
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2018

BLOCKCHAIN SCALABILITY AND SECURITY BLOCKCHAIN SCALABILITY AND SECURITY

Tuyet Duong

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Other Computer Engineering Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5559

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/215485119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarscompass.vcu.edu%2Fetd%2F5559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5559?utm_source=scholarscompass.vcu.edu%2Fetd%2F5559&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Tuyet Duong, July 2018

All Rights Reserved.

DISSERTATION BLOCKCHAIN SCALABILITY AND SECURITY

A Dissertation submi�ed in partial ful�llment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

TUYET DUONG

Bachelor of Science, Vietnam National University, Vietnam - Dates

Director: Dissertation Hong-Sheng Zhou,

Assistant Professor, Department of Computer Science

Virginia Commonwewalth University

Richmond, Virginia

July, 2018

i

PhD advisor (Commi�ee Chairperson):

Dr. Hong-Sheng Zhou

Assistant Professor, Computer Science Department, Virginia Commonwealth University

Commi�ee Members:

Dr. Foteini Baldimtsi

Assistant Professor, Computer Science Department, George Mason University

Dr. �ang N. Dinh

Assistant Professor, Computer Science Department, Virginia Commonwealth University

Dr. Carol Fung

Assistant Professor, Computer Science Department, Virginia Commonwealth University

Dr. Bingsheng Zhang

Assistant Professor, School of Computing and Communications, Lancaster University

Acknowledgements

First and foremost, I would like to express my immense appreciation to my advisor,

Dr. Hong-Sheng Zhou, for his guidance and inspiration. I am very grateful for having

Hong-Sheng as an advisor. I also appreciate all of the advices that he has given me over

the years. �is thesis would not have been possible without him.

I sincerely thank my commi�ee members, Dr. Foteini Baldimtsi, Dr. �ang N. Dinh,

Dr. Carol Fung and Dr. Bingsheng Zhang for all their valuable feedbacks and insightful

advices in my research �eld.

I would like to thank Dr. Lei Fan and Alexander Chepurnoy for many years of col-

laboration. I always enjoyed working with them.

Finally, my sincere acknowledgment is to my husband, Dr. Hung T. Nguyen, for

always being there for me and support me in every step of this journey.

ii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Abstract . ix

1 Introduction . 1

1.1 Motivation . 1

1.2 Our Considerations . 2

1.3 Related work . 5

1.3.1 Closely related work on combining proof-of-work and

proof-of-stake . 5

1.3.2 Proof-of-stake . 6

1.3.3 Cryptocurrency and security analysis 7

1.3.4 More alternative consensus techniques 8

2 Background . 9

2.1 Cryptography . 9

2.1.1 Notation . 9

2.1.2 Probabilistic inequalities . 9

2.1.3 Cryptographic Primitives . 10

2.1.3.1 Collision-resistant hash functions 10

2.1.3.2 Digital signature . 11

2.1.4 �e standard simulation paradigm 15

2.1.4.1 ITM . 15

2.1.4.2 Simulation paradigm . 19

2.1.4.3 Ideal functionalities . 23

2.2 Blockchain technology . 25

2.2.1 Blockchain Notations . 25

iii

2.2.2 Nakamoto’s blockchain . 25

3 Model . 27

3.1 Modeling blockchain protocol execution 27

3.2 Modeling proof-of-work . 31

3.2.1 Functionality F∗PoW . 31

3.2.2 Implementing F∗PoW in FRO-hybrid model 33

3.3 Modeling proof-of-stake . 35

3.3.1 Unpredictable unique signature functionality FuuSIG 35

3.3.2 Functionality F∗PoS . 37

3.3.3 Implementing F∗PoS in {FuuSIG,FRO}-hybrid model 37

3.3.4 Blockchain security properties . 42

4 Initial Design and Provable Security: 2-hop Blockchain 44

4.1 2-hop design . 44

4.1.1 High-level description . 44

4.1.2 �e main protocol . 47

4.1.3 �e best chain-pair strategy . 48

4.2 Security analysis . 50

4.2.1 Analysis ideas . 54

4.2.2 Important terms . 59

4.2.3 Analysis with adaptive corruption 63

4.2.4 Analysis with bounded delay . 64

4.2.4.1 Hybrid expriment . 66

4.2.4.2 Analysis in the worst delay se�ing 67

4.2.5 Analysis with adaptive key generation 69

4.2.6 Achieving the chain growth property 71

4.2.7 Achieving the chain quality property 73

4.2.8 Achieving the common pre�x property 75

4.2.9 Achieving the chain soundness property 80

5 Practical PoW/PoS System: Twinscoin . 82

5.1 From 2-hop blockchain to TwinsCoin . 82

5.2 Twinscoin design . 84

5.2.1 Our modi�ed 2-hop blockchain 85

5.2.1.1 Proof-of-Work Blockchain 86

5.2.1.2 Proof-of-Stake Blockchain 89

5.2.1.3 Validating a Chain-pair . 93

iv

5.2.2 Blockchain with adjustable di�culty 96

5.2.3 PoS blockchain in the non-�at model 103

5.2.4 Light client design in TwinsCoin 105

6 Implementation and Experiments . 107

6.1 Implementation . 107

6.2 Experiments . 110

6.2.0.1 Chain race experiment . 110

6.2.0.2 Light validation experiment 112

6.2.0.3 Proof-of-stake di�culty experiments 113

6.2.1 Testnet . 115

Appendix A Abbreviations . 116

v

LIST OF TABLES

Table Page

1 Table of notations . 85

vi

LIST OF FIGURES

Figure Page

1 Ideal execution (le�) and real execution (right) in the standard model 22

2 Random oracle functionality FRO. 23

3 Multi-session signature functionality F̂uSIG. 24

4 Network functionality FNET. 28

5 Proof-of-work functionality F∗PoW. 32

6 Proof-of-work protocol πPoW. 34

7 Unpredictable unique signature functionality FuuSIG. 36

8 Proof-of-stake functionality F∗PoS. 38

9 Proof-of-stake protocol πPoS. 39

10 2-hop blockchain structure . 45

11 Our main protocol Π = (Πw,Πs) in the {F∗PoW,FRO,F
∗
PoS,FSIG,FNET}-

hybrid model with respect to the local process BestValid (See Figure 12). . . 49

12 �e chain set validation process BestValid. 51

13 A modi�ed 2-hop blockchain structure . 88

14 Generating new PoW-blocks . 91

15 Generating new PoS-blocks . 92

16 Roadmap for blockchain design in TwinsCoin. 105

17 In�uence of a�acker’s stake to his hashrate. 111

18 Balance lookup time. 112

vii

19 Balance lookup proof size. 113

20 Percentage of A�empting Blocks . 114

21 T̃ Value . 114

viii

Abstract

DISSERTATION BLOCKCHAIN SCALABILITY AND SECURITY

By Tuyet Duong

A Dissertation submi�ed in partial ful�llment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Dissertation Hong-Sheng Zhou,

Assistant Professor, Department of Computer Science

Cryptocurrencies like Bitcoin have proven to be a phenomenal success. �e un-

derlying techniques hold huge promise to change the future of �nancial transactions, and

eventually the way people and companies compute, collaborate, and interact. At the same

time, the current Bitcoin-like proof-of-work based blockchain systems are facing many

challenges. In more detail, a huge amount of energy/electricity is needed for maintaining

the Bitcoin blockchain. In addition, their security holds if the majority of the computing

power is under the control of honest players. However, this assumption has been seriously

challenged recently and Bitcoin-like systems will fail when this assumption is broken.

�is research proposes novel blockchain designs to address the challenges. We

�rst propose a novel blockchain protocol, called 2-hop blockchain, by combining proof-

of-work and proof-of-stake mechanisms. �at said, even if the adversary controls

more than 50% computing power, the honest players still have the chance to defend

the blockchain via honest stake. �en we revise and implement the design to obtain a

practical cryptocurrency system called Twinscoin. In more detail, we introduce a new

strategy for di�culty adjustment in the hybrid blockchain and provide an analysis of

ix

it. We also show how to construct a light client for proof-of-stake cryptocurrencies and

evaluate the proposal practically. We implement our new design. Our implementation

uses a recent modular development framework for blockchains, called Scorex. It allows

us to change only certain parts of an application leaving other codebase intact.

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

Cryptocurrencies like Bitcoin [Nak08] have proven to be a phenomenal success. �e

underlying techniques hold a huge promise to change the future of �nancial transactions,

and eventually our way of computation and collaboration. At the heart of the Bitcoin

system is a global public distributed ledger, called blockchain, that records transactions

between users in consecutive time windows. �e blockchain is maintained by a peer-

to-peer network of nodes called Bitcoin miners via the so-called proof-of-work (PoW)

mechanism: in each time window, cryptographic puzzles (also called proof-of-work puz-

zles [DN93; Bac02]) are generated, and all miners are encouraged/incentivized to solve the

puzzles; the �rst miner who �nds a puzzle solution is allowed to extend the blockchain

with a block of transactions, and at the same time he can collect a reward. It is easy to

see that the more computing power a miner invests, the be�er his chances are at solving

a puzzle �rst.

Bitcoin is an open system; any player who invests a certain amount of computing

resources is allowed to join the e�ort of maintaining the blockchain. �is unique “easy

to join/leave” feature along with a smart incentive strategy help the system “absorb”
1
a

huge amount of computing resources over the past several years. Intuitively, the security

of blockchain is backed up by a signi�cant network of physical computing resources.

�is intuition has recently been investigated in academia. For example, Garay et

1
You may say the system consumes/wastes a huge amount of computing resources.

1

al. [GKL15] and then Pass et al. [PSS17a] looked into the “core” of the Bitcoin system, the

Nakamoto consensus protocol; they showed that, assuming the majority of mining power

in the Bitcoin system is controlled by the honest miners, then the Nakamoto consensus

indeed satis�es several important security properties as de�ned in their cryptographic

models. On the other hand, if this assumption does not hold, then the security of the

Bitcoin system cannot be guaranteed.

�is assumption has been seriously challenged: the mining power can be dangerously

distributed in the system. For example, in 2014, the mining pool GHash.io exceeded 50%

of the computational power in Bitcoin [Goo14]. Currently, top mining pools including

F2Pool, AntPool, BTCC and BW, are all in China; they collectively control about 60%

mining power. It is not clear if those mining pools collude. Very recently, one mining

pool has had 50% mining power in Zcash [Tor]. E�orts have been made to address this

crisis. In [Mil+15], novel ideas are introduced to discourage the formation of mining pools.

However, it is not clear in practice how to utilize these ideas to protect the system if the

adversary controls the majority of mining power. We here ask the following question:

Is that possible to strengthen Bitcoin-like system so that it can be secure even

when the adversary controls more than 50% computing power in the system?

1.2 Our Considerations

Before giving a proper solution to the above question, we need to understand

Nakamoto’s design more. Only then, we might be able to mimic Nakamoto’s footprint

and push this line of design further.

Leveraging the power of virtual resources in the system. Ideally, we would like to

construct Bitcoin-like blockchain which is secure against a very strong adversary even

from the beginning. However, it is easy to see that cryptocurrency systems are very frag-

2

ile in their early stage. It will be extremely di�cult, if not impossible, to “grow” a stable

Bitcoin-like blockchain if the adversary controls the majority of computing power at the

very beginning. In this work, we consider how to make an already mature cryptocur-

rency system such as the current Bitcoin system to be more robust in the sense that the

system remains stable even the adversary controls the majority of computing power. As

mentioned, Bitcoin already “absorbed” a huge amount of honest computing power; note

that these physical resources have been converted into “virtual resources”, i.e., the coins.

It is fairly reasonable to assume the coins are nicely distributed in the system and most of

them are controlled by honest users. A natural way to go is to use this huge amount of

honest virtual resources as a bu�er to defend against the adversary who can dominate the

network of computing power.

�e di�erence between physical resources and virtual resources. It is de�nitely

desirable to utilize the power of virtual resources to secure a blockchain. If successful, the

new system will be “green” in the sense that it does not require a huge amount of physical

resources, which cannot be recycled, to back up its security. A�empts have beenmade. For

example, proof-of-stake (PoS) mechanisms have been widely discussed in the cryptocur-

rency community. In a nutshell, proof-of-stake mechanisms for consensus require proto-

col players to prove ownership of a certain amount of virtual resources. Only those that

can provide such a proof can participate in maintaining the blockchain. However, it is not

clear how to construct an open blockchain which can scale to a large number of network

nodes (as in Bitcoin), via any proof-of-stake mechanism. At a very intuitive level, virtual

resources, which proof-of-stake mechanisms are based on, are very di�cult to manage

in a practical protocol. SS �is intuition has been con�rmed recently by the concurrent

works of [CM17; Kia+17; DPS17]); there, very interesting and non-trivial a�empts have

been made to construct provably secure, scalable blockchains via pure proof-of-stake. Un-

fortunately, these solutions cannot scale to a large number of network nodes in an open

3

se�ing where participants can freely join or leave the system any time they want. In more

details, a secure bootstrapping mechanism (i.e., majority voting) is required for ensuring

new participants can securely join the system. However, this “bootstrapping” cannot scale

to a large network. See Section 1.3 (Related Work) for more discussion. In one word, it

seems it is extremely di�cult to mimic Nakamoto’s footprint via virtual resources only.

On the other hand, physical resources are relatively easier to manage. Indeed,

Nakamoto demonstrates to us an amazingly practical protocol via the proof-of-work

mechanism to manage physical computing resource e�ectively. Alternative physical re-

sources such as a publicly available random beacon or secure hardware can also allow us

to construct fast protocols. See Section 1.3 (RelatedWork) for more discussion about open

blockchain via alternative physical resources.

�e practical elegance of using random oracle for cryptocurrency. Although fast

blockchain protocols can be constructed via physical resources such as random beacon or

trusted hardware, there is a signi�cant drawback in these solutions. �at is, the trapdoor

information of the system is possessed by a single party. Currently, it is not clear how

to eliminate such trapdoor information. Interestingly, blockchain via the proof-of-work

mechanism can avoid such issue in practice: the underlying proof-of-work puzzles can be

based on hash functions, and the security of the system can be argued in the so-called ran-

dom oracle model. �eoretical cryptographers may criticize random oracle methodology

since it is not sound [CGH98]. However, random oracles do enable an elegant solution to

open blockchains in practice.
2

Additional considerations. �ere are many reasons that Bitcoin has become a success-

ful system. For example, proof-of-work puzzles Bitcoin is a divisible e-cash system [OO92;

2
We note that Nakamoto’s design is consistent with the folklore wisdom of a “nothing

up my sleeve number” [Wikd] which has been widely used in practical cryptographic

designs.

4

Oka95]. Besides the pointswe discussed above, to design a practical blockchain, we in gen-

eral should avoid heavy cryptographic tools, and use only standard cryptographic primi-

tives such as hash functions and digital signature schemes. Futhermore, the design should

be simple. Finally, the provable security approach should be taken to develop blockchain

techniques. We eventually should move these powerful blockchain techniques from an

art to a science.

1.3 Related work

1.3.1 Closely related work on combining proof-of-work and proof-of-stake

Proof-of-activity. �e idea of combining proof-of-work and proof-of-stake has been

studied in [KN12; Cry14; Ben+14], and the latest one, proof-of-activity (PoA) [Ben+14] is

closest to our work. Although these studies showed that their protocols are secure against

some classes of a�acks, they do not provide any formal security model and analysis relying

on precise de�nitions. We note that the earlier proposal [Ben+14] is di�erent from our

result on both security analysis and the construction.

First, the leader election mechanism in PoA design is predictable. More speci�cally,

miners generate empty block header and then the header will be mapped toN stakehold-

ers, where N ≥ 1 and typically N is set as 3. �ey use deterministic mapping function

to elect exact N stake holders (see item 3 Figure 2 in [Ben+14]). �at said, the adaptive

adversary can easily predict future leaders and corrupt them in advance. As a result, the

protocol will not be secure even if the adversary only controls the minority of stake or

computing power. In contrast, our proposal naturally mimics Nakamoto’s footprint, and

it is the �rst adaptively secure proof-of-work / proof-of-stake hybrid consensus protocol.

In addition, we note that the PoA proposal in [Ben+14] will not immediately give us

a divisible cryptocurrency [OO92; Oka95] unless extra e�orts are paid.

5

Casper. Casper [BG17] is also a hybrid proof-of-work/proof-of-stake protocol. Infor-

mally, stakeholders can lock their stakes to be validators, and then vote for each block

whose height is an exact multiple of 100 (i.e., checkpoint). However, this voting-based

protocol only scales to a small number of validators. As the result, the protocol will even-

tually be centralized and the control is in the hand of a small number of participants.

In contrast, our proposal mimics Nakamoto’s footprint so that anyone who has coins

can join the proof-of-stake.

Decred. Another similar proposal is Decred [Jep15]. �is proposal needs an additional

trusted entity to produce tickets for participants. Informally, stakeholders will purchase

tickets and check if their tickets are selected. �en the stakeholder with the selected ticket

is quali�ed to produce a new block. Note that, he selection process is pseudo-randomized

where the pseudo-randomness is from the proof-of-work chain.

�is design is very similar to our proposal in the sense that the pseudo-randomness

for the elections of stakeholders is from the proof-of-work chain. However, no trusted

party is required in our protocol.

1.3.2 Proof-of-stake

Very recently, concurrent works (e.g., [CM17; Kia+17; PS17; DPS17; Dav+17; FZ17;

Gil+17]) have made very interesting a�empts to construct provably secure, scalable

blockchains via PoS only. We note that, our work is fundamentally di�erent from these

pure PoS proposals in the following sense: ours is based on the majority of honest collec-

tive resources (including both stake and work), while these pure PoS proposals are based

on the honest majority of stake. Combining stake with work will bring us several bene-

�ts. For example, in these pure PoS proposals, the stake holders must have their stakes

registered much earlier before participating in the mining process. In addition, some of

6

these PoS protocols may su�er from rational a�acks, including nothing at stake a�acks

and sel�sh mining a�acks; see [Coh+] for discussions. Our design does not su�er from

these a�acks.

We already discussed recent e�ort on provably secure pure proof-of-stake (PoS) pro-

posals [CM17; Kia+17; DPS17] above. Before these recent rigorous e�orts, using virtual

resources (i.e., stake) to construct cryptocurrency has been intensively considered in the

Bitcoin community. In a nutshell, the PoS mechanisms for consensus require a protocols’

players to prove ownership of virtual resources. Only those that can provide such proofs

can participate in maintaining the protocol’s blockchain, their ability to do so is propor-

tional to the stake owned. Since the inception of the idea in an online forum [Bit11], sev-

eral variants of PoS that have been proposed and implemented in real cryptocurrencies

including [NXT14; Kwo14; Vas14; BGM16; KN12; Cry14]. In general, a PoS proof sys-

tem simulates random leader election, where each participants’ chance of being elected

is proportional to the amount of stake that they control in the system. �e chosen leader

proves that they were elected by providing a cryptographic proof (a digital signature) that

they own a speci�c share of stake. We note that, these proposals lack of rigorous security

analysis.

1.3.3 Cryptocurrency and security analysis

Anonymous digital currency was introduced by Chaum [Cha82] in the early 1980s.

�e �rst decentralized currency system, Bitcoin [Nak08], was launched about 30 years

later, by incentivizing a set of players to solve moderately-hard cryptographic puzzles

(also called proofs-of-work puzzles [DN93; Bac02]). Recently, the security of Bitcoin sys-

tem has been analyzed in the rational se�ing, e.g., [ES14; Eya15; Nay+15; Kia+16; SSZ16;

Sch+16], and also in cryptographic se�ing [GKL15; PSS17a; SZ15; KP15; KP16]. Several

important security properties, common pre�x, chain growth, and chain quality, have been

7

considered for secure blockchain protocols. �e common pre�x and chain quality prop-

erties were originally formalized by Garay et al. [GKL15]. �e chain growth property

was �rst formally de�ned by Kiayias et al. [KP15]. �e common pre�x property was later

strengthened by Pass et al. [PSS17a]. In our study, we adopt the stronger variant of the

common pre�x property by Pass et al. [PSS17a] together with the chain quality and chain

growth from [KP15; GKL15].

Very recently, Vassilis et al. [Bad+17] propose a simulation-based analysis for Bit-

coin protocol. More speci�cally, they put forth a universally composable treatment of the

Bitcoin protocol, formalizing ledger functionality and leader election (lo�ery) via proof-

of-work, and show that the three security properties can be implied by the ledger func-

tionality.

1.3.4 More alternative consensus techniques

Similar to PoW, alternative consensus techniques via di�erent physical resources

have been considered to replace computing power. For example, the physical storage

resource is used in [Par+15; Mil+14; Abu+17]. Between the use of space/memory and the

use of time, are proofs of space time introduced in [MO16]. �is is a hybrid proof system

utilizing both computational and space resources. Finally, trusted hardware has been used

for constructing blockchain protocols in [Int16b; Zha+17].

8

CHAPTER 2

BACKGROUND

2.1 Cryptography

2.1.1 Notation

�roughout this thesis, we denote κ ∈ N as the security parameter. We write {0, 1}κ

as the set of binary strings of length κ and {0, 1}∗ to indicate the set of all �nite, binary

strings.

Negligible function. We o�en need to show that cryptographic schemes can be broken

with only very small probability that goes to 0 faster than any inverse polynomial. We call

such probabilities, negligible. �e formally de�nition of negligible function is as follows.

De�nition 1. We call a function negl negligible if for every polynomial poly, there exists

an N such that for all κ > N , negl(κ) < 1
poly(κ)

2.1.2 Probabilistic inequalities

�eorem 1 (Bernoulli’s inequality). For q ≥ 1 and 0 ≤ p ≤ 1, (1− p)q ≥ 1− pq

�eorem 2 (Cherno� bounds). Suppose {Xi : i ∈ [n]} are mutually independent Boolean

random variables, with Pr[Xi = 1] = p, for all i ∈ [n]. Let X =
∑n

i=1Xi and µ = pn.

�en, for any δ ∈ (0, 1],

Pr[X ≤ (1− δ)µ] ≤ e{δ2µ/2} and Pr[X ≥ (1 + δ)µ] ≤ e{δ2µ/3}

9

2.1.3 Cryptographic Primitives

2.1.3.1 Collision-resistant hash functions

Generally, hash functions are used to compress any arbitrary-length strings into

shorter strings. More precisely, each hash function H of size κ has a table of length κ,

then for each input string x, it will store x with the corresponding shorter string H(x)

in the table. A hash function should be ”good” in the sense that it only yields as few as

possible pairs of the distinct input x and x′ with the same hash strings, i.e., H(x) = H(x′)

(called collision). Also, collision resistance does not mean that no collisions exist, simply

that they are hard to �nd.

Informally, a function H is collision resistant if it is infeasible for any probabilistic

polynomial-time algorithm to �nd a collision in H. In other words, collisions should be

very hard to �nd. In [LK14], the formal de�nition of a hash function is as follows.

Note that, for formal presentation, we consider a family of hash functions indexed

by a key s. However, di�erent from cryptographic keys, the key s is 1) not kept secret,

and 2) will be generated by an algorithm Gen.

De�nition 2. A hash function is a pair of probabilistic polynomial time algorithms (Gen,H)

satisfying the following:

• Gen is a probabilistic algorithm which takes as input a security parameter 1κ and

outputs a key s. We assume that 1κ is implicit in s.

• �ere exists a polynomial ` such that H takes as input a key s and a string x ∈ {0, 1}∗

and outputs a string Hs(x) ∈ {0, 1}`(κ)
(where κ is the value of the security parameter

implicit in s)

De�nition 3. A hash functionΠ = (Gen,H) is collision-resistant if for all polynomial-time

adversaries A, there exists a negligible function negl such that

10

Pr[Hash-collA,Π(κ) = 1] ≤ negl(κ)

where the experiment Hash-collA,Π(κ) is de�ned as follows.

�e collision-�nding experiment Hash-collA,Π(κ):

• A key s is generated by running Gen(1κ).

• �e adversary A is given s and outputs x, x′. (If Π is a �xed length hash function for

inputs of length `′(κ) then we require x, x′ ∈ {0, 1}`′(κ)
.)

• �e output of the experiment is de�ned to be 1 if and only if x 6= x ′ and Hs(x) =

Hs(x′). In such a case we say that A has found a collision.

We also emphasize that hash functions used in practice are o�en unkeyed. In other

words, a �xed hash function H is de�ned, and there is no longer any notion of a Gen

algorithm. However, it is important to include keys theoretically since it is not clear how

to de�ne a meaningful notion for the unkeyed hash functions [LK14],

2.1.3.2 Digital signature

Digital signature is a tool to preserve the integrity of messages. More concretely, any

signer with an established public and private keys can sign message in such a way that

other parties can use the public key to verify that themessage is originated from the signer

who has the keys. A signature scheme is “secure” if no party can force a valid signature

without having the secret key. In [LK14], the formal de�nition of a digital scheme is as

follows

De�nition 4. A signature scheme is a tuple of three probabilistic polynomial-time algo-

rithms (Gen, Sign,Verify) satisfying the following:

1. �e key-generation algorithm Gen takes as input a security parameter 1κ and outputs

11

a pair of keys (vk, sk). �ese are called the public key and the private key, respectively.

We assume for convenience that vk and sk each have length at least κ, and that κ can

be determined from vk, sk.

2. �e signing algorithm Sign takes as input a private key sk and a messagem ∈ {0, 1}∗.

It outputs a signature σ, denoted as σ ← Signsk(m).

3. �e deterministic veri�cation algorithm Verify takes as input a public key vkm a mes-

sage m, and a signature σ. It outputs a bit b, with b = 1 meaning valid and b = 0

meaning invalid. We write this as b := Verifyvk(σ,m).

It is required that for every κ, every vk, sk output by Gen(1κ), and every m ∈ {0, 1}∗, it

holds that

Verifyvk(m, Signsk(m)) = 1

If (Gen, Sign,Verify) is such that for every (vk, sk) output by Gen(1κ), algorithm Signsk

is only de�ned for messages m ∈ {0, 1}`(κ)
(and Verifyvk outputs 0 for m 6∈ {0, 1}`(κ)

, then

we say that (Gen, Sign,Verify) is a signature scheme for messages of length `(n)).

A signature scheme is used as follows: a singer S runs Gen(1κ) to get the public and

private keys (vk, sk). �en publicly announce the public key vk belonging to the signer

S. If S needs to send a message m to other party, it computes σ ← Signsk(m) and gives

(m,σ) to the receiver. �e receiver knowing the public key vk can verify the authenticity

ofm by checking whether Verifyvk(σ,m) = 1.

Intuitively, we want to ensure that no malicious party can force a valid signature and

message pair without knowing the corresponding secret key. In other words, only the

owner of the key pair can produce the valid signatures. Let Π = (Gen, Sign,Verify) be a

signature scheme. �e security of the signature scheme is formally de�ned as follows.

12

De�nition 5. A signature schemeΠ = (Gen, Sign,Verify) is existentially unforgeable under

an adaptive chosen-message a�ack if for all probabilistic polynomial-time adversaries A,

then there exists a negligible function negl such that:

Pr[Sig-forceA,Π(κ) = 1] ≤ negl(κ)

where the signature experiment Sig-forceA,Π(κ) is de�ned as follows:

• Gen(1κ) is run to obtain keys (vk, sk).

• AdversaryA is given vk and oracle access to Signsk(·). (�is oracle returns a signature

Signsk(m) for any message m of the adversary’s choice.) �e adversary then outputs

(m,σ). LetQ denote the set of messages whose signatures were requested byA during

its execution.

