
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

1995

A generalized system performance model for object-oriented A generalized system performance model for object-oriented

database applications database applications

Ellen Moore Walk

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Business Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5613

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=scholarscompass.vcu.edu%2Fetd%2F5613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5613?utm_source=scholarscompass.vcu.edu%2Fetd%2F5613&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

School of Business
Virginia Commonwealth University

This is to certify that the dissertation prepared by Ellen Moore Walk entitled A
Generalized System Performance Model for Object-Oriented Database Applications has
been approved by this committee as satisfactory completion of the dissertation

requirements for the degree of Doctor of Philosophy in Business.

Dr. Richard T. Redmond, Director

Dr. F. Paul Fuhs, Committee Member

Dr. Robert L. Andrews, Committee Member

Date

School of Business

School of Business

School of Business

School of Business

Department of
Mathematical Sciences

School of Business

©ElIen Moore Walk 1 995
All Rights Reserved

A GENERALIZED SYSTEM PERFORMANCE MODEL
FOR OBJECT -ORIENTED DATABASE APPLICA nONS

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in the
Department of Information Systems

School of Business
Virginia Commonwealth University

By
Ellen Moore Walk

Master of Business Administration, University of Richmond, 1 983
Bachelor of Science, College of William & Mary, 1 977

Director Richard T. Redmond, D B.A
Department of Information Systems

Virginia Commonwealth University
Richmond, Virginia

December, 1 995

ii

ACKNOWLEDGEMENTS

I would like to thank the members of my committee, Dr. Rich Redmond, Dr. Paul

Fuhs, Dr. Rich Coppins, Dr. Bob Andrews, and Dr. Larry West, for their professional

guidance and encouragement during the development of this dissertation. I will always be

grateful for their friendship as well as the example they set in teaching and research.

III

DEDICATION

This dissertation is dedicated to my husband, John, and my children, Sarah and

John.

T ABLE OF CONTENTS

Page

Acknowledgements 11

Dedication 1II

List of Tables VII

List of Figures IX

Abstract XlV

Chapter

I.

II.

III.

INTRODUCTION 1

Differences Between Relational and Object-Oriented Database Applications I
The Significance of Performance in Object-Oriented Databases. 2
The Need for Predicting Application Performance. 3
Research Questions 4

LITERATURE REVIEW 5

Object-Oriented Database Concepts. 5
Benchmarking Approaches to Modeling OODB Performance 6

The 00 I Benchmark 6
The HyperModel Benchmark. 9
The 007 Benchmark.. . .. 1 1

Using the Current Study to Extend Benchmark Studies

Simulation Approaches to Modeling OODB Performance
Analyzing Processes to Identify Sources of Variability .
Software Metrics for Object-Oriented Applications

RESEARCH METHOD

Objectives of Study

. . . . 1 7
. 19
. ... 20

..21

. ... 25

. ... 25

IV

Operating Platform
T est Instrument . .

\.

. . . 2 5
. 26

Overview of Experimental Design 26
Variables Held Constant for All Three Experiments 26
Overview of the 007 Operations Selected for This Study . 27

Experimental Design for Research Question I. Aggregation 28
Review of Research Question on Aggregation 28
Definition of Terms . . 2 8
Research Hypothesis for Aggregation 2 9
Operational Definitions. Dependent Variable 29
Operational Definitions Independent Variable . 30
Manipulation of the Independent Variable 30
Methodology for Data Collection . 32
Data Analysis Model and Statistical Hypothesis 33

Experimental Design for Research Question 2 I nheritance . 34
Review of Research Question on Inheritance 34
Definition of Terms. 34
Research Hypotheses for Inheritance 3 5
Operational Definitions Dependent Variable 36
Operational Definitions. Independent Variables 36
Manipulation of the Independent Variables 36
Methodology for Data Collection 40
Data Analysis Model and Statistical Hypotheses 43

Experimental Design for Research Question 3 . Workload Sequence 44
Review of Research Question on Workload Sequence 44
Definition of Terms 44
Research Hypotheses for Workload Sequence . . 4 5
Operational Definitions Dependent Variable �46
Operational Definitions Independent Variables 46
Methodology for Data Collection 50
Data Analysis Model and Statistical Hypotheses . 52

RESULTS .. 54

Results for Research Question I. Aggregation 54
Results for Research Question 2. Inheritance. 64

Treatment 1 vs. Treatment 2 (Effect of Class Definitions) 64
Treatment 2 vs. Treatment 3 (Effect of Run-Time Polymorphism) . . 65

Results for Research Question 3 Workload Sequence . . . 69
Effect of # Workload Units Processed . 69
Effect of Dummy Variables Indicating Preceding Conditions 69

Further Analysis of Variability in Response Times . 70

v.

Effect of the Seed Used to Generate Random Operations Stream 7 1
Effect of Removing Q8 and T l From the Workload . 7 1

CONCLUSIONS . 92

Summary of Results 92
Effect of Degree of Aggregation on Response Time 92
Effect of Degree of Inheritance on Response Time 93
Effect of Sequence of Operations on Response Time 93

Implications for Applications Designers. 94
Contributions and Limitations of Study 95
Future Work 96

BmLlOGRAPHY . . . 97

APPENDICES

VITA

A Program for Generating Database Operations in Pseudorandom Order 1 0 1
B 007 Benchmark, Modified for Simulated Transaction Workload 1 04
C Modifying Degree of lnheritance in 007 Class Definitions . . 1 23
D Modifying Degree of lnheritance in 007 Traversal Operations to 1 3 1

Use Three Levels of Run-Time Polymorphism
E Response Time Histograms and Time-Series Charts for Database 71200/3/3 1 40
F Response Times Using Different Seeds for Random Number Generator and . . 1 49

Deleting Q8 and T l From Workload

. . . 1 58

LIST OF TABLES

Table 2 1 007 Benchmark Database Parameters 14

Table 2 .2 007 Benchmark Database Operations 15

Table 3 1 Overview of 007 Operations Selected for This Study 27

Table 3 . 2 Levels Chosen for Independent Variable, #Hookups Processed 32

Table 3 . 3 Manipulation of the Independent Variables to Test the Effects of 40
Inheritance

Table 3 . 4 Levels Chosen for Independent Variable, #Workload Units 48

Table 3 . 5 Distribution of Database Operations 5 1

Table 4 . 1 Q4 Aggregation Model 56

Table 4 . 2 Q5 Aggregation Model 57

Table 4 . 3 Q6 Aggregation Model 5 8

Table 4 . 4 T6 Aggregation Model 59

Table 4 . 5 T 1 Aggregation Model, All Databases Combined 60

Table 4 .6 T 1 Aggregation Model, Databases with 1 00 Atomic Parts Per 6 1
Composite Part

Table 4 .7 T 1 Aggregation Model, Databases with 1 50 Atomic Parts Per 62
Composite Part

Table 4 . 8 Analysis of ObjectStore Physical Segments Storing the 007 63
Database

Table 4.9 Comparison of Database Object Counts and Size 64

\"III

Table 4 . 1 0 ANOYA for Q6 66

Table 4 . 1 1 ANOYA for T6 67

Table 4 . 1 2 ANOYA for T I 68

Table 4. 1 3 Q l Workload Regression Model 73

Table 4 . 1 4 Q2 Workload Regression Model 74

Table 4 . 1 5 Q3 Workload Regression Model 75

Table 4. 1 6 Q4 Workload Regression Model 76

Table 4 .17 Q5 Workload Regression Model 77

Table 4 .18 Q6 Workload Regression Model 78

Table 4 .19 Q8 Workload Regression Model 79

Table 4 .20 T 1 Workload Regression Model 80

Table 4 .2 1 T6 Workload Regression Model 8 1

ix

LIST OF FIGURES

Figure 2 . 1 007 Object Model Original Implementation with One Level of 1 2
Inheritance (Assembly)

Figure 2 .2 007 "Assembly Hierarchy" Two-Dimensional Model of Object 1 3
Instances

Figure 3 .1 007 Object Model Modified to Add a Second Level of Inheritance 38
(DesignObject)

Figure 3 . 2 007 Object Model With Third Level of lnheritance (RootObject) 39

Figure 4 . 1 Frequency Distribution for Q l Response Times, Database 82
41 1 00/3/3

Figure 4 .2 Q 1 Response Times, In Order of Occurrence in Workload, 82
Database 4/ I 00/3/3

Figure 4 . 3 Frequency Distribution for Q2 Response Times, Database 83
41 1 00/3/3

Figure 4 .4 Q2 Response Times, In Order of Occurrence in Workload, 83
Database 41 1 00/3/3

Figure 4 . 5 Frequency Distribution for Q3 Response Times, Database 84
41 1 00/3/3

Figure 4 .6 Q3 Response Times, In Order of Occurrence in Workload, 84
Database 411 00/3/3

Figure 4 . 7 Frequency Distribution for Q4 Response Times, Database 85
41 1 00/3/3

Figure 4 . 8 Q4 Response Times, I n Order of Occurrence i n Workload, 8 5
Database 4/ 1 00/3/3

Figure 4 .9 Frequency Distribution for Q5 Response Times, Database 86

x

Figure 4 . 1 0 Q 5 Response Times, I n Order of Occurrence in Workload, 86
Database 4/ 1 00/3/3

Figure 4 .1 1 Frequency Distribution for Q6 Response Times, Database 87
41 1 00/3/3

Figure 4 . 1 2 Q6 Response Times, In Order of Occurrence in Workload, 87
Database 4/ 1 00/3/3

Figure 4 . 1 3 Frequency Distribution for Q8 Response Times, Database 88
41 l 00/3/3

Figure 4 . 1 4 Q 8 Response Times, I n Order of Occurrence in Workload, 88
Database 4/ 1 00/3/3

Figure 4 . 1 5 Frequency Distribution for T l Response Times, Database 89
41 l 00/3/3

Figure 4 . 1 6 T 1 Response Times, In Order of Occurrence in Workload, 89
Database 4/100/3/3

Figure 4 . 1 7 Frequency Distribution for T6 Response Times, Database 90
41 l 00/3/3

Figure 4 . 1 8 T6 Response Times, In Order of Occurrence in Workload, 90
Database 4/ 1 00/3/3

Appen. E l Frequency Distribution for Q 1 Response Times, Database 1 40
7/200/3/3

Appen. E2 Q 1 Response Times, In Order of Occurrence in Workload, 1 40
Database 7/200/3/3

Appen. E3 Frequency Distribution for Q2 Response Times, Database 1 4 1
7/200/3/3

Appen. E.4 Q2 Response Times, In Order of Occurrence in Workload, 1 4 1
Database 7/2001313

Appen. E5 Frequency Distribution for Q3 Response Times, Database 1 42
7/2001313

xi

Appen. E .6 Q3 Response Times, In Order of Occurrence in Workload, 1 42
Database 7/200/3/3

Appen. £ . 7 Frequency Distribution for Q4 Response Times, Database 1 43
7/200/3/3

Appen. £ . 8 Q 4 Response Times, I n Order o f Occurrence i n Workload, 1 43
Database 7/2001313

Appen. £ .9 Frequency Distribution for Q5 Response Times, Database 1 44
7/2001313

Appen. £ . 1 0 Q5 Response Times, In Order of Occurrence in Workload, 1 44
Database 7/200/3/3

Appen. £ . 1 1 Frequency Distribution for Q6 Response Times, Database 1 45
7/200/3/3

Appen. £ . 1 2 Q6 Response Times, In Order of Occurrence in Workload, 1 45
Database 7/200/3/3

Appen. £ . 1 3 Frequency Distribution for Q8 Response Times, Database 1 46
7/200/3/3

Appen. £ . 1 4 Q 8 Response Times, In Order of Occurrence in Workload, 1 46
Database 7/2001313

Appen. £ . 1 5 Frequency Distribution for T l Response Times, Database 1 47
71200/3/3

Appen. £ . 1 6 T l Response Times, In Order of Occurrence in Workload, 1 47
Database 712001313

Appen. £ . 1 7 Frequency Distribution for T6 Response Times, Database 1 48
7/200/3/3

Appen. £ . 1 8 T6 Response Times, In Order of Occurrence in Workload, 1 48
Database 7/200/3/3

Appen. F . l Q 1 Response Times, Database 41 1 00/3/3 Using Different 1 49
Seeds for Random Number Generator

XlI

Appen F2 Q I Response Times, Deleting Q8 and T l From Workload 1 49
Database 41 1 00/3/3

Appen. F3 Q2 Response Times, Database 41 1 00/3/3 Using Different IS O
Seeds for Random Number Generator

Appen. FA Q2 Response Times, Deleting Q8 and TI From Workload 1 50
Database 4/ I 00/3/3

Appen. F . 5 Q3 Response Times, Database 41 1 00/3/3 Using Different lS I
Seeds for Random Number Generator

Appen. F6 Q3 Response Times, Deleting Q8 and T I From Workload lSI
Database 41 1 00/3/3

Appen. F . 7 Q4 Response Times, Database 411 00/3/3 Using Different 1 52
Seeds for Random Number Generator

Appen F 8 Q4 Response Times, Deleting Q8 and T I From Workload 1 52
Database 4/ I 00/3/3

Appen. F9 Q5 Response Times, Database 41 1 00/3/3 Using Different 1 53
Seeds for Random Number Generator

Appen. F l O Q5 Response Times, Deleting Q 8 and T l From Workload 1 53
Database 41 1 00/3/3

Appen. F . I I Q6 Response Times, Database 41 1 00/3/3 Using Different _ 1 54
Seeds for Random Number Generator

Appen. F 1 2 Q6 Response Times, Deleting Q 8 and T I From Workload 1 54
Database 4/ I 00/3/3

Appen. F 1 3 Q8 Response Times, Database 41 1 00/3/3 Using Different ISS
Seeds for Random Number Generator

Appen. F I 4 T l Response Times, Database 41 1 00/3/3 Using Different 1 56
Seeds for Random Number Generator

Appen. F . 1 5 T l Response Times, Deleting Q8 and T I From Workload 1 56
Database 41 1 00/3/3

Appen. F. 1 6 T6 Response Times, Database 41 1 00/3/3 Using Different
Seeds for Random Number Generator

Appen. F 1 7 T6 Response Times, Deleting Q8 and T I From Workload
Database 41 1 00/3/3

xiII

1 57

157

ABSTRACT

A GENERALIZED SYSTEM PERFORMANCE MODEL FOR OBJECT -ORIENTED
DATABASE APPLICATIONS

By Ellen Moore Walk, Ph.D.

Xl\'

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 1 995

Major Director Dr. Richard T. Redmond, Department of Information Systems

Although relational database systems have met many needs in traditional business

applications, such technology is inadequate for non-traditional applications such as

computer-aided design, computer-aided software engineering, and knowledge bases.

Object-oriented database systems (OODB) enhance the data modeling power and

performance of database management systems for these applications

Response time is an important issue facing OODB. However, standard measures

of on-line transaction processing are irrelevant for OODB . Benchmarks compare

alternative implementations of OODB system software, running a constant application

workload. Few attempts have been made to characterize performance implications of

OODB application design, given a fixed OODB and operating system platform

In this study, design features of the 007 Benchmark database application (Carey,

DeWitt, and Naughton, 1 993) were varied to explore the impact on response time to

perform database operations Sensitivity to the degree of aggregation and to the degree of

inheritance in the application were measured . Variability in response times also was

measured, using a sequence of database operations to simulate a user transaction

workload.

Degree of aggregation was defined as the number of relationship objects processed

during a database operation. Response time was linear with the degree of aggregation.

The size of the database segment processed, compared to the size of available memory,

affected the coefficients of the regression line

Degree of inheritance was defined as the Number of Children (Chidamber and

Kemerer, 1 994) in the application class definitions, and as the extent to which run-time

polymorphism was implemented. In this study, increased inheritance caused a statistically

significant increase in response time for the 007 Traversal l only, although this difference

was not meaningful .

In the simulated transaction workload of nine 007 operations, response times

were highly variable. Response times per operation depended on the number of objects

processed and the effect of preceding operations on memory contents. Operations that

used disparate physical segments or had large working sets relative to the size of memory

caused large increases in response time. Average response times and variability were

XYI

reduced by removing these operations from the sequence (equivalent to scheduling these

transactions at some time when the impact would be minimized).

CHAPTER I

INTRODUCTION

DIFFERENCES BETWEEN RELATIONAL AND OBJECT-ORIENTED DATABASE

APPLICATIONS

Although relational database systems have met many needs of traditional business

data processing applications, such technology has proven inadequate for non-traditional

applications such as computer-aided design, manufacturing, and software engineering

(CAD/CAM/CASE), office information systems, and knowledge bases. These non-

traditional applications are characterized by large, complex data structures, nested and

interrelated data, and multiple versions of database entities. CAD, CAM, and CASE

applications, sometimes classified as "design applications" [Hurson et ai, 1 993 ; Maier,

1 989], typically require the processing of components at different levels of abstraction
. -

(equivalent objects). An example of this is processing VLSI CAD data at the gate,

component, and chip levels A transaction in such an application can have a much longer-

duration than traditional database transactions, too, as objects may be "checked out" by

designers

Relational database technology, designed to process records made up of relatively

simple, fixed-format data, does not currently provide the functionality and performance to

meet all needs of such advanced applications. Many existing design applications have

resorted to the use of custom programming on top of file management systems to obtain

1

2

reasonable performance, avoiding use of a database management system altogether.

[Cattell, 1 994; Hurson et ai, 1 993] .

Object-oriented database systems (OODB) have been developed as one of several

approaches to enhancing the data modeling power and performance of database

management systems (DBMS) for advanced applications (Other approaches under

research are extended relational, functional, and semantic databases [Cattell, 1 994] .)

Object-oriented database systems have the capability of improved performance due

primarily to (1) the ability to represent relationships among data by using unique object

identifiers or pointers, and (2) the use of object-oriented programrning languages with

database features. First, object identifiers or virtual pointers can be translated very quickly

into the physical memory addresses of related objects. By comparison, relational queries

on attributes of a relation involve an extra associative mapping step to translate attribute

values into addresses. Second, using a single language for application program code as

well as database code overcomes the " impedance mismatch" exhibited in relational

systems, and opens up possibilities for the use of more efficient data structures tailored to

the application. Both of these features also reduce the number of procedure calls during

program execution, thereby reducing overhead. [Maier, 1 989]

THE SIGNIFICANCE OF PERFORMANCE IN OBJECT -ORIENTED DATABASES

System performance (primarily response time) is considered by some to be the

most important issue facing OODB, more than functionality [Hurson et ai, 1 993 ; Cattell

and Skeen, 1 992; Cattell, 1 994; Maier, 1 989] . However, non-traditional applications

differ so much from traditional business on-line transaction processing that the standard

measures of database management system performance are inadequate. These include the

3

Wisconsin and the TPC-A benchmarks [Gray, 1 99 1 ; Anon. et ai, 1 985] . It is possible that

many business database applications today, if they were to be modeled and implemented

using the enhanced semantic representations of object-oriented design, would also require

more complex processing than envisioned by these standard benchmarks

Because of the uniqueness of non-traditional applications, and the lack of data on

actual OODB implementations, several attempts have been made to develop general tools

for measuring OODB performance. Key studies include the 007 benchmark [Carey et ai,

1 993] , preceded by the 00 1 benchmark [Cattell and Skeen, 1 992; Rubenstein et ai, 1 987]

and the HyperModei benchmark [Berre and Anderson, 1 99 1 ; Anderson et ai , 1 990] . The

objective of these benchmarks is to run a constant, artificial application workload across

different DBMS architectures (including relational as well as OODB)

THE NEED FOR PREDICTING APPLICA nON PERFORMANCE

An important use of performance modeling during application development is

during the design phase, to estimate the future performance of a system. Hardware

requirements (particularly memory), application data structures and database access

methods, and network traffic are key issues It is important to know what application -

characteristics and system architecture factors will have the most impact on the ultimate

performance of the system. It is also important to be able to compare alternative designs

conveniently during the design stage, on the basis of the critical design parameters, before

the system is implemented.

Synthetic benchmarks are only helpful to the extent they characterize the workload

of the actual application being developed, and can be run on an existing platform.

Detailed simulation models generally are not cost-effective during design and

4

development, when details of the future system may be sketchy and subject to error.

However, simple models including the primary parameters of interest could be useful, to

reduce the risk of poor performance in the final system.

Workload characterization of an existing system normally provides the basis for a

realistic synthetic workload, or for representative parameters in an analytic or simulation

model of a system [Heidelberger and Lavenberg, 1 984; Ferrari et ai, 1 983]. A study of the

impact of application software factors on performance, given hardware, operating system,

and database software, would extend the usefulness of previously published benchmarks.

RESEARCH QUESTIONS

For a given platform (hardware, operating system, and commercial OOOB):

1) What is the relationship between the degree of aggregation in an OOOB user

application and the response time to do database operations?

2) What effect does degree of inheritance in a user application have on response time?

3) How does the sequence of database operations in a user transaction workload

influence response time variability?

CHAPTER I I

LITERATURE REVIEW

OBJECT-ORIENTED DATABASE CONCEPTS

An informative, comprehensive introduction to object-oriented databases can be

found in both [Cattell, 1 994] and [Kim, 1 990] . Object-oriented data modeling and

databases are extensions of the object-oriented programming paradigm An object can be

defined as a real-world or abstract entity, (e g . , documents, software modules, equipment

parts, people) about which data will be stored Objects have behaviors--functions or

operations done by or to an object; these operations are often called methods Abstract

data types, which encapsulate data and functions/operations on that data, are known as

classes or types in object-oriented programming languages.

Object types can be related to each other in a type hierarchy of supertypes and

subtypes. Subtypes can inherit commonly-held attributes and operations from supertypes,

and have unique attributes and operations of their own. Subtypes have an "is-a" '

relationship with their supertype(s)

The motivation behind OODB is the need to model and implement complex

objects which are not adequately handled by the relational approach For instance, objects

may be composed of other objects (aggregation) Aggregation relationships between

objects are also called "part-of" relationships Also, objects or their attributes may be very

large (e.g . , a bitmap or text), rather than being comprised of simple data types (integers,

characters, etc) There may be multiple versions of objects to be stored simultaneously in

5

6

the database. Often complex objects need to be stored and processed as ordered sets or

lists, which are difficult to represent in relational databases.

OODB architecturally combine database capabilities with object-oriented

programming languages, e.g., C++ and Smalltalk. There is a single language for database

and programming operations, and a unified approach for extending object-oriented

modeling to programming and database implementation. Logical relationships between

objects can be matched in the physical implementation, as opposed to requiring the joining

of related data at run time, again promoting uniformity between logical and physical

designs.

BENCHMARKING APPROACHES TO MODELING OODB PERFORMANCE

Since 1 987, several benchmarks for OODB have been designed by database

researchers. These are described below in order of chronological development. (An

annotated bibliography of published papers, technical reports and theses on object

database performance and benchmarks is provided in [Chaudhri, 1 995]) .

The 00 1 Benchmark

With the proposal of the first benchmark for object-oriented applications,

[Rubenstein et aI, 1 987] at Sun Microsystems began a series of publications describing the

evolution of the " Sun Benchmark" into the 001 Benchmark [Cattell, 1 988; Gray, 1 99 1 ;

Cattell and Skeen, 1 992] . This work was motivated by the inadequacy of traditional

DBMS benchmarks for representing engineering applications on workstations. The

objective was to measure the total response time to run a given workload, with operations

7

and data more typical of engineering applications, across different types of DBMS

(relational, object-oriented, network, and hierarchical). The original benchmark

application database consisted of three record types person, document, and authors

relating persons and documents. Seven simple operations were measured: name lookup,

range lookup, group lookup, reference lookup, record insert, sequential scan, and

database open.

In [Cattell, 1 988] the author/document database was replaced with a database of

parts on a circuit board and connections between them, responding to criticism [e.g., Duhl

and Damon, 1 988] that the original database did not adequately represent object-oriented

features. Also, the seven operations were reduced to three generic operations by I)
grouping name and range lookup into a lookup operation, 2) replacing reference and

group lookup with a traversal measure, and 3) keeping the insert operation but eliminating

sequential scan and database open from the benchmark.

