baseline weight for naïve mice did not significantly differ between 

experimental groups for both A, DAGL-α genetic deletion, or B, pharmacological 

inhibition. During the MWM fixed platform task, C, no change in body weight was 

evident in DAGL-α-/- (n = 13) and DAGL-α+/- (n = 13) compared to DAGL-α+/+ mice (n = 

15), whereas D, 30 mg/kg DO34 (n = 12) mice exhibited consistently lower body weight 

to VEH (n = 15). D, upright arrows indicate days of drug administration, and values 

represent mean +SEM or ±SEM; * p < 0.05, ** p < 0.01, *** p < 0.001 vs VEH. 
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Chapter V 

General Discussion 

 

Summary 

The overall objective of this dissertation research was to understand the in vivo roles of 

DAGL-α and DAGL-β disruption on mouse learning and memory. The endocannabinoid 

(eCB) 2-arachidonyl glycerol (2-AG), produced by these enzymes, is elevated in 

response to pathogenic events such as traumatic brain injury (TBI) (Panikashvili et al, 

2001). As such, we hypothesized that eCB biosynthetic enzyme contributions to 

learning and memory function may extend to conditions of memory pathology. Prior to 

evaluating this hypothesis, Chapter II focused on developing a mouse model of learning 

and memory impairment resulting from TBI, using spatial memory tasks of the Morris 

water maze (MWM). During the development of this mouse model of TBI-induced 

spatial memory deficit we found modest but distinct differences following a left vs a right 

unilateral insult. While both left and right lateral TBI impaired MWM Fixed Platform task 

probe performance, mild Fixed Platform acquisition differences were evident between 

left and right injuries despite similar motor deficits, histological damage, and glial 

reactivity. This finding suggests that laterality in mouse learning and memory deficits 

might be worthy of consideration when investigating TBI-induced functional 

consequences. 
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 The experiments in Chapter III investigated the first of two biosynthetic 

production enzymes of 2-AG, diacylglycerol lipase-β (DAGL-β), as a target to protect 

against TBI-induced learning and memory deficits. The selective expression of DAGL-β 

on  

CNS microglia and the role of 2-AG as a precursor for the production of pro-

inflammatory eicosanoids led to the hypothesis that disrupting DAGL-β activity would 

provide protection from TBI-induced learning and memory impairments in mice (by 

reducing pools of 2-AG pro-inflammatory metabolites). Contrary to our hypothesis, 

DAGL-β deletion did not protect against TBI-induced spatial learning and memory 

impairments, nor did it protect against other functional assessments after injury such as 

neurological motor deficits. Unexpectedly, a survival protective phenotype was 

observed in male DAGL-β-/- mice, suggesting that while DAGL-β activity does not 

contribute towards injury-induced memory deficit, it may contribute to TBI-induced acute 

mortality. 

 Finally, Chapter IV investigated the role of the second biosynthetic production 

enzyme of 2-AG, diacylglycerol lipase-α (DAGL-α) in mouse spatial learning and 

memory under physiological conditions. The use of a pharmacological as well as a 

genetic approach facilitated the investigation of DAGL-α disruption in various MWM 

hippocampal-dependent memory assessments. Here, we show that DAGL-α gene 

deletion or inhibition disrupts CA1-hippocampal LTP and eCB lipid levels, but elicits 

varying magnitudes of deficits in behavioral learning and memory tasks. Specifically, 

DAGL-α-/- mice display profound MWM acquisition deficits, whereas C57BL6/J mice 

treated with the DAGL-α inhibitor DO34 show impaired acquisition and reversal 
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learning, but no change in expression, extinction, or forgetting. These results suggest 

that DAGL-α may play a selective role in the integration of new spatial information in the 

normal mouse brain. 

  

Functional lateralization and mouse models of TBI-induced memory deficit.  

The investigation of learning and memory deficits in response to left vs right unilateral 

TBI, as well as utilization of the MWM reversal task, was an important contribution by 

the present work to the TBI preclinical literature. The reversal task models cognitive 

flexibility through increased task complexity in that mice suppress former spatial 

memory influences (inhibition as a result of non-reinforced trials) in order to explore 

alternative platform locations. The use of preclinical behavioral assessments that 

capture the variety and complexity of memory impairment seen in clinical populations 

could only benefit the translational potential of initial TBI mouse model work. Although 

presently, normalization of the reversal task dependent measures did not reveal 

significant left-right hemisphere injury differences, the finding that a left lateral injury 

produced MWM performance impairments compared to sham controls (not found after a 

right lateral injury) raises questions about functional lateralization in response to MWM 

task variation worthy of consideration. 