• �e output of the experiment is de�ned to be 1 if and only if (1) Verifyvk(m,σ) = 1,

and (2)m 6∈ Q.

Unique signature scheme. Unique signature scheme was introduced in [Lys02],

which consists of four algorithms, a randomized key generation algorithm uKeyGen, a de-

terministic key veri�cation algorithm uKeyVer, a deterministic signing algorithm uSign,

and a deterministic veri�cation algorithm uVerify. We expect for each veri�cation key

there exists only one signing key. We also expect for each pair of message and veri�ca-

tion key, there exists only one signature. We have the following de�nition.

De�nition 6. We say (uKeyGen, uKeyVer, uSign, uVerify) is a strengthened unique signa-

ture scheme, if it satis�es:

Correctness of key generation: Honestly generated key pair can always be veri�ed. More for-

13

mally, it holds that

Pr

[
(pk, sk)← uKeyGen(1κ) : uKeyVer(pk, sk) = 1

]
≥ 1− negl(κ)

Uniqueness of signing key: �ere does not exist two di�erent valid signing keys for a veri�-

cation key. More formally, for all ppt adversary A, it holds that

Pr

 (pk, sk1, sk2)← A(1κ)

: uKeyVer(pk, sk1) = 1 ∧ uKeyVer(pk, sk1) = 1 ∧ sk1 6= sk2

 ≤ negl(κ)

Correctness of signature generation: For any message x, it holds that

Pr

 (pk, sk)← uKeyGen(1κ);σ := uSign(sk, x)

: uVerify(pk, x, σ) = 1

 ≥ 1− negl(κ)

Uniqueness of signature generation: For all ppt adversary A,

Pr

 (pk, x, σ1, σ2)← A(1κ)

: uVerify(pk, x, σ1) = 1 ∧ uVerify(pk, x, σ2) = 1 ∧ σ1 6= σ2

 ≤ negl(κ)

Unforgeability of signature generation: For all ppt adversary A,

Pr

 (pk, sk)← uKeyGen(1κ); (x, σ)← AuSign(sk,·)(1κ)

: uVerify(pk, x, σ) = 1 ∧ (x, σ) 6∈ Q

 ≤ negl(κ)

where Q is the history of queries that the adversary A made to signing oracle

uSign(sk, ·).

Instantiations for the unique signature scheme. E�cient instantiations can be

found in literature. For example, the well-known BLS signature [BLS01] can be a good

candidate.

14

2.1.4 �e standard simulation paradigm

We here provide a (tailored) review of the standard simulation paradigm [GMW87].

We remark that this section follows closely Cane�i’s elegant work [Can00b, Sections 3,4]

but we restrict it in the standalone se�ing; furthermore, protocol composition has been

excluded since this is not our focus.

2.1.4.1 ITM

For the readers’ convenience, we use the following ITM related de�nitions from

Cane�i’s work [Can00b].

De�nition 7. An interactive Turing machine (ITM)M is a Turing machine with the follow-

ing augmentations:

Special tapes (i.e., data structures):

• An identity tape. �e contents of this tape is interpreted as two strings. �e �rst string

contains a description, using some standard encoding, of the program ofM (namely,

its transition function). We call this description the code of M . �e second string is

called the identity ofM . �e identity ofM together with its code is called the extended

identity ofM . �is tape is “read only”. �at is,M cannot write to this tape.

• An outgoing message tape. Informally, this tape holds the current outgoing message

generated by M, together with su�cient addressing information for delivery of the

message.

• �ree externally writable tapes for holding inputs coming form other computing devices

(or, processes):

– An input tape, representing inputs from the “calling program(s)” or external user.

– An incoming communication tape, representing information coming from other

15

programs within the same “protocol instance”.

– A subroutine output tape, representing outputs coming from programs or modules

that were created as “subroutines” of the present program.

• A one-bit activation tape. Informally, this tape represents whether the ITM is currently

“in execution”.

New instructions:

• An external write instruction. Roughly, the e�ect of this instruction is that the message

currently wri�en on the outgoing message tape is possibly wri�en to the speci�ed tape

of the machine with the identity speci�ed in the outgoing message tape.

• A read next message instruction. �is instruction speci�es a tape out of { input, incom-

ing communication, subroutine output }. �e e�ect is that the reading head jumps to

the beginning of the next message.

Executing Systems of ITMs. We specify the mechanics of executing a system that

consists of multiple ITMs. However, some signi�cant di�erences from that sketch do

exist. First, here wemake an explicit distinction between an ITM,which is a “static object”,

namely an algorithm or a program, and an ITM instance (ITI), which is a “run-time object”,

namely an instance of a program running on some speci�c data. In particular, the same

program (ITM) may have multiple instances (ITIs) in an execution of a system.

Second, the model provides a concrete mechanism for addressing ITIs and exchang-

ing information between them. �e mechanism speci�es how an addresee is determined,

what information the recipient obtains on the sender, and the computational costs in-

volved.

�ird, the model allows the number of ITIs to grow dynamically in an unbounded

way as a function of the initial parameters, by explicitly modeling the “generation” of new

16

ITIs. Furthermore, new ITIs may have dynamically determined programs. Here the fact

that programs of ITMs can be represented as strings plays a central role.

Fourth, we augment the executionmodel with a control function, which regulates the

transfer of information between ITIs. Speci�cally, the control function determines which

“external write” instructions are “allowed”. �is added construct provides both clarity and

�exibility to the execution model: All the model restrictions are expressed explicitly and

in “one place.” Furthermore, it is easy to de�ne quite di�erent execution models simply

by changing the control function.

Writing to a tape of another ITI and invoking new ITIs. �e mechanism that al-

lows communication between ITIs is the external write instruction. �e same instruction

is used also for invoking new ITIs. More speci�cally, the e�ect of an external write instruc-

tion is the following. Let µ = (M, id) denote the ITI which performs the external write

transition, �e current contents of the outgoing message tape is interpreted (using some

standard encoding) as consisting of µ, followed by an extended identity µ′ = (M ′, id′) of

a “target ITI”, a tape name out of {input, incoming communication, subroutine output },

and a string m called the message. �en:

1. If the control function C, applied to the current execution pre�x, does not allow µ to

write to the speci�ed tape of µ′ (i.e., it returns a disallow value) then the instruction

is ignored.

2. If C allows the operation, and an ITI µ′′ = (M ′′; id′′) with identity id′′ = id′ cur-

rently exists in the system (namely, one of the past con�gurations in the current

execution pre�x has identity id′), then:

(a) If the target tape is the incoming communication tape, then the message m is

wri�en on the incoming communication tape of µ′′, starting at the next blank

17

space. (�at is, a new con�guration of µ′′ is generated. �is con�guration is

the last con�guration of µ′′ in this execution, with the new informationwri�en

on the incoming communication tape.) It is stressed that the code M ′′
of µ′′

need not equal the codeM ′
speci�ed in the external write request.

�is convention has the e�ect that an ITI does not necessarily know the code

of the ITI it sends messages to using the communication tape. �e recipient

ITI learns neither the identity nor the code of the writing ITI. (Of course, this

information may be included in the message itself, but the model provides no

guarantees regarding the authenticity of this information.) �e intuitive goal

is to capture the e�ect of standard communication over an untrusted medium,

such as a communication network.

(b) If the target tape is the input tape or subroutine output tape, andM ′′ = M ′
,

then the speci�ed message is copied to the speci�ed tape of µ′′, along with

the code and identity of µ. IfM ′ 6= M ′′
then the message is not copied and µ

transitions to a special error state.

�is convention has the e�ect that an ITI can verify the code of the ITI to

whom it provides input or subroutine output. Furthermore, the recipient of an

input or subroutine output knows both the identity and the code of the writing

ITI. �e intuitive goal here is to capture the e�ect of communication between

processes within a trusted computing environment that allows veri�cation of

the code of receiver and sender.

3. If C allows the operation, and no ITI with identity id′ exists in the system, then a

new ITI µ′ with code M ′
and identity id′ is invoked. �at is, a new con�guration

is generated, with code M ′
, the value id′ wri�en on the identity tape, and a su�-

ciently long random string is wri�en on the random input tape. Once the new ITI

18

is invoked, the external-write instruction is carried out as in Step 2. In this case, we

say that µ invoked µ′.

2.1.4.2 Simulation paradigm

�e basic model of execution. Following [Can01; Can00b], a protocol is represented

as interactive Turing machines (ITMs), each of which represents the program to be run by

a participant. Speci�cally, an ITM has several tapes that can be wri�en to by other ITMs:

the input and output tapes model the inputs from and the outputs to “father” programs or

I/O callers, the incoming communication tapes and outgoing communication tapes model

messages received from and to be sent to the network. It also has an identity tape that

cannot be wri�en to by the ITM itself. �e identity tape contains the program of the

ITM (in some standard encoding) plus additional identifying information speci�ed below.

Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and in-

stances of ITMs, or ITIs, that represent interacting processes in a running system. Speci�-

cally, an ITI is an ITM along with an identi�er that distinguishes it from other ITIs in the

same system. Since we consider a single session, the identi�er only consists of a party

identi�er (PID) that distinguishes among the parties in a protocol instance. Typically the

PID is also used to associate ITIs with “parties”, or clusters, that represent some adminis-

trative domains or physical computers.

�e model of computation consists of a number of ITIs that can write on each other’s

tapes in certain ways (speci�ed in the model). �e identi�er PID is a unique identi�er of

the ITI in the system. With one exception (discussed within) we assume that all ITMs are

probabilistic polynomial time.

19

De�ning security of protocols. Protocols that securely carry out a given task are de-

�ned in three steps, as follows. First, the process of executing a protocol in an adversarial

environment is formalized. Next, an “ideal process” for carrying out the task at hand is

formalized. �e parties have access to an “ideal functionality,” which is essentially an in-

corruptible “trusted party” that is programmed to capture the desired functionality of the

task at hand. A protocol is said to securely realize an ideal functionality if the process of

running the protocol amounts to “emulating” the ideal process for that ideal functional-

ity. Below we overview the model of protocol execution (called the real-world model), the

ideal process, and the notion of protocol emulation.

�emodel for protocol execution. �emodel of computation consists of the parties

running an instance of a protocol π, a network adversaryA that controls the communica-

tion among the parties, and an environment Z that controls the inputs to the parties and

sees their outputs. �e execution consists of a sequence of activations,where in each acti-

vation a single participant (eitherZ ,A, or some other ITM) is activated, and may write on

a tape of at most one other participant, subject to the rules below. Once the activation of a

participant is complete (i.e., once it enters a special waiting state), the participant whose

tape was wri�en on is activated next. (If no such party exists then the environment is

activated next.)

�e environment is given an external input z and is the �rst to be activated. In its �rst

activation, the environment invokes the adversary A, providing it with some arbitrary

input. �e environment can fromnowon invoke (namely, provide input to) only ITMs that

consist of a single instance of protocol π. �at is, all the ITMs invoked by the environment

must have the same SID and the code of π.

Once the adversary is activated, it may read its own tapes and the outgoing com-

munication tapes of all parties. It may either deliver a message to some party by writing

20

this message on the party’s incoming communication tape or report information to Z by

writing this information on the subroutine output tape of Z . For simplicity of exposition,

in the rest of this paper we assume authenticated communication; that is, the adversary

may deliver only messages that were actually sent.

Once a protocol party (i.e., an ITI running π) is activated, either due to an input

given by the environment or due to a message delivered by the adversary, it follows its

code and possibly writes a local output on the subroutine output tape of the environment,

or an outgoing message on the adversary’s incoming communication tape. �e protocol

execution ends when the environment halts. �e output of the protocol execution is the

output of the environment. Without loss of generality we assume that this output consists

of only a single bit.

Let REALA,Π,Z(κ, z, r) denote the output of the environment Z when interacting

with parties running protocol π on security parameter κ, input z and random input

r = rZ , rA, r1, r2, ... as described above (z and rZ for Z ; rA for A, ri for party Pi). Let

REALA,Π,Z(κ, z) denote the random variable describing REALA,Π,Z(κ, z, r) when r is uni-

formly chosen. Let REALA,Π,Z denote the ensemble {REALA,Π,Z(κ, z)}κ∈N,z∈{0,1}∗ .

Remark 1. We note that in the rest of this research, we write EXEC for any execution in-

cluding real or ideal execution.

Ideal functionalities and ideal protocols. Security of protocols is de�ned via com-

paring the protocol execution to an ideal protocol for carrying out the task at hand. A key

ingredient in the ideal protocol is the ideal functionality that captures the desired func-

tionality, or the speci�cation, of that task. �e ideal functionality is modeled as another

ITM (representing a “trusted party”) that interacts with the parties and the adversary.

More speci�cally, in the ideal protocol for functionality F all parties simply hand their

inputs to an ITI running F . (We will simply call this ITI F . In addition, F can interact

21

F

Z

S

x1 x2

π1 π2

Z

A

π1 π2x1 x2

π1 π2

Fig. 1.: Ideal execution (le�) and real execution (right) in the standard model

with the adversary according to its code. Whenever F outputs a value to a party, the

party immediately copies this value to its own output tape. We call the parties in the ideal

protocol dummy parties. Let φ denote the ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol π emulates proto-

col φ if for any network adversary A there exists an adversary (also known as simulator)

S such that no environment Z , on any input, can tell with non-negligible probability

whether it is interacting with A and parties running π, or it is interacting with S and

parties running φ. �is means that, from the point of view of the environment, running

protocol π is as good as interacting with φ. We say that π securely realizes an ideal func-

tionality F if it emulates the corresponding ideal protocol φ. More precise de�nitions

follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

De�nition 8. Let π and φ be protocols. We say that π emulates φ if for any adver-

sary A there exists an adversary S such that for any standalone environment Z , we have

REALA,Π,Z
c≡ IDEALS,φ,Z .

De�nition 9. LetF be an ideal functionality and let π be a protocol. We say that π realizes

F if π emulates the ideal protocol φ.

22

2.1.4.3 Ideal functionalities

We here describe some functionalities which can be useful for our protocols in the

body. We also discuss some of their implementations.

Random Oracle Functionality FRO. �e random oracle model (e.g., [BR93]) captures

an idealization of a hash function. We here present the random oracle functionality FRO

that has been de�ned in [HM04].

Functionality FRO

�e functionality FRO is parameterized by a security parameter κ, and interacts with a

set P of parties, and an adversary. �e functionality keeps a list L (which is initially

empty) of pairs of bitstrings.

1. Upon receiving a value (m) (with m ∈ {0, 1}∗) from some party P ∈ P or from the

adversary, proceed as follows.

• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}κ in the list L,set h := h̃.

• if there is no such pair, choose uniformly h ∈ {0, 1}κ and store the pair (m,h) in
L.

Once h is set, reply to the requesting party with (h).

Fig. 2.: Random oracle functionality FRO.

Multi-Session Signature Functionality F̂uSIG. We present the multi-session version

of the digital signature functionality in [Can03]. While the digital signature function-

ality can be realized by a signature protocol based on ordinary signature scheme, this

functionality here can be realized a signature protocol based on unique signature scheme.

�e underlying part highlights the di�erence be between ours and that in [Can03]. �e

de�nition of unique signature scheme can be found below.

23

Functionality F̂uSIG

�e functionality F̂uSIG interacts with a set of signers {S1, . . . , Sk}, and a set of veri�ers
{V1, . . . , Vn}, and an adversary S .
Key Gerneration: Upon receiving input (Keygen, sid, ssid) from a signer

P ∈ {S1, . . . , Sk}, verify that ssid = (P, ssid′) for some ssid′. If not,

ignore the request. Otherwise, hand (Keygen, sid, ssid) to the adversary.

Upon receiving (Verification-Key, sid, ssid, vk) from the adversary, output

(Verification-Key, sid, ssid, vk) to the party P .

Signature Generation: Upon receiving input (Sign, sid, ssid,m) from a signer P ∈
{S1, . . . , Sk}, verify that ssid = (P, ssid′) for some ssid′. If not, ignore the re-

quest. Otherwise check if and no (ssid,m, σ, ·, ·) has been recorded. If not, output

(Signature, sid, ssid,m, σ). Otherwise, send (Sign, sid, ssid,m) to the adversary.

Upon receiving (Signature, sid, ssid,m, σ) from the adversary, verify that no entry

(ssid,m, σ, vk, 0) is recorded. If it is, then output an error message to P and halt. Oth-

erwise, output (Signature, sid, ssid,m, σ) to P , and record the entry (ssid,m, σ, vk, 1).

Signature Veri�cation: Upon receiving a message (Verify, sid, ssid,m, σ, vk′) from some

party P ∈ {V1, . . . , Vn}, hand (Verify, sid, ssid,m, σ, vk′) to the adversary. Upon re-

ceiving (Verified, sid, ssid,m, φ) from the adversary, do:

1. If vk′ = vk and the entry (ssid,m, σ, vk, 1) is recorded, then set f := 1.

2. Else, if vk′ = vk, the signer of subsession ssid is not corrupted, and no entry

(ssid,m, σ′, vk, 1) for any σ′ is recorded, then set f := 0.

3. Else, if there is an entry (ssid,m, σ, vk′, f ′) recorded, then let f := f ′.

4. Else, let f := φ and record the entry (ssid,m, σ, vk′, φ).

Output (Verified, sid, ssid,m, f) to P .

Fig. 3.: Multi-session signature functionality F̂uSIG.

24

2.2 Blockchain technology

2.2.1 Blockchain Notations

As in the original Bitcoin white paper [Nak08], a proof-of-work (PoW) blockchain

is created and maintained by a set of players called PoW-miners. A PoW blockchain C

consists of a sequence of ` concatenated PoW-blocks B1‖B2‖ · · · ‖B`, where ` ≥ 0. For

each blockchain, we specify several notations such as head, length, and subchain:

blockchain head, denoted head(C), refers to the topmost block B` in chain C;

blockchain length, denoted len(C), is the number of blocks in blockchain C, and here

len(C) = `;

subchain, refers to a segment of a blockchain; we use C[1, `] to denote an entire

blockchain, and use C[j,m], with j ≥ 1 andm ≤ `, to denote a subchainBj‖ · · · ‖Bm;

in addition, we use C[i] to denote the i-th block Bi in blockchain C; �nally, if

blockchain C is a pre�x of another blockchain C ′, we write C � C ′.

Similar notations can be de�ned for a proof-of-stake (PoS) blockchain C̃ which consists of

a sequence of
˜̀
concatenated PoS-blocks B̃1‖B̃2‖ · · · ‖B̃˜̀ for

˜̀> 0, and is maintained by

a set of players called PoS-holders.

2.2.2 Nakamoto’s blockchain

We here brie�y review Nakamoto’s Bitcoin blockchain [Nak08]. Bitcoin blockchain

is based on proof-of-work puzzles [DN93; Bac02], which can be abstractly described via

the following hash inequality:

H(hw, ω,X) < T

where hw ∈ {0, 1}κ is the hash of the previous proof-of-work block (κ is a security pa-

rameter), ω is a suitable solution for this puzzle, X is the record component of the block,

25

and T denotes the current proof-of-work target. See [GKL15] for more details.

Extending the chain. At any point of the protocol execution, each miner a�empts to

extend the blockchain. More concretely, upon receiving some record X , a miner chooses

random ω ∈ {0, 1}κ and checks whether ω is a valid solution to the above hash inequality

with respect to hw, hash value of the last block in the blockchain; if so, the miner reveals

the solution to the system. In Nakamoto’s design, multiple miners might �nd distinct

solutions with the same preceding block, in which a blockchain fork will be introduced.

To resolve this issue, all well-behaved (honest) miners are expected to follow the longest

blockchain in the system.

Security. Garay et al. [GKL15] and Pass et al. [PSS17a] have already rigorously analyzed

the security of Nakamoto’s blockchain in the cryptographic se�ing. In a nutshell, the

Nakamoto’s blockchain satis�es certain important security properties such as common

pre�x, chain quality and chain growth, under the assumption that the majority of com-

puting power is controlled by honest players.

26

CHAPTER 3

MODEL

3.1 Modeling blockchain protocol execution

In order to study the security of Bitcoin-like protocol, Garay et al. [GKL15] and then

Pass et al. [PSS17a] set up the �rst cryptographic models by following Cane�i’s formu-

lation of the “real world” executions [Can00a; Can00b]. In this section, we borrow many

ideas from their formulations. We further extend their models so that more blockchain

protocols, e.g., 2-hop blockchains, are allowed.

Network communication. �e underlying communication for blockchain protocols are

formulated via a functionality FNET which captures the atomic unauthenticated “send-to-

all” broadcast in an asynchronous communication se�ing. �e functionality is parame-

terized by an upper bound ∆ on the network latency, and interacts with players under

the direction of the adversary. More concretely, the functionality proceeds as follows.

Whenever it receives a message from a player, it would contact the adversary to ask the

adversary to specify the delivery time for the message. Note that, if the speci�ed delivery

time exceeds the delay upper bound ∆, the functionality would not follow the adversary’s

instruction, and only delay the message to a maximum number of ∆ rounds. �at said, no

messages are delayed more than ∆ rounds. In addition, the adversary could read all mes-

sages sent by all honest players before deciding his strategy; the adversary may “spoof”

the source of amessage they transmit and impersonate the (honest) sender of themessage.

�e functionality FNET is formally described in Figure 4.

PoW-miners and PoS-holders. We specify two types of players PoW-miner and

27

Functionality FNET

�e functionality is parametrized by ∆, and interacts with a set P of PoS-players, and the adver-

sary.

• Upon receiving (Broadcast,m) from a party P where P ∈ P , send (Broadcast,P,m) to S and

record (P,m,D) where D = 1.

• Upon receiving (Delay,m,P′,P′′, t) from S where P′,P′′ ∈ P (here, the adversary can “spoof”

the source of the message), then

– If there is a record (P,m, b) such that D = 1 and if D + t ≤ ∆, then set D := D + t, record

(delay,P′,P′′,m,D)

– Otherwise, ignore the message.

• Upon receiving (Send) from the adversary.

– For all record of form (delay, ·, ·, ·, D), set D := D − 1,

– Check for all record of form (delay, ·, ·, ·, D) such thatD = 0, then send the messages to the

speci�ed receivers in the form.

Fig. 4.: Network functionality FNET.

PoS-holder which correspond to two types of chains, speci�cally, PoW-chain and

PoS-chain; and two types of rounds that execute in turn: PoW-round and PoS-round.

�ese two types of chains are tied and grow together (at the same rate.) �at said, a

chain-pair including a PoW-chain and a PoS-chain should have two member chains of

the roughly similar length. If the PoW-chain or PoS-chain in this pair grows too fast, this

chain-pair becomes invalid. Note that the PoW-miners and PoS-holders are playing di�er-

ent roles in our model; however, without the collaboration of these two types of players,

our model cannot be secure.

In our model, without loss of generality, we assume all PoW-miners have the

same amount of computing power and all PoS-holders have the same amount of stake.

Note that this is an “idealized model”. In the reality, each di�erent honest PoW-miner

or PoS-holder may have a di�erent amount of computing power/stake; nevertheless,

this idealized model does not sacri�ce generality since one can imagine that real hon-

28

est PoW-miners/PoS-holders are simply clusters of some arbitrary number of honest

idealized-model PoW-miners/PoS-holders. We note that the protocol’s players may never

be certain about the number of participants in the protocol execution, given the unauthen-

ticated nature of the communication model. Moreover, for simplicity, only a standalone

static model is considered in this model, and the number of players is �xed during the

course of the protocol execution.

In each PoW-round, PoW-miners have ability proportionally to their computing

power to produce proof-of-work blocks. More concretely, upon receiving messages which

include many chain-pairs from the network, each PoW-miner would choose the best valid

chain-pair, and then utilize his computing power to solve the PoW puzzle in order to

extend the best chain-pair in this round. On the other hand, in each PoS-round, the

PoS-holder with the derived identity from the new PoW-block of the previous PoW-round

is able to generate a new PoS-block, and then appends the new block to the best chain-pair

on his local view. Note that, for each PoS-holder, the probability of being chosen is based

on the amount of stake that party has. �e detail of our blockchain execution is presented

below.

�e execution of proof-of-work blockchain protocol. Following Cane�i’s formu-

lation of the “real world” executions [Can00a; Can00b], we present an abstract model

for hybrid proof-of-work/proof-of-stake blockchain protocol Π = (Πw,Πs) in the hybrid

model where Πw
and Πs

denote the code run by PoW-miners and PoS-holders, respec-

tively. We consider the execution of the blockchain protocol Π = (Πw,Πs) that is directed

by an environmentZ(1κ) (where κ is a security parameter), which activates an n bounded

number of PoW-miners and ñ bounded number of PoS-holders. �e execution proceeds in

rounds. Without loss of generality, we assume that odd rounds correspond to PoW-miners,

and even rounds correspond to PoS-holders. �e environment Z can “manage” protocol

players through an adversary A that can adaptively corrupt honest parties.

29

Preparation phase. Any active PoW-miners and PoS-holder, before participating in the

mining process, will obtain additional information from the system based on its initial

state. More concretely, PoW-miners and PoS-holder will obtain the entire blockchain in-

formation from the system, and store the blockchain information in its storage.

Execution phase. Any active PoW-miners or PoS-holder can join the mining process

a�er the preparation phase. �e mining process consists of multiple rounds. In each

round, the environment Z provides inputs for all miners and receives outputs from these

miners, and the miners communicate with each other. More concretely, in each round,

each honest miner receives an input from the environment Z , and potentially receives

incoming network messages (delivered by the adversary A), and then updates its local

storage; then based on the stored information, it carries out some mining operations; in

the case that a new block is generated, the miner sends out the new block via Broadcast()

which will be guaranteed to be delivered to all miners in the beginning of the next round.

Note that, at any point of the execution, the environment Z can communicate with the

adversary A or access the local information of the miners. In addition have ideal access

to an unbounded number of copies of some ideal functionality F .

For simplicity, we consider the static computing power and stake se�ing (where the

total amount of computing power and stakes invested to the protocol will not change

over time). We consider adaptive adversaries who are allowed to take control of protocol

players on the �y. At any point of the execution, Z can send message (Corrupt, P) to

adversary A. From that point, A has access to the party’s local state and controls P .

Let EXECFΠ,A,Z be a random variable denoting the joint view of all parties (i.e., all

their inputs, random coins and messages received, including those from the random or-

acle and signatures) in the above F-hybrid execution; note that this joint view fully de-

termines the execution. Whenever F are clear from context we o�en write EXECΠ,A,Z or

EXEC(Πw,Πs),A,Z .

30

3.2 Modeling proof-of-work

3.2.1 Functionality F∗PoW

In our se�ing, the PoW-miners have limited ability to produce proofs of work. To cap-

ture this, all PoW-miners are assumed to have access to a physical resource setup F∗PoW

which manages a huge “farm of computing devices” (represented by “nonces”), and these

devices are provided by the environment Z through the adversary. In order to utilize the

computing power of the functionality, each player needs to register the computing ser-

vices of F∗PoW or disconnect the services at some later points. Indeed, this captures the

dynamic computing power se�ing where di�erent players could consume the computing

resource for di�erent windows of time. Functionality F∗PoW abstracts out the Bitcoin like

mining process; this will simplify the design and analysis of protocols based on such min-

ing ecosystem. Here, each PoW-miner is able to request one search query from F∗PoW that

consumes one unit of computing power granted in each execution round. �en the player

can only �nd it with a certain probability p. Besides the computing services, the setup

also provides the veri�cation services which allow any player to verify solutions in many

times. Please refer to Figure 5 for more details.