The most recent version of this approach was the Object Operations Benchmark

(00 I), [Cattell and Skeen, 1 992; also published in Gray, 1 99 1]. Cattell and Skeen kept

the focus on three generic operations: object lookup, traversal of connections between

objects, and inserting objects. These were thought to be the most frequently occurring

operations in engineering applications, based on feedback on the earlier papers and on'

interviews with engineers using CASE and CAD. The parts database was kept, consisting

of two logical records with data on parts and connections. Attributes of these records

were simple data types such as strings and integers. The database had a somewhat regular

structure, with exactly three connections from each part to other randomly selected parts,

most of which were close in "locality" (defined as having numerically close part ids). Each

part was thus be reachable from a random number of parts.

8

[Cattell and Skeen, 1 992] ran this benchmark across several DBMS platforms

The overall size of the parts database was varied experimentally with two levels : one

database "small" enough to fit in main memory, and the other "large" (scaled up by a

factor of ten) enough to require access to secondary storage. The two parts databases

thus differed in the size of their working set However, the various DBMS platforms

tested using the benchmark differed in numerous respects which were not controlled

experimentally in their study. The systems studied varied in terms of

•

•

•

•

•

•

•

parts database size after implementation (e.g . , " small" parts database varied 1 0 - 50%
in size across DBMS platforms)

cache size

cache algorithm

page size

means of mapping part id to disk address (hash index vs. B-tree vs. link structure;
authors chose whatever was the fastest available for each DBMS)

concurrency control mechanisms and other overhead functions

binding of DBMS with benchmark application code vs. interprocess calls

F or example, one of the relational databases had a much longer total response

time, due to confounding effects of cache differences, the overhead for DBMS calls, and

indexing rather than linked structures for traversals. The authors concluded that all three _

factors--binding of DBMS code with application code, caching large amounts of the

database in main memory, and providing new access methods--were important

The Object Operations Benchmark paper is significant to the proposed research

study in the identification of potential key factors affecting performance of object-oriented

database systems, e.g., cache size vs. working set, access methods. However, it leaves

open the opportunity to study the effect of varying additional factors under experimental

control. In addition, because application database characteristics are not varied in this

9

benchmark, there is a need to determine relationships and interactions of the application

workload with hardware and DBMS variables. Finally, because there are no intermediate

measures of response time per operation under a realistic mix of operations, this study

does not look at the variability in performance, only total time to run the benchmark for

each individual operation type.

The HyperModel Benchmark

The HyperModel benchmark, as described in [Berre and Anderson, 1 99 1 ; more

detail in Anderson et ai, 1 990] was also an attempt to develop a generic application to be

used to evaluate performance across any DBMS General DBMS requirements for

engineering applications were identified by the authors with an in-house survey of such

applications at Tektronix, Inc , e .g . , modeling of complex object structures, description of

different data types, integration with application programming languages. Engineering

applications were not characterized along any quantitative dimensions.

These authors criticized the 00 1 benchmark on the basis that the genenc

application database was too simple to measure transitive closures and other traversal

operations. In this work, a hypertext application database was used to model more '

complex objects and additional operations more representative of engineering applications

such as CAD and CASE. The HyperModei database organized information about textual

documents and the relationships between parts of a document. While the 001 benchmark

ultimately evolved into the measurement of three significant operation types, the

HyperModei benchmark expanded on the seven original operations from the Sun

Benchmark. The HyperModel Benchmark measured 20 comprehensive operations,

grouped into the following 1 0 categories, against the hypothetical database

1 0

• Name Lookup
• Range Lookup
• Group Lookup
• Reference Lookup
• Sequential Scan

Closure Traversal
• Closure Operations
• Editing
• Create-and Delete
• Open-and-Close

To obtain their performance measurements, each of the 20 operations was run 50

trials in a row; i .e . , operations were not mixed. To measure cold-start results (without

caching), the database was closed before each new trial, and each trial was run on 50

different randomly selected objects. The total time for the cold run was then divided by 50

to get the mean time for that operation (in milliseconds/operation). To measure results

with caching, the same operation was run again on the same 50 objects, and the mean time

for that operation under warm-start conditions was calculated.

No other metrics were collected while running this benchmark. In the conclusion

of [Anderson et ai, 1 990], this lack of descriptive data was recognized, and one could _

question how this and other benchmarks could be used to predict the performance of a

particular application or mix of applications. The HyperModei database had a very regular

structure of relationships between nodes, and little variability in object size. While it had a

richer structure than the 00 1 parts database, it was not known whether such uniformity

would be characteristic of most applications with complex objects. Running the database

operations one at a time, as opposed to mixing operations in a more realistic workload,

would understate variability that would be relevant in real applications.

1 1

The 007 Benchmark

This benchmark, developed by Michael Carey, David DeWitt, Jeffrey Naughton

and others at the University of Wisconsin, has superceded the Cattell 00 I benchmark

because of its richness and flexibility, and its reproducibility. Evolution of the benchmark

is described in [Carey et ai, 1 993, Carey et ai, 1 994] and additional technical reports from

the University of Wisconsin

As with 00 1 , the purpose of 007 was to provide a controlled user workload

across multiple OODB platforms. In the 1 993 Wisconsin study, each platform consisted

of a different OODB product and roughly comparable hardware. (There were also

operating system differences across the platforms that heavily influenced some of the

results, and these were noted in the technical report where applicable.) The purpose was

to gain insight into the design of the OODB system software, given a fairly representative,

constant user workload

007 used a single application database, designed to be like CAD or CASE

database. Figures 2 . 1 and 2 .2 illustrate (1) the object class model for the 007 database,

following the diagramming conventions of [Rumbaugh et ai, 1 99 1] , and (2) a two­

dimensional representation of the 007 database as it was constructed in memory.

Manual

1 2

Figure 2.1
007 OBJECT MODEL

Original Implementation with One Level of Inheritance (Assembly)

Module

....-------<0 id int (index)

o

constructor
,..----i destructor

scanManual
firstLast
traverse (defined)

••
Assembly

id int (index)
constructor
DoNothing
my Type
traverse (pure virtual
traverse7

/\

CompositePart

id int (index)
constructor
destructor
reorg i
reorg2
traverse (defined)
traverse7

o
ComplexAssembly BaseAssembly

constructor
destructor
my Type
traverse (defined)
traverse7

constructor
destructor
my Type
traverse (defined)
traverse7

Document

AtomicPart

id
type
buildDate
x
y
docId
constructor
destructor
swapXY
toggleDate
DoNothing

int (index)
char[TypeSize
int (index)
int
int
int

traverse (2 arguments)

T 1
\)

Connection

type char[TypeSize]
length int
constructor

title char[TitleSize]
id
"te:l.1
textLen
constructor
destructor
search Text
replace Text
firstLast

int
char
int

title char[TitieSize]
id (indexed) int
"te:l.1 char
constructor
destructor
search Text
replace Text
set title

Assembly
Level :

I

2

3

4

5

6

7

Figure 2.2
007 "Assembly Hierarchy"

Two-Dimensional Model of ObJect Instances

Module --------iManual

/omPlerSemblY

etc. \. �tc ;omPlrSembIY\
;omPlrSemblY \

ComplexAssembly

/ I
\

comPleremblY

/omPlrsemblY �

NumAssmLevels

;asermbIY \

NumAssmPerAssm=3

NumCompPerAssm=3

3 Random Connections

to CompositeParts

(CompositePart �,------ Document

AtomicPart __________ �AtomicPart

AtomicP� _________) m� etc�
NumAtomicPerComposite=200

NumConnPerAtomic=3

1 3

In the 007 benchmark, database size was varied, but several other application

parameters were held constant, as summarized in Table 2 . 1 :

TABLE 2. 1
007 BENCHMARK DATABASE PARAMETERS

(Carey, DeWitt, and Naughton, 1 993)

PARAMETER SMALL MEDIUM

Number of Modules
Document Size (bytes) 2,000 20,000
Manual Size (bytes) l OO K 1 M
Number of Composites Per Module 500 500
Number of Assemblies Per Assembly 3 3
Number of Composites Per Base 3 3
Number of Connections Per Atomic 3 ,6,9 3,6,9
Number of Assembly Levels 7 7
Number of Atomic Per Composite 20 200

LARGE

1 0
20,000

1 M
500

3
3

3,6,9
7

200

14

Multiple types of traversals, queries, insert, delete, reorganizations were run on the

database. These operations were each executed once and the response time was

measured One or multiple repetitions of the same operation could be executed per

database transaction, but different operations were not mixed in a simulated

sequence/script. A summary of operations in the 007 benchmark is found in Table 2 .2 .

DELETE

INSERT

QUERY 1

QUERY2

QUERY3

QUERY4

QUERY5

QUERY6

QUERY7

QUERY 8

TABLE 2.2
007 BENCHMARK DATABASE OPERATIO S

(Carey et al, 1 993)

Delete 10 randomly chosen composite parts.

1 5

Create 1 0 new composite parts, and the set o f atomic parts for
each. Add a reference to each new composite part from a randomly
chosen base assembly.

Randomly choose 1 0 atomic parts by lookup on their id field An
index on atomic parts can be used. (Exact Match Lookup)

Selection of atomic parts with buildDates in the most recent 1 % of
the range of possible buildDates. A B+ tree index is used. (Range
query)

Selection of atomic parts with buildDates in the most recent 1 0% of
the range of possible buildDates. A B+ tree index is used. (Range
query)

Randomly choose 1 0 document objects by lookup on their title
field, and find all base assemblies that use the composite part
corresponding to the document . An index on document can be
used. (Path lookup--document title->document id->corresponding
composite part->corresponding base assembly)

Single-level make Find all base assemblies rendered out of date by
using a composite part with a more recent build date.

Find all assemblies (base or complex) that use (directly or
transitively) a composite part with a more recent build date than the
assembly's build date.

Iterate through all atomic parts . Checks scan speed. (Duplicates
some other queries that do not use an index .)

Value join between documents and atomic parts on document id
and atomic part id (Key to Foreign Key Join)

TABLE 2.2
(Continued)

1 6

REORGANIZATION! Visit all composite parts, deleting and then newly inserting
1 12 of each composite part's atomic parts graph.

REORGANIZA TION2 Randomly delete and reinsert as many atomic parts per

TRAVERSAL!

TRA VERSAL2a

TRA VERSAL2b

TRA VERSAL2c

TRAVERSAL3a

TRA VERSAL3b

TRA VERSAL3c

TRAVERSAL6

TRAVERSAL8

TRAVERSAL9

composite part as each one has, testing the deletion/reallocation
handling of the system.

Dense traversal . Visit all assemblies and atomic parts, do no work

Dense traversal with sparse updates. Visit all atomic parts, update
one atomic part per composite part.

Dense traversal with dense updates. Visit all atomic parts, update
every atomic part as it is encountered.

Dense traversal with dense, repeated updates. Visit all atomic
parts, update each part 4 times.

Traversal 2a with update to indexed field.

Traversal 2b with update to indexed field

Traversal 2c with update to indexed field.

Sparse traversal visit each base assembly, and each of the
composite parts per base assembly For each composite part, visit
only the root atomic part.

Scan the manual object.

Looks at the beginning and ending characters of the manual object.

NOTE TRAVERSALS 4, 5 , and 7 of the benchmark were run, but provided no added
insight in the University of Wisconsin tests.

1 7

The 007 benchmark has been used as a standard workload t o test various aspects

of OOOB performance. In [White and DeWitt, 1 995], for example, 007 was used to

compare alternative crash recovery techniques in QuickStore, a memory-mapped store

built on top of the Exodus storage manager In this research, the focus was on the subset

of 007 operations that perform database updates. In [Carey et ai, 1 994] future plans

were described to extend the benchmark to provide a customizable, multiuser workload

Others have used the benchmark to experiment with fetch policies and program

optimization techniques [Brownsmith, 1 995] . The benchmark also provides a useful

training model for teaching OOOB in the classroom and in the laboratory.

USING THE CURRENT STUDY TO EXTEND BENCHMARK STUDIES

However, from the point of view of application developers designing database

applications to run on an OOOB, the question is what various application dimensions

affect performance, given a single OOOB platform? This is the inverse of the question

answered by a benchmark, but it is the relevant question faced by corporate and

government developers after they have selected a platform and OOOB vendor, and are

designing a variety of application systems

Taking this latter perspective, the 007 benchmark also can be used as a valid

starting point. The purpose of this study was to continue to examine the

design/performance space in OOOB applications. This was done by varying static,

1 8

structural parameters in the user database, and by simulating a dynamic transaction

workload against this database.

This added to the current body of knowledge on ODBMS performance in the

following ways. First, the impact of variability in database structural features on database

response time was measured, and an attempt was made to derive a statistical relationship

between them Second, variance in response time for database operations was studied, to

simulate the variance users would experience under different conditions

Individual application databases can differ in their static structural features along

the following dimensions

database size
interconnectivity relationships between objects
degree of aggregation
degree of inheritance
complexity of data members/structures within classes
use of locality in the physical generation of the application database, e .g . , by clustering
related data in the same memory segment

The 007 benchmark demonstrated the sensitivity of response time to databas.e size

and interconnectivity in the form of fanout connections between atomic parts. The other

four structural features were held constant in the benchmark. (Use of locality was

constant for a given platform, but varied from platform to platform in the Wisconsin

study.)

I n this study sensitivity t o the degree o f aggregation and inheritance was measured,

while the other four features were held constant

1 9

SIMULATION APPROACHES TO MODELING OODB

Because the current study extended the 007 benchmark with the addition of

stochastic features, the literature was also reviewed for any simulation approaches to

modeling OODB. [Brumfield et ai, 1 988] described the design of a simulation model for

evaluating the performance of a distributed object-oriented database system. The

objective of the model was to project the future performance for ORION-2, a distributed

extension of the workstation-based OODB ORION- I developed by the Advanced

Computer Architecture Program at Microelectronics and Computer Technology

Corporation (MCC). Two possible hardware configurations of the shared database were

modeled. I) a server model, with user nodes accessing only one server machine for shared

data, and 2) a fully distributed model, in which shared data were distributed among all

workstations. Query processing time and object access time were measured, while

experimentally varying the following general workload features for each network

configuration. I) the percentage of global vs. local queries, and 2) the total number of

nodes (processors) on the network.

Parameter values used in the simulation came partly from measurement of all

applications running on ORION- I at that time, and partly from estimates. Because all

types of user applications were lumped together into a composite workload for this study,

CPU time and network time were modeled as constants, depending on message size

(smaIUmedium/large) Other workload assumptions were made as to the probability

distributions for number of objects processed per query, the location of objects (in

memory, on local disk, on remote disk).

Characterization of the workload in this simulation study was at a higher level than

in the current research study, because the objective was to identifY system bottlenecks as a

2 0

function o f network configuration, percentage o f global queries, and number of nodes.

The significance of this article to this research study was the identification of possible

variables to be included in workload studies.

ANAL YZING PROCESSES TO IDENTIFY SOURCES OF V ARlABILITY

A more general, systematic methodology for analyzing systems was found in

[Melton, 1 99 1] In the field of quality control, process studies are defined as collecting

data over time about any sort of system (in a broad sense) that transforms inputs into

outputs, such as a manufacturing or service process utilizing people, materials, methods,

equipment, etc. Variability in the inputs and outputs of a process is expected, and can be

measured and analyzed in the process study. In particular, variability can be categorized

as common cause (i .e . , inherent in the process, from a multitude of sources, affects all

outcomes) versus special cause (i .e . , from an assignable source, affecting only one or a

few outcomes from a process). The key steps to perform a process study are as follows:

I) Define the process to be studied

Define the boundaries of the process being studied (the beginning and ending

steps of the process). Define the current operation of the process (the flow of steps Ie vents

comprising the process). Define the important subprocesses to be studied.

2) Identify the attributes about the process to be studied

These include first of all those outcome characteristics of importance to the user

of the process. Then, characteristics of the inputs which may cause variability in the

outcome are identified Major categories of sources of variability may be materials,

2 1

machines, methods, people, environment, and measurements. Determine which input

attributes hypothetically have the greatest impact on the outcome. Define the attributes as

measurable variables.

3) Plan the data collection process

Define the sampling plan and data collection methods. Pilot, then implement the

data collection plan.

4) Analyze the data collected

Determine whether the inputs and outputs are stable over time (is there evidence

of special cause variability, or stable, common cause variability in run charts or control

charts). Looking at outliers in the data as a function of time often aids in interpretation,

moreso than looking at overall data distributions. Upward/downward trends and cyclical

behavior can be detected. If there is stability, then additional statistical analyses are

appropriate. Descriptive statistics (Pareto analysis, scatter diagrams) and multivariate

statistics (covariance analysis, factor analysis) may be used.

The focus on major sources of variability, and use of some specialized analytical

techniques (run charts and control charts, for example), add to traditional statistical

techniques for computer system performance measurements and evaluation

SOFTWARE METRICS FOR OBJECT-ORIENTED APPLICATIONS

Because of limited results in the OODB performance literature characterizing the

distinguishing features of OODB applications, the literature on software metrics was

2 2

examined for some means of evaluating and comparing object-oriented software designs

Research on software metrics for object-oriented applications is in the early stages, as

traditional metrics are thought to be inappropriate

[Chidamber and Kemerer, 1 994] proposed six software metrics for object-oriented

software design. The metrics were designed to measure the complexity in the design of

classes for an application, and were intended to be implementation-independent. Although

it was acknowledged that dynamic behavior (and thus performance) of a system may not

be captured by these measures, the authors' objective was to provide metrics for use early

in the l ife-cycle of an application, before program development. The metrics were

designed to be predictors of the time and effort to develop, test, and maintain the classes

of an application. The authors provided supporting empirical data collected from

commercial development projects in two development environments.

The six metrics proposed by Chidamber and Kemerer were:

Weighted Methods Per Class (WMC)--Each method in a class was assigned a

complexity measure. WMC was the summation of complexity measures for all

methods of a class.

Depth of Inheritance Tree (DIT)--DIT was the maximum length from a class to its

root class in an inheritance hierarchy. The deeper a class was in a hierarchy, the more

methods would be inherited, making it more complex to predict its behavior

Number of Children (NOC)--NOC was the number of immediate sub-classes per class.

The greater the number of children, the greater reusability through inheritance, and the

greater requirements during testing.

Coupling Between Objects (CBO)--The CBO for a class was the count of the number

of couples with other classes, i . e. , any time a method declared in one class used a

method or variable defined by the other class. As with traditional system design,

2 3

excessive coupling between object classes was considered t o be detrimental,

preventing reuse and requiring more extensive testing.

Response for a Class (RFC)--The response set of a class was a set of methods that

could potentially be executed in response to a message received by an object of that

class, defined only up to the first level of nesting of method calls. The larger the

response set the greater the complexity of the class, requiring more testing and

debugging.

Lack of Cohesion In Methods (LCOM)--The degree of similarity of the methods

within a class was defined as the intersection of the sets of instance variables used by

the methods. The larger the number of similar methods, the more cohesive the class.

Cohesiveness would promote encapsulation; lack of cohesion would increase

complexity and indicate that classes should perhaps be split into multiple sub-classes.

Empirically, Chidamber and Kemerer showed that most classes have zero or few

sub-classes. The explanation given again suggested that the designers were not using

inheritance of methods as a basis for designing classes, and in fact "some C++ designers

systematically avoid sub-classing in order to maximize operational performance. " (This

was the primary mention of performance in this paper otherwise oriented toward

application development time, testing and maintenance.)

These metrics have provided a starting point for OOOB performance research, and

the list will be added to or subtracted from with subsequent research . For the

measurement of system performance to do database operations (e .g . , lookup, insertion,

traversal), the complexity of methods for a class may not be relevant, since these methods

may perform non-database work. For this study, however, the OIT and NOC metrics may

be useful for classifying applications on the basis of degree of inheritance.

24

Aggregation was not dealt with explicitly with the six Chidamber and Kemerer

metrics . Because aggregation is an important characteristic of many OODB applications,

this type of specific metric was added in the current study.

CHAPTER III

RESEARCH METHOD

OBJECTIVES OF STUDY

Structural design features of an object-oriented database application were varied to

explore the relationship between these features and performance (system response time)

Sensitivity to the degree of aggregation and the degree of inheritance in the application

were measured . Also, the statistical distribution of response times for database operations

in a mixed transaction workload was measured.

OPERATING PLATFORM

The following platform was used for this study (all brand or product names are
trademarks or registered trademarks of their respective holders) :

Hardware, Operating System, and Compiler

Win Pentium 90 MHz Processor
1 6 Megabytes RAM
344 Megabyte Hard Disk Partition
OS/2 Warp Operating System, Version 3
IDM C/C++ compiler, version 2

Object-Oriented Database Management System

ObjectStore Release 3 1 for OS/2, by Object Design, Inc. , Burlington, MA

2 5

2 6

TEST INSTRUMENT

The 007 Benchmark application database and selected database operations were

used as the test instrument in this study (Carey et ai, 1 993; Brownsmith, 1 995, see

Appendices B-D) . By varying parameters which determined the degree of aggregation

and the degree of inheritance implemented in this database, the impact of application

design characteristics on performance was investigated . An overview of this benchmark

was provided in Chapter 2 .

OVER VIEW OF THE EXPERIMENTAL DESIGN

Variables Held Constant for All Three Experiments

The following decision variables were held constant for this study

RAM

Hard Disk Space

ObjectStore Client Cache

Fetch Policy

Replacement Policy

ObjectStore Server

1 6 megabytes
Running OS/2, ObjectStore, and 007 Benchmark processes

only

344 megabyte OS/2 partition
1 50 - 1 90 megabytes free hard disk space for simulations

after generation of each database

1 2,288,000 bytes

2 pages (8 , 1 92 bytes) for all database operations

least recently used

presizing of collections off, os_toggle _ mapaside enabled,
opt_cache Jock_mode enabled, default settings for other
server parameters

2 7

Overview of 007 Operations Selected for This Study

The following database operations were selected from the 007 Benchmark for this

study. These operations were chosen based on the information provided, the degree of

realism when used with ObjectStore, and the ability to maintain database size and state

during the experiment (i e , perform no updates).

DATABASE
OPERATION

T l
T6
Q I
Q2
Q3
Q4
Q5
Q6
Q8

Table 3 . 1

OVERVIEW OF 007 OPERATIONS
SELECTED FOR THIS STUDY

USED TO TEST
AGGREGATION

YES
YES

YES
YES
YES

USED TO TEST
INHERIT ANCE

YES
YES

YES

USED TO TEST
TXN WORKLOAD

YES
YES
YES
YES
YES
YES
YES
YES
YES

EXPERIMENTAL DESIGN FOR RESEARCH QUESnO 1 . AGGREGA no

Review of Research Question on Aggregation

What is the relationship between the degree of aggregation in an OODB user

application and the response time to do database operations?

Definition of Terms

I . Aggregation

2 8

Aggregation i s a form of association between objects i n which an aggregate object

is made of component objects. Component objects are thus "part of' the aggregate

object . [Rumbaugh et ai, 1 99 1] This form of association is common in object-oriented

database applications.

Aggregation is implemented in ObjectStore as a 1 many or many many "part-of'

relationship between two objects. ObjectStore treats the relationship itself as a class, so

for any pair of related parts, there is a relationship object. This relationship object is of a

constant size (4 bytes per member part), regardless of the size and type of the member

parts. When ObjectStore processes the relationship, it processes the relationship objects.

It does not access the actual member objects unless it needs to retrieve or change the

value of an attribute of that object.

2 9

2 . Degree of Aggregation

This is the number of "part-of' relationship objects that must be processed by a

given database operation. Degree of aggregation can also be thought of as the "number of

hookups" between part objects in 007 that must be processed by a database operation.

3 . Database Operations

The 007 operations T l , T6, Q4, Q5, and Q6 processed objects in the 007

database which were members of an aggregation relationship. These operations were used

to test the hypothesis on aggregation.

Research Hypothesis for Aggregation

H I : F or database operations processing aggregated objects, response time is a

function of the number of relationship objects processed

Operational Definitions: Dependent Variable

Response Time is defined as the seconds to perform a database operation like a

query or traversal, excluding transaction overhead, under warm cache conditions.

3 0

Operational Definitions: Independent Variable

Hookups Processed is defined as the number of relationship objects processed by

a database operation. Varies for each database operation, depending on which parts of

the database are used

Manipulation of the Independent Variable

In the 007 database generation program, there were several constants which

could be set by the user to control the numbers of objects and hookups in the database.