 The hippocampal molecular, morphological, and cellular signaling differences 

that exist between left and right hemispheres may influence MWM performance after 

TBI. Figure 5-A summarizes a conceptual model of the previously described left-right 

hippocampal molecular and morphological differences and how they may be impacted 

after a unilateral TBI. A left lateral TBI may perturb axons and projections ipsilateral to 
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the left injury as well as 

projections from the left CA3 

to the contralateral right CA1, 

leaving perhaps a heavier 

reliance on right originating 

CA3-CA1 projections that are 

GLuA1 receptor subunit rich 

with mushroom-shaped 

spines. Conversely, a right 

lateral TBI may perturb axons 

and projections ipsilateral to 

the right injury as well as 

projections from the right CA3 

to the contralateral left CA1, 

leaving perhaps a heavier 

reliance on left originating 

CA3-CA1 projections that are 

GLuN2B receptor subunit rich 

with smaller spines and intact 

CA3-CA1 LTP. The cognitive 

flexibility required by the 

reversal task might be 

facilitated by the molecular, 
Figure 5-A. A conceptual model of how hippocampal 

molecular and morphological differences are impacted by TBI 
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and functional asymmetry of the plastic left hippocampus, in which a higher density of 

GluN2B subunits exists in postsynaptic spines receiving left CA3 input (Kawakami et al, 

2003; Wu et al, 2005), and LTP induction occurs only when the presynaptic input 

originates in the left, but not the right, CA3 (Kohl et al, 2011; Shipton et al, 2014). As 

such the reversal task deficits seen in left injured mice might be a consequence of 

heavier reliance on the stable right hippocampus. Left injured mice also demonstrated a 

spatial preference for the control quadrant during the reversal probe trial (data not 

shown), which might be interpreted as a deficit in their ability to inhibit the previously 

learned fixed platform location as well as an inability to integrate new spatial 

information, suggesting injury-induced perseverative behavior in left lateral TBI mice. 

While Chapter 2 did not empirically address the molecular mechanisms of left 

and right hemisphere TBI MWM deficits, here I expand the discussion of the previously 

proposed theoretical model by El-Gaby et al, 2014 to account for the presently observed 

functional differences in left-right hemisphere injury. El-Gaby et al, 2014 proposed that 

the adult mouse hippocampus may use distinct left-right hippocampal synapse 

populations differentially during learning and memory. Specifically, pre-configured CA3-

CA1 synapses are attributed to the right hippocampus where stable cell assemblies 

formed during post-natal development function to facilitate one-trial formation of spatial 

representations (Nakashiba et al, 2008). Such right hippocampal pre-configured 

synapses can be selected to represent a particular trajectory following a spatial learning 

event (Dragoi and Tonegawa, 2012, 2014), thus rapidly incorporating spatial 

information. In the left hippocampus, evidence suggests plastic CA3-CA1 synapses 

recruit new place cells throughout adulthood to instruct the formation of de novo cell 
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assemblies (Hollup et al, 2001) (potentially through LTP (El-Gaby et al, 2014), 

facilitating the accurate representative of a particularly salient location (Leutgeb et al, 

2005, 2007). Applying this model to the present findings, the fixed platform deficits in 

right-injured mice could reflect the inability to rapidly incorporate a spatial location into 

pre-configured stable cell assemblies, yet the lack of performance impairments in the 

reversal task may reflect the continued functioning of plastic left CA3-CA1 hippocampal 

synapses. Whereas the reversal task impairments and perseverative behavior produced 

by a left hemisphere injury, may be exacerbated by a reliance on stable right CA3-CA1 

hippocampal assemblies, already pre-assigned to a spatial representation and unable to 

integrate new salient information by plastic left CA3-CA1 synapses. The adaptive 

advantage of such anatomical dissociation between spatial learning processes in mice 

would produce efficient division of labor between left and right hemisphere hippocampi, 

while still being able to integrate these functions at the level of the CA1 through 

convergent left-right CA3 inputs (El-Gaby et al, 2014).  

The composition of the hippocampal trisynaptic circuit, in addition to pyramidal 

cells in the CA3 and CA1, includes granule cells of the dentate gyrus. In this brain area, 

the mammalian hippocampus continues to be modified by additions of adult neurons 

(neurogenesis) (Altman and Das, 1965; Gage, 2000). Granule cells of the dentate gyrus 

are also distinct in that they are subject to a large degree of GABAergic inhibition (Jung 

and McNaughton, 1993), showing low levels of excitability. As such, the dentate gyrus is 

a predominantly silent network that incorporates new functional units. The specific 

functional role the dentate gyrus plays in hippocampal spatial learning and memory 

processes; however, remains unresolved. Recent studies suggest the integration of 
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adult-born neurons contribute to spatial learning and memory as pattern integrators, 

encoding the degree of similarity of events that occur closely in time (Deng et al, 