As discussed above, this is an “idealized” interpretation of the se�ingwhere all miners

have the same amount of computing power; nevertheless, this idealized model does not

sacri�ce generality. �e adversary A is allowed to perform at most t queries per round,

where t is the number of corrupted PoW-miners. �us, the computing power is consumed

by querying the functionality in a bounded number of times.

We remark that we are not the �rst to formulate the setup of computing resources.

Earlier e�orts can be found in [KMS14; PSS17a]. We argue that, our F∗PoW formulation is

more rigorous than the previous e�orts; we explicitly model how the computing resource

is managed and distributed from the environment to parties. In our model, each party can

31

Functionality F∗PoW

�e functionality is parameterized by a PoW parameter p, a PoW security parameter κ, and in-

teracts with PoW-miners {W1, . . . ,Wn}, PoS-holders {Sn+1, . . . , Sn+ñ}, as well as an adversary S .

1. Computing Resource Registration. Upon receiving a message (Work-Register,Wi) from

party Wi ∈ {W1, . . . ,Wn}, pass the message to the adversary. Upon receiving a message

(Work-Registered,Wi, ω) from the adversary, record (Wi, ω), and pass ω to the party Wi (the

party Wi registered.)

2. Work �ery. Upon receiving (Search, ω, context) from a PoW-miner Wi or from the adversary

where ω ∈ {0, 1}κ, proceed as follows.

(a) If there is record (·, 〈context , ω〉, bwi), then send (Searched,Wi, b
w
i) to the player.

(b) Otherwise, check If (Wi, ω) is not recorded, then ignore the message. Otherwise, if (Wi, ω)

is recorded (the partyWi registered and granted one unit of computational resource), then

delete the record (Wi, ω), and process the following.

• with probability p, set bwi := 1, (the party Wi discovers the solution,)

• with probability 1− p, set bwi := 0. (the party Wi does not discover the solution.)

�en record (Wi, 〈context , ω〉, bwi). �en send (Searched,Wi, b
w
i) to the player Wi

3. Work Veri�cation �ery. Upon receiving (RO-Verify, context , ω) from a party P where P ∈
{W1, . . . ,Wn, Sn+1, . . . , Sn+ñ} or from the adversary, check if there exists a recorded entry

(·, 〈context , ω〉, bwi) then send (RO-Verified, bwi) to the party P . Otherwise, output error.

Fig. 5.: Proof-of-work functionality F∗PoW.

register and receive the computing resource represented by nonce ω under the control of

the environment. �at said, this model naturally captures the joining of new players or

the rejoining of old players.

Furthermore, our F∗PoW is closely related to, but di�erent from FTree in [PSS17a] and

FStX [Bad+17] . In [PSS17a], a “per protocol” approach is taken. �at is, for di�erent

blockchain protocol, say GHOST protocol [SZ15], a di�erent variant of FTree should be

de�ned. We take a di�erent approach; we abstract the essence of the underlying resources,

and our proof-of-work functionalityF∗PoW can be used for di�erent PoW-based blockchain

protocols, and we do not need to revise the setup per protocol. Similar to FTree and ours,

In [Bad+17], the functionality FStX abstracts out the election process where messages are

accepted with a certain probability. However, FStX additionally checks the validity of the

32

“input messages“ (“context“ in our functionality) with respect to the historical state. On

the other hand, ourF∗PoW only captures the proof-of-workminingmechanism, the validity

of the context is not covered. �is demonstrates the purpose of our model. Speci�cally,

we want to abstract the proof-of-work mechanism or how players �nd the solutions for

puzzles only. �is F∗PoW can be used to analyze any PoW-based blockchain protocols.

3.2.2 Implementing F∗PoW in FRO-hybrid model

As discussed in section 3.2.1, the functionality F∗PoW is implemented by a random

oracle functionality FRO [HM04]. We denote φ∗PoW as the ideal protocol for an ideal func-

tionality F∗PoW and πPoW as the protocol in the FRO-hybrid model. In the ideal protocol

φ∗PoW, players are dummy since they just forward the messages received from the envi-

ronment Z to the functionality F∗PoW, and then forward the messages received from the

functionality to the environment. On the other hand, upon receiving messages from the

environment, the players in πPoW execute the protocol and then pass the outputs to the

environment. Note that, we allow each PoW-miner to receive only one unit of computing

power (one chance of querying the random oracle) per round.

Essentially, protocol πPoW captures the core of PoW-based blockchain (e.g., Bitcoin).

Informally, πPoW carries out the following two main steps: �rst, each PoW-miner is

able to“mine” for a puzzle solution of a hash inequality; a�er that, any other players

(PoW-miners or PoS-holders) can verify the found solution. �e formal description of

protocol πPoW is given in Figure 6.

LetS be the adversary against the ideal protocolφ∗PoW, andA be the adversary against

the hybrid protocol πPoW. We now show that πPoW is as “ secure” as φ∗PoW with respect

to the adversary S . Let EXECFRO
πPoW,A,Z be the random variable denoting the joint view

of all parties in the execution of πPoW with the adversary A and an environment Z . In

addition, let EXEC
F∗PoW
φ∗PoW,S,Z

be the random variable denoting the joint view of all parties in

33

Protocol πPoW

�e protocol is parameterized by a PoW parameter p and a security parameter κ.

Each PoW-minerWi, where 1 ≤ i ≤ n, proceeds as follows.

1. Upon receiving (Work-Register,Wi) from the environment Z , if (Wi, ω) is already recorded,

then ignore the message. Otherwise, choose ω ∈ {0, 1}κ, record (Wi, ω), and pass the message

(Work-Registered,Wi, ω) to the environment.

2. Upon receiving (Search,Wi, context) from the environment Z , if recored ω, then query the func-

tionality FRO on input B = (context , ω) and then obtain output h . If h ≤ T where T = p · 2κ, set
bwi := 1. Otherwise, if h > T, set bwi := 0 send (Searched,Wi, b

w
i) to the environment.

Each player P ∈ {W1, . . . ,Wn, Sn+1, . . . , Sn+ñ} proceeds as follows. Upon receiving

(RO-Verify, context , ω) from the environment Z , send (context , ω) to the functionality FRO

and receive h . If h ≤ T, set bwi =:= 1. Otherwise, if h > T, set bwi := 0. �en send

(RO-Verified, bwi) to the environment.

Fig. 6.: Proof-of-work protocol πPoW.

the execution of φ∗PoW with the adversary S and an environment Z .

Lemma 1. Consider protocol πPoW in Figure 6 and the ideal protocol φ∗PoW described above.

Assume pn � 1, where p is a PoW parameter and n is the total number of PoW-miners. It

holds that the two ensembles EXECFRO
πPoW,A,Z and EXEC

F∗PoW
φ∗PoW,S,Z

are perfectly indistinguish-

able.

Proof. We show that the two executions are perfectly close by the following simulation.

Consider the adversary A for πPoW, we now construct an adversary S on input 1κ and a

PoW parameter p for φ∗PoW as follows. Note that, the adversary S stores a table T .

1. Upon receiving (Work-Register,Wi) from the functionality F∗PoW for honest par-

ties, choose random ω ← {0, 1}κ, then send (Work-Registered,Wi, ω) to F∗PoW.

For corrupted parties, wait to receive (context , ω) when the corrupted parties (con-

trolled by A) query FRO and set the nonce.

2. Upon receiving (context , ω) from any partyWi (corrupted or uncorrupted), if there

is a record ((context , ω), bwi , h) in T , then send h to Wi. Otherwise, if there is no

34

record ((context , ω), bwi), send (Search, ω, context) to F∗PoW and

Upon receiving (Searched,Wi, b
w
i) from F∗PoW. if bwi = 1 choose random h ∈

{0, 1}κ such that h ≤ T. Otherwise if bwi = 0 choose random h ∈ {0, 1}κ such that

h > T where T = p · 2κ. �en record ((context , ω), bwi , h). and then send h toWi

Since there are no interactions with the adversary A or corrupted parties in regis-

tration phase and veri�cation query phase, the simulator does not need to simulate

these phases.

We demonstrate that EXECFRO
πPoW,A,Z and EXEC

F∗PoW
φ∗PoW,S,Z

are perfectly indistinguishable. �is

is done by showing that the joint view of all parties in the execution of πPoW with adver-

saryA and environmentZ is perfectly indistinguishable from the joint view of all parties

in the execution of φ∗PoW with S and Z . We can easily see that (1) each random oracle

query fromA is sampled uniformly at random from a set {0, 1}κ, and (2) each work query,

or veri�cation query to F∗PoW is also sampled uniformly at random from the set {0, 1}κ.

�erefore, the two ensembles EXECFRO
πPoW,A,Z and EXEC

F∗PoW
φ∗PoW,S,Z

are perfectly close.

3.3 Modeling proof-of-stake

3.3.1 Unpredictable unique signature functionality FuuSIG

�e usual unique signature functionality is too weak for proof-of-stake related pro-

posals since the adversary can see the distribution of signatures and predict future elec-

tion. �us, we need the unpredictability of the signature scheme. �is is formalized via

the unpredictable unique signature scheme in Figure 7

35

Functionality FuuSIG

�e functionalityFuuSIG interacts with a set of signers {S1, . . . , Sk}, and a set of veri�ers
{V1, . . . , Vn}, and an adversary S .

1. Key Gerneration: Upon receiving input (Keygen, sid, ssid) from a signer

P ∈ {S1, . . . , Sk}, verify that ssid = (P, ssid′) for some ssid′. If not,

ignore the request. Otherwise, hand (Keygen, sid, ssid) to the adversary.

Upon receiving (Verification-Key, sid, ssid, vk) from the adversary, output

(Verification-Key, sid, ssid, vk) to the party P .

2. Signature Generation: Upon receiving input (Sign, sid, ssid,m) from a signer P ∈
{S1, . . . , Sk}, verify that ssid = (P, ssid′) for some ssid′. If not, ignore the re-

quest. Otherwise check if and no (ssid,m, σ, ·, ·, ·) has been recorded. If not, output

(Signature, sid, ssid,m, σ, h). Otherwise, send (Sign, sid, ssid,m) to the adversary.

Upon receiving (Signature, sid, ssid,m, σ) from the adversary, verify that no entry

(ssid,m, σ, ·, vk, 0) is recorded. If it is, then output an error message to P and halt.

Otherwise, choose random h ∈ {0, 1}κ and output (Signature, sid, ssid,m, σ, h) to P ,
and record the entry (ssid,m, σ, h, vk, 1).

3. Signature Veri�cation: Upon receiving a message (Verify, sid, ssid,m, σ, h, vk′) from

some party P ∈ {V1, . . . , Vn}, hand (Verify, sid, ssid,m, σ, vk′) to the adversary. Upon
receiving (Verified, sid, ssid,m, φ) from the adversary, do:

(a) If vk′ = vk and the entry (ssid,m, σ, h, vk, 1) is recorded, then set f := 1.

(b) Else, if vk′ = vk, the signer of subsession ssid is not corrupted, and no entry

(ssid,m, σ′, vk, 1) for any σ′ is recorded, then set f := 0.

(c) Else, if there is an entry (ssid,m, σ, vk′, f ′) recorded, then let f := f ′.

(d) Else, let f := φ and record the entry (ssid,m, σ, vk′, φ).

Output (Verified, sid, ssid,m, f) to P .

Fig. 7.: Unpredictable unique signature functionality FuuSIG.

36

3.3.2 Functionality F∗PoS

In this subsection, we introduce our proof-of-stake functionality F∗PoS describing the

usage of virtual resource in our system. Please refer to Figure 8 for more details.

Similar to the proof-of-work functionality F∗PoW, the proof-of-stake functionality are

introduced to capture the leader election process via the virtual resource, i.e., stakes. Intu-

itively, players having stakewill have a certain chance (with probability p̃) of being elected

as the leader. �is guarantees that the more stakes players have, the be�er chances of be-

ing elected.

3.3.3 Implementing F∗PoS in {FuuSIG,FRO}-hybrid model

We denote φ∗PoS as the ideal protocol for an ideal functionality F∗PoS, and πPoS as pro-

tocol in the {FuuSIG,FRO}-hybrid model. In the ideal protocol φ∗PoS, the dummy players

only forward the messages received from the environment to the functionality F∗PoS, and

then forward the messages received from the functionality to the environment. Infor-

mally, each PoS-holder through his stake determines whether he is the elected leader in

the current round or not; then he is able to generate a valid signature, which can later be

veri�ed by any other players. �e protocol πPoS is formally described in Figure 9.

Let S be the adversary against the ideal protocol φ∗PoS, and A be the adversary

against protocol πPoS. Let EXEC
F∗PoS
φ∗PoS,S,Z

be the random variable denoting the joint view

of all parties in the execution of φ∗PoS with the adversary S and an environment Z . Let

EXECFuuSIG,FRO
πPoS,A,Z be the random variable denoting the joint view of all parties in the execu-

tion of πPoS with the adversary A and an environment Z .

Lemma 2. Consider φ∗PoS described above and πPoS in Figure 9. Assume p̃ñ � 1, where p̃

is a PoS parameter and ñ is the total number of PoS-holders. It holds that the two ensembles

EXEC
F∗PoS
φ∗PoS,S,Z

and EXECFuuSIG,FRO
πPoS,A,Z are perfectly indistinguishable.

37

Functionality F∗PoS

�e functionality is parameterized by a PoS parameter p̃, a security parameter κ, and interacts

with PoW-miners {W1, . . . ,Wn}, PoS-holders {Sn+1, . . . , Sn+ñ}, as well as an adversary S .

1. Stake Resource Registration.

Upon receiving a message (Stake-Register, Sj) from party Sj ∈ {Sn+1, . . . , Sn+ñ}, if there is an
entry (Sj , 1), then ignore the message. Otherwise, pass the message to the adversary. Upon

receiving a message (Stake-Registered, Sj , vk) from the adversary, record (Sj , vk), and pass vk to

the party Sj (the party Sj registered.)

2. Stake Election: Upon receiving (Elect, vk, context) from a PoS-holder Sj , proceed as follows.

If (Sj , vk) is not recorded, then ignore the message. Otherwise, proceed the following.

• If (Elect, context , Sj , ω̃, vk, b
s
j) has been recored, send (Elected, Sj , ω̃, b

s
j) to Sj

• Otherwise,

– if (Sign, Sj , context , ω̃, ·) has been recorded, then ignore the input.

– Otherwise, send (Elect-Sign, Sj , context) to the adversary. Upon receiv-

ing (Elect-Signed, Sj , context , ω̃) from the adversary, verify that no entry

(Sign, Sj , context , ω̃, 0) is recorded. If it is, then output an error message (Error) to

Sj and halt. Else, record the entry (Sign, Sj , context , ω̃, 1).

�en

– with probability p̃, set bsj := 1 and send (Elected, Sj , ω̃, b
s
j) to Sj . (the party Sj is

elected.)

– with probability 1 − p̃, set bsj := 0 and send (Elected, Sj , ω̃, b
s
j) to Sj (the party Sj is

not elected.)

and record the entry (Elect, context , Sj , ω̃, vk, b
s
j).

3. Stake Veri�cation: Upon receiving (Stake-Verify, (Sj , context), ω̃, vk) from a party P ∈
{W1, . . . ,Wn, Sn+1, . . . , Sn+ñ} or from the adversary,

(a) If there exists a record of the form (Elect, context , Sj , ω̃, vk, b
s
j) where bsj = 1 (the party

Sj is elected), hand (Stake-Verify, (Sj , context), ω̃, vk) to the adversary. Upon receiving

(Stake-Verified, (Sj , context , ω̃), φ) from the adversary, do:

• If (Sign, Sj , context , ω̃, vk, 1) is recorded, then set f := 1.

• Else, if Sj is not corrupted, and no entry (Sign, Sj , context , ω̃
′, vk, 1) for any ω̃′ is

recorded, then set f := 0 and record the entry (Sign, Sj , context , ω̃, vk, f)

• Else, if there is an entry (Sign, Sj , context , ω̃, vk, f
′), then set f := f ′.

• Else, set f := φ, and record the entry (Sign, Sj , context , ω̃, vk, f).

Output (Stake-Verified, (Sj , context), f) to the party P .

(b) Otherwise, if there is no record of the form (Elect, context , Sj , ω̃, vk) (the party Sj is not

elected), set f := 0, and output (Stake-Verified, (Sj , context), f) to the party P .

Fig. 8.: Proof-of-stake functionality F∗PoS.

38

Protocol πPoS

�e protocol is parameterized by a PoS parameter p̃ and a security parameter κ.

Each S ∈ P0, proceeds as follows.

1. Upon receiving (Stake-Register, S) from the environment, pass (Keygen, sid, ssid) for some

sid, ssid where ssid = (S, ssid′) for some ssid′ to the functionality FuuSIG. Upon receiving

(Verification-Key, sid, ssid, vk) from F̂uSIG, record (S, vk). �en send vk to the environment.

2. Upon receiving (Elect, S, context) from the environment Z , send (Sign, sid, ssid, S, context) to the

functionality FuuSIG.

Upon receiving (Signature, sid, ssid, (S, context), ω̃, h) from FuuSIG, send (context , vk, ω̃, h) to the

functionality FRO and receives h̃puzz

.

• If h̃puzz > T where T = p̃ · 2κ, then set bs := 0.

• Else, set bs := 1.

Send (Elected, S, ω̃, bs) to the environment.

3. Upon receiving (Stake-Verify, S, context , ω̃, h, vk) from the environment Z , then

send (Verify, sid, ssid, S, context , ω̃, h, vk) to the functionality FuuSIG. Upon receiving

(Verified, sid, ssid, (S, context), f) from the functionality FuuSIG. If f = 1, send (context , vk, ω̃, h)

to the functionality FRO and receives h̃puzz

.

• If h̃puzz > T where T = p̃ · 2κ, then set f := 0.

• Else, set f := 1.

send (Stake-Verified, (S, context), f) to the environment.

Fig. 9.: Proof-of-stake protocol πPoS.

Proof. We show that the two executions are perfectly indistinguishable by the following

simulation. Consider the adversaryA for πPoS, we now construct an adversary S on input

1κ and a PoS parameter p̃ for φ∗PoS as follows. S stores a table T

Initialization and Stake Election:

1. Simulating the execution with an uncorrupted party S as follows. When S receives

in the ideal process a message (Stake-Verified,P, context , ω̃) from F∗PoS, where S

is uncorrupted, it proceeds as follows:

If this is the �rst time that S generates a signature, then simulate for A the process

39

of key generation . �at is, send to A (in the name of FuuSIG) (Keygen, sid, ssid)

to the adversary, and receive (Verification-Key, sid, ssid, vk) from the adver-

sary A, then send (Register, sid, ssid, vk) to the adversary A; upon receiving

(Registered, sid, ssid) from the adversary, then record the pair (ssid, vk).

2. Simulating the execution with a corrupted party S with FuuSIG as follows.

(a) Upon receiving (Keygen, sid, ssid) from party S, send to A (in the

name of FuuSIG) (Keygen, sid, ssid) to the adversary, and receive

(Verification-Key, sid, ssid, vk) from the adversary A, then send

(Verification-Key, sid, ssid, vk) (in the name of FuuSIG) to S and record

(ssid, S, vk).

(b) Upon receiving (Sign, sid, ssid, S, context) from party S, check if no

(ssid, context , ·, ·) has been recorded. If not, ignore the request. Otherwise,

send (Sign, sid, ssid, context) to the adversary.

Upon receiving (Signature, sid, ssid, context , ω̃) from the adversary, choose

random h ∈ {0, 1}κ, output (Signature, sid, ssid, context , ω̃, h) to S, and

record the entry (ssid, context , ω̃, h, vk, 1).

(c) �en, instruct the corrupted party S send the message (Elect, S, context , vk)

to F∗PoS.

Upon receiving (Sign, sid, ssid, context) from F∗PoS, send

(Signature, sid, ssid, context , (ω̃, h)) to F∗PoS.

3. Simulate the interaction of any party S with FRO as follows.

For query (context , vk, ω̃, h) from party S, send (Stake-Verify, S, context , ω̃) to

F∗PoS and receive (Stake-Verified, (S, context), ω̃, f). If f = 0, choose random

h̃puzz ∈ {0, 1}κ such that h̃puzz > Twhere T = p̃ ·2κ. If f = 1, choose h̃puzz ∈ {0, 1}κ

40

such that h̃puzz ≤ T. �en store ((context , vk, ω̃, h), h̃puzz)) in the table T and send

h̃puzz
to S.

Block Veri�cation:

1. Simulating the execution with an uncorrupted party S as follows. When noti�ed by

F∗PoS that some uncorrupted party Smade a veri�cation request, proceed as follows.

Upon receiving message (Stake-Verify, S, context , ω̃, vk) from F∗PoS, then forward

message (Stake-Verify, S, context , ω̃, h, vk) (h is recored with context and ω̃ by S

above) to A (in the name of FuuSIG). Forward A’s response back to F∗PoS.

2. Simulating the execution with a corrupted party S with F̂uSIG as follows.

(a) Instruct the corrupted party S send the message

(Stake-Verify, S, context , ω̃, vk) to F∗PoS.

(b) Upon receiving (Verify, sid, ssid, S, context , ω̃, h, vk) from a corrupted party

S, generate a response following the instructions of FuuSIG.

3. Simulate the interaction of any party S with FRO as follows.

For query (context , vk, ω̃, h) from party S check if ((context , vk, ω̃, h), h̃puzz))

in the table T and send h̃puzz
to S. otherwise, send

(context , vk, ω̃), send (Stake-Verify, S, context , ω̃) to F∗PoS and receive

(Stake-Verified(S, context), ω̃, f). If f = 0, choose random h̃puzz ∈ {0, 1}κ

such that h̃puzz > T where T = p̃ · 2κ. If f = 1, choose h̃puzz ∈ {0, 1}κ such that

h̃puzz ≤ T. �en store ((hprev, r, vk, ω̃), h̃puzz)) in the table T and send h̃puzz
to S.

We now show that the two ensembles EXEC
F∗PoS
φ∗PoS,S,Z

and EXECF̂uSIG,FRO
πPoS,A,Z are perfectly

close. Notice that for each election query, the adversary S is noticed by the functionality

F∗PoS whether this query is successful or not, then it samples the output randomly from

a set {0, 1}κ that satis�ed inequality H(context , vk, ω̃, h) ≤ T̃ if the query is successful.

41

Pu�ing them together, the views of players in the two executions are perfectly indistin-

guishable.

3.3.4 Blockchain security properties

Previously, several fundamental security properties for 1-hop blockchain protocols

have been de�ned: common pre�x property [GKL15; PSS17a], chain quality property

[GKL15], and chain growth property [KP15]. Intuitively, the chain growth property states

that the chains of honest players should grow linearly to the number of rounds. �e com-

mon pre�x property indicates the consistency of any two honest chains except the last κ

blocks. �e chain quality property, aims at expressing the number of honest blocks’ con-

tributions that are contained in a su�ciently long and continuous part of an honest chain.

Speci�cally, for parameters ` ∈ N and µ ∈ (0, 1), the ratio of honest input contributions

in a continuous part of an honest chain has a lower bounded µ.

We follow the same spirit to de�ne the security properties for our 2-hop blockchain

protocol. Since each valid PoS-chain and PoW-chain exist in our system as a pair having

the same structure and grow at the same rate, we focus on the common pre�x, chain

quality, and chain growth properties for the PoS-chain. �e de�nitions for these properties

are formally given as follows.

De�nition 10 (Chain growth). Consider 2-hop blockchain protocol Π. �e chain growth

property Qcg with parameter g ∈ R, states that for any honest PoS-holder S ∈

{Sn+1, . . . , Sn+ñ} with the local PoS-chain C̃ in round r and C̃ ′ in round r′ where r′− r > 0,

in EXECΠ,A,Z . It holds that len(C̃ ′)− len(C̃) ≥ g · (r′ − r)

De�nition 11 (Common pre�x). Consider 2-hop blockchain protocol Π. �e common pre�x

property Qcp with parameter κ ∈ N states that for any two honest PoS-holders Si in round

42

r and Sj in round r′ with the local PoS-chains C̃i, C̃j , respectively, in EXECΠ,A,Z where

i, j ∈ {n+ 1, . . . , n+ ñ}, r ≤ r′, it holds that C̃i[1, `i] � C̃j where `i = len(C̃i)−Θ(κ).

De�nition 12 (Chain quality). Consider 2-hop blockchain protocol Π. �e chain quality

property Qcq with parameters µ ∈ R and ` ∈ N states that for any honest PoS-holder

S ∈ {Sn+1, . . . , Sn+ñ} with PoS-chain C̃ in EXECΠ,A,Z , it holds that for large enough `

consecutive PoS-blocks of C̃ the ratio of honest blocks is at least µ.

We note that, the chain growth and common pre�x for the PoW-chains would be

implied from the PoS-chain except the chain quality property since the adversary could

be able to a�ach more malicious PoW-blocks to the PoW-chain in case he controls the

majority of computing power.

New property: Chain soundness. We here introduce a new security property, chain

soundness, which is critical for blockchain protocols in the open se�ing. A good protocol

in the open network environment, should ensure honest new players to join the system

securely. Intuitively, the protocol can help the new players to obtain a blockchain which is

compatible with the local chain of an existing honest player in some recent rounds. While

this property is not needed for protocols in the closed se�ing where new players are not

allowed, it is important for blockchains in the open network environments. Without this

security requirement, unsatisfactory protocols could be allowed. �e chain soundness

property can be described as follows.

De�nition 13 (Chain soundness). Consider 2-hop blockchain protocol Π with a set P of

players. Consider a new player Pi ∈ P with best local chain C̃i in round r, in EXECΠ,A,Z .

�e chain soundness propertyQcs states the following: for the new playerPi and any existing

players Pj with best local chain C̃j at round r we have that C̃i[¬κ] � C̃j and C̃j[¬κ] � C̃i.

43

CHAPTER 4

INITIAL DESIGN AND PROVABLE SECURITY: 2-HOP BLOCKCHAIN

In this chapter, we propose a hybrid proof-of-work/proof-of-stake protocol. In our design,

as argued above, we (intend to) use both physical resources and virtual resources. �at

means, in addition to PoW-miners, a new type of players — PoS-holder (stakeholder) —

is introduced in our system. Now a winning PoW-miner cannot extend the blockchain

immediately. Instead, the winning PoW-miner provides a base which enables a PoS-holder

to be “selected” to extend the blockchain. In short, in our system, a PoW-miner and then a

PoS-holder jointly extend the blockchain with a new block. If Nakamoto’s consensus can

be viewed as a 1-hop protocol, then ours is a 2-hop protocol.

4.1 2-hop design

We �rst give the high-level description of our 2-hop blockchain design in Sec-

tion 4.1.1; then in Section 4.1.2, we formally present our main protocol; the process of

choosing the best valid chain-pair among a set of chain-pairs can be found in Section 4.1.3.

4.1.1 High-level description

Nakamoto’s system is powered by physical computing resources and secure against

fully adaptive adversary who can corrupt participants at any moment. �e blockchain is

maintained by PoW-miners; there, each winning PoW-miner can extend the blockchain

with a new block. In our design, as argued above, we (intend to) use both physical re-

sources and virtual resources to achieve the same level of security— adaptive security.