I . Number of Assembly Levels (e.g . , 4)

Affected the depth of the aggregation tree, which affected any database operation

which traversed some or all of the assemblies in the database

2. Number of Atomic Parts Per Composite Part (e.g. , 1 00)

Increased the complexity of relationships within each Composite Part, since the

number of Connections and the random interconnectivity between Atomic Parts increased

with this parameter.

3 . Number of Assemblies Per Assembly (e.g. , 3)

Affected the width/span of the aggregation tree, which affected any database

operation which traversed some of all of the assemblies in the database.

4. Number of Composite Parts per Base Assembly (e.g. , 3)

Affected the number o f hookups between composite parts and base assemblies.

Thus, a database generated using the parameters 4/ 1 00/3/3 has

Number of Assembly Levels 4
Number of Atomic Parts Per Composite Part 1 00
Number of Assemblies Per Assembly 3
Number of Composite Parts per Base Assembly 3

3 1

Nine databases were generated, manipulating the above parameters, with database

size ranging from approximately 27 megabytes to 42 megabytes. Table 3 2 summarizes

the setting of the constants in the generation of the databases, and the resulting levels for

the independent variable # Hookups Processed. The constants were chosen 1) to generate

databases larger than the available amount of RAM, 2) to approximate the range of sizes

of the 007 database used in other research studies found in the literature review, and -3)

to give an adequate number of levels of the independent variable to develop a regression

model, per operation, expressing the relationship between response time and the number

of hookups processed by that operation.

Three of the nine databases were chosen for validating the regression models. One

of these databases, 5/ 1 50/3/3, provided levels of the independent variable in the middle of

the range of data used to develop the models. Another database used for validation,

7/ 1 50/3/3, was chosen to see how well response time could be predicted at the highest

values of the independent variable, and beyond the range of data used to develop the

regression models. Lastly, the database 6/ 1 00/4/2 was chosen to see if the # Hookups

Processed could be generalized to predict response time for databases with a different

aggregation tree structure (wider and more shallow).

Table 3 .2
LEVELS CHOSEN FOR INDEPENDENT VARIABLE,

HOOKUPS PROCESSED

Database # Hookups Processed
Generation Constants Il T6 Q1 Q2 QQ
F or Modelling
4/ 1 00/3/3 8,22 1 202 8 1 8 1 1 2 1
4/ 1 50/3/3 12,27 1 202 8 1 8 1 1 2 1
5/1 00/3/3 24,664 607 243 243 364
6/ 1 00/3/3 73 ,993 1 ,822 729 729 1 ,093
61 1 50/3/3 1 1 0,443 1 ,822 729 729 1 ,093
71 1 00/3/3 22 1 ,980 5 ,467 2, 1 87 2, 1 87 3 ,280
F or Validation of Model
51 1 50/3/3 36, 8 1 4 607 243 243 364
71 1 50/3/3 3 3 1 ,330 5,467 2, 1 87 2, 1 87 3 ,280
61 1 00/4/2 208,2 1 3 5,46 1 2,048 2,048 3 ,4 1 3

Methodology for Data Collection

For each of the nine experimental databases, the following steps were repeated

I . Generate the database using the desired constants.

2 . For each of the five operations of interest,

Begin the database transaction;
For 30 repetitions of the operation

{

3 2

Measure the start time;
Do the database operation;
Measure the stop time;

}
Commit the database transaction.

3 3

Thus, the response time was measured for each individual repetition of a database

operation, excluding transaction overhead. The first (and in some cases, second)

repetition of the operation was needed to warm the cache; subsequent repetitions were

under warm conditions.

Data Analysis: Model and Statistical Hypothesis

The data from the six databases to be used for the regression models were

combined into one dataset. The first observation (and in some cases, the second) for each

operation in each database was deleted, to keep only steady state observations The

dataset was then sorted by database operation.

For each database operation, the following regression model was developed

The statistical hypothesis to be tested was

Ho B1 = 0
Ha B1 1 0

EXPERIMENT AL DESIGN FOR RESEARCH QUESTION 2 INHERITANCE

Review of Research Question on Inheritance

What effect does the degree of inheritance in an OODB user application have on

response time?

Definition of Terms

I . Inheritance

34

There were two ways inheritance was carried out in the 007 Benchmark. First,

there was inheritance of data attributes from superclasses to subclasses. This affected the

size of the objects stored in the database. In ObjectStore, if an object inherited data

attributes from a superclass, its size was greater than it would be if the same attributes

were declared directly in the subclass, without inheritance.

In 007, there was also inheritance of methods through run-time polymorphism

For example, which traversal method was executed during a T I or T6 operation depended

on the type of object being traversed. This decision was made at main memory speeds at

run-time.

2. Degree of Inheritance

Existing metrics from [Chidamber and Kemerer, 1 994] measured the degree of

inheritance in an application's class definitions. Depth in Tree (DIT) was 1 for the 007

application in its original implementation. (DIT measured the maximum length from a

class to its root class in the overall class hierarchy for the application)

3 5

Alternatively, the Number of Children metric from [Chidamber and Kemerer,

1 994] measured the number of classes which were subclasses of another class NOC was

2 in the original 007 implementation

A new metric was added in this study to measure the degree of inheritance in the

execution of an application's methods. This metric measured the use of virtual functions

which were resolved at run-time either by using a pointer to an object directly (no

inheritance) or by using a pointer to its superclass (inheritance). This metric, called Depth

of Run-Time Resolution for the purposes of this study, was the maximum number of levels

in an inheritance hierarchy which must be resolved at run-time when executing virtual

functions.

3 . Database Operations

The 007 database operations T 1 , T6, and Q6 processed objects which were

members of an inheritance hierarchy, with inherited data attributes and/or virtual functions.

These three operations were used to test the hypotheses on the effect of inheritance on

response time.

Research Hypotheses for Inheritance

H2: When class definitions have increased inheritance of data attributes among

objects, response time to perform database operations on such objects will increase

H3 : F or database operations using virtual functions, there is no significant

difference in response time as the Depth of Run-Time Resolution increases.

Operational Definitions Dependent Variable

Response Time is defined as the seconds to perform a database operation like a

query or traversal, excluding transaction overhead, under warm cache conditions.

Operational Definitions Independent Variables

Number of Children is defined as the number of classes which are subclasses of

another class.

Depth of Run-Time Resolution is defined as the maximum number of inheritance

level resolved through run-time polymorphism in an application' s methods.

Manipulation of the Independent Variables

3 6

In the original 007 C ++ programs, the class definitions implemented NOC = 2

(the abstract class Assembly had two subclasses, Base Assembly and Complex Assembly).

The virtual function for traversals implemented Depth of Run-Time Resolution = I (a

pointer to an Assembly was resolved at run-time to be either a pointer to a Base or

Complex Assembly). See Figure 2 . 1 .

But for a single user application, with given logical semantics, designers have a

choice in how much to use inheritance in the physical implementation (i e , when coding

the class definitions and the function definitions in C++).

3 7

For example, i n the original 007 Benchmark Database application, the Module,

Complex Assemblies, Base Assemblies, and Composite Parts had several common data

members (id, type, buildDate) and one common member function (traverse) . (Atomic Part

had similar members, but with slightly different declarations .) However, in the original

C++ implementation of the 007 Benchmark, only Complex Assemblies and Base

Assemblies inherited the id, type, buildDate data members and the traverse pure virtual

function from an abstract parent class "Assembly. "

In this study, the class definitions were revised to add superclasses DesignObject

and RootObject . This increased NOC to 1 0, so all object classes would inherit at least

from the top superclass in the hierarchy, RootObject . The new class definitions also added

the potential to increase Depth of Run-Time Resolution to 3 . Figures 3 . 1 and 3 . 2

demonstrate the revision o f the class hierarchy to add inheritance, and Appendix C

contains the revised C++ class definitions.

Then, the traversal program was modified to implement run-time polymorphism

with a pointer to RootObject, to be resolved at run time depending on whether the object

to be traversed was Module, Complex Assembly, Base Assembly, Composite Part, or

Atomic Part. Using this revised traversal program, the Depth of Run-Time Resolution

would be 3 . The modified traverse program is in Appendix D.

Module

Figure 3 .1
007 OBJECT MODEL

Modified To Add a Second Level of Inheritance (DesignObject)

..
Assembly

DesignObject

type char[TypeSize] 1---------.,
buildDate int
traverse (pure virtual)

I
CompositePart AtomicPart

3 8

id int (index)
constructor
destructor
scanManual
firstLast

id int (index)
constructor
DoNothi ng

id int (index)
constructor
destructor

id
type
buildDate
x

int (index)
char[TypeSize
int (index)

my Type reorg i int
reorg2 y int

traverse (defined)
traverse (defined)
traverse7 traverse (defined)

traverse7
docId
constructor

int

Manual

title
id
·text
textLen
constructor
destructor
searchTex1
replaceText
firstLast

o .,

o
ComplexAssembly

constructor
destructor
myType
traverse (defined)
traverse7

char[TitleSize]
int
char
int

/\
o

BaseAssembly

constructor
destructor
my Type
traverse (defined)
traverse7

Document

destructor
swapXY
toggleDate
DoNothing
traverse (2 arguments)

Connection

type char[TypeSize]
length int
constructor

title char[TitleSize]
id (indexed) int
'text char
constructor
destructor
search Text
replace Text
set title

3 9

RootObject Figure 3 2

type char[TypeSize 1
traverse (pure virtual)

/\

007 OBJECT MODEL
With Third Level of Inheritance

(RootObject)

Module

id int (index)
constructor
destructor
scanManual
firstLast
traverse (defined)

o

� Assembly

id int (index)
constructor
DoNothing
myType
traverse (defined)
traverse7

DesignObject

build Date int
traverse (defined)

I
Com positePart

id int (index)
constructor
destructor
reorg l
reorg2
traverse (defined)
traverse7

-

Manual

title
id
'text
textLen
constructor
destructor
searchText
replaceText
firstLast

o
ComplexAssembly

con structor
destructor
myType
traverse (defined)
traverse7

char[TitieSize 1
int
char
int

/\
o

BaseAssembly

constructor'
destructor
myType
traverse (defined)
traverse?

Document

title
id (indexed)
'text
constructor
destructor
searchText
replaceText
set title

AtomicPart

id
buildDate
x
y
docld
constructor
destructor
swapXY
toggleDate
DoNothing

int (index)
int (index)
int
int
int

traverse (defined)

traverse (2 arguments)

T T
\)

Connection

length int
constructor
traverse (defined)

char[TitleSize 1
int
char

traverse (defined) traverse (defined)

-

The following three experimental treatments were then simulated:

Table 3 . 3

MANIPULATION OF THE INDEPENDENT VARIABLES
TO TEST THE EFFECTS OF INHERITANCE

TREATMENT I

NOC = 2
Depth of Run-Time Resolution = 1
Original 007 class definitions
Original 007 traversal program

(Original 007 class definitions
and new traversal program
not syntactically possible)

Methodology for Data Collection

TREATMENT 2

NOC = 1 0
Depth of Run-Time Resolution = 1
New 007 class definitions
Original 007 traversal program

TREATMENT 3
NOC = 1 0
Depth of Run-Time Resolution = 3
New 007 class definitions
New traversal program

4 0

For each of the three experimental treatments, the following steps were performed:

Treatment I :

I . Generate the database 5/ 1 50/3/3 using the original 007 class definitions.

2 . Using the original 007 traversal program, for each of the three operations of

interest,

Begin the database transaction;
For 30 repetitions of the operation

{
Measure the start time;
Do the database operation;
Measure the stop time;

}
Commit the database transaction.

As in the aggregation experiment, the response time was measured for each

individual repetition of a database operation, excluding transaction overhead The first

(and in some cases, second) repetition of the operation was needed to warm the cache;

subsequent repetitions were under warm conditions.

Treatment 2 :

1 . Modify the class definitions to implement NOC = 1 0

4 1

2 Compile the application with the new class definitions and the original traversal

program.

3 . Generate the database 51 l 50/3/3 using the new 007 class definitions

4. Using the new traversal program, for each of the three operations of interest :

Treatment 3 :

Begin the database transaction;
For 30 repetitions of the operation

{
Measure the start time;
Do the database operation;
Measure the stop time;

}
Commit the database transaction.

1 . Use the class definitions to implement NOC = 1 0 from Treatment 2.

2. Compile the application using the new class definitions and the new traversal

program resolving all object traversals from a RootObject pointer.

3 Generate the database 5/ 1 50/3/3 using the new 007 class definitions

4. For each of the three operations of interest :

Begin the database transaction;
For 30 repetitions of the operation

{
Measure the start time;
Do the database operation;
Measure the stop time;

}
Commit the database transaction.

42

Data Analysis Model and Statistical Hypotheses

The data from the three database experiments were combined into one dataset.

4 3

The first observation (and in some cases, the second) for each operation in each database

was deleted, to keep only steady state observations.

For each database operation, the following one-way ANOYA model was

developed

The statistical hypotheses to be tested were

Increasing NOe (Treatment I vs. Treatment 2)

Ho M, = M2

Ha M 'f M2

Increasing Depth of Run-Time Resolution (Treatment 2 vs. Treatment 3)

Ho : M2 = M3

Ha M2f M3

44

EXPERIMENT AL DESIGN FOR
RESEARCH QUESTION 3 . WORKLOAD SEQUENCE

Review of Research Question on Workload Sequence

How does the sequence of database operations in a user transaction workload

influence response time variability?

Definition of Terms

I . User Transaction Workload

A user transaction workload is defined as a randomly-generated sequence of

database operations, each operation within its own transaction boundaries (one operation

per transaction, unlike the experiments on aggregation and inheritance). In this study, a

workload was simulated in which each of nine selected database operations had an

approximately equal chance of being executed next in the sequence. The nine queries and

traversals chosen for the workload mix processed different segments of the database, but

did not modify any of the data Work per operation was thus repeatable

2. Database Operations

The following 007 database operations were selected to test the hypotheses on

workload sequence, based on their realism, their variety, and the ability to maintain the

state of the database. T l , T6, Q I , Q2, Q3, Q4, Q5, Q6, Q8

4 5

3 . Response Time Variability

Response time variability in this stochastic process was influenced by the state of

the client cache and main memory. Because each operation was executed under a variety

of memory states, this study simulated the range of possible response times a single user

would experience for each query or traversal

Research Hypotheses for Workload Sequence

I . Effects of Increasing the Size of the Working Set for Each Database Operation

H4 Response time is a function of the number of workload units processed by

a given database operation.

2. Effects of Preceding Database Operations

HS . An operation will have a significantly higher response time when the

immediately preceding operation flushes the client cache with a completely disparate

working set.

H6. An operation will have a significantly higher response time when it is the

second operation following one which flushes the client cache with a completely disparate

working set.

H7. An operation wil l have a significantly higher response time when the

immediately preceding operation flushes the client cache, even with a partly usable

working set.

H8: An operation will have a significantly higher response time when it is the

second operation following one which flushes the client cache, even with a partly usable

working set.

4 6

H9: An operation will have a significantly lower response time when preceded

by itself

3 . Significance of Overall Model

H I O There i s a significant relationship between response time and the set of

independent variables used in the workload sequence modeL

Operational Definitions Dependent Variable

Response Time is defined as the seconds to perform a database operation like a

query or traversal, including transaction overhead, and under any cache conditions which

may occur in a mixed transaction workload. This response time reflects the response time

a user would observe under realistic working conditions

Operational Definitions Independent Variables

For H4

The independent variable is the Number of Workload Units processed by a given

database operation The definition of this variable depends on the database operation; for

some operations the number of workload units equals the number of relationship objects

processed, for others it equals the number of parts processed.

T 1 Number of relationship objects (# Hookups)
T6 Number of relationship objects (# Hookups)
Q4 Number of relationship objects (# Hookups)
Q5 Number of relationship objects (# Hookups)
Q6 Number of relationship objects (# Hookups)
Q 1 Number of atomic parts in index
Q2 Number of atomic parts in index
Q3 Number of atomic parts in index
Q8 Number of atomic parts (does not use index)

Nine databases were generated to vary the levels of this independent variable;

seven of the nine were generated to collect data for the models, and the other two were

4 7

generated t o collect data for validating the models. Table 3 A illustrates the levels studied

for the independent variable, Number of Workload Units.

For H5 - H9

The independent variables are defined using dummy variables which indicate the

presence of preceding operations which may heavily influence response time. These

variables are not manipulated; they occur randomly in the workload.

Table 3 . 4
LEVELS CHOSEN FOR INDEPENDENT VARIABLE,
WORKLOAD UNITS = # HOOKUPS PROCESSED

Database # Hookups Processed
Generation Constants Il T6 Q1 ill
F or Modelling
41 1 00/3/3 8,22 1 202 8 1 8 1
41 1 50/3/3 1 2,27 1 202 8 1 8 1
4/200/3/3 1 6,32 1 202 8 1 8 1
511 00/3/3 24,664 607 243 243
5/200/3/3 48,964 607 243 243
71 1 00/3/3 22 1 ,980 5 ,467 2, 1 87 2, 1 87
71 1 50/3/3 3 3 1 , 330 5 ,467 2, 1 87 2, 1 87
For Validation of Model
51 1 50/3/3 36, 8 1 4 607 243 243
7/200/3/3 440,680 5,467 2, 1 87 2, 1 87

LEVELS CHOSEN FOR INDEPENDENT VARIABLE,
WORKLOAD UNITS = # ATOMIC PARTS PROCESSED

Database
Generation Constants
For Modelling
41 1 00/3/3
41 1 50/3/3
4/200/3/3
51 1 00/3/3
5/200/3/3
71 1 00/3/3
71 1 50/3/3
For Validation of Model
511 50/3/3
7/2001313

Atomic Parts Processed
01, 02, 03, 08

50,000
75 ,000

1 00,000
50,000

1 00,000
50,000
75 ,000

75 ,000
1 00,000

4 8

Q2

1 2 1
1 2 1
1 2 1
364
364

3,280
3,280

364
3,280

Follows Q8 (Goes with HS)

For each operation in the workload that immediately follows a Q8, this dummy

variable has a value of I . Otherwise the value is 0 (Q8 flushes the client cache with a

completely disparate working set .)

Two After Q 8 (Goes with H6)

For each operation in the workload that is the second operation after a Q8, this

dummy variable has a value of I . Otherwise the value is 0

Follows T l

F or each operation in the workload that immediately follows a T l , this dummy

variable has a value of I . Otherwise the value is 0 (T l flushes the client cache with a

potentially usable working set .)

Two After T I

F o r each operation i n the workload that i s the second operation after a T I , this

dummy variable has a value of I . Otherwise the value is o.

49

Follows Itself

F or each operation in the workload that immediately follows itself, this dummy

variable has a value of I . Otherwise the value is o.

Methodology for Data Collection

I . Generate the Randomized Transaction Workload

5 0

A sequence of 500 database operations was generated in a pseudorandom order

from the distribution in Table 3 . 5, and saved to a file. Each operation had approximately

an equal chance of occurring in this workload. The program for generating the sequence

of database operations is in Appendix A This program used the implementation of

Lehmer's multiplicative linear congruential random number generator found in (Parks and

Miller, 1 985), ported to the current experimental platform in C .

This identical sequence of database operations was used for all experiments, so

that the same workload was presented to each database configuration These observations

allowed an analysis of the variation of response times for each type of operation. Running

each database operation in this order randomized the cache effects from one operation to

the next, and simulated the average and range of response times which would be

experienced in a single-user workload.

5 1

Table 3 . 5

DISTRIBUTION OF DATABASE OPERATIONS
Expected Observed

Operation Probability Frequency Frequency

T I . 1 1 55 53
T6 . 1 1 5 5 56
QI . 1 2 60 56
Q2 . 1 1 5 5 52
Q3 . I I 5 5 69
Q4 . 1 1 5 5 46
Q5 I I 5 5 7 5
Q6 . 1 1 5 5 45
Q 8 � 22 �

1 . 00 500 500

T I was the first operation run, given the above probability distribution and a seed

of I . This operation essentially flushed the client cache, since its working set was greater

than 1 2 . 8 ME. This provided a known, repeatable starting state for each experiment . T l

also warmed the cache for any subsequent operation that used primarily atomic parts, so a

steady state was reached quickly

After generating the sequence of random operations, the testing for each database

proceeded as follows:

2 Delete any previously tested database files and results files, to keep free hard disk
space approximately constant (affects seek time and OS/2 swap file size)

3 . Set the following environmental variables
set dbname=filename (where filename is the database file)
set os_toggle_mapaside= J (to optimize ObjectStore performance under OS/2)

4. Generate the database, using the appropriate file of configuration parameters.

5 2

5 . Record object counts for the database, time to generate the database, and database
size.

6. Run ObjectStore's os size utility and save to a file This contains structural
information about the size and contents of the hard disk segments allocated for the
database.

7 . Run the simulation program (Appendix B), using the random sequence of 500
operations as input Each database operation is run by itself within a database
transaction, and timed. Save the operation type, the transaction time, and the
count of objects processed by each operation to a results file.

Data Analysis Model and Statistical Hypotheses

For each database operation, the following multiple regression model was

developed by combining the results from the seven databases described in Table 3 A. The

first 1 5 observations from each database' s simulation were deleted, since they were

initialization conditions before reaching a steady state. The results from the other two

databases, 5/ 1 50/3/3 and 7/200/3/3, were held out for validating the regression model

where

Yj is the response time Y in the ith trial,
Bo is the Y intercept of the regression plane,

XiI is the value of the independent variable # Workload Units in the ith trial,
Xil is the value of the independent variable Follows Q8 in the ith trial,
Xu is the value of the independent variable Two After Q8 in the ith trial,
Xi4 is the value of the independent variable Follows T I in the ith trial,
XiS is the value of the independent variable Two After T l in the ith trial,
Xi6 is the value of the independent variable Follows Itself in the ith trial,
BI through B6 are the partial derivatives expressing the change in Y with the change in
one independent variable holding the others constant, and
Ei is the random error of the ith observation.

The statistical hypotheses to be tested for the six regression coefficients k = 1 6
were:

5 3

The statistical hypothesis t o b e tested for the significance o f the regression relation
between the dependent variable and the set of X variables was:

Ha not all Bk = 0

For this hypothesis, the F test was used

For a given database operation, the distribution of response times was analyzed to

determine the distribution shape. Also, for each operation, a linear graph of the time-

ordered occurrences of the operation was analyzed, to understand how response times

were affected by preceding events.

CHAPTER IV

RESULTS

RESULTS FOR RESEARCH QUESTION I . AGGREGATION

Response time was linear with respect to the number of relationship objects

processed (# Hookups) over the range of data tested, as Tables 4 . 1 - 4 .7 illustrate. For

Q4, Q5, Q6, and T6, the regression models were highly significant, as indicated by the F

statistics There was very little variation about the regression line for these database

operations under warm cache conditions.

For Q4, Q5, Q6, and T6, there also was a very strong relationship between the #

Hookups and response time, as indicated by the P-values for the BI coefficients for the

slope of the least-squares regression line. The regression equation was an effective

predictor for the results of the runs held out for validation of the models .

Q4, Q5, Q6, and T6 were database operations which had a relatively small

working set, compared to the size of the ObjectStore client disk cache (1 2 . 3 megabytes)

and available RAM . However, in the case of T I , different results were obtained with the

regression model (Table 4 5) . When all databases were combined to build the model, one

database (6/ 1 50/3/3) had response times for T I radically different from the other

databases. This particular database was different from smaller databases in that it was the

54

5 5

first database i n which the size of the atomic parts segment processed during T I exceeded

the size of the client cache and available RAM . Consequently, significantly more paging

activity was going on during T I processing. Table 4 . 8 describes the physical segments in

the 007 database, including the size per segment and the contents and dynamic usage of

each segment .

Investigating this further, if the data from all databases with only 1 00 atomic parts

per composite part were plotted separately, the results were different. For this group, T I

response times were highly linear with # Hookups, with little variance around the line.

This would be expected because with 1 00 atomic parts per composite, the database

segment containing atomic parts is only about 1 0 megabytes.

Furthermore, if the data from the databases with 1 50 atomic parts per composite

part were plotted separately, a different regression line was obtained. For the small

databases, 4/ 1 50/3/3 and 5/ 1 50/3/3 , the atomic parts segment was about 1 6 megabytes,

but it was not fully traversed during T l because not all of the 500 composite parts were

hooked up to a base assembly (See Table 4 9) In databases 6/ 1 50/3/3 and 71 1 50/3/3 ,

however, all composite parts were connected to at least one base assembly, so the

recursive traversal over the entire tree structure of the database resulted in more paging

activity to bring in the 1 6 megabyte database segment of atomic parts .