2010a). Learning and memory tasks utilizing repeated trials such as used in the MWM 

produce similar events, which occur closely in time over a number of days, all of which 

could be encoded through dentate gyrus newborn neurons. The dentate gyrus has also 

been linked to spontaneous exploration of novel environments (Saab et al, 2009). In the 

present studies, while both left and right injured mice show altered MWM search 

strategies compared to their sham controls, no swim path lateralization differences were 

evident. This pattern of findings suggests that injury-induced MWM exploration 

differences were not subject to left-right hemisphere injury differences and likely did not 

drive the distinct left-right MWM Fixed Platform task behavioral impairments. The 

functionality of the dentate gyrus has been further linked to anterograde, not retrograde 

memory (Nanry et al, 1989); however, there is no evidence to suggest that there are 

left-right morphological, cellular, or functional differences in the hippocampal dentate 

gyrus. Therefore, while the dentate gyrus clearly plays important roles in spatial memory 

as assessed by MWM tasks, at present there is no evidence connecting any role to the 

lateralization of hippocampal function presently observed. 

To understand the brain regions responsible for the presently observed functional 

asymmetry of the left and right lateral injuries, the structural and molecular asymmetry 

of the hippocampus are a logical first consideration given the MWM is a hippocampal-

dependent learning task (Morris, 1984) particularly sensitive to the effects of 

hippocampal lesions (Gerlai et al, 2002). However, the neuronal loss and diffuse axonal 

injury from a lateral fluid percussion injury span beyond hippocampal regions. Cortical 
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neuron loss contributes greatly to trauma-induced MWM impairments, and others have 

found bilateral lesions of both the medial prefrontal cortex (Kosaki and Watanabe, 2012) 

and the medial striatum (Furtado and Mazurek, 1996) to result in reversal learning 

deficits. Interference with many other brain regions such as the cerebellum (Lalonde, 

1994), insular cortex (Gutiérrez et al, 1999), thalamic structures (Mumby et al, 1999), 

and fimbria-fornix fibers (Eichenbaum et al, 1990), also impair MWM performance. As 

such, damage to any of these regions may also potentially contribute to the presently 

observed functional asymmetry.  

 Overall, the principle of functional asymmetry of learning and memory is invoked 

to account for differential MWM performance between mice subjected to left or right 

traumatic brain injury. Despite evidence in human research, which points to increased 

left hippocampal activity in response to task relevant semantic information, and 

increased right hippocampal activity from spatial information (Motley and Kirwan, 2012), 

the possible circuit basis and whether it is similar to that of the mouse remains unknown 

(El-Gaby et al, 2014). Drawing direct comparisons between mouse models and humans 

is inappropriate given the large number of functional differences. One such example 

being hippocampal neurogenesis, around which there is an extensive body of mouse 

model work in support. Recent evidence proposes that dentate gyrus neurogenesis, 

present in children, is extremely rate or complete absent in adult humans (Sorrells et al, 

2018). Perhaps the disparity in such findings is a consequence of typical animal model 

work being performed on adolescent rodents. Nevertheless, left-right hemispheric 

asymmetry of spatial memory task deficits contributes to the understanding of the 

mouse model system of traumatic brain injury. Indeed, considerations of laterality in 
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MWM learning and memory impairments in mice are important for future study design 

and interpretation in the investigation of traumatic brain injury-induced cognitive 

consequences, as well as pharmacological and nonpharmacological treatments to 

mitigate the deficits. 

 The studies in this dissertation investigating DAGL-β as a target to protect 

against TBI-induced learning and memory deficits utilized a left lateral injury. A left FPI 

was chosen given it produced both a fixed platform probe trial performance deficit as 

well as reversal task performance deficit, suggesting a diverse model of the learning 

and memory impairments experienced in clinical populations after TBI. TBI mice of the 

DAGL-β experiments showed fixed platform acquisition deficits as well as probe trial 

deficits after a left lateral FPI, perhaps an artifact of an increased injury severity in these 

studies (1.96 atm compared to the previous 1.92 atm). This is perhaps then evidence to 

consider that changes in injury severity magnitude might reveal differential MWM deficit 

across tasks, possibly by left and right hemisphere injury. 

 

Inflammation as a target to treat TBI-induced memory deficit. 