�at means, in addition to PoW-miners, a new type of players — PoS-holder (stakeholder)

44

— is introduced in our system. Now a winning PoW-miner cannot extend the blockchain

immediately. Instead, the winning PoW-miner provides a base which enables a PoS-holder

to be “selected” to extend the blockchain. In short, in our system, a PoW-miner and then a

PoS-holder jointly extend the blockchain with a new block. If Nakamoto’s consensus can

be viewed as a 1-hop protocol, then ours is a 2-hop protocol.

A pictorial illustration of our 2-hop blockchain structure can be found in Figure 10:

red blocks are generated by PoW-miners in the �rst hops, while green blocks are pro-

duced by PoS-holders in the second hops; now naturally a PoW-chain consists the se-

quence of red blocks B1, B2, B3, · · · , and a PoS-chain consists the sequence of green

blocks B̃1, B̃2, B̃3, · · · . In fact, our 2-hop blockchain is bootstrapped from an “already

mature” blockchain denote as B−N . . . , B−1, B0 for an integer N ; see the dark blocks in

the �gure.

Rounds

B−1 B0 B1 B2 B3 B4 B5

B̃1 B̃2 B̃3 B̃4

. . .

. . .

. . .

Fig. 10.: 2-hop blockchain structure

Here, dot arrows denote the �rst hops, and solid arrows denote the second hops. Red blocks Bi’s
denote the proof-of-work blocks, and green blocks B̃i’s denote the corresponding proof-of-stake

blocks. Note that the dark-red blocks are from the “mature blockchain”.

In our scheme, there are two types of nodes, called miners and stakeholders (users).

Correspondingly, there are two types of chains: proof-of-work chain (PoW-chain), de-

noted C, and proof-of-stake chain (PoS-chain), denoted C̃, in the system. �ese PoW/PoS

chains are securely tied together, as a chain-pair. Stakeholdersmaintain the proof-of-stake

chain. On the other hand, miners together manage the proof-of-work chain which is con-

45

sidered as a biased random beacon for choosing stakeholder (to extend the proof-of-stake

chain).

• Extending the PoW-chain: To generate a new PoW-block, each miner �rst computes

the hash hw ∈ {0, 1}κ of the previous PoW-block (the head of the PoW-chain), the

hash hs ∈ {0, 1}κ of the head of the PoS-chain. To be noted that, the PoW chain and

PoS chain must have same length in a valid chain pair. �e miner then a�empts to

solve the following hash inequality

H(hw, hs, ω) < T

by �nding a suitable solution ω where T denotes the current proof-of-work target.

PoW-block B is in the form B = 〈hw, hs, ω〉.

If the miner succeeds in �nding the proper ω, he then generates a new PoW-block

which includes the hash values hw, hs and the solution ω, and shares this PoW-block

to other players in the network.

• Extending the PoS-chain: In our design, each PoS player holds two pairs of

keys (vk, sk) and (vk′, sk′) for digital signature schemes (Gen, Sign,Verify) and

(Gen′, Sign′,Verify′), respectively. Here (Gen, Sign,Verify) is a unique digital signa-

ture scheme, while (Gen′, Sign′,Verify′) can be an ordinary digital signature scheme.

We note that, in our design, each PoW-block is used for selecting new stakeholders

(to generate new PoS blocks). More concretely, if there is a new PoW block B in

the system, any stakeholder whose veri�cation key vk satis�es the following hash

inequality

H̃(hw, ω̃, vk) < T̃

is allowed to generate a new PoS block, where T̃ is the current proof-of-stake target,

46

hw is the hash value of B and ω̃ ← Signsk(B).

PoS-block B̃ is in the form B̃ = 〈(B, ω̃, vk),X , σ, vk′〉, whereX ∈ {0, 1}∗ is

the payload of the proof-of-stake block B̃ (also denoted as payload(B̃)); and σ is

produced by the PoS player but by using a di�erent signing key sk′, i.e., σ ←

Sign′sk′((B, ω̃, vk),X).

We emphasize again that (Gen, Sign,Verify) is a unique signature scheme, which is

critical for our design.

4.1.2 �e main protocol

2-hop blockchain. It is important to note that in the Nakamoto PoW-based blockchain,

the assumption to secure the system is that malicious miners control less than the half of

computing power since if so they can fork a valid blockchain which breaks the consensus

of the blockchain protocol. In our system, in order to secure against such a�ack, we need

to combine two di�erent resources: physical resource (i.e., computing power) and vir-

tual resource (i.e., stake). Sequentially, we have two types of blockchains (PoW-chain and

PoS-chain) corresponding to two types of rounds — PoW-round and PoS-round executing

in turn —making 2-hop blockchain. Note that, in reality, one player could play both roles,

PoW-miner and PoS-holder; however, without loss of generality, we treat the two roles

separately. In order to tie them hard, the scheme maps each PoW-block to no more than

1 stakeholder. Only the stakeholder who has the privilege is able to generate the corre-

sponding PoS-block of each PoW-block. Note that PoW-chains and PoS-chains existing in

our system are represented as pairs, and each player locally stores a chain-pair. �erefore,

the two member chains of each valid chain-pairs should have the same structure.

We now present our main protocol that describes the behaviour of PoW-miners and

PoS-holders. �e PoW and PoS executions vary slightly. On one hand, in the PoW execu-

tion, PoW-miners search for proof-of-work solutions via F∗PoW. On the other hand, in the

47

PoS execution, PoS-holders follow the growth of the PoW-chain and use that to extend

the PoS-chain via F∗PoS. In general, PoW-miners and PoS-holders collect blockchain in-

formation from the network functionality FNET, perform some validation and generating

blocks, and then share their states with the network through FNET.

�e protocol Π is parameterized by a content validation predicate V (·), which de-

termines the proper structure of the information that is stored into the blockchain as in

[GKL15; PSS17a]. Initialization of each party’s execution sets the round clock to zero and

sets the local chain-pair 〈Ci, C̃i〉, for 1 ≤ i ≤ n + ñ (n is the number of PoW-miners and

ñ is the number of PoS-holders), such that Ci := Cinit, C̃i := C̃init, where Cinit is our initial

blockchain, i.e., Cinit = B−N‖ . . . ‖B−1‖B0, C̃init = 0‖ . . . ‖0‖0, and len(Cinit) = len(C̃init).

We assume at the beginning of the protocol execution, a set of PoS-holders are al-

ready registered. �e registration information are included in Cinit. We emphasize that

new players may be registered later during the execution. �e new registration informa-

tion will be included in the payload of the following PoS blocks.

Please refer to Figure 11 for more details of our main protocol.

4.1.3 �e best chain-pair strategy

In this subsection, we describe the rules in which a single valid chain-pair is selected

for consensus. Roughly speaking, a chain-pair is the best valid pair if it has the longest

valid PoW-chain. We introduce process BestValid, which is run locally by PoW-miners

or PoS-holders, to select the best chain-pair. �e BestValid process is parameterized by

a content validation predicate V (·) and an initial chain Cinit where V (·) determines the

proper structure of the information that is stored into the blockchain as in [GKL15], and

takes as input chain-pair set C′. Intuitively, the process validates all chain-pair 〈C, C̃〉 in

C′, then �nds the valid chain-pairs with the longest PoW-chain.

We emphasize that since each valid PoS-block is tied to a PoW-block, and each

48

Protocol Π = (Πw,Πs)

�e protocol is parameterized by a content validation predicate V (·). Initially, set Ci := Cinit,
C̃i := C̃init, where Cinit = B−N‖ . . . ‖B−1‖B0 and C̃init = 0‖ . . . ‖0‖0, len(Cinit) = len(C̃init), and then

set statei := {〈Ci, C̃i〉} for 1 ≤ i ≤ n+ ñ .

1. PoW-Miner Πw
. Each PoW-miner Wi, for 1 ≤ i ≤ n, with local state statei proceeds as follows.

Without lost of generality, we assume that the PoW-miners already registered to the functionality

F∗PoW. For each odd round, upon receiving message (Input-Work,Wi) from the environment Z ,
proceed as follows.

(a) Select the best local chain-pair: Upon receiving many messages of the form (Message, P, 〈C, C̃〉)
from FNET for any party P ∈ {W1, . . . ,Wn, Sn+1, . . . , Sn+ñ}, let C be the set of all chain-pair

collected from FNET, then compute 〈Cbest, C̃best〉 := BestValid(C ∪ 〈Ci, C̃i〉, PoW-miner), and

then set Ci := Cbest and C̃i := C̃best.

(b) A�empt to extend PoW-chain:

• Create the pointer to the previous block: Send (head(Ci), head(C̃i)) to the ideal functionality
FRO and receive h from FRO.

• Search for a puzzle solution: If h 6=⊥, then send (Work-Register,Wi) to the ideal func-

tionality F∗PoW and receive ω. �en send (Search, ω, h) to the ideal functionality F∗PoW,
and then receive (Searched,Wi, b

w
i) from F∗PoW.

• Generate a new PoW-block: If bwi = 1, set B := 〈h, ω〉 (which means Wi is the player

who found the puzzle solution in this round), set Ci := Ci‖B, and statei := statei ∪
{〈Ci, C̃i〉}. �en send (Broadcast, 〈Ci, C̃i〉) to FNET.

Return (Return-Work,Wi) to the environment Z .

2. PoS-Holder Πs
. Each PoS-holder Sj , for n + 1 ≤ j ≤ n + ñ , with local state statej , proceeds as

follows. Note that, initially, each PoS-holder sends (Stake-Register, Sj) to the ideal functionality

F∗PoS and receive vk. Also, each PoS-holder registers to the ideal functionality FSIG and receive

vk′ Upon receiving message (Input-Stake, Sj ,X) from the environment Z where X denotes the

block-payload, proceed as follows.

(a) Select the best local chain-pair: Upon receiving many messages of the form (Message, P, 〈C, C̃〉)
from FNET for any party P ∈ {W1, . . . ,Wn, Sn+1, . . . , Sn+ñ}, let C be the set of all chain-pair

collected from FNET, then compute 〈Cbest, C̃best〉 := BestValid(C ∪ 〈Cj , C̃j〉, PoS-holder), and
then set Cj := Cbest and C̃j := C̃best.

(b) A�empt to extend PoS-chain: Consider there is a new PoW-block B in Cbest.

• Stake election: Send (Elect, vk, B) to the ideal functionality F∗PoS, and receive

(Elected, Sj , ω̃, b
s
j) from F∗PoS.

• Generate a signature: If bsj = 1, send (Sign, 〈B,X, Sj , ω̃〉) to the ideal functionality FSIG,

and receive (Signed, Sj , 〈B,X, Sj , ω̃〉, σ) from FSIG.

• Generate a new PoS-block: Set B̃ := 〈B, ω̃, vk,X , σ, vk′〉. Next, set C̃j = C̃j‖B̃, and
statej := statej ∪ {〈Cj , C̃j〉}. �en send (Broadcast, 〈Cj , C̃j〉) to FNET.

Return (Return-Stake, Sj) to the environment Z .

Fig. 11.: Our main protocol Π = (Πw,Πs) in the {F∗PoW,FRO,F
∗
PoS,FSIG,FNET}-hybrid

model with respect to the local process BestValid (See Figure 12).

49

PoW-block or PoS-block is valid if their peers are valid. �us, a chain-pair is valid if

all block-pairs in this chain-pair are valid. A valid chain-pair with respect to PoW-miners

should have two member chains (PoW-chain and PoS-chain) of the same length. On the

other hand, a valid chain-pair with respect to PoS-holders may have the PoW-chain longer

than the PoS-chain by one block since the PoW-chain might be extended by one new

block in the previous PoW-round. �at said, if the player who executes this process is

a PoS-holder and if there exists a new PoW-blocks, this block would be validated sep-

arately since its corresponding PoS-block has not been generated yet. �us, for every

chain-pair, the process �rst checks if the length of the PoW-chain in the pair is longer than

the PoS-chain by one block and validates this new PoW-block �rst, and then evaluates ev-

ery block-pair of this chain-pair. As said, PoS-blocks are generated from PoW-blocks;

thus, PoS-blocks without corresponding PoW-blocks are not valid. A�er the validation,

the best valid chain-pair is the one with the longest PoW-chain. Please refer to Figure 12

for more details.

Remark 2 (Tie Breaking). Our protocol primarily deals with length so it makes sense to

adopt a simple tie breaking strategy to choose the best chain-pair from two chain-pairs

of equal length. While there is work that show the advantages of choosing a chain ran-

domly (viz. [ES14]), we follow the simple strategy considered in [GKL15]; in which the

best chain-pair is the one with the PoW-chain that is lexicographically the smallest. If two

chain-pairs have same length, and the PoW-chains are same, we compare the PoS-chains with

the same tie breaking mechanism for PoW-chains.

4.2 Security analysis

Our 2-hop blockchain can be viewed as a natural generalization of Nakamoto’s fa-

mous 1-hop blockchain [Nak08]. �e security analysis of the 2-hop blockchain here

is inspired and in�uenced by previous analysis of Nakamoto’s 1-hop protocol [GKL15;

50

Process BestValid

�eprocess BestValid is parameterized by a content validation predicate V (·) and an initial
chain Cinit. �e input is (C′,Type).

For every chain-pair 〈C, C̃〉 ∈ C′, and proceed as follows.

1. Check if len(C)− 1 = len(C̃) and Type = PoS-holder, then set ` := len(C). �en verify the new

PoW-block C[`] as follows.

• Verify the pointer in C[`]: Parse C[`] to obtain 〈h`, ω`〉, send (C[` − 1], C̃[` − 1]) to FRO and

then receive (h). If h 6= h`, remove this chain-pair from C′.

• Verify the PoW solution in C[`]: Parse C[`] to obtain C[`] := 〈h, ω〉. Send message

(RO-Verify, h, ω) to the functionality F∗PoW, and then receive (RO-Verified, f). If f = 0,

remove this chain-pair from C′.

2. Check if len(C) = len(C̃) and V (payload(C̃)) = 1, or len(C)− 1 = len(C̃) and Type = PoS-holder. If

yes, for i from len(C̃) to len(Cinit), proceed as follows.

• Verify PoW-block C[i]:

– Verify the pointer in C[i]: Parse C[i] to obtain 〈hi, ωi〉, send (C[i − 1], C̃[i − 1]) to FRO

and then receive (h).

– Verify the PoW solution in C[i]: Send message (RO-Verify, C[i]) to the functionality

F∗PoW, and then receive (RO-Verified, h ′).

If hi 6= h or f = 0, set b1 := 0. Else, set b1 := 1.

• Verify PoS-block C̃[i]: Parse C̃[i] to obtain 〈B, ω̃, S, vk,X , σ, vk′〉.

– send (Verify, ((B, ω̃, S),X), σ, vk′i) to FCERT ans receive (Verified, ((B, ω̃, S),X ,)f).

if f = 1set b2 := 1; b2 := 0 otherwise.

– �en send message (Stake-Verify, (B,X, Sj), ω̃, vk) to the functionality F∗PoS.

Upon receiving message (Stake-Verified, (B,X, Sj), f) from F∗PoS, if f = 0 or

B 6= C[i], set b3 := 0. Else, set b3 := 1.

• If b1 = 0 or b2 = 0, or b3 = 0, remove this chain-pair from C′.

3. Otherwise, remove this chain-pair from C′.

Find the valid chain-pair 〈Cbest, C̃best〉 ∈ C′ with the longest PoW-chain. �en set 〈Cbest, C̃best〉
as the output.

Fig. 12.: �e chain set validation process BestValid.

Intuitively, BestValid ensures that, if Type = PoS-miner, every valid chain-pair should have its

member chains C and C̃ of the same length. On the other hand, if Type = PoS-holder, we allow the

PoW-chain longer than the PoS-chain by one block since there may a new PoW-block produced in

the previous rounds.

51

PSS17a]. In order to improve the readability, in general, we will keep consistency of no-

tations. We use the original le�ers to denote the PoW parameters for the �rst hop, e.g., α;

we use le�ers with tilde to denote the PoS parameters for the second hop, e.g., α̃; �nally,

we use le�ers with hat to denote the collective parameters for both hops, e.g., α̂.

We use the �at mode to simplify of the security analysis. Consider the total number

of PoW-miners is n, the portion of malicious computing power is ρ, and a PoW parameter

p.

Let α = 1− (1−p)(1−ρ)n
be the probability that at least one honest PoW-miner mines

a block successfully in a round .

Let β = ρnp be the expected number of PoW-blocks that malicious PoW-miners can

�nd in a round.

Here, when pn� 1, we have α ≈ (1− ρ)np, and thus
α
β
≈ 1−ρ

ρ
. We assume 0 < α� 1,

0 < β � 1 and α = λβ where λ ∈ (0,∞). We note that, in Nakamoto protocol, λ must

be greater than 1; but in our se�ing λ could be less than 1, i.e., the malicious parties could

control more computing resource.

We then describe the important parameters in the second hop (i.e., proof-of-stake

blockchain). Similar to that in the �rst hop, we consider the total number of PoS-holders

is ñ, the portion of malicious stakes is ρ̃. Let p̃ be the probability that a PoW-block is

mapped to a PoS-holder. We assume p̃ñ � 1, so we have:

Let α̃ = 1− (1− p̃)(1−ρ̃)ñ ≈ (1− ρ̃)ñp̃ be the probability that a PoW-block is mapped

to at least one honest PoS-holder.

Let β̃ = 1− (1− p̃)ρ̃ñ ≈ ρ̃ñp̃ be the probability that a PoW-block is mapped to at least

one malicious PoS-holder.

It is obvious that we have a parameter α̂ = αα̃ which is the probability that honest

parties �nd a new PoW-block and is mapped to an honest PoS-holder in a round. We also

52

have β̂ = ββ̃ it the expected number that malicious parties �nd new PoW-blocks and are

mapped to malicious PoS-holders in a round. We say α̂ and β̂ are collective resources for

honest parties and malicious parties respectively.

We consider the network delay model as in [PSS17a]. We will show in section 4.2.4,

γ̂ = α̂
1+2∆α̂

can be viewed as a “discounted” version of α̂ due to the fact that the messages

sent by honest parties can be delayed by ∆ rounds; γ̂ corresponds to the “e�ective” honest

collective resource. We also assume (α + β)∆� 1.

We are now ready to state our main theorems.

�eorem3 (Chain Growth for PoS-chain). Consider protocolΠ = (Πw,Πs) in Section 4.1.2.

For any honest PoS-holder S ∈ {Sn+1, . . . , Sn+ñ}with the local PoS-chain C̃ in round r and C̃ ′

in round r′ where t = r′−r > 0, in EXEC(Πw,Πs),A,Z , the probability that len(C̃ ′)− len(C̃) ≥

g · t is at least 1− e−Ω(t)
where g = (1− δ)γ̂.

�eorem 4 (Chain�ality for PoS-chain). We assume γ̂ = λ̂(α+β)β̃ and λ̂ > 1. Consider

protocol Π = (Πw,Πs) in Section 4.1.2. For any honest PoS-holder S ∈ {Sn+1, . . . , Sn+ñ}

with PoS-chain C̃ in EXEC(Πw,Πs),A,Z , the probability that, for large enough ` consecutive

PoS-blocks of C̃ which are generated in s rounds, the ratio of honest blocks is no less than

µ = 1− (1 + δ) (α+β)β̃
γ̂

is at least 1− e−Ω(`)
.

�eorem5 (Common Pre�x for PoS-chain). We assume α̂ = λ̂(α+β)β̃ and λ̂ > 1. For any

δ > 0, consider protocol Π = (Πw,Πs) in Section 4.1.2. Let κ be the security parameter. For

any two honest PoS-holders Si in round r and Sj in round r′, with the local best PoS-chains

C̃i, C̃j , respectively, in EXEC(Πw,Πs),A,Z where r ≤ r′ and i, j ∈ {n + 1, . . . , n + ñ}, the

probability that C̃i[1, `i] � C̃j where `i = len(C̃i)−Θ(κ) is at least 1− e−Ω(κ)
.

�eorem 6 (Chain Soundness for PoS-chain). We assume α̂ = λ̂(α + β)β̃ and λ̂ > 1.

Consider protocol Π = (Πw,Πs) in Section 4.1.2. Let κ be the security parameter. For any

new spawned honest player PoS-holder Si and any existing honest player Sj in round r,

53

with the local best PoS-chains C̃i, C̃j , respectively, in EXEC(Πw,Πs),A,Z , the probability that

C̃i[1, `] � C̃j and C̃j[1, `] � C̃i where ` = len(C̃i)−Θ(κ) is at least 1− e−Ω(κ)
.

We notice that the assumptions of γ̂ are di�erent in chain quality and common pre�x

properties. �is is because if the malicious players want to destroy chain quality property,

he could recycle the computing power from honest miners.

4.2.1 Analysis ideas

In this section, we informally introduce the analysis idea. In our scheme, there are

two types of players, PoW-miners and PoS-holders (stakeholders). Both PoW-miners and

PoS-holders can be honest or malicious. In order to extend the pair of blockchains, a

PoW-miner needs to generate a PoW-block �rst, and then the corresponding stakeholder

will sign this block (via F∗PoS) . We note that, our security analysis mainly focuses on

PoS-chain, and the analysis for PoW-chain is followed from PoS-chain’s. Consider that

players may be honest or malicious, we have 4 types of compositions.

Case 1: An honest PoW-miner �nds a new PoW-block which is mapped to an honest

PoS-holder. �e honest PoS-holder will sign the corresponding PoS-block.

Case 2: A malicious PoW-miner �nds a new PoW-block which is mapped to a mali-

cious PoS-holder. �e malicious PoS-holder will sign the corresponding PoS-block.

Case 3: An honest PoW-miner �nds a new PoW-block which is mapped to a malicious

PoS-holder. �e malicious PoS-holders may sign it or just discard it.

Case 4: When a malicious PoW-miner �nds a new PoW-block which is mapped to an

honest PoS-holder. He may ask the honest PoS-holder to sign or just discard it.

We �rst explain the proof intuition. �e malicious players cannot prevent Case 1;

therefore, they cannot prevent the growth of blockchain and Case 1 will guarantee chain

growth property. Furthermore, the malicious parties can generate PoS-blocks from Case

54

2 andCase 3. In some consecutive rounds, the total number of PoS-blocks frommalicious

players are bounded by these two cases. If the probability of Case 2 andCase 3 is smaller

thanCase 1, themalicious players cannot generate more PoS-blocks than the honest play-

ers. Since the malicious players cannot prevent Case 1, what they can do is to compete

the blocks from the honest players with their own. Even if they win all of the competition

there are still some blocks from honest players remaining. �is will guarantee the chain

quality property. Finally, we assume the probability that all of the PoW-miners �nd a new

PoW-block in a round is very small. �is means there is no new block being broadcast

in most of the rounds. If all of the honest players do not receive the new block for some

rounds, they would take the same best chain-pair, because they have the same view of the

main chain-pair. If the malicious players want to diverge the view honest players, they

must send new blocks regularly. From our assumption, the malicious players do not have

enough resources to do that. �is will bring us common pre�x property.

We emphasize here, inCase 2 orCase 3 the malicious stakeholder may sign multiple

PoS-blocks based on one PoW-block, and he may send di�erent PoS-blocks to di�erent

honest miners. However, our scheme will not be e�ectively a�acked by this malicious

strategy. Here, all the PoS blocks (generated by the malicious stakeholder) are valid can-

didate bases for generating the next PoW-block. Once a PoW-block is generated based on

one candidate PoS-block, all of other PoS-blocks (generated by the malicious stakeholder

based on the previous PoW-block) will not be extended by any honest miners.

As discussed above, α̂ = αα̃ and β̂ = ββ̃ are the collective probabilities of Case 1

and Case 2, respectively. We de�ne them as the collective resources of the honest and

malicious parties, respectively.

We also assume the malicious players may delay the messages from honest players

for a while. We assume that the malicious players can delay any messages in at most

∆ rounds. �e intuition is that if the malicious players delay the messages, then the

55

honest players might not get the real best chain-pair on time. �is will cause the honest

miners working on a wrong chain-pair during the delayed rounds. As a result, the honest

computing power is wasted during these delayed rounds. We use discounted resource to

measure the actual probability that the honest players can generate a block in a round.

�e worst case for the chain growth property is that the malicious players will delay all

honest messages to exact∆ rounds in order to decrease the probability that honest players

succeed.

For simplicity, we only discuss the average case for some rounds in this section. �e

worst case is guaranteed by Cherno� bound if it is in a long time.

Chain growth. In order to calculate the chain growth rate, we consider the worst case

for the honest players. As we discussed, the malicious players cannot prevent Case 1.

�e best strategy for the malicious players is to delay all of the messages from the honest

players to discount the honest resources (computing power and stake) of honest players

at most. In our scheme, there are two hops to extend a pair of blocks, so the malicious

players have two chances to delay the messages. �ey can delay at most 2∆ rounds for

a PoS-block generation. We use γ̂ to denote the discounted collective honest resources

where γ̂ = α̂
1+2∆α̂

.

We use a hybrid execution to formalize the worst delay se�ing in the formal proof.

In the hybrid execution, the malicious players contribute nothing to the chain growth and

delay all honest messages to decrease the chain growth rate. We use best public chain-pair

to imply the chain-pair with the longest PoW-chain and known to all honest players. It

is easy to see that when Case 1 happens, the best public chain-pair will increase by 1

block-pair (one PoW-block and one PoS-block). Probability γ̂ is the probability a round is

Case 1. �e worst chain growth rate is guaranteed by γ̂.

In the real execution, the probability of Case 1 will not be smaller than that in the

56

hybrid execution. �e message from malicious players will not decrease the chain growth

that is contributed by honest players. �erefore, the real chain growth rate is not worse

than that in the hybrid execution.

Chain quality. In order to decrease the chain quality, the best strategy for malicious

parties is to generate as many PoS-blocks as they can. �e malicious players can generate

PoS-blocks in Case 2 and Case 3. �e total probability of these two cases for a round is

(α + β)α̃.

During any t consecutive rounds, the chain growth rate is at least γ̂t on average. �e

malicious players will contribute at most (α+β)α̃t. �e chain quality will remain at least

1− (α+β)α̃
γ̂

.

Common pre�x. �e adversary can delay any honest messages in at most ∆ rounds,

if an honest PoW-miner generates a new block, the corresponding PoS-block will be re-

ceived in 2∆ later rounds by all honest players. �is implies that if no honest player

broadcasts new block in the past 2∆ rounds, all honest players would have same view on

the blockchains, unless malicious players send new block. We say it is a silent round. A

new block will e�ect the system in at most 2∆ rounds. We assume 2(α + β)∆� 1. �e

probability that a round is a silent round is 1− 2(α + β)∆.

We say a round is an honest successful round if there is at least one honest player

generating a new block. An honest successful round is guaranteed by α. We consider

a special case of an honest successful round where only one honest miner generates a

new block. We say it is a pure successful round. In the �at model, we can view the hash

queries are independent. �us, the success of one query will not e�ect other queries. In a

successful round, there is at least one successful query. We get rid of this successful query

and consider the others. �e probability of a successful query of the others is still no more

57

than α. �us, the probability of pure successful round is α(1−α). It approximates to α if

we assume α� 1.

We assume themalicious players don’t send any new block in the following case �rst.

We consider the case that a round is a silent round and also a pure successful round. �is

means the successful PoW-miner will generate a unique public chain-pair with the longest

PoW-chain for all honest players. If in the following 2∆ rounds, no honest PoW-miner

sends a new block, then all honest players would take the same best chain-pair. �is

means all honest players will be convergent. �e only exception is that the malicious

players generate blocks to prevent this convergence. However, by our assumption, the

malicious players cannot generate enough blocks to do this.