SUMMARY OUTPUT Q4

Regression Statistics
Multiple R 1 .00
R Square 1 .00
Adjusted R Square 1 .00
Standard Error 0.02
Observations 1 74

ANOVA
df

Regression 1
Residual 1 72
Total 1 73

Coefficients
Intercept 0 .01
#Hookups 5.74E-04

TABLE 4 . 1
Q4 AGGREGATION MODEL

SS MS F
30.40 30.40 1 00781 .63

0.05 3 .02E-04
30.45

Standard Error t Stat P-value
1 .79E-03 6.06 8.42E-09
1 .81 E-06 31 7.46 4 .84E-240

Response Time VS. #Hookups, Q4

1 .60.----------------------,

1 .40

�
1 .20 c o u � 1 .00

Significance F
4.84E-240

Lower 95%
7.33E-03
5.70E-04

+ ResponseTime

Upper 95%
1 .44E-02
5.77E-04

.� 0.80
• • • • • • Predicted ResponseTime

� 5 0.60
Co .. � 0.40

0.20

:t: ' * 0.00 +-"'----------------------'
o 500 1 000 1 500 2000 2500

#Hookups

I • Validation Data

56

SUMMARY OUTPUT Q5

Regression Statistics
Multiple R 0.98
R Square 0.96
Adjusted R Square 0.96
Standard Error 0 .01
Observations 1 74

ANOVA
df

TABLE 4.2
Q5 AGGREGATION MODEL

SS MS F Significance F
Regression 1 0.75 0.75 4698.30 8.26E- 1 27
Residual 1 72 0.03 1 .60E-04
Total 1 73 0.78

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 3 .21 E-04 1 . 3 1 E-03 0.25 0.81 -2.26E-03 2.90E-03
#Hookups 9.03E-05 1 . 32E-06 68.54 8 .26E- 1 27 8 .77E-05 9.29E-05

Response Time vs. #Hookups, Q5

0.25.,.--------------------.,

en " c o u

0.20

� 0. 1 5

� i= III � 0. 1 0
o Q. en III a:

0.05

. . . ' �

•

•

. ' .

0.00 .l.-4..--.--------------------'
o 500 1 000 1 500 2000 2500

#Hookups

I • ResponseTime 'I
- - - - - - Predicted ResponseTime

I • Validation Data ,

57

SUMMARY OUTPUT Q6

Regression Statistics
Multiple R 0.98
R Square 0.97
Adjusted R Square 0.97
Standard Error 0 .01
Observations 1 74

ANOVA
df

Regression 1
Residual 1 72
Total 1 73

Coefficients
I ntercept 1 . 37E-04
#Hookups 5.58E-05

TABLE 4 . 3
Q 6 AGGREGATION MODEL

SS MS F
0 .65 0.65 4924.03
0 .02 1 .3 1 E-04
0.67

Standard Error t Stat P-value
1 . 1 8E-03 0 . 1 2 0.91
7.95E-07 70. 1 7 1 .68E- 1 28

Response Time VS, #Hookups, Q6

0.25 .,.----------------------,

.. 0.20
'C c o u .,
U) 0. 1 5

•
•

Significance F
1 .68E- 1 28

Lower 95% Upper 95%
-2.20E-03 2.47E-03
5.42E-05 5.73E-05

�
• ResponseTime I • • . • • • Predicted ResponseTime

i= � 0 . 1 0

&. .. .,
II:: 0.05

.. '

• 1 · " •

0.00 �� ---------------------'
o 500 1 000 1 500 2000 2500 3000 3500

#Hookups

• Validation Data I

58

SUMMARY OUTPUT T6

Regression Statistics
Multiple R 1 .00
R Square 0 .99
Adjusted R Square 0.99
Standard Error 0.01
Observations 1 74

ANOVA
df

Regression 1
Residual 1 72
Total 1 73

Coefficients
Intercept -6.56E-04
#Hookups 9.82E-05

TABLE 4.4
T6 AGGREGATION MODEL

SS MS F
5 .57 5.57 29888.90
0.03 1 .86E-04
5 .60

Standard Error t Stat P-value
1 .41 E-03 -0.47 0.64
5.68E-07 1 72 .88 8.55E-1 95

Response Time VS. #Hookups, T6

.. "0 C

0. 60,----------------------,

o.so

o 0.40 � CII

Significance F
8.55E- 1 95

Lower 95% Upper 95%
-3.44E-03
9 .71 E-05

• ResponseTime

2 . 1 3E-03
9.94E-05

of .5 0.30 I-0>

• • • • . • Predicted ResponseTime I I .. Validation Data
.. c
&. 0.20 ..
�

0. 1 0
• •

• • •

• •
. . ..

0.00 >-----------------------1
o 1 000 2000 3000

#Hookups

4000 sooo 6000

59

SUMMARY OUTPUT T1

Regression Statistics
Multiple R 0.65
R Square 0 .42
Adjusted R Square 0 .42
Standard Error 2 1 .56
Observations 1 71

ANOVA
df

Regression 1
Residual 1 69
Total 1 70

Coefficients
I ntercept 5.25
#Hookups 2.46E-04

TABLE 4.5
T1 AGGREGATION MODEL

All Databases Combined

SS MS
58031 .20 58031 .20
78524.37 464.64

1 36555.57

F
1 24.89

Standard Error t Stat P-value
2.32 2 .26 0 .03

2.20E-05 1 1 . 1 8 4.61 E-22

Response Time vs. #Hookups, T1

All Databases Combined

'" "

350.00 ...-----------------------,

300.00

5 250.00

Si2nificance F
4.61 E-22

Lower 95% Upper 95%
0.66 9.83

2 .03E-04 2.90E-04

u cu III
,.; 200.00

I • ResponseTime

E
j::
::: 1 50.00
c
&. '" 1 00.00 cu a::

50.00
•

- . - - - - - - - - -. �
_,.-Ii. -

- - i -
0.00 +4I� --___ -.,... __________ ---I

o 50000 1 00000 1 50000 200000 250000 300000 350000

#Hookups

1 - - - - - - Predicted ResponseTime

• Validation Data

60

TABLE 4.6
T1 AGGREGATION MODEL

Databases with 1 00 Atomic Parts per Composite Part

SUMMARY OUTPUT T1

Regression Statistics
Multiple R 1 .00
R Square 1 .00
Adjusted R Square 1 .00
Standard Error 0.43
Observations 1 1 4

ANOVA
df

Regression 1
Residual 1 1 2
Total 1 1 3

Coefficients
I ntercept 0 .3 1
#Hookups 1 .83E-04

SS MS F Significance F
26902 . 1 6 26902 . 1 6 1 46974 . 1 1 1 .77E-1 76

20.50 0 . 1 8
26922.66

Standard Error t Stat P-value Lower 9S% Upper 9S%
0.06 5 .53 2 .08E-07 0.20 0 .42

4 .77E-07 383.37 1 .77E- 1 76 1 .82E-04 1 . 84E-04

Response Time vs. #Hookups, T1

50.00

45.00

40.00, c: 35.00 0 " .. 30.00 (/)
oJ
E 25.00 t= 20.00 c: 0
rt 1 5.00 .. a::

1 0.00

5.00 ••
0.00 •

0

Databases with 1 00 Atomic Parts Per Composite Part

Atomic Parts Segment Smaller than Client Disk Cache and RAM

• •

50000 1 00000 1 50000

#Hookups

••

200000 250000

• ResponseTime I I
. • . • • • Predicted ResponseTime ,

• Validation Data i

61

TABLE 4.7
T1 AGGREGATION MODEL

Databases with 1 50 Atomic Parts per Composite Part

SUMMARY OUTPUT T1

Regression Statistics
Multiple R 1 .00
R Square 1 .00
Adjusted R Square 1 .00
Standard Error 2 . 1 0
Observations 57

Regression
Residual
Total

ANOVA
df

1
55
56

SS MS F
85375.77 85375.77 1 941 9.66

241 .80 4 .40
8561 7.57

Coefficients Standard Error t Stat P-vaJue
I ntercept
#Hookups

-7.43 0 .44
7 .89E-04 5.66E-06

-1 6.84 2.27E-23
1 39.35 8 .51 E-72

Response Time vs. #Hookups, T1

Significance F
8.51 E-72

Lower 95%
-8.3 1

7.77E-04

350.00

Databases with 1 50 Atomic P arts Per Composite Part

Atomic Parts Segment Larger than Client Disk Cache and RAM

300.00

"'
-g 250.00 o
�
VI 200 00 • ResponseTime

Upper 95%
-6.54

8 00E-04

� . • • • • • • Predicted ResponseTime

j:: 5l 1 50.00
c:
&. � 1 00.00

a:

50.00
. t

I�. ·�·.L· ____________________________ � 0.00 -
o 50000 1 00000 1 50000 200000 250000 300000 350000

#Hookups

• Validation Data

62

6 3

Table 4 . 8
Analysis of ObjectStore Physical Segments

Storing The 007 Database
(Databases 4/ I 00/3/3 and 7/200/3/3)

Approximate Approximate Operations
Segment Segment Size Segment Size Objects Stored Accessing
Number (ME)' 41 1 00/3/3 (ME)' 7/200/3/3 in Segment Segment

0 0 . 1 0 . 1 Schema Segment

2 0 . 1 04 BaseAssembly, T l , T6, Q4,
ComplexAssembly Q5, Q6
Module

4 1 0. 7 2 1 . 3 Connection, Tl (all),

AtomicPart, T6 (part),
CompositePart Q l , Q2, Q3,

Q5, Q6, Q8

6 1 2 .9 1 2 . 9 Document, Q8 (all),

Manual Q4 (part)

Client Disk Cache Size = 1 2 2 ME, Total RAM Size = 1 6 ME

Table 4 9
Comparison of Database Object Counts and Size

Database Size #Complex #Base #Composite
Identifier (MB) Assemblies Assemblies Parts

41 1 00/3/3 27 .7 1 3 27 500
41 1 50/3/3 3 5 . 0 1 3 27 500
4/200/3/3 4 11 1 3 27 500
51 1 00/3/3 27 .7 40 8 1 500
511 50/3/3 3 5 . 0 40 8 1 500
5/200/3/3 4 1 1 40 8 1 500
71 1 00/3/3 27 . 7 364 729 500
71 1 50/3/3 3 5 . 0 364 729 500
7/200/3/3 42 .2 364 729 500

RESULTS FOR RESEARCH QUESTION 2 INHERITANCE

Treatment 1 vs. Treatment 2 (Effect of Class Definitions)

#Atomic
Parts

50,000
75,000

1 00,000
50,000
75,000

1 00,000
50,000
75 ,000

1 00,000

For Q6 and T6, with relatively small working sets, and relatively little repetitive

processing of objects with inherited attributes or methods, there was no significant

difference between Treatment 1 and Treatment 2. The response times were almost

64

identical between the two groups. ANOYA results are summarized in Tables 4. 1 0 - 4. 1 2 .

For T 1 , with extensive recursive and repetitive processing of objects with inherited

attributes, there was a statistically significant difference between Treatment 1 (NOC = 2)

6 5

and Treatment 2 (NOC = 1 0) . However, there was not an important difference i n the

response times (6 . 7 1 seconds vs. 6 . 73 seconds) for T I on the 5/ 1 50/3/3 database. There

was negligible within-group variation for operations under warm cache conditions, so a

small between-group variation was statistically significant It is possible that a statistically

significant difference for T I would result in a meaningful difference in response times with

larger databases.

Treatment 2 vs. Treatment 3 (Effect of Run-Time Polymorphism)

Again for Q6 and T6, there was no significant difference between Treatment 2

(Depth of Run-Time Resolution = I) and Treatment 3 (Depth of Run-Time Resolution =

3) The response times were almost identical between the two groups

For T l , there was a strong statistically significant difference between Treatment 2

and Treatment 3 . However, again there really was not an important difference in the

response times (6. 73 seconds vs. 6 .90 seconds) for T l on the 5/ 1 50/3/3 database. It is

possible that a statistically significant difference for T I would result in a meaningful

difference in response times with larger databases.

TABLE 4. 1 0
ANOVA FOR 06

TREATMENT 1 VS. TREATMENT 2

SUMMARY
Groups Count Sum Avera2e

Treatment1 29.0000 0.6250 0.0216
Treatment2 29.0000 0.5930 0 .0204

ANOVA
Source of Variation SS df MS

Between Groups 0.0000 1 .0000 0 .0000
Within Groups 0 .0125 56.0000 0 .0002

Total 0.01 25 57.0000

TREATMENT 2 VS. TREATMENT 3

SUMMARY
Groups Count Sum Average

Treatment2 29.0000 0.5930 0 .0204
Treatment3 29.0000 0 .5940 0 .0205

ANOVA
Source of Variation SS df MS

Between Groups 0 .0000 1 .0000 0.0000
Within Groups 0 .0 128 56.0000 0.0002

Total 0 .01 28 57.0000

66

Variance
0.0002
0.0002

F P-value F crit
0.0794 0 .7791 4 .01 30

Variance
0.0002
0.0002

F P-value F crit
0.0001 0.9931 4 .0 1 30

TABLE 4 . 1 1
ANOVA FOR T6

TREATMENT 1 VS . TREATMENT 2

SUMMARY
Groups

Treatment1
Treatment2

ANOVA
Source of Variation

Between Groups
Within Groups

Total

Count Sum Average Variance
29.0000 1 .7500 0 .0603 0 .0001
29.0000 1 .7500 0.0603 0.0001

SS df MS
0.0000 1 .0000 0.0000
0.0037 56.0000 0 .0001

0.0037 57.0000

F P-value F crit
0.0000 1 .0000 4 .01 30

TREATMENT 2 VS. TREATMENT 3

SUMMARY
Groups

Treatment2
Treatment3

ANOVA
Source of Variation

Between Groups
Within Groups

Total

Count Sum Average Variance
29.0000 1 .7500 0.0603· 0.0001
29.0000 1 .7490 0 .0603 0.0001

SS df
0.0000 1 .0000
0.0037 56.0000

0.0037 57.0000

MS
0.0000
0.0001

F P-value F crit
0.0003 0 .9871 4.0 1 30

67

TABLE 4 . 1 2
ANOVA FOR T 1

TREATMENT 1 VS. TREATMENT 2

SUMMARY
Groups

Treatment1
Treatment2

ANOVA
Source of Variation

Between Groups
Within Groups

Total

Count Sum Average
28.0000 1 87.9049 6 .71 09
28.0000 1 88.6560 6.7377

SS df MS
0.01 01 1 .0000 0.01 01
0 .01 1 7 54.0000 0.0002

0 .02 1 8 55.0000

TREATMENT 2 VS . TREATMENT 3

SUMMARY
Groups

Treatment2
Treatment3

ANOVA
Source of Variation

Between Groups
Within Groups

Total

Count Sum Average
28.0000 1 88 .6560 6.7377
28.0000 1 93 .3441 6.9051

SS df MS
0.3925 1 .0000 0 .3925
0 .01 1 4 54.0000 0.0002

0 .4039 55.0000

Variance
0.0002
0.0002

F
46.5678

Variance
0.0002
0 .0002

F
1 860.761 3

68

P-value F crit
0.0000 4.0 1 95

P-value F crit
0.0000 4 .01 95

69

RESUL TS FOR RESEARCH QUESTION 3 : WORKLOAD SEQUENCE

Effect of # Workload Units Processed

F or each of the nine database operations, there was a strongly significant effect of

the # Workload Units Processed on response time. The positive slope coefficients

reported in Tables 4. 1 3 - 4 .2 1 are in seconds per workload unit and may be multiplied by

1 000 to get the change per 1 000 workload units.

Effect of Dummy Variables Indicating Preceding Conditions

The magnitude of the coefficients for the dummy variables can be interpreted as

the number of seconds response time would increase, on average, for an operation

following Q8 or T I , over the response time expected for the same operation following any

other operation.

In general, the presence of Q8 as the preceding operation caused a significant

increase in response times for most operations. The exceptions were when Q8 preceded

Q4, T l , and Q8 itself; there was no significant change in response time in these cases. Q4

also processed database segment 4, like Q8 T I and Q8 were such VO-intensive

operations, that the cache was flushed regardless of preceding conditions

When the preceding operation was T I , there was a significant increase in response

times for all operations except T 1 itself (In this case T 1 followed by another T 1 resulted

in a significant drop in response time .)

7 0

For operations which were the second one following either a Q8 or T l , however,

there generally was not a significant effect on response time. The effect of these two

operations seemed to be dampened later in the workload.

In most cases, when an operation followed itself, there was a significant decrease

in response time, as one would expect from the warming of the cache

All regression models had significant F statistics. For those operations with

relatively small working sets compared to available RAM and client cache, there were

moderate adjusted R Square values (0 . 3 5 - 0 . 50), indicating that this set of variables left

quite a bit of variation unexplained (i .e . , from the effects of other preceding operations not

articulated in the model) . For Q8 and T I , whose working set approximated or exceeded

the memory constraints higher R Squares were obtained (0. 88) .

FURTHER ANALYSIS OF VARIABILITY IN RESPONSE TIMES

For the smallest database (41 1 00/3/3) and the largest database (7/2003/3), resp6nse

times for each database operation were analyzed graphically to gain more insight into the

variability a user might observe when executing such a stochastic workload A histogram

illustrating the distribution of response times per operation was plotted. In addition, a

linear graph of response times per operation in chronological order of execution was

plotted .

7 1

As the sample graphs indicate for database 41 1 00/3/3 , there was a wide variance in

response times for each database operation, when the workload consisted of a continuous

sequence of random operations From a statistical process control point of view, there

were multiple processes in action during the simulation. (Similar graphs for database

71200/3/3 are in Appendix E)

Effect of the Seed Used to Generate Random Operation Stream

The stream of random operations was re-generated, using another seed, and this

second stream was run against database 41 1 00/3/3 Response times for each operation,

using both seeds, are compared in the following Figures.

It was difficult just to compare the average response time and standard deviation

per database operation, which were skewed by initialization conditions for some (but not

all) operations. It was more informative to look at the range of response times graphically

for both seeds. Initialization conditions were left in the data in this analysis, because such

variation might occur normally due to memory faults, if in real operation the processor

were not solely dedicated to running just 007 work.

Effect of Removing 08 and T l From the Workload

During Experiment 3, extremely long response times on the time series charts per

database operation were examined visually to determine which operation, or pair of

operations, had directly preceded them in the random sequence With this particular

7 2

workload, Q8 and T I had a tendency to be the preceding operations. This resulted in the

inclusion of the dummy variables in the regression models for workload sequence.

In Table 4 .8 , note the sizes of Segments 4 and 6 of the physical database, in

comparison to the client cache and RAM size on the implementation of the 007 database

in this study. More specifically, when Q8 executed, it flushed the client cache and left a

working set that only one other operation in this simulated workload could use (Q4). T l ,

on the other hand, flushed the cache, but left a working set that several other operations in

this workload could use

To determine what response times would look like without Q8 and T I in the

workload mix, the same sequence of operations was run again, with these two operations

removed from the sequence (In practical terms, this would be equivalent to scheduling

jobs in a production environment, perhaps running Q8- and T I -types of operations

separately at controlled times)

The following graphs illustrate the impact of removing just Q8, then removing

both Q8 and T l , on the variability in Q I response times on database 41 1 00/3/3 . Again,

similar results were obtained for both seeds in the random number generator.

TABLE 4 . 1 3
Q 1 WORKLOAD REGRESSION MODEL

Re}J.ression Statistics
Multiple R 0.60
R Square 0 . 36
Adjusted R Square 0.35
Standard Error 2.00
Observations 392

ANOVA
df SS MS F

Regression 6 871 . 1 7 1 45.20 36.29
Residual 385 1 540.34 4.00
Total 391 241 1 . 51

Coefficients Standard Error t Stat P-value
I ntercept - 1 .51 0.38 -4 .02 7 . 1 3E-05
#WkldUnits 3 .47E-05 4.85E-06 7 . 1 5 4.43E- 1 2
Fol lowsQ8 3.20 0.28 1 1 .44 2.81 E-26
TwoAfterQ8 0 .39 0.29 1 . 35 0. 1 8
Fol iowsT1 1 .93 0.46 4 . 1 9 3.42E-05
TwoAfterT1 -0.09 0.37 -0.25 0.80
Fol lowsltself -0.86 0.34 -2.55 0 .01

Si}J.nificance F
8 .39E-35

Lower 95%
-2.25

2.51 E-05
2.65

-0. 1 8
1 .02

-0 .82
- 1 .52

Upper 95%
-0.77

4.42E-05
3.75
0.97
2.83
0.63

-0.20

-J
W

TABLE 4 . 1 4
Q 2 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0 .70
R Square 0.49
Adjusted R Square 0 .48
Standard Error 6.27
Observations 357

ANOVA
df

Regression 6
Residual 350
Total 356

SS MS F
1 3025.83 21 70.97 55.27
1 3748.29 39.28
26774 . 1 2

Coefficients Standard Error t Stat P-value
Intercept - 1 2 .80 1 .23 - 1 0.44 2.09E-22
#WkldUnits 2 .51 E-04 1 .59E-05 1 5 .73 1 . 56E-42
Fol lowsQ8 6.45 1 .05 6 . 1 3 2 .35E-09
TwoAfterQ8 3 .44 1 . 1 5 3 .00 2 .92E-03
FoliowsT1 4.89 0 .95 5 . 1 3 4.80E-07
TwoAfterT1 1 .24 1 . 1 5 1 08 0.28
Followsltself -4.36 1 .44 -3 .02 2 .67E-03

Siflnificance F
8 .23E-48

Lower 95%
- 1 5 .21

2 . 1 9E-04
4.38
1 . 1 8
3 .01

- 1 .02
-7. 1 9

Upper 95%
- 1 0.39

2.82E-04
8 .52
5.69
6.76
3 .49

- 1 . 52

-.J
l'"

TABLE 4 . 1 5
03 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0 .83
R Square 0 .69
Adjusted R Square 0 .69
Standard Error 1 2.82
Observations 462

ANOVA
df

Regression 6
Residual 455
Total 461

SS MS F
1 67374 .92 27895.82 1 69.79

74754.50 1 64 .30
2421 29.42

Coefficients Standard Error t Stat P-value
I ntercept -4f24 2.21 - 1 8 .69 2.98E-58
#WkldUnits 8. 77E-04 2 .86E-05 30.61 1 . 52E- 1 1 2
Foliows08 1 1 .78 2.02 5 .84 1 .02E-08
TwoAfter08 2 .84 2 . 1 2 1 . 34 0. 1 8
Fol iowsT1 6 .74 1 .94 3.47 5.70E-04
TwoAfterT1 1 .70 1 .67 1 .0 1 0 .3 1
Fol lowsltself -6 .52 1 . 57 -4. 1 5 3 .89E-05

SilJ.nificance F
9.58E- 1 1 3

Lower 95%
-45 .57

8 .20E-04
7.81

- 1 .33
2.92

- 1 .59
-9.60

Upper 95%
-36.90

9 .33E-04
1 5.75

7 .01
1 0.56

4.98
-3.43

-.J
(11

TABLE 4 . 1 6
Q 4 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0 .71
R Square 0 .50
Adjusted R Square 0.49
Standard Error 5 .84
Observations 322

ANOVA
df

Regression 6
Residual 3 1 5
Total 321

SS MS F
1 0759.60 1 793.27 52.50
1 0759.81 34 . 1 6
21 51 9.41

Coefficients Standard Error t Stat P-value
I ntercept 2.06 0.50 4 . 1 5 4.36E-05
#WkldUnits 5.63E-03 3 .52E-04 1 5.98 1 .63E-42
Fol lowsQ8 0.69 1 .34 0 .51 0.61
TwoAfterQ8 -3. 1 2 2.25 -1 .39 0 . 1 7
Fol iowsT1 4.80 1 . 1 8 4 .05 6 .35E-05
TwoAfterT1 2.67 1 .08 2.48 0 .01
Followsltself -5.03 1 .00 -5.05 7 .54E-07