The neuroflammatory processes that unfold following a TBI have been a popular target 

of interest to address TBI-induced functional deficits in pre-clinical studies. However, 

manipulation of TBI-induced neuroinflammation in murine models has seen mixed 

success in protecting against functional deficits. Moreover, no late phase clinical trials 

have yet yielded an effective anti-inflammatory neuroprotective treatment (Chakraborty 

et al, 2016; Narayan et al, 2002). It seems logical therefore to consider whether the 

continued exploration of neuroinflammation is a worthwhile avenue of investigation for 
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the treatment of learning and memory impairments brought about by TBI. In February 

2018, the US Food and Drug Administration (FDA) authorized the first blood test to 

predict the presence of intracranial lesions resulting from mild TBI. The test assesses 

levels of two biomarkers of TBI, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial 

fibrillary acidic protein (GFAP). While UCH-L1 is involved in altering the function/fate of 

neurons and is associated with axonal health and stability (Chen et al, 2010a), GFAP is 

a protein important for the structural integrity of astrocytes which participate in 

astrogliosis and the formation of glial scars following CNS injury, one function of acute 

neuroinflammation. Therefore, the connection of the first FDA approved TBI biomarker 

to inflammation suggests this avenue of great interest has perhaps yet to be exhausted. 

 The current strategy of inhibiting upstream precursors of AA metabolism within 

microglial cells through DAGL-β does not account for the nuanced signaling of the 

various AA metabolism pathways (see Chapter 3, Figure 3-A, pg 82). In addition to 

inflammatory signaling through COX pathways, the cytochrome P450 epoxygenase 

enzymes (in liver, kidney, heart etc.) produce pro-inflammatory epoxides; 

epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), and 

lipoxygenases (expressed in lung and CNS glial cells) produce pro-inflammatory 

leukotrienes, lipoxins, and hepoxilins (Brash, 2001). Specifically, epoxide products of 

cytochrome P450 epoxygenase play important roles in the regulation of cardiovascular 

inflammation (Deng et al, 2010b), pertinent given the frequent peripheral multisystem 

failure in heart, lungs, and peripheral vasculature that occurs following TBI. 

Furthermore, inhibition of spinal lipoxygenase enzymes have reversed NSAID-

unresponsive inflammatory hyperalgesia (Gregus et al, 2018) through toll-like receptor 4 
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(TLR4) (Gregus et al, 2018) and transient receptor potential cation channel, subfamily 

V, member 1 (TRPV1) (Gregus et al, 2012) signaling in rats. These findings suggest 

that inhibition of alternative AA metabolic pathways outside of COX inhibition are worthy 

of investigation in the context of functional deficit protection following TBI. 

 The present results refuting our hypothesis that DAGL-β disruption would protect 

against TBI-induced memory deficit in mice, perhaps is a result of the global reduction 

of microglial arachidonic acid (AA) metabolites. While AA is the primary precursor for 

the production of pro-inflammatory prostaglandins, AA is also the precursor for the 

production of prostaglandins whose role contributes to the resolution of inflammation. 

Prostaglandins, while ubiquitously produced, are usually dominantly generated by cell 

type. Specifically, prostaglandin E2 (PGE2) is produced by microglia and macrophages 

(Tilley et al, 2001) and its effects are mediated through microglial EP2 and EP4 

receptors (Ricciotti and FitzGerald, 2011). PGE2 is one of the most abundant 

prostaglandins, and exhibits dual pro- and anti-inflammatory signaling roles. As a pro-

inflammatory mediator PGE2 contributes to the regulation of cytokine expression (Egan 

et al, 2004), whereas in its anti-inflammatory capacity PGE2 blocks ATP-induced 

cytokine synthesis (Noda et al, 2007). Therefore, the global reduction of microglial 

prostaglandins may prevent some nuanced signaling involving the resolution of 

inflammation. Whether our mouse model of DAGL-β deletion reversed levels of PGE2 

we did not presently evaluate, however the importance of evaluating changes in 

prostaglandin levels following injury is discussed further in the Future Directions section 

at the end of this chapter.  
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 An alternative approach to globally blocking 2-AG derived AA metabolites to 

achieve neuroprotection from TBI, would be to selectively block novel products of 2-AG 

oxidation (see figure 1-2, pg 36). Cyclooxygenase-2 (COX-2), both produces 

oxygenation products of AA (Xie et al, 1991); classic prostaglandins, as well as directly 

oxygenates 2-AG to produce prostaglandin glyceryl esters (PG-Gs) (Kozak et al, 2000); 

novel prostaglandins. Previously PG-Gs have only been observed in vitro (Kozak et al, 

2002), though recently have been quantified in vivo in COX-2 overexpressing mice 

(Morgan et al, 2018). COX-2 is a dynamically regulated enzyme where CNS insults 

such as TBI lead to COX-2 induction (Lapchak et al, 2001), perhaps then also leading to 

increased PG-Gs after injury. COX-2 oxygenation of 2-AG has been implicated in 

glutamate-induced excitotoxicity (Sang et al, 2007), therefore the upregulation of COX-2 

and production of PG-Gs after TBI may contribute towards TBI-induced neurotoxicity. 

