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Abstract

REDUCING UNCERTAINTY IN HEAD AND NECK RADIOTHERAPY WITH

PLASTIC ROBOTICS

Mark R. Ostyn, M.S.

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Major Advisor: Siyong Kim, Professor, Radiation Oncology

One of the greatest challenges in achieving accurate positioning in head and neck ra-

diotherapy is that the anatomy at and above the cervical spine does not act as a single,

mechanically rigid body. Current immobilization techniques contain residual uncertain-

ties that are especially present in the lower neck that cannot be reduced by setting up to

any single landmark. The work presented describes the development of a radiotherapy-

friendly mostly-plastic 6D robotic platform for positioning independent landmarks, (i.e.,

allowing remote, independent positioning of the skull relative to landmarks in the thorax),

including analysis of kinematics, stress, radiographic compatibility, trajectory planning,

physical construction, and phantom measurements of correction accuracy. No major com-

ponent of the system within the field of imaging or treatment had a measured attenuation

value greater than 250 HU, showing compatibility with x-ray-based imaging techniques.

Relative to arbitrary overall setup errors of the head (min = 1.1 mm, max = 5.2 mm vector
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error) the robotic platform corrected the position down to a residual overall error of 0.75

mm ± 0.33 mm over 15 cases as measured with optical tracking. This device shows the

potential for providing reductions to dose margins in head and neck therapy cases, while

also reducing setup time and effort.
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Chapter 1

Introduction

The fundamental challenge in achieving accurate positioning in head and neck radiother-

apy is that the anatomy at and above the cervical spine does not act as a single, mechan-

ically rigid body. Instead, the anatomy is comprised of individually articulated structures

between the thorax and the skull that together are mechanically flexible. This flexibility

complicates the execution of identical patient positioning from the first simulation scan to

the end of the last delivery of treatment. Although thermoplastic immobilization masks

have helped reduce the uncertainty in this positioning, some residual errors remain [1][2].

The flexible nature of the spine has long been identified as a source of error in patient

setup, but technical limitations reduced the importance of achieving perfect alignment.

However, fast and accurate imaging technology and conformal treatment protocols are

now commonplace, making complete and accurate alignment more important than ever.

1.1 Background and understanding the flexibility of the

neck

To reliably determine the magnitude of uncertainty, reported data from computed tomog-

raphy (CT) studies is preferable. As recently as the late 1990’s, portal imaging was the

primary tool used to verify setup alignment of the head in radiotherapy. While portal imag-

1



ing could be used for setting up bony anatomy, it was also difficult to repeatably interpret.

Lacking visualization of even the outlines of soft-tissue structures, setting up the disease

to the treatment isocenter using portal imaging was highly subjective [3][4]. Thus, the

beginning of the contemporary era is marked by the introduction of integrated kilovoltage

on-board imaging (OBI) devices, and their use to acquire cone-beam CT, into the radio-

therapy process. Because the technology is volumetric, localization of individual anatomic

structures was less ambiguous when compared with portal imaging. Visualization of the

complete interior anatomy was possible; the soft photon energies (<500 keV) used by

CT enabled soft tissue to be visualized, though individual delineation between soft tissue

structures would require magnetic resonance imaging. Due to these factors, measurements

of setup errors taken by portal imaging are incomparable to those taken with CT.

One of the first CT studies to measure the magnitude of setup errors of specific anatom-

ical landmarks was completed by Zhang et al in 2006 [4]. In the research, 6D setup errors

were measured for C2 and C6 vertebrae and the palatine process of the maxilla (PPM).

Patients were immobilized using thermoplastic masks. While all of the masks used in the

study fully covered the face, only a sub-group of patients were assigned masks extending

over the shoulders. Setup errors were measured with respect to a reference point defined

as the centroid between three radio-opaque markers on the masks. The researchers inves-

tigated whether setup errors for each region of interest (ROI) were correlated with errors

occurring in the other ROI’s. They found that displacements between C6 and C2 and be-

tween the PPM and C2 were neither well correlated in the left-right direction nor in the

superior-inferior (SI) direction, and concluded that these indicated that angular displace-

ments were present as well, especially pitch (angular displacements about the ML axis)

and roll (angular displacements about the SI axis) rotations. The authors note that no

observable improvement in setup accuracy between patients immobilized with shoulder-

covering masks compared to the face-only masks, citing similar observations from other

authors [5]. Zhang et al were also among the first to note that the uncertainty in positioning
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in head and neck treatments tends to worsen over the course of treatment due to signifi-

cant tumor shrinkage, especially in the lower neck. Together, these observations form a

common theme in understanding the issues caused by the flexibility of the neck: accurate

positioning of one anatomical landmark is insufficient to provide proper positioning for

the anatomy as a whole.

Similar investigation on the positioning impact of flexibility was done a year later

(2007) by Polat et al [6]. Polat’s study differed from Zhang’s by including a greater num-

ber regions of interest (Skull, mandible, C1-C3, and C4-C6). The observed rotations were

similar to those seen by Zhang, Polat explicitly noted that 3D errors tended to increase

in the caudal direction, and recommended differential margins, increasing in size in more

inferior locations. Compared to the work by Zhang, Polat did not observe increased uncer-

tainty throughout the treatment course, but did acknowledge that the problem could exist

in patients with an initially large tumor, or patients who experience significant weight loss.

Additionally, Polat concluded that complete correction of setup errors is not possible with

whole-body 3D correction due to the relative motions between the regions of interest.

As the use of OBI CBCT increased, the community-at-large began to investigate the

potential improvement to positioning by using imaging on a daily basis, such as that seen

in the work by Djordjevic et al [10]. In the experiment protocol, patients would be imaged

and setup with orthogonal kV images on a daily schedule, and the residual setup errors

were compared to controls using various frequencies of setup imaging. The control group

were off-line simulations of the resultant dose distributions on the treated patients gen-

erated by applying the same dose plan onto the geometry at uncorrected positions. The

group looked at the residual setup errors in landmarks including the maxilla, mandible,

C1, C2, C4, and C5. Djordjevic’s observations concurred with Polat’s in observing that

larger errors occured more frequently in the caudal direction. Djordjevic went a step fur-

ther than Polat by calculating the necessary margin size according to the vertebral location,

and according to the frequency of image guidance. In the cases without image guidance,
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Table 1.1: Reported values of uncertainty for multiple ROI in the neck from
[4][6][7][8][9][10][11][12]

Author Immobilization Registration
Reference

Observation

Zhang Some mask to shoul-
ders and some mask
alone

6D isocenter Random setup error in
maxilla 1.2, 1.0, 2.0 mm for
AP, ML, SI. Standard
deviations for C6 were 1.9,
2.3, 2.3 mm.

Polat Mask to chin Whole image Standard deviations in skull,
1.4 mm for vector error.
Standard deviation of net
vector for C4-C6 was 2.4
mm.

Ove Mask to shoulders C2 Random setup error in C6
was 3.9, 3.3, 2.6 mm for AP,
ML, and SI.

Graff Unspecified C2 Standard deviation in vector
error for C7-T1 was 1.2 mm.

Piotrowski Mask to shoulders Whole image Standard deviations in
C1-C2, 1.4, 0.9, 1.1 mm for
AP, ML, SI. Standard
deviations for C6-T1 were
2.7, 1.3, 2.9 mm.

Djordjevic Mask to shoulders Whole image Standard deviations in
maxilla, 1.4, 1.9, 1.8 mm for
AP, ML, SI. Standard
deviations for C5 were 1.9,
2.4, 1.8 mm.

Park Mask to shoulders Whole image Standard deviations in in
C1-C2 14.6, 3.0, 1.0 mm for
AP, ML, SI. Standard
deviations for C6-C7 were
14.4, 2.9, 0.8 mm.

Cheo Mask to shoulders Whole image Random setup error in clivus
0.7, 0.4, 0.4 mm for AP, ML,
SI. Standard deviations for
C7 were 1.3, 1.5, 0.7 mm.
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the authors found that the required size for sufficient margins on tumors near the vertebrae

would have ranged between 4.5 mm and 9.3 mm, with increasing size toward C5. Com-

paratively, with daily image guidance, margins near the vertebral structures were between

2.3 mm and 5.0 mm, with little variation along the spine. Similarly to Polat, Djordjevic

demonstrated that image guidance alone cannot be used to reduce the uncertainty, since the

relative mobility between vertebral structures will contribute some residual uncertainty.

Since setup to a single landmark is does not guarantee alignment of the entire anatomy,

some research has been done to determine the best choice of reference structure. Graff

et al identified six different bony landmarks including the sphenoid, maxillary sinuses,

mandible, C1-C2, and C7-T1 as candidates for setup [8]. In a retrospective analysis, Graff

simulated dose delivery to a group of patients using each of these substructures and com-

pared the perturbations to the dose distribution to the choice of landmark. On average,

the least amount of dose variation occurred when setting up to C1-C2 while the greatest

amount of dose variation occurred when setting up to the sphenoid sinus. However, large

errors were still observed when using C1-C2 as a reference point; errors between 1.0 mm

and 4.7 mm were observed in both the extreme cranial caudal locations. While no sub-

region was perfect, the authors note that using C1-C2 as a reference structure for setup

produced less anatomical variation and less dose perturbation relative to using automatic

registration of the entire image.

Observations from these and other similar studies are compiled in Table 1.1. Based

on these measurements, one can estimate that the residual uncertainty in the setup of the

lower neck is approximately 3 mm per axis, if the patient is set with either upper neck

landmarks or with whole-image registration, and if the patient is setup with shoulder-

covering immobilization masks. While some reports suggest that the greatest uncertainties

exist in a particular direction, no such conclusion can be drawn from looking at the data as

a whole. Together through these this exploration of setup uncertainties, one can observe

the pervasive theme that since no singular landmark is perfect, other measures must be
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explored to further reduce uncertainty in setup.

1.2 Other uncertainties in head and neck treatments

While inter-fractional setup errors are a significant source of uncertainty, further devi-

ations from the planned position can also occur after commencing delivery of a single

fraction. Intra-fractional errors tend to occur slowly, often unobservable second to second,

but cumulate over minutes, becoming a significant source of uncertainty given enough

time [13]. Intra-fractional errors also tend to be random [14], making prediction of their

direction difficult, and vary significantly between patients [15].

Early measurements of intra-fraction motion for treatments to the head and neck came

from studies of swallowing as measured by video fluoroscopy [16]. Swallowing is com-

mon to occur during treatment, occurring in 70% of a cohort studied by van Asslen, so the

effect of swallowing on positioning must be considered. Displacements of the larynx of

up to 8.1 mm have been observed along a single axis, though the anatomy approximately

returned to the start position in nearly every instance, and only accounted for 0.45% of

the total treatment delivery time. Still, given that these magnitudes are so large, clinicians

should watch for large deviations1 and be ready to reposition if the post-swallowing po-

sition has deviated past some tolerance in hypofractionated treatment paradigms where

single displacements could have a much greater impact on the total dose delivery.

Intra-fraction motion of the skull has been measured by an infrared marker-based op-

tical system (BrainLab AG, Munich, Germany) [13]. Kim et al attached markers to a bite

block, and observed patients for 15-minute fractions. The bite block ensures that motions

captured by the optical system corresponded to true movement of the skull because the

maxilla is rigidly connected to the skull. This method has greatly improved precision in

both time and space relative to portal films [17]. While portal films have been cited as

mostly being subjective below 0.5 mm [18], Kim reports infrared marker-based systems
1Perhaps with optical guidance, or an electronic sensor.
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capable of accurately detecting 0.03 mm - 0.04 mm per axis.

In the study of 6 patients, patient motion was recorded for the full duration of every

fraction, and the data was analyzed through a few perspectives. One of the most useful

tools used for understanding the impact of intra-fraction motion is the uncertainty time

histogram (UTH), like the one seen in Figure 1.1(b). In a UTH, the magnitude of motions

are plotted against the probability of that magntitude or less occuring. Therefore, a reader

can quickly observe what magnitude of motion or less may occur for a given probability

metric.

Kim reports a few significant observations in this study. First, for the cohort, the

overall measured vector displacement was less than 2 mm for all of time for all patients,

was less than 1 mm for 90% of all timepoints for all but 1 patient (≈70%), but greater

than 0.25 mm for at least 80% of time points for all patients (Figure 1.1). This suggests

that while large net displacements are relatively uncommon, small errors (between 0.1

mm and 0.5 mm) are present for the overwhelming majority of fraction duration. This

finding implies that even with perfect image guidance, margins are still necessary to ensure

adequate dose coverage, unless the motion could somehow be suppressed. Second, Kim

observes that the cumulative displacement due to intra-fraction motion tends to increase

with treatment duration from setup (Figure 1.1(b)). This effect becomes more important

in complex plans that cannot be delivered quickly, but emphasizes the benefit of rapid

delivery made possible by flattening filter free machines [19][20].

While these errors are nearly negligible when compared to the setup errors described

earlier, they do contribute to the overall uncertainty considerations when prescribing dose

margins. Therefore, any attempt to reduce their impact is still valuable, although reducing

setup errors is more so.

Especially when compared to earlier studies, the observations in Kim’s report were

more limited by the mechanical attachment between the observable objects and the cor-

responding disease, rather than on physical limitations of the measuring equipment. The
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Figure 1.1: (a) Head and neck intra-fraction motion and (b) Time histogram of intra-
fraction motion

greatest uncertainty was the correspondence of motion between the bite block and the pa-

tient’s skull, with the author reporting 0.5 mm ± 0.4 mm for patients with full dentition.

This trend is also present in other modern motion-monitoring paradigms, such as the un-

certain correspondence between skin motion measured by surface imaging and the motion

of underlying interior anatomy [21][22][23].

Contemporaneous work by Linthout et al [15] verify Kim’s estimations of intra-fraction

motion. In Linthout’s study, patients were immobilized with five point immobilization

masks covering the shoulders, and an infrared reflective marker system was used to moni-

tor patient motion in real-time. Reflective markers were attached onto the immobilization

mask, leaving some ambiguity about the correlation between marker motion and target

motion. In addition to using the IR system, stereoscopic x-ray images were taken at begin-

ning and end of each treatment session to measure the change from setup position. Using

this data, the bony anatomy had moved by similar, if not greater displacements than the IR

data would suggest, including rotational displacements up to ≈6◦, (Figure 1.2(a)). While

most of the maximum deviations per patient were below 2 mm, some were as large as

4 mm (Figure 1.2(b)). Like other studies [3][10], Linthout’s detection of 6D errors was

based on rigid registration of the entire visible bony anatomy.

Surface imaging has also seen widespread use for improving patient setup [24] includ-
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Figure 1.2: (a) Maximum intra-fraction displacements patients measured by IR markers,
where each color is a different immobilization system, and (b) net intra-fraction displace-
ments as measured by stereoscopic x-ray.

ing head and neck sites [25]. Popular surface imaging systems like AlignRT (Vision RT,

London, UK) have been shown to be accurate to within 0.2 mm ± 0.1 mm or degrees per

axis of translation when compared to infrared marker systems [26], though the accuracy

of the system varies significantly depending on the parameters of the reference surface.

For example, studies have observed that the accuracy of surface imaging can be affected

by the shape and color of the surface being monitored [27], and others have observed that

while the measured surface can be registered to a surface extracted from CT data, superior

results are obtained by matching to a reference surface taken by the camera system [26].

While surface imaging also experiences the same ambiguities about the correspondence of

surface features to internal anatomy, surface imaging systems can measure displacements

of rigid objects with reasonable accuracy [28][29].

Techniques other than infrared marker monitoring of measuring intra-fraction motion

have also been explored, but most others have not reached widespread use. For safety,

radiographic imaging is rarely used to perform real-time monitoring of patient motion,

though movement of the prostate has been monitored with x-ray using on-board imaging

equipment [30]. Therefore, other techniques must be explored. One strategy was explored

by Farahmand, who developed a novel solution using accelerometers, though only pre-
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liminary phantom development occurred. The technique could be further explored, but

verification of the time sensitivity is required, since only very small, slow motions are ex-

pected in real patients [31]. Inata developed a pressure sensor-based system for head and

neck monitoring, but is also only in the early stages of development. At the most recent re-

port, Inata describes the system as capable of detecting 1-mm motions with 67% accuracy

[32]. Like surface imaging, each of these technologies are limited to explicitly measuring

external features.

Very recently, the availability of magnetic resonance imaging (MRI)-guided treatment

machines have given the most precise picture of the actual motion of the disease during

treatment. Relative to CT, MRI provides the superior soft tissue contrast needed to delin-

eate disease from healthy tissue [33][34]. Since MRI does not utilize ionizing radiation,

it may be used to continuously image a patient without the risk of causing harm. In ra-

diotherapy purposes, MRI has been limited to diagnostic usage until the past few years

due to the technical challenges in integrating strong magnets into radiotherapy delivery

devices. But, these technological challenges are being overcome. With the introduction of

commercial radiotherapy systems with incorporated MRI though, accurate measurements

of internal anatomy in a treatment setting could be potentially be made in the near future.

However, no literature could be found that used MRI to measure real-time motion of the

head at this point in time.

The only non-imaging technology developed to directly measure the position of inter-

nal target anatomy was the Calypso system (Varian Medical Systems, Inc., Palo Alto, CA),

that uses a series of implanted RF transponder to calculate real-time positions of internal

features, using a nearby electromagnetic array. Although the technology is proprietary, the

likely method of localization is by lateration of received signal strength [35], where an RF

pulse is emitted by an array element, received, and rebroadcast by the transponders. The

return strength is then measured by the array. With enough measurements, a position es-

timate of the transponder is possible to sub-millimeter resolution with fast time resolution
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[36][24]. However, the necessity of the array limits treatment delivery options, since x-ray

radiation cannot pass through the array without being attenuated or scattered. A review

of the literature found no studies that used the Calypso system to measure intra-fraction

motion of the head and neck.

Geometric uncertainties affect decisions about how best to deliver a radiation dose

to the patient. In an ideal photon external beam treatment, the target would exist as a

fixed region of space in a volume of perfectly specified shape, location, and material,

V (x, ρ), repeatable for every fraction of delivery. However, due inherent uncertainties, the

requirements of repeatable position and shape are not achievable. Therefore, dose margins

are used to account for this uncertainty.

Van Herk provided the influential analysis for prescribing dose margins, treating un-

certainties as a weighted combination of random and systematic variables [37]

m = αΣ + γσ (1.1)

The symbols α and γ are weighting factors derived from confidence intervals, and Σ and σ

are the systematic and random variations, respectively. The goal of this model is to provide

the necessary margins to probabilistically ensure that a certain percentage of the patient

population has a given probability of a certain volume of target receiving the prescribed

dose. This relationship creates the obvious trade-off between the volume of healthy tissue

treated by increased margin size and the certainty of ensuring that the target regions receive

sufficient dose. Van Herk assumes an acceptable compromise between margin size and

level of confidence as ensuring that all of the target region receives at least 95% of the

prescribed dose in 90% of all patients treated. However, van Herk’s relationship also

implies the clear implication that the safest way to treat less healthy tissue is to reduce the

uncertainty in delivery.

Van Herk’s recommended prescriptions on dose margins has had significant influence

11



on many of the studies presented here. Cheo used the margin recipe to calculate a differen-

tial margin for each level of the neck, ranging from 2.33 mm at the skull (SI) to 6.52 mm

at C7 (ML) [12]. Using a similar approach, Djordjevic prescribes margins ranging from

2.3 mm at C2 with image guidance (SI) to 9.3 mm at C5 with no image guidance (AP),

and margins as large as 5.0 mm for C5 (AP), and 5.9 mm for the maxilla (AP) [10].

As the cumulative dose to healthy tissue increases, so does the risk of developing early

or late effects, including permanent tissue damage or additional cancers [38], [39]. Bressan

reports that treatment of cancers in the head and neck with radiation are associated with

patients developing swallowing disorders, dysgeusia, oral mucositis, and xerostomia [18].

All these have direct impact on patients’ ability to comfortably eat, damaging the patients’

quality of life. Unsurprisingly, the occurances of these side effects are also associated with

patient weight loss, which can also negatively affect the positioning accuracy, necessitating

even larger margins [40][41], though some studies indicate the effect is more ambiguous

[42]. Therefore, steps must be taken to reduce the size of prescribed margins without

compromising confidence of treatment efficacy.

1.3 Robotic attempts to improve positioning

Robotics have long been used for reliably moving patients into specific setup positions, and

could be used to provide active motion compensation. Seppenwoold et al were some of the

first researchers to examine the feasibility of robotic compensation. The authors simulated

the control of a robotic-mounted linear accelerator (CyberKnife, Accuray, Sunnyvale, CA)

to follow the respiratory motion of extra-cranial tumors in real-time [43]. In the simulation,

the 3D position and trajectory of the tumors were periodically measured (1 image per 1-5

minutes) with implanted gold markers via x-ray. Simultaneously, the respiratory motion

was tracked with an optical surrogate, and the data from both methods were combined

to build a prediction model for each patient. The robotic arm was instructed to perform
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motion vectors in compensation to the predicted trajectories, and the residual error was

measured. In all cases with compensation, the RMS error was reduced to less than±2 mm

for each direction, with uncompensated displacements as large as ±6 mm, indicating that

at least from a conceptual level, active motion compensation was possible.

Of course, most radiotherapy clinics do not have such a mobile radiation source, so

more universal solutions are preferred. Alternatively to moving the treatment source, Haas

et al proposed using a robotic treatment couch to compensate for patient repiratory motion

as observed based on optical guidance [44] for 3D correction. Haas’s examination was

exhaustive, including design of control algorithms, modeling of couch deflection from

loading, and experimental validation. The control algorithms developed relied on pro-

portional, integrating, and differentiating (PID) tracking circuits to determine if and how

much the couch should move in response to patient motion. In a PID system, the circuitry

attempts to increase or decrease an input parameter to make the output match some speci-

fied fixed point. In Haas’s work, each axis actuates independently of the others using a DC

motor, and the output actuation of the treatment couch experiences mostly linear motion

relative to the input voltage on the motors. In a simplified model, the calculation would

only need to determine the required time on and the applied power to the motors to move

to any arbitrary position on a linear axis. However, Haas recognized that friction forces

and applied loads can make the system behave non-linearly, and thus experimented with a

variety of models in the control algorithms. With these tracking system, Haas reports vec-

tor errors between 0.5 mm and 2.0 mm, varying by breathing phase and axis. The overall

displacements were about 20 mm along the longitudinal and vertical axes.

Stewart platform 6D couches have appeared in clinics [45][46][47]. A Stewart-platform

is a specific type of mechanical configuration comprised of six extending linkages com-

monly used for 6D control applications (Figure 1.3). They are also frequently referred to

as ”HexaPOD” platforms. While the use of 3D couches has been investigated for use of

motion compensation [48], Hermann et al investigated using a Stewart platform treatment
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Figure 1.3: A prototypical Stewart platform

couch to perform 6D motion compensation of lung tumors [45], a 6D couch could reliably

reduce surrogate motion to less than ±0.5 mm per axis (original motion up to ±1.5 mm)

Hermann also compared two control schemes: model-predictive control versus velocity-

based positioning. Control of Stewart platforms is non-linear and the control axes are

coupled. This configuration makes time-based positioning more complicated because the

positioning response in a treatment coordinate system is not proportional to any single sig-

nal from the control system. The model-predictive and velocity-based systems attempt to

find efficient non-linear control vectors for adaptive positioning. In the model-predictive

formulation, a cost function was used to find the minimal effort trajectory change to make

accurate 3D motion compensation. Comparatively, in the velocity-based position control,

the velocity was constrained to be less than an artificial limit while best matching the

velocity vector of the target and where the new 6D target position was calculated on an

instant-to-instant basis. In a simulation comparing these two methods of tracking a sinu-

soidal target, the RMS and maximum error were significantly lower in all cases for the

velocity-based position control compared to the model predictive control.