Chain soundness. In our protocol, the players select the best chain doesn’t depend

on any existing status they collected. �is means that the new spawn player can take the

same strategy as existing players.

More speci�cally, the new spawned player Si can receive the local best chain of any

existing honest player Sj . Let C̃i and Sj be the best local chain Si and Sj .

• If C̃i = C̃j , the chain soundness is guaranteed.

• If C̃i 6= C̃j , we have C̃i is be�er than C̃j . �e adversary can let another player Sm

take C̃i. If the soundness property is broken then the common pre�x property is

broken for Sm and Sj .

We emphasize that the soundness property doesn’t hold directly in some pure PoS

schemes such as [CM17; Kia+17; DPS17]. In these schemes, the existing players take best

chain depending on the state of previous rounds. New spawned players must get help

from extra assumption to get the correct state.

58

Addressing adaptive corruption. In our protocol, the adversary can corrupt any

player adaptively at any time. �e only limitation is the collective resource is honest

majority. We give the analysis idea in two cases:

• In the PoW phase, adversary cannot predict which player will succeed to �nd a so-

lution of PoW hash puzzle before the solution is broadcast. �e adaptive corruption

of PoW miner will not bring extra advantage comparing with static corruption.

• In the PoS phase, the input of hash inequality includes the signature of stake holder

which is unforgeable for adversary. �is will guarantee that adversary cannot pre-

dict which stake holder will be elected before the PoS block is broadcast. �e adap-

tive corruption of stake holder will not bring extra advantage comparing with static

corruption.

More details can be found in 4.2.3.

On adaptive key generation. In PoS shceme, the malicious players may generate

and register their veri�cation key vk adaptively to increase the probability that they are

elected. We will prove that our scheme is secure for adaptive key generation. �e intu-

ition is we combine the PoW and PoS blocks as a pair, and the PoW block will contribute

randomness for the following PoS block election. �e adversary cannot generate a veri�-

cation key vk adaptively before the PoW block is generated. However, a�er a PoW block

is generated, it is late to register an adaptive key in the transaction. More details can be

found in 4.2.5.

4.2.2 Important terms

We now provide some important terms which are useful for our analysis.

59

De�nition 14 (Honest Successful Round). We say a PoW-round r is an honest successful

round, if in this round, at least one honest PoW-miner �nds a new solution.

De�nition 15 (Pure Successful Round). We say a PoW-round r is a pure successful round,

if in this round, exact one honest PoW-miner �nds a new solution.

De�nition 16 (Honest Stake Successful Round). We say a PoS-round r is an honest stake

successful round, if a new PoW-blockB, which is generated from an honest successful round,

is mapped to an honest PoS-holder, and the PoS-holder broadcasts a new PoS-block a�er this

round.

Remark 3. As discussed in previous section, a PoS-block may be invalid because the delay

of the messages on the network. Here, the honest stake successful round also only consider

that the real valid PoS-block is generated.

De�nition 17 (Valid Malicious PoW-block). We say a PoW-block B is a valid malicious

PoW-block if (1) the PoW-block B is generated by a corrupted (malicious) PoW-miner, and

(2) it is mapped to a corrupted PoS-holder.

De�nition 18 (Hidden chain-pair). We say a chain-pair 〈C, C̃〉 is a hidden chain-pair, if it

is not known to any honest players.

De�nition 19 (Hidden PoS-chain). We say C̃ is a hidden PoS-chain, if 〈C, C̃〉 is a hidden

chain-pair.

De�nition 20 (Public chain-pair). We say a chain-pair 〈C, C̃〉 is public, if is known to all

honest players.

De�nition 21 (Best Public PoS-chain). We say a PoS-chain C̃ is the best public PoS-chain, if

a) C̃ has been received by all of the honest players, b) C̃ is the PoS-chain of the best chain-pair

among all of the public chain-pairs.

60

Now we brie�y analyze the probability that a PoS-round is an honest stake successful

round. We have the probability that a round is an honest successful round is α. Since

the new block generated in the honest successful round will be mapped to a PoS-holder

uniformly by F∗PoS, the probability that an honest stakeholder is selected is α̃. �erefore,

the probability that a PoS-round is an honest stake successful round is αα̃ on average.

We consider the probability that a round is a pure successful round. It is easy to see

that this probability is less than the probability that a round is honest successful because

in some honest successful rounds there may be more than one honest PoW-miner �nd a

new solution. If α� 1, we will see the two probabilities are close.

Lemma 3. Let α � 1. For any r, the probability that round r is a pure successful round is

at least α− α2
.

Proof. If round r is a pure successful round, round r must be an honest successful round.

Suppose an honest miner �nds a new solution in round r. �e computing power is �at

among all of the miners, get rid of one successful honest miner will not e�ect the total

computing power very much. If the other miners �nd a new solution in round r, then

the probability that the other miners don’t �nd any new solution is at least (1 − α) on

average. Pu�ing them together, the probability that round r is a pure successful round is

at least

α(1− α) = α− α2 ≈ α

Following a similar argument, the number of valid malicious PoW-blocks that the

malicious miners will generate in a PoS-round is ββ̃ on average. We remark that, in an

honest stake successful round, the honest PoS-holder can generate a valid PoS-block for

the best local chain chain-pair and send to all of the parties. �e malicious stakeholders

61

can append the valid malicious PoS-blocks to their (hidden) chain-pair and send the new

solution to some (not necessary all) honest parties.

Furthermore, the honest miners may generate a PoW-block which is mapped to a

malicious stakeholder and vice versa. We describe the following cases:

• Case 1: When an honest PoW-miner �nds a new PoW-block which is mapped

to an honest PoS-holder he would broadcast the PoW-block. �e chosen honest

PoS-holder will query the corresponding signature to F∗PoS for that PoW-block and

then produce the corresponding PoS-block. In general, this case will help the honest

public best chain-pair to grow.

• Case 2: When a malicious PoW-miner �nds a new PoW-block which is mapped to

a malicious PoS-holder, he would send the block to the corresponding PoS-holder

and get the PoS-block. �e malicious parties may keep this pair of blocks hidden to

grow a hidden chain-pair.

• Case 3: When an honest PoW-miner �nds a new PoW-block which is mapped to

a malicious PoS-holder he would still broadcast it. �e malicious PoS-holders may

take it to increase the length of chain-pair or just discard this block in order to

prevent the growth of the best public chain-pair.

• Case 4: When a malicious PoW-miner �nds a new PoW-block which is mapped to

an honest PoS-holder. If he sends the PoW-block to the corresponding PoS-holder,

then all honest parties would receive it eventually. If it is accepted, it may help to

grow the best public chain-pair, or the malicious PoW-miner may just discard the

block to prevent the growth of chain-pair.

As the discussion, α̂ = αα̃ and β̂ = ββ̃ are the collective probabilities of Case 1 and

Case 2. We de�ne them as the collective resources of the honest and malicious parties,

62

respectively. We remark that, the malicious players may choose di�erent strategy on the

4 cases for di�erent purposes. For example, if they want to prevent the chain growth, they

may discard as more PoW-blocks as possible. If they want to decrease the chain quality,

they may recycle all of the PoW-blocks that they can “sign” (via F∗PoS) to generate more

PoS-blocks.

4.2.3 Analysis with adaptive corruption

In our model, we consider the adversary who can adaptive corrupt honest parties

at any time. �e only limitation is the total number of corrupted players. �e collective

resources are honest majority at any time.

In this section, we will prove that such adaptive corruption will not help the adver-

sary gain any advantages other than static corruption. Static corruption means that the

corruption happens at the very beginning of the protocol execution. Let’s consider two

di�erent executions EXEC(Πw,Πs),A,Z(σ) with static corruption and EXEC(Πw,Πs),A′,Z(σ)

with adaptive corruption above, where σ > 0 is the randomness in the execution. Note

that, the adaptive adversaryA′ has the same amount of resources as a static adversaryA,

we have the following lemma:

Lemma 4. Consider protocolΠ = (Πw,Πs) in Figure 11. Let EXEC(Πw,Πs),A,Z(σ) denotes the

execution with static corruption and EXEC(Πw,Πs),A′,Z(σ) denotes the execution with adap-

tive corruption where σ > 0 is the randomness in the execution. Consider the two execu-

tions at round r are identical. It holds that the two distributions EXEC(Πw,Πs),A,Z(σ) and

EXEC(Πw,Πs),A′,Z(σ) are identical at round r + 1.

Proof. If there is no new corruption instruction at round r + 1. �e two executions are

identical.

Consider that, in EXEC(Πw,Πs),A′,Z(σ), the adversary send (Corrupt, P) at round

63

r + 1 and in EXEC(Πw,Πs),A,Z(σ), P is corrupted at the beginning.

With the functionality F∗PoW, we have:

If P is a PoW miner, the adversary can not predict if P will generate a PoW block in

round r+1 even adversary collect the context at round r. �e probability that P generates

a PoW block is identical in the two execution.

With the functionality F∗PoS, we have:

If P is a stake holder, the adversary can not predict if P is elected to sign a PoS

block in round r + 1 even adversary collect the context at round r. �e probability that

P generates a PoS block is identical in the two execution.

By Lemma 4, we only consider static corruption in the analysis.

4.2.4 Analysis with bounded delay

We assume that the malicious parties can delay messages in some bounded time

through the functionality FNET which captures the asynchronous network scenario. �e

malicious parties can delay anymessages on the network in at most∆ rounds (this is guar-

anteed by FNET) which we say it is a ∆-bounded channel. When an honest PoW-miner

�nds a new PoW-block, he will broadcast it to the system and hope all parties will receive

it. If some parties don’t receive the message, the view of the honest stakeholders will keep

remaining divergent for this block. Following a similar argument, if the adversary delays

a message of PoS-block from an honest stakeholder, the view of the honest parties will

diverge for that PoS-block. It is easy to see that for a pair of PoW-block and PoS-block,

the malicious parties have two chances to delay the message to prevent the honest parties

achieving the same view.

As discussed, if any message can be delayed for ∆ rounds, a new pair of blocks can

be delayed in at most 2∆ rounds. �e intuition is that the delay of messages will de-

64

crease the e�ciency of block mining. �is is because the honest players may not get the

real best chain-pair including the real best PoW-chain and PoS-chain and will therefore

work on some inferior chain-pair. If honest players produce a new block-pair (including a

PoW-block and its corresponding PoS-block) during the delay time and later receive a bet-

ter chain-pair, the new block-pair will be useless and the work for mining the PoW-block

in this block-pair is wasted. As mentioned, we will introduce the “e�ective” honest col-

lective resources γ̂ to capture this intuition later.

Before we do the formal analysis we will give the de�nition of a silent round.

De�nition 22 (Silent Round). We say round r is a silent round, if no PoW-miners (both

honest and malicious) publish any new PoW-chain in the 2∆ previous rounds of round r to

any honest party.

It is easy to see that all honest players will take the same best chain-pair at silent

rounds, unless themalicious players send a be�er chain-pair. �is is because themalicious

players can delay a new solution from honest player in at most 2∆ rounds. We will show

that in our parameter se�ing, most of the rounds are silent rounds.

Lemma 5. Let 2(α+ β)∆� 1. For r > 0 and any δ > 0, the probability that round r is a

silent round is 1− 2(1 + δ)(α + β)∆ with probability at least 1− e−Ω(t)
, where t > 0.

Proof. During any t consecutive rounds, the PoW-miners will generate X = (α + β)t

blocks on average. By Cherno� bound, we have Pr[X > (1 + δ)(α + β)t] < 1− e−Ω(t)
.

Any new blocks may e�ect at most 2∆ rounds. �is means, there are at most 2X∆

rounds that are not silent in t rounds. �e total number of silent rounds in t rounds is

t− 2X∆. If t is large, we ignore the bad event thatX > (1 + δ)(α+ β)t. �e probability

that a round is silent round in t rounds is:

t− 2X∆

t
> 1− 2(1 + δ)(α + β)∆

65

.

4.2.4.1 Hybrid expriment

To analyze the best strategy of the adversary and the worst scenario that may hap-

pen to the honest players, we here consider the following executions. Let REAL(σ) =

EXEC(Πw,Πs),A,Z(σ) denote the typical execution of (Πw,Πs) where

1. σ > 0 is the randomness in the execution,

2. Messages of honest players may be delayed by FNET in at most ∆ rounds.

Without loss of generality, we assume that the messages produced in PoW-rounds

may be delayed to PoS-rounds, and messages produced in PoS-rounds may be delayed to

PoW-rounds.

LetHYBr(σ) = EXECr(Πw
∆,Π

s
∆),A,Z(σ) denote the hybrid execution as in real execution

except that a�er round r, HYBr(σ) has the following modi�cations from REAL(σ):

1. �e randomness is �xed to σ as in HYBr(σ),

2. FNET delays messages generated by honest PoW-miners to exact∆ rounds if the new

PoW-block is mapped to an honest stakeholder,

3. FNET delays all messages generated by honest PoS-holders to exact ∆ rounds,

4. Remove all new messages sent by the adversary to honest players, and delay cur-

rently undelivered messages from corrupted parties to the maximum of ∆ rounds,

5. Whenever some message is being delayed, no honest PoW-miners query the func-

tionality F∗PoW until the message is delivered.

In the REAL(σ) executions, the number of honest stake successful rounds is not less

than in the HYBr(σ).

66

�e following lemma shows that the PoS-chain of every honest player cannot de-

crease in length if we maximally delay messages from honest parties, freeze all honest

players during this delay, and drop all adversarial messages for every �xed randomness

σ. �is means the hybrid execution is not worse than real execution.

Lemma 6. For all σ, r, t > 0, given two executions REAL(σ) and HYBr(σ). Let s = r + t.

For any honest PoS-holder Sj at round s, let C̃s,j denote the PoS-chain of Sj at round s in the

execution REAL(σ) and C̃ ′s,j denote the PoS-chain of Sj at round s in the HYBr(σ). We then

have len(C̃s,j) ≥ len(C̃ ′s,j).

Proof. We prove this lemma by induction. We consider the initial state before round r.

From the de�nition of hybrid experiment, all players have same view at round r. We have

len(C̃·,·) ≥ len(C̃ ′·,·). We use · to denote all players and all rounds before round r.

We suppose it holds for all players before round s − 1. �e only possibility that

len(C̃s,j) < len(C̃ ′s,j) is the player Sj received a new chain to extend C̃ ′s,j at round s in

HYBr(σ). According to the de�nition of hybrid experiment, this extended PoW-block

must be generated at round s − 2∆ by an honest player Wj′ , that makes len(C̃ ′s,j) =

len(C̃ ′s−2∆,j′) + 1. By the induction hypothesis, len(C̃s−2∆,j′) ≥ len(C̃ ′s−2∆,j′). At the same

time, the player Wj′ must succeed to extend PoW-block at round s − 2∆ in REAL(σ).

�is extension will make C̃s−2∆,j′ increase by one block. For playerWj′ is honest, Sj must

have received the extension at (or before) round s.

Pu�ing them together, len(C̃s,j) ≥ len(C̃ ′s,j).

4.2.4.2 Analysis in the worst delay setting

As mentioned earlier, the malicious players can delay the messages on the network

in at most ∆ rounds. �is will make some e�orts of honest players be wasted. �is means

the network delay will discount the collective resources of honest players, the following

67

lemma will measure the discount in the execution of HYBr(σ).

Lemma 7. Consider HYBr(σ). Let α, α̃ > 0. We assume that the malicious players will

delay any message for at most ∆ rounds. Let γ̂ be the actual probability that a round s > r

is an honest successful stake round, we have γ̂ = α̂
1+2∆α̂

.

Proof. Consider theHYBr(σ) execution, if round r′ > r is an honest stake successful round,

then all PoW-miners will not query F∗PoW during 2∆ rounds.

Now, assume there are actual c honest stake successful rounds from round r to r +

t,t > 0 in HYBr(σ). We then have the number of actual working rounds for honest

miners will remain t − 2∆c. For each round, the probability that it is an honest stake

successful round is α̂. We have α̂(t − 2∆c) = c. �is implies that c = α̂t
1+2∆α̂

= γ̂t. We

get γ̂ = α̂
1+2∆α̂

.

Let viewr denote the view at round r for any execution of REAL(σ) and r > 0. Let

len(viewr) denote the length of the best public PoS-chain chain at round r in viewr. �e

following lemma demonstrates that each stake successful round would contribute one

PoS-block to the best chain-pair a�er 2∆ rounds in an execution of HYBr(σ).

Lemma 8. Consider execution HYBr(σ). For any honest stake successful round s > r,

len(views)− len(views−2∆) ≥ 1.

Proof. By De�nition 16, there is at least one honest PoS-holder producing a PoS-block at

round s. Let C̃s−2∆ be the PoS-chain that is extended by the PoS-holder at round s− 2∆.

We have len(C̃s−2∆) ≥ len(views−2∆). Let C̃s be the PoS-chain that is extended by the

PoS-holder at round s. At the end of round s, all honest players will receive the extended

chain, we have len(C̃s) = len(C̃s−2∆) + 1. �us, we have len(views) ≥ len(C̃s). Pu�ing

them together, we have len(views)− len(views−2∆) ≥ 1.

68

Corollary 7. Consider execution HYBr(σ). Suppose there are h honest stake successful

rounds from round r to round r + t, it holds that len(viewr+s)− len(viewr) ≥ h.

Proof. Let rk be the kth honest stake successful roundwhere r < rk < r+t and 1 ≤ k ≤ h.

From Lemma 8, we have len(viewrk)− len(viewrk−∆) ≥ 1.

len(viewr+t)− len(viewr) ≥
∑h

i=1{len(viewrk)− len(viewrk−∆)} ≥ h

4.2.5 Analysis with adaptive key generation

In the protocol Πs
, PoS-holder is elected by the ideal functionality F∗PoS with some

probability. In the implementation, if a Πs
is elected in a round depends on his account

(public key) and some auxiliary inputs. If a malicious players can choose and register a

biased key a�er he collects all of the information of the environment, he may get some

advantage to be elected. We call this type of malicious players as adaptive malicious

players and this a�ack strategy as adaptive key generation a�ack.

First we will show that adaptive key generation a�ack will take e�ect on pure proof

of stake blockchain scheme under some assumption.

Lemma 9. Let Π be any pure proof stake blockchain scheme. �e player election function

is F (·, pk). Let p be the probability that a malicious player is elected in a round if there is

no adaptive key generation a�ack. �at is Pr[F (·, pk) = 1] = p for any pk. Let pa be the

probability that a malicious player is elected in a round with adaptive key generation a�ack.

If F (·, pk) can be predicted by players and the key registration procedure doesn’t a�ect the

input of F (·, pk) , we have pa = 1− (1− p)ploy(κ)
.

Proof. For adaptive malicious players, he can generate ploy(κ) di�erent public keys in a

round. He will predict F (·, pk) for all of the ploy(κ) public keys. �e probability that all

of the ploy(κ) keys are not be elected is (1 − p)ploy(κ)
. We have pa = 1 − (1 − p)ploy(κ)

.

He then register the elected key if there is one.

69

Our 2hop blockchain is immune to adaptive key generation a�ack. �e intuition is in

our stake election function is F (·, pk), key registration procedure will a�ect the input ·. In

our scheme, the concrete input ·will contain the output of PoWblock. �e key registration

transaction will be included in the previous PoW blocks. If the malicious players want to

register a key adaptively, he must try PoWwhich will still consume the computing power.

Lemma 10. Consider the execution EXEC(Πw,Πs),A,Z . Let β, β̃ > 0. We assume that the

malicious players will take adaptive key generation strategy. Let γ̃ be the expected number

of PoW blocks which are mapped to malicious stakes that malicious players can �nd in round.

We have γ̃ = ββ̃.

Proof. In our scheme, when a valid PoW block is generated, all of the public key of stake

holders are �xed in the previous blocks. Any change of public key (registration of new

public key) will make the PoW block be invalid. If the malicious players take adaptive

strategy, he must redo the PoW hash puzzle. �at is adaptive strategy will not bring

advantage to the malicious players comparing with the original strategy. We have γ̃ =

ββ̃.

�at is in our protocol the key registration will a�ect the input of PoW block, the ma-

licious players can not take adaptive strategy. How ever in pure proof of stake blockchain

scheme, the key registration is almost free, the malicious players may can register key

adaptively. In order to avoid this a�ack, there must be some extra assumption in PoS

blockchain, such as a key must have been registered several rounds before it can be

elected.

70

4.2.6 Achieving the chain growth property

We here demonstrate that our protocol satis�es the chain growth property for

PoS-chain (De�nition 10). �e concrete statement to be proved can be found in �eo-

rem 3. We �rst prove that our blockchain protocol achieves the chain growth property in

the execution HYBr(σ) before moving to the main theorem.

Lemma 11. Consider the execution HYBr(σ). For any δ > 0, during any t consecutive

rounds a�er round r, the number of honest successful rounds is (1− δ)γ̂t with probability at

least 1− e−Ω(t)
.

Proof. Wewill prove that honest stake successful rounds will happen following the honest

collective resources. From Lemma 7, in any t consecutive rounds, the number of honest

stake successful rounds is γ̂t on average. LetX be the number of honest stake successful

rounds in the t consecutive rounds. By Cherno� bound, we have Pr[X ≤ (1 − δ)γ̂t] ≤

e−δ
2γ̂t/2

.

�us, Pr[X > (1− δ)γ̂t] > 1− e−δ2γ̂t/2 = 1− e−Ω(t)
.

�e honest stake successful rounds will increase the length of the PoS-chain of best

public chain-pair.

Lemma 12. Consider the execution HYBr(σ). For any δ > 0, and for any honest PoS-holder

S with the best PoS-chain C̃r and C̃r′ in round r and r′, respectively, where t = r′ − r � ∆,

the probability that len(C̃r′)− len(C̃r) ≥ g ·t where g = (1− δ)γ̂ is at least 1− e−Ω(t)
.

Proof. For S is honest, C̃r will be received by all honest players no later than round r+ ∆.

We have len(C̃r) ≤ len(viewr+∆). For t � ∆, we consider t ≈ t − ∆ for simplicity.

From Lemma 11, in any t consecutive rounds the number of honest successful round is

more than (1− δ)γt with the probability at least 1− e−Ω(t)
. Together with Lemma 8 and

Corollary 7, we have len(viewr′)− len(viewr+∆) ≥ (1− δ)γ̂t.

71

Chain C̃r′ is the best valid PoS-chain accepted by the honest PoS-holder Sj at round

r′. We have len(C̃r′) ≥ len(viewr′). Put them together, len(C̃r′) − len(C̃r) ≥ len(viewr′) −

len(viewr+∆) ≥ (1− δ)γ̂t with probability at least 1− e−Ω(t)
. �e corresponding growth

rate is g = (1− δ)γ̂.

Reminder of�eorem 3. Consider protocol Π = (Πw,Πs) in Section 4.1.2. For any honest

PoS-holder S ∈ {Sn+1, . . . , Sn+ñ} with the local PoS-chain C̃ in round r and C̃ ′ in round r′

where t = r′ − r > 0, in EXEC(Πw,Πs),A,Z , the probability that len(C̃ ′)− len(C̃) ≥ g · t is at

least 1− e−Ω(t)
where g = (1− δ)γ̂.

Proof. In order to distinguish the notation clearly, we use C̃∆ and C̃ ′∆ to denote the

PoS-chains of the best chain-pairs of S at round r ans r′ in the execution of HYBr(σ).

From Lemma 12, we have Pr[len(C̃ ′∆) ≥ len(C̃∆)+g · t] ≥ 1−e−Ω(t)
where t = r′−r,

in HYBr(σ).

We now turn to the chain growth property in EXEC(Πw,Πs),A,Z . From the de�nition

of hybrid execution, we know that all honest players have same initial status at round r.

We have len(C̃) = len(C̃∆).

By Lemma 6, we have len(C̃ ′) ≥ len(C̃ ′∆).

It follows that,

Pr[len(C̃ ′) ≥ len(C̃) + g · t]

≥ Pr[len(C̃ ′∆) ≥ len(C̃∆) + g · t]

≥ 1− e−Ω(t)

(4.1)

where g = (1− δ)γ̂. �is completes the proof.

72

4.2.7 Achieving the chain quality property

�e chain-quality property (De�nition 12) ensures that the rate of honest input con-

tributions in a continuous part of an honest party’s chain has a lower bound. We then

�nd the lower bound of the number of PoS-blocks produced by the honest players. We

further show that the number of blocks produced by the adversarial miners is bounded

by their collective resources. Finally, we demonstrate that the ratio of honest PoS-blocks

in an honest player’s PoS-chain is under a suitable lower bound in a su�cient number of

rounds with an overwhelming probability.

First, we will build the relationship between length of a chain and the number of

rounds.

Lemma 13. Consider in REAL(σ). For any δ > 0, let Z be the number of rounds which

generate ` blocks, we then have Pr[Z > c`] > 1− e−Ω(`)
, where c� 1.

Proof. Pu�ing all of the resources together, all players can generate α̂+ β̂ PoS-blocks in a

round on average. In order to generate ` blocks, it will consume
`

α̂+β̂
rounds on average.

Let c = 1

α̂+β̂
, and Z be the number of rounds which generate ` PoS-blocks. For

any δ > 0, by using Cherno� bounds, we have Pr[Z ≤ (1 − δ)c`] ≤ e−δ
2c`/3

. �at is,

Pr[Z > (1− δ)c`] > 1− e−δ2c`/3 = 1− e−Ω(`)
. �is completes the proof.

Nowwe consider the contribution of PoS-blocks from honest players in some consec-

utive rounds. If the adversarial players want to contribute more PoS-blocks on the chain,

they will try to generate more PoS-blocks and beat the PoS-blocks from honest players in

the competition. �us, the worst case is the adversarial players make use of all the com-

puting power from both honest and malicious miners to generate PoS-blocks and win all

of the competition. We recall the 4 cases in Section 4.2.2. �e adversarial players can

make use of Case 2 and Case 3 to generate PoS-blocks. �e honest players will use Case

73

1 to generate PoS-blocks. First, we will prove the chain quality property in t consecutive

rounds.

Lemma 14. Consider in REAL(σ) and consider ` PoS-blocks of C̃ that are generated in

consecutive rounds from r to r+ t. We assume γ̂ = λ̂(α+ β)β̃ where λ̂ > 1 and any δ > 0.

�en for any honest PoS-holder S with PoS-chain C̃, we have Pr[µ ≥ 1 − (1 + δ) (α+β)β̃
γ̂

] >

1− e−Ω(t)
, for any δ > 0, where µ is the ratio of honest blocks the PoS-chain C̃.

Proof. Consider ` consecutive PoS-blocks of C̃ that are generated from round r to round

r + t. From �eorem 3, we have Pr[` ≥ (1− δ∗)γ̂ · t] ≥ 1− e−Ω(t)
for some δ∗ > 0.

Let Y be the number of valid malicious PoW-blocks which are actually generated in

t rounds in the Case 2. By Cherno� bound, we have

Pr[Y < (1 + δ′)ββ̃ · t] > 1− e−Ω(t)

Furthermore, let Z be the number of blocks of generated in Case 3 in t rounds. By

Cherno� bound, we have

Pr[Z < (1 + δ′′)αβ̃ · t] > 1− e−Ω(t)

Pu�ing them together, the malicious parties will contribute at most (Y + Z)

PoS-blocks in the t rounds. We then have

Pr

[
µ ≥ `− Y − Z

`

]
> 1− e−Ω(t)

�at is, By picking δ∗, δ′, and δ′′ su�ciently small, we have

Pr

[
µ ≥ 1− (1 + δ)

(α + β)β̃

γ̂

]
> 1− e−Ω(t)

for any δ > 0. �is completes the proof.