The evaluation of COX-2 inhibitors that preferentially block the direct oxygenation of 2-

AG (Duggan et al, 2011) after TBI might be useful in evaluating the neuroprotective 

potential of preventing PG-G production while not impacting the inflammation resolution 

capacities of classic prostaglandins such as PGE2. 

 The idea that DAGL-β may play a temporal dependent role with regards to 

inflammation pathology is also worthy of further consideration. The current constitutive 

genetic deletion model of DAGL-β disruption may mask any time dependent protective 

effects of DAGL-β disruption. As such investigation of detailed intervention timing 

regarding DAGL-β disruption would be beneficial in future experiments. In a previous 

experiment (data not shown), administration of DAGL-β inhibitor KT109 (30 min, 24 h 

post-injury, i.p.) produced no change in TBI-induced MWM deficit. Since this work was 
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completed KT109 was found to show poor brain penetrance and low DAGL-β activity 

inhibition in brain when administered i.p. (Donvito et al, in compilation). Even though 

KT109 administration occurred at a time post-TBI when blood brain barrier integrity is 

presumably compromised, the extent to which KT109 penetrated the brain and inhibits 

DAGL-β was not quantified. A recurring challenge with currently available DAGL-β 

inhibitors is inadequate brain penetrance and only modest selectivity for DAGL-β over -

α, making pharmacological investigation of DAGL-β inhibition after TBI not currently 

viable. The use of a mouse model of inducible DAGL-β genetic deletion may prove a 

valuable tool to study time-dependent inhibition of inflammation pathology through 

DAGL-β inactivation. However, the temporal resolution of a chemically inducible Cre-lox 

recombination system is relatively low, taking days to weeks for gene inactivation to 

complete. 

 The endocannabinoid system contains a rich source of targets to treat TBI-

induced neuroinflammation. Therefore, the exploration of manipulating several 

endocannabinoid system signaling pathways at once might have advantages over a 

focus on a single target. One such example could be the combined activation of 

cannabinoid receptors with DAGL-β disruption. Microglial cells have most of the 

components of the endocannabinoid system, their receptors, and production and 

degradation enzymes, perhaps suggesting they participate in autocrine and paracrine 

signaling in response to neuroinflammation. Specifically, cannabinoid receptor 2 (CB2) 

expression increases with the change in microglia activation state (Mecha et al, 2015). 

The activation of CB2 receptors elicit a wide range of effects both within microglia (e.g. 

cell migration (Walter et al, 2003), induction of an anti-inflammatory M2 phenotype 
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(Mecha et al, 2015) as well as on their surroundings (e.g. induction of phagocytosis 

(Tolon et al, 2009), diminishing free radicals (Ribeiro et al, 2013) and reducing pro-

inflammatory cytokines (Lu et al, 2015). Indeed after TBI CB2 receptor activation 

reduces oedema, enhances cerebral blood flow, increases M2 polarization, and 

improves neurological motor deficits (Braun et al, 2018). One consideration for the lack 

of protection from TBI-induced MWM performance deficits may in part be due to a 

decrease in CB2 receptor signaling because of reduced 2-AG levels in microglia. As 

such the administration of a CB2 receptor agonist in a DAGL-β-/- mouse post-injury might 

be an interesting avenue to explore the dual effectiveness of CB2 receptor inflammation 

resolution signaling combined with the inhibition of 2-AG into microglial eicosanoid 

production pathways on TBI-induced cognitive deficit. In support of this strategy of dual 

CB2 receptor activation and reduced eicosanoid signaling, monoacylglycerol lipase 

(MAGL) inhibition (which increases 2-AG and lowers AA in a non-cell type specific 

manner) shows protection from the molecular and cellular damage inflicted by TBI (see 

Chapter I, Table 1-1, pg 31 & 32). However, given TBI-induced functional deficit 

protection was mixed following MAGL inhibition (see Chapter I, Table 1-2, pg 33 & 34), 

global reduction of AA production across all cell types might have wider reaching 

biological implications that in part mitigate the neuroprotective potential of reduced 

eicosanoid signaling. 

 

TBI-induced memory deficit protection by cell type. 