Sifl.nificance F
1 .24E-44

Lower 95%
1 .08

4 .94E-03
-1 .96
-7.55
2 .47
0 .55

-7.00

Upper 95%
3 .04

6.32E-03
3 .33
1 . 30
7. 1 3
4.78

-3 07

-.J
0'

TABLE 4 . 1 7
05 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0.64
R Square 0 .41
Adjusted R Square 0 .41
Standard Error 2.47
Observations 504

ANOVA
df

Regression 6
Residual 497
Total 503

SS MS F
2 1 47. 1 2 357.85 58.63
3033.23 6 . 1 0
51 80.35

Coefficients Standard Error t Stat P-value
I ntercept -0.03 0 . 1 7 -0. 1 8 0 .86
#WkldUnits 1 . 37E-03 1 . 1 9E-04 1 1 .4940932 2.82E-27
Fol iows08 5.83 0 .49 1 1 . 88 7 .80E-29
TwoAfter08 0.44 0 .44 1 .0 1 0 .32
FoliowsT1 2 .73 0 .36 7 .55 2 . 1 5E-1 3
TwoAfterT1 0.83 0 .32 2 .57 0 .01
Followsltself -0.67 0.27 -2.47 0.01

Si2nificance F
9.33E-55

Lower 95% Upper 95%
-0.37 0 .3 1

1 . 1 3E-03 1 .60E-03
4 .87 6.80

-0.42 1 .30
2.02 3 .44
0.20 1 .47

- 1 .21 -0. 1 4

-.J
-.J

TABLE 4. 1 8
Q6 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0.66
R Square 0 .44
Adjusted R Square 0.43
Standard Error 2 .21
Observations 308

ANOVA
df

Regression 6
Residual 301
Total 307

SS MS F
1 1 43 .99 1 90.67 39. 1 4
1 466.27 4 .87
261 0.26

Coefficients Standard Error t Stat P-value
I ntercept 0.20 0 . 1 8 1 . 1 2 0.26
#WkldUnits 7 .59E-04 9.07E-05 8.37 2.23E- 1 5
FollowsQ8 4.63 0.40 1 1 .57 7 .32E-26
TwoAfterQ8 1 .09 0 . 37 2.95 3.45E-03
FoliowsT1 2.78 0.61 4 .56 7 .60E-06
TwoAfterT1 -0.49 0.61 -0 .81 0 .42
Followsltself -0.52 0.85 -0.62 0 .54

Si2nificance F
4 . 55E-35

Lower 95%
-0. 1 5

5 .80E-04
3 .84
0 .36
1 . 58

- 1 .69
-2 . 1 9

Upper 95%
0.56

9.37E-04
5 .42
1 . 82
3 .98
0 .71
1 . 1 4

-..J
00

TABLE 4 . 1 9
08 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0 .94
R Square 0.89
Adjusted R Square 0 .88
Standard Error 1 6 .70
Observations 329

ANOVA
df

Regression 5
Residual 323
Total 328

SS MS F
699621 .0 1 1 39924.20 501 .93

90042.95 278.77
789663.96

Coefficients Standard Error t Stat P-value
Intercept -58. 1 1 3 . 35 - 1 7 .37 3 .36E-48
#WkldUnits 2.20E-03 4 .42E-05 49.88 8 .46E- 1 54
Foliows08 -1 .22 3 .81 -0.32 0.75
TwoAfter08 -3 . 1 7 3 .38 -0.94 0 .35
FoliowsT1 1 1 . 86 3.38 3 .51 5 .06E-04
TwoAfterT1 1 0 .21 3 .07 3 .33 9.77E-04

SilJ.nificance F
6.64E-1 50

Lower 95%
-64.69

2 . 1 2E-03
-8.71
-9.81
5 .22
4 . 1 7

Upper 95%
-51 .53

2.29E-03
6.27
3.47

1 8.50
1 6.25

"
\D

TABLE 4 .20
T1 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0.94
R Square 0.88
Adjusted R Square 0.88
Standard Error 39.23
Observations 343

ANOVA
df

Regression 5
Residual 337
Total 342

SS MS F
3800984 . 1 3 7601 96.83 494.01

5 1 8583.34 1 538 .82
431 9567.47

Coefficients Standard Error t Stat P-value
I ntercept -2.35 3 .05 -0.77 0.44
#WkldUnits 8 .81 E-04 1 .78E-05 49.62 5.72E-1 57
FollowsQ8 1 2.38 8 . 1 0 1 . 53 0 . 1 3
TwoAfterQ8 0.02 9.38 0.00 1 .00
FoliowsT1 - 1 3 . 1 0 7 .26 -1 .80 0.07
TwoAfterT1 - 1 0 .58 6 . 1 6 -1 .72 0 .09

Sifl.nificance F
1 .03E-1 52

Lower 95%
-8.35

8 .46E-04
-3 .54

- 1 8 .43
-27 .38
-22.70

Ue.e.er 95%
3.64

9. 1 6E-04
28.31
1 8 .48

1 . 1 8
1 . 55

(Xl o

TABLE 4.21
T6 WORKLOAD REGRESSION MODEL

Regression Statistics
Multiple R 0.64
R Square 0 .41
Adjusted R Square 0 .40
Standard Error 2 .69
Observations 378

ANOVA
df

Regression 6
Residual 371
Total 377

SS MS F
1 862.71 3 1 0 .45 42.97
2680.35 7.22
4543.06

Coefficients Standard Error t Stat P-value
I ntercept 0 .04 0 .22 0.20 0.84
#WkldUnits 6 .75E-04 5 .98E-05 1 1 .2767885 1 .47E-25
Fol lowsQ8 4.28 0 .49 8 .67 1 . 37E- 1 6
TwoAfterQ8 1 .49 0.40 3 .71 2 .37E-04
FoliowsT1 3 05 0.43 7.05 8.96E- 1 2
TwoAfterT1 -0 .51 1 . 09 -0.47 0.64
Fol lowsltself -0 .84 0 .42 -1 .98 0.05

Si2nificance F
9.25E-40

Lower 95%
-0.39

5.57E-04
3 .3 1
0 .70
2.20

-2.65
- 1 .67

Upper 95%
0.48

7.92E-04
5.25
2.28
3.90
1 .63

-4.83E-03

CXl

CII
c:
0

:.;:: III
c=
III
CII

.c 0
:u:

CII

45 -

40 -

35 1
30 1
25 -

�� T
1 0

5

0
I/)

c:i

7.0 I
6.0

5 .0

Figure 4.1

Frequency Distribution for 01 Response Times,

Database 4/1 00/3/3

o I/) 0 I/) 0 I/) 0 I/) 0 I/) 0 I/)

N N M M v v I/) � � �
Seconds

Figure 4.2

01 Response Times, In Order of Occurrence in

Workload, Database 4/1 00/3/3

-g 4.0
o

:rl 3.0
UJ

2.0

1 .0
• • •

•

. , , � ,
. .. 0.0 i i i ! iii iii iii iii I i i i i i i I i i i j iii ii i i i i i i i i i i ii i i i

Observation Number

82

40 -

35 I
(II 30 c
0 25 -:; III 20 1 c=
QI

1 5 1 (II
.c
0
"*' 1 0

5

0

: :: Tr
(II 4 .0

"0
g 3.0 u
QI
(/) 2.0

Figure 4.3

Frequency Distribution for Q2 Response Times,

Database 4/1 00/3/3

'" 0 '" 0 '" 0 '" 0 '" 0

0 N N C"i M � � .n
Seconds

Figure 4.4

Q2 Response Times, In Order of Occurrence in

Workload, Database 4/1 00/3/3

•

• • • •

1 .0 �
... �

! ! I ! ! I I ! ! I ! I ! ! I! i ! 1 , I
0 M '" ,... OJ N M N OJ M '" 0
� OJ M (£) OJ � ,... M M OJ N (£)

N N M M M � �

Observation Number

83

(/I
c
0

0: III
c:
CII (/I

�
0
�

(/I
"C
c
0 u CII

fJ)

Figure 4.5

Frequency Distribution for 03 Response Times,

Database 4/1 00/3/3

40 T 35 T
30 I 25 ,
20

1 5

1 0

5 -
0 1 -t- -t-

0 0 0

C\i � <ri

. -
� 0

ex) 0

o

N

Seconds

Figure 4.6

o

ex)

o

o
N

o

N
N

o

.q:
N

- ,
o

<0
N

03 Response Times, In Order of Occurrence in

Workload, Database 4/1.00/3/3

25.0 .

20.0

1 5.0

•
1 0.0 •

• •
5.0 .. ' � • • • • • • •

• • • • • • • • •
. ,�

0.0 III i 11111' 1111 iii i III:, II 11111111 i 1111111' 11111111 i i 1I11 iii i i II I
� N � N M N ex) � � M 0 ex) � <0

� � 0 � ex) 0 M � � <0 � N <0
� N N M M M M � �

Observation Number

84

en
c:
0 :;:: III
c=
QI
en

.c 0
�

30

25

1 5

1 0

5

0

4 . 5

4 . 0

3 . 5

Figure 4.7

Frequency Distribution for 04 Response Times,

Database 4/1 00/3/3

0.5 1 .0 1 .5 2 .0 2.5 3.0 3 . 5 4.0 4.5

Seconds

Figure 4.8

04 Response Times, In Order of Occurrence in

Workload, Database 4/1 .00/3/3

•

en 3.0
'tI

2.5

2.0 I 1 .5 -

c:
o
Col
QI

fI)

•
• .. •

1 .0
• • • • • •

• ••
• •

0.5 •
0 . 0 I ' , I ! , I I' I I , I I ' I I ' I

M � � N ro m ro m m � ro � N � ro 0
N � m M � � m � ro 0 N � 0 � � 0

� � N N M M M � � � �
Observation Number

85

1/1
c
0

:;:; ftI
c=
GI 1/1

�
0
�

70

60 T
50

40

30

20

1 0

0

1 .0 T 0.9
0 .8

Figure 4.9

Frequency Distribution for a5 Response Times,

Database 4/1 00/3/3

� <"l

ci 0 ci

. , -
�
0

L/')
0

«)
o

Seconds

Figure 4.1 0

r-­

o

co

ci
())

o

o

a5 Response Times, In Order of Occurrence in

Workload, Database 4/1 00/3/3

• •

0.7 •
�

0.6

t
•

g 0.5 � 0.4 • • •
0 3

• • • . .- - _ 0 2 " • • • • •
0 : 1 1·
0.0 !III,li i" IIIII" ,I'II'I,'i'I',1 " ,:,' 11,',:," III ,111111111111111111

<"l 0 � r-- � � co � � <"l r-- N � <"l 0
<"l � co <"l � N ID 0 N L/') co � � ())

N N N <"l <"l <"l <"l � � �
Observation N umber

86

CII
c::
o

n;
c=
GI
CII

30

25 �

20 �
1 5 -

Figure 4. 1 1

Frequency Distribution for 06 Response Times,

Database 4/1 00/3/3

i3 1 0

5

o -,---+-----1-
0 . 1 0.2 0 .3 0 .4 0 .5 0.6 0.7 0.8 0 .9

Seconds

Figure 4.1 2

06 Response Times, In Order of Occurrence in

Workload, Database 4/1 00/3/3

0.9

0.7

0 .8

t CII 0.6 •
'C
c:: 0 .5 • • � 0.4 �I • •

•

I/) 0.3 •• .. ••
•

• •
.

0.2

0 . 1 T

0.0 I i i I i i i i i I I , I ' , i i ,

•

• • • • •
•

, i , i " I I I

Observation Number

87

Figure 4. 1 3

Frequency Distribution for Q8 Response Times,

Database 4/1 00/3/3

25

1/1 20
c:
0 -.:: 1 5 -ClI
�

1 0 1 41 1/1
.c I 0
�

5 T ,
0

0 0 � 0 0 0 0 0 0 '" 0 u-i 0 '" 0 '"
"Of" "Of" '" '" <0 <0 l"- I"-

Seconds

Figure 4. 1 4

Q 8 Response Times, In Order of Occurrence in

Workload, Database 4/1.00/3/3

80.0 T
70.0 •

60.0

1/1 50 0 ..

.
•• • • • •

.. .
..

..

..

"C

.

i-
.. g 40.0 •

u
� 30.0

20 0 I
1 0.0 .1

0.0 I I I ' 1 ' 1 ' 1 ' 1 I ' " I '
O N '" � N � M <0 "Of" '" 0 I"-

"Of" <0 � "Of" <0 0 M � '" � '"
N N N M M "Of"

Observation N umber

88

Figure 4. 1 5

Frequency Distribution for T 1 Response Times,

Database 4/1 00/3/3

en
c::
o 20 ; III
c= 1 5
QI
en

.Q 1 0 o
5

0
0 0 0 0 0

N M -.i 0.0

• -
0 0 � 0 0 0 0 0 0

<0 I"- ex> 0> 0 N M v

Seconds

Figure 4. 1 6

T1 Response Times, I n Order of Occurrence in

Workload, Database 4/1 00/3/3

en

1 4.0 ,

1 2.0

1 0.0

-g 8 .0
o

� 6.0 (/J
..

. •
4.0 •• •• • •• • • • •

2.0

0 .0 I I I

...

I
ex> CD ex> M 0.0 0> ex> ex> N M M CD

v l"- N I"- 0.0 CD M ex> M I"- 0>
N N M M v v v v

Observation Number

89

en
"
c:
0 u
CII

If)

Figure 4. 1 7

Frequency Distribution for T6 Response Times,

Database 4/1 00/3/3

o
N

o

M v

o 0

co

o

Seconds

Figure 4. 1 8

(1) N

o

T6 Response Times, In Order of Occurrence in

Workload, Database 4/1 00/3/3

1 .4 -

1 .2

1 .0

0 .8

0 .6

0 .4
• •

•
• •

•

•

• •• ••
.... .. •• 111111111

0.2 i

0.0 IIIIIIII! II!! i! i I ! I I II Iii I i I ! I: I iii: II,

Observation Number

90

.. '0 C 0 u .. VI

.. '0 C 0 u .. VI

Figure 4.1 9

Q 1 Response Times, Database 4/1 00/3/3

6.0 , Using Different Seeds for Random Number Generator

5.0

4 0 �
3.0 J ,

2.0

I ' 10 l - ,'
0.0 ,'" "

0 1 00 200 300

Observation Number

Figure 4.20

400 500

--- Seed 1
I · Seed 2

Q1 Response Times, Deleting Q8 and T1 from Workload

Database 4/1 00/3/3

6.0 T 5
.0 I 4.0

3.0

2.0

1 .0 1- : I I\� " � ,' ., ' ," ' :-' .: ' , " , ,
0.0 +. �=' �"",�c��"_�"'�'_==-����'�·�'''''''';''=''��:::!;--:::· �: '�vo..�:::::' :::��/_':..:.:"�' '--.:,'.

o 1 00 200 300 400 500
Observation Number

--- No Q8 I
--- No Q8/No T1

. • • , • • Original Workload

9 1

SUMMARY OF RESULTS

CHAPTER V

CONCLUSIONS

In this research, several logical design characteristics of the 007 Benchmark

database application were manipulated experimentally to determine the effect on response

time to perform selected 007 queries and traversals. In Experiments I and 2, the degree

of aggregation and the degree of inheritance were increased systematically to see whether

there was an impact on response times In Experiment 3, operations were executed in a

randomly-generated order to determine the variability in response times a user would

experience in a continuous, dynamic workload.

Effect of the Degree of Aggregation on Response Time

For a given query or traversal, for a given clustering policy and fetch policy,

response time was linear with respect to the number of "part-of' relationship objects

processed. When the working set of a query or traversal approached or exceeded memory

constraints for RAM or for the ObjectS tore client disk cache, response time had a

different, but still linear relationship with the number of relationship objects processed

9 2

9 3

Effect of the Degree of I nheritance on Response Time

The effect of increasing the degree of inheritance in the class definitions and in the

execution of virtual functions was statistically significant only for T 1 operations, which

had highly repetitive processing of objects with inherited attributes and virtual functions

However, the difference in mean response times between treatment levels was not large

enough to be important.

Effect of the Sequence of Operations on Response Time

In this study, the most dramatic influence on response times for all operations was

the sequence of operations in the stochastic workload. Unlike results in a benchmarking

type of study, response times for each operation exhibited a high degree of variability,

depending on the preceding operations and the working set left in the client cache and

main memory for the next transaction

Even the most sensible clustering policy used to generate the physical database,

based on the most likely transaction workload, would not optimize performance if the

transaction workload were highly variable. In this study, only nine types of operations

were simulated. In multi-user and other single-user workloads, there could be even more

variety, causing more memory faults.

94

IMPLICATIONS FOR APPLICATION DESIGNERS

As always, a thorough job is necessary in specifying logical database requirements,

projected cardinalities for database objects, and most common and/or most resource­

intensive queries and traversals During physical database design, clustering policy and

projected segment sizes need to be developed, including ObjectStore overhead.

Relationships and index paths which overlap segments need to be examined for

possible impact on transactions involving multiple segments. Any segments which will be

processed sequentially and in full need to have sizes which will fit in the client cache and

RAM Application designers need to be aware of projected constraints on hard disk space

(which would affect the setting for the client cache and the availability of free space for the

OS/2 swap file) as well as RAM .

The above decisions are made and implemented one time, or occasionally as the

database schema evolves, in the static database physical structure. It would be impractical

to change the database structure frequently Other design decisions can also affect the

dynamic behavior of the application First, the fetch policy can be set for a transaction or

set of transactions, to balance between pulling in data as efficiently as possible, without

flushing the client cache unnecessarily In addition to capitalizing on locality within a

given transaction, or a short-term sequence of transactions, system designers need to

consider a scheduling policy for transactions that cause an unacceptable level variability in

response times. In order to do this effectively, the average response time and potential

variance need to projected for the most important transactions--the ones that take the

most system resources. Then a decision needs to be made on what constitutes

unacceptably Illgh response times, and design decisions made accordingly

CONTRIBUTIONS AND LIMITATIONS OF STUDY

The major contributions of tills study are I) a valid independent variable for

predicting response times as a function of the number of reiationslllp objects, generally­

applicable to any ObjectStore database application with aggregation relationslllps,

9 5

2) evidence that while degree o f inheritance can change response times i n some cases, this

change is not a serious problem in databases of moderate size, and 3) a methodology for

characterizing a potential workload for an object-oriented database application, that is at a

Illgher logical levei and provides a more realistic picture than a benchmarking study.

Similar experiments could be implemented with a roughly designed application

during physical design, by including the most important object classes and the most crifical

transaction types. Decisions can then be made on clustering and segment layouts,

transaction scheduling, RAM requirements, client cache setting, and fetch policy.

Another major contribution of this study is a clear picture of the inherent variability

in response times in a continuous stream of transactions. In those situations where the

variability is unacceptable to the user, the assignable causes must be determined and either

removed or modified (e. g., scheduling of critical transactions) to improve the performance

capability of the system.

9 6

The results i n this study are a direct function of the particular 007 operations

tested . Operations that update the physical database may cause further variability in

response times, and workloads dominated by certain transactions may show a different

variability. The simulation methodology used in this study could certainly be expanded to

take these conditions into account.

FUTURE WORK

It would be desirable to extend this work to other single-user application areas, to

see if rough mockup physical designs can be implemented in a cost-effective manner to

estimate average response times and potential variability in a projected workload. This

approach should also be extended to a multiuser workload, first with multiple users

sharing a single application, and then with multiple users sharing a server with multiple

applications

BrBLIOGRAPHY

Anderson, T . , Berre, A, Mallison, M. , Porter, H . , and Schneider, B. The HyperModel
Benchmark In Proceedings Conference on Extending Database Technology (Venice,
March 1 990), Springer-Verlag Lecture Notes 4 1 6

Anon. et al A Measure of Transaction Processing Power. Datamation 3 1 , 7 (April,
1 985), 1 1 2- 1 1 8 .

Banks, 1 and Carson, 1 S Discrete-Event System Simulation, Englewood Cliffs, New
Jersey: Prentice-Hall, Inc , 1 984.

Berre, A 1 and Anderson, T. L The HyperModel Benchmark for Evaluating Object­
Oriented Databases. In Object-Oriented Databases With Applications to CASE,
Networks, and VLSI CAD, 1 99 1 .

Blaser, A , Ed., Database Systems of the 90's, International Symposium, Muggelsee,
Berlin, FRG, November 5-7, 1 990, Proceedings, Berlin Springer-Verlag, 1 990.

Brownsmith, 1 0 mM Santa Teresa Laboratory, San Jose, California. Internal
Communication, April 1 9, 1 995 .

Brumfield, 1 A , Miller, 1 L, and Chou, H. Performance Modeling of Distributed Object­
Oriented Database Systems. In Proceedings Symposium on Databases in Parallel and
Distributed Systems (Austin, Texas, December 5-7, 1 988), 22-32

Byte, State of the Art Section, "Objects for End Users", Vol 1 7, No. 14 , December, 1 992 -

Carey, M . 1 , DeWitt, 0 1 , and Naughton, 1 F The 007 Benchmark. In Proceedings of
the 1 993 ACM SIGMOD Conference on the Management of Data (Washington, D.C ,
May, 1 993), 1 2-2 1 . Also available as Technical Report No. 1 1 40, Computer Sciences
Department, University of Wisconsin, revised January, 1 994.

Carey, M 1, DeWitt, 0 1, Kant, C, and Naughton, J F A Status Report on the 007
OODBMS Benchmarking Effort SIGPLAN Notices 29, 1 0 (October, 1 994), 4 1 4-426 .

Cattell, R. G. G. Object-Oriented DBMS Performance Measurement . In Advances in
Object-Oriented Database Systems (Bad Munster am Stein-Ebernburg, FRG, September
27-30, 1 988), Springer-Verlag.

9 7

9 8

Cattell, R G . G. Object Data Management : Object-Oriented and Extended Relational
Database Systems. 2nd Ed. Reading, Massachusetts Addison-Wesley Publishing
Company, 1 994.

Cattell, R G. G. and Skeen, 1 Object Operations Benchmark. ACM Transactions on
Database Systems 11, 1 (March 1 992), 1 -3 1 .

Cesarini, F . and Salza, S . , Eds , Database Machine Perfonnance : Modeling
Methodologies and Evaluation Strategies, VoL 257 of Lecture Notes In Computer
Science, Springer-Verlag, 1 987 .

Chaudhri, A B. An Annotated Bibliography of Benchmarks for Object Databases.
S IGMOD Record 24, 1 (March, 1 995), 50-57 .

Chidamber, S R and Kemerer, C F. A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20, 6 (June, 1 994), 476- 493 .

Datapro Infonnation Services Group, Datapro Reports on UNIX Systems & Software,
Delran, New Jersey McGraw-Hill, October, 1 992.

Date, C 1 An Introduction to Database Systems, Reading, Massachusetts Addison­
Wesley Publishing Company, 1 990.

Dayal, U and Traiger, L, Eds , Proceedings of Association for Computing Machinery
Special Interest Group on Management of Data. 1 987 Annual Conference, San Francisco,
May 27-29, 1 987, SIGMOD Record lQ, 3 (December, 1 987) .

Dillon, W. R and Goldstein, M. Multivariate Analysis: Methods and Applications: New
York John Wiley & Sons, Inc. , 1 984

Dittrich, K R., Ed , Advances in Object-Oriented Database Systems, VoL 334 of Lecture
Notes in Computer Science, Proceedings 2nd International Workshop on Object-Oriented
Database Systems (Bad Munster am Stein-Ebernburg, FRG, September 27-30, 1 988),
Springer -Verlag.

Dittrich, K R, Dayal, U , and Buchmann, A P , Eds , On Object-Oriented Database
Systems, Springer-Verlag, 1 99 1 .

Duhl, 1 and Damon, C A Perfonnance Comparison of Object and Relational Databases
Using the Sun Benchmark. In Proceedings of the ACM OOPSLA Conference (San
Diego, California, September, 1 988), 1 53- 1 63 .

9 9

Ferrari, D . , Serazzi, G . , and Zeigner, A Measurement and Tuning of Computer Systems,
Englewood Cliffs, NJ Prentice-Hall, 1 983 .

Gray, 1 , Ed. , The Benchmark Handbook for Database and Transaction Processing
Systems, Morgan-Kaufmann, 1 99 1 .