Finally, work has been done by Wiersma investigating active motion compensation for

head and neck radiotherapy with independent positioning of the head. Wiersma developed

a 3D motion control stage for improving stereotactic radio surgery (SRS) [49]. Wiersma

sought to create an innovative head immobilization technique as an alternate to cranial
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frames and thermoplastic masks, hypothesizing that gravity could suppress most rapid

motions while slow drifts could be corrected by a robotic system.

Whereas Seppenwoold’s and Herrman’s motion compensation relied on predictive

models, Wiersma’s used a simplistic correction scheme based on optical tracking: if a

three-second average showed greater displacement than a 0.2-mm threshold, a command

was issued to move the surrogate back to the reference position. Wiersma noted that

tracking these slow-occuring small motions is well-suited for head and neck treatments

because motion is limited from both cardiac and respiratory sources. Motion was tracked

in a sample of healthy volunteers using infra-red markers attached to a bite block. With

motion compensation, the net positioning error was less than 0.5 mm for greater than 95%

of the observation period for all but one patient. Without correction, some patients were

measured as having moved 2.5 mm over a 15-minute observation time, as determined by

back-tracing the motion corrections. Although the timescales were similar, the magnitude

of intra-fraction motion in this sample group was significantly greater than that described

by Kim [13] likely due to the author’s decision to not immobilize the volunteers with

thermoplastic masks.

Wiersma’s system would be later utilized in a 2016 study, as a ground-truth reference

for a new implementation of a 4D robotic motion compensation system, allowing for trans-

lational corrections and pitch corrections [50]. The group tested the system with the 6D

motion phantom previously developed and with a human volunteer without immobiliza-

tion, measured with an infrared reflector based optical system. For the test with the motion

phantom, the platform was moved so as to simulate a human subject with motion in the

range of ±2 mm and ±0.45◦ for each axis over a 15 minute simulated treatment. With

motion compensation, the measured position was within the range of the ±0.2 mm and

0.2◦ noise of the measurement system for both translations and rotations. With the hu-

man volunteer, the results were similar. The group also tested having the human volunteer

make a severe displacement by simulating a cough. The simulated cough created a 4-mm
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and 4◦ displacement that took approximately 6 seconds to transpire and the position was

successfully corrected within ±0.2 mm and 0.2◦ 14 seconds later. Since position devia-

tions at each second in time each contribute toward the RMS error, the response time is

worth considering.

The group also developed a 6D motion phantom using a Stewart platform [51]. Liu

measured the positioning accuracy of the device using an infrared reflective optical system.

Compared to the programmed positions, the motion of the device was accurate to less than

0.04 mm, and less than 0.04◦ for rotations (RMSE per axis). The device’s range of motion

was ±20 mm for all horizontal translations, ±10 mm for vertical motions, and ±10◦ for

all types of rotation.

While the research demonstrated by Wiersma, Belcher, and Liu show significant strides

toward robotic motion compensation, each system developed also contained significant

amounts of metal components within the treatment region, which could attenuate or scat-

ter treatment fluence. Photon and electron attenuation and scatter could also impede the

utility of x-ray based imaging systems important for accurate setup. Likewise, although

robotic couches have been shown to achieve fast and precise compensation for respira-

tory motion, single point of interest correction cannot guarantee perfect setup for flexible

bodies. Although the work described by Wiersma could be used to investigate this point,

Wiersma’s group has not performed any studies with internal imaging.

The work described in this dissertation consists of the development of a mostly-plastic

robotic system which may be used for reducing positioning uncertainty in radiotherapy

treatment of the head and neck. The robotic system is designed both for allowing accu-

rate mechanical setup on the scale of residual setup errors reported in the literature, and

for reducing the vector drift of target disease caused by intra-fraction patient motion. This

research has focused on two major improvements over existing technologies. First, the sys-

tem developed does not significantly interfere with x-ray-based imaging, nor with external

beam delivery. Second, compared to traditional setup, this work investigates whether the
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uncertainty present in the lower neck may be reduced by independently positioning the

head from the body inferior to C7. This dissertation is organized into four chapters after

this introduction. Chapter 2 provides a complete description of the development process

of the robotic system, up to and including mechanical validation. Chapter 3 expands the

robotic system described in Chapter 2, and shows the creation of a motion compensating

control system deployable to the developed robotics. Topics will shift in Chapter 4, which

contains descriptions of work done to create a novel radio-based position tracking sys-

tem. Finally, the last chapter forms a conclusion to this work, and a brief glimpse into the

potential for further work.

1.4 Specific aims

Specific Aim 1

To design, construct, and evaluate a radiotherapy-friendly robotic system for accurate

positioning in head and neck radiotherapy

The development of this robotic system is multi-faceted. Even after selecting a proto-

typical geometry, many aspects remained before construction could occur. Presented are

investigations into the kinematics, geometric optimization, stress and torque analysis, con-

trol systems, electronics, and feedback-loop elements required to build a robotic system

out of radiotherapy-friendly materials.

The complete set of target engineering design specifications are as follows:

• Capability of motion in 6D

• Translation motion extending ±2 cm

• Rotation motion extending ±5◦

• Mandatory motion accuracy of 0.5 mm and 0.5◦
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• Ideal motion accuracy of 0.1 mm and 0.1◦

• Real-time control with response rate of 0.25 s

• No metal components within 30 cm radius from center of device

• As little material near the device as possible

Specific Aim 2

To determine whether the setup uncertainty in the lower neck may be reduced by indepen-

dent positioning of the head relative to the body

This aim addresses the uncertainties described in section 1.1. As many studies have

observed, the flexibility of the neck makes perfect alignment of the neck from C1-C7

very difficult, even with head-to-shoulder immobilization [8][9][12][52]. As observed by

Djordjevic, the choice of landmark for registration has significant impact on the overall

accuracy of the placement of the tumor, and as seen by Polat, no simple 3D correction can

be used to completely align the spine [6]. Therefore, it is my hypothesis that this effect

is due to the flexible nature of the spine, and that this effect may be reduced by providing

accurate, independent placement of the head and of the body. To test this hypothesis, I

created the following protocol for head-first supine patients:

1. Treatment Simulation

(a) Position patient and 6D positioning system on simulation couch, with partial

face immobilization affixed to robotic platform and arms at sides

(b) With robot in rest position, simulate patient as normal

(c) Identify treatment isocenter and designate with AP and RL fiducial markers on

patient skin and on immobilization mask

(d) Use surface imaging to obtain reference image
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(e) Designate cranial region of interest on reference image, including bridge of

nose

(f) Designate thoracic region of interest on reference image, including shoulders

and excluding neck

2. Treatment

(a) Set up patient and 6D positioning on treatment couch in the same position as

done in treatment simulation

(b) Using surface imaging, align thoracic region of interest with couch and manual

adjustment

(c) Using surface imaging, align cranial region with 6D robotic system

(d) Use stereo kV imaging to align T1 bony anatomy in thorax

(e) Once thoracic anatomy is in proper position, use kV imaging to align cranial

anatomy using 6D robotic system to match C2

3. Hypothesis Testing

(a) Offline, compare registration between simulation and treatment of multiple re-

gions of interest including skull, C2, C5, T1. Registration errors between imag-

ing sets for each region of interest are metrics of interest. The entire process

should be repeated as a control, but omitting the steps involving any thoracic

alignment. Hypothesis test will compare registration errors between control

and test protocols.

Due to regulatory limitations, this test procedure has not been tested on live, human

subjects. Instead, a comparable test is performed using an anthropomorphic skeletal phan-

tom. This work differs from the work done by Graff, Djordjevic, and others by being the

first to test whether independent alignment of multiple regions of interest can reduce the
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positioning errors found in the lower neck. The 6D platform is necessary to allow for

highly precise 6D positioning of the craninum without affecting the thoracic alignment.

Other aims

In addition to developing a robotic system for position correction, a novel, RF-based lo-

calization system is described in Chapter 4. The RF system was designed to overcome

the limitations of optical tracking systems, including requirements of line-of-sight, better

separation of regions of interest and generally improved specification of target regions of

interest. Although this system was never physically constructed, much of the underlying

mathematical theory was investigated, and is presented here as a potential future localiza-

tion technology.
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Chapter 2

Development of a Plastic Robot

Robotics have long been utilized in radiotherapy to provide fast and accurate position-

ing of treatment surfaces, linear accelerators, radioactive sources, or imaging equipment

[53][54][53]. However, in all of these cases, radiation therapists still manually manipu-

lated body segments of patients to reach accurate alignment with the treatment plan. A

typical treatment process may include the iterative steps seen in the workflow featured in

Figure 2.1. Manual manipulation is a time-consuming, iterative process. Human operators

have limited abilities to recognize and manipulate small displacements in both translation

and rotation space. This problem is exacerbated by the fact that human operators are also

blind to patients’ interior anatomy when using manual manipulation. Since transitions

between the inside and outside of the treatment room can be the most time-consuming

processes, robotic correction may provide a significant time-saving advantage by allow-

ing therapists to remotely adjust a body segment (i.e., a patient’s head) from outside the

treatment room.

A robotic solution could reduce the setup uncertainty in the lower neck related to the

flexibility of the spine through independent, mechanical positioning of the head separate

from the body. This type of robotic correction has been explored before, but clinical imple-

mentation has been constrained by the inclusion of high-Z materials within the treatment

field by the proposed systems. Therefore, a mostly non-metal robotic platform has been
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Figure 2.1: Typical workflow for setting up head and neck patients [12][8]

designed as a means of remotely and accurately positioning the head.

Three generations of prototypes were constructed. The first poof-of-concept proto-

type was designed by Mark Ostyn together with a team of senior engineering students

(Thomas Dwyer, Ross Cruikshank, Melvin Rosario, and Daniel Martinez). The second

prototype was designed by Mark Ostyn assisted by a team of junior engineering students

(Rachel Sacks, Paden Kind, and Matt Miller) as a commercialized version. The last proto-

type was designed entirely by Mark Ostyn re-appropriating several core components from

the second generation model to overcome major design failures in the second generation

prototype.

2.1 The first generation prototype

The prototypical mechanical configuration capable of 6D motion was found by the first

undergraduate engineering team. The system consists of a moving positioning plate con-

nected by linkages to three pairs of parallel, linearly actuating sliding bases (often referred

to as sliders). The 6D position of the plate is derived by the relative positions of the sliders.

Together, the plate, linkages, sliders, and connecting components are often referred to as

the core positioning system throughout this dissertation, due to their geometric importance.

The design was selected because it allows 6D control with the capacity for reconfiguration

to allow remote actuation with the powered elements could eventually be moved away

from the irradiated region. This is a marjor improvement over previous works, because it
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Figure 2.2: The first generation prototype

enables mechanical correction without overly constraining typical treatment processes.

2.1.1 Inverse kinematic analysis

The robotic system is designed to allow movement of the plate in six independent degrees

of freedom: translation along and rotation about two orthogonal horizontal axes and one

vertical axis. The axes were defined by the following: the y-axis lies in the inferior-

to-superior direction and rotations about it are referred to as roll, the x-axis lies in the

left-to-right direction and rotations about it are referred to as pitch, and the z-axis lies in

the posterior-to-anterior direction and rotations about it are referred to as yaw, assuming

that the patient is in head-first, supine position.

Inverse kinematic analysis was developed by Mark Ostyn and Thomas Dwyer. In in-

verse kinematics, the required set of positions of the actuating elements (the sliders) is

calculated based on a specified position of the end effector (the plate). This contrasts to

forward kinametics that would calculate the resultant position of the end effector based on

the specified configurations of the articulating elements. Inverse kinematics are useful for

situations where the effector is required to be positioned at a target location and the un-

derlying kinematics are nonlinear (where there is no one-to-one correspondence between
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Figure 2.3: Geometric description of the inverse kinematic algorithm. Both side views and
top views are shown. (a) Description of variables. (b) The length of the linkage is separated
into orthogonal components in a single plane. (c) The cross product is taken between a
direction vector of the path of motion for the lower joint and one of the components found
in the previous step. (d) The lower joint’s distance from a set reference point is calculated
by Pythagorean’s theorem.

changes in signal input and changes in mechanical output).

The calculation begins by defining the position of the plate in a reference coordinate

system. The plate is specified by the fixed geometric relationship between the six attached

socket elements. In the simplest operation, the origin is defined as the center point of

the top of the plate, and the sockets are defined as a set of x, y, z coordinates each at

point Sp,0,i, each at a specified displacement from the reference origin (Figure 2.3). For

convenience, each socket will be specified as Sp,0, rather than including the index for each

socket, because the process is identical between sockets. Thus, for a given transformation

of a plate by a set of translations (x, y, z) and rotations (α, β, γ), the transformed position

for each socket Sp, is

Sp = Rz(γ)Ry(β)Rx(α)Sp,0 + T (x, y, z) (2.1)

where Rx, Ry, and Rz are standard rotation matrices1. Note that the choice of origin is

the pivot point of the rotation coordinate system. Any arbitrary pivot point P (xp, yp, zp)

1An examination of rotation matricies is given in Appendix A.1.
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may be selected by the following modification to the transformation equation.

Sp = Rz(γ)Ry(β)Rx(α)(Sp,0 +P (xp, yp, zp)) + T (x, y, z)−P (xp, yp, zp) (2.2)

The length of the linkage connecting the sockets on the plate and the sockets in the slid-

ers is of known length, but is also defined by a composition of component vectors in an

arbitrary reference frame

‖Sp − Ss‖ = L =
√

∆x′2 + ∆y′2 + ∆z′2 (2.3)

where Ss is the set 3D coordinates (x, y, z) for each of the six sockets attached to sliders.

By construction, the vector along the x′ direction represents the projected displacement

between the plate and slider sockets along the slider’s path of motion on its rail, while the

vectors in the y′ and z′ directions represent the projected displacements in the orthogonal

horizontal and the vertical directions, respectively. The ∆y′ and ∆z′ vectors may then be

combined into a single vector that represents the projected displacement between the sock-

ets in the plane perpendicular to the direction of the slider’s rail, and may be represented

by

∆p2 = ∆y′2 + ∆z′2 (2.4)

Let Rout represent an arbitrary reference point on the rail distal to the slider, and Rin

represent a similar reference point on the rail medial to the slider. The vector difference

between these two points represents the line on which the slider may travel, or its “rail

vector”. The magnitude of the perpendicular vector,∆pmay be found through the directed

area product of two known vectors: the rail vector, and the difference vector between a

known reference point on the slider’s rail, Rout, and the corresponding plate socket, Sp,
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both of which are specified in the initial geometry

‖∆p2‖ =
‖(Rout−Rin)× (Sp−Rout)‖

‖(Rout−Rin)‖
(2.5)

From this construction, the projected displacement along the rail between the sockets,

∆x′, may be found by rearranging equation 2.3. The geometric relationship between the

rail and the corresponding plate socket is specified by

∆r = Sp−Rin (2.6)

Using the magnitude ∆r, the distance between the inner reference point and the start of

the original ∆x′ may be calculated using the Pythagorean Theorem

‖∆X ′‖ =
√

∆r2 − ‖∆p2‖ (2.7)

Therefore, the required position of the slider, P , along the rail for a given transformation

of the plate is then found by the addition of these distances

P (x, y, z, α, β, γ) = ∆X ′ − ‖∆x′‖ (2.8)

Note that because this math is separable to each socket-linkage pair, it is scalable to any

configuration of platforms, sliders, and linkages, so long as the number of degrees of

freedom in the sliders matches the necessary number of degrees of freedom of the end

effector. (i.e., this math may be utilized to calculate the kinematics for a 3D positioning

platform using three sliders and three linkages).
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Table 2.1: Mechanical properties of used materials

Material Name ρ (g/cm3) Modulus of
Elasticity (GPa)

Yield Strength
(MPa)

PLA 1.25 1.280 70.0
ABS 1.05 2.240 20.0
Nylon 1.13 2.930 82.7
CFRP 1.44 89.14 300.0
POM 1.41 2.900 68.2
PMMA 1.19 2.740 48.9
PTFE 2.20 0.500 23.0
PVC 1.41 3.400 46.5
Polycarbonate 1.13 2.300 62.0

2.1.2 Stress analysis

The structural safety of the prototype was estimated using computational modeling using a

commercial software package (Inventor, Autodesk, San Rafael, CA) to conduct structural

finite element analysis on the CAD model of the designed system. The loading effect was

primarily investigated from a estimate weight of a typical patient’s head, using a maximum

simulated loading of 200 N applied directly onto the plate. Note that the maximum load

is about three times the average weight of a human head to account for a factor of safety.

Fixed, rigid constraints were placed on the bottom surfaces of the slider channels. The

device was simulated in two positions, one with all sliders at their most proximal positions

to the center of the plate, and one with all sliders at their most distant settings, 5 cm away.

The von Mises stress was calculated to compare with the yield strength of the materials.

The displacement from deformation was also calculated to investigate material deforma-

tion’s effect on positioning accuracy. Table 2.1 summarizes the mechanical properties of

selected device components.

Figure 2.4 summarizes the finite element analysis (FEA) results of the patient posi-

tioning mechanical system. The highest loading condition, 200 N of force, was applied

directly to the top plate to calculate the maximum associated stress on the structure. The

expected applied stress on the plate and linkages is only about 1 MPa (Figures 2.4a and
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Figure 2.4: (a) Finite element structural analysis demonstrating von Mises stress of the
device under load of 200 N. The maximum stress of 2.0 MPa was below the yield stress of
40 MPa for the material used. (b) Side view of Von Mises stress in linkage bar under load.
(c) First principle stress in the device under load.

2.4b), however the maximum stress (approximately 2 MPa) occurs at the joints between

the sockets and the plate, and was well within material limits. Even though the exagger-

ated loading condition may cause the plate to sag by about 0.1 mm (Figure 2.4c), the stress

does not make any permanent deformation of the system considering the allowable yield

strength of the material (ABS plastic) of 40 MPa. While the estimated deformation at the

joints contributes toward the upper bound of the motion accuracy, the magnitude of sag is

at the lower limit of physical detection, indicating that the sag would not strongly affect

any possible dose distribution.

The stress limit was selected as such to reduce the risk of catastrophic structural failure.

The deformation limit was selected so that deformation under load did not become a major

component of the positioning uncertainty. The strain limit was selected both to maximize

the mechanical accuracy as well as to reduce the risk of radiation-induced failure. A study

from Hassan showed that the radiation exposure to ABS plastics lowers the maximum

elongation before fracture [55]. An exponential fit of the data provided by Hassan shows

the approximate relationship:

E = 10.1e−0.012D (2.9)

WhereE is the percent elongation at breaking andD is the dose received in kGy for a pure

ABS sample. Since the linkage components are likely to receive upwards of 12.5 kGy per

year (2 Gy per fraction for 25 fractions per day for 250 days per year), the fracture strain

is estimated to reach the maximum strain in this prototype after approximately 300 years,
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indicating long term stability.

2.1.3 Construction

The first-generation system was constructed from a combination of off-the-shelf compo-

nents and 3D printing. Components which were 3D printed included the sliders, ball and

socket joints, slider endcaps, central frame, linkages, and rod endcaps. Threaded nylon

rods were purchased off-the-shelf, as were extruded polyvinylchloride tracks. Each slider

track was held in place with a plastic zip-tie. The main actuating end was a 0.25-in thick

hexagonal plate of cut carbon fiber-reinforced polymer (CFRP). The dimensions of some

components were selected arbitrarily, though the length of the linkages were determined

by a simulation process carried out by Thomas Dwyer. The inverse kinematic algorithm

was applied to a list of points taken from an approximate Wiener process in 3D as a sur-

rogate for patient motion2. The length of the linkages was selected by whatever linkage

length provided the most geometrically achievable positions from the list, to the nearest

10 mm.

2.1.4 Step calculation algorithm

The first generation of control software was written by Thomas Dwyer in C for an Arduino-

based control board, and the software was later revised into LabVIEW by Mark Ostyn. The

step calculation algorithm is used to convert continuous motion vectors of the positioning

platform into discrete pulse trains for the driving stepper motors. The algorithm operates

by first discretizing a planned 6D continuous motion vector into positioning checkpoints.

The number of checkpoints is selected by finding the smallest possible divisor n such

that no single displacement between checkpoints on any axis results in vector segments

longer than the step length (the distance a slider would move with one step of the stepper

motor). The inverse kinematic algorithm is then applied to every positioning checkpoint,

2More on Wiener processes in Chapter 3
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Figure 2.5: Sample slider trajectories for 6D linear motion

giving a table of the necessary slider positions for every checkpoint (Figure 2.5). Next,

each column of the slider position table is converted into discrete step commands for the

stepper motors, found by the algorithm shown in Figure 2.6

Because the step size is discrete, some small continuous motions cannot be realized

into actual motions, but still need to be considered for accurate positioning of the sliders.

The stepping algorithm helps determine when to take a step based on cumulations of small

displacements. Functionally, this algorithm stores variables of cumulative motion for each

slider. Once the absolute value of the cumulative motion is greater than the threshold step

size (determined by the resolution of the stepper motor, the radius or pitch of the force

applicator, and the net gear ratio), a step command is issued, along with a corresponding

command of direction. The relevant step sizes for the first and third generation prototypes

are given in equations 2.10 and 2.11.

The resultant table of step commands is then filtered for any instances where no steps

are taken by any motor to increase the output speed of the platform. The finalized table

of step commands is then sent row by row to the stepper motor controller with a delay

of t milliseconds between commands. Operation without the delay can either overflow
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Figure 2.6: Flowchart of stepping algorithm

the stepper motor controller buffer (resulting in inaccurate positioning) or can overheat

the stepper motor driver chips (resulting in their terminal failure). The value of t was

selected based on the specifications of the motion controller, such as the National Instru-

ments myRIO 1900 used as with Pololu A4988 stepper motor driver chips in the first

generation prototype, or Pololu DRV8825 stepper motor driver chips used in the third

generation prototype. Although the motors were placed at less-than-convenient locations3

in this generation of prototype, the electronic control hardware was always kept at least

50 cm away from the center of the plate. Later iterations of the system would focus on

creating solutions to keep all metal components out of the treatment field.

Step sizeG1 =
1 revolution

200 steps
× 1.25mm thread

revolution
= 6.25× 10−3 mm/step (2.10)

3They extened over the sides of the treatment couch, and were 27 mm away from the center of the plate
in the horizontal plane
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Step sizeG3 =
1 rev

200 steps
×0.25in sprocket pitch

0.1 rev
×10×25.4mm

1in
=

127

1350
= 9.407×10−2mm/step

(2.11)

Initially, the platform trajectories were limited to linear paths, but the algorithm is adapt-

able to any given trajectory path, even following a parametric path with respect to time. A

20-millisecond delay between leading pulse edges is highly recommended when function-

ing in this time-parameterized capacity, which is the fastest that the motors can respond

with an even integer divisor into seconds (e.g., a 20-millisecond delay between leading

edges corresponds to exactly 50 Hz refresh rate).