Despite our original hypothesis, that disrupting DAGL-β activity would provide protection 

from TBI-induced learning and memory impairments in mice (by reducing microglial 
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pools of 2-AG pro-inflammatory metabolites), complementary genetic and 

pharmacological approaches indicated that disrupting DAGL-β is not sufficient to 

ameliorate motor or cognitive deficits following TBI. A remaining question is whether 

blocking 2-AG production on other cell types would offer protection from TBI-induced 

memory deficit. DAGL-α, the other biosynthetic enzyme of 2-AG production, is primarily 

neuronal, as well as expressed on astrocytes in the CNS (Gao et al, 2010). As such, we 

conducted an experiment to assess if DAGL-α-/- mice would be protected from TBI-

induced spatial memory deficit (see Chapter 3). The DAGL-α-/- mice responded poorly 

to the craniectomy surgery and approximately 30-60 min post-surgery exhibited tonic-

clonic seizure-like movements followed by spontaneous death. Of the eight DAGL-α 

mice (DAGL-α+/+ n=1, DAGL-α-/- n=7) undergoing surgery, only three survived to receive 

a TBI (one DAGL-α+/+ and two DAGL-α-/-, all of which survived). Constitutive DAGL-α-/- 

mice have distinct phenotypes which include decreased survival (Powell et al, 2015) 

and seizure-susceptibility (Sugaya et al, 2016), and as such future experiments to 

investigate the role of neuronal/astrocyte 2-AG production inhibition following TBI might 

be conducted in an inducible mouse model of DAGL-α deletion. Pharmacological 

blockade of DAGL-α also has associated challenges. The DAGL-α inhibitor, DO34, 

lacks selectivity for this enzyme in that it is equipotent for DAGL-α and DAGL-β 

(Ogasawara et al, 2016). However, DO34 could yet prove a useful tool to answer 

questions about the role of 2-AG in neurons and astrocytes if administered to a DAGL-β-

/- mouse (known to show no TBI memory protection) after TBI. We did however conduct 

an additional experiment administering DO34 to C57BL6/J mice daily for 2 days prior to 

injury and for 6 days post-injury. We found no significant change in MWM performance 
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in the DO34-treated TBI mice compared to the vehicle-treated mice, suggesting that 

disrupting DAGL-α (and therefore lowering neuronal and astrocytic 2-AG), is also not 

sufficient to ameliorate motor or cognitive deficits following TBI. 

 

TBI Mortality protection by DAGL-β. 

The survival protective phenotype observed in mice with a DAGL-β deletion suggests 

that DAGL-β activity may contribute to TBI-induced acute mortality. The expression 

pattern of DAGL-β in brain is not yet well understood; however, the brain areas 

responsible for autonomic function and basic life support such as cardiac, respiration, 

and blood pressure control are well understood and are predominantly located in the 

brain stem (medulla oblongata, pons) and hypothalamus (arcuate nucleus) (as well as 

other aspects of voluntary control occurring in higher motor cortices). Specifically, 

murine models of TBI have found respiratory dysfunction to occur within seconds post-

injury (Dixon et al, 1987), frequently in proportion to the magnitude of the injury severity 

(Atkinson et al, 1998), and result in either transient or irreversible pulmonary oedema, 

hypoxemia, endothelial damage, and respiratory failure (Koutsoukou et al, 2016). The 

mortality that occurs from fluid percussion injury in mice is frequently attributed to acute 

lung failure. In clinical cases of TBI acute lung injury is also reported in as high as 30% 

of cases (Nicolls and Laubach, 2014), with a similar resulting pathology to that seen in 

mice and rats (Alvarez et al, 2015).  

The pathophysiology behind TBI-induced lung injury is not well understood, 

though currently three mechanisms have been considered; an increase in intracranial 

pressure affecting pulmonary control centers in the brain, a sympathetic surge 
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producing increased plasma adrenaline driving capillary bed pressure and endothelial 

damage, and/or macrophage activation and migration increasing systemic production of 

inflammatory mediators (Koutsoukou et al, 2016). Increased numbers of macrophage in 

mouse lung occur post-TBI (Kalsotra et al, 2007) suggesting macrophage migration in 

response to injury. DAGL-β is highly expressed on intraperitoneal magcrophages in the 

periphery (Hsu et al, 2012), a possible population from which this migration occurs. A 

substantial population of lung resident macrophages are also present. This population 

of mouse and human lung resident macrophages has been found to express several 

components of the endocannabinoid system; CB1 and CB2 receptors, with basal levels 

of tonic lung 2-AG and anandamide (Avraham et al, 2008; Nomura et al, 2008; Staiano 

et al, 2015). Furthermore, increases in lung 2-AG occur in response to LPS-induced 

inflammation in mice (Staiano et al, 2015). Given the basal levels of 2-AG present in 

lung it is possible that DAGL-β may be expressed on lung resident macrophages, or 

that increased lung 2-AG (in response to an inflammatory challenge) might be in part a 

consequence of infiltrating intraperitoneal macrophages. Regardless, it is an interesting 

possibility that DAGL-β may play a role in acute lung injury and thus acute mortality 

after TBI. An avenue of future interest would be the investigation of whether DAGL-β is 

expressed on lung resident macrophages, and if 2-AG levels in lung increase following 

TBI in mice. In a model of LPS-induced acute lung injury the MAGL inhibitor JZL184 

reduced lung leukocyte migration and cytokine levels (Costola-de-Souza et al, 2013), 

perhaps as a result of the prevention of 2-AG oxidation to AA pro-inflammatory 

metabolites. As such, evaluating outcome measures such as macrophage migration 

and levels of pro-inflammatory mediators after TBI in DAGL-β-/- and -β+/+ mice may 
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provide answers as to whether the survival protective effect of DAGL-β deletion occurs 

concurrently with reduced inflammation in lung.  