Heidelberger, P , and Lavenberg, S S Computer Performance Evaluation Methodology.
IEEE Transactions on Computers c-33 , 1 2 (December 1 984).

Hull, R B, Morrison, R, and Stemple, D . W , Eds., Proceedings of the Second
International Workshop on Database Programming Languages, Gleneden Beach, Oregon,
June 4-8 , 1 989, San Mateo, California Morgan Kaufmann Publishers, Inc. , 1 989.

Hurson, A R , Pakzad, S H . , and Cheng, 1 Object-Oriented Database Management
Systems Evolution and Performance Issues. Computer 26, 2 (February 1 993), 48-60.

Jajodia, S , Kim, W , and Silberschatz, A, Eds. , Proceedings International Symposium on
Databases in Parallel and Distributed Systems, Austin, Texas, December 5-7, 1 988,
Washington IEEE Computer Society Press, 1 988 .

Kim, W. and Lochovsky, F H. , Eds , Object-Oriented Concepts, Databases, and
Applications, Reading, Massachusetts Addison-Wesley Publishing Company, 1 989 .

Kim, W. Introduction to Object-Oriented Databases, Cambridge, Mass. . MIT Press,
1 990.

Kim, W , Ballou, N., Garza, 1 F, and Woelk, D. A Distributed Object-Oriented Database
System Supporting Shared and Private Databases. · ACM Transactions on Information
Systems 9, 1 , (January 1 99 1), 3 1 -5 1 .

Maier, D Making Database Systems Fast Enough for CAD Applications. In Object­
Oriented Concepts, Databases, and Applications, 1 989

Melton, K I . Introduction t o Statistics for Process Studies, 2nd Ed. , New York
McGraw-Hill, 1 993

Rubenstein, W. B , Kubicar, M. S , and Cattell, R G. G Benchmarking Simple Database
Operations. In Proceedings of Association for Computing Machinery Special Interest
Group on Management of Data, 1 987 Annual Conference (San Francisco, May 27-29,
1 987), S IGMOD Record, lQ, 3 (December, 1 987), 387-394.

Rumbaugh, 1, Blaha, M , Premerlani, W , Eddy, F, and Lorensen, W Object-Oriented
Modeling and Design, Englewood Cliffs, NJ Prentice Hall , 1 99 1 .

1 0 0

White, S 1 and DeWitt, D. 1 Implementing Crash Recovery In QuickStore: A
Performance Study SIGMOD Record, 24, 2 (June, 1 995), 1 87- 1 98

APPENDIX A
PROGRAM FOR GENERATING DATABASE OPERATIONS

IN PSEUDORANDOM ORDER

II E. M. Walk 8/95
II randopns cpp
II Program for generating database operations in pseudorandom order

#include <stdio .h>
#include <string.h>
#include <stdlib . h>

long seed = I ; Ilcouid be anything between I and 2 1 47483646
Ilkeep a cumulative count for the number of times an operation is called
Ilinitialize all cumulative counts for operations to zero
int countT I = 0;
int countT6 = 0;
int countQ I = 0;
int countQ2 = 0;
int countQ3 = 0;
int countQ4 = 0;
int countQ5 = 0;
int countQ6 = 0;
int countQ8 = 0;

FILE *fp;
float RandomNum (long seed);
void RandomOpns (float R);

int main (void)
{

int n ;
float randnumber;
if« fp = fopen("arandopns.dat" , "w"))==NULL) {

printf("Cannot open file\n");
exit(I) ;

}
for (n= 1 ;n<=500;n++) {

printf("%3i " ,n);
randnumber = RandomNum(seed);
RandomOpns(randnumber);

} 1* endfor *1
fclose(fp);

1 0 1

return 0;

float RandomNum (long s)
IlRandom number generator using multiplicative linear congruential algorithm
IIImplementation from Parks and Miller, CACM 3 1 (1 0) 1 0/88
IIPorted to IBM C/C++ FirstStep compiler Intel 486 E . M. Walk 8/95
{
int a = 1 6807;
long m = 2 1 47483647;
long q = 1 27773 ;
int r = 2836;
long 10, hi, test;
float result;

Ilmuitiplier
Ilmodulus
11m div a
11m mod a

hi = s / q; Iidiv
lo = s % q; Ilmod
test = a * 10 - r * hi ;
if (test > 0) seed = test;
else seed = test + m;
result = (float) seed I (float) m;
Ilprintf("seed = %i result = %f ", seed, result); lito debug
return (result);
}

void RandomOpns (float R)
Ilgenerate random variate whichOp from the following discrete distribution
II whichOp rei at. freq. cumul. freq.
II T l . 1 1 . 1 1
H T6 . 1 1 .22
II Q l
II Q2
II Q3
II Q4
II Q5
II Q6
II Q8
{
int count;

. 1 2

. 1 1

. 1 1

. 1 1

. 1 1
. 1 1
. 1 1

char whichOp[7];

. 34
A5
. 56
67
. 78
. 89
1 .00

if (R <= . 1 1) { strcpy(whichOp,"T l "); count = ++countT l ; }
else if (R <= . 22) { strcpy(whichOp,"T6") ; count = ++countT6; }

1 0 2

else if (R <= .34) { strcpy(whichOp, "Q I "); count = ++countQ l ; }
else if (R <= 45) { strcpy(whichOp, "Q2"); count = ++countQ2; }
else if (R <= . 56) { strcpy(whichOp,"Q3 ") ; count = ++countQ3 ; }
else if (R <= .67) { strcpy(whichOp," Q4") ; count = ++countQ4; }
else if (R <= 78) { strcpy(whichOp, "Q5"); count = ++countQ5 ; }
else if (R <= . 89) { strcpy(whichOp,"Q6") ; count = ++countQ6; }
else if (R <= 1 .00) { strcpy(whichOp,"Q8"); count = ++countQ8 ; }

printf("whichOp = %- l Os Count = %3i\n",whichOp,count);

Iisave whichOp to a file
fprintf(fp, "%s\n",whichOp);
}

1 0 3

APPENDIX B
007 BE CHMARK, MODIFIED FOR SfMULA TED TRANSACTIO WORKLOAD

11007 bench.cpp revised by E M Walk 8/95 as simulate cpp .
II Simulate.cpp opens a config file for the database to be studied, reads in an operation
Ilfrom a file of randomly-generated operations, runs the benchmark operation using 007
Ilbenchmark code, writes results to an output file and to the screen, repeats for a user­
Iispecified number of operations
II 007 bench.cpp was part of 007 benchmark jointly developed by Carey, Dewitt, and
IlNaughton at Univ. of Wisconsin and developers at Object Design, Inc . , 1 993 for
II0bjectStore Release 2 .0 I .
II 007 was ported to ObjectS tore 3 . 1 for OS/2 in 1 995 by 1 . Brownsmith, IBM Santa
IITeresa Laboratory, and enhanced with optional operations and options for
Ilenvironmental variables Because of changes this program is not comparable to the
IIUniv. of Wisconsin version The ported version was offered as-is, with no warranty
lias to correctness or quality The use of parts of this benchmark for this dissertation are
I I gratefully acknowledged.

#include <fstream.h>
#include <string h>
#include <stdio .h>
#include <time.h>
#include <stdlib. h>
#include <iostream h>
#include <ostore/ostore.hh>
#include <ostore/coll .hh>
#include <ostore/relat. hh>
#include "007.h"
#include "GenParam.h"
#include "BenchPar.h"
#include "VarParam.h"
#include "baidlist .h"

Iladded emw 8/95

extern int RealWork; II set to one to make DoNothings do work .
extern int WorkAmount; II controls how much work DoNothings do
extern void SetParams(char* configFileName);
extern int traverse70;
extern int query I 0;
extern int query l aO;
extern int query I b(const os_coli_query & q I b);
extern int query20;
extern int query30;

104

extern int query40;
extern int query4aO;
extern int query50;
extern int query60;
extern int query70;
extern int query80;
extern int query8aO;
extern int query8bO;
extern int query8cO;
extern int query8dO;
extern void insert 1 0;
extern void delete 1 0;
extern int reorg 1 0;
extern int reorg20;

I I I I I I I I I I I I I I I I /II I I I I I I I I I I I I I I I I I II I I I I I I I I I I /II I I I I I I I I II I I I II
II
II Global Variables, etc. , for Benchmarking ODB Operations
II
I

os_database* oo7db;

os _ Set<AtomicPart*>* AtomicPart _extent = 0;
os_Set<BaseAssembly*>* BaseAssembly_extent = 0;
os_Set<CompositePart*>* CompositePart_extent = 0;
os_Set<Document*>* Document_extent = 0;
os Set<Module*>* Module_extent = 0;

int nextAtomicld = 0;
int nextCompositeId = 0;
int nextComplexAssemblyld = 0;
int nextBaseAssemblyld = 0;
int nextModuleId = TotalModules;
int debugMode = FALSE;

float startWallTime;
float endWallTime;
float startWarmTime;

char *types[NumTypes] = {
"typeOOO", "typeOO l ", "type002", "type003 ", "type004",
"type005", "type006", "type007", "type008", "type009"

1 0 5

} ;
II here only to keep the make happy. used in gendb
II and in Insert ! ! !

BAIdList* private _ cp;
BAIdList* shared _ cp;

II os_typespec for persistent new
os_typespec *ComplexAssembly_type = new os_typespec("ComplexAssembly");
os_typespec *Document_type = new os_typespec("Document") ;
os_typespec *char_type = new os_typespec("char");
os_typespec *Module_type = new os_typespec("Module");
os_typespec *CompositePart_type = new os_typespec("CompositePart") ;
os_typespec *Manual_type = new os_typespec("Manual") ;
os_typespec *AtomicPart_type = new os_typespec("AtomicPart") ;
os_typespec *Connection_type = new os_typespec("Connection");
os_typespec *BaseAssemblLtype = new os_typespec("BaseAssembly");

1* emw 8/95 * * * * ** ** * ** * * * ** * ** ** * ** * * * ** ** * * ** * * * ** ** * * ** * * *1
1* Replaced ParseCommandLine completely with file i/o
1* See bench. cpp for this fcn
I /II

*1
*1

II ParseCommandLine parses the original shell call to "bench", determining
II which operation to run, how many times to run it, and whether the
I I individual runs are distinct transactions or are lumped together
I I into one large transaction.
I I I I I I I I I I I I I I I I I I I 1/111 I I I I I 11/111 I I I I I I I I I I I I I I II I I I I I I I I I /II I I I I I I I I I I I .

main(int argc, char* * argv)
{

1* emw 8/95 added for file i/o * *1

if (argc !=4) {
cout « "Usage: argv[O] <config filename><random opns filename><results

filename>\n" ;
return I ;

} 1* endif *1

ifstream inconfig(argv[1]) ; Ilinput file
ifstream inopns(argv[2]); Ilinput file
of stream out(argv[3]) ; Iioutput file

1 0 6

if (l inconfig I I ! inopns) {
cout « "Cannot open input file.\n";
return 1 ;

} 1* endif *1
if (l out) {

cout « "Cannot open output file.\n";
return 1 ;

} 1* endif *1

1 0 7

1* emw 8/95 end of new code * * * * * * * * ** * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * *1

char resultText[200]; II to hold result message in order to avoid
II printf in timing section.

os_transaction * xact;

I I I I I I I I I I I I I 1/111 I I I I I I 1/111 I I I I I I /II I I I I I I I /II I I I I I I I I I I I I I I I I II
II
I I Initialize
II
I I I I I I I I I I I I I I I I I I I II /II II I I I 1/11 I I I I

I I initialize parameters for benchmark
SetParams(argv[1]) ;

II need to malloc space for these, but don"t need to store
II any info since Insert looks up assemblies "by hand"
shared _ cp = new BAIdList[TotaICompParts+NumNewCompParts+ I] ;
private_cp = new BAIdList[TotaICompParts+NumNewCompParts+ 1] ;

Ilobjectstore set_cache_size(CachePages * 8 1 92);
Ilprintf("Initialized system with call objectstore set_ cache _ size(%d)\n",
II CachePages * 8 1 92);

char bufT l 2] = " "
cout « buf « " begin system parameters " « buf « buf « endl;
cout « "Using " « objectstore: release_nameO « endl;
cout « "Page size is " « objectstore :get-'page_sizeO « endl;
objectstore : set_cache_size(CachePages * 8 1 92);
cout « "Initialized system with call objectstore : : " «

"set_cache_size(" « CachePages* 8 1 92 « ")" « endl;
cout « "(" « CachePages*2 « objectstore :get-'page_sizeO

« ") pages" « endl;

int force _ fulUnit = I ; II O=partial (default); I =full initialize
objectstore: : initialize(force_full jnit);
if (force _ fulljnit)

cout « "ObjectStore initialization procedures - all done" « endl;
else

cout « "ObjectStore initialization procedures - some deferred" « endl;
if (objectstore get_ opt_cache Jock _ modeO)
{
cout « "opt_cacheJock_mode is OFF" « endl;

} else {
cout « "opt_cacheJock_mode is ON - "

« " lock upgrade is optimized" « endl;

if (objectstore :get_auto_openJead_whole_segment_modeO)
{
cout « "read_whole_segment mode is ON" « endl;

} else {

}
cout « "read_whole_segment mode is OFF" « endl;

if (objectstore get _auto _open Jead _only _ modeO)
{

cout « "automatically-opened database read_only mode is ON" « endl;
} else {

}
cout « "automatically-opened database read_only mode is OFF" « endl;

cout « "Write lock timeout is " «
objectstore: : get _ writelock _timeout < <
" (milliseconds)" « endl;

I I ---

II conditionally enable counters and hooks

I I enable counters
if « os_ boolean)getenv("OS _COUNTERS"))
{
objectstore : reset _ countersO;
cout « "OS _COUNTERS are RESET to zero" « endl;

} else {

}
cout « "OS_COUNTERS are NOT reset to zero" « endl;

1 0 8

II enable Release 3 . 1 realtime counters
if « os _ boolean)getenv("OS _ R TCOUNTERS "))
{
objectstore: : record _realtime _ counters(TRUE);
cout « "OS_RTCOUNTERS are ENABLED" « endl;

} else {
cout « "OS_RTCOUNTERS are NOT enabled" « endl;

}

II enable event hooks
if « os _ boolean)getenv("OS _HOOKS "))
{
objectstore enable _event _ hooksO;
objectstore set_default_hooksO; II all hooks
cout « "OS_HOOKS are ENABLED" « endl;

} else {

}
cout « "OS_HOOKS are NOT enabled" « endl;

II enable Release 3 . 1 OS/2 Toggle mapaside
II OK if process does all its persistent accesses in one thread
if « os_boolean)getenv("OS _TOGGLE_MAP ASIDE"))

{
cout « "OS_TOGGLE_MAPASIDE optimization is ENABLED" « endl;

} else {
}
cout « "OS_TOGGLE_MAPASIDE optimization is NOT enabled" « enol;

cout « buf « " end system parameters " « buf « buf «
"==" « endl;

1 0 9

V=----======--================--====================================

II Compute structural info needed by the update operations,
II since these operations need to know which id"s should
II be used next.

int baseCnt = NumAssmPer Assm;
int complexCnt = I ;
for (int i = 1 ; i < NumAssmLevels- l ; i++) {

baseCnt = baseCnt * NumAssmPerAssm;
complexCnt += complexCnt * NumAssmPerAssm;

nextBaseAssembly Id = T otalModules * baseCnt + l ;
nextComplexAssemblyld = TotalModules*complexCnt + l ;
nextAtomicId = T otalAtomicParts + l ;
nextCompositeId = TotalCompParts + l ;

int opIndex = 2;
int repeatCount = l ;
BenchmarkOp whichOp = Trav l ;
int manyXACTS = l ; Iiset to 1 emw 8/95

II See if debug mode is desired, see which operation to run,
II and how many times to run it . Iialready set to FALSE above emw 8/95

1 1 0

1* emw 8/95 commented out * *1
II ParseCommandLine(argc, argv, opIndex, repeatCount, whichOp, manyXACTS);

II Now open the database, disable whole-segment transfers (in favor
II of cluster-level ones), and start up a transaction

char *dbname = getenv("DBNAME");
if (I dbname) {

cout « "DBNAME environment variable NOT set" « endl;
II dbname = "007Ii8";

1* emw 8/95 * * * * ** * ** * * * ** * ** ** * ** ** ** * ** ** * * * * * * * * ** ** * * * ** ** * * ** * * * * * *1
I I make sure db name is set from the command line before each simulation

return l ;
1* *1

} else {
cout « "DBNAME environment variable I S set" « endl;

cout « "Using database " « dbname « endl;

007db = os_database open(dbname);
if (007db = NULL) {

fprintf(stderr, "ERROR Cannot open 007 Database.\n");
exit(l) ;

cout « "database used is " « dbname « endl;

007 db->set _read_whole _ segment(O);
cout « "read_whole_segment mode is OFF for this"

« " database" « endl;

II the setJetch yolicy is just experimental code
11007 db->set Jetch yolicy(os Jetch _ segment, 8 1 920); II 20 pages
Ilcout « "setJetchyolicy is set to"
II « " osJetch_segment,8 1 920)" « endl;

II Force schema validation to happen if it hasn"t already
II happened. Also, set up fetch policy for the composite part segment

xact = os transaction beginO;

AtomicPart extent =

(os _ Set<AtomicPart*>*)
(007 db->find Joot(" AtomicPart _extent _root ")->
get_ value());

os_segment *seg = os_segment:of(AtomicPart_extent);
seg->setJetch yolicy(os Jetch yage, 8 1 92);
cout « "seg->setJetchyolicy(osJetchyage, 8 1 92);" « endl;

I IOpt code - q 1 b set once rather than in Query 1 b every time
static const os_coil_query & q l b =

os_coil_query: : create yick(" AtomicPart* ",
" (int)id == * (int*)pqpartId",
007db);

xact->commitO;
delete xact;

II char* purge Var;
II purgeVar = getenv("PURGE") ;
II if ((purgeVar 1 = NULL) && (atoi(purgeVar) == I)) {
II do_transactionO {
II printf{"purging db\n");
II PurgeO;
II printf{"done purging db\n");
II }
II } else {
II printf{"not purging \n");
II

1 1 1

1 1 2

II Actually run the dam thing.

1* emw 8/95 new code to control number of operations * *1
1* and convert input to the type the benchmark needs * *1

int n;
int iter=O;
char op[7];

cout « "Enter the number of operations to simulate (1 - 500)" « endl;
cin » n;

for (i= 1 ;i<=n;i++) {
IIGet whichOp to run next--subset of all available operations
inopns » op;

if (strcmp(op, "T l ") =0) {
whichOp = Trav l ;

}
else if (strcmp(op, "T2a") = 0) {

whichOp = Trav2a;
}
else if (strcmp(op, "Ba") = 0) {

whichOp = Trav3a;
}
else if (strcmp(op, "T6") = 0) {

whichOp = Trav6;
}
else if (strcmp(op, "Q 1 ") = 0) {

whichOp = Query 1 ;
}
else if (strcmp(op, "Q2") = 0) {

whichOp = Query2;
}
else if (strcmp(op, "Q3 ") == 0) {

whichOp = Query3 ,

}
else if (strcmp(op, "Q4") = 0) {

whichOp = Query4;
}
else if (strcmp(op, "Q5") == 0) {

whichOp = Query5;
}

else if (strcmp(op, "Q6") = 0) {
whichOp = Query6;

}
else if (strcmp(op, "Q8") = 0) {

whichOp = Query8;
}
else if (strcmp(op, " Insert") = 0) {

whichOp = Insert;
}
else if (strcmp(op, "Delete") = 0) {

whichOp = Delete;
}
else {

cout « "error--unwanted operation" « endl;
return I ; }

1 1 3

1* emw 8/95 end of new code * *1

1* emw 8/95 comment out old loop *1
1* but allow for reset of counters for each operation * * * * * * * * * * * * * * * * * * * * * * * * * * * *1
II for (int iter = 0; iter < repeatCount; iter++)
II {
1* emw 8/95 end of commented out code * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1

I I reset counters here so that only the last iter is reported
if «os_boolean)getenv("OS_ COUNTERS_LT"))
{
objectstore: : reset_ countersO;
cout « "OS COUNTERS are RESET to zero at iteration "

« iter « endl;
II} else {
II cout « "OS COUNTERS are NOT reset to zero at iteration "
II « iter « endl;
}

I I I I I I I I I I 1/111 I I I /II I I I I I I I I I I I I I I I I II 1/111 II
II
II Run an 007 Benchmark Operation
II
I I I /II I I I I I II /II I I I I I I I I I I 1/111 I I I /II I I I I I I I I 1/111 I I I I I I I I I I I I I I II

1* emw 8/95 alter output * *1
II printf("RUNNING 007 BENCHMARK OPERATION %s, iteration = %d.\n",

II argv[oplndex], iter);
cout « "Running Operation Number " « i « ", II « op « endl;
out « op;

1 1 4

1* emw 8/95 end of change * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1

II get wall clock time
startWallTime = clockO/(CLOCKS]ER_SEC * 1 . 0);

II Start a new transaction if either this is the first iteration
II of a multioperation transaction or we we are running each
II operation as a separate transaction

if « iter == 0) II (manyXACTS)) xact = os_transaction beginO;

II set random seed so "hot" runs are truly hot
srand(1);

AtomicPart extent =

(os_ Set<AtomicPart*>*)
(007 db->find _root(" AtomicPart _extent Joot ")_>
get_ value()) ;

CompositePart _extent =

(os _ Set<CompositePart*>*)
(00 7db->find _root("CompositePart _ extentJoot")->
get_ value());

Document extent =

(os_ Set<Document*>*)
(007 db->find Joot("Document_ extent _root")->
get _ value());

BaseAssembly _extent =

(os _ Set<BaseAssembly*>*)
(00 7db->find _root("BaseAssembly _extent _root")->
get_ value());

Module extent =

(os _ Set<Module*>*)
(00 7db->find Joot("Module _extent _root")->
get_ value()) ;

const os_coli_query & q =

os _ coll_ query: create yick("Module* ",
" (int)id = (int)qmoduleld",
007db);

II Use random module for the operation
int moduleld = (int) (rand 0 % T otalModules) + I ;
os_bound _query bq(q,os_ keyword _ arg("qmoduleld" ,moduleld));

Module* module =

Module _ extent->query -pick(bq);

I I Perform the requested operation on the chosen module

int count = 0;
RealWork = 0; II default is not to do work.

switch (whichOp) {
case Trav l :

count = module->traverse(whichOp);
sprintf(resuItText, "Traversal 1 DFS visited %d atomic parts \n",

count) ;
break;

case Trav l WW :
RealW ork = 1 ;
whichOp = Trav 1 ; II so traverse methods work correctly
count = module->traverse(whichOp);
whichOp = Trav l WW; II for next (hot) iteration
sprintf(resultText, "Traversal 1 WW DFS visited %d atomic parts.\n",

count);
break;

case Trav2a:
count = module->traverse(whichOp);

1 1 5

sprintf(resuItText, "Traversal 2A swapped %d pairs of (X,Y) coordinates.\n",
count);

break;
case Trav2b :

count = module->traverse(whichOp);
sprintf(resuItText, "Traversal 2B swapped %d pairs of (X,Y) coordinates.\n",

count);
break;

case Trav2c:
count = module->traverse(whichOp);
sprintf(resuItText, "Traversal 2C swapped %d pairs of (X,Y) coordinates.\n",

count) ;
break;

case Trav3a:
count = module->traverse(whichOp);
sprintf(resultText, "Traversal 3A toggled %d dates.\n" ,

count);
break;

case Trav3b:
count = module->traverse(whichOp);
sprintf(resultText, "Traversal 3B toggled %d dates.\n" ,

count);
break;

case Trav3c
count = module->traverse(whichOp);
sprintf(resultText, "Traversal 3C toggled %d dates.\n",

count);
break;

case Trav4 :
count = module->traverse(whichOp);
sprintf(resultText, "Traversal 4 %d instances of the character found\n",

count);
break;

case Trav5do:
count = module->traverse(whichOp);