2.1.5 Radiographic imaging compatibility

The imaging and treatment compatibility of the prototype was tested by measuring the

attenuation of the major components using a Philips Brilliance computed tomography (CT)

scanner configured for head and neck scan profile settings. The average Hounsfield Unit

(HU) of each major component was measured along with the HU noise. Cortical bone

was used as a control for comparison of HU values, since cortical bone does not greatly

degrade x-ray or CT imaging quality compared to metal materials. Metal components

were excluded from this study.

CT measurements of HU demonstrate the compatibility of the device within x-ray-

based imaging and linear accelerator output within a radiotherapy environment. The mean

measured HU of most components fell between 1050-1150 HU, which is between typical

values of cancellous and cortical bone, positively indicates the potential use of these mate-

rials in clinical radiotherapy settings. The noticeable outliers included the linkages, which

had a measured value of 384 ± 195 HU, and the tracks, which had a measured value of

1867 ± 33 HU. The low attenuation and large variance of the values of the linkages are

easily explained by the low 3D printing infill, so much of the component is air by volume.

Conversely, the relatively high attenuation of the track is a result of the chemical composi-

tion of polyvinylchloride, which is 53% chlorine by mass and therefore is a much stronger
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Figure 2.7: Setup of accuracy test for first generation prototype

attenuator than carbon or hydrogen at diagnostic energies, which are more strongly present

in the other materials. Nevertheless, the measured attenuation of the tracks is still on the

low end of typical HU values reported for cortical bone at soft energies. Note that since

the attenuation values of all materials were measured as similar to or less than that of

cortical bone at diagnostic energies, they are unlikely to interfere with the relatively more

penetrating therapeutic megavoltage photon energies.

2.1.6 Positioning accuracy and analysis

Preliminary measurements of the 6D positioning accuracy of the first-generation system

was tested by using the platform to correct manual displacements of the head potion of an

anthropomorphic phantom (RANDO phantom, Supertech Inc, Elkhart, IN), as measured

with an Align RT camera system (Vision RT Ltd., London, UK), as seen in Figure 2.7.

In this process, an anthropomorphic phantom was set into a standard headrest fixed to the

moving positioning plate, and manually aligned to a reference 6D configuration using the

optical surface tracking system.

33



Table 2.2: Summary of displacements for accuracy test of first generation prototype

Direction Mean absolute positioning
error (mm/◦)

Longitudinal 1.4 ± 1.0
Lateral 2.6 ± 1.3
Vertical 0.5 ± 0.3
3D Vector 3.2 ± 1.4
Pitch 0.7 ± 0.5
Roll 1.5 ± 0.9
Yaw 1.8 ± 1.0

Once in position, a new reference image was taken to set the reference coordinates

for subsequent measurements. The phantom was then shifted by hand within the headrest

to a new, displaced orientation. Negated values of the 3D rotation coordinates were then

input to the control electronics of the positioning system to move the phantom back into

the same angular orientation as the initial reference position. Since the rotation pivot

point of the prototype device and the isocenter of the camera system were not the same

in this experiment, a displacement vector in translation space develops, the negative of

which is taken as the necessary translation correction vector. The absolute values of the

positioning measurement from the optical system are taken as a measure of the positioning

accuracy of the system. This process was repeated for 15 positions, moving back to the rest

position after the residual 6D displacements of the translation correction were measured,

and resetting the reference frame with each iteration. A summary of the rotation and

translation displacements is provided in Table 2.2. The robotics were not recalibrated

during this process.

The mechanical system was fixed to a typical treatment couch using a Bionix SecureFit

bar (Bionix Radiation Therapy, Toledo, OH). The headrest was attached to the plate of the

positioning system by plastic pins through the standard indexing holes. The resting state

of the device was defined as a specific configuration in which all linear sliders are the

same, specific calibration distance from the central frame of the mechanical positioning

system, as measured with digital calipers. The initial angular orientation of the positioning
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Table 2.3: Positioning errors of first generation prototype

Direction Mean absolute positioning
error (mm/◦)

Longitudinal 0.3 ± 0.2
Lateral 0.3 ± 0.2
Vertical 0.1 ± 0.1
3D Vector 0.4 ± 0.2
Pitch 0.1 ± 0.1
Roll 0.3 ± 0.4
Yaw 0.3 ± 0.4

platform was aligned with the axes of measurement of the AlignRT system within ±0.1◦,

as measured using a digital level.

Table 2.3 summarizes the results from the positioning accuracy testing, and Figure

2.8 provides a statistical view. Over the course of all movements, the mean absolute error

(MAE) of 3D positioning was 0.4± 0.2 mm, and was less than 1 mm in all positions tested,

with an average vector displacement of 3.2 ± 1.4 mm. A single-tailed t-test indicates that

the real mean positioning error was less than 1 mm with p-value > 0.001. The MAE in

rotations was also low. For each axis, the MAE was 0.3◦ ± 0.4◦ for roll, 0.1◦ ± 0.1◦ for

pitch, and 0.3◦ ± 0.4◦ for yaw. The rotation error for each axis was less than or equal to

0.5◦ in 80% of all positions, and less than 1◦ for 90% of all positions.

2.1.7 Conclusions about the first generation prototype

Some issues with this device were targeted for specific areas of improvement in later pro-

totypes. First, the length of track for each slider was greater than what could conceivably

fit on a treatment couch. This would give rise to a more comprehensive geometric analy-

sis and optimization procedure found used in the design process for the second and third

generation systems. Second, as a proof-of-concept device, the prominent high-Z mate-

rials were not completely out of the radiation field. Lastly, although the high resolution

of the threaded rod is ideal for high-accuracy positioning, increased resolution also leads

to decreased speed, making the speed of the positioning plate approximately 10 mm/min,
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Figure 2.8: Cumulative histogram of error in accuracy test of first generation prototype

making for very slow clinical operations.

This prototype was useful to demonstrate the proof-of-concept for testing the electronic

components and corresponding code. After significant testing, functional code and elec-

tronics were generalizable to future versions of the system. Additionally, this prototype

also was useful for establishing methodologies of testing the accuracy of future prototypes.

Although the physical components in later versions differed significantly, the most valu-

able experience with the first generation prototype was gaining familiarity with the most

common points of failure in a plastic robotic system, so that issues in later systems could

be diagnosed more quickly.

2.2 The second generation prototype

After construction of the first-generation prototype was completed, a second-generation

prototype was developed for commercialization. The primary goals of this device were
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Figure 2.9: Cutaway view of the designed second generation prototype

to overcome the limitations of the first prototype, especially moving the high-Z materials

out of the region of end effector and to consolidate the package into a convenient form

factor for commercialization. Early in this stage of development, it became clear that

most feasible location for the high-Z components (stepper motors and electronics) was

placement beneath the patient in the caudal direction relative to the positioning platform.

The decision of the development team was to create an all-plastic gearbox under the patient

to transmit rotational energy to the sliders. This gearbox would use a series of non-metal

gears and shafts to transmit rotational energy from the motors to the sliders. The goal

was to keep the all metal components 40 cm away from the positioning plate origin, or

approximately the distance from the sphenoid to the sternum in a large patient. The patient

would be supported over the gearbox by a sturdy support system, often referred to as a

patient standoff.

The layout for the gearbox was designed by Paden King (Figure 2.10), using schemat-

ics for off-the-shelf 90◦ bevel gears as a means of changing the direction of the rotational

energy. The robotic system also underwent significant changes to the core positioning

system in this generation. Rather than relying on rotation of a threaded rod to move the

sliders, they would instead be moved by a roller chain and sprockets. This design change

was in response to one source of uncertainty seen in the first generation prototype, where
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Figure 2.10: Layout gearbox of the second generation prototype

the sliders tended to pivot about the threaded rod when under load. This new design in-

troduced new geometric constraints on the system. A 7-cm-radius exclusion region was

designated at the origin of the horizontal reference frame where placement of most compo-

nents was forbidden. This was done to minimize the the system’s appearance on AP x-ray

imaging. Additionally, to keep the system in a clinically-feasible size, components were

restricted to stay within a 10.5-in (26.7-cm) boundary in the ML direction (measurements

of a simulation couch from a Brilliance CT scanner was measured as 21-in wide).

2.2.1 Geometric optimization of the second generation prototype

A primitive geometric optimization sequence was devised to find the geometric relation-

ships that granted the largest range of motion while staying within the necessary geometric

constraints. The optimization process used the inverse kinematic analysis to simulate the

mechanical system at various configurations to search for mechanically possible dimen-

sional parameters. In this context, a configuration refers to the both the specified 6D plate

position going into the inverse kinematic analysis and the corresponding 3D positions of

the set of sliders. The dimensional or geometric parameters refers to the specific spac-

ing between mechanical joints of the system, shown in Figures 2.11b and 2.11c. These
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Figure 2.11: Major geometric components of core positioning system

parameters include the lengths of the linkages, the spacing of the sockets on the plate (de-

termined by each pair’s distance from the center of the plate and the horizontal distance

from a median line), and the spacing between the horizontal tracks for the sliders. Con-

straints were also placed on the simulation, limiting how far any slider may be allowed to

move inward along their tracks and how far any slider may move in the lateral direction.

Exhaustively examining every possible configuration of the device is a task much too

large to perform realistically in simulation, even with a relatively small required range of

motion. On an Intel Core2 Quad CPU computer (2.67 GHz), approximately 480 config-

urations may be tested per second. If the required range of motion was ±20.0 mm along

each translation axis and ±5.0◦ of rotation freedom about each rotation axis with a spatial

resolution of ± 0.1mm/0.1◦. Checking every possible ((401)3(101)3 ≈6.6×1013) config-

urations would require 1.4× 1011 seconds (≈4400 years). Even with a constrained range

of motion of ±10.0 mm along each translation axis and ±3.0◦ of rotation freedom along

each rotation axis, there are still (201)3(61)3 ≈1.8×1012 possible configurations, which

would require approximately 3.8× 109 seconds (≈20 years) to exhaustively confirm the

mechanical feasibility of each position. Clearly, this exhaustive approach is not possible.

Means of narrowing the search space were developed by simulating only the extreme
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possible configurations of the platform in 6D space. An extreme position is defined any

permutation of coordinate positions for which the platform was positioned at either end of

its respective range of motion or in the center for each of the 6 axes, (i.e., (0,0,0,0,0,-3);

(0,0,0,0,0,3); (10,10,10,3,3,3); (-10,-10,-10,-3,-3,-3); etc...). All three types of positions

were included to ensure that all possible permutations of moving along or about single

axes were included. This results in 36 = 729 possible configurations, which together could

be simulated in only 1.5 s.

The most primitive method of searching for feasible geometry was to intuitively guess

the dimensions of the input geometric parameters. In this methodology, the platform was

simulated at all 729 possible configurations using the guessed parameters and the required

positions of the sliders were compared to a series of constraints including a 15.0-cm limit

of inward motion and a 19.0-cm limit of lateral travel from the sagittal mid-plane axis. If

99% of the configurations tested resulted in real (as opposed to imaginary) positions for

all sliders on their specified tracks, and if the sliders were within set geometric constraints,

the geometric parameters were accepted as mechanically feasible for the device. From

this solutions were found that allowed a maximum range of motion of ±10.0 mm along

each translation axis and ±3.0◦ of rotation freedom about each rotation axis. The plate

median set to 120 mm, the linkages set to 60 mm in length, the horizontal separation

between upper sockets as 50 mm, and the resting height between socket sets as 40 mm.

Note that these are all round numbers. This is a deliberate choice to simplify verification

in manufacturing. The processes of confirming dimensions is substantially easier if the

dimensions are near regular measurement increments.

2.2.2 Patient body support

The body support platform was constructed using bulk CFRP. The legs were made from

0.125-in thick strips of CFRP held together by epoxy while the platform was a solid slab

of 0.25-in thick CFRP. The initial plan was to attach the legs to the plate by epoxying both
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Figure 2.12: Stress analysis of the patient body support

components to a plastic hinge to allow collapsibility, but the epoxy failed to reliably hold

the hinges onto the plate. The system was redesigned to use 3D printed plastic rectangular

sockets bolted to the plate with nylon fasteners to hold the legs in place.

Structural integrity of the assembly was examined in finite element analysis using a

loading of 300 lbs (1330 N). Examination of the expected von Mises stress revealed very

little concern for breaking under load.

2.2.3 Construction of the second generation prototype

In the design phase, most core positioning components were identified as good candidates

for 3D printing, while also purchasing the roller chains, sprockets, gears, and shafts off-

the-shelf. The major 3D-printed components included new sliders, tracks for the sliders,

pins to hold the sliders onto the roller chains, mounts for the motors, and a new socket and

linkage assembly. Most 3D-printed components were printed with a Formlabs (Formlabs,

Somerville, MA) Form 2 stereolithography printer (GPBK02, GPW02,GPCL02 resin),

with notable exceptions of the mounts for the motors, which was printed with a MakerBot

Replicator (fifth generation).

To simplify construction and cut costs, many structural components were designed to

be constructed from laser-cut sheets of bulk acrylonitrile butadiene styrene (ABS) plastic.

These components included the mounting plate and mounts for power-transmission CFRP

shafts. The design of the shaft mounts was a simple rectangle with a pass through hole
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Figure 2.13: The assembled second generation prototype

that the shafts would be passed through before gluing the off-the-shelf bevel gears onto

the ends. The shaft mounts would be inserted into laser-cut sockets on the mounting plate

and welded in place with acetone. Since plastic welding works best for like materials,

components made of disparate materials, such as the track walls and motor mounts, would

be attached to the mounting plate by a strong adhesive.

Theoretically, since the laser-cut holes would match the dimensions of the shaft mounts,

perfect alignment of the shafts was guaranteed. However, the cutting process was not fully

explored, and disparities existed between the physically cut components and the planned

components in the schematics; the sockets for the shaft mounts were larger than the base of

the shaft mounts by approximately 1 mm, leaving significant clearance. This led to uncer-

tainty in the proper placement of the power transmission shafts, creating significant lashing

in the gears, with some gears failing to mesh entirely. The problem of uncertainty became

compounded by the fact that adhesives were used to attach the gears onto the shafts: any

assembly was irreversible. Several other issues also presented in the construction process.

Inadequte mounting was provided for the motors, inadequate clearance was provided for

their end effector, and inadequate angular tolerance was provided for attaching the motors

to the drive rods. Later analysis also revealed other errors in the design of the plate. These

factors led to the decision to cease development on this generation prototype, and instead

develop a final, third-generation prototype.
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2.2.4 Conclusions about the second generation prototype

This prototype was constructed with the philosophy of keeping costs low. While noble,

this was misguided; the cheaper construction methods turned out to be more expensive

in the long run when nearly the entire assembly needed to be re-manufactured from the

ground up. However, the experience was fundamental in highlighting the principle design

challenge when constructing with plastics: the need to account for uncertainty in the man-

ufacturing process. Plastics are very difficult to manufacture with the same precision as

metal components, often varying by 0.1-0.5 mm along straight edges depending on the

manufacturing process. While nearly impossible to eliminate completely, clever design

can mitigate the issues caused by the uncertainty.

2.3 The third generation prototype

The third generation of prototypes was designed to be durable in construction when using

imprecise construction techniques, and to allow each assembly step to be reversible until

the mechanics were fully verified. Reversible assembly was achieved by designing compo-

nents to articulate with fasteners rather than welding or gluing. The re-engineering process

also allowed for improvements to some underlying systems, such as making improvements

to the geometric optimization process and improving slider positioning accuracy by intro-

ducing a feedback loop as opposed to relying on dead reckoning.

2.3.1 Geometric optimization

The decision to construct a third-generation prototype presented an opportunity to revisit

the issue of geometric optimization to ensure that the optimal dimensions for the plate

were being considered. A search program was designed to autonomously find accept-

able combinations of dimension parameters. As discussed in early sections, the geometric
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Figure 2.14: The third-generation prototype (without enclosure)

search processes relied on specifying the limitations and desired range of motion as inputs

along with the best-guesses for feasible geometric dimensions, and the algorithms returned

a pass rate for the guessed dimensions achieving the limits of the specified range of mo-

tion within the given restriction set. The process relied heavily on intuition and manual

guesswork, and viable geometric sets became increasingly sparse with larger ranges of

desired motion. Due to these factors, one could never be sure that the passing geometry

was achieving the maximum range of motion. In addition, parameters were often guessed

in convenient increments to keep the size of the search space manageable4. This intuitive

approach is problematic because combinations of mechanically feasible parameters may

not exist on such convenient size intervals, and the probability of manually finding feasible

geometry for large ranges of motion is very low. Therefore, the major goals in creating

a robust search algorithm was to increase the resolution of the search space while also

decreasing the amount of time required to perform a search.

The first revision to the search program was to autonomously and incrementally step

through all possible combinations of various dimensions for the four independent variables

(linkage length, plate median, separation of socket pairs, and resting height). While this

approach was better than manually guessing, it quickly encountered the problem of multi-

variate complexity. Since each of the 729 geometric configurations must be simulated for

4Creating components in convenient increments also simplifies the process of confirming manufacturing
fidelity
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each combination of values for the four independent variables . In example, if each of the

four variables has a possible search space of 20 possible values, (such as searching with

a 10-cm range in 5-mm increments), this leads to 729×204 ≈ 1.16× 108 configurations

to test, which would take approximately 67 hours to simulate, for a specified range of

motion. After running several searches in this way, it became clear that nearly all tested

combinations of geometric parameters were not mechanically feasible.

However, the combination of this property and the property that fewer geometrically

feasible geometries existed for increased ranges of motion leads to the conclusion that only

a small number of positions need to be tested before attempting the entire set of extreme

configurations. This was implemented by adding a preliminary failure-check filter to the

start of the search process that selects n 6D configurations at random from within the spec-

ified range of motion for the program to simulate the required slider positions. Because

most combinations of geometric parameters are not mechanically possible, the probabil-

ity is high that these few scout configurations will also fail, unless the tested geometric

parameters happens to be a valid setting. Conversely, if the tested parameter combination

was feasible for these arbitrary scout configurations, the probability was much higher that

the extreme configurations point would also pass. This meant that it was possible to test n

such that n << 729.

The most significant factors that affect the program runtime are the choice of n, the

size of the increments being stepped through, and the range of dimensions being checked.

Because there are four independent variables, increasing the resolution by a factor of two

increases the runtime by a factor of sixteen. Alternatively, decreasing the search range by

a factor of two decreases the runtime by a factor of sixteen. The impact on the choice

of n is less intuitive. Choosing a small number of scout configurations does decrease the

runtime for the scout program, but also results in a higher rate of false positives that must

also be tested in the full extreme configuration check.

If 100% of the scout configurations are deemed as mechanically feasible, the com-
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Figure 2.15: Relationship between geometry pass rate and range of motion

Figure 2.16: Relationship between total configurations tested and number of scout points.
Note that the value for n = 0.1 is really 0, but included to show power of scout function.
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Table 2.4: Output of optimization program showing valid values for the selected geometric
parameters

Upper Socket
Half Width

(mm)

Plate Median
(mm)

Linkage
Length (mm)

Socket Height
Differential

(mm)
20 85 80 43
20 85 80 44
20 85 80 45
20 85 80 46
20 85 80 47

bination of parameters is passed along for a more thorough inspection of the extreme

configurations. This filter drastically decreased the total runtime of the search program.

The passing parameters for a 1-mm increement search are seen in Table 2.4, and allowed

for a guaranteed range of motion of any arbitrary position within ±8 mm and ±3◦, the

largest range achievable while keeping within the constraints. While all results offer sim-

ilar ranges of motion, more detailed searching 5 revealed that by allowing variation in the

resting height, the range of guaranteed motion could be increased to±8.7 mm by selecting

a resting height of 46.25 mm, rather than then nominal 45 mm, which allowed up to ±8.5.

However, this advantage was deemed as a near non-detectable increase in performance, so

the height differential was arbitrarily selected to be 45 mm.

While this search function was written specifically for the device described in this dis-

sertation, it is applicable to any systems based on the same prototypical geometric design,

including those that may be later built as complex motion phantoms, including dimen-

sional freedom within any combination of translations and rotations, so long as the basic

mechanical functionality is the same: control of an end effector by translation of connected

linkages.

5by reducing the search range and increasing the search resolution
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2.3.2 Stress analysis

Rather than relying on laser cutting again, 3D printing was chosen to fabricate nearly all

major components. This allowed much greater freedom in the design process. Objects that

required fine detail printing (components with features smaller than 1 mm) were selected

for printing with the Formlabs Form 2 printer or with a Polyjet Objet Eden 260VS. Com-

ponents which did not require high detail were printed with a combination of fused depo-

sition modeling printers, including uPrint SE Prototyper printers, MakerBot Z18 printers,

and MakerBot Replicator printers (fifth generation). The materials selected were acry-

lonitrile butadiene styrene (ABS) when using the uPrint printer, polylactic acid (PLA) for

any MakerBot-printed parts, the Formlabs ”standard” resin, or VeroWhitePlus (RGD835)

polymer when using the Objet Eden. Some components required high strength and me-

chanical accuracy. For these components, machined carbon-fiber-reinforced plastic was

selected.

Finite-element modeling was used to help determine whether the designed components

were strong enough to bear the weight of a patient using the materials in question. The

primary dimension of concern was the thickness of the bar in the linkages, together which

serve as a combination of structural pillars and load-bearing cantilevers, depending on

the particular configuration of the the plate. Since the length of the linkage is set from

the geometric optimization process, the thickness of the linkage is the only independent

variable which may be used to augment the strength of the linkage6.

Four different plate configurations were examined to ensure stability of the system for

a variety of situations, listed in Table 2.5. The configurations were chosen. In all config-

urations, a CAD model head of weight 75 N (approximately the weight of a human head)

was simulated on top of a durable headrest with equivalent dimensions to commercially

available plastic headrests (Figure 2.18) to ensure that the load distribution was as close to

reality as possible. The headrest was fixed to the plate using plastic indexing pins. Only

6The linkages would be printed with a 1-mm shell thickness with linear infill.
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Figure 2.17: FEA of the linkage in the third-generation prototype

Table 2.5: Estimated stresses

Position (mm/◦) (x, y, z,
α, β, γ)

Max First
Principle
Stress (MPa)

Max von
Mises Stress
(MPa)

Max
Equivalent
Strain (%)

Max
Deformation
(mm)

( 0, 0, 0, 0, 0, 0) 1.35 2.66 0.112 0.091
( 0, 0,-10, 0, 0, 0) 1.86 3.52 0.146 0.124
( 0, 0, 10, 0, 0, 0) 1.05 2.04 0.085 0.067
( 10,-10,-10, 0, 0, 3) 2.17 3.71 0.155 0.138

load-bearing or connecting components were included in the analysis. For each configu-

ration, the first principle stress, von Mises stress, equivalent strain, and deformation were

examined (results based on final geometry summarized in Table 2.5). Based on maximiz-

ing the strength of the linkage bar and the angular freedom, a width of 10 mm was selected

(Figure 2.17). FEA was also used to ensure that the supporting mounting plate segments

could support the load of the patient on the positioning equipment, shown in Figure 2.19.

Based on the simulations, no structural failures are expected in the plate, sockets, link-

ages, sliders, slider tracks, or mounting plates. One caveat though is that the sockets for

the hinge components and sliders were designed as joining halves, which may not be as

strong as the simulation implies.