 

DAGL-α regulation of learning and memory: physiology to pathophysiology. 

The varying magnitudes of behavioral learning and memory deficit evidenced between 

DAGL-α-/- mice (displaying profound MWM acquisition deficits), versus DAGL-α 

inhibition (showing modestly impaired acquisition rate) could be a result of various 

factors; such as developmental alterations across ontogeny, off target engagement at 

high dose DO34, or the relative magnitude of lowered 2-AG and AA. The future use of 

inducible DAGL-α-/- mice may prove useful in resolving this disparity. Should the MWM 

impairment profile of inducible DAGL-α-/- mice mirror that of DO34-treated mice in 

acquisition deficit magnitude, or lack of expression impairment, then conclusions about 

DAGL-α also being important for normal neural development and its impact on future 

learning and memory could be drawn. Regardless, the impaired acquisition and reversal 

learning as a result of DAGL-α inhibition (with no effect on expression, extinction, or 

forgetting processes) suggests that DAGL-α may play a selective role in the integration 

of new spatial information in the normal mouse brain. 

The varying magnitudes of lipid profile alterations between DAGL-α-/- mice and 

wild type mice treated with a DAGL-α inhibitor could also be a consequence of 

developmental alterations across ontogeny. While 2-AG levels were lowered across all 

brain regions in both DAGL-α-/- mice and DO34-treated mice, changes in anandamide 

(AEA) levels differed by intervention and brain area. Only DAGL-α-/- mice showed 

reductions in AEA, and these changes were regionally dependent. Compensatory 
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changes to the production, metabolism, and signaling of AEA in response to the 

constitutive deletion of DAGL-α could be partly responsible for the lowered AEA in 

DAGL-α-/- mice. While AEA has distinct biosynthetic and catabolic pathways from 2-AG, 

the metabolic product of both, AA, is also a substrate for one AEA production pathway 

(Izzo and Deutsch, 2011). Therefore, the large reduction of AA in DAGL-α-/- mice (four-

fold that of DAGL-α inhibition) may also contribute to lowered AEA. On the other hand, 

DAGL-α-/- mice showed significant AEA decreases in hippocampus and cerebellum, but 

not in PFC or striatum, despite having profoundly decreased AA levels in all four brain 

regions evaluated. Thus, factors beyond AA reductions many also contribute to the 

phenotypic AEA decreases, such as brain region selective expression levels of FAAH 

(Egertova et al, 2003).  As elevated AEA (by FAAH inhibition or deletion) accelerates 

MWM extinction rates (Varvel et al, 2007), reducing hippocampal and cerebellum AEA 

might therefore be predicted to impair MWM extinction learning; however, this outcome 

was not observed. Furthermore, FAAH inhibition does not reverse fear extinction deficits 

in DAGL-α-/- mice (Cavener et al, 2018). Therefore, while AEA was lowered in 

hippocampus and cerebellum, it was not sufficient to alter extinction vehicle-control level 

performance of DAGL-α inhibitor treated mice. 

 The cerebellum specifically showed modest basal differences in cannabinoid 

related lipids as well as across both pharmacological and genetic manipulations. Basal 

levels of AA in control mice (DAGL-α+/+ and veh-treated mice) were lower in cerebellum 

than the other brain areas tested. Also, elevations of cerebellar SAG in DAGL-α-/- and 

DO34-treated mice were modest in comparison to hippocampal, PFC, and striatal 

elevations. The understanding of the cerebellar role in spatial memory has progressed 
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from simple motor learning to considerations about goal directed navigation specifically 

through distinguishing between self- and externally-generated vestibular signals 

(Rochefort et al, 2013). Furthermore, destruction of cerebellar Purkinje cells produce 

impaired MWM acquisition (Gandhi et al, 2000), and MWM reversal task deficits (Leggio 

et al, 1999). The reduction in cerebellar basal AA tone and modest SAG elevations after 

DAGL-α disruption might indicate a spatially dependent role for these upstream and 

downstream bioactive lipids of DAGL-α in the presently disrupted tasks of MWM spatial 

memory. 