Now we are ready to prove the chain quality property for consecutive blocks on a

74

chain.

Reminder of �eorem 4. We assume γ̂ = λ̂(α+ β)β̃ and λ̂ > 1. Consider protocol Π =

(Πw,Πs) in Section 4.1.2. For any honest PoS-holder S ∈ {Sn+1, . . . , Sn+ñ}with PoS-chain C̃

in EXEC(Πw,Πs),A,Z , the probability that, for large enough ` consecutive PoS-blocks of C̃ which

are generated in s rounds, the ratio of honest blocks is no less than µ = 1− (1 + δ) (α+β)β̃
γ̂

is

at least 1− e−Ω(`)
.

Proof. Let t be the rounds that the ` blocks are generated. From Lemma 13, we have

Pr[t > c`] > 1− e−Ω(`)
.

From Lemma 14, the ratio of honest PoS-blocks in t consecutive rounds with `

PoS-blocks is µ ≥ 1− (1 + δ) (α+β)β̃
γ̂

with probability at least 1− e−Ω(t)
.

Pu�ing them together, the probability is at least 1− e−Ω(`)
. �is completes the proof.

4.2.8 Achieving the common pre�x property

We now turn our a�ention to proving the common pre�x property for PoS-chain

(De�nition 11) for the proposed protocol. �e concrete statement can be found in �eo-

rem 5.

Now we will give some informal proof ideas before the formal proof.

• First, from the assumption, we know that if the malicious parties do not get any

help from the honest parties, then they cannot produce PoS-blocks faster than the

honest parties. �at means if the malicious parties keep a forked chain-pair hidden

and try to extend it by themselves, then the growth rate of the hidden chain-pair

is smaller than the growth rate of the public longest chain-pair on average. When

considering an extended period of time, the hidden chain-pair will be shorter than

the public chain-pair with an overwhelming probability.

75

• Second, we assume there is no new block being generated in most rounds. �is im-

plies no new chain will lead the honest players take divergent view in most rounds.

�e honest players will try to be convergent a�er some silent rounds. If the adver-

sary players want to keep them be divergent, they must send new blocks in silent

rounds. �e adversary players don’t have enough resources to do that.

Recall the de�nition of best public PoS-chain. Best public chain C̃ is: a) C̃ has been

received by all of the honest players which means public. b) C̃ is the best one among all

of the public chains. �is implies each honest player will not take any chain worse than

best public chain in any round . Next we will prove, it the adversary players hide some

blocks for a chain, the hidden chain will be worse than the best public chain with high

probability if the hidden length is long. �is lemma imply that is the adversary players

keep some blocks privacy, they will be invalid soon. So the adversarial players cannot

store a lot of hidden blocks to destroy the best PoS-chain later.

Lemma 15. Let γ̂ = λ̂β̂ and λ̂ > 1. For any δ > 0, consider the execution REAL(σ). Let

C̃ be the PoS-chain of the best public chain-pair in round r. Let C̃ ′ be the PoS-chain of a

hidden valid chain-pair in round r. Let ` be the length of the hidden part of C̃ ′. We have

Pr[len(C̃) > len(C̃ ′)] > 1− eΩ(`)
.

Proof. Let round s = r − t be the round that last public block in C̃ ′ is generated . From

Lemma 13, ` hidden blocks need t rounds to generate with probability at least 1 − eΩ(`)
.

�at is, Pr[t > c`] > 1− eΩ(`)
.

�e hidden blocks are contributed by adversarial players only, otherwise they are not

hidden. �us, the growth of hidden blocks is from the Case 2. In t rounds, the adversarial

players can generate β̂t PoS-blocks on average. LetX be the number of adversarial blocks

generated in t rounds, by Cherno� bound, we have

Pr[X > (1 + δ)β̂t] < e−Ω(t)

76

From �eorem 3, during t rounds the best public PoS-chain will increase Y > (1 −

δ)γ̂t blocks with probability at least 1− e−Ω(t)
. For γ̂ = λ̂β̂, we have

Pr[X < Y] > 1− e−Ω(t) = 1− eΩ(`)

We denote chain C̃ ′ at round s as C̃ ′s. We have

len(C̃) > len(C̃ ′s) + Y > len(C̃ ′s) +X > len(C̃ ′)

with probability at least 1− e−Ω(`)
.

We �rst prove the common pre�x property for any t consecutive rounds. �e proof

intuition is as follows:

• We assume α+ β � 1, that means in most rounds, players will not generate block.

• If only honest players broadcast a new PoW-block, in 2∆ silent rounds, all honest

players will take the same best chain-pair (or PoS-chain), unless adversarial players

send new valid blocks.

• If (α + β)∆� 1, there are no new messages being broadcast in most rounds.

• From a round, the honest players will o�en have opportunities to take unique best

chain-pair (or PoS-chain). If the adversarial players want to keep them divergent,

they must broadcast new valid blocks for every opportunity.

• We will prove the adversarial players don’t have enough resource to do that under

our reasonable assumption.

Lemma 16. Let α̂ = λ̂(α + β)β̃ , λ̂ > 1, (α + β)∆ � 1. Assume 0 < δ, δ′, δ′′, δ′′′ < 1,

consider the execution REAL(σ). Except with probability e−Ω(t)
, there does not exist round

77

r ≤ r′ and PoS-holders Si, Sj such that Si is honest at r, Sj is honest at r
′
and C̃ri and C̃r

′
j

diverge at round s = r − t.

Proof. For each round k, we de�ne a random variableXk. If round k is both pure success-

ful round and silent round, and round k + 2∆ is also a silent round Xk = 1, otherwise

Xk = 0. Let X =
∑

Xk.

Let X ′ be the number of pure successful rounds in t round. By Lemma 3, X ′ is

(α− α2)t on average. By Cherno� bound, we have

Pr[X ′ < (1− δ)(α− α2)t] < e−Ω(t)

LetX ′′ be the number rounds which are both pure successful round and silent round.

A round is pure successful round is independent with the event it is silent round. By

Lemma 5, we have

Pr[X ′′ < (1− δ)(α− α2)t(1− 2(1 + δ′)(α + β)∆)] < e−Ω(t)

For (α + β)∆� 1 and α� 1, ∃δ′′ s.t.

Pr[X ′′ < (1− δ′′)αt] < e−Ω(t)

A round k is also independent with the event round k + 2∆ is a silent round. Also

by Lemma 5, we have

Pr[X < (1− δ′′′)αt] < e−Ω(t)

If Xk = 1, the new generated block in round k will be mapped to an honest stake-

holder with the probability α̃. We use a random variable Yk for round k. If Xk = 1 and

the new generated block is mapped to an honest stakeholderYk = 1, otherwiseYk = 0.

Let Y =
∑

Yk. We have

Pr[Y < (1− δ′′′)αα̃t] < e−Ω(t)

78

If Yk = 1 all honest players will be convergent to a unique PoS-chain unless adver-

sarial players send a new block in the next 2∆ rounds. �is is because, a) at round r all

honest players have the best PoS-chain with same length. b) at round r the new extended

PoS-block will increase the best public PoS-chain by 1 block. If there is no adversarial

players send a new chain C̃ ′ with at least the same length, all honest parties will receive

the new PoS-chain in 2∆ rounds and take it as the best chain. �e last block of C̃ ′ must

be generated by adversarial players because if is longer than the best public PoS-chain of

honest players.

Let Z ′ be the number of blocks generated by adversarial players in t consecutive

rounds. We have Z ′ = (α + β)β̃t on average. By Cherno� bound, we have Pr[Z ′ >

(1 + δ)(α + β)β̃t] < e−Ω(t)
. From Lemma 15, before round s, the adversarial players

can hide at most κ blocks with an overwhelming probability in κ. Let Z = Z ′ + κ, the

adversarial players can use Z new blocks to prevent the Y convergence opportunities. If

t is large enough, we can have δ′ that Pr[Z > (1 + δ′)(α + β)β̃t] < e−Ω(t)
.

Pu�ing them together, Y > (1− δ′′′)αα̃t and Z < (1+ δ′)(α+β)β̃twith probability

at least 1− e−Ω(t)
. By the assumption αα̃ = λ̂(α + β)β̃ and λ̂ > 1, we have

Y − Z > (1− δ′′′)αα̃t− (1 + δ′)(α + β)β̃t (4.2)

= ((1− δ′′′)λ̂− (1 + δ′))(α + β)β̃t

> 0

�is implies that the adversarial players cannot prevent the best chain-pair (or

PoS-chain) being convergent during the t consecutive rounds with probability at least

1 − e−Ω(t)
. If at round r, C̃ri and C̃rj are not divergent, then C̃ri and C̃r

′
j are not divergent.

We have C̃ri and C̃r
′
j diverge with the probability at most e−Ω(t)

.

We are now ready to prove themain theoremwhich asserts that our protocol achieves

79

the common-pre�x property with an overwhelming probability in the security parameter

κ. �e theorem is formally given as follows.

Reminder of �eorem 5. We assume α̂ = λ̂(α + β)β̃ and λ̂ > 1. For any δ > 0,

consider protocol Π = (Πw,Πs) in Section 4.1.2. Let κ be the security parameter. For any

two honest PoS-holders Si in round r and Sj in round r
′
, with the local best PoS-chains C̃i, C̃j ,

respectively, in EXEC(Πw,Πs),A,Z where r ≤ r′ and i, j ∈ {n+ 1, . . . , n+ ñ}, the probability

that C̃i[1, `i] � C̃j where `i = len(C̃i)−Θ(κ) is at least 1− e−Ω(κ)
.

Proof. From Lemma 16, the probability that C̃i and C̃j diverge at round s = r− t is at most

e−Ω(t)
.

In t consecutive rounds, the total number of PoS-blocks are produced is bounded by

(1 + δ)(α + β)(α̃ + β̃)t with probability at least 1 − e−Ω(t)
. Let t = κ

(1+δ)(α+β)(α̃+β̃)
. We

have C̃i is pre�x of C̃j except the last κ blocks with the probability at least 1− e−Ω(κ)
.

4.2.9 Achieving the chain soundness property

�e chain soundness property will guarantee that a new spawned player can take the

best chain properly when he join the system. It is critical to achieve a open blockchain

system. �e concrete statement can be found in �eorem 6.

Reminder of �eorem 6. We assume α̂ = λ̂(α + β)β̃ and λ̂ > 1. Consider protocol

Π = (Πw,Πs) in Section 4.1.2. Let κ be the security parameter. For any new spawned

honest player PoS-holder Si and any existing honest player Sj in round r, with the local best

PoS-chains C̃i, C̃j , respectively, in EXEC(Πw,Πs),A,Z , the probability that C̃i[1, `] � C̃j and

C̃j[1, `] � C̃i where ` = len(C̃i)−Θ(κ) is at least 1− e−Ω(κ)
.

Proof. We note that Sj is an honest existing player, Si must receive C̃j in round r. Because

Si take C̃i as best chain we have len(C̃i) ≥ len(C̃j).

80

Consider the scenario that the adversary let another existing player Sm also take C̃j

as the best chain and then send Ci to Sm. Now, Sm will take C̃j as the best chain.

If C̃i[1, `] � C̃j or C̃j[1, `] � C̃i where ` = len(C̃i) − Θ(κ) then the common pre�x

property of Si and Sm will be broken. From the �eorem 6 we have that the probability

C̃i[1, `] � C̃j and C̃j[1, `] � C̃i where ` = len(C̃i)−Θ(κ) is at least 1− e−Ω(κ)
.

81

CHAPTER 5

PRACTICAL POW/POS SYSTEM: TWINSCOIN

In this chapter, we design TwinsCoin—a practical improvement of the 2-hop blockchain.

�is is the �rst cryptocurrency based on a provably secure and scalable public blockchain

design using both proof-of-work and proof-of-stake mechanisms from 2-hop blockchain.

�e blockchain in our system is more robust than that in a pure proof-of-work based

system; even if the adversary controls the majority of mining power, we can still have the

chance to secure the system by relying on honest stake.

5.1 From 2-hop blockchain to TwinsCoin

Our 2-hop blockchain in Chapter 4 design the �rst provably secure and scalable open

blockchain, called “2-hop blockchain”, via combining proof-of-work and proof-of-stake.

In their design, in addition to PoW-miners, a new type of players, PoS-holders (stakehold-

ers) are introduced. A winning PoW-miner cannot extend the blockchain immediately as

in Bitcoin. Instead, the winning PoW-miner provides a base which enables a PoS-holder to

be “selected” to extend the blockchain. �at is, a PoW-miner and then a PoS-holder jointly

extend the blockchain with a new block. Note that, in Bitcoin, winning PoW-miners di-

rectly extend the blockchain.

In the 2-hop blockchain protocol PoW-chains and PoS-chains are plaited together in

every time step, and these PoW/PoS-chains are extended alternately. Intuitively, the 2-hop

blockchain can be viewed as a proof-of-stake scheme which uses a proof-of-work chain

as a biased random beacon. �is critical idea enables the 2-hop scheme to achieve almost

the same e�ciency as the original Bitcoin scheme. Also, the 2-hop blockchain can scale

82

to a large size of network.

Unfortunately, 2-hop blockchain, as it is, has a signi�cant weakness: the resulting

blockchain protocols are expected to be executed in the static protocol execution envi-

ronments. �at is, in each round, the invested/involved physical computing resources as

well as virtual resources (i.e., stake/coins) in the system are always the same. �is does

not re�ect the reality. Take Bitcoin as an example. In the past years, the amount of com-

puting resources that invested for each unit of time period has increased dramatically. In

Bitcoin, Nakamoto creatively introduced the di�culty adjustment mechanism to address

this issue. By se�ing a target of extending the blockchain with a new block in each 10

minutes, and by measuring the total time for extending a �xed number (e.g., 2016) of

blocks, each miner can be aware if more computing power has been invested. If so, then

each miner will increase the di�culty, and vice versa. Unfortunately, adaptive di�culty

adjustment mechanism is missing in the 2-hop blockchain. We remark that blockchains

without adaptive di�culty adjustment mechanism can o�en be easily broken. Neverthe-

less, the provably secure, and scalable 2-hop blockchain can serve as a good starting point

for us to achieve our research goal.

Adaptive di�culty adjustment. In our TwinsCoin system design, we need to make

our blockchain protocols to be adaptive to the protocol execution environments. Note

that here we have to address two types of resources, computing power and stake. It seems

that we need to measure the system through two di�erent ways. However, in the origi-

nal 2-hop design, the total number of proof-of-work blocks (PoW-blocks) is equal to the

total number of proof-of-stake blocks (PoS-blocks). It is not clear how to use Nakamoto’s

di�culty adjustment mechanism directly for our purpose.

In order to address this issue, we change the blockchain structure. Our new

blockchain structure allow us to “measure” the system thru two di�erent ways. Now

we record more PoW-blocks, called a�empting proof-of-work blocks; these blocks are gen-

83

erated due to a successful �rst hop, but a failure second hop. For the sake of presentation,

we call PoW-blocks successful if they are generated due to a successful �rst hop along

with a successful second hop. Once we have two types of PoW-blocks, we can measure

the ratio between these two types of PoW-blocks. �is idea eventually allows us to design

a new di�culty adjustment mechanism.

Moving the underlying blockchain to the non-�at setting. In the original 2-hop

blockchain design [DFZ16], the resulting blockchain protocols are expected to be exe-

cuted in the idealized �at-model. Note that, in the �at model, each proof-of-work miner

holds the same amount of computing power and each proof-of-stake holder has the same

amount of stake (i.e., coins). Apparently, this �at model does not re�ect the reality. Strictly

sticking to the �at model will only allow us to design non-practical blockchains.

Blockchain is the core component of our TwinsCoin system. Note that, the designed

and then implemented blockchain in this paper essentially consists of two parts, the PoW-

chain, and the PoS-chain, and they always go along together, like twins, and we coin our

system as TwinsCoin.

Light client design. We propose a way to make light clients possible in a proof-of-

stake se�ing. As far as we know this is the �rst concrete proposal backed by a practical

evaluation.

5.2 Twinscoin design

Starting with a provably secure “core”, the 2-hop blockchain [DFZ16], we develop

our TwinsCoin system by following the steps below.

First, we redesign the structure of the 2-hop blockchain in [DFZ16] with the goal of

enabling a new mechanism for adjusting di�culties. We call this a modi�ed 2-hop

blockchain. Please see Section 5.2.1.

84

Second, based on the modi�ed 2-hop blockchain, we introduce a new mechanism to

adjust the di�culties for both PoW and PoS chains. Please see Section 5.2.2.

In addition, from a di�erent angle, we extend the 2-hop blockchain to the non-�at set-

ting where stakeholders may have di�erent amounts of stake. Please see Section 5.2.3

for details.

By combining these above steps, we have the blockchain for our TwinsCoin. �is new

blockchain is in the non-�at model with adaptive di�culty adjustment.

Finally, we enhance the TwinsCoin system with light clients. Please see Section 5.2.4.

5.2.1 Our modi�ed 2-hop blockchain

We summarize the frequently used notations in Table 1.

Table 1.: Table of notations

Notation Description

κ security parameter.

Cinit an initial blockchain.

B, C a PoW-block, a PoW-chain.

B̃, C̃ a PoS-block, a PoS-chain

B a set of proof-of-work blocks

〈C, C̃〉 a chain-pair

C a set of chain-pairs.

X information stored in blockchain.

Σ unique digital signature scheme Σ =
(Gen,Sign,Verify).

Σ′ digital signature scheme Σ′ =
(Gen′,Sign′,Verify′).

(sk, vk) a unique signing and veri�cation key-pair

(sk′, vk′) an ordinary signing and veri�cation key-pair

Broadcast(·) unauthenticated send-to-all functionality.

We suppose that there exists an initial blockchain Cinit as the starting point, and Cinit is

known to all participants. Now we present the behaviors of PoW-miners and PoS-holders

in our system.

85

Miners. Initially, each PoW-miner sets the set of chain-pairs C to empty. �is procedure

is formally presented by Algorithm 1.

Algorithm 1: Main Protocol: PoW-miner.

1 C← ε;

2 while True do

3 C← all chain-pairs received from the network.

4 〈C, C̃〉 ← BestValid(C); Cnew,← PoW(〈C, C̃〉)

5 if C 6= Cnew then

6 C ← Cnew; C← C ∪ 〈C, C̃〉; Broadcast(〈C, C̃〉)

Stakeholders. �e initialization of every PoS-holder is the same as PoW-miners except

that each valid PoS-holder is parameterized by a unique pair of signing and veri�cation

keys (sk, vk) , a ordinary key-pair (sk′, vk′) , and amount of coins v . (In this appendix, the

blockchain protocol is described in the �at model, and we assume v = 1.) �is procedure

is formally presented by Algorithm 2.

5.2.1.1 Proof-of-Work Blockchain

Attempting and Successful Blocks Besides PoS-blocks and PoW-blocks, our modi�ed

blockchain speci�es two types of PoW-blocks: a�empting blocks and successful blockswith

respect to the local view of each player in the system. If a node receives a new PoW-block

without a corresponding PoS-block, the PoW-block becomes an a�empting block with

respect to the view of the player. In opposite, if a node receives a new PoW-block along

with a corresponding PoS-block, the PoW-block is now considered as a successful block in

the node’s local view.

We now present the blockchain structure in our modi�ed 2-hop blockchain. Please

also see Figure 13.

86

Algorithm 2: Main Protocol: PoS-holder. �e PoS-holder algorithm is parameterized

by two key-pairs (sk, vk) for the unique signature scheme Σ = (Gen, Sign,Verify) and

(sk′, vk′) for the ordinary signature scheme Σ′ = (Gen′, Sign′,Verify′).

1 C← ε;

2 while True do

3 C← all chain-pairs received from the network.

4 X ← all payloads received from the network.

5 〈C, C̃〉 ← BestValid(C); C̃new ← PoS(sk, vk, sk′, vk′,X , 〈C, C̃〉)

6 if C̃ 6= C̃new then

7 C̃ ← C̃new; C← C ∪ 〈C, C̃〉; Broadcast(〈C, C̃〉)

Proof-of-Work Block Structure Let H(·),G(·) be cryptographic hash functions with

output in {0, 1}κ where κ is the security parameter. As introduced, we have two di�erent

types of PoW-blocks: a�empting blocks and successful blocks. �e structure of a�empting

and successful blocks are the same. However, they have di�erent meaning as follows: (1)

no PoS-block links to an a�empting block, and (2) we only count the successful blocks

when calculating the real length of a proof-of-work chain. A PoW-block B is a tuple of

the form 〈ctr, hw, hs, ha, ω〉, where

Notation ctr denotes a positive integer, 1 ≤ ctr ≤ q, and q ∈ N is the maximum

number of random oracle queries from each player per unit of time,

Notation hw denotes the digest of the previous proof-of-work block, where hw ∈

{0, 1}κ,

Notation hs denotes the digest of the previous proof-of-stake block, where hs ∈

{0, 1}κ,

Notation ha denotes the digest of the latest seen a�empting proof-of-work block,

87

time

B−1 B0

B1
2

B2
2

B3
2

B1
3

B2
3

B3
3

B1 B2 B3

B̃1 B̃2

. . .

. . .

. . .

Fig. 13.: A modi�ed 2-hop blockchain structure

Here, dot arrows (that link to the previous successful block and a�empting blocks) denote the �rst

hops, and solid arrows denote the second hops. Green blocks Bi’s denote the successful proof-

of-work blocks, Bj
i ’s denote the a�empting proof-of-work blocks, and red blocks B̃i’s denote the

corresponding proof-of-stake blocks. Note that the blue blocks are from the “mature blockchain”.

where ha ∈ {0, 1}κ

Notation ω is a random nonce, where ω ∈ {0, 1}κ, and blockB satis�es the inequality

H(ctr,G(hw, hs, ha, ω)) < T where the parameters T ∈ N denotes the current proof-of-

work target of the block.

A PoW-chain C consists of a sequence of ` concatenated successful PoW-blocks. We denote

head(C) as to the topmost successful PoW-block B` in blockchain C. �at is, we do not

consider an a�empting block as the head of the proof-of-work chain, and the head of a

PoW-chain is not necessary the topmost PoW-block since the topmost PoW-block could be

an a�empting block. Moreover, we only link a new proof-of-work block to the head of the

proof-of-work chain. �is implies that there may be multiple a�empting blocks a�aching

to a successful block in our proof-of-work chain. If a chain C is a pre�x of another chain

C ′, we write C � C ′.

Extending a Proof-of-Work BlockchainMiners maintain our system by extending the

PoW-chain. Algorithm 3 formally describes how to extend a proof-of-work blockchain in

88

our system. �is algorithm is parameterized by hash functions H(·),G(·) as well as two

positive integers q, T where q is the maximum number of random oracle queries of each

PoW-miner per unit of time, and T determines the “current block target” of the PoW. �e

algorithm works as follows: given a chain-pair 〈C, C̃〉, the algorithm computes the hash

hw of the previous PoW-block (the head of the PoW-chain), the hash hs of the head of

the PoS-chain, and the hash ha of the latest a�empting block collected. We emphasize

that, the head of the PoW-chain is the “most recent successful block” on the chain (not an

a�empting block), and without connecting to the head of the current PoS-chain or the lat-

est a�empting block, the adversary can rewrite any information stored on the chain-pair.

�e algorithm then samples a random initial string ω of length κ, then it increments ctr

and checks if H(ctr,G(hw, hs, ha, ω)) < T; if a suitable (ctr, hw, hs, ha, ω) is found then the

algorithm succeeds in solving the PoW and extends blockchain C by one block.

We illustrate the high level idea as in Figure 14. In this �gure, we consider a

PoW-miner a�empting to mine from a valid block-pair consisting of a PoW-blockB and a

PoS-block B̃. �ere, in the �rst a�empt, a new PoW-block B1
2 is linked to B (by the hash

hw of B) and to B̃ (by the hash hs of B̃); however, the corresponding PoS-block of B1
2 is

not seen by the PoW-miner. �erefore, we sayB1
2 is an a�empting PoW-block. In the sec-

ond a�empt, a new PoW-blockB2
2 is produced without any corresponding PoS-block, this

block also becomes an a�empting block. In the third a�empt, a new successful PoW-block

with the corresponding PoS-block is a�ached to the chain.

5.2.1.2 Proof-of-Stake Blockchain

In our system, a digital signature scheme is used by stakeholders to create new valid

PoS-blocks. Let H(·) be a cryptographic hash function with output in {0, 1}κ where κ

is the security parameter. We now introduce the format of a PoS-block. Consider each

PoS player holds two pairs of keys (vk, sk) and (vk′, sk′) for digital signature schemes

89

Algorithm 3: �e proof-of-work function, parameterized by positive integers q, T and

hash functions H(·), G(·).)

1 function PoW(〈C, C̃〉)

2 Let B be a set of a�empting blocks that a�ach to head(C)

3 Let l be the number of a�empting blocks in B.

4 Set ha :=⊥ if B is empty;hw := H(head(C)) hs := H(head(C̃)); ctr← 1;

ω ← {0, 1}κ; B ← ε

5 if l 6= 0 then

6 Let Bl
be the latest PoW-block found B that a�aches to head(C);

ha ← H(Bl)

7 while ctr ≤ q do

8 if (H(ctr,G(hw, hs, ha, ω)) < T) ∧ (ctr ≤ q) then

9 B ← 〈ctr, hw, hs, ha, ω〉; C ← CB

10 ctr← ctr + 1

11 return C ; /* Return the updated chain */

90

hw

hs

First A�empt Second A�empt Successful A�empt

ha

B1
2 B1

2

B2
2

B1
2

B2
2

B1 B1 B1 B2

B̃1 B̃1 B̃1 B̃2

Fig. 14.: Generating new PoW-blocks

(Gen, Sign,Verify) and (Gen′, Sign′,Verify′), respectively. Note that (Gen, Sign,Verify) is

a unique digital signature scheme [Lys02], while (Gen′, Sign′,Verify′) can be an ordinary

digital signature scheme.

In our system, each valid PoS-block is coupled with a valid PoW-block. Based on

a given PoW-block B, any stakeholder whose veri�cation key vk satis�es the following

hash inequality H̃(hw, ω̃, vk) < T̃ is allowed to generate a new PoS block, where T̃ is the

current proof-of-stake target, hw is the hash value of B and ω̃ ← Signsk(B).

�en a new PoS-block B̃ is in the form B̃ = 〈(B, ω̃, vk),X , σ, vk′〉, where X ∈

{0, 1}∗ is the payload of the proof-of-stake block B̃ (also denoted as payload(B̃)); and

σ is produced by the PoS player but by using a di�erent signing key sk′, i.e., σ ←

Sign′sk′((B, ω̃, vk),X).

We de�ne head(C̃) as the topmost PoS-block of the proof-of-stake chain C̃. We note

that, in PoS-chain, payload is stored, and we use payload(C̃) to denote the information

we store in C̃. If ` is the total number of PoS-blocks in the PoS-chain C̃, then we have

payload(C̃) = ||`i=1payload(B̃i), where || means concatenation.