Computational fatigue analysis was also utilized to determine the system’s long term

resilience against repetitive loading, using the Nastran add-on package for Autodesk In-

ventor. In this analysis, a simplified geometry of the linkages, hinges, sliders, and posi-

tioning plate was used, where the entire assembly was simulated as ABS plastic. In reality,
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Figure 2.18: Free-body diagram for core positioning system FEA

Figure 2.19: FEA of mounting plates
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Figure 2.20: S-N curve programmed into Nastran, based on data from [56]

the plate was fabricated from PMMA, a stronger material. The material properties for the

S-N (Stress-cycles) curve were estimated based on data from Park et al [56] (Figure 2.20).

The analysis simulated a load of 75 N dynamically loaded normally onto and off of

the positioning plate each with a 1-s duration. Nastran estimated that the linkages were

the most likely part to fail, after approximately 109 cycles. Although the real failure could

be earlier, because 3D-printed components may contain inherent stress points not seen in

conventionally manufactured parts, the analysis indicates that there is a significant stress

margin in the component.

2.3.3 Torque analysis

The layout for the shaft mountings was developed in CAD software and employed cus-

tom bevel gears to allow for a reduced number of gears in each drivetrain. Transmission

between well-fitting gears is expected to be around 90% [57], and the total power trans-

mission approximately follows:

Pf = P0(efficiency)n (2.12)

where P0 is the initial power and n is the number of gear pairs in the train. The gears
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Figure 2.21: Torque transmission analysis

were created using the ”Design Accelerator” feature in Autodesk Inventor. Two types of

bevel gears were designed: one type was used to create a 30◦ change in axle direction, and

a separate type to create a 60◦ change in axle direction. This was done to minimize the

number of gear pairs required to connect each motor to their respective slider since each

pair of gears along the drivetrain reduces the power transmission efficiency. The layout

was generated by carefully considering the optimal position for each bevel gear pair. A

bevel gear pair may be considered as a pair of partial cones with intersecting vertices.

Perfectly fitting pairs of each type of gear were created in CAD. These pairs were placed

along each type of drivetrain, such that the drive gears were coaxial with the shafts of the

motors, the gears sharing a common shaft were always coaxial, and the end gears sharing

shafts with the sprockets were also coaxial. In the design process, the height of the full

cone of each is known, so the layout may be created such as that shown in Figure 2.23.

Once custom gears were considered, a torque step-up in gear ratio was also imple-

mented to reduce the required input torque from the stepper motors, and therefore reduce

the weight of the system. Two different stepper motor models were considered for this

system, NEMA 17 1.2 Amp motors and NEMA 23 2.8 Amp motors. Comparatively, the
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Figure 2.22: 30◦ bevel gears

Figure 2.23: Layout of the gears and axles
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NEMA 23 motors would provide significantly higher input torque, 270 oz-in compared

to 44 oz-in by the NEMA 17 motors. However, the weight of each motor was also sig-

nificantly greater, with a mass of 1.0 kg compared to 0.35 kg. Therefore, the low-weight

NEMA 17 motors appear in the final device, resulting in an input torque of 44 oz-in.

Snap fit joints were developed to securely lock into place, ensuring proper alignment

of the shaft mounts. Once snapped in, the mounting could be moved by ≈ ±0.5 mm

laterally with respect to the axle for final positioning and permanent attachment with a

strong adhesive. Each shaft was held in place within the mounting by a pair of 3D-printed

smooth bore solid bearing. The use of custom 3D-printed ball bearings was explored, and

some prototype examples were constructed, but material strength became an issue at the

size considered. Most notably, the races in the bearings was constrained to submilimeter

thicknesses due to size limitations, and was not strong enough to support the stresses

caused by torque from the shafts.

A lid was designed for the shaft mounts to hold these bearings in place, held in place

by zip-ties as a reversible construction process. Longitudinally, the axles were held in

place within the mount by a series of 3D-printed spacers, each 1 mm in cylindrical height.

As mentioned in section 3.1.6, the axles mounts were designed with mostly hollow space,

consisting of a 2-mm thick shell and 1-mm ribs. The mount and lid were printed using

”Tough PLA”, to allow elastic deflection of the snap joint fittings.

There is no one to one correspondence between linear motion of the sliders and achieved

motion of the platform. Instead, there is a complex, nonlinear relationship between the

sum positions of the sliders and the resultant platform position. Therefore, rather than

using direct mechanics to model the necessary applied force to a slider to move the plate,

an analogy may be used instead. Ultimately, the applied force to the slider is dominated

by overcoming the friction force between the slider and its track. Show that the force

required is dominated by friction. In this simplification, the force required to move any
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slider is simply the force required to overcome static friction:

Ff,s = µFN (2.13)

Where Ff,s represents the static friction threshold, µ represents the coefficient of static

friction between the slider and the track, and FN is the normal force of the slider. Note that

the normal force of the slider is the result of the composite weight of the entire assembly,

including the load applied to the platform.

FN = g(mslider +mlowersocket +muppersocket +mlinkage +
mplatform +mload

6
) (2.14)

In order to calculate this required force, the coefficient of friction must be known. There-

fore, empirical analysis was performed to determine this value. From rest, the force re-

quired to overcome static friction between the slider in its track was 20 mN, compared to

the measured weight of 80 mN, which can be used to conclude the coefficient of static

friction between these two substances as 0.25. Using this value, and the known masses of

the components, and using a maximum load of 75 N, the required force to move the slider

in the full assembly with 75 N load is 3.25 N.

A roller chain and sprocket assembly was utilized to move the slider. Since the effec-

tive nominal diameter of the sprocket was 0.92 inches, this gives a required torque of 62

N-mm. A drive train of gears were used to increase the applied torque of the motors from

their maximum of 5.5 kgf-cm (539 N-mm) to a maximum torque of 1820 N-mm using a

net gear ratio of 8:27. In certain configurations, the gear ratio was achieved using three

instances of a 2:3 gear while in other configurations, the gear ratio was achieved using a

single instance of a 2:3 gear and a single instance of a 4:9 gear. Note that the mechanics

are substantially simpler if the same gear ratio is present in driving all six sliders.

This gear ratio also gave the advantage of increasing the effective step resolution of the

stepper motors. Since each stepper motor used had a step resolution of 200 steps/rotation,

55



Figure 2.24: (a) Diagram of key and keyway, and (b) torque analysis of drive rods.

a 1:1 gear ratio would have moved the sliders 1.063 mm/step. However, with the applied

gear ratio, this reduces to 0.315 mm/step. A more comprehensive analysis of the step

resolution is explored in 2.1.4.

Finite element analysis was used to determine the stress present at the interfaces be-

tween drive rods and the attached gears or sprockets using the torque calculated in the

previous section. The maximum torque in the drivetrain was used for all interfaces, re-

gardless of the expected torque at any single interface. In the analysis, a prototypical shaft

with a gear attached was simulated with the gear held fixed and 1050 N-mm torque was

applied to the shaft (Figure 2.24b). In this analysis, the maximum stress present at the

interface was found to be 48 MPa, directed around the surface of the shaft. In research-

ing various epoxies for holding the gears onto the shaft, this was found to be significantly

greater than their yield strength (typically around 14 MPa), indicating their poor candi-

dacy for holding strength. Therefore, a keyway and key were instead selected as a means

of transmitting the rotational energy from the shaft to the attached gears (Figure 2.24a).

In the finite element analysis of the keyway, the key was found to be more than strong

enough to rigidly fix the components together.
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2.3.4 Construction

Relative to the second-generation prototype, the third-generation prototype heavily used

3D printing to create structural and mechanical components. The third-generation proto-

type repurposed the slider mechanism from the second-generation prototype. In the second

generation prototype, assembly of the mounting plate was impeded by the maximum size

of material slab that could fit in the laser cutter, 12 × 24 in2. This led to assembling the

mounting plate from several individual segments welded together on their adjacent edges.

In practice, this process was imprecise, and caused some flexure and misalignments. In

the third generation prototype, the 3D printer used for creating the mounting plate also had

a build volume limited to 30 × 30.5 × 45.7 cm3, necessitating segmentation. However,

in this configuration, plastic nuts and bolts were used to secure the plates together ensur-

ing much more precise component alignment. Additionally, carbon fiber rods were used

beneath the mounting plates to give the structure extra rigidity.

2.3.5 Radiographic imaging compatibility

The materials used in the positioning system were carefully selected to minimize the ef-

fects of scatter and attenuation on incident radiation. All components within 40 cm hori-

zontally of the positioning system’s isocenter were constructed using fully plastic materi-

als. Two metrics were used for assessing the compatibility of the system with radiographic

imaging. First, no component could possess a measured Hounsfield Unit value greater than

that of cortical bone at diagnostic energies. Second, when imaged, no obvious scattering

or attenuating-linked artifacts could be visible.

An estimate of the Hounsfield Unit for each material used is shown in Table 2.7. The

estimate was generated using the basic definition of Hounsfield Units:

HUmaterial(E) = 1000× µmaterial(E)− µwater(E)

µwater(E)− µair(E)
(2.15)
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Table 2.6: Estimated radiographic properties of the used materials

Matieral Chemical Composition ρ(g/cm3) µ/ρ(40keV)
(cm2/g)

Estimated
Attenuation

(HU)
PLA C3H4O2[58] 1.25 0.214 -2.0
Tough PLA C3H4O2[58] 1.50 0.214 198
ABS C15H17N[59] 1.05 0.220 -138
Nylon C12O2N2H22[60] 1.13 0.231 -26
CFRP 67%C; 33%C21H25ClO5 [61] 1.44 0.241 295
POM CH2O[62] 1.41 0.244 285
PMMA C5H8O2[63] 1.19 0.235 44
PTFE C2F4[64] 2.20 0.265 1180
Water H2O[65] 1.00 0.268 0
Air 78%N; 21%O; 1%Ar[66] 1.29×10−3 0.246 -1000
Bone - - - 2500

The net linear attenuation coefficient for each material was calculated using the method

specified by Attix for combining linear attenuation coefficients in a mixture [67]:

(
µ

ρ
)mixture(E) ∼= (

µ

ρ
)A(E)fA + (

µ

ρ
)B(E)fB + ... (2.16)

The chemical compositions and densities of the materials used are shown in Table 2.6.

The composition of most used materials are well known, but some materials used are less

established. The Carbon fiber-reinforced polymer is a mixture of carbon fibers and a re-

inforcing epoxy resin. While the exact ratios of carbon fiber to epoxy are unknown for

the materials used, an educated guess is approximately a 2:1 mix. The chemical composi-

tion for carbon fibers is simply pure carbon, but many possible forms of epoxy could have

been utilized in the formation of the materials used in this project. Since the purpose of this

exercise is to obtain an estimate of the attenuating properties, one possible chemical com-

position for epoxy is (C21H25ClO5)n. Likewise, while the photopolymer used in printing

with the stereolithography printer is a proprietary secret, some sources have indicated that

photopolymer materials may be similar to that of poly(methyl methacrylate) [68], which

provides a reasonably close estimate of the actual attenuation. In all, in no case was the
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Figure 2.25: Relation between estimated and measured radiographic attenuation. Note
that in all but one case (the track walls), the estimated attenuation was greater than the
actual attenuation, showing better-than-expected compatibility.

estimated attenuation greater than the attenuation values listed by Attix for cortical bone.

After construction of the prototype, the device was placed in a CT simulation unit for

measurement of HU values. While some of the analytic estimates of attenuation were

close to the measured values, some differed greatly due to the small physical thickness of

many plastic components. In many cases, non-load bearing components were designed

to utilize a minimal amount of plastic to reduce production costs and production time.

These components were often printed as plastic shells with reinforcing ribs using industry

recommended thicknesses between 2 mm and 3 mm for the shells and 1-mm thickness ribs

[69]. Due to this design practice, some components lacked volumetric regions spatially

larger than the voxel size of the CT scanner, resulting in significant volume averaging

between the air and the plastic components. Further, some non-shelled components were

created from thin materials on the same scale as the slice thickness to reduce attenuation,

(i.e., the positioning plate was a 4.76 mm thick PMMA plate) and thus also experienced

some volume averaging as well. The measured HU values for each component was nearly
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Figure 2.26: CT scans of the third generation prototype including (a) horizontal slice view
at base level of supports, (b) horizontal slice at level of gears and shafts, (c) vertical slice
through slider assembly, and (d), vertical slice through linkage attachment points.

Table 2.7: Comparison between the estimated and measured radiographic properties

Part Name Material Mean Measured
Attenuation (HU)

Estimated
Attenuation (HU)

Track Walls PMMA 102 44
Slider Supports PMMA -699 44
Shaft Mounts Tough PLA -594 198
Mounting Plate PLA -692 -2
Chains POM -82 284
Postitioning
Plate

CFRP 218 295

Shafts CFRP 87 295
Bolts Nylon -67 -26
Sliders ABS -675 -138

always lower than the estimations (Figure 2.25), and no artifacts were visible, implying

full compatibility with radiographic imaging (Figure 2.26).

2.3.6 Slider positioning feedback loop

Even with the careful shaft layout and including a key and keyway to fix the gears to

the shafts, some lashing remained in the gearbox. While much if this could be reduced

by tightening the attachment and articulation of components, some of it seemed to stem

from the inherent flexibility of the plastic materials used in construction. The lashing

created a serious issue in relying on dead reckoning with the step calculation as a means

of determining the true locations of the sliders; in some test cases, the true motion of the

sliders differed by more than 3 mm from the programmed motion. This magnitude of error
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would cause significant errors to accumulate in the resultant plate positioning. With some

experimentation, the backlash also seemed to vary from day to day, precluding the option

of accounting for a consistent backlash per gear within software.

As an alternative to relying on dead reckoning navigation for positioning the sliders, a

feedback loop could instead. In this scheme, the sliders would still follow the prescribed

motion trajectory as calculated by the stepping algorithm, but following the conclusion

of the motion, a physical measurement could be used to detect residual errors and deter-

mine the necessary steps to achieve the requisite position. Using an optical reflectance

measurement as a surrogate for position measurements was briefly considered, but a few

flaws contraindicated its use. The optical conditions were too variable, and integrating the

hardware into the existing prototype would have required extensive overhauls, and would

have required using fiber optic cables to maintain the prohibition on high-Z components

near the positioning core.

Eventually, a Bowden cable system was devised to create a mechanical connection be-

tween each slider and a sliding potentiometer (Bourns linear slide potentiometer, 250Ω,

60-mm travel) located far outside the treatment field (Figure 2.27). A Bowden cable is

a flexible tube and wire assembly in which the ends of a flexible tube are fixed onto dis-

crete reference points while the wire is ran through the tube and fixed on either end to an

actuating component and an end effector. They are commonly seen in bicycle handbrake

assemblies as the method of transmitting mechanical power from the handle to the brake.

Custom Bowden cable assemblies were created using nylon tubing and PTFE 2-mm di-

ameter wires. PTFE was selected due to its low coefficient of friction to minimize drag

against the tubing.

The ends of the wires were fixed to the sliders using cyanoacrylate adhesive (Figure

2.27b). This was achieved by first creating a rough texture on the outer surface of the

wires with needle-nose pliers, forming a drop of adhesive on the tip of the wire, and then

inserting the end into a shallow hole drilled into the face of the slider. The tubes were
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Figure 2.27: Bowden cable assembly, showing (a) the general layout of the cable system
and sliding potentiometers, and (b) the attachment point onto the sliders.

mounted between attachment points on the tracks and near the potentiometers.

The myRIO hardware was used to power and read the potentiometers by applying an

+5 DC voltage and measuring the potential difference across the resistor. The voltage is

then converted into a distance by simple ratios. In the control software, the measurement

of the voltage was very noisy when the stepper motors were powered. Therefore, the true

distance is based on a 100-point moving average of the voltage. This process did introduce

a 1-second latency period, however.

The feedback loop functions by performing periodic checks on the measured position

of the sliders and compares them to the expected positions. After every given number

of trajectory-based step commands are sent to the motors, the system waits for the 1-

second averaging period, compares the measured positions against the expected trajectory-

based positions, and provides a constant-velocity command to make up the difference.

This process ensures that the achieved trajectories for each slider matches the planned

trajectories as faithfully as possible.

The feedback loop contains several points of adjustment for sensitivity, and room for

optimization. More frequent comparisons will ensure greater trajectory replication, but

will also increase the time required to move from start to end position. Additionally, while

each correction step is built to compensate for lashing in the gears, this is done indirectly
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by measuring discrepancies in the expected positions, which can lead to either under-

corrections or over-corrections especially in the early segments of the motion. This could

be better tuned by more frequent comparisons, but the existence current latency duration

discourages such practices by dramatically lengthening the required time for a start to

finish motion.

2.3.7 Construction of a flexible anthropomorphic phantom

An anthropomorphic phantom with a flexible neck was constructed for testing whether

independent positioning of the head and body results in proper neck alignment, affec-

tionately referred to as “Jack”. The phantom was constructed primarily from a plastic

classroom model skeleton (Anatomy Warehouse). While the skeleton came with many

small metal components to articulate each bony joint, the vast majority of these compo-

nents were removed, along with many bones, leaving the phantom to contain the skull,

ribs, scapulae, clavicles, and vertebrae C1-T12, and rubber vertebral discs. Two thin wires

were routed through the vertebral column and through the occipital bone near the fora-

men magnum to provide flexible articulation. The wires were held in place to the skull by

wrapping the wires through the foramen transversarium of the C1 vertebrae and through

the added holes near the foramen magnum and the jugular foramen.

The phantom was wrapped in silk tape and then covered with three layers of a flexible

nylon mesh as a skin surrogate to facilitate the use of surface-based optical positioning.

An air cavity made from compressed paper representing nasal cartilage was also added

beneath the skin surrogate to remove symmetry ambiguities.

2.3.8 Positioning accuracy and analysis

The positioning accuracy of the prototype was tested in a similar manner to that used for

the first generation prototype, as described in section 2.1.6. In this instance, the skeletal

phantom was used as the patient surrogate for correction. Because the skull of the phantom
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Table 2.8: Summary of displacements used in accuracy test of third generation prototype

Direction Mean absolute positioning
displacement (mm/◦)

Longitudinal 1.73 ± 1.02 [0.4, 4.5]
Lateral 0.73 ± 0.48 [0.1, 2.0]
Vertical 1.41 ± 0.99 [0.1, 3.2]
3D Vector 2.52 ± 1.16 [1.1, 5.2]
Pitch 0.73 ± 0.44 [0.1, 1.5]
Roll 1.57 ± 0.72 [0.5, 2.6]
Yaw 0.91 ± 0.59 [0.3, 2.7]

was smaller than the Rando phantom, and showed noticeably less friction between its

surface and that of Q-Fix headrests, a rubberized grip ring was used as a headrest. This was

also done to help ensure that the load distribution remained within the points of stability

on the plate by keeping the weight from the neck of the edge of the plate.

The test consisted of 15 independent correction trials, where the head was set an arbi-

trary reference position within the headrest, followed by a reference capture by AlignRT,

then creating an arbitrary misalignment by manual manipulation. Negations of the de-

tected displacements were used as correction vectors, first applying a correction for ro-

tations, followed by the resultant measured translation displacements. This resolved the

discrepancies between pivot points used in calculation by the surface tracking system and

that used in the plate positioning software. In the tests performed with the first generation

prototype, the pivot point of the positioning software was located at the default position

at the center of the anterior surface of the plate. In these tests, the movable pivot point

functionality was implemented to reduce alias translations. Therefore, the pivot point was

placed approximately at the location of the C2 vertebrae (90 mm inferior to the center of

the plate, 60 mm above the anterior surface of the plate), based on the Graff’s observation

that the rigid registrations of C2 provided the best alignments of bony landmarks.

The results of the manual errors are summarized in Table 2.8. Over 15 trials, the mean

absolute vector displacements for correction ranged from 1.1 to 5.2 mm (distribution of

2.52 ± 1.16 mm). The rotations used were all below 3◦ to ensure that the position would
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Table 2.9: Summary of residual errors from accuracy test of third generation prototype

Direction Mean absolute positioning
residual error (mm/◦)

Longitudinal 0.47 ± 0.28 [0.1, 1.1]
Lateral 0.21 ± 0.14 [0.0, 0.5]
Vertical 0.43 ± 0.34 [0.1, 0.9]
3D Vector 0.74 ± 0.33 [0.2, 1.5]
Pitch 0.41 ± 0.27 [0.1, 1.0]
Roll 0.63 ± 0.58 [0.0, 2.0]
Yaw 0.31 ± 0.24 [0.0, 0.8]

Figure 2.28: Cumulative histogram of residual errors for third generation prototype for (a)
translations and (b) rotations.

always be achievable. The residual errors post-correction are summarized in Table 2.9

and seen in cumulative histogram in Figure 2.28. The mean absolute vector displacements

for correction was 0.74 ± 0.33 mm, indicating the prototype’s likely accuracy as sub-

millimeter. The residual rotation error also showed significant improvement relative to the

initial offset, although a larger ratio of residual errors greater than 1◦ occurred relative to

the first generation prototype.

Relative to the first generation prototype, the system was slightly less accurate overall

(≈0.3-mm increase in mean absolute residual vector error, with an additional≈0.1 mm in-
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crease to the standard deviation). This is likely due to the increased complexity in the drive

system in the third generation prototype relative to that in the first generation prototype,

and the increase in step size. In the first generation system, the drive system consisted

of stepper motors rigidly attached to threaded rods that directly actuated the sliders by

6.25 µm per step, guided by dead-reckoning (counting steps). In contrast, in the third

generation prototype, the motors attach to train of gears and axles, (where each gear has

some backlash), that ultimately turn sprockets that pull a chain that actuate the sliders,

with approximately 0.1 mm of slider actuation per motor step, guided by a Bowden cable

mechanism. Therefore, because the third generation system contains a greater number of

systems (designed to keep the motors out of possible treatment fields), each system with

its own uncertainty, the greater uncertainty is not surprising.

2.3.9 Neck alignment by separate alignment of the head and body

A second set of mechanical correction trials was also conducted to investigate whether

independent setup of the head relative to the body improved the alignment of the cervi-

cal spine. This series followed the same basic process described in the previous sections

concerning positioning accuracy measurement procedure, but with additional steps added.

Before any mechanical correction was attempted, the entire length of the anthropomorphic

skeleton was set up to be as close as possible to the planning CT image as measured by

CBCT. Once in alignment, a reference CBCT image was taken to be used as the source

image for registrations of misaligned and corrected images. After this, a series of 3 trials

were performed to correct the manually created positioning errors as guided by AlignRT

where the rotations were corrected first, followed by correcting the translations, each step

with only a single correction vector. After the manual misalignment and after each cor-

rection step, CBCT images were taken. These images were then rigidly registered to the

reference CBCT image set at three separate regions of interest encapsulating C2, C4, and

T1 (Figure 2.29). To reduce confusion about alias transformations (rotation-induced trans-
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Figure 2.29: Regions of interest used for registration in neck alignment study

lations), registrations allowing translations and rotations were performed separately.

With the mechanical corrections, significant reductions in positioning error relative

to the reference setup were observed in each region of interest, as summarized in Table

2.10. Relative to the initial rotation offset, the total rotation (pitch + roll + yaw) decreased

from a mean absolute average offset of 2.7◦ ± 1.2◦ to 1.2◦ ± 0.5◦ at C2 compared to a

decrease from 0.7◦ ± 1.1◦ to 0.5◦ ± 0.3◦ at T1. In both of these instances, not only did the

mean error decrease, but so did the standard deviation. In comparing the translation vector

error correction (from after the rotation correction to after the translation correction), the

residual error at C2 decreased from 3.4 ± 2.4 mm to 1.3 ± 0.7 mm and from 1.0 ± 0.8
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Table 2.10: Summary of mean absolute errors in neck levels after correction by third
generation prototype as measured by CBCT.