1 1 6

sprintf(resultText, "Traversal 5(DO) % d string replacements performed\n",
count);

break;
case Trav5undo:

count = module->traverse(whichOp);
sprintf(resultText, "Traversal 5(UNDO) %d string replacements

performed\n" ,
count);

break;
case Trav6 :

count = module->traverse(whichOp);
sprintf(resultText, "Traversal 6 visited %d atomic root parts.\n",

count);
break;

case Trav7:
count = traverse70;
sprintf(resultText, "Traversal 7 found %d assemblies using random atomic

part.\n" ,

break;
case Trav8 :

count);

count = module->scanManuaIO;
sprintf(resultText, "Traversal 8 : found %d instances of char in manual . \n",

count);
break;

case Trav9 :
count = module->firstLastO;
sprintf(resultText, "Traversal 9: match was %d.\n",

count);
break;

case Trav I 0 :
I I run traversal # I on every module
count = 0;
whichOp = Trav l ; II so object methods don"t complain
for (moduleld = 1 ; moduleld <= TotalModules; moduleld++) {

os_bound _query bq(q,os _keyword _ arg("qmoduleld",moduleld)) ;
module =

Module _ extent->query -pick(bq);

if (module = NULL) {
printf("Could not find module %d \n", moduleld);
os transaction : abortO;
exit(1);

count += module->traverse(whichOp);

sprintf(resultT ext,
"Traversal 1 0 visited %d atomic parts in %d modules .\n",

count, TotaIModules);
whichOp = Trav l 0; II for next time around.
break;

case Query 1 :
count = query 1 0;
sprintf(resuItText, "Query one retrieved %d atomic parts . \n",

count);
break;

case Query I a :
count = query 1 aO;
sprintf(resultText, "Query one a retrieved %d atomic parts .\n",

count);
break;

case Query 1 b
count = query I b(q I b);
sprintf(resuItText, "Query one b retrieved %d atomic parts \n",

1 1 7

count);
break;

case Query I WW.
RealWork = I ;
whichOp = Query I ; / / just in case . .
count = query l O;
whichOp = Query I WW; / / for next (hot) iteration
sprintf(resuItText, "Query one WW retrieved %d atomic pans.\n" ,

break;
case Query2

count);

count = query20;
sprintf(resuItText, "Query two retrieved %d qualifying atomic parts.\n",

count);
break;

case Query3
count = query30;
sprintf(resultText, "Query three retrieved %d qualifying atomic parts \n",

count);
break;

case Query4
count = query40;
sprintf(resultText, "Query four retrieved %d (document, base assembly)

pairs.\n", count);
break;

case Query4a
count = query4aO;
sprintf(resuItText, "Query four a retrieved %d (document, base assembty)

pairs.\n", count);
break;

case Query5 .
count = query50;

1 1 8

sprintf(resuItText, "Query five retrieved %d out-of-date base assemblies .\n" ,
count);

break;
case Query6.

count = query60;
sprintf{resuItText, "Query six retrieved %d out-of-date assemblies.\n" ,

count);
break;

case Query?
count = query?O;
sprintf{resultText, "Query seven iterated through %d atomic parts .\n",

break;
case Query8 :

count);

count = query80;
sprintf(resultText, "Query eight found %d atomic part/document

matches.\n", count);
break;

case Query8a
count = query8aO;
sprintf(resuItText, "Query eight a found %d atomic part/document

matches.\n", count);
break;

case Query8b :
count = query8bO;
sprintf(resultText, "Query eight b found %d atomic part/document

matches.\n", count);
break;

case Query8c
count = query8cO;
sprintf(resultText, "Query eight c found %d atomic part/document

matches.\n", count);
break;

case Query8d
count = query8dO;
sprintf(resultText, "Query eight d found %d atomic part/document

matches \n" , count);
break;

case Insert:
insert I 0;
sprintf(resultText, "Inserted %d composite parts (a total of%d atomic

parts.)\n", NumNewCompParts,
NumNewCompParts *NumAtomicPerComp);

break;
case Delete:

delete l O;
sprintf(resuItText, "Deleted %d composite parts (a total of %d atomic

parts.)\n" , NumNewCompParts,
NumNewCompParts*NumAtomicPerComp);

break;
case Reorg I :

count = reorg 1 0;
sprintf(resuItText, "Reorg l replaced %d atomic parts \n", count);
break;

1 1 9

case Reorg2:
count = reorg20;
sprintf(resuItText, "Reorg2 replaced %d atomic parts.\n" , count);
break;

case WarmUpdate :
I I first do the t I traversal to warm the cache
count = module->traverse(Trav l);
II then call T2 to do the update
count = module->traverse(Trav2a);
sprintf(resultText,

"Warm update swapped %d pairs of (X,Y) coordinates. \n" ,
count);

break;
case MultiTrav l :

count = module->traverse(whichOp);
sprintf(resuItText, "MultiTrav l touched %d atomic parts.\n", count);
break;

case MultiTrav2 :
count = module->traverse(whichOp);
sprintf(resultText, "MultiTrav2 touched %d atomic parts .\n", count);
break;

case MultiTrav3 :
count = module->traverse(whichOp);
sprintf(resultText, "MultiTrav3 touched %d atomic parts .\n", count);
break;

case MuitiTrav4
count = module->traverse(whichOp);
sprintf(resuItText, "MultiTrav4 touched %d atomic parts \n", count);
break;

case MultiTrav5 :
count = module->traverse(whichOp);
sprintf(resultText, "MultiTrav5 touched %d atomic parts.\n", count);
break;

case MultiTrav6:
count = module->traverse(whichOp);
sprintf(resultText, "MultiTrav6 touched %d atomic parts.\n", count);
break;

default :
fprintf(stderr, "Sorry, that operation isn't available yet . \n");
os transaction abortO;
exit(I) ;

1 2 0

if ((iter = repeatCount- l) I I (manyXACTS)) {
I I end this transaction
os transaction commit(xact) ;

I I compute and report wall clock time
endWallTime = c1ockO/(CLOCKS]ER_SEC* 10);

printf("OS, operation=%s, iteration=%d, elapsedTime=%f seconds\n",
II argv[oplndex], iter, II emw 8/95

op, I, II emw 8/95
(endWallTime - startWallTime));

if (iter = I) startWarmTime = startWallTime;

I I now print result string
fprintf(stdout, resultT ext);

1 2 1

1* emw 8/95 output time to file * *1
out « " " « (endWallTime - startWallTime) « "
out « count « endl;

1* emw 8/95 end of change * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1

if «repeatCount > 2) && (iter = repeatCount-2))
{

printf("OS, operation=%s, average hot elapsedTime=%f seconds\n",
argv[oplndex],
(endWallTime - startWarmTime)/(repeatCount-2));

I I I I I I I 1// II
II
II Shutdown
II
I I II I I I I I I I I I I I I I 1// II

I I print counters
if((os_boolean)getenv("OS_COUNTERS") I I

(os_boolean)getenv("OS_COUNTERS_LT"))

objectstore • • print _ countersO;
cout « "OS_COUNTERS printed" « endl;

} 1* endfor *1

II close the database
007 db->closeO;

I I disable event hooks
if «os_boolean)getenv("OS_HOOKS"» {

objectstore • • disable_event _ hooksO;
cout « "OS_HOOKS printed" « endl;

}

1 2 2

1* emw 8/95 close files * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1
inconfig.closeO;
inopns.closeO;
out . closeO;

1* emw 8/95 end of new code * *1

II Exit
exit(O);

APPENDIX C
MODIFYING DEGREE OF INHERITANCE IN 007 CLASS DEFINITIONS

11 007 007.h revised by E M. Walk 8/95 for inheritance experiment
II Revised class definitions to add two more levels of inheritance to the original 007. h
IIAdds abstract classes RootObject and DesignObject .
II 007.h was part of 007 benchmark jointly developed by Carey, Dewitt, and
IfNaughton at Univ. of Wisconsin and developers at Object Design, Inc . , 1 993 for
II0bjectStore Release 2 .0 I .
II 007 was ported to ObjectS tore 3 . 1 for OS/2 in 1 995 by J Brownsmith, IBM Santa
IITeresa Laboratory, and enhanced with optional operations and options for
Ilenvironmental variables Because of changes this program is not comparable to the
IIUniv. of Wisconsin version The ported version was offered as-is, with no warranty
lias to correctness or quality. The use of parts of this benchmark for this dissertation are
Ilgratefully acknowledged .

#ifndef 007 h
#define 007 h

II --- -------------------------------

II Start with some necessary preliminaries
II --- ----- ----

#define TypeSize 1 0
#define TitieSize 40
#define DummySize 1 000

const int FALSE = 0;
const int TRUE = I ;

typedef enum { Complex, Base } AssemblyType;

typedef enum { Trav I , Trav I WW, Trav2a, Trav2b, Trav2c, Trav3a, Trav3b,
Trav3c, Trav4, Trav5do, Trav5undo, Trav6, Trav7, Trav8,
Trav9, Trav l O, Query l , Query l a, Query l b,
Query l WW, Query2, Query3, Query4, Query4a,
Query5, Query5a, Query5b, Query5c, Query5d, Query5e, Query5f,
Query6, Query7, Query8, Query8a, Query8b, Query8c,
Query8d, Insert, Delete, Reorg I , Reorg2,
WarmUpdate, MultiTrav l , MultiTrav2, MultiTrav3 , MultiTrav4,
MultiTrav5, MuitiTrav6 } BenchmarkOp;

1 2 3

typedef enum { UpdateOne, UpdateAll, UpdateRepeat } UpdateType;
typedef enum { UpdateDirectionDo, UpdateDirectionUndo } UpdateDirectionType:

#include "Part IdSe. h"

I*new abstract class emw 8/95 * *1
class RootObject { II
public II

char type[TypeSize) ; II
virtual int traverse(BenchmarkOp op) = 0; II

} ; II
I*new abstract class emw 8/95 * *1

I*new abstract class emw 5/95 * *1
class DesignObject : public RootObject { II
public II

os _ backptr bkptr; II
Ilchar type[TypeSize) ; II
int buildDate; II

int traverse(BenchmarkOp op) { return O; } ; II
} ; U
I*new abstract class emw 5/95 * *1

II ------ - - --- --- --- - -- --- ------- -- --- - -- - - - -- -- -- - --- -- - --- -- --- -- - --- -- -- - -

II AtomicPart objects are the primitives for building up designs
II - modeled after the Sun/OO I benchmark"s parts
I I --.- - - - - - - - - - - -

class Connection;
class CompositePart;

class AtomicPart : public RootObject {
public

os _ backptr bkptr;
os _indexable _ member(AtomicPart,id,int) id;
Ilchar type[TypeSize);
os _indexable _ member(AtomicPart,buildDate,int) buildDate;
int x, y;
int dodd 1* indexable *1 ;

Ilemw 8/95

os _relationship _ m _I (AtomicPart,to,Connection,from,os _ Bag<Connection*» to;
os_relationship _ m _I (AtomicPart,from,Connection, to, os _ Bag<Connection *» from;

1 2 4

os _relationship _ 1 _ m(AtomicPart,partOf, CompositePart,parts, CompositePart *) partOf;

} ;

AtomicPan(int ptId);
-AtomicPanO;
void swapXYO;
void toggleDateO;
int traverse(BenchmarkOp op) { return O; } ;
int traverse(BenchmarkOp op, PanIdSet& visitedIds);
void DoNothingO;

II define global variable for AtomicPan class extent
extern os _ Set<AtomicPan*>* AtomicPan_ extent;

II --

II Connection objects are used to wire AtomicPans together
II - similarly, modeled after SuniOO I connections
11--------------------- - --

Ilemw 8/95

class Connection . public RootObject { Ilemw 8/95
public

Ilchar type[TypeSize] ;
int length;
os Jelationship _ 1_ m(Connection,from,AtomicPan,to,AtomicPan*) from;
os_relationship _ 1 _ m(Connection,to,AtomicPan,from,AtomicPan*) to;

} ;

Connection(AtornicPan* fromPan, AtornicPan* toPan);
int traverse(BenchmarkOp op) { return O; } ;

11--- -------------

II CompositePans are pans constructed from AtomicPans
II - entry in a library of reusesable components
II - implementation is a graph of atomic pans
II - provides unit of significant access locality
II - each has an associated (unique) document object
II --

class Document;
class BaseAssembly;

Ilemw 8/95

1 2 5

1* inherit from DesignObject emw 5/95 * *1
1* commented out inherited members * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1

class CompositePart • public DesignObject {
public
I I os _ backptr bkptr;

os_indexable_member(CompositePart,id, int) id;
II char type[TypeSize];
II int buildDate;

os_relationship _ ' _ I (CompositePart,documentation,Document,part,Document *)
documentation;

II index declared in CompositePart C os_rel_ ' _ ' _body_options

1 2 6

os _relationship _ m _ m(CompositePart,usedInPriv,BaseAssembly,componentsPriv,os _ Bag<
BaseAssembly*» usedInPriv;
os_relationship _ m _ m(CompositePart,usedInShar,BaseAssembly,componentsShar,os_Bag
<BaseAssembly*» usedInShar;
os_relationship _ m _ I (CompositePart,parts,AtomicPart,partOf,os _ Set<AtomicPart *»
parts;

} ;

AtomicPart* rootPart;

CompositePart(int cpId);
-CompositePartO;
int traverse(BenchmarkOp op);
int traverse70;
int reorg I 0;
int reorg20;

1* inherit from DesignObject emw 5/95 * *1
1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1

extern os _ Set<CompositePart*>* CompositePart_ extent;

II -- ------

II Document objects are used to hold a description of some particular
II CompositePart object
11--

class Document . public RootObject { Ilemw 8/95
public

os_backptr bkptr;
char title[TitleSize]; 1* indexable; <-see constructor *1
os _indexable _ member(Document,id,int) id;
char *text;
os _relationship _ '_ I (Document, part, CompositePart,documentation, CompositePart *)

part;

} ;

Document(int cpId);
-DocumentO;
int search Text(char c) ;
int replaceText(char *oldString, char* newString) ;
void set_title(char this_title[]) ;
int traverse(BenchmarkOp op) { return O; } ;

extern os Set<Document*>* Document_extent,

II --- ----------------- --- -

II Manual objects are used to hold a description of some particular
II module Really just big documents, only associated with modules
II instead of CompositeParts
11---------------------- ----------------- --------- ------------------------ - -

class Module;

Ilemw 8/95

class Manual . public RootObject { Ilemw 8/95
public

} ;

char title[TitleSize];
int �;
char *text;
int textLen;
os_relationship _ 1 _ 1 (Manual,mod,Module,man,Module*) mod;

Manual(int cpId);
-ManuaIO;
int searchText(char c) ;
int replaceText(char *oldString, char* newString);
int firstLastO;
int traverse(BenchmarkOp op) { return O; } ; Ilemw 8/95

11--

II Assembly objects are design instances built up recursively from
II from other Assembly objects and (at the leaves only) CompositeParts
II - hierarchical (tree) structure for designs
II - may share composite parts with other assemblies
II - nonleaf and leaf assembly subtypes
II ----------------------- -------------------------- --- ---------- ------------

1 2 7

1 2 8

class ComplexAssembly;

1* inherit from DesignObject emw 5195 * *1
1* commented out inherited members * *1
class Assembly . public DesignObject {
public
I I os _ backptr bkptr;

os _indexable _ member(Assembly ,id, int) id;
II char type[TypeSize];
II int buildDate;

os Jelationship _ 1_ m(Assembly,super Assembly,ComplexAssembly,subAssemblies,Comple
xAssembly*) superAssembly;

} ,

os_relationship _ 1_ m(Assembly,module,Module,assemblies,Module*) module;

Assembly(int);
virtual int traverse(BenchmarkOp op);
virtual int traverse7(PartldSet& visitedComplexIds) = 0;
virtual AssemblyType myTypeO = 0;
void DoNothingO;

1* inherit from DesignObject emw 5195 * *1
1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1

class ComplexAssembly public Assembly {
public

os_relationship _ m _ I (ComplexAssembly,subAssemblies,Assembly,super Assembly,os _ Set<
Assembly*» subAssemblies;

} ;

ComplexAssembly(int asld, ComplexAssembly* parent Assembly,
int levelNo, Module* mod);

int traverse(BenchmarkOp op);
int traverse7(PartldSet& visitedComplexIds);
virtual AssemblyType myTypeO { return Complex; } ;

class BaseAssembly public Assembly {
public

Il os_backptr bkptr; II not needed - redundant

1 2 9

os _relationship _ m _ m(BaseAssembly,componentsPriv,CompositePart,usedInPriv,os _ Bag<
CompositePart*» componentsPriv;

II index declared in Assembly CPP os_rel_m_m_bodLoptions

os _relationship _ m _ m(BaseAssembly,componentsShar, CompositePart,usedlnShar,os _ Bag
<CompositePart*» componentsShar;

} ;

BaseAssembly(int asld, ComplexAssembly* parentAssembly, Module* mod);
-BaseAssemblyO;
int traverse(BenchmarkOp op);
int traverse7(PartldSet& visitedComplexlds);
virtual AssemblyType myTypeO { return Base; } ;

extern os _ Set<BaseAssembly*>* BaseAssembly _extent;

11--- ---- --- -- ---- - - - - - - - -- - - - - - - -----

II Modules are the designs resulting from Assembly composition
II - unit of scaleup for the benchmark database
II - may share composite parts with other modules
II -- --- - ----------------------------

1* inherit from DesignObject emw 5/95 * *1
1* commented out inherited members * * * * * * "* I
class Module . public DesignObject {
public
I I os _ backptr bkptr;

os _indexable _ member(Module,id, int) id;
II char type[TypeSize];
II int buildDate;

os _relationship _ 1 _ 1 (Module,man,Manual,mod,Manual*) man;
os_relationship _ m _I (Module, assemblies, Assembly, module, os _ Set<Assembly*»

assemblies;
ComplexAssembly* designRoot;

Module(int modld);
-ModuleO;
int traverse(BenchmarkOp op);
int scanManualO;

int firstLastO;

} ;
1* inherit from DesignObject emw 5/95 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1
1* *1

extern os Set<Module*>* Module_extent;

II -- --------- ---------

II Dummy objects -- used for cache purging
11----------- ------ ---- ---------- ---------------------- ---------------------

class DummyObj {
public

char

} ;
#endif

dummy[DummySize] ;

1 3 0

APPENDIX D
MODIFYING DEGREE OF INHERITANCE IN 007 TRAVERSAL OPERA nON S

TO USE THREE LEVELS OF RUN-TIME POLYMORPHISM

11007 travers. cpp revised by E. M. Walk 8/95 (T I, T6 only) for inheritance experiment .
II Executes traversals of Complex Assemblies, Base Assemblies, and Composite
IIParts using run-time polymorphism, inheritance from RootObject
II Travers. cpp was part of 007 benchmark jointly developed by Carey, Dewitt, and
I aughton at Univ. of Wisconsin and developers at Object Design, Inc , 1 993 for
II0bjectStore Release 2 0 I .
II 007 was ported to ObjectStore 3 . I for OS/2 in 1 995 by J Brownsmith, IBM Santa
IITeresa Laboratory, and enhanced with optional operations and options for
Ilenvironmental variables Because of changes this program is not comparable to the
llUniv. of Wisconsin version The ported version was offered as-is, with no warranty
lias to correctness or quality. The use of parts of this benchmark for this dissertation are
Ilgratefully acknowledged.

#include <string.h>
#include <stdio.h>
lithe #include <task.h> contains delay fn on OS/2
#include <task.h>
lithe following #include <stdlib.h> is for the randO fu
#include <stdlib. h>
#include <ostore/ostore.hh>
#include <ostore/coILhh>
#include <ostore/relat. hh>
#include "007. h"
#include "BenchPar.h"
#include "GenParam.h"
#include "VarParam.h"

I I I I I I I I I I I I I I I I I II II I I I I I I I I I I I I I I I I I I
II
II Traverse - DFS traverse module Upon reaching a base assembly,
II visit all referenced composite parts . At each composite part,
II take an action that depends on which traversal variant has been
II requested.
II
I I I I I I II I I I I I I I I I I I I I I I I I I /II

extern os_database* 007db;
extern int debugMode;

1 3 1

extern void PrintOp(BenchmarkOp op);

/II I I I I I I I I 1/111 I I I I I I I I I I I I I I II I /II I I I I I I I I I /II I I I I I I I I I I I I I I I I I I
II
II Module Method for Traversal
II
I II I I I I I I I I I I I I I /II II

int Module: traverse(BenchmarkOp op)
{

if (debugMode) {
printf("Module traverse(id = %d, op = ", id);
PrintOp(op);
printf(")\n") ;

II now traverse the assembly hierarchy
RootObject* ro I ;
ro I = designRoot;

Ilemw 8/95

return ro I ->traverse(op); Ilptr to Complex Assembly emw 8/95

1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1
1* Assembly Method for Traversal (no longer pure virtual) emw 8/95 *1

int Assembly traverse(BenchmarkOp op)
{

printf("OOPS----This should not executel\n") ;
return 0;

1* *1

I I I I I II/I I I I I I I II I I I I I I I I I I I I I I I 1/11 II
II
II ComplexAssembly Method for Traversal
II
/II /II I I I I I I I I I I I I II I /II I I I I I I I I I I I I I I II

int ComplexAssembly traverse(BenchmarkOp op)

1 3 2

if (debugMode) {
printf("\tComplexAssembly traverse(id = %d, op = ", id);
PrintOp(op);
printf(")\n");

II prepare for and execute the traversal
int count = 0;
Assembly* assm;
RootObject* ro2;
ro2 = assm;

Ilemw 8/95
Ilpointer to Assembly emw 8/95

os_cursor curs I (subAssemblies);

if (op < MultiTrav l) {

II fully traverse the assembly hierarchy
for (ro2 = (Assembly*)curs UirstO;

curs l .moreO; r02 = (Assembly*)curs l . next()) {
count += r02->traverse(op);

} else {

II randomly walk down the assembly hierarchy
int curPath = 0;
int randPath = (int) (rand 0 % NumAssmPerAssm);
for (assm = (Assembly*)curs l firstO;

curs I . moreO; assm=(Assembly*)curs I . next()) {
if (curPath++ == randPath) {

count += assm->traverse(op);
break;

}

II lastly, return the result
return count;

Ilemw 8/95

Iinot changed (not used)

1 3 3

I II I I II I II II I
II
II BaseAssembly Method for Traversal
II
I II I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I II I I II I I I I I I I I I I I I I I I I /II I 1/111

int BaseAssembly traverse(BenchmarkOp op)
{

if (debugMode) {
printf("\t\tBaseAssembly traverse(id = %d, op = ", id);
PrintOp(op);
printf(") \n");

I I prepare for and execute the traversal
int count = 0;
CompositePart* comp;
RootObject* r03 ; Ilemw 8/95
r03 = comp; Ilpointer to Compos Part emw 8/95

os_cursor curs2(componentsPriv);

if (op < MultiTrav 1) {

I I fully traverse each of the assembly"s private components
for (ro3 = (CompositePart*)curs2 firstO;

curs2 moreO; ro3=(CompositePart*)curs2 next()) {
count += ro3->traverse(op); Ilemw 8/95

} else { Iinot changed (not used)

II first, traverse private and/or shared composite parts

if (op < MuitiTrav3 I I op > MultiTrav4) {
for (comp = (CompositePart*)curs2 .firstO;

}

curs2.moreO; comp=(CompositePart*)curs2 . nextO) {
count += comp->traverse(Trav 1);

if (op > MultiTrav2) {

1 3 4

os_cursor curs3(componentsShar);
for (comp = (CompositePart*)curs3 firstO;

curs3 . moreO; comp=(CompositePart *)curs3 . nextO) {
count += comp->traverse(T ray I);

II next, sleep for awhile to reduce server disk contention
Iischd • • delay«(long)MultiSleepTime);

II also, perform an update traversal if one is desired

if (op == MuitiTrav2 1 1 op == MuitiTrav5 II op = MultiTrav6) {
os_cursor curs4(componentsPriv);
for (comp = (CompositePart*)curs4.firstO;

curs4.moreO; comp=(CompositePart*)curs4.nextO) {
count += comp->traverse(Trav2b);

} else if (op = MultiTrav4) {
os_cursor curs5(componentsShar);
for (comp = (CompositePart*)curs5 firstO;

curs5 . moreO; comp=(CompositePart *)curs5 . nextO) {
count += comp->traverse(Trav2b);

II lastly, return the result

return count;

I II! I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I II
II
II CompositePart Method for Traversal
II
II

1 3 5

int CompositePart traverse(BenchmarkOp op)
{

if (debugMode) {
printf("\t\t\tCompositePart traverse(id = %d, op = " , id);
PrintOp(op);
printf(")\n") ;

if « op >= Trav l) && (op <= Trav3c)) {

II do parameterized DFS of atomic part graph
PartldSet visitedlds;
return rootPart->traverse(op, visitedlds); Ilpointer to AtomicPart

Iidoes not inherit this from RootObject emw 8/95
} else if (op = Trav4) {

II search document text for a certain character
return documentation->search Text(T);

} else if (op = Trav5do) {

II conditionally change initial part of document text
return documentation->replaceText("I am", "This is");

} else if (op == Trav5undo) {

II conditionally change back initial part of document text
return documentation->replaceText("This is", 'T am") ;

} else if (op == Trav6) {

II visit the root part only (it knows how to handle this)
PartldSet visitedlds;
return rootPart->traverse(op, visitedlds);

} else {

II composite part"s dont respond to other traversals
printf(" * * * CompositePart P ANlC -- illegal traversal " I * * *\n") ;

1 3 6

I I I 1//1 I 1//11 I I I I I I I I I I I I I I I I II I I I I I
II
II AtomicPart Method for Traversal
II
I II

int AtomicPart traverse(BenchmarkOp op, PartldSet& visitedlds)

{
if (debugMode) {

printf("\t\t\t\tAtomicPart traverse(id = %d, op = ", id);
PrintOp(op);
printf(")\n");

int i ;
int count = 0;

switch (op) {

case Trav l .