Extending a Proof-of-Stake Blockchain. In Algorithm 4, we describe how the stake-

holders extend PoS-chains. In more details, Algorithm 4 processes as follows. Upon re-

91

ceiving message (sk, vk, sk′, vk′,X , 〈C, C̃〉), the algorithm a�empts to extend the speci�ed

PoS-chain C̃ in the chain-pair 〈C, C̃〉; �e algorithm then executes the following steps:

Step 1—Leader Election. �e algorithm collects all a�empting blocks that link to the head

of C. We denote the set of these a�empting blocks as B, and denote l as the number

of blocks in B; here, l = 0 means this set is empty and there are no a�empting blocks

that follow head(C). �en, let B be the latest a�empting block in B. If B is not empty

meaning that there exits a blockB, the algorithm checks if the veri�cation key vk is a valid

key (owns the stake) and the inequalityH(hw, ω̃, vk) < T̃ holds, where ω̃ ← Signsk(B) and

hw := H(B). If yes, the PoS-holder with the key-pair (sk, vk) is the winning PoS-holder.

Step 2—Signature generation. A�er Step 1 the PoS-holder with signing and veri�cation

keys (sk, vk) is the winning PoS-holder. �e algorithm then generates a signature σ ←

Sign′sk′((B, ω̃, vk),X) using the ordinary signature scheme Σ′with key-pair (sk′, vk′), and

forms a new PoS-block B̃ = 〈(B, ω̃, vk),X , σ, vk′〉. We say the PoS-holder with the key

pair (sk, vk) extends the speci�ed PoS-chain C̃ with B̃.

�e Figure 15 illustrate the structure of a chain-pair a�er executing Algorithm 4.

As shown in the �gure, we have B the most recently produced PoW-block, and the new

PoS-block B links to B by storing B in the block.

head(C) B

head(C̃) B̃

Fig. 15.: Generating new PoS-blocks

92

Algorithm 4: �e proof-of-stake function, parameterized by a unique signature scheme

Σ = (Gen,Sign,Verify), an ordinary signature scheme Σ′ = (Gen′,Sign′,Verify′), a pa-

rameter T̃, a function H(·).

1 function PoS(sk, vk, sk′, vk′,X , 〈C, C̃〉)

2 Let B is the set of all a�empting blocks that a�ach to head(C)

3 Let l be the number of a�empting blocks in B

4 Let B be the latest PoW-block in B that a�aches to head(C)

/* If there is one new PoW-block that attaches to head(C). */

5 ω̃ := Signsk(B)

6 hw := H(B)

7 if l > 0 then

8 if (H(hw, ω̃, vk) < T̃)) then

9 σ ← Sign′sk′((B, ω̃, vk),X)

10 B̃ = 〈(B, ω̃, vk),X , σ, vk′〉;C̃ ← C̃B̃

11 return C̃; /* Return the updated chain */

5.2.1.3 Validating a Chain-pair

Chain-Pair validation is the most important process in our design. We �rst formally

describe the following predicates used in the ValidateChain algorithm.

Predicate ValidPoWq,T
H,G(B,B′, B̃,B, B̂). �is predicate is parameterized by two integers

q, T, and two hash functions H(·),G(·). �e goal of this predicate is to check the valid-

ity of a successful PoW-block B upon receiving inputs: the successful block B, another

successful blockB′, a PoS-block B̃, two sets of a�empting PoW-blocks B and B̂. Here, the

block B consists of 〈ctr, hw, hs, ha, ω〉, block B′ consists of 〈ctr′, h ′w, h ′s, h ′a, ω′〉, the set B

consists of l a�empting blocks {B1, . . . , Bl} where each block Bi = 〈ctri, h iw, h is , h ia, ωi〉

93

for 1 ≤ i ≤ l, and the set B̂ consists of l a�empting blocks {B̂1, . . . , B̂l} where each

block B̂j = 〈ĉtrj, ĥjw, ĥjs , ĥ
j
b, ω̂

j〉 for 1 ≤ j ≤ l. Note that, PoW-blocks in B and B̂ are in

temporal-order. �e predicate checks the following.

B is properly solved if H(ctr,G(hw, hs, ha, ω)) < T; B links to the previous PoW-block

B′ if hw = H(B′) ;B links to the previous PoS-block B̃ if hs = H(B̃).

If l > 0, check whether B links to the latest a�empting block in the second set B̂ if

ha = H(B̂l).

If l > 0, check whether all a�empting blocks in B are properly solved if for 1 ≤ i ≤ l,

H(ctri,G(h iw, h
i
s , h

i
a, ω

i)) < T

If l > 0, check whether all a�empting blocks Bi = 〈ctri, h iw, h is , h ia, ωi〉 in B̂ are prop-

erly linked if

• Bi
links to the previous PoW-block B′ if h iw = H(B′).

• Bi
links to the previous PoS-block B̃ if h is = H(B̃).

• Bi
links to the previous a�empting block in the set B if h ia = H(Bi−1) (Note that,

we consider B0 = B′.)

�e predicate ValidPoWq,T
H,G outputs 1 if and only the examined block B passes all

tests described above.

Predicate ValidPoSΣ,Σ′,T̃
H (B̃, B). �is predicate is parameterized by a uniqe signature

scheme Σ, an ordinary signature scheme Σ′, and an integer T̃, and a hash function H(·).

�e goal of this predicate is to check the validity of a PoS-block B̃ = 〈(B, ω̃, vk),X , σ, vk′〉

upon receiving inputs: a PoS-block B̃, a PoW-block B.

�e predicate checks the following

B̃ is generated by an elected PoS-holder if H(hw, ω̃, vk) < T̃, where hw = H(B)

B̃ links to the corresponding PoW-block B if B = B′

�e signature σ is properly generated if Verify′vk′((B, ω̃, vk),X , σ) = 1

94

Algorithm 5: �e chain-pair validation algorithm, parameterized by a unique signature

schemeΣ = (Gen,Sign,Verify), an ordinary signature schemeΣ′ = (Gen′, Sign′,Verify;),

the stake-identity set S, parameters q, T, T̃, an initial chain Cinit, the hash functions H(·),

H(·),G(·) and the content validation predicate V (·).

1 function ValidateChain(〈C, C̃〉)

2 b← V (payload(C̃))

3 if b = True then

4 repeat

5 B ← H(head(C)); B̃ ← H(head(C̃))

6 Let B is the set of all a�empting PoW-blocks a�aching to head(C)

7 Truncate all PoW-blocks from the head of C (including the head), and

truncate the head of C̃

/* obtain new heads */

8 Let B̂ is the set of all a�empting PoW-blocks a�aching to the

newhead(C)

9 b1 ← ValidPoWq,T
H,G(B, head(C), head(C̃),B, B̂)

10 b2 ← ValidPoSΣ,Σ′,T̃
H (B̃, B); b = b1 ∧ b2

11 until (C = Cinit) ∨ (b = False);

12 return b

�e predicate ValidPoWΣ,Σ′,T̃
H outputs 1 if and only if the examined PoS-block B̃

passes all tests described above.

Our chain-pair validation algorithm, denotedValidateChain, is introduced to examine

if a pair of chains (including a PoW-chain and a PoS-chain) is valid. Intuitively, a valid

chain-pair means its members PoW-chain C and PoS-chain C̃ are both valid, respectively.

95

Furthermore, each block of the PoS-chain must contain the valid supporting signature for

the corresponding block of the PoW-chain. Please refer to Algorithm 5 for more details.

Resolving fork. In 2-hop blockchain design, fork is resolved by choosing the chain-

pair with the longest PoW-chain. In our design, a PoW-block could be an a�empting

or successful block. Furthermore, successful blocks are much more important than

a�empting blocks. �erefore, the winning chain-pair is the one with the most number

of successful blocks, that is, the one that required (in expectancy) the most successful

mining power.

Security. We emphasize that, this section only focuses on the structure of the blockchain.

We slightlymodify 2-hop blockchain to construct amore practical cryptocurrency system.

�e security proof for this modi�ed version is directly implied from 2-hop blockchain

security.

5.2.2 Blockchain with adjustable di�culty

Nakamoto’s di�culty adjustment for PoW. In Bitcoin, in order to keep the block with

a steady rate, the system adjusts the PoW hash target adaptively. �e intuition is that the

lower target means lower probability to get a valid PoW block by calling a hash function.

�is intuition provides a method to control the block generation rate by a target adjust-

ment scheme. For some time interval, if the chain extension rate is higher than expected,

the target needs to be decreased to make the successful probability lower.

�e target is adjusted every m blocks, In Bitcoin, m = 2016. We de�ne a time period

ofm blocks (precisely, di�erence between timestamps of the last and the �rst blocks in the

sequence) as an epoch. Let t be the expected time of an epoch. For example, in Bitcoin a

new valid block is to be generated every 10 minutes on average. �en we have t = m×10

minutes, which is approximately 14 days for an epoch. Let ti be the the actual duration of

the i-th epoch. Let Ti be the target in the i-th epoch. We have the target in the (i+ 1)-th

96

epoch as follows:

Ti+1 =
ti
t
Ti (5.1)

From the equation above we can observe that, if ti > t then Ti+1 > Ti and vice-versa. In

the case that ti > t, the miners spend longer time to obtain m blocks in the i-th epoch.

�erefore, the target should be increased so that the miners can �nd new blocks faster in

the next epoch. �is negative feedback mechanism makes the system stable.

Our di�culty adjustment for PoW/PoS.We propose two adaptive target mechanisms

for PoW and PoS chains in order to keep the chain-pair growth with a stable rate. First,

we use T to denote the PoW target in general. We also use Ti as the PoW target in the i-th

epoch. �e PoW target is used to control the probability of �nding a new valid PoW-block

for each a�empt. Secondly, we use T̃ to denote the PoS target in general. We also use T̃i

as the PoS target in the i-th epoch. �e PoS target is used to control the probability that

a PoW-block is successfully mapped to a valid stakeholder.

PoS target adjustment. To extend a PoS-chain, a stakeholder uses the inequality

H̃(hw, ω̃, vk) < T̃ to test if he is eligible to sign a PoS-block. Here, B is a new PoW-

block and vk is the veri�cation key of the stakeholder, and ω̃ is the unique signature ofB.

We assume the expectation of the probability that a PoW-block is successfully mapped to

a stakeholder is V < 1. Suppose there are mi PoW-blocks that are generated in the i-th

epoch, and let T̃i be the PoS di�culty in the i-th epoch, the PoS di�culty in the (i+ 1)-th

epoch is de�ned by the following equation:

T̃i+1 =
miV

m
T̃i (5.2)

We interpret the PoS di�culty adjustment by the following. If
mi
m
V > 1, then the prob-

ability that the PoW-block is mapped to a stakeholder is lower than the expectation V;

therefore, the PoS target T̃i+1 will be increased. Similarly, if
mi
m
V < 1, then the probability

97

that the PoW-block is mapped to a stakeholder is higher than the expectation V; therefore,

the PoS target T̃i+1 will be decreased. It is easy to see this is a negative feedback algorithm

that can ensure that the successful probability is close to V.

PoW target adjustment. �e di�culty adjustment strategy for PoW-chain in our system

is similar to the original Bitcoin system except that we additionally consider the in�uence

of PoS-chain generation to the PoW-chain.

As discussed in Section 5.2.1, in order to generate a valid block a miner need to try

di�erent ω to satisfy a hash inequality, i.e., H(hw, hs, ha, ω) < T. It is easy to see that if we

increase T, the probability to generate a valid PoW-block of one hash query will increase,

and vice versa. We assume the probability that a PoW-block is successfully mapped to a

stakeholder is V < 1. �e di�culty is adjusted everym PoW-blocks of the chain-pair. We

can take the typical value m = 2016 as in Bitcoin system. We use mi to denote the total

number of a�empting (and successful) PoW-blocks that are generated in the i-th epoch. If

some PoW-blocks are not be successfullymapped to stakeholders, wewould havemi > m.

Similar to Bitcoin, we also use t to denote the expected time span for an epoch, and ti do

denote the actual time span for the i-th epoch. Let Ti be the target in the i-th epoch. �e

target in the (i+ 1)-th epoch is de�ned by

Ti+1 =
mti
mitV

Ti (5.3)

�e di�culty adjustment for PoW is based on two “factors”, ti and mi. �e logic is

as follows:

If ti < t, we know that the i-th epoch is shorter than expected. In this case, we need

to decrease Ti+1 to increase the PoW di�culty in the (i + 1)-th epoch. Similarly, if

ti > t, we need to increase Ti+1 to decrease the PoW di�culty.

Ifmi > m/V, we know that the probability that PoW-block can be mapped to a stake-

98

holder is lower than the expectationV. In this case, the PoS di�culty (see PoS di�culty

adjustment) would be decreased and we need to increase PoW di�culty (by reducing

Ti+1). Similarly, ifmi < m/V, the PoS di�culty would be increased, then we need to

decrease PoW di�culty (by increasing Ti+1).

Potential attack on adjustable di�culty. Garay et al. [GKL15] and then Pass et

al. [PSS17b] analyze blockchain without considering di�culty adjustment. �e di�culty

D is �xed and re�ect the probability p that a hash query is a successful query. Together

with the number of players n, p will control the probability that a player �nds a valid

solution in a round. Furthermore, they also assume the ratio of honest players ρ which

provides an upper bound on the probability that a round is a successful round. Notation

α is used to denote the probability that some honest player succeeds in solving a puzzle

in one round and β is used to denote the expected number of blocks that an a�acker can

mine in a round. they assume α� 1 and β � 1 to analyze the protocol.

Garay et al. [GKL17] discuss backbone protocol with variable di�culty. �ey assume

that in any consecutive s rounds the mining power will increase γ times at most. �ey

study the security properties under this assumption. A potential a�ack on adjustable

di�culty is that malicious parties may stop tomine new blocks in some rounds. According

to the algorithm, the target D will be decreased to make the successful query easier so

that the system will keep a consistent pace to generate new blocks. �e malicious players

then begin to mine new blocks under this di�cult target. If the assumption α � 1 and

β � 1 is broken, then the system would be insecure.

Security analysis on Nakamoto’s. We provide an security analysis to demonstrate that

the malicious players are not able to a�ack the Nakamoto’s system by taking advantage

of the di�culty adjustment mechanism. Our analysis uses the original security proof in

Garay et al. [GKL15] as a black box. �ey have proven the backbone protocol will achieve

99

chain quality and common pre�x properties based on some reasonable assumptions.

We will follow the same assumption and notations as in [GKL15]. Parameter p de-

notes a probability of that a hash query satisfy the target. �e malicious players may

change p by e�ecting the adjustable di�culty. We will prove the a�ack will not break

the assumption in [GKL15]. We use the number of rounds to measure the duration time

t instead of the actual time. We also use ti to denote the number of rounds for the i-th

epoch.

Lemma 17. Let n be the total number of players and ρ be the ratio of honest players. In

each round, a player can make q hash queries. Let m be the number of blocks for an epoch

and t be the expected rounds for an epoch. Let p be the probability that a hash query satis�es

the target. For any constant δ > 1, we have Pr[p ≤ (1 + δ) m
nqρt

] > 1− e−Ω(δ)
.

Proof. First, we discuss the average case. If the malicious players stop to contribute any

blocks, the epoch would become longer than the expectation. From the equation 5.1, it is

easy to see that the target T would be increased, as well as the parameter p. A�er some

time, this would reach to a stable status in the i-th epoch, that is Ti+1 = Ti. We get ti = t.

In the i-th epoch, only honest computing power tries to generate new blocks. On average,

the honest miners will generate nqρtip = m blocks in the i-th epoch. For ti = t, we get

nqρtp = m. �at is p = m
nqρt

. Now, we turn to the worst case. When p ≥ m
nqρt

, suppose

that in t rounds the honest miners generatem blocks. By Cherno� bound, we have Pr[t >

(1 + δ)t] < e−Ω(δ)
. From the equation 5.1, we have Pr[Ti+1 > (1 + δ)Ti] < e−Ω(δ)

. �at

is Pr[p > (1 + δ) m
nqρt

] < e−Ω(δ)
. We get Pr[p ≤ (1 + δ) m

nqρt
] > 1− e−Ω(δ)

.

Lemma 18. Let n be the total number of players and ρ be the ratio of honest players. In each

round, a player can make q hash queries. Let m be the number of blocks for an epoch and t

be the expected rounds for an epoch. If
m
t
� 1, we have α� 1 and β � 1 with probability

that is no less than 1− e−Ω(δ)
, for any δ > 1.

100

Proof. From the de�nition, we haveα ≈ nρqp. From lemma 17, we haveα ≤ (1+δ)m
t
� 1

with probability that is greater than or equal to 1− e−Ω(δ)
. We also have β ≈ n(1− ρ)qp.

From lemma 17, we have β ≤ (1 + δ)m(1−ρ)
tρ

� 1 with probability that is no less than

1− e−Ω(δ)
.

We therefore conclude that the malicious players cannot break the assumption by

tuning the target.

Security analysis on TwinsCoin. Wehere provide security analysis to demonstrate that

the malicious players are not able to a�ack the TwinsCoin system by taking advantage of

the di�culty adjustment mechanism. In [DFZ16], the authors give a formal security proof

for 2-hop blockchain (without considering di�culty adjustment). �ere, they assume that

the probability that a PoW block is generated in a round is very low. �ey also assume the

probability that a PoW block is mapped to a valid stake is much less than 1. A potential

a�ack is that the malicious players can increase the target to make it is easier to generate

a PoW block, or increase the probability that a PoW block is mapped to a stake.. In this

section we prove that this a�ack does not work for our modi�ed 2-hop blockchain under

a certain assumption.

�e intuition is that in order to increase the target, the malicious players can stop

to contribute new PoW-blocks and PoS-blocks from some moments. �is will make the

block extension rate lower. By our di�culty adjustment algorithm, the target will increase

to speed up the block generation. At some later point, the malicious players will begin to

work and sign under the increased target. We will follow the notations in [DFZ16]. We

assume all of the computing power can make n hash queries to generate PoW-blocks in

an epoch. �e ratio of honest computing power is ρ. We also assume the total amount of

coins is n̂ and the honest ratio is ρ̂.

Lemma 19. Let V be the expectation of the probability that a PoW-block is successfully

101

mapped to a stakeholder. Total amount of coins is n̂ and the honest ratio is ρ̂. Let α̃ and β̃

be the probabilities that a PoW-block is mapped to an honest stake and a malicious stake,

respectively. For for any δ ∈ (0, 1), we have α̃ ≤ V
1−δ and β̃ ≤

1−ρ̃
ρ̃

V
1−δ with probability that

is no less than 1− e−Ω(δm
V

)
.

Proof. First, we discuss the average case. If the malicious players stop sign PoS blocks,

the PoS target T̃ would be increased. When the honest players can sign PoS block with

the expectation probability V, the PoS target will be stable. �at is T̃i+1 = T̃i. From

the equation 5.2, we have
m
mi

= V. �at is mi = m
V
. Now, we turn to the worst case.

When the malicious players stop sign PoS blocks, we have α̃ = m
mi

= V. with Cherno�

bound, for any δ ∈ (0, 1) we have Pr[mi < (1 − δ)m
V

] < e−Ω(δm
V

)
. �at is Pr[α̃ = m

mi
>

V
1−δ] < e−Ω(δm

V
)
. �e malicious will take the same PoS target, we have Pr[β̃ > 1−ρ̃

ρ̃
V

1−δ] <

e−Ω(δm
V

)
.

From the Lemma 19, α̃ and β̃ will not break the assumption by di�culty adjustment

with high probability.

Lemma 20. Let V be the expectation of the probability that a PoW-block is successfully

mapped to a stakeholder. Total amount of coins is n̂ and the honest ratio is ρ̂ the malicious

ratio is 1 − ρ̂. Let n be the total number of players and ρ be the ratio of honest players. In

each round, a player can make q hash queries. Let m be the number of blocks for an epoch

and t be the expected rounds for an epoch. If
m
t
� 1, we have α � 1 and β � 1 with

probability that is no less than 1− e−Ω(δ)
.

Proof. From Lemma 19, we have α̃ ≤ V with probability that is greater than or equal to

1−e−Ω(m
V

)
. Pu�ing it together with the equation 5.3, we have Ti+1 ≤ ti

t
Ti with probability

that is no less than 1 − e−Ω(m
V

)
. �is means the target Ti will be increased no faster than

it is in equation 5.1. We can show the proof in the similar way as in Lemma 18.

102

From the Lemma 20, α and β will not break the assumption by di�culty adjustment

with a high probability.

5.2.3 PoS blockchain in the non-�at model

Moving PoS blockchain from the �at to the non-�at model. �e (modi�ed) 2-hop

blockchain in section 5.2.1 is described in the �at model with a pre-�xed di�culty param-

eter. Intuitively, if PoS-holders have di�erent amounts of stake (coins), they would have

di�erent probabilities to be elected. �us, we improve the construction to be suitable for

non-�at model that means the PoS-holder can keep di�erent amount of stake in an ac-

count. Next, we prove that our construction is fair in the non-�at model so a PoS-holder

would not get any advantages if he splits his stake to multiple accounts.

We describe the non-�at model with hash inequality �rst. For a stakeholder, vk is

his veri�cation key (public key), and sk is the corresponding signing key. To extend

PoS-chain, the stakeholder will choose the best chain-pair with the most “successful” min-

ing power. Let 〈C, C̃〉 be the best chain-pair, and C is PoW-chain, C̃ is PoS-chain. If the last

PoW-block B on chain C is a new block in which there is no corresponding PoS-block on

PoS-chain, then the stakeholder would a�empt to generate a new PoS-block as the follow-

ing: Let T̃ denote the current di�culty target for the PoS-block generation. We assume the

total amount of stake in the whole system is n̂, we also assume the length of the output

of hash function H(·) is κ. Let p = T̃
2κ
, we assume n̂p < 1. Let v be the number of coins

in the account of a stakeholder with vk. If the inequality H̃(hw, ω̃, vk) < T̃ is satis�ed,

the stakeholder with the key-pair (sk, vk) would win a chance to sign the corresponding

PoS-block for PoW-blockB. As far as we know this is the �rst concrete non-�at treatment

for PoS-chain.

Security analysis. We provide here a security analysis for the non-�at model. �e play-

ers may take more than 1 coin in an account under non-�at model. We will argue that if

103

a stakeholder puts more than 1 coin in his account, this would not change the probability

for PoS-block mapping. Intuitively, from our non-�at construction, if a PoS-holder puts

more coins in an account, he has a higher probability to be selected; therefore, he does

not need to split his coins into multiple accounts.

Lemma 21. Let p = T̃
2κ

and κ is the length of hash output. Let n̂ be the total number of

coins. We assume n̂p < 1. For any stakeholder with account (sk, vk), we assume there are v

coins in this account, where v < n̂. We have Pr[H̃(hw, ω̃, vk) < v T̃] = vp.

Proof. From the de�nition we have v T̃ = vp2κ. For n̂p < 1 and v < n̂, we have v T̃ < 2κ.

SinceH(B, vk) produces the output uniformly in (0, 2κ), we havePr[H̃(hw, ω̃, vk) < v T̃] =

vp.

From the Lemma 21, we have the probability that a stakeholder is selected to generate

a PoS-block is proportional to the amount of stake he controls.

If the PoS-holder puts his v coins in one account, for any PoW blockB, the probability

that he is selected to sign the corresponding PoS block is vp.

If the PoS-holder puts his v coins in v accounts and every account has one coin, for

any PoW-blockB, the probability that an account is selected to sign the corresponding

PoS-block is p. �e outputs of hash function H̃(hw, ω̃, vk) are independent for di�erent

unque pair (vk, ω̃). �e total probability that the PoS-holder is selected is also vp.

�at is, the probability a stakeholder is selected in the non-�at model is equal to

the accumulated probability that he distributes the stake to di�erent accounts in the �at-

model. For a PoS-holder, the probability that he is selected only depends on the total

amount of stake (coins) he controls.

We summarize our TwinsCoin design in Figure 16. Startingwith the 2-hop blockchain

4, we �rst propose a slightly modi�ed version (Section 5.2.1) by changing the structure of

the proof-of-work chain as well as the format of proof-of-work blocks. �en we improve

104

this modi�ed 2-hop blockchain further, (i) by enabling di�culty adjustment for both PoW

and PoS chains (see Section 5.2.2), and (ii) by introducing an alternative method to choose

stakeholders to extend the PoS chain in the non-�at se�ing where players may have dif-

ferent amounts of coins. By combining these improvements with light client design, we

complete the blockchain design in our TwinsCoin system.

4.1Sec 5.2.1 (Modi�ed 2-hop)

Sec 3.2Chapter 4 (2-hop)

4.2Sec 5.2.3 (Non-Flat)

Sec 5.2.1 (Modi�ed 2-hop)Sec 5.2.4 (Light Client)

Sec 5.2.1 (Modi�ed 2-hop)TwinsCoin

FSIGSec 5.2.2 (Di�culty Adjustment)

Fig. 16.: Roadmap for blockchain design in TwinsCoin.

5.2.4 Light client design in TwinsCoin

Checking the validity of a proof-of-work block requires a constant-time opera-

tion (i.e., two SHA256 invocations); thus for a blockchain with n blocks, the time to check

the validity is linear (O(n)). In contrast, in all the proof-of-stake protocols checking a bal-

ance of a block generator is needed in order to verify the validity of blockchain. Currently,

holding the whole balance sheet is needed for the veri�cation. However, this creates lots

of di�culty for light clients. Veri�cation time (if a balance sheet is indexed by a public key)

for a block is about O(logS), where S is a size of the balance sheet. Once balance sheet

becomes too big to be stored in random-access memory, performance could be degraded

signi�cantly. In Bitcoin, once block size limit is reached, size of a balance sheet (more

105

precisely, unspent outputs set) is growing roughly linearly with time (a corresponding

graph could be found at [Blo17]), thus veri�cation time for n PoS blocks is O(n · log n).

�e concerns of heavy validation could be the solid arguments against switching from a

Proof-of-Work chain to the hybrid one.

As a solution, we propose to authenticate the balance sheet as 2-party dynamic au-

thenticated (public key→ balance) dictionary. In the paper [FC:RMCI17] an authenti-

cated data structure of this kind is proposed to be used in order to avoid holding all the

state for the full nodes. We are applying the principle further in order to make light clients

feasible in a Proof-of-Stake environment.

A root value a�er processing the transactions in a block is to be included in a block-

header of a PoS-block. Also, a stakeholder generating a block is including an authenticat-

ing path for his output against a root of a previous PoS-block. However, veri�cation time

for a block remains theO(logS), withO(n · log n) for a chain, but a constant factor would

be much smaller. We back the claim with an experiment provided in Section 6.2.0.2. It is

not needed to hold the whole state in order to check whether a PoS-block was generated

in a valid way, as by using a 2-party authenticated dynamic dictionary it becomes pos-

sible to check proofs and get a new root value without holding the whole dataset. As a

drawback, block size would be increased byO(logS) bytes, we provide concrete numbers

in Section 6.2.0.2.

106

CHAPTER 6

IMPLEMENTATION AND EXPERIMENTS

We provide a full-�edged implementation of TwinsCoin. Details on the implementation

are provided in Section 6.1. We run several experiments on particular aspects of our design

in order to empirically evaluate the claimsmade throughout the paper and also study some

aspects of proof-of-stake di�culty readjustment function in Section 6.2. We also run fully

functional TwinsCoin nodes over a testing network which is described in Section 6.2.1.

6.1 Implementation

We implement TwinsCoin using the Scorex framework [Inp16] in Scala language.

Our implementation is full-�edged. �erefore, it is possible to run the testing network

without any code modi�cations. Our implementation is opensourced
1
and published

under public domain CC0 license.