Anatomical Region Vector Translation
Error (mm/◦)

Total Rotation
Error (◦)

Initial C2 1.3 ± 0.9 2.7 ± 1.2
Simulated C4 1.2 ± 1.0 1.6 ± 0.8
Setup Error T1 0.7 ± 0.7 1.1 ± 0.9
Step 1 Fix C2 3.4 ± 2.4 1.9 ± 1.1
(Fixed C4 2.5 ± 2.1 1.7 ± 0.8
Rotations) T1 1.0 ± 0.8 1.7 ± 1.2
Step 2 Fix C2 1.3 ± 0.7 1.2 ± 0.3
(Final C4 1.0 ± 0.4 0.5 ± 0.3
Position) T1 0.8 ± 0.2 0.5 ± 0.3

Figure 2.30: Overlaid CT images of C2 vertebrae with T1 registered between images (a)
at manual misalignment and (b) after mechanical correction.

mm to 0.8 ± 0.2 mm at T1.

In contrast to the studies presented in the introduction of this dissertation, the greatest

uncertainty occured in the upper neck (near C2) rather than the lower neck (near C7). This

is primarily due to the fact that the body was specifically set up to match the planning CT,

while the head was set up mechanically, which did not appear to be a concern in the studies

done by other authors. A possible explanation for the increased uncertainty in the lower

neck seen in the literature is that normal treatment workflows for head and neck radio-

therapy primarily utilize immobilization systems that restrict misalignments of the head

to a greater degree than that of the body. Most multi-ROI studies have observed residual

vector errors of approximately 1 cm near the C7-T1, but do not report residual errors more

inferior to these landmarks. By extrapolation, landmarks far outside the treatment area

could be several centimeters away from the simulation position, leading to the uncertainty
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in the lower neck reported in literature.

2.4 Conclusions about the robotic system

Through this process, a mechanical correction system for use in a radiotherapy environ-

ment has been produced. Analyses were performed to ensure that the prototype would

possess the maximum mechanical freedom within the geometric constrains, possess the

required strength to actuate the intended load, maintain structural integrity when powered

and under load, sustain durability after receiving radiographic dose, and interfere negli-

gibly with diagnostic and therapeutic radiation. In construction, the prototype was built

using methods designed to best ensure accurate motion production when using inaccurate

manufacturing techniques. Even so, the prototype is not fully optimized yet. Goals marked

for future improvement are reducing acoustic noise, reducing physical size, and increasing

the actuation speed.

The noise produced by the prototype could be reduced by adding a more complete

enclosure including side panels and perhaps the addition of other sound-dampening hard-

ware. These efforts would be aimed at increasing comfort for patients.

Reducing the physical size of the device would reduce the risk of gantry-patient clear-

ance issues. The third generation prototype is approximately 19 cm tall and 56 cm wide.

While these dimensions were necessary given the employed construction techniques and

goal of maximizing the range of motion, they could be reduced in future constructions, es-

pecially if the range of motion was also modestly reduced. With more accurate and precise

manufacturing and construction techniques, the largest gears could be reduced in diameter

by perhaps 30%, which could lead to a 2-cm height reduction. Reconfiguring the slider

actuation from a chain-and-sprocket design to a toothed-belt could also lead to a further

2-cm of height reduction, though at the expense of decreased torque (although a toothed-

belt system may be more efficient, negating the power loss). Better manufacturing could
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also allow for a shorter mounting plate, especially if strong materials like CFRP were em-

ployed. Most significantly, geometric optimization simulations show that by reducing the

guaranteed range of motion from the ±9-cm/±3◦ range down to a ±6-cm/±3◦ range, the

width could be reduced by at least 2 cm and the height could be reduced by 3 cm. With all

of these revisions in mind, the total height could be reduced by at least 7 cm to 12 cm tall

(37% reduction).

In the construction as of the time of this writing, the feedback loop system introduces

a 1-second latency period in between each correction step due to required signal averaging

to reduce electrical noise from the motors. The inclusion of the latency period can lengthen

a start to finish motion by over 100% compared to the required time without it. Therefore,

by reducing the electrical noise, less signal averaging would be required, and motions

could be completed significantly faster. This would also allow for more frequent feedback

loop comparisons, increasing the trajectory fidelity.

Most importantly, the constructed robotic system has been demonstrated to be accu-

rate in positioning, with likely sub-millimeter accuracy, with a MAE of 0.8 ±0.3 mm for

correction vectors ranging between 1.1 and 5.2 mm. Additionally, experiments performed

with an anthropomorphic skeleton demonstrate the technology’s potential to improve setup

alignment throughout the neck by independent positioning of the head and body.
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Chapter 3

Development of a Motion Compensation System

The raison d’être for this robotic system is to provide active motion compensation: using

mechanical robotic systems to counteract random intra-fraction patient motion in real-

time. In the previous chapter, considerations were discussed for designing a robotic sys-

tem compatible with a radiotherapy environment. However, unlike designing a robotic

system for static positioning, one capable of real-time correction must also take into ac-

count movement speed, latency, and signal analysis.

3.1 Simulated patient motion

In van Herk’s paper on prescribing dose margin sizes, van Herk reminds the reader that the

sum of multiple independent random processes approaches a Gaussian distribution [37]1.

This model of random motion is also verified in closer examinations done by Murphy [14]

and later by Ballhausen [70]. Ballhausen specifically notes that intra-fraction motion of the

prostate is well characterized by a mathematical random walk: consecutive measurements

of displacement are not well-correlated in any dimension.

Ballhausen’s terminology is likely mistaken, and more probably refers to a Wiener

process [71][72]. The differences between the two processes are shown in Figures 3.1 and

1Van Herk also mentions that respiratory motion is the most prominent exception to this assumption,
where sinusoidal models are more appropriate; but respiratory motion is not significantly present in cranial
regions [49]
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Figure 3.1: A 1D random walk containing 200 steps starting from the origin, generated by
taking step size = 1 in a random direction.

Figure 3.2: A 1D Wiener process containing 200 steps, starting from the origin, generated
by taking a step of random size between [−2, 2], so that the mean absolute step size is
comparable to that in the random walk example. Note that the step size is variable, com-
pared to the identical step size found in the random walk. The Wiener process is a better
representation of real patient motion.

3.2 for the 1D case and in 3.3 for the 2D case. In a true random walk, motion occurs on

a mathematical lattice, where each step is random in direction, but restricted to a single

dimension per step, and commonly, each step is assumed to be of identical length (Figures

3.1 and 3.3a). This gives rise to rotational dependency obviously not seen in anatomy.

Comparatively, a Wiener process is like a random walk, but each step is random in direc-

tion and length, and vector combinations of displacements are permitted within a single

step (Figures 3.2 and 3.3b). The Wiener process has long historical association as the

model of Brownian motion that, like the probable model of patient motion, is rotationally

invariant.

To experiment with modes of correcting patient motion with the robotic system de-

72



(a) (b)

Figure 3.3: Comparison between (a) a 2D random walk and (b) a 2D Wiener process.
Both contain 3000 random steps starting from the origin. The random walk was generated
by taking step size = 1 in a random 2D direction. The Wiener process was generated by
taking a step of random size between

[
−
√

2,
√

2
]

in both orthogonal directions.

scribed in the previous chapter, a mathematical model was created to simulate intra-

fraction patient motion. For this purpose, this distinction between the random walk and the

Wiener proceess is important to ensure accurate replication of patient motion. The simula-

tion was created to simulate a rigid body that follows a Wiener process in 6D for later use

to simulate whether the positioning system can accurately correct that motion in real-time.

The amplitude of displacement was controllable for each axis, so that the amplitudes could

be set to mimic displacements found in the literature. In the study done by Kim et al [73],

the net displacement for six different patients after a 15-minute treatment ranged between

0.5 mm and 1.5 mm (seen in Figure 1.1). Comparatively, the motions given by Linthout

et al [15] show much greater volatility, though the treatment duration was not given, and

therefore, cannot directly be compared to those reported by Kim. However Linthout does

give the range of measured values between each given axes, which can be used to establish

approximate ratios of amplitudes for the 6D Wiener process. In Linthout’s data, vertical

shifts ranged by 6 mm, longitudinal shifts by 3.6 mm, lateral shifts by 5.5 mm, vertical
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rotations by 1.6◦, longitudinal rotations by 1.7◦, and lateral rotations by 2.4◦. Therefore,

as a rough approximation, the AP amplitude should make up 40% of the translational

variations, the SI should make up 25%, and the lateral amplitude should make up the re-

maining 35% of the translational motion. Likewise, the yaw should make up 30% of the

rotational motion, the roll should make up another 30%, and the pitch should make up the

other 40% of the rotational motion. Further, the total rotational displacements were ap-

proximately 40% of the total of the translational displacements. The simulation was then

adjusted so that the motion approximated the findings by Kim and Linthout, resulting in

the amplitudes shown in Table 3.1.

Table 3.1: Simulated patient amplitude

Direction Amplitude (mm/min
or ◦/min)

Contribution to type
of motion

Longitudinal 2.25 25%
Lateral 3.15 35%
Vertical 3.6 40%
Pitch 1.4 40%
Roll 1.1 30%
Yaw 1.1 30%

The model also contained a degree of variance between patients, taken from a normal

distribution. A scaling factor of (0.57 + X∼N(0,.075)) was multiplied by the amplitudes

shown in Table 3.1 to obtain the individual amplitudes for each patient, used as a com-

ponent of the individual shifts between each simulated timepoint. Therefore, each ith

displacement, di, for each axis, j was taken from a normal distribution, such that

dij = Y ∼ N(0, Aj(c1 +X ∼ N(0, c2))) (3.1)

Where Aj is the amplitude estimate taken from Table 3.1, and c1 and c2 are constants.

In this specific case, the equation becomes

dij = Y ∼ N(0,
Aj(0.57 +X ∼ N(0, 0.075))

s60
) (3.2)
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Figure 3.4: Comparison between (a) Time uncertainty histogram from real patients from
[73]. Also seen in Figure 1.1, and (b) Simulated patient UTH for 20 patients. Dark line
is total cdf for 200 patients over 35 fractions each. Simulation was done with parameters
shown in Table 3.1.

Where s is the sample rate of 4 Hz.

To validate the motion model, and to tune the constants in the above equation, the

results of the simulated patients with comparable parameters were compared to the results

reported by Kim (Figure 3.4). The tuning was accomplished by iteratively adjusting the

constant parameters, and minimizing the mean squared error between the 10th, 20th, ....,

and 90th percentiles of the median patient’s uncertainty time histogram to the equivalent

percentiles in a large number (300) simulated patients. The mean squared error between

these benchmarks was 0.0034 mm.

3.2 Robotic error analysis

This model was then duplicated into LabVIEW and used as an input into a the basic robotic

positioning program, simulating the system response to realistic, time-parameterized dis-

placements. In this case, robotic correction was made without regard to realistic timing

of motor signals. The purpose of this simulation was twofold: First, this simulation was

performed as a fast method of determining whether the robotic system could achieve any
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arbitrary configuration that might be required over the course of a single 15-minute frac-

tion. In some ways, this is similar to a validation of the geometric optimization program

described in Chapter 2. By looking at multiple simulations, the upper limits of neces-

sary motion could be identified used to determine whether the robotic was designed with

enough mechanical freedom. Second, this simulation investigates something equivalent to

mechanical resolution, the inherent uncertainty caused by the discretization of control. In

a linear system, this resolution would be linearly related to the resolution of the control

system. In example, if a stepper motor with 200 steps per revolution was connected to a

gear and rack system so that every rotation of the stepper motor translated the rack by 10

cm, the resolution of the system would be 0.5 mm. Since control of this robot is non-linear,

linear displacements of the sliders do not correspond to linear displacements of the plate.

Therefore, the residual errors of the slider positions and the plate were investigated. The

resolution was defined as:

Resolution = RMS(Mechanical− Theoretical) (3.3)

The statistics of resolution were taken from 1000 simulated patients by taking the mean

and standard deviation of the RMS, shown in Tables 3.2 and 3.3, giving the range of errors

that can be expected for typical patient. Certain types of motion are more likely than others

in the simulation generated by the parameters in Table 3.1. Additionally, the simulation

began patients with a starting position within a uniformly distibuted space of ± 5 mm and

± 3◦ with a pivot point placed randomly within a uniformly distributed hemi-ellipsoid of

± 10 cm along the medial-lateral axis,± 10 cm along the superior-inferior axis, 0-15 cm in

the vertical axis. Given that the stepping algorithm only commands a step to be taken if the

absolute displacement for a single slider increases past the step size (as opposed to treating

of steps as bins centered at discrete steps), it is not surprising that the achieved resolution

is smaller than half the step size because the algorithm is sacrificing some accuracy of the
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Figure 3.5: Simulated slider output for real-time correction, comparing theoretical and
maximum accuracy mechanical output.

plate in favor of computational efficiency. While a slightly more accurate algorithm would

use a binning model, the theoretical mechanical resolution of the plate is already smaller

than the detection limit of most available localization tools.

Table 3.2: Mechanical resolution of sliders

Slider Resolution (µm)
1 40.3 ± 1.7
2 40.2 ± 1.6
3 40.4 ± 1.5
4 40.5 ± 1.4
5 40.6 ± 1.4
6 40.6 ± 1.4
Half step size ≈47.0

These simulations can also demonstrate that the required mechanical freedom of the

sliders for correcting expected patient motion is very small. While the sliders have a range

of motion of 49 mm, on average, the maximum slider displacements to correct real-time

motion for each simulated fraction was 0.76 ± 0.33 mm, and the overall maximum dis-

placement for a single slider was 2.60 mm. This discrepancy is the result of designing the

system so that very extreme 6D configurations could be achievable. The robotic platform is
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Figure 3.6: Simulated plate output for real-time correction, comparing theoretical and
maximum accuracy mechanical output.

Table 3.3: Mechanical resolution of positioning plate

Direction Resolution (µm or arc-seconds )
Longitudinal 20.4 ± 3.0
Lateral 26.3 ± 3.4
Vertical 30.0 ± 4.3
Pitch 49.0 ± 10.4
Roll 38.9 ± 7.9
Yaw 38.9 ± 7.6

guaranteed to be able to move to any position within ±9 mm for any combination of axes,

while simultaneously achieving any combination of rotations, all within ±3◦. Looking at

Figure 3.4(b), one can observe that the expected net displacement from intra-fraction mo-

tion is less than 1.25 mm for 95% of all patients, far less than the 17.3 mm that the plate is

capable of moving. However, this extra range of motion is available for mechanical patient

setup, where displacements are much larger [4][6][7][8][9][10][11][12]. As discussed in

Chapter 1, the setup error in C2 compared with the whole body may be up to 5 mm per

axis plus rotations. This extra range allows for the real-time correction to occur at any

setup position, and with greater freedom in choice of pivot point.
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3.3 Motion compensation simulation

The simulations described in the previous sections were used as the starting basis for devel-

oping a real-time intra-fraction motion compensation system. The motion compensation

software begins by taking the measured position of the patient and running the position

through a monitoring algorithm that decides whether a correction needs to be made. The

monitoring algorithm makes three different types of checks to decide whether a correction

is necessary (Figure 3.7). The first check determines whether the absolute position of the

patient for any axis or for the net vector has moved beyond a set threshold, t, similar to

the method described by Wiersma [49]. The second check determines whether a slow drift

is occurring by comparing the best-fit velocity to a given speed threshold, s. This linear

regression of the best-fit velocity is taken from a 5-second buffer and is performed for each

axis and for the net vector position. The last check determines if any rapid motion occur

by watching for any situation where n consecutive motions appear in the same direction

for any axis or if the vector distance increases in consecutive measurements. If any of

these checks occur for a given step, a command for a correction is issued.

The software then attempts to calculate the correction vector by setting the destination

of the plate to a negation of the measured 6D position, relative to the plate’s current posi-

tion, and then uses the stepping algorithm described in section 2.1.4 to convert the vector

into discretized commands for the stepper motors. To avoid chasing high-frequency noise

in position measurements, the monitoring algorithm is disabled once a correction com-

mand is issued to the motors, until the end of the physical correction, but to ensure that

motions that occur during the correction do not cumulate to very large displacements, a

time limit, T , is placed on the duration of a correction vector. Once either the time limit

elapses (or once the motion completes within the time limit)), the monitoring algorithm

resumes. If further correction is required, another correction command is issued.

As an initial test of functionality, the software was tested with the simulated motion
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Figure 3.7: Decision flowchart for motion correction

model. The motion compensation generated real-time steps in 250 ms increments, sim-

ilar to a typical refresh rate found in some optical tracking software. In contrast to the

continuous nature of the Weiner process, motion monitoring software has a discrete res-

olution, which creates some uncertainty. To replicate this effect, the 6D position was

always rounded to the nearest tenth of a millimeter or degree when sent to the monitoring

algorithm. This rounding did not affect the stored 6D position of the patient.

The correction algorithm was put through trials in this simulation to ensure the end

position could be acheived within slider limits. Many 15-minute simulations were per-

formed using the parameters described in Table 3.1. The tests were performed in three

stages: first, the simulations were executed with the simulated patient starting at the ori-

gin, with the pivot point set to the center of the top of the positioning platform. Next, the

simulations were ran again, but with the starting position taken from a range of ±10 mm

and ±3◦, also with the pivot point in the default location. Finally, the simulations were

performed again, with the same range of starting positions, but also with the pivot point

taken from a range of 15 cm in the vertical direction,±10 cm in the longitudinal direction,
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and ±10 cm in the lateral direction.

Table 3.4: Mechanical resolution of positioning plate from real-time simulation

Starting at
origin

Starting with
offset

Starting with
floating pivot
point

Number of patients simulated 5 5 5
RMS vector error with correction (mm) 0.23±0.02 0.24±0.03 0.24±0.02
RMS vector error without correction (mm) 0.75±0.39 0.68±0.28 0.51±0.18
Correction ratio 3.26 2.84 2.14
Number of steps required in fraction 80±13 69±26 70±33
Average change in slider position (mm) 0.53±0.26 0.41±0.28 0.30±0.26

As seen in Table 3.4, the choice of starting position and choice of pivot point makes

very little difference in the compensation ability. The RMS of the vector error was indis-

tinguishable between the three cases, as was the average net change in slider position over

the course of a fraction. The number of correction steps may have some slight dependency

on the geometry, but because the standard deviations overlapped, no firm conclusion may

be drawn. No case requried the sliders to move outside of their ranges of motion.

3.4 Conclusions about real-time motion compensation

A realistic model of intra-fraction patient motion was created to validate a motion com-

pensation algorithm and to estimate the resolution of the mechanical system. Models of

the sliders in response to realistic real-time motion have shown that the discretization of

the sliders’ motion are unlikely to significantly affect the accuracy of plate positioning.

The motion compensation algorithm demonstrated that the mechanical system potentially

can reduce RMS vector displacement by a factor of two.

Further testing with live subjects will be required to fully assess the compensation abil-

ity of the robotic system. While the simulation results show very high degrees of accuracy,

the mechanical uncertainties in construction will likely reduce the overall accuracy of the

mechanics. If the robotic system mechanics are verified to be accurate to the nearest 1
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mm, and the expected net displacement for a typical patient is only about 1.5 mm by the

end of a single fraction, the value of the robotic platform to compensate in real-time is

questionable. On the other hand, commercial construction techniques could reduce the

uncertainty in the mechanics of the robot and more sensitive motion validation tests could

reduce the lower bound of the verified uncertainty.
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Chapter 4

RF Localization System

Although the robotic system in Chapters 2 and 3 has been described as functioning in

cooperation with an optical tracking system, any accurate patient positioning information

may be used instead. Therefore, in the early development of the robotic system, alter-

nate methods of tracking position were investigated. In addition to exploring conventional

commercial solutions, a novel, radio-frequency (RF)-based positioning solution was con-

ceived as well. The RF system was designed to potentially overcome many of the inherent

weaknesses found in popular optical tracking systems, such as requiring line-of-sight, not

being robust against changes in patient size and shape, and can usually only track a single

rigid-body.

4.1 Background and description of localization system

The localization system uses an RF sensor network to identify the positions of skin-

wearable transmitters on a patient (Figure 4.1). The technique presented was inspired

by the global positioning system (GPS) by satellite array. In GPS technology, a series of

orbiting satellites with known positions in time emit periodic pulses of RF waves contain-

ing timestamps of transmission. On the ground, portable receiving hardware compares

the time of signal reception to the time of signal arrival to calculate a time difference be-

tween transmission and reception. Using the speed of light (and other correction factors),
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Figure 4.1: Generic configuration of multiple sensors used to localize a transmitter affixed
to a patient

the distance from the receiver to each satellite may be estimated. The relative position of

the receiving hardware may be calculated using lateration, which combines the estimated

distances to each reference point with the known positions to the satellites to create an es-

timate of the position of the receiver [35]. This mathematical process finds the intersection

point of several circles in a 2D plane or spheres in a 3D volume (Figure 4.2a).

The precision of RF-based lateration techniques is strongly dependent on the ability

to accurately and precisely measure the times of signal transmission and reception with

synchronized clocks. An RF-wave moves at the speed of light traveling about 30 meters

in 1 microsecond, 30 centimeters in 1 nanosecond, and 0.3 millimeters in 1 picosecond.

Therefore, to obtain distance measurements with sub-millimeter precision required for

accurate clinical positioning, detection and resolution of signals would be require sub-

picosecond (faster than 1THz), and would require just as precise synchronization between

the transmitter and detector. While this technology currently exists, it is very expensive

and not widely available.

Fortunately angulation exists as an alternative mathematical localization technique. In

contrast to the distance measurements used by lateration, angulation uses the intersection

of direction vectors between known points toward the point of interest to calculate the
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(a) Example of lateration
(b) Example of angulation

Figure 4.2: Contrasting localization techniques

Figure 4.3: A prototypical direction of arrival interferometer prototype

relative position of that point (Figure 4.2b) [35]. In an RF-based system, a transmitting

point may be localized if the direction to the transmitter could be measured by a receiving

sensor (also called the direction of arrival at the receiver). Relative to the time-difference

of arrival techniques, this method does not require explicit synchronization between the

transmitter and the receiver. In addition, the technique does not require information to be

sent via the transmission signal, so any signal may be used, rather than one that must be

modulated to contain information.

Several approaches currently exist to measure the direction of arrival of an RF signal by

comparing the phase difference of an RF wave between elements in static antenna arrays

[74][75][76]. The initial envisioning of this system is similar, but with two major vari-

ations: a rotating array platform and operating at two significantly different frequencies,

seen in Figure 4.3.
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4.2 Monte Carlo simulation of uncertain angulation

Multiple sensors are required to localize each transmitter’s signal in 3D space. Figure 4.4

displays the general layout of a practical scenario including transmitters on a patient and

an array of sensors surrounded in a treatment room. Since the sensors have an inherent

uncertainty in measurement, a least squares calculation is necessary to obtain a localization

estimate. For this RF system to have the same utility as conventional optical systems,

the localization estimates must have errors less than 1 mm, and preferably less than 0.1

mm. A Monte Carlo simulation was created to relate the uncertainty in the direction

measurements to the expected error in the localization. The impact of varying the number

of measurements included in the estimation was also investigated.