I I just examine the part
count += I ;
DoNothingO;

break;

case Trav2a:

II swap X and Y if first part
if (visitedlds. empty()) {

swapXYO;
count += I ;

break;

case Trav2b:

II swap X and Y
swapXYO;
count += I ,
break;

1 3 7

case Trav2c :

II swap X and Y repeatedly
for (i = 0; i < UpdateRepeatCnt; i++) {

swapXYO;
count += I ;

}
break;

case Trav3a:

I I toggle date if first part
if (visitedlds. empty()) {

toggleDateO;
count += I ;

break;

case Trav3b :

II toggle date
toggleDateO;
count += I ;

break;

case Trav3c :

II toggle date repeatedly
for (i = 0; i < UpdateRepeatCnt; i++) {

toggleDateO;
count += I ;

}
break;

case Trav6:

II examine only the root part
count += I ;
DoNothingO;
return count;

default :

1 3 8

II atomic parts don"t respond to other traversals
printf(" * * * AtomicPart PANlC -- illegal traversal I I 1 * * *\n");

II now, record the fact that we"ve visited this part
visitedlds . insert(id);

II finally, continue with DFS of atomic parts graph

os_cursor curs6(to);
for (Connection* conn = (Connection*)curs6 .firstO;

curs6 moreO; conn=(Connection*)curs6.next()) {
if (I visitedlds contains(conn->to->id)) {

count += conn->to->traverse(op, visitedlds);

return count;

1 3 9

en
c::
0

; C'G
c=
III en

.c
0
""

en
"C
c::
0 u III

In

35 T
30 T 25
20
1 5
1 0

Appendix E.1

Frequency Distribution for Q1 Response Times,

Database 7/200/3/3

o

N

Seconds

Appendix E.2

Q1 Response Times, In Order of Occurrence in

Workload, Database 7!200/3/3

20.0 T 1 8.0 •

1 6.0 •
1 4 .0
12 . 0 •

• •

1 0.0
8.0 •

6.0 • •

•
• •

•
•

4 .0 •
• •

2.0 r:
' I.! '·!� 0.0 !!! II.'! I.

M M M M m m � � � � � 0 N �
M � � 0 � � � m � M � � M �

� � N N M M M � � �
Observation Number

1 40

1/1
"C c:
0 u
GI

en

Appendix E.3

Frequency Distribution for 02 Response Times,

Database 7/200/3/3

1
0

L() 0 L() 0 L() 0 L() 0 L() 0 L() 0 L() 0 L() 0

N L() I'- 0 N ...; I'- 0 N L() I'- 0 N L() I'- 0
� � � N N N N M M M M �

Seconds

Appendix E.4

02 Response Times, In Order of Occurrence in

Workload, Database 7/200/3/3

40.0 T I · •

35 .0 i
• •

•
• • •

30.0 t ... • •
• •

• •
• • ... • •

25.0 .. •

20.0 I
•

• •
1 5.0 I • • •

• •
• • 1 0.0 T • •

5.0 - • •

0.0 I, i I
• •

: , :., '." ,
' i 'I ,,,. , ! I I • , , I

0 M L() I'- Ol N M N Ol M L() 0
� Ol M <D Ol � I'- M M Ol N <D

N N M M M � �

Observation Number

1 4 1

Appendix E.5

Frequency Distribution for 03 Response Times,

Database 7/200/3/3

25 T

III 20 -
c:
o :; 1 5 -
�
4) � 1 0 1
o
'II: 5

III
"C
c:
o
u
4)

rn

o
o

o
(")

o

o
'<t

o

o
<0

o

o ,...

Seconds

o

o
co

Appendix E.G

o

o
0'>

o

o
o

o

o

03 Response Times, In Order of Occurrence in

Workload, Database 7/200/3/3

1 20.0 T
1 00.0 � •

•
80.0 � • •

• •
I

-
• • •

• • • •
60.0 · . .. • • • • • • •

I · • •
40.0 -� • •

20.0 1 •
•

0.0 " 'I 1

• • •
•

•

• • •
.. . , .. . -

. � • • • •
•
•

I ,
'<t N � N (") N co � 0'> (") 0 co '<t <0 � ,... 0 '<t co 0 (") � '<t <0 0'> N <0

N N (") (") (") (") '<t '<t

Observation Number

1 42

CI)
c:
0 :;; "'
�
41 CI)

.c
0
"*'

CI)
'C
c:
0 u 41
In

Appendix E.7

Frequency Distribution for 04 Response Times,

Database 7/200/3/3

1 4 �

1 2 -

1 0 -

8 -

6 -
4 I
2

0
0

Lt)

0 0

0 Lt)

0 0 0 0 0 0 0 0

o Lt) 0 Lt) 0 Lt) 0 Lt)
N N M M � � Lt) Lt)

Seconds

Appendix E.8

04 Response Times, In Order of Occurrence in

Workload, Database 7/200/3/3

60.0 I •
50.0 • • • •
40.0 T

. ..
• •

I •
I • •

30.0 T •
• • • • •

20.0 .
• • • ••• • •

I • • • •
•

1 0.0 -
•

0.0 ' " ' I '

• • ...
•• .. • • •

M Lt) Lt)
N � a>

, ,
N
M

,
ex)
�

I
a> ex) a>
Lt) a> �

N

' ,
a>
ex)
N

, i
�
0
M

t ! I

ex)
N
M

Observation Number

� to
M

I
N ex) 0
o � to 0
� � � Lt)

1 43

en
c
0

� III
c=
QI
en

.c
0
:a:

en
"C
c
0 u
QI

(/)

Appendix E.g

Frequency Distribution for as Response Times,

Database 7/200/3/3

50 -
45 1
40
35 -
30 -
25 T

20
1 5
1 0 -

5 -
0

0 0 0

..,. co N

0 0 0 0

CD 0 ..,. co
N N N

Seconds

Appendix E.1 0

o

N
M

o

CD
M

o

o
..,.

as Response Times, In Order of Occurrence in

Workload, Database 7/200/3/3

40.0 -
35.0

�

30.0 -
•

25.0 - •
• •

I • • • • •
20.0 -t • •

• •

1 5.0
• •

• •
••

• •
• 1 0.0 • •

•
•

5.0 -

0 .0 .�! .!.,.--�
M 0 ..,. r-- ..,. ..,. co � M r-- N ..,. M 0

M ..,. co M � N CD 0 N Lfl co � ..,. en
� N N N M M M M ..,. ..,. ..,.

Observation Number

1 44

25 -

C/I 20 -
c: : .2
-; 1 5 -
c=
GI
C/I

.c o
�

1 0 -

5 1
o I

Appendix E.1 1

Frequency Distribution for 06 Response Times,

Database 7/200/3/3

U') 0 U') 0

N U') I"- 0

U') 0 U') 0 U') 0 U')

N U') � 0 N U') l"-

Seconds

Appendix E. 1 2

N N N N

06 Response Times, In Order of Occurrence in

Workload, Database 7/200/3/3

30.0 T •

C/I
"C
c:
0
U
GI
(/)

25.0 • • •

20.0 1

1 5.0
•

•
•

•

•

• •
1 0.0 • • •

5.0
• •

0.0 I .� ... � �I ... , . � .. �I •

Observation Number

•

• •
• •

•

1 45

1 6 -

Appendix E. 1 3

Frequency Distribution for Q8 Response Times,

Database 7/200/3/3

1 4 -
� 1 2 -
o

0: 1 0 -III
c=
QI
1/1

.Q
o
�

6
4

o -'-"-----'-
0 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 6
v <I) <0 I'- CD '" 0 � N

N N N

Seconds

Appendix E.14

Q8 Response Times, In Order of Occurrence in

Workload, Database 7/200/3/3

200.0 . • • ..

1 80.0 �I • • • •• •
•

• •
• • • •-

1 40.0 •
• • • • • •

1 60.0 1 • • • • •• • •

� 1 20.0
c:
o
U
QI
(/)

1 00.0
80.0
60.0
40.0
20.0 -

0.0 ..L!�' ,..----,-+-t-'--'--'--'-'-t-Y--'--'-+-1--+--+-+-++++--'-1--i-----r----'-----rI I : ' ! ! ! I I ! , I i I I I I I ! ' : ! i I

o N
v

<I)
<0

'"
CD

N '" <'l <0 v
v <0 0 <'l CD

N N N

Observation Number

<I) 0 I'-
<I) '" <I)
<'l <'l v

1 46

II)
c:
.2
1;;
� III II)

.c
0
�

Appendix E. 1 5

Frequency Distribution for T 1 Response Times,

Database 7/200/3/3

9 -
8 -
7 -
6 -
5 -
4 -
3 I
2 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ci ci 0 0 0 ci ..,. (0 co 0 N ..,. (0 co 0 N ..,.
Ltl Ltl Ltl (0 (0 (0 (0 (0 I'- I'- I'-

Seconds

Appendix E. 1 6

T 1 Response Times, I n Order of Occurrence i n

Workload, Database 7/200/3/3

800.0 -I

600.0 ..
•

� . . . • • • • ,
. -- "

700.0 -1' . • •
.

.. •
..

.
.

. .

� 500.0

g 400.0
u

� 300.0

200.0

1 00.0 -

0.0 i ! ! i I t

Observation N umber

1 47

(/)
c:
o

-.; 10
c:
QI (/)

20 �
I 1 5 -

Appendix E. 1 7

Frequency Distribution for T6 Response Times,

Database 7/200/3/3

<3 1 0

(/)
"C
c:
0 u
QI
en

5

o
o

CD

o

N

o

c:i
N

Seconds

Appendix E. 1 8

o

CD
N

o

N
C')

o

CD
C')

T6 Response Times, In Order of Occurrence in

Workload, Database 7/200/3/3

40.0 T • 35 .0 T 30 .0 T • •
• • 25.0 -

.. . . . • • • 20.0 T • • • • 1 5.0 • • • • • • • •
1 0.0 •

5.0 + • •
0.0 t t·i�'" , t " I t� ,. "'-,'- �, •

Observation Number

1 48

'" '0 c: 0 U ., VI

'" '0 c: 0 u ., VI

Appendix F.1

Q1 Response Times, Database 4/1 00/3/3

6.0 - Using Different Seeds for Random Number Generator

5.0 .,

4.0 -

3.0 .l
i
I

2 d I:

1 0 J • . I :

--- Seed 1
. Seed 2

I ' "
.. ',. � 0.0

0

6.0 I 5.0 T
4.0

3 .0

2 .0 -

1 .0 -

0.0
0

100 200 300 400 500
Observation Number

Appendix F.2

Q1 Response Times, Deleting Q8 and T1 from Workload

Database 4/1 00/3/3

1 00

,' . � - . ' .;;!..' ''' " U-" " .:',

200 300 400 500
Observation Number

--- No Q8

--- No Q8/No T1
. . . • • • Original Workload

1 49

VI "0 c 0 u CII CI)

VI

Appendix F.3

a2 Response Times, Database 4/1 00/3/3

1 6 .0 _ .
Using D ifferent Seeds for Random Number Generator

1 4.0

1 2.0 r
1 0 0 - '

8 .0 1 �
6.0 T � 4 .0 - .

2 .0 - :

0 .0 I
0 1 00 200 300

Observation Number

Appendix F.4

400 500

' --- Seed 1
'

. Seed 2

a2 Response Times, Deleting a8 and T1 from Workload

Database 4/1 00/3/3

4 .5 T
4 .0

3 .5

3 .0 ' . ' .
g 2.5 +-: : :
� 2.0 ' CI)

-- No Qa

--- No Q a/No T1 I • • • • • • Original Workload

1 5 .L ' • •

1 :0 � !; : ,(: � ' " " . . :
.
... :': !

• I / � : / '� I � ' . f l , - - , .,' -;" ' / "
0 .5 � ... " · . 1 . , . "' . . . , •. ' ;", ' v •

0 .0 +1 ----+---.......,..-----,---+----1

o 1 00 200 300 400 500
Observation Number

1 50

.. 'C
'" 0 u
.. rJ)

.. 'C
'" 0 u
.. rJ)

Appendix F.S
Q3 Response Times, Database 411 001313

30.0 _
Using Different Seeds for Random Number Generator

I' 25.0 I
20.0

1 5.0

1 0.0 f
5.0 I 0.0

0 1 00 200 300
Observation Number

Appendix F.6

400 500

--- Seed 1

· · · · · · Seed 2

Q3 Response Times, Deleting Q8 and T1 from Workload

Database 411 001313

30.0

25.0

20.0

1 5.0

1 0.0

5.0

0.0
0 1 00 200 300 400

Observation Number

500

1--- NO Q8

--- No Q8/No Tl
• • • • • • Original Workload I

1 5 1

III '0 C 0 u '" VI

III '0 C o u '" VI

6.0 -

I 5.0 T
4.0

3 .0

2 .0

1 .0 -

0.0
0

4 .0 -

3.5

3.0

o

Appendix F.7

Q4 Response Times, Database 4/1 00/3/3

Using Different Seeds for Random Number Generator

.'
--- Seed 1
- _ . _ . - Seed 2

1 00 200 300 400 500
Observation Number

Appendix F.S

Q4 Response Times, Deleting QS and T1 from Workload

Database 4/1 00/3/3

--- No Q6

--- No Q6/No T1
- - . - - - Original Workload

1 00 200 300 400 500
Observation Number

1 52

Appendix F.9

as Response Times, Database 4/1 00/3/3

Using Different Seeds for Random Number Generator

4 .5

4.0

3.5

3 .0 .. � 2.5
o �

2.0 T 1 . 5

1 .0

0.5 T 0.0
0

\ ' l../.1/\
1 00

. . �

200 300
Observation Number

Appendix F.1 0

;1
400

...-t.....A

500

--- Seed 1

. - Seed 2

as Response Times, Deleting as and T1 from Workload

Database 4/1 00/3/3

1 .2 t .. 1 .0
'0 c 0.8 0 u II en 0.6

0.4 . . '
0.2

.. :� : .'
I '. "

0.0
o

. - �"- - - - . .

1 00 200 300 400
Observation Number

"

500

--- No Q8

--- No Q8/No T1 I I· Original Workload

1 53

Appendix F.1 1

06 Response Times, Database 4/1 00/3/3

Using Different Seeds for Random Number Generator

1 .0 -
0.9 t
0.8 - . .

0.7
� 0.6 1 � 0.5 I : CI) 04 r

0 .3 T .

0.2 � .
0 . 1 T

--- Seed 1

. Seed 2

0.0 ---------------------1
o 1 00 200 300 400 500

Observation Number

Appendix F.1 2

06 Response Times, Deleting 08 and T1 from Workload

Database 4/1 00/3/3

0.9 I 0.8

'. '. 0.7 I :
0.6 r : �
0 .5 - .

c:

' . '. ' . . " "
' 0 "

o u ., CI)
, ' I · ·

0.4 . I " ' , ' , .

�.� +, ····L\:'lJdG /
0 . 1 -

0.0 --
---------"--------'

o 1 00 200 300 400 500
Observation Number

--- No Q8

--- No Q8/No T1 I· Original Workload I

1 54

In "tl '" o u .,

Appendix F.1 3

QS Response Times, Database 4/1 00/3/3

80.0
_ Using Different Seeds for Random Number Generator

70.0

--- Seed 1

. Seed 2

<II 30.0 _

20.0 -

1 0.0 -

I 0.0 -'-----r----------------'
o 1 00 200 300 400 500

Observation Number

1 55

1 4.0
1 2.0
1 0 .0

Appendix F.14

T1 Response Times, Database 4/1 00/3/3

Using D ifferent Seeds for Random Number Generator

� 8.0 --- Seed 1

1 - - - - - - Seed 2

c
o
U
II

CIl

2.0 -
! 0.0 -----------------�

o

1 4 .0 � ,
1 2.0 1

1 00 200 300 400 500
Observation Number

Appendix F _ 1 5

T 1 Response Times, Deleting Q 8 from Workload

Database 4/1 00/3/3

1 0 0 �
� B.O ; --- No Qa c
o � 6.0

" ..
4 .0 '\'. \J- " -, ri, } -, .\ r:, : " , ' '':' -

': ',r , D, r:,: " ', .
, A I " , I , , . V ' I , , , ' , .. ' f

I , t .. ,� V � '-. ' - -
' Jd . v · L.J

2.0 T

0.0 , ' t ! . ! I ! '!t " , I" '" I' ,
en en <0 v N N <0 � v <0

L() 0 L() N <0 v r-- en (")
N N (") (") (") v

Observation Number

1- - - - - - Original Workload I

1 56

..
" c 0 u II VI

..
" c 0 u II VI

Appendix F . 1 6

T 6 Response Times, Database 411 001313

1 .2 _
Using Different Seeds for Random Number Generator

1 .0 -

I 0.8 T
0.6 --- Seed 1

- - - - - - Seed 2

0.4

0.2 1 . . . - - -

0.0
0 1 00 200 300 400 500

Observation Number

Appendix F.1 7

T6 Response Times, Deleting 08 and T1 from Workload

Database 411 001313·
7 .00 -

6 .00

5.00

4 .00

3 .00

2.00

1 .00
........ _M..

0.00
0 1 00

- . " - ' �. ' .. � - ' - "

200 300 400
Observation Number

500

--- No Q8 1--- No Q8/No T1 I - - - - - - Original Workload

1 57

Vita

	A generalized system performance model for object-oriented database applications
	Downloaded from

	wal_gen_002_R copy
	wal_gen_004_R copy
	wal_gen_006_R copy
	wal_gen_008_R copy
	wal_gen_010_R copy
	wal_gen_012_R copy
	wal_gen_014_R copy
	wal_gen_016_R copy
	wal_gen_018_R copy
	wal_gen_020_R copy
	wal_gen_022_R copy
	wal_gen_024_R copy
	wal_gen_026_R copy
	wal_gen_028_R copy
	wal_gen_030_R copy
	wal_gen_032_R copy
	wal_gen_034_R copy
	wal_gen_036_R copy
	wal_gen_038_R copy
	wal_gen_040_R copy
	wal_gen_042_R copy
	wal_gen_044_R copy
	wal_gen_046_R copy
	wal_gen_048_R copy
	wal_gen_050_R copy
	wal_gen_052_R copy
	wal_gen_054_R copy
	wal_gen_056_R copy
	wal_gen_058_R copy
	wal_gen_060_R copy
	wal_gen_062_R copy
	wal_gen_064_R copy
	wal_gen_066_R copy
	wal_gen_068_R copy
	wal_gen_070_R copy
	wal_gen_072_R copy
	wal_gen_074_R copy
	wal_gen_076_R copy
	wal_gen_078_R copy
	wal_gen_080_R copy
	wal_gen_082_R copy
	wal_gen_084_R copy
	wal_gen_086_R copy
	wal_gen_088_R copy
	wal_gen_090_R copy
	wal_gen_092_R copy
	wal_gen_094_R copy
	wal_gen_096_R copy
	wal_gen_098_R copy
	wal_gen_100_R copy
	wal_gen_102_R copy
	wal_gen_104_R copy
	wal_gen_106_R copy
	wal_gen_108_R copy
	wal_gen_110_R copy
	wal_gen_112_R copy
	wal_gen_114_R copy
	wal_gen_116_R copy
	wal_gen_118_R copy
	wal_gen_120_R copy
	wal_gen_122_R copy
	wal_gen_124_R copy
	wal_gen_126_R copy
	wal_gen_128_R copy
	wal_gen_130_R copy
	wal_gen_132_R copy
	wal_gen_134_R copy
	wal_gen_136_R copy
	wal_gen_138_R copy
	wal_gen_140_R copy
	wal_gen_142_R copy
	wal_gen_144_R copy
	wal_gen_146_R copy
	wal_gen_148_R copy
	wal_gen_150_R copy
	wal_gen_152_R copy
	wal_gen_154_R copy
	wal_gen_156_R copy
	wal_gen_158_R copy
	wal_gen_160_R copy
	wal_gen_162_R copy
	wal_gen_164_R copy
	wal_gen_166_R copy
	wal_gen_168_R copy
	wal_gen_170_R copy
	wal_gen_172_R copy
	wal_gen_174_R copy
	wal_gen_176_R copy
	wal_gen_178_R copy
	wal_gen_180_R copy
	wal_gen_182_R copy
	wal_gen_184_R copy
	wal_gen_186_R copy
	wal_gen_188_R copy
	wal_gen_190_R copy
	wal_gen_192_R copy
	wal_gen_194_R copy
	wal_gen_196_R copy
	wal_gen_198_R copy
	wal_gen_200_R copy
	wal_gen_202_R copy
	wal_gen_204_R copy
	wal_gen_206_R copy
	wal_gen_208_R copy
	wal_gen_210_R copy
	wal_gen_212_R copy
	wal_gen_214_R copy
	wal_gen_216_R copy
	wal_gen_218_R copy
	wal_gen_220_R copy
	wal_gen_222_R copy
	wal_gen_224_R copy
	wal_gen_226_R copy
	wal_gen_228_R copy
	wal_gen_230_R copy
	wal_gen_232_R copy
	wal_gen_234_R copy
	wal_gen_236_R copy
	wal_gen_238_R copy
	wal_gen_240_R copy
	wal_gen_242_R copy
	wal_gen_244_R copy
	wal_gen_246_R copy
	wal_gen_248_R copy
	wal_gen_250_R copy
	wal_gen_252_R copy
	wal_gen_253_R copy
	wal_gen_254_R copy
	wal_gen_256_R copy
	wal_gen_258_R copy
	wal_gen_260_R copy
	wal_gen_262_R copy
	wal_gen_264_R copy
	wal_gen_266_R copy
	wal_gen_268_R copy
	wal_gen_270_R copy
	wal_gen_272_R copy
	wal_gen_274_R copy
	wal_gen_276_R copy
	wal_gen_278_R copy
	wal_gen_280_R copy
	wal_gen_282_R copy
	wal_gen_284_R copy
	wal_gen_286_R copy
	wal_gen_288_R copy
	wal_gen_290_R copy
	wal_gen_292_R copy
	wal_gen_294_R copy
	wal_gen_296_R copy
	wal_gen_298_R copy
	wal_gen_300_R copy
	wal_gen_302_R copy
	wal_gen_304_R copy
	wal_gen_306_R copy
	wal_gen_308_R copy
	wal_gen_310_R copy
	wal_gen_312_R copy
	wal_gen_314_R copy
	wal_gen_316_R copy
	wal_gen_318_R copy
	wal_gen_320_R copy
	wal_gen_322_R copy
	wal_gen_324_R copy
	wal_gen_326_R copy
	wal_gen_328_R copy
	wal_gen_330_R copy
	wal_gen_332_R copy
	wal_gen_334_R copy
	wal_gen_336_R copy
	wal_gen_338_R copy
	wal_gen_340_R copy
	wal_gen_342_R copy
	wal_gen_344_R copy
	wal_gen_346_R copy
	wal_gen_348_R copy
	wal_gen_350_R copy