 The finding that DAGL-α is important for the integration of new spatial information 

in the healthy mouse brain, may point to DAGL-α dysregulation as a target for disease 

states where learning is impaired. Given that DAGL-α expression decreases with age 

(Piyanova et al, 2015), one such example of DAGL-α-related pathology could exist in 

the form of age-related cognitive decline. Future experiments evaluating if age-related 

MWM performance deficits in C57BLB6/J mice correlate with lowered DAGL-α 

expression/activity would be of interest. Furthermore, I would predict that mice showing 

age-related MWM performance deficits would be more vulnerable to the learning and 

memory impairing effects of DAGL-α inhibitors than young C57BL6/J mice. Finally, 

investigation into the mechanisms of how DAGL-α is impacting memory would valuable, 

specifically in identifying which lipid, upstream or downstream of DAGL-α, is responsible 

for the presently observed effects. To evaluate if lowered 2-AG is responsible for the 

learning and memory impairing effects of DO34, co-administration of a MAGL inhibitor 

could be used to assess if rescue of memory impairing effects is possible through 

elevation of 2-AG in the presence of DAGL-α inhibition. 
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Future Directions 

While the hypothesis that DAGL-β disruption would protect against TBI-induced 

cognitive impairments was not supported, the evaluation of perturbations to 

neurochemical lipid correlates of DAGL-β deletion, and downstream pro-inflammatory 

mediators, to assess their relationship to the survival protective phenotype of DAGL-β-/- 

mice will be important. Changes in whole brain 2-AG levels are however not evident in 

DAGL-β-/- mice (Tanimura et al, 2010; and data not shown) perhaps a result of the cell 

specific location of DAGL-β on microglia, which make up only 5-12% of total CNS cells 

depending on brain area (Lawson et al, 1990). Yet in vitro DAGL-β regulates the levels 

of 2-AG, AA, and prostaglandins in primary cultured microglia (Viader et al, 2015b). As 

such, development of a procedure to measure ex vivo levels of endocannabinoids and 

their related lipids specifically in microglia from adult mouse brain collected following a 

TBI would be a valuable addition to the present work. Such a procedure could be 

established using cell sorting by magnetic immunoprecipitation. Magnetic cell sorting 

uses a magnetic antibody which when incubated with cells from CNS tissue and passed 

over a magnetic column, produces isolation of a microglial positive fraction. The use of 

a magnetic CD11b+ antibody has previously produced CD11b+ fractions with low 

expression of astrocytic, oligodendrocyte, and neuronal mRNA, and enrichment of 

microglial protein expression (Holt and Olsen, 2016). As such, I predict that microglial 2-

AG and AA would be lower in DAGL-β-/- mice compared to DAGL-β+/+ mice. Also I would 

predict that TBI might yield increased microglial 2-AG and AA in DAGL-β+/+ mice, 

whereas TBI DAGL-β-/- mice might show no change in 2-AG and AA compared to their 

sham controls, and also possible protection from increased AA metabolites. However, if 
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ex vivo mouse brain tissue is collected at the 2 min acute mortality cut off time, 

elevations of AA metabolites (e.g. prostaglandins) may not yet be present. Future 

adaptation of this procedure to evaluate endocannabinoid and related lipids in aveolar 

macrophage from mouse lung tissue (using a magnetic CD11C antibody) would also be 

a useful endeavor. A correlation of blunted lipid level changes in lung resident 

macrophages of TBI DAGL-β-/- mice to survival protection might connect this survival 

effect to acute lung injury protection following TBI. 

 The conclusions made about the role of DAGL-α in mouse spatial learning and 

memory might be further strengthened through the use of a second hippocampal-

dependent learning and memory task. Specifically, a single trial spatial learning and 

memory task such as the Object Location assay, a hippocampal dependent adaptation 

of the Object Recognition task (Assini et al, 2009). The Object Recognition task consists 

of 2 identical objects which are explored in sample phase, then during choice phase (3 

h later) one object is moved to a new location, the novelty of which being sufficient to 

produce increased exploration of the moved object in naïve C57BL6/J mice. 

Comparable deficits in two distinct hippocampal learning and memory tasks would add 

weight to the present conclusions that DAGL-α is an important mediator in the 

regulation of hippocampal learning and memory. Given anandamide (AEA) was also 

lowered following DAGL-α deletion, inclusion of a future experiment where a FAAH 

inhibitor is administered to DAGL-α-/- mice to evaluate if the return of AEA levels to 

baseline would reverse the behavioral impairment would be a useful inquiry to rule out 

any effect of AEA. 
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 The dissertation data presented suggest that DAGL-α, but not DAGL-β, is an 

important contributor to the neurobiology of learning and memory, whereas DAGL-β 

contributes to TBI-induced acute mortality. Knowledge of the differential contributions of 

these enzymes to the normal regulation of memory, and memory following disease 

states such as TBI are invaluable as the search for effective treatments for memory 

pathology continues. 
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