Because the geometries of real treatment rooms vary considerably from clinic to clinic,

the distribution of sensors was chosen from a random distribution in a room-sized hemi-

spherical shell, centered at the simulated transmitter. The polar and azimuthal coordinates

of each sensor was selected in a uniform 2π space. The radial distance from the transmitter

to each receiver was taken from a uniform distribution between 3.5 and 4.5 meters; the ap-

proximate size of a treatment room. The relationship between the angular resolution of the

sensors and the accuracy of the position estimate was investigated by performing multiple

iterations of estimation based on the same physical setup but varying the magnitude of the

uncertainty in the angular measurement (Figure 4.5a).

The relationship between the number of sensors and their physical arrangement were

also investigated. The initial 3D direction vectors between each sensor and transmitter was

calculated as

Vi =
si − p
‖si − p‖

(4.1)

where the position si represents the position of the ith sensor and p represents the position

of the transmitter. In order to simulate uncertainty in the direction of arrival measurement

spatial variation, ∆Xi was added to the transmitter’s position for direction of arrival mea-
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Figure 4.4: Example layout of direction of arrival sensors

Figure 4.5: (a) Rationale for the Monte Carlo simulation, which attempts to find the rela-
tionship between uncertainty in direction of arrival measurements and the resultant error in
the angulation estimation. (b) Process of the Monte Carlo simulation: angular uncertainty
θ is created by adding a vector ∆X to the true vector V between sensor and transmitter,
resulting in a simulated mis-measurement of the direction vectorU . The vectors ∆Xi are
randomly selected from a 3D Gaussian distribution; (d) Continued process of the Monte
Carlo simulation: a least squares calculation is used to find the best fit intersection of the
mis-measured direction vectors, Ui, and the error is taken as the difference between the
intersections of the mis-measured vectors Ui and the intersection of the true vectors Vi.
The error is compared to the average angular uncertainty θ.
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surement according to a 3D Gaussian distribution of width σj and direction vectors were

calculated again (Figure 4.5b). Values of σj were varied exponentially between 1.52 and

1.528 to observe a wide range of angular resolutions.

Uij =
si − (p+ ∆Xij(σj))

‖si − (p+ ∆Xij(σj))‖
(4.2)

A least squares estimate of the position, tj , was calculated based on these new direction

vectors for each magnitude of angular resolution σj .

tj =

(∑∑∑
i

(I −UijU
T
ij)

)−1(∑∑∑
i

(I −UijU
T
ij)si

)
(4.3)

where I represents a 3 × 3 identity matrix. The magnitude of the error in the estimated

position was then found for each level of σj .

Errorj = ‖tj − p‖ (4.4)

For each level of σj , the average angular miss was calculated by taking the dot product

between the true direction vectors from the transmitter and sensors and the simulated miss.

θj = cos−1(Uij · Vi) (4.5)

The mean angular miss θ serves as a surrogate for angular uncertainty and was compared

to the error in estimated position for each σj (Figure 4.5c). This process had 5000 it-

erations for each σj to obtain statistically acceptable ranges of error for a given angular

uncertainty. The number of receivers sensors in each hemisphere varied by 5, 50, and 500

in the network. This calculation was performed to observe the effect of increasing the

number of vectors available for angulation analysis.

The relationship between the direction of signal arrival measurement angulation uncer-
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Figure 4.6: (a) Relationship between angular precision and error in least squares esti-
mation of the transmitter position. Filled area represents two standard deviations of the
Monte Carlo simulation results. Better results are closer to the bottom of the graph; there-
fore worst-case scenarios for a given number of sensors is the upper bound for each filled
area; (b-d) Spatial distribution of sensors for the 5-sensor case (b), 50-sensor case (c), and
500-sensor case (d), respectively.
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tainty of direction of signal arrival and the mean error of the position estimate presents the

linear patterns (Figure 4.6a). The result shows that increased number of receivers sensors

improves the position estimation for a given angular resolution, but follows a logarithmic

rate of improvement. The plot in (Figure 4.6a) shows that the slopes of lines are parallel,

which means that the rate of estimation improvement with respect to angular resolution

depends is proportional to the number of direction estimates. This system aims to achieve

tracking sensitivity less than 1 mm, considering which is about the same scale as the typ-

ical dose margins in conformal radiotherapy. Therefore, the direction of arrival sensors

requires an angular resolution near 10−1.4 degrees (≈0.04◦) to achieve the ideal accuracy,

if the final design includes 50 sensors. The criterion of consistency is based on main-

taining 1-mm sensitivity exceeding the worst-case scenario with 50 sensors in 97% of all

estimates.

4.3 Monte Carlo simulation of a dual-frequency direction

of arrival sensor

The sensor uses radio interferometry to determine the direction of signal arrival. In the

most simple description, the sensor consists of two antennas that rotate about a common

axis. For most of the rotation, the antennas are at different distances from the transmitting

beacons, so different phases of the transmitted wave arrive at the antennas at simultaneous

moments in time. By careful selection of sensor dimensions and choice of signal fre-

quency, the relative phase difference may be related to the angular direction of the signal’s

arrival for a given angular setting of the sensor. By selecting a frequency component that

has a wavelength equal to twice the length of the sensor’s diameter, the resultant interfered

signal oscillates at the rate of the sensor’s rotation, and the angular position of the peak

corresponds to the direction of arrival.

In the preliminary attempts to simulate this sensor, the signal became difficult to in-
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terpret when noise was added. Therefore, a secondary frequency was added that creates a

second signal within a single rotation of the sensor. If this secondary frequency is an order

of magnitude greater than the fundamental frequency, multiple oscillations appear in the

received signal (Figure 4.7). With this pair of oscillation types, the fundamental frequency

signal could be used as a course search for the signal peak, while the high frequency signal

could be used to better identify the exact angular location of the direction of arrival.

Figure 4.3 illustrates the primary geometry of a given sensor. Each transmitter emits

a sine wave, x(t), for a given duration, consisting of two frequencies, (1.5 GHz and 48

GHz). These frequencies were selected as a compromise between antenna spatial con-

straints and available spectra. Oscillators operating at 1.5 GHz are widely available, and

since the wavelength of the 1.5 GHz wave is approximately 20 cm, the sensor would re-

quire a conveniently-sized 10-cm diameter that could be placed discretely about a clinical

treatment room. The 48 GHz frequency was selected because the spectra is currently not

allocated by the Federal Communications Commission (47 CFR 2.106, Dec 2017 revi-

sion). As the sensor system rotates, the signals from two antennas are multiplied together

and the resultant amplitude is measured.

A Monte Carlo simulation was created in MATLAB to serve as a testbed for exper-

imenting with signal analysis techniques and to investigate the potential resolution and

accuracy of hypothetical sensor. In the program, the ground truth geometric relation be-

tween the transmitter and the sensor are specified. A simulated pulse is the transmitted

to the receiving antennas for a number of angular configurations of the sensor. Uniform

Gaussian white noise is added to the pulse before reception to model multipath reflections

and interference. Upon signal reception, the signals from each antenna are interfered and

the amplitude of the interfered signal is measured and stored for that angular position of

the sensor. Note that the entire wave is simulated as being received for each angular posi-

tion because the electromagnetic waves oscillate at substantially higher frequencies versus

any reasonable angular speed of the rotating sensor (1.5 GHz for the slow RF wave vs.
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Figure 4.7: Simple example of RF-interferometer

less than 100 Hz for the rotating sensor). After an interfered measurement is obtained for

a sweep of sensor angular configurations, the direction of arrival is estimated.

In mathematical terms, the following equation creates the time-dynamic transmitted

wave

x(t) = A1 sin (2πf1 + φ1) + A2 sin (2πf2 + φ2) (4.6)

whereA is the amplitude of each of the two waves, f1 and f2 are the frequency components

of each wave, t is the sampled point in time, and φ is the initial phase of each wave. The

sine wave was sampled at 150 THz over a 33 nS pulse, corresponding to 25 wavelengths

of the lower frequency (2.5 × 105 points). The starting phases of the wave components

are chosen from a random uniform distribution between 0 and 2π, and the amplitudes

of both waves are assumed as equal in strength. The wavelength of the lower frequency

component is calculated according to the speed of light in air, and termed as the carrier

wavelength, λ1. The carrier wavelength is later used for calculating the phase offset at

signal reception.

Vector analysis defines the location of the transmitter as point t in 3D space. The
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center of a given sensor is defined as point s, and the angular position of the jth antenna in

the plane of the sensor’s rotation is defined as θj . The vector V between the transmitter’s

location and the center of the sensor is defined as

V = s− t (4.7)

The vectors from the center of the sensor to the jth antenna receiver is then calculated for

i angular positions, for a given sensor radius R

Cij = R

[
cos θij sin θij 0

]
(4.8)

The distance between the transmitter and each receiving antenna at every sampled angular

position is then found as the magnitude of the vector connecting between the transmitter

and each receiver

dij = ‖V +Cij‖ (4.9)

This distance is then converted to fractions of the carrier wavelength, mij .

mij =
dij
λ1

(4.10)

At each angular position i, each receiver reads the transmitted signal after the respective

number of wavelengths of the transmitted signal, mij + M , for n wavelengths, where M

represents the minimum number of wavelengths to wait before the signal is read, ensuring

that receiving antennas did not attempt to read the signal before the first index in the

transmitted signal. M = 5 and n = 10 were used in the simulation. Effectively, this forces

the received wave at each antenna to begin with a ∆φij , such that

∆φij = dij mod λ1 (4.11)
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Figure 4.8: Example of interfered signal for dual frequency sensor for one angular mea-
surement

Simulated noise was added at the moment of reception with an estimated signal to noise

(SNR) of 2.

S(∆φij) = x(tread,∆φij) +
Xij(tread)

SNR
(4.12)

Where Xij(tread) is a random number from a normal distribution of µ = 0 and σ = 1

sampled for each receiving antenna at each angular position of the sensor. Note that the

time indicies change at this step, representing the truncated read from the original signal.

The signals are then multiplied and the resultant amplitude is recorded against each sensor

angle θi, (Figure 4.8). A median filter is applied to smooth the recorded data.

Ii = median filter|max (S(∆φi1) ∗ S(∆φi2)) | (4.13)

A peak-finding algorithm is used to identify the angular position corresponding to the

signal peaks. This process was repeated over 5000 iterations in a 4◦ search space of the

simulated transmitter’s known position to judge the accuracy of the direction finding algo-

rithm.

Figure 4.9 shows simulated results of the direction of signal arrival. The measured

data demonstrates that the product of signals from two rotating receivers antennas in the

external system forms a signal that may be easily identified. If there were only the fun-
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Figure 4.9: Simulated results of dual frequency direction of arrival sensor, showing (a),
the entire half rotation search, and (b) the narrow search space. The ground truth direction
was at 135◦.

damental frequency, the signal would rise from a minimal value when the antennas are

in line with the signal path to a maximum value when the vector between the antennas is

perpendicular to the signal direction. The signal then returns to a minimal value at 180◦.

The pattern repeats every 180◦ because the sensor has 2-fold rotational symmetry. The

interference between the mixed-frequency signals (1.5 + 48 GHz) creates a pattern as the

antenna array platform rotates. In a noise-free environment, the angular locations of maxi-

mum constructive and destructive interference would correspond to the direction of signal

arrival, and thus, must be found by further analysis. Using the dual-frequency paradigm,

the number of peaks in a complete sensor rotation is known based on the approximate

geometry and the ratio of the component frequencies. Therefore, the peak of maximum

interference may be used to identify the correct peak in a coarse search with a peak-finding

algorithm. Once the peak of maximum interference is identified, a narrow angular search

may begin (repeating the algorithm in a 4◦ window, compared to a 180◦ window). The

center of the peak is found with the same peak-finding algorithm.

Based on 5,000 iterations of this process with a given spatial configuration, the pro-

gram found the direction of the transmitter within 0.01◦ ± 0.07◦ compared to ground-truth.

Comparing this result to the results of the least-squares simulation shown in Figure 4.6,

the 2σ confidence interval for the expected error of the localization is on the order of 1

cm if 5 sensors are used, and on the order of 1 mm if 500 sensors are used. This error is
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not quite within the clinically acceptable range, but further improvements to the technique

could be made that could push the uncertainty to within an acceptable range. Note that

while the average was on the order of 0.01◦, the standard deviation was almost an order

of magnitude greater, indicating that better estimates of the actual direction of arrival (and

therefore, also localization) could be obtained with iterative measurements and averaging.

4.4 Monte Carlo simulation of single-frequency direction

of arrival sensor

For many reasons (such as cost or hardware simplicity), it was desirable for the direction

of arrival sensor to operate using only the 1.5 GHz frequency, rather than operating in

a dual-frequency mode. After recognizing several areas for improvement in the signal

analysis software, an alternate configuration was realized that did not need to include the

secondary frequency. In simulation, the wave was again simulated as a sinusoid wave y of

1.5 GHz, with a sampling rate of 3 THz

y(t) = A sin (2π(ft+ φ)) (4.14)

The process of simulating signal reception at a distance is identical to the dual frequency

simulation, as is found in equations 4.7 though 4.12. However, upon simulating the inter-

ference of the signals, the signal analysis technique is substantially changed.

Rather than multiplying the two received waveforms together, they are instead added.

This mathematical process represents creating a superposition of the two waveforms, as

could be done with a physical RF mixer. This better represents the likely physical hardware

path for interfering two analog signals compared to pure mathematical operations between

two discretized signals used in simulation. The method of measuring the amplitude of the

interfered signal was also improved. In the dual frequency formulation, the amplitude of
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Figure 4.10: Example of interfered signal for single frequency sensor for one angular
measurement

the interfered signal was measured by taking the signal maximum. This process led to

noisy results when multipath noise was added to the received signal, and really was not a

good way to measure amplitude. Instead, a fast Fourier transform applied to the interfered

signal I produces a much better the amplitude of the interefered signal after filtering out

the noise. The maximum response of the FFT is assumed to be the transmitted frequency.

|Ii| = max(FFT (S(∆φi1) + S(∆φi2))) (4.15)

The |Ii| terms are then organized into a single |I| array according to the swept phase

positions of the sensor.

In the dual frequency paradigm, the direction of arrival was found using MATLAB’s

built-in peak finding algorithm on the narrow search of the maximum interference peak.

This method was problematic for a few reasons. First, the algorithm could only find peaks

that corresponded to the discretely searched angular locations. Since true direction of

arrival may be not lie so conveniently on one of these points in angular space, the true

direction could only be found through iterative searching and taking an average of the

estimates. Secondly, the algorithm was very sensitive to noise, as it located the peaks

by identifying the most prominent points for a given metric of prominence. An ideal

technique would instead eliminate these two weaknesses: requiring fewer iterations and
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Figure 4.11: Simulated results of single frequency direction of arrival sensor for a ground
truth direction was at 90◦.

experiencing less variation in response to noise.

If only a single frequency is used, then only one oscillation from minima to maxima

occurs in a half rotation, and the peak may instead be found by an appropriate fitting

function, such as a Gaussian (Figure 4.11).

f(θ) = Ae( θ−µ
σ )

2

(4.16)

The drawback of using a this fitting technique is that the difference between µ and the true

direction of arrival can vary significantly if the data is significantly offset from 90◦; when

the oscillation begins to wrap around. Thus, to improve the fit for a wide search range

(>90◦), a moving exclusion window was used to filter out signal response more than±45◦

away from a rough estimate of the peak location (found with the find peaks function).

Compared with the dual frequency model, the single frequency system showed compa-

rable accuracy and significantly better precision. For the same geometric setup and SNR,

the average error was 0.017◦ ± 0.021◦. Using Figure 4.6 the estimated localization error

will range between about 1 mm if a few sensors are used and about 0.100 mm if a few

hundred sensors are used, demonstrating clear clinical acceptability.
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Figure 4.12: Comparison between single frequency and dual frequency accuracy

4.5 Conclusions about the RF-based localization sensors

In a clinical environment, RF-based tracking equipment is largely untested. Potential RF

reflectors include radiotherapy linear accelerators and simulation CT scanners. This in-

troduces a RF localization system for accurate tracking of patient motion in radiotherapy,

which would provide high accuracy and robustness even in poor SNR setting even in situ-

ations where the true signal may be difficult to distinguish from the noise using RF waves.

This system also calls for the use of components that operate in the K-band of the elec-

tromagnetic spectrum, which are not widely available in normal commercial channels and

less investigated in scientific and engineering literature. RF waves in this spectral range

may have different propagation characteristics, which could introduce multi-path noise.

Three parameters can reduce the error in the positioning estimation: improving the

angular resolution, increasing the number of receivers sensors, and reducing the distance

between the each transmitter on a patient and receiver in the external system. Due to

practicality reasons, the total number of receivers sensors is constrained to be less than

100, and the receiver-transmitter distance is constrained by the treatment room geometry.

Therefore, a great amount of effort has been focused into methods that can improve the
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angular resolution of direction of arrival analysis software. Based on standard room sizes

and assumption that the about 50 receivers sensors will be used, an angular resolution

near 0.04◦ is necessary to achieve position estimate errors less than 1 mm. Optimistically,

achieving the resolution of 0.01◦ is possible with better peak detection algorithms, even in

poor SNR environments.

However, despite the estimated accuracy, several challenges remain which could limit

the practicality of this system. First, the direction-finding prototype requires very accurate

knowledge of the wavelengths in use, assumes that the wavelengths are always constant,

and assumes that the waves have traveled in exactly straight lines. In reality, when elec-

tromagnetic radiation propagates through material, the wavelength of the wave is changed

by the index of refraction, (even assuming attenuation is negligible).

nmedium =
λvac
λmed

= {µε(ω)} (4.17)

Tissue is a complex, composite structure, and the electric susceptibility, χe, of tissue along

any straight-line vector path is nonzero.

χe(ω) =
ε(ω)

ε0
− 1 (4.18)

Therefore, as any RF waves travel through tissue, they scatter, refract, and most impor-

tantly, undergo many changes in wavelength, which cannot be easily predicted or modeled

without explicit knowledge of the position and composition of the tissue in question. The

sensors explicitly use interferometry of simultaneously received amplitudes to calculate

the direction of arrival. If these amplitudes are shifted in receiving time by changes in

wave properties along the way by even a partial oscillation (≈1 ps) the direction estimate

will be extremely inaccurate. Therefore, this technology is expected to have best accuracy

within line-of-sight conditions.

However, other challenges also exist. The requirement simultaneous comparison of
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signals requires very precise electronics manufacturing to ensure that the signals arrive at

the mixer within approximately 1 fs of each other. Although construction may be possible

in the current era, they are beyond the scope of this research. Based on these challenges,

this technology was deemed to have lost its most significant advantage over optical tech-

niques.
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Chapter 5

Conclusions

The work presented in this dissertation has demonstrated the feasibility of plastic mechan-

ical positioning systems for use in radiotherapy. This research sought two specific aims:

to develop, construct, and evaluate a radiotherapy-friendly system capable of accurate me-

chanical positioning in 6D space, and to use the developed system to investigate whether

independent setup of the body and head produces superior setup alignment compared to

single-body positioning. The process of pursuing the first aim required creating and re-

fining a framework for design, construction, control, and evaluation. The key milestones

required in this development are listed below:

• Identification of project goals and constraints

• Creation of forward and/or inverse kinematic models

• Material selection

• Estimation of radiographic properties

• Structural strength analysis (including behavior with radiation dose)

• Power analysis

• Physical design
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• Electronic control design (including redundant guidance control)

• Control software design

• Validation of radiographic properties

• Validation of strength analysis

• Validation of mechanics

• Validation of purpose

These independent analysis together demonstrate fulfillment of the first specific aim.

Once the fully-functional system was constructed and evaluated, the second objective

could be fulfilled. While the second objective did not require the mechanical system to

verify (since independent alignment can always be achieved by manual alignment) our

measurements are evidence of veracity for our hypothesis that independent setup of the

head and body ensures accurate alignment of the neck. The developed mechanical system

is important because it significantly simplifies the process of achieving this superior align-

ment by providing means of remote manipulation without significantly compromising the

tools used in typical treatment workflows.

Future Work

Now that the basic functionality of the prototype system has been demonstrated, future

efforts will be focused on optimization and in vivo testing. As stated in Chapter 2, the

height of the third generation prototype could create clearance issues with linear acceler-

ator gantries if used with treatment of real patients. Therefore, revised versions will be

designed that aim to reduce the height without sacrificing performance.

Significant work also remains for finding the optimal method of mechanically regis-

tering a patient’s head with the positioning platform. In phantom testing, the head was
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secured with a re-purposed rubberized ring originally meant as a simple handhold for pa-

tients during treatment. This method seemed in line with that described by Wiersma, who

argued that with a feedback loop system, open geometry without a mask was possible

because gravity and friction forces suppressed large amplitude motion, while the feed-

back loop-driven mechanical system worked to reduce small amplitude motion [77]. Our

method could be improved by indexing the headrest to the positioning plate for repeatable

setup. This process of headrest optimization could also provide a chance to optimize the

weight distribution of the head onto the positioning platform.

In vivo testing is also necessary to completely validate the system’s ability to accurately

set up a human subject before live patients may be used. Although our anthropomorphic

phantom contained similar bony anatomy, it lacks soft and connective tissue, which could

change the force requirements necessary for repositioning a human subject. In a real

neck, elastic forces present in tendons, muscles, nerves, and blood vessels could affect the

mechanical strength necessary to move the head as an entire anatomic assembly.
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Appendix A

Useful Mathematics

A.1 Descriptions of time-based 6D motion

When discussing the accuracy of a multi-dimensional system, one should strive to use

the most appropriate mathematics to describe the measurements taken. In this work, the

two primary statistical methods employed are the root-mean-square (RMS) and the mean

absolute error (MAE), both described formally below. These two metrics are important

because they accurately create a sense of the typical errors present on a signed axis. In

most cases within this work, RMS is used in any measurements that are part of a time

series while MAE is used in any discrete measurements.

RMS =

√
1

n
(x21 + x22 + ...+ x2n) (A.1)

MAE =

∑n
i=1 |xmeasured − xtarget|

n
(A.2)

The RMS is especially useful in cases of motion compensation, such as in the compensa-

tion ratio described by Hermann [55] is the compensation ratio [48].

CR =
RMS(pactual)

RMS(pdesired)
(A.3)
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In testing the 6D motion phantom developed by Wiersma’s group, Belcher identified

that changes to rotations also affect positioning along different axes as well, depending

on the distance between the point of interest and the pivot point [51]. For the specific

case where rotations are only about a single axis (i.e., pitch if about the lateral axis) and

where the changes are small, the group identified a linear approximation of the change in

positioning.

x = x

y = y − aθ

z = z + bθ

(A.4)

where a and b are the distances between the pivot point and the point of interest along

the z (AP) and y (SI) axes, respectively. This model is actually taken from rotation matri-

ces, which may be used to make a rotational transformation on any set of (x, y, z) points

about the origin. In standard form, the matricies are defined as:

Rx(θ) =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 (A.5)

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (A.6)

Rz(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (A.7)

about the x, y, and z axes, respectively. Using matrix multiplication, these may multiplied
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onto the column vector of any single, 3D point. To accurately describe a complex rotation

(rotations described by a combination of more than one reference axis), the matricies are

each multiplied onto each other in a set order, usually Rx onto Ry, Rxy onto Rz.