�ere are a few open source modular blockchain development tools available, such

as Scorex [Inp16], Sawtooth Lake [Int16a], and Fabric [IBM16]. We choose to use Scorex

2.0 [Inp16] because this is the only existing tool which supports two (or more) types of

blocks.

�e idea of a modular design for a cryptocurrency was �rst proposed by Goodman in

Tezos whitepaper [Goo]. �e whitepaper (Section 2 of it) proposes to break a cryptocur-

rency design into three protocols: network, transaction and consensus. In many cases,

however, these layers are tightly coupled and it is hard to describe them separately. For ex-

ample, in a proof-of-stake cryptocurrency a balance sheet structure, which is heavily in�u-

1
h�ps://bitbucket.org/TwCoin/twinscoin

107

enced by a transaction structure, is used in a consensus protocol. To split the layers clearly,

Scorex 2.0 has �ner granularity. In particular, in order to support hybrid blockchains as

well as more complicated structures than a chain (such as SPECTRE[SLZ16]), Scorex 2.0

does not even have a notion of the blockchain as a core abstraction. Instead, it provides

an abstract interface to a history which contains persistent modi�ers. �e history is a part

of a node view, which is a quadruple of 〈history, minimal state, vault, memory pool〉. �e

minimal state is a data structure and a corresponding interface providing an ability to

check a validity of an arbitrary transaction for the current moment of time with the same

result for all the nodes in the network having the same history. �e minimal state is to be

obtained deterministically from an inital pre-historical state and the history. �e vault is

the node-speci�c information, for example, a node user’s wallet. �e memory pool holds

uncon�rmed transactions being propagated across the networks by nodes before got into

blocks.

�e whole node view quadruple is to be changed atomically by applying whether a

persistent node viewmodi�er or an uncon�rmed transaction. Scorex provides guarantees

of atomicity and consistency for the application while a coin developer needs to provide

implementations for the abstract parts of the quadruple as well as a family of persistent

modi�ers. Our implementation is introducing two kinds of persistent modi�ers, PoW-

Blocks and PoS-Blocks.

Our implementation has simpler transactions than Bitcoin [Wikc]: while a Twin-

sCoin transaction has multiple inputs and outputs, like in Bitcoin, an output contains

only a public key of a spender and a value (so no support for Bitcoin Script [Wikb] or

another authentication language is provided). To spend an output, one needs to sign its

bytes in a referring input. In order to prevent replay a�acks, we also associate an output

with an unique nonce value, which is a result of hash(all the transaction bytes without

nonces ‖ output index in the transaction). Like in Bitcoin reference implementation, the

108

minimal state in the TwinsCoin is the current unspent outputs set (UTXO [Gui] set). In

both the systems, with the UTXO set it is possible to decide whether an arbitrary trans-

action valid against it or not. By processing a block, a node is removing outputs spent in

the block from the set and put there newly created unspent outputs.

We also have implemented block generation functionality directly inside the node

so�ware. Iteration over nonce space in Proof-of-Work mining component is arti�cially

limited in order to reduce the load of an evaluation environment and model non-�at min-

ing networks easily. �us, a number of hash function calls per second is to be set explicitly

in code. As in Bitcoin, a proof-of-work function is about to �nd a hash value with a certain

property of a block header with a nonce �eld included. We use Blake2b hash function with

256 bits output to have 128-bit security level. In our implementation PoW-miners start to

work on a next a�empting block right a�er previous one seen and before corresponding

PoS-block arrives. �us the mining component working all the time except PoS-block

processing phases.

Rollbacks are possible in a blockchain system if a be�er fork found. We store all the

blocks ever got from the network (Bitcoin does the same), so an implementation of the

history interface is just switching a pointer to a new best chain in case of a fork. For the

minimal state (the UTXO set) as well as for the wallet we need to restore an old version

of possibly big dataset before applying blocks from a new best chain a�er a common one.

To simplify previous database snapshot restoring, we are using a versioned key-value

database engine IODB [Kot]. IODB has been built to be used in blockchain systems, so

it provides batch updates only and a rollback to an arbitrary snapshot in the past within

depth to be set during database creation.

We are reusing peer-to-peer network from the Scorex without any changes. Nodes in

the network send announces about their blocks and transactions with INV messages like

in Bitcoin [Wika]. A new block is announcedwith the samemechanism; thus, propagation

109

time for miners is worse than in Bitcoin network where miners have direct low-latency

links to each other and push a header of a new block immediately.

Our implementation is compact, just about 2,300 lines of code, thanks to the frame-

works used and concise Scala language.

6.2 Experiments

In this section, we investigate some aspects of the TwinsCoin proposal with the help

of targeted experiments. First experiment is about a competition of two chains, an honest

and an adversarial, similar to described in the original Nakamoto paper ([Nak08], Section

11). �e goal of a second experiment is to measure e�ciency of the light client proposal

from the Section 5.2.4. �ird experiment examines proof-of-stake di�culty readjustment

procedure in a simulated environment.

6.2.0.1 Chain race experiment

In the original Bitcoin paper [Nak08], Nakamoto evaluated his proposal by consid-

ering competition of two chains, one of an adversary and another of an honest miner

showing that the adversarial chain cannot overtake the honest one until it is backed by

majority of mining power. As there are two resources providing a possibility to generate

a block in our proposal, we simulate an adversary possessing di�erent amounts of total

hashing power and also total stake.

In our experiment, an adversarial and an honest parties work on separate TwinsCoin

instances generating chain-pairs of length 10 (so 10 PoW-blocks and also 10 PoS-blocks).

A party which generates its chain-pair �rst wins the race. �e honest party owns 100

outputs locking the same amount of money while the adversary has only some fraction

of that. Di�culties are static during the experiment, time to generate a PoW-block on

average is overwhelmingly big in comparison with time needed to process a block, and

110

proof-of-stake di�culty is set to have about 1 output chosen on average for the honest

party. �e code could be found in the �le PrivateChain.scala.

�e result is presented in Figure 17. We run every experiment 20 times and con-

sider that the adversary succeeds if he wins at least once. Gray area in the �gure shows

adversarial success.

Fig. 17.: In�uence of a�acker’s stake to his hashrate.

�e results show that even with 70% of total mining power, the adversary also needs

for about 20% of total stake to generate a be�er chain than the honest party’s. Given

Bitcoin capitalization of $20 billion at the moment of writing, 20% of stake is about $4 bil-

lion. However, not all the stake is online so security projected into money would be about

lower level. It is hard to de�ne precisely how much stake is online in Bitcoin, and how

much it would be in case of PoS rewards being granted for that. Also, we have observed

only the simplest kind of a�ack in this experiment. �e adversary can do be�er, for ex-

ample, by exploiting network-level protocol with Eclipse a�acks [Hei+15]. Nevertheless,

a malicious miner needs to spend a lot of money to overtake the honest parties.

111

6.2.0.2 Light validation experiment

We estimate practically how e�cient is the light validation procedure proposed in

the Section 5.2.4. For that, we compare two chain validators. A full validator is operating

with full state residing in a persistent key-value database. A light validator is checking

lookup proofs from blockheaders. Both validators are performing lookup operations only.

For the experiment, we use authenticated AVL+ trees from [Rey+16]. �e full val-

idator code is using disk-based database MvStore with 128 MB in-memory LRU cache.

�e experiment is started with a balance sheet of about 46 million (public key→ balance)

pairs (where a public key is about 32 bytes, a value is about 8 bytes). We then try bigger

sheets, up to 92 million pairs in size. �us the testing dataset starts from a size like Bitcoin

UTXO set of today [Blo17] and �nishes with twice of that size. We use a machine with i7

processor, 16 GB RAM and HDD disk (5400 RPM) for the experiment.

Fig. 18.: Balance lookup time.

Figure 18 shows running times for both the validators. �e results show that our

light validator is running in e�ective constant time negligible to the running time of the

full validator (the running time of the light validator is about 20-25 microseconds per

112

operation).

For the light validator, a proof of a block generator’s balance is to be included into a

block. We obtain proof sizes for di�erent sizes of balance sheet, they are provided in the

Figure 19. �e proof size for a Bitcoin-like balance sheet size (46M elements) is about 960

bytes and remains no more than kilobyte when balance sheet is about 92M elements.

Fig. 19.: Balance lookup proof size.

6.2.0.3 Proof-of-stake di�culty experiments

In the Proof-of-Stake di�culty readjustment formula (see Formula 5.2) we use the V

parameter to show the probability that a PoW-block is a successful block. In other words,

V indicates the probability that a PoW-block is successfully mapped to a stakeholder. Also,

1 − V value shows how many a�empting blocks an average successful proof-of-work

block has included. However, in a distributed environment, real values could be di�erent

from the planned ones because of propagation e�ects. To know the di�erence wemade an

experiment where proof-of-stake block was sent to proof-of-work miner not immediately

but with a random delay distributed uniformly from 0 to 5% of target generation time. We

measure number of a�empting blocks included into a successful blocks. Results provided

113

in the Figure 20 show that in this scenario experimental numbers are close to the planned

ones.

Fig. 20.: Percentage of A�empting Blocks

We found that, given a constant stake, target value is changing with number of stake-

holders growing. �e dependency is presented in the Figure 21.

Fig. 21.: T̃ Value

114

6.2.1 Testnet

We launch TwinsCoin full-�edged implementation over a publicly accessible testing

network (so-called “testnet” in cryptocurrency jargon). For that, we deploy TwinsCoin to

tens of machines, including AWS (Amazon) instances in the US, Europe, Asia, as well as

physical machines in Germany and Russia. Each node in the network is connected to 10

random neighbors. Every machine is participating in proof-of-work blocks mining, few

machines have public keys with stake on-board so generating proof-of-stake blocks also.

Target time between proof-of-work blocks is 10 minutes and V = 0.8.

User interface. Scorex generates a user interface (UI) automatically and few requests

regarding common functionality are available with no any e�orts needed. In order to

add speci�c functionality, a coin developer needs to specify handlers for the additional

requests. �e interface is available in a web browser. With the help of the UI, a TwinsCoin

user is able to see the hybrid blockchain contents, network peers and their statuses, wallet

public keys and corresponding balances. It is also possible to create a transaction (to send

tokens) via the user interface.

Monetary policy and incentives. �e currency in the network has no emission, so

all the coins are issued in the initial state. Proof-of-Stake block generators are ge�ing

transaction fees as rewards while Proof-of-Work miners are ge�ing nothing (as �nding a

proper incentives structure is le� for further research).

115

Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

RVA Richmond Virginia

PoW Proof-of-work

PoS Proof-of-stake

116

REFERENCES

[Abu+17] Hamza Abusalah et al. “Beyond Hellman’s Time-Memory Trade-O�s with

Applications to Proofs of Space”. In: 2017, pp. 357–379.

[Bac02] Adam Back. “Hashcash — A Denial of Service Counter-Measure”. In: h�p:

//hashcash.org/papers/hashcash.pdf. 2002.

[Bad+17] Christian Badertscher et al. “Bitcoin as a Transaction Ledger: A Composable

Treatment”. In: 2017, pp. 324–356.

[Ben+14] Iddo Bentov et al. “Proof of Activity: Extending Bitcoin’s Proof of Work via

Proof of Stake [Extended Abstract]”. In: SIGMETRICS Perform. Eval. Rev. 42.3

(Dec. 2014), pp. 34–37. url: h�p://doi.acm.org/10.1145/2695533.2695545.

[BG17] Vitalik Buterin and Virgil Gri�th. “Casper the Friendly Finality Gadget”. In:

h�ps://arxiv.org/pdf/1710.09437.pdf. Nov. 2017.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. “Currencies without Proof of

Work”. In: Bitcoin Workshop- Financial Cryptography and Data Security (FC).

2016.

[Bit11] Bitcointalk. “Proof of stake instead of proof of work”. In: Online post by

�antumMechanic, available at h�ps://bitcointalk.org/index.php?topic=

27787.0. July 2011.

[Blo17] Blockchain.info. “Number of Unspent Transaction Outputs”. In: h�ps : / /

bitcoin.org/en/developer-guide. 2017.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from theWeil

Pairing”. In: 2001, pp. 514–532.

117

http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
http://doi.acm.org/10.1145/2695533.2695545
https://arxiv.org/pdf/1710.09437.pdf
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles Are Practical: A

Paradigm for Designing E�cient Protocols”. In: Proceedings of the 1st ACM

Conference on Computer and Communications Security. CCS ’93. Fairfax, Vir-

ginia, USA: ACM, 1993, pp. 62–73.

[Can00a] Ran Cane�i. “Security and Composition of Multiparty Cryptographic Proto-

cols”. In: 13.1 (2000), pp. 143–202.

[Can00b] Ran Cane�i. Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols. Cryptology ePrint Archive, Report 2000/067. h�p://eprint.

iacr.org/2000/067. 2000.

[Can01] Ran Cane�i. “Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols”. In: 2001, pp. 136–145.

[Can03] Ran Cane�i. Universally Composable Signatures, Certi�cation and Authenti-

cation. Cryptology ePrint Archive, Report 2003/239. h�p://eprint.iacr.org/

2003/239. 2003.

[CGH98] Ran Cane�i, Oded Goldreich, and Shai Halevi. “�e Random Oracle Method-

ology, Revisited (Preliminary Version)”. In: 1998, pp. 209–218.

[Cha82] David Chaum. “Blind Signatures for Untraceable Payments”. In: 1982,

pp. 199–203.

[CM17] Jing Chen and Silvio Micali. “Algorand”. In: arXiv:1607.01341. h�p://arxiv.

org/abs/1607.01341. May 2017.

[Coh+] Jonah Brown Cohen et al. “Formal Barriers to Proof-of-Stake Protocols”. In:

Video link h�ps://www.youtube.com/watch?v=PGrWGMRbdvw.

[Cry14] CryptoManiac. “Proof of Stake”. In: NovaCoin wiki (2014). h�ps : / /github.

com/novacoin-project/novacoin/wiki/Proof-of-stake.

118

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2003/239
http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341
https://www.youtube.com/watch?v=PGrWGMRbdvw
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake

[Dav+17] Bernardo David et al. “Ouroboros Praos: An adaptively-secure, semi-

synchronous proof-of-stake blockchain”. In: Cryptology ePrint Archive, Re-

port 2017/573. h�p://eprint.iacr.org/2017/573. June 2017.

[DFZ16] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. “2-hop Blockchain: Com-

bining Proof-of-Work and Proof-of-Stake Securely”. In: Cryptology ePrint

Archive, Report 2016/716. h�ps://eprint.iacr.org/2016/716. 2016.

[DN93] Cynthia Dwork and Moni Naor. “Pricing via Processing or Comba�ing Junk

Mail”. In: 1993, pp. 139–147.

[DPS17] Phil Daian, Rafael Pass, and Elaine Shi. “Snow White: Robustly Recon�g-

urable Consensus and Applications to Provably Secure Proofs of Stake”. In:

Cryptology ePrint Archive, Report 2016/919. h�p://eprint.iacr.org/2016/919.

Apr. 2017.

[ES14] I�ay Eyal and Emin Gün Sirer. “Majority Is Not Enough: Bitcoin Mining Is

Vulnerable”. In: 2014, pp. 436–454. doi: 10.1007/978-3-662-45472-5 28.

[Eya15] I�ay Eyal. “�e Miner’s Dilemma”. In: 2015, pp. 89–103. doi: 10 .1109/SP.

2015.13.

[FZ17] Lei Fan and Hong-Sheng Zhou. “A Scalable Proof-of-Stake Blockchain in the

Open Se�ing (or, How to Mimic Nakamoto’s Design via Proof-of-Stake)”. In:

h�ps://eprint.iacr.org/2017/656. July 2017.

[Gil+17] Yossi Gilad et al. “Algorand: Scaling Byzantine Agreements for Cryptocur-

rencies”. In: Cryptology ePrint Archive, Report 2017/454. h�ps://eprint.iacr.

org/2017/454. May 2017.

119

http://eprint.iacr.org/2017/573
https://eprint.iacr.org/2016/716
http://eprint.iacr.org/2016/919
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1109/SP.2015.13
https://doi.org/10.1109/SP.2015.13
https://eprint.iacr.org/2017/656
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454

[GKL15] JuanA. Garay, Aggelos Kiayias, andNikos Leonardos. “�eBitcoin Backbone

Protocol: Analysis andApplications”. In: 2015, pp. 281–310. doi: 10.1007/978-

3-662-46803-6 10.

[GKL17] JuanA. Garay, Aggelos Kiayias, andNikos Leonardos. “�eBitcoin Backbone

Protocol with Chains of Variable Di�culty”. In: 2017, pp. 291–323.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental

Game or A Completeness �eorem for Protocols with Honest Majority”. In:

1987, pp. 218–229.

[Goo] L. M Goodman. “Tezos: A Self-Amending Crypto-Ledger. Position Paper”. In:

[Goo14] Dan Goodin. “Bitcoin security guarantee sha�ered by anonymous miner

with 51% network power”. In: h�p://arstechnica.com/. 2014.

[Gui] Bitcoin Developer Guide. “UTXO De�nition”. In: h�ps : / / bitcoin . org / en /

developer-guide.

[Hei+15] Ethan Heilman et al. “Eclipse A�acks on Bitcoin’s Peer-to-Peer Network.”

In: USENIX Security. 2015, pp. 129–144.

[HM04] Dennis Ho�einz and JörnMüller-�ade. “Universally Composable Commit-

ments Using Random Oracles”. In: 2004, pp. 58–76.

[IBM16] IBM Corp. “Hyperledger-Fabric”. In: h�ps://github.com/hyperledger/fabric.

2016.

[Inp16] Input Output Hong Kong. “�e Scorex Project”. In: h�ps://github.com/input-

output-hk/Scorex. 2016.

[Int16a] Intel. “Hyperledger-Sawtooth Lake”. In: h�ps : / /github.com/hyperledger/

sawtooth-core. 2016.

120

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arstechnica.com/
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide
https://github.com/hyperledger/fabric
https://github.com/input-output-hk/Scorex
https://github.com/input-output-hk/Scorex
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core

[Int16b] Intel. “Proof of Elapsed Time (PoET)”. In: (2016). h�ps://intelledger.github.

io/introduction.html.

[Jep15] Christina Jepson. “DTB001: Decred Technical Brief”. In: Available at h�ps:

/ / coss . io / documents /white - papers / decred . pdf Additional information

available at h�ps://www.decred.org/. 2015.

[Kia+16] Aggelos Kiayias et al. “BlockchainMining Games”. In: Proceedings of the 2016

ACM Conference on Economics and Computation (EC). 2016, pp. 365–382.

[Kia+17] Aggelos Kiayias et al. “Ouroboros: A Provably Secure Proof-of-Stake

Blockchain Protocol”. In: CRYPTO. h�p://eprint.iacr.org/2016/889. 2017.

[KMS14] Jonathan Katz, Andrew Miller, and Elaine Shi. Pseudonymous Broadcast and

Secure Computation from Cryptographic Puzzles. Cryptology ePrint Archive,

Report 2014/857. h�p://eprint.iacr.org/2014/857. 2014.

[KN12] Sunny King and Sco� Nadal. “PPCoin: Peer-to-Peer Crypto-Currency with

Proof-of-Stake”. In: h�ps://peercoin.net/assets/paper/peercoin-paper.pdf.

2012.

[Kot] Jan Kotek. “IODB Storage Engine”. In: h�ps : / / iohk. io/blog/scorex/ iodb-

storage-engine/.

[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-Security Tradeo�s in

Blockchain Protocols. Cryptology ePrint Archive, Report 2015/1019. h�p://

eprint.iacr.org/2015/1019. 2015.

[KP16] Aggelos Kiayias and Giorgos Panagiotakos. On Trees, Chains and Fast Trans-

actions in the Blockchain. Cryptology ePrint Archive, Report 2016/545. h�p:

//eprint.iacr.org/2016/545. 2016.

121

https://intelledger.github.io/introduction.html
https://intelledger.github.io/introduction.html
https://coss.io/documents/white-papers/decred.pdf
https://coss.io/documents/white-papers/decred.pdf
https://www.decred.org/
http://eprint.iacr.org/2016/889
http://eprint.iacr.org/2014/857
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://iohk.io/blog/scorex/iodb-storage-engine/
https://iohk.io/blog/scorex/iodb-storage-engine/
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/545
http://eprint.iacr.org/2016/545

[Kwo14] Jae Kwon. “TenderMint: Consensus without Mining”. In: h�ps://tendermint.

com/static/docs/tendermint.pdf. 2014.

[LK14] Yehuda Lindell and Jonathan Katz. Introduction to modern cryptography.

Chapman and Hall/CRC, 2014.

[Lys02] Anna Lysyanskaya. “Unique Signatures and Veri�able Random Functions

from the DH-DDH Separation”. In: 2002, pp. 597–612.

[Mil+14] AndrewMiller et al. “Permacoin: Repurposing BitcoinWork for Data Preser-

vation”. In: 2014, pp. 475–490. doi: 10.1109/SP.2014.37.

[Mil+15] Andrew Miller et al. “Nonoutsourceable Scratch-O� Puzzles to Discourage

Bitcoin Mining Coalitions”. In: 2015, pp. 680–691.

[MO16] Tal Moran and Ilan Orlov. Proofs of Space-Time and Rational Proofs of Storage.

Cryptology ePrint Archive, Report 2016/035. h�p://eprint.iacr.org/2016/035.

2016.

[Nak08] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In:

h�ps://bitcoin.org/bitcoin.pdf. 2008.

[Nay+15] Kartik Nayak et al. Stubborn Mining: Generalizing Sel�sh Mining and Com-

bining with an Eclipse A�ack. Cryptology ePrint Archive, Report 2015/796.

h�p://eprint.iacr.org/2015/796. 2015.

[NXT14] NXT Community. “Nxt Whitepaper”. In: h�ps : / /www. dropbox . com / s /

cbuwrorf672c0yy/NxtWhitepaper v122 rev4.pdf. 2014.

[Oka95] Tatsuaki Okamoto. “An E�cient Divisible Electronic Cash Scheme”. In: 1995,

pp. 438–451.

[OO92] Tatsuaki Okamoto and Kazuo Ohta. “Universal Electronic Cash”. In: 1992,

pp. 324–337.

122

https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://doi.org/10.1109/SP.2014.37
http://eprint.iacr.org/2016/035
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/796
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf

[Par+15] Sunoo Park et al. Spacemint: A Cryptocurrency Based on Proofs of Space. Cryp-

tology ePrint Archive, Report 2015/528. h�p://eprint.iacr.org/2015/528. 2015.

[PS17] Rafael Pass and Elaine Shi. “�e Sleepy Model of Consensus”. In: Cryptology

ePrint Archive, Report 2016/918. h�p://eprint.iacr.org/2016/918. May 2017.

[PSS17a] Rafael Pass, Lior Seeman, and Abhi Shelat. “Analysis of the Blockchain Pro-

tocol in Asynchronous Networks”. In: EUROCRYPT. h�ps://eprint.iacr.org/

2016/454. 2017.

[PSS17b] Rafael Pass, Lior Seeman, and Abhi Shelat. “Analysis of the Blockchain Pro-

tocol in Asynchronous Networks”. In: 2017, pp. 643–673.

[Rey+16] Leonid Reyzin et al. “Improving Authenticated Dynamic Dictionaries, with

Applications to Cryptocurrencies”. In: h�p://eprint.iacr.org/2016/994. 2016.

[Sch+16] Okke Schrijvers et al. “Incentive Compatibility of Bitcoin Mining Pool Re-

ward Functions”. In: 2016, pp. 477–498.

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A Fast

and Scalable Cryptocurrency Protocol. Cryptology ePrint Archive, Report

2016/1159. h�p://eprint.iacr.org/2016/1159. 2016.

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. “Optimal Sel�sh

Mining Strategies in Bitcoin”. In: 2016, pp. 515–532.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. “Secure High-Rate Transaction Pro-

cessing in Bitcoin”. In: 2015, pp. 507–527. doi: 10.1007/978-3-662-47854-7 32.

[Tor] Kyle Torpey. “One mining pool has had 50% of the Zcash network hashrate

for the past month”. In: h�ps : / / twi�er . com / kyletorpey / status /

910622595388715020.

123

http://eprint.iacr.org/2015/528
http://eprint.iacr.org/2016/918
https://eprint.iacr.org/2016/454
https://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/994
http://eprint.iacr.org/2016/1159
https://doi.org/10.1007/978-3-662-47854-7_32
https://twitter.com/kyletorpey/status/910622595388715020
https://twitter.com/kyletorpey/status/910622595388715020

[Vas14] Pavel Vasin. “Blackcoin’s proof-of-stake protocol v2”. In: h�p://blackcoin.

co/blackcoin-pos-protocol-v2-whitepaper.pdf. 2014.

[Wika] Bitcoin Wiki. “Protocol Documentation”. In: h�ps : / / en . bitcoin . it /wiki /

Protocol documentation.

[Wikb] Bitcoin Wiki. “Script”. In: h�ps://en.bitcoin.it/wiki/Script.

[Wikc] Bitcoin Wiki. “Transaction”. In: h�ps://en.bitcoin.it/wiki/Transaction.

[Wikd] Wikipedia. Nothing up my sleeve. h�ps://en.wikipedia.org/wiki/Nothing

up my sleeve number.

[Zha+17] Fan Zhang et al. “REM: Resource-E�cient Mining for Blockchains”. In:

USENIX Security. h�ps://eprint.iacr.org/2017/179. 2017.

124

http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Transaction
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
https://eprint.iacr.org/2017/179

	BLOCKCHAIN SCALABILITY AND SECURITY
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Our Considerations
	Related work
	Closely related work on combining proof-of-work and proof-of-stake
	Proof-of-stake
	Cryptocurrency and security analysis
	More alternative consensus techniques

	 Background
	Cryptography
	Notation
	Probabilistic inequalities
	Cryptographic Primitives
	Collision-resistant hash functions
	Digital signature

	The standard simulation paradigm
	ITM
	Simulation paradigm
	Ideal functionalities

	Blockchain technology
	Blockchain Notations
	Nakamoto's blockchain

	 Model
	Modeling blockchain protocol execution
	Modeling proof-of-work
	Functionality F*PoW
	Implementing F*PoW in FRO-hybrid model

	Modeling proof-of-stake
	Unpredictable unique signature functionality FuuSIG
	Functionality F*PoS
	Implementing F*PoS in {FuuSIG,FRO }-hybrid model
	Blockchain security properties

	 Initial Design and Provable Security: 2-hop Blockchain
	2-hop design
	High-level description
	The main protocol
	The best chain-pair strategy

	Security analysis
	Analysis ideas
	Important terms
	Analysis with adaptive corruption
	Analysis with bounded delay
	Hybrid expriment
	Analysis in the worst delay setting

	Analysis with adaptive key generation
	Achieving the chain growth property
	Achieving the chain quality property
	Achieving the common prefix property
	Achieving the chain soundness property

	 Practical PoW/PoS System: Twinscoin
	From 2-hop blockchain to TwinsCoin
	Twinscoin design
	Our modified 2-hop blockchain
	Proof-of-Work Blockchain
	Proof-of-Stake Blockchain
	Validating a Chain-pair

	Blockchain with adjustable difficulty
	PoS blockchain in the non-flat model
	Light client design in TwinsCoin

	 Implementation and Experiments
	Implementation
	Experiments
	Chain race experiment
	Light validation experiment
	Proof-of-stake difficulty experiments

	Testnet

	Appendix Abbreviations