These matrices may be preemptively multiplied together with the initial (x, y, z) co-

ordinates of a single point for faster computation time, resulting in one comprehensive

matrix, R(x, y, z, α, β, γ):

R(x, y, z, α, β, γ) =


x(cos β cos γ) + y(sinα sin β cos γ − cosα sin γ) + z(cosα sin β cos γ + sinα sin γ)

x(cos β sin γ) + y(sinα sin β sin γ + cosα cos γ) + z(cosα sin β sin γ − sinα cos γ)

−x sin β + y(sinα cos β) + z(cosα cos β)


(A.8)

This matrix was used in the C program. In the LabVIEW program, pre-built functions

were used instead, since computation time was not much of an issue. However, future

versions of the program may incorporate this matrix to speed up computation.
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Appendix B

Physical Schematics

These are complete schematics for all custom components produced as part of this project.

Each of these parts were either custom machined or 3D-printed. A description of materials

used for each part is provided in Chapter 2, in subsections 2.3.5. ‘
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Appendix C

Electronic Schematics

Figure C.1: Control board
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Figure C.2: Pinout diagram for myRIO electronics
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Appendix D

Code

D.1 MATLAB

D.1.1 Rotation matrix calculation
function [R] = Rot(Theta,Axis)

%Rot creates the rotation matrix about an axis

% Input roation angle in degrees and axis, axis must be x,y, or z

%X-Axis

if Axis == 1

R = [1, 0, 0;

0, cosd(Theta), -sind(Theta);

0, sind(Theta), cosd(Theta)];

end

%Y-Axis

if Axis == 2

R = [cosd(Theta), 0, sind(Theta);

0, 1, 0;

-sind(Theta), 0, cosd(Theta)];

end

%Z-Axis

if Axis == 3

end

end
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D.1.2 6D position calculation
% 6D Plate Control

% Commercialization Project

% This program calculates the necessary slider positions to acheive

any 6D

% orientation of the plate. The plate is assumed to be inline with the

% sockets in this iteration of the program.

function Return = SixDSliderPositions(Coords,Geometry)

Coords = [0,0,0,0,0,0];

Geometry = [20,80,80,40];

X = Coords(1);

Y = Coords(2);

Z = Coords(3);

alpha = Coords(4);

beta = Coords(5);

gamma = Coords(6);

%% Inputs

% This section turns the inputs into vectors to be used later

% [mm] Translational coordinates of the plate

% X and Y are horizontal displacements

% Z is vertical displacement

PlateTrans = [X, Y, Z];

% [deg] Rotational coordinates of the plate

% alpha and beta are tilts of the plate

% gamma is a rotation about the vertical axis

PlateRot = [alpha, beta, gamma];

%% Constants

% This section contains the device dimensions

% [mm] Half of the distance between a pair of plate sockets

SocketUHalfWidth = Geometry(1);
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% [mm] The median of the plate, the distance between the the center of

the

% plate and the sockets, along bisecting line

PlateMedian = Geometry(2);

% [mm] The height of the upper sockets from the top of the plate at

rest

%SocketUHeight = -13.175;

%SocketUHeight = -19;

SocketUHeight = -13.175;

% [mm] The height of the lower sockets from the top of the plate at

rest

SocketLHeight = SocketUHeight - Geometry(4);

%SocketLHeight = 83;

% [mm] The length of the rails, defined along the medians

RailLength = 400;

% [mm] The start of the rails, defined along the medians

RailStart = 0;

% [mm] Half of the distance between a pair of threaded rods

SocketLHalfWidth = 25;

% [mm] Length of linkages, from socket center to socket center

Linkage = Geometry(3);

%% Socket initial coordinate geometry

% This section calculates the socket positions based on the input

constants

% [deg] Angular separation between the median vectors and the plate

sockets

theta = atand(SocketUHalfWidth/PlateMedian);

% [mm] The distance from the center of the plate the upper sockets

SocketDist = norm([SocketUHalfWidth, PlateMedian]);
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% [deg] Array of angular positions of each upper socket

Thirds = (ceil((1:6)/2)-1)*(360/3);

Halves = ((-1).ˆ(1:6));

SocketUAngles = Thirds + Halves*theta;

% [mm] XYZ Coordinates of each socket

SocketU = [SocketDist*cosd(SocketUAngles);...

SocketDist*sind(SocketUAngles);...

repmat(SocketUHeight,1,6)]’;

%% Transformations of sockets

% This section applies the input transformations to the socket

positions,

% first with rotations, then translations

SocketUN = zeros(6,3);

for i = 1:6

% [mm] 3D positions of each socket after applying the rotations

SA = sind(alpha);

CA = cosd(alpha);

SB = sind(beta);

CB = cosd(beta);

SG = sind(gamma);

CG = cosd(gamma);

SocketUN(i,:) = [SocketU(i,1)*CB*CG + SocketU(i,2)*(SA*SB*CG-CA*SG)

+ SocketU(i,3)*(CA*SB*CG+SA*SG),...

SocketU(i,1)*CB*SG + SocketU(i,2)*(SA*SB*SG+CA*CG) +

SocketU(i,3)*(CA*SB*SG-SA*CG),...

-SocketU(i,1)*SB + SocketU(i,2)*(SA*CB) + SocketU(i,3)*(CA*CB)];

SocketU(i,:) =

(Rot(gamma,3)*(Rot(beta,2)*(Rot(alpha,1)*SocketU(i,:)’)))’;

end

% [mm] 3D positions of each socket after applying translations
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SocketU = SocketU + repmat(PlateTrans,6,1);

%% Construction of slider tracks

% This section calculates the limits of the slider positions

% [deg] Angular separation between the median vectors inner ends of

rails

phi1 = atand(SocketLHalfWidth/RailStart);

phi2 = atand(SocketLHalfWidth/RailLength);

% [deg] Arrays of angular positions of rail limits

RailInnerAngles = Thirds + Halves*phi1;

RailOuterAngles = Thirds + Halves*phi2;

% [mm] Distance from origin to rail limits

RailInnerDist = norm([SocketLHalfWidth,RailStart]);

RailOuterDist = norm([SocketLHalfWidth,RailLength]);

% [mm] XYZ Coordinates of rail limits

RailInner = [RailInnerDist*cosd(RailInnerAngles);...

RailInnerDist*sind(RailInnerAngles);...

repmat(SocketLHeight,1,6)]’;

RailOuter = [RailOuterDist*cosd(RailOuterAngles);...

RailOuterDist*sind(RailOuterAngles);...

repmat(SocketLHeight,1,6)]’;

%% Inverse Kinematics

% This section computes the positions of the sockets on the rails

based on

% the positions of the transformed plate sockets

% [mm] Vector defining the rail tracks

RailVect = RailOuter - RailInner;

% [mm] Shortest distance between each upper socket and each rail
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% This is distance is the radius of a cylinder coaxial with the rail

where

% the shell intersects through the center of the upper socket

SocketURailDist = sqrt(sum((cross(RailVect,SocketU -

RailInner)).ˆ2,2))/...

RailLength;

% [mm] Track distance from shortest distance intersect and slider

position

dx = sqrt(repmat(Linkageˆ2,6,1) - SocketURailDist.ˆ2);

% [mm] Distance between upper sockets and inner reference position

SocketURailInner = sqrt(sum((SocketU - RailInner).ˆ2,2));

% [mm] Distance from start of track to shortest distance intersect

RadiusRailPosition = sqrt(SocketURailInner.ˆ2 - SocketURailDist.ˆ2);

% [mm] Net position of sliders

Slider = dx + RadiusRailPosition;

% [mm] Slider positions for graphing

SliderGlobal = [RailInner(:,1) + Slider.*cosd(Thirds’),...

RailInner(:,2) + Slider.*sind(Thirds’),...

repmat(SocketLHeight,6,1)];

Return = [SliderGlobal(1), SliderGlobal(2), SliderGlobal(3),...

SliderGlobal(4), SliderGlobal(5), SliderGlobal(6);...

SliderGlobal(7), SliderGlobal(8), SliderGlobal(9),...

SliderGlobal(10), SliderGlobal(11), SliderGlobal(12);

SliderGlobal(13), SliderGlobal(14), SliderGlobal(15),...

SliderGlobal(16), SliderGlobal(17), SliderGlobal(18);

Slider(1),Slider(2),Slider(3),Slider(4),Slider(5),Slider(6)];
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D.1.3 Intra-fraction motion simulation using wiener process
clear

% number of histories

n = 1e4;

% [s] duration of the treatment

t = 900;

% [Hz] sample rate, approximately the same as Align RT

s = 4;

% Setting up arrays

X = zeros(n,t*s);

Y = zeros(n,t*s);

Z = zeros(n,t*s);

A = zeros(n,t*s);

B = zeros(n,t*s);

G = zeros(n,t*s);

% [mm/min or deg/min] Amplitudes

XA = 2.25;

YA = 3.15;

ZA = 3.6;

AA = 1.4;

BA = 1.1;

GA = 1.1;

% A coefficient to increase the amplitude of the random motions

AmpControl = 1;

XA = XA*AmpControl;

YA = YA*AmpControl;

ZA = ZA*AmpControl;

AA = AA*AmpControl;

BA = BA*AmpControl;

GA = GA*AmpControl;

% Generation of the random numbers

XR = 2*rand(n,t*s)-1;

YR = 2*rand(n,t*s)-1;

ZR = 2*rand(n,t*s)-1;

AR = 2*rand(n,t*s)-1;
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BR = 2*rand(n,t*s)-1;

GR = 2*rand(n,t*s)-1;

% Scaling the amplitude coefficient to the correct units of time

XR = (XA/s/60)*XR;

YR = (YA/s/60)*YR;

ZR = (ZA/s/60)*ZR;

AR = (AA/s/60)*AR;

BR = (BA/s/60)*BR;

GR = (GA/s/60)*GR;

% Generation of the motions

for j = 2:s*t

for i = 1:n;

X(i,j) = X(i,j-1)+XR(i,j);

Y(i,j) = Y(i,j-1)+YR(i,j);

Z(i,j) = Z(i,j-1)+ZR(i,j);

A(i,j) = A(i,j-1)+AR(i,j);

B(i,j) = B(i,j-1)+BR(i,j);

G(i,j) = G(i,j-1)+GR(i,j);

Mag(i,j) = norm([X(i,j),Y(i,j),Z(i,j)]);

end

end

% Simulating 20 fractions for 5 patients

P1 = reshape(Mag(1:20,:),[1,t*s*20]);

P2 = reshape(Mag(21:40,:),[1,t*s*20]);

P3 = reshape(Mag(41:60,:),[1,t*s*20]);

P4 = reshape(Mag(61:80,:),[1,t*s*20]);

P5 = reshape(Mag(81:100,:),[1,t*s*20]);

% Statistical measurements of the simulation

SXmu = mean(X(:,s*t));

SYmu = mean(Y(:,s*t));

SZmu = mean(Z(:,s*t));

SAmu = mean(A(:,s*t));

SBmu = mean(B(:,s*t));

SGmu = mean(G(:,s*t));

SXsd = std(X(:,s*t));

SYsd = std(Y(:,s*t));

SZsd = std(Z(:,s*t));
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SAsd = std(A(:,s*t));

SBsd = std(B(:,s*t));

SGsd = std(G(:,s*t));

font = 16;

%subplot(2,2,1)

% hold ’on’

% cdfplot(P1)

% cdfplot(P2)

% cdfplot(P3)

% cdfplot(P4)

% cdfplot(P5)

% xlabel(’Net vector displacement (mm)’)

% ylabel(’Probability CDF’,’FontSize’,font)

% set(gca,’Ytick’,[0:0.1:1])

% set(gca,’FontSize’,font)

% axis([0,2,0,1])

% grid ’off’

% title(’Simulated Patient Motion CDF’)

% legend(’Patient 1’,’Patient 2’,’Patient 3’,’Patient 4’,’Patient

5’,’Location’,’southeast’)

% subplot(2,2,1)

% histogram(Mag(:,j))

% subplot(2,2,2)

% histogram(X(:,j))

% subplot(2,2,3)

% histogram(Y(:,j))

% subplot(2,2,4)

% histogram(Z(:,j))

% hold ’off’

cdfplot(Mag(:,j))

xlabel(’Net vector displacement (mm)’,’FontSize’,font)

ylabel(’Probability CDF’,’FontSize’,font)

set(gca,’Ytick’,[0:0.1:1])

set(gca,’FontSize’,font)
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D.1.4 Geometric optimization
%% Define limits

% [no unit] Number of random configurations to attempt for a given

geometry

n = 75;

Increment = 1;

%SocketUHalf = 20:Increment:40;

%PlateMedian = 80:Increment:120;

SocketUHalf = 20;

PlateMedian = 80;

Linkage = 80;

%Linkage = 60:Increment:160;

Height = 40:Increment:120;

LengthSocketUHalf = length(SocketUHalf);

LengthPlateMedian = length(PlateMedian);

LengthLinkage = length(Linkage);

LengthHeight = length(Height);

N = LengthSocketUHalf*LengthPlateMedian*LengthLinkage*LengthHeight;

% [mm] The farthest outward that the plate should move in any one

direction

TransLim = 10;

% [deg] The farthest that a plate may rotate about any single axis

RotLim = 6;

% [mm] The farthest distance in lateral directions that the sliders

may move

XLimit = 158;

% [mm] The farthest distance inward that the sliders may come

SLimit = 119;

%% Define the space

% This sections generates the all 729 limiting cases
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% These are permutations of max/min/0 for all six variables of position

% This counts 0,1,2 as min,0,max, and then scales

Space = rand(n,6);

% Scaling to desired translational limits

Space(:,1:3) = TransLim*Space(:,1:3) - TransLim;

% Scaling to desired rotational limits

Space(:,4:6) = RotLim*Space(:,4:6) - RotLim;

t0 = clock;

%% Limit Testing - Random Points

sets = {SocketUHalf,PlateMedian,Linkage,Height};

[w x y z] = ndgrid(sets{:});

GeomSpace = [w(:), x(:),y(:),z(:)];

clear x y z w;

GeometryTest = zeros(1,N);

for k = 1:N

tic

for i = 1:n

SliderPositions(k,i,:,:) = ...

SixDSliderPositions_Optimizer(Space(i,:),GeomSpace(k,:));

% This counts how many of the tested positions are physically

possible

PossibleSliderLims(i) = isreal(SliderPositions(k,i,:,:));

for j = 1:6

% This tests whether position is within the X limit

if SliderPositions(k,i,2,j) < XLimit &&...
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SliderPositions(k,i,2,j) > -XLimit

Test(i,j) = 1;

else

Test(i,j) = 0;

end

if sum(Test(i,:)) == 6

WithinXLimits(i) = 1;

else

WithinXLimits(i) = 0;

end

% This tests whether a position requires a slider to be closer

in than the

% specified limit

if SliderPositions(k,i,4,j) > SLimit

TestS(i,j) = 1;

else

TestS(i,j) = 0;

end

if sum(TestS(i,:)) == 6

WithinSLimits(i) = 1;

else

WithinSLimits(i) = 0;

end

end

end

% WithinXLimits = logical(WithinXLimits);

% WithinXLimits = logical(WithinXLimits);

PercentPotential(k) = sum(PossibleSliderLims)*100/n;

PercentWithinXLims(k) = sum(WithinXLimits)*100/n;

PercentWithinSLims(k) = sum(WithinSLimits)*100/n;

if PercentPotential(k) > 99 &&...

PercentWithinXLims(k) > 99 && ...

PercentWithinSLims(k) > 99

GeometryTest1(k) = 1;
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else

GeometryTest1(k) = 0;

end

t2 = toc;

Message = Progress(k,N,t2,t0);

disp(Message)

end

%% Check-in

Potential = [GeometryTest1.*GeomSpace(:,1)’;...

GeometryTest1.*GeomSpace(:,2)’;...

GeometryTest1.*GeomSpace(:,3)’;...

GeometryTest1.*GeomSpace(:,4)’]’;

Potential(all(Potential==0,2),:)=[];

N = size(Potential,1);

disp(strcat([num2str(N),’ possible configurations found’]))

%% Redefine the space - Narrowed down

n = 729;

Space = zeros(n,6);

x = 0;

y = 0;

z = 0;

a = 0;

b = 0;

c = 0;

for i = 1:729;

c = c + 1;

if c >= 3

c = 0;
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b = b + 1;

end

if b >= 3

b = 0;

a = a + 1;

end

if a >= 3

a = 0;

z = z + 1;

end

if z >= 3

z = 0;

y = y + 1;

end

if y >= 3

y = 0;

x = x + 1;

end

Space(i,:) = [x,y,z,a,b,c];

end

%Space = rand(n,6);

clear x y z a b c

% Scaling to desired translational limits

Space(:,1:3) = TransLim*Space(:,1:3) - TransLim;

% Scaling to desired rotational limits

Space(:,4:6) = RotLim*Space(:,4:6) - RotLim;

% Fixing Counting Error

Space(729,:) = [-TransLim,-TransLim,-TransLim,...

-RotLim,-RotLim,-RotLim];

t0 = clock;
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%% Limit Testing - Narrow results

for k = 1:N

tic

for i = 1:n

SliderPositions(k,i,:,:) = ...

SixDSliderPositions_Optimizer(Space(i,:),Potential(k,:));

% This counts how many of the tested positions are physically

possible

PossibleSliderLims(i) = isreal(SliderPositions(k,i,:,:));

for j = 1:6

% This tests whether position is within the X limit

if SliderPositions(k,i,2,j) < XLimit &&...

SliderPositions(k,i,2,j) > -XLimit

Test(i,j) = 1;

else

Test(i,j) = 0;

end

if sum(Test(i,:)) == 6

WithinXLimits(i) = 1;

else

WithinXLimits(i) = 0;

end

% This tests whether a position requires a slider to be closer

in than the

% specified limit

if SliderPositions(k,i,4,j) > SLimit

TestS(i,j) = 1;

else

TestS(i,j) = 0;

end

if sum(TestS(i,:)) == 6

WithinSLimits(i) = 1;

else
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WithinSLimits(i) = 0;

end

end

end

% WithinXLimits = logical(WithinXLimits);

% WithinXLimits = logical(WithinXLimits);

PercentPossible(k) = sum(PossibleSliderLims)*100/n;

PercentWithinXLims(k) = sum(WithinXLimits)*100/n;

PercentWithinSLims(k) = sum(WithinSLimits)*100/n;

if PercentPossible(k) > 99 &&...

PercentWithinXLims(k) > 99 && ...

PercentWithinSLims(k) > 99

GeometryTest2(k) = 1;

else

GeometryTest2(k) = 0;

end

t2 = toc;

Message = Progress(k,N,t2,t0);

disp(Message)

end

%% Finalization

% The list of slider configurations are Nx4x6, where N is the number

of not

% passing conditions. The rows are as follows:

% Row 1: Slider positions on the longitudinal axis (head to toe)

% Row 2: Slider positions on the lateral axis (left to right)

% Row 3: Slider positions on the vertical axis (back to front)

% Row 4: Slider positions on the slider axes, from the center of the

tracks

% All in mm
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% % This generates a list of slider configurations which are not

physically

% % possible

% NotPossible = repmat(˜PossibleSliderLims,6,1)’.*Space;

% NotPossible( ˜any(NotPossible,2), : ) = [];

%

% % This generates a list of slider configurations which are not

within the

% % limits in the lateral directions

% NotWithinXLims = repmat(˜WithinXLimits,6,1)’.*Space;

% NotWithinXLims( ˜any(NotWithinXLims,2), : ) = [];

%

% % This generates a list of slider configurations which are not

within the

% % inner slider limits

% NotWithinSLims = repmat(˜WithinSLimits,6,1)’.*Space;

% NotWithinSLims( ˜any(NotWithinSLims,2), : ) = [];

%

% % [mm] This is the maximum travel distance of any of the sliders

% %TrackLength =

max(max(SliderPositions(:,:,4))-min(SliderPositions(:,:,4)));

clear XLimit SLimit a b c i j x y z Test TestS w sets

clear PercentPossible PercentWithinSLims PercentWithinXLims

clear WithinSLims WithinXLims Increment

clear Possible SliderLims SliderPositions Space Message

clear LengthHeight LengthLinkage LengthPlateMedian LengthSocketUHalf

clear PossibleSliderLims

Possible = [GeometryTest2.*Potential(:,1)’;...

GeometryTest2.*Potential(:,2)’;...

GeometryTest2.*Potential(:,3)’;...

GeometryTest2.*Potential(:,4)’]’;

Possible(all(Possible==0,2),:)=[];

NumPossible = sum(GeometryTest2);

disp(NumPossible)
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clear GeomSpace GeometryTest

c = clock();

filename = strcat(’C:\Users\mostyn\Documents\MATLAB\6D Mechanical

Couch\Optimization Results\’,...

num2str(c(1)),’_’,...

num2str(c(2)),’_’,...

num2str(c(3)),’_’,...

num2str(c(4)),...

num2str(c(5)),’_’,...

num2str(TransLim),’mm’,’_’,...

num2str(RotLim),’deg’);

clear c

save(filename)
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D.1.5 DOA simulation - dual frequency

This code contains the simulation of the direction of arrival sensor based on a dual 1.5 GHz

and 48 GHz model. The code simulates a dual-frequency waveform at a given sampling

rate and how the wave would be received at the sensor for a set number of phase config-

urations for the sensor. Based on the amplitude measurements according to the phase, a

direction of arrival for the signal is estimated.
%% Rotating Pair Antenna Triangulation

% This program simulates the behavior of a 2D DOA sensor with a target

in

% 3D space. This version sets out to find the direction of arrival

with a

% wide search first, and then narrows down to a fine search.

%% Plot Option

Plot = 1;

%% Geometry setup

% [deg] Angular positions used for the sensor

S1.phaselims = [0,180];

S2.phaselims = [133,137];

% Number of phase steps

S1.steps = 500;

S2.steps = 1;

% Number of repetitions

S1.reps = 500;

S2.reps = 1;

% [deg] Direction in longitude

%Long = 90 + 3.5260;

Long = 90 + 0.05*randn(1,1);

% [m] Location of the center of a single sensor

SensLoc = [0,0,0];

% [m] Location of the transmitting beacon
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TransLoc = 2*[cosd(Long+90),sind(Long+90),0];

% [m] Vector connecting the two

ST = SensLoc - TransLoc;

% [m] Distance connecting the center of the sensor to each antenna

SR = 0.05;

%% Wave Properties

% [Hz] Frequency of the waves used for the wide search

S1.freq = 1.4986e9;

S2.freq = 48e9;

% [Arb] Amplitude of the wave used for the wide search

S1.amp = 1;

S2.amp = 1;

% [Amp] Signal to Noise ratio for the wide search

S1.snr = 500;

S2.snr = 1;

% [Hz] Sample Rate of the waves

S1.rate = 2e3*S1.freq;

S2.rate = 2e3*S2.freq;

% [s] Duration of the waves

S1.duration = 100/S1.freq;

S2.duration = 100/S2.freq;

% [s] Period of the waves

S1.period = 1/S1.freq;

S2.period = 1/S2.freq;

% [m/s] Speed of the wave in air, found using the index of refraction

Speed = 2.99792e8/1.00028;

% Number of samples simulated

S1.samplesperwave = S1.period*S1.rate;

S2.samplesperwave = S2.period*S2.rate;

% [m] The wavelength of each wave

S1.wavelength = Speed/S1.freq;
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S2.wavelength = Speed/S2.freq;

% For conviniece of comparison

S = [S1,S2];

%% Vector math for first wave

% This creates the phase arrays, representing the position of each

antenna

S1.phaseA = linspace(S1.phaselims(1),S1.phaselims(2),S1.steps);

S1.phaseB = S1.phaseA - 180;

% This creates the vectors connecting the center of the sensor to each

% antenna, for every angle specified

SAV = [SR*cosd(S1.phaseA);SR*sind(S1.phaseA);zeros(1,S1.steps)]’;

SBV = [SR*cosd(S1.phaseB);SR*sind(S1.phaseB);zeros(1,S1.steps)]’;

ST = CoordRepeat(ST,S1.steps);

% This creates the vectors from the transmitter to each antenna for

every

% angle specified, and finds the resultant distance

TA = ST + SAV;

TB = ST + SBV;

TAd = Magnitude(TA);

TBd = Magnitude(TB);

%clear ST SAV SBV TA TB

%% Wave mechanics

% This section deals with the broadcast and reception of wavelengths

% This finds the minimum number of wavelengths between the transmitter

and

% the receiver antennas, which determines how much of the wave should

be

% simulated at each angular position - The number is arbitrary

MinWavesBetween = min([min(TAd),min(TBd)])/S1.wavelength;

WavesAcquired = floor(MinWavesBetween);

% This cuts the number of samples simulated down

WavesToWait = floor(WavesAcquired/2);
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% This determines the statrting point for each wave

WavesToWaitRA = Dist2Waves(TAd,S1.wavelength)+WavesToWait;

WavesToWaitRB = Dist2Waves(TBd,S1.wavelength)+WavesToWait;

% This finds the indicies needed for acquisition

RecAL = ceil(WavesToWaitRA*S1.samplesperwave+1);

RecAU = ceil((WavesAcquired+WavesToWaitRA)*S1.samplesperwave+1);

RecBL = ceil(WavesToWaitRB*S1.samplesperwave+1);

RecBU = ceil((WavesAcquired+WavesToWaitRB)*S1.samplesperwave+1);

% This is the number of samples actually acquired for each position

window = length(RecAL:RecAU-1);

% preallocation of memory

RecSigA = zeros(S1.steps,window);

RecSigB = zeros(S1.steps,window);

% [s] Creation of timespace

t = linspace(0,S1.duration,S1.duration*S1.rate);

% Easy Constant

tau = 2*pi;

t0 = clock;

%% Beginning of random numbers territory

for X = 1:S1.reps

tic;

% Creation of waveform

TransSig = S1.amp*sin(t*tau*S1.freq+rand()*tau);

for j = 1:S1.steps

RecSigA(j,:) = TransSig(RecAL(j):(RecAL(j) + window - 1));

end

for j = 1:S1.steps

RecSigB(j,:) = TransSig(RecBL(j):(RecBL(j) + window - 1));
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end

% Addition of noise

RecSigA = RecSigA + (1/S1.snr)*randn(size(RecSigA));

RecSigB = RecSigB + (1/S1.snr)*randn(size(RecSigB));

% Interference - simple addition

Interfered = RecSigA + RecSigB;

% These next few lines make an amplitude measurement of the

interfered

% signal and then massage the data for curve purposes

Fs = S1.rate;

InterferedAmp = zeros(1,S1.steps);

InterferedAmpOld = zeros(1,S1.steps);

InterferedAmpOld = (max((Interfered’),[],1))’;

for i = 1:S1.steps;

I = fft(Interfered(i,:));

I = I(1:length(Interfered(i,:))/2+1);

I = I/length(Interfered(i,:));

I(2:end-1) = 2*I(2:end-1);

InterferedAmp(i) = max(abs(I));

end

InterferedAmp = medfilt1(InterferedAmp,3);

InterferedAmp = 100*InterferedAmp/max(InterferedAmp);

InterferedAmpOld = medfilt1(InterferedAmpOld,100);

InterferedAmpOld = 100*InterferedAmpOld/max(InterferedAmpOld);

% These lines find the peak of the signal for a single iteration of

the

% program, and records the mean and standard deviation

[A,B,C,D] = findpeaks(InterferedAmpOld,’MinPeakProminence’,10);
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[dummy,GuessIndex] = max(D);

if isempty(A)

Guess(X) = NaN;

end

if ˜isempty(A)

Guess(X) = S1.phaseA(B(GuessIndex));

end

gaussEqn = ’a*exp(-((x-b)/c)ˆ2)’;

startPoints = [1 90 1];

if Guess(X) < 45

fitcurve = fit(S1.phaseA’,InterferedAmp’,gaussEqn,...

’Start’,startPoints, ’Exclude’, S1.phaseA > 90);

elseif Guess(X) > 135

fitcurve = fit(S1.phaseA’,InterferedAmp’,gaussEqn,...

’Start’,startPoints, ’Exclude’, S1.phaseA < 90);

else

fitcurve = fit(S1.phaseA’,InterferedAmp’,gaussEqn,...

’Start’,startPoints);

end

x(X,:) = coeffvalues(fitcurve);

Guessnew(X) = x(X,2);

t2 = toc;

Message = Progress(X,S1.reps,t2,t0);

disp(Message);

end

% G1 = abs(mean(Guess-Long));

% G1a = std(Guess);

G2 = mean(abs(Guessnew-Long));

G2a = std(Guessnew);
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% SimAccuracy1 = G1;

% SimPrecision1 = G1a;

SimAccuracy = G2;

SimPrecision = G2a;

% disp(strcat([’The old accuracy was ’,...

% num2str(SimAccuracy1,4),char(176)]))

% disp(strcat([’The old precision was ’,...

% num2str(SimPrecision1,4),char(176)]))

disp(strcat([’The accuracy was ’,...

num2str(SimAccuracy,4),char(176)]))

disp(strcat([’The precision was ’,...

num2str(SimPrecision,4),char(176)]))

if any(Plot)

font = 16;

subplot(2,1,1)

hold ’off’

scatter(S1.phaseA,InterferedAmp,’*’)

hold ’on’

scatter(S1.phaseA,InterferedAmpOld)

p = plot(fitcurve);

set(p,’LineWidth’,2)

xlabel(strcat(’Angular Position (’,char(176),’)’),’FontSize’,font)

ylabel(’Amplitude (%)’,’FontSize’,font)

grid(’on’)

legend(’New Signal’,’Old Signal’,’Gaussian Fit’)

axis([S1.phaselims(1),S1.phaselims(2),0,100])

set(gca,’FontSize’,font)

%set(gca,’XTick’,[S1.phaselims(1):tickincrement:S1.phaselims(2)])

set(gca,’Ytick’,[0:20:100])

subplot(2,1,2)

hold ’off’

histogram(Guess,20)
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hold ’on’

subplot(2,1,2)

histogram(Guessnew,20)

axis([S1.phaselims(1) S1.phaselims(2) 0 S1.reps/4])

legend(’Old Method’,’New Method’)

xlabel(strcat(’Guessed Direction (’,char(176),’)’),’FontSize’,font)

ylabel(’Counts’,’FontSize’,font)

set(gca,’FontSize’,font)

grid(’on’)

end

% Big vectors to clear memory

clear RecSigA RecSigB t TransSig I RecAL RecAU RecBL RecBU TAd TBd

clear WavesToWaitRA WavesToWaitRB

clear Interfered x

clear SAV SBV ST TA TB

% Unneeded scalars

clear Fs gaussEqn i j MinWavesBetween Message Plot Speed startPoints

clear SR tau WavesAcquired WavesToWait window X

clear G1 G1a G2 G2a

filename =

strcat(’C:\Users\Mark\Documents\MATLAB\Results\RotPairV6\’,...

num2str(c(1)),’_’,...

num2str(c(2)),’_’,...

num2str(c(3)),’_’,...

num2str(c(4)),...

num2str(c(5)));

save(filename)
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D.1.6 DOA simulation - single frequency

This code is similar to that in the previous section, but obtains comparable results using

only a single emitted frequency by using more sophisticated signal analysis techniques.

The code simulates a single-frequency waveform at a given sampling rate and how the

wave would be received at the sensor for a set number of phase configurations for the

sensor. Based on the amplitude measurements according to the phase, a direction of arrival

for the signal is estimated. This code uses more sophisticated signal analysis techniques

than those given in the dual frequency code for comparable error.
%% Rotating Pair Antenna Triangulation

% This program simulates the behavior of a 2D DOA sensor with a target

in

% 3D space. This version sets out to find the direction of arrival

with a

% wide search first, and then narrows down to a fine search.

t0 = clock;

%% Plot Option

% 1 - Angle Signal Response

% 2 - Histogram of Guesses

% 3 - Transmitter Angle Signal Response

plottype = 2;

%% Setup of Monte Carlo

% [deg] Angular limits used for the sensor

S.phaselims = [90,100];

% Number of phase steps

S.steps = 200;

% Number of repetitions

S.reps = 500;

% [Amp] Signal to noise ratio

S.snr = 2000;
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% [deg] Window of fitting

Window = 180;

% [deg] Center of fitting window

Direction = [90];

% Arbitrary Counter

k = 0;

%% Wave Properties

% [Hz] Frequency of the waves used for the wide search

S.freq = 1.4986e9;

% [Arb] Amplitude of the wave used for the wide search

S.amp = 1;

% [Hz] Sample Rate of the waves

S.rate = 2e3*S.freq;

% [s] Duration of the waves

S.duration = 100/S.freq;

% [s] Period of the waves

S.period = 1/S.freq;

% [m/s] Speed of the wave in air, found using the index of refraction

Speed = 2.99792e8/1.00028;

% Number of samples simulated

S.samplesperwave = S.period*S.rate;

% [m] The wavelength of each wave

S.wavelength = Speed/S.freq;

%% Geometry setup

for Y = Direction

k = k+1;

tic;
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for X = 1:S.reps

% [deg] Direction in longitude

Long(X) = 90 + 3.5260;

%Long(X) = 90 + 5*randn(1,1);

% [m] Location of the center of a single sensor

SensLoc = [0,0,0];

% [m] Location of the transmitting beacon

TransLoc(X,:) = 2*[cosd(Long(X)+90),sind(Long(X)+90),0];

% [m] Vector connecting the two

ST = SensLoc - TransLoc(X,:);

% [m] Distance connecting the center of the sensor to each antenna

SR = 0.05;

%% Vector math for first wave

% This creates the phase arrays, representing the position of each

antenna

S.phaseA = linspace(S.phaselims(1),S.phaselims(2),S.steps);

S.phaseB = S.phaseA - 180;

% This creates the vectors connecting the center of the sensor to

each

% antenna, for every angle specified

SAV = [SR*cosd(S.phaseA);SR*sind(S.phaseA);zeros(1,S.steps)]’;

SBV = [SR*cosd(S.phaseB);SR*sind(S.phaseB);zeros(1,S.steps)]’;

ST = CoordRepeat(ST,S.steps);

% This creates the vectors from the transmitter to each antenna for

every

% angle specified, and finds the resultant distance

TA = ST + SAV;

TB = ST + SBV;

TAd = Magnitude(TA);
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TBd = Magnitude(TB);

%clear ST SAV SBV TA TB

%% Wave mechanics

% This section deals with the broadcast and reception of wavelengths

% This finds the minimum number of wavelengths between the

transmitter and

% the receiver antennas, which determines how much of the wave

should be

% simulated at each angular position - The number is arbitrary

MinWavesBetween = min([min(TAd),min(TBd)])/S.wavelength;

WavesAcquired = floor(MinWavesBetween);

% This cuts the number of samples simulated down

WavesToWait = floor(WavesAcquired/2);

% This determines the statrting point for each wave

WavesToWaitRA = Dist2Waves(TAd,S.wavelength)+WavesToWait;

WavesToWaitRB = Dist2Waves(TBd,S.wavelength)+WavesToWait;

% This finds the indicies needed for acquisition

RecAL = ceil(WavesToWaitRA*S.samplesperwave+1);

RecAU = ceil((WavesAcquired+WavesToWaitRA)*S.samplesperwave+1);

RecBL = ceil(WavesToWaitRB*S.samplesperwave+1);

RecBU = ceil((WavesAcquired+WavesToWaitRB)*S.samplesperwave+1);

% This is the number of samples actually acquired for each position

window = length(RecAL:RecAU-1);

% preallocation of memory

RecSigA = zeros(S.steps,window);

RecSigB = zeros(S.steps,window);

% [s] Creation of timespace

t = linspace(0,S.duration,S.duration*S.rate);

% Easy Constant

tau = 2*pi;
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%% Beginning of signal transmissions

% Creation of waveform

TransSig = S.amp*sin(t*tau*S.freq+rand()*tau);

for j = 1:S.steps

RecSigA(j,:) = TransSig(RecAL(j):(RecAL(j) + window - 1));

end

for j = 1:S.steps

RecSigB(j,:) = TransSig(RecBL(j):(RecBL(j) + window - 1));

end

% Addition of noise

RecSigA = RecSigA + (1/S.snr)*randn(size(RecSigA));

RecSigB = RecSigB + (1/S.snr)*randn(size(RecSigB));

% Interference - simple addition

Interfered = RecSigA + RecSigB;

% These next few lines make an amplitude measurement of the

interfered

% signal and then massage the data for curve purposes

Fs = S.rate;

InterferedAmp = zeros(1,S.steps);

for i = 1:S.steps;

I = fft(Interfered(i,:));

I = I(1:length(Interfered(i,:))/2+1);

I = I/length(Interfered(i,:));

I(2:end-1) = 2*I(2:end-1);

InterferedAmp(i) = max(abs(I));

end

InterferedAmp = medfilt1(InterferedAmp,3);

InterferedAmp = 100*InterferedAmp/max(InterferedAmp);
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% These lines find the peak of the signal for a single iteration of

the

% program, and records the mean and standard deviation

[A,B,C,D] = findpeaks(InterferedAmp,’MinPeakProminence’,10);

[dummy,GuessIndex] = max(D);

if isempty(A)

Guess(X) = NaN;

end

if ˜isempty(A)

Guess(X) = S.phaseA(B(GuessIndex));

end

gaussEqn = ’a*exp(-((x-b)/c)ˆ2)’;

startPoints = [100 90 50];

if Guess(X) < 45

fitcurve = fit(S.phaseA’,InterferedAmp’,gaussEqn,...

’Start’,startPoints, ’Exclude’, S.phaseA > 90);

elseif Guess(X) > 135

fitcurve = fit(S.phaseA’,InterferedAmp’,gaussEqn,...

’Start’,startPoints, ’Exclude’, S.phaseA < 90);

else

fitcurve = fit(S.phaseA’,InterferedAmp’,gaussEqn,...

’Start’,startPoints);

end

% fitcurve = fit(S.phaseA’,InterferedAmp’,gaussEqn,...

% ’Start’,startPoints, ’Exclude’, S.phaseA > Guess(X) +

Window/2,...

% ’Exclude’, S.phaseA < Guess(X) - Window/2);

x(X,:) = coeffvalues(fitcurve);

Guessnew(X) = x(X,2);

end

t2 = toc;
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Message = Progress(k,length(Direction),t2,t0);

disp(Message);

SimAccuracy(k) = mean(abs(Guessnew-Long));

SimPrecision(k) = std(Guessnew-Long);

end

% disp(strcat([’The accuracy was ’,...

% num2str(SimAccuracy,4),char(176)]))

% disp(strcat([’The precision was ’,...

% num2str(SimPrecision,4),char(176)]))

font = 16;

switch plottype

case 1

hold ’off’

scatter(S.phaseA,InterferedAmp)

hold ’on’

p = plot(fitcurve);

set(p,’LineWidth’,2)

xlabel(strcat(’Angular Position (’,char(176),’)’),’FontSize’,font)

ylabel(’Amplitude (%)’,’FontSize’,font)

grid(’on’)

legend(’Signal’,’Gaussian Fit’,’Location’,’southeast’)

axis([S.phaselims(1),S.phaselims(2),0,120])

set(gca,’FontSize’,font)

set(gca,’Ytick’,[0:20:120])

set(gca,’Xtick’,[0:30:180])

case 2

cdfplot(abs(Guessnew-Long))

%axis([0 ceil(max(Guessnew-Long))/5 0 1])

xlabel(strcat(’Estimate Accuracy (’,char(176),’)’),’FontSize’,font)

ylabel(’Probability CDF’,’FontSize’,font)

set(gca,’Ytick’,[0:0.1:1])

set(gca,’FontSize’,font)
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grid(’on’)

case 3

semilogy(Direction,SimAccuracy,Direction,SimPrecision)

xlabel(strcat(’Trans Position (’,char(176),’)’),’FontSize’,font)

ylabel(strcat(’Quantity (’,char(176),’)’),’FontSize’,font)

grid(’on’)

set(gca,’FontSize’,font)

legend(’Accuracy’,’Precision’)

end

% Big vectors to clear memory

clear RecSigA RecSigB t TransSig I RecAL RecAU RecBL RecBU TAd TBd

clear WavesToWaitRA WavesToWaitRB

clear Interfered

clear SAV SBV ST TA TB

% Unneeded scalars

clear Fs gaussEqn i j MinWavesBetween Message Plot Speed startPoints

clear SR tau WavesAcquired WavesToWait window X

clear G1 G1a G2 G2a

c = clock();

filename = strcat(’C:\Users\mostyn\Documents\MATLAB\RF

System\Results\’,...

num2str(c(1)),’_’,...

num2str(c(2)),’_’,...

num2str(c(3)),’_’,...

num2str(c(4)),...

num2str(c(5)));

save(filename)
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D.1.7 RF angulation

This code was used to estimate the relationship between uncertainty of the direction of

arrival sensors, the number of sensors used to make a localization estimate, compared to

the uncertainty of the localization estimate. It simulates n randomly positioned direction

of arrival sensors in a hemispherical shell around a fixed point of reference. The sensors

are then simulated to have made an error of measurement the direction of arrival. The

mean angular uncertainty is then compared to the error in the least-squares fit for the

localization estimate based on angulation. This is done for n × 10(x) sensors to find

the relationship between number of sensors and localization error for various degrees of

angular measurement uncertainty.
%% Angulation in 3D

% This simulation finds the error in position estimation of a

transmitter

% as a function of angular uncertainty in 3D space. The position is

% estimated by a least-squares of the intersection of lines in 3D

space.

% This serves as a surrogate to angulation.

disp(’Start Time’)

c = clock;

d = [c(4), c(5), c(6)];

disp(d)

NumRecs = [5,50,500];

for Recs = NumRecs

% [m] The true position of the transmitter

Origin = [0,0,0];

% [m] This specifies the locations of the receivers in a particular

setting

MeanDist = 2;

StartCoord = [0,0,MeanDist];

RecLoc = CoordRepeat(StartCoord,NumRecs);
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R = MeanDist+0.1*rand(NumRecs,1)-.05;

Theta = rand(NumRecs,1)*180;

Phi = rand(NumRecs,1)*360;

RecLoc(:,1) = R.*sind(Theta).*cosd(Phi);

RecLoc(:,2) = R.*sind(Theta).*sind(Phi);

RecLoc(:,3) = R.*cosd(Theta);

% This is used for creating simulated misses, by varying the width of

% the normal distribution about the origin

TolArray = ceil(1.5.ˆ(2:28));

for Tol = TolArray

% This is the number of repetitions to average over

for Rep = 1:5000

% This is the creation of the transmitter’s location as

% measured by each receiver. A gaussian distribution of varying

% width is added to the origin for n receivers the size is 3xn

MissedArray = (1/Tol)*randn(size(RecLoc));

MissedArray = [Origin(1)+MissedArray(:,1),...

Origin(2)+MissedArray(:,2),...

Origin(3)+MissedArray(:,3)];

% This creates a 3xn array of the transmitter’s true position

% for comparison later

TrueArray = [Origin(1)+zeros(length(MissedArray(:,1)),1),...

Origin(2)+zeros(length(MissedArray(:,2)),1),...

Origin(3)+zeros(length(MissedArray(:,3)),1)];

% This represents the vector from the transmitter to the

% receiver, or RecLoc to the origin. This is created for both

% the true transmitter position and the flawed measurement. The

% next lines are used to normalize these vectors. The size of

% these vectors is 3xn

D = MissedArray-RecLoc;

Dt = TrueArray-RecLoc;

Dmag = [sqrt(sum(D.ˆ2,2)),sqrt(sum(D.ˆ2,2)),sqrt(sum(D.ˆ2,2))];

Dtmag = [sqrt(sum(Dt.ˆ2,2)),sqrt(sum(Dt.ˆ2,2)),sqrt(sum(Dt.ˆ2,2))];

D = D./Dmag;

Dt = Dt./Dtmag;
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% Preallocation of memory

x = zeros(3,3,length(Dmag));

y = zeros(3,length(Dmag));

% This creates the two halves of the least squares estimate

% x represents I-vv’, where I is an identity matrix, and vv’ is

% the unit vector for each line times its transpose. The size

% is 3x3xn.

% y represents (I-vv’)p, where p is the end point of the

% vector. It works best for this to be the MissedArray

for i = 1:length(Dmag)

x(:,:,i) = eye(3) - D(i,:)*(D(i,:))’;

y(:,i) = x(:,:,i)*(MissedArray(i,:))’;

end

% [m] This sums over all of these terms and completes the least

% squares estimate, finding the closest point of intersection

% for n lines

TransLoc = inv(sum(x,3))*sum(y,2);

% [mm] This is the vector shift of the estimated position from

% least squares to the true origin position.

Error(Tol,Rep) = 1000*sqrt(sum((TransLoc-Origin’).ˆ2));

% [deg] This compares the angle of the true vector to the

% missed vector and takes the average over all n lines

for i = 1:length(Dmag)

Diff(i) = acosd((D(i,:)*Dt(i,:)’));

end

Miss(Tol,Rep) = mean(Diff);

end

Error(˜any(Error,2),:) = [];

Miss(˜any(Miss,2),:) = [];

% % [deg] This is the mean angular error averaged over each

normal width

% MeanMiss1 = mean(Miss,2);

% % [mm] This is the mean magnitude error of the position estimate

% % averaged over each width of the normal distribution
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% MeanError1 = mean(Error,2);

disp(floor(log(Tol)/log(1.5)))

c = clock;

d = [c(4), c(5), c(6)];

disp(d)

end

Error(˜any(Error,2),:) = [];

Miss(˜any(Miss,2),:) = [];

Error = log10(Error);

Miss = log10(Miss);

% [deg] This is the mean angular error averaged over each normal width

MeanMiss(:,Recs) = mean(Miss,2);

% [mm] This is the mean magnitude error of the position estimate

% averaged over each width of the normal distribution

MeanError(:,Recs) = mean(Error,2);

STDError(:,Recs) = std(Error,1,2);

clear Miss Error

MeanMiss( ˜any(MeanMiss,2),:) = [];

MeanError( ˜any(MeanError,2),:) = [];

STDError( ˜any(STDError,2),:) = [];

disp(Recs)

c = clock;

d = [c(4), c(5), c(6)];

disp(d)

end

MeanMiss = real(MeanMiss)’;

MeanError = real(MeanError)’;

STDError = STDError’;

MeanMiss( ˜any(MeanMiss,2),:) = [];

MeanError( ˜any(MeanError,2),:) = [];

STDError( ˜any(STDError,2),:) = [];

MeanMiss = MeanMiss’;
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MeanError = MeanError’;

STDError = STDError’;

Bounds = [MeanError+2*STDError, MeanError-2*STDError];

plot(MeanMiss,MeanError,’LineWidth’,3)

grid(’on’)

xlabel(’Angle uncertainty (log(deg))’)

ylabel(’Error to target (log(mm))’)

axis([-3 1 -2 2])

legend(num2str(NumRecs(:)))

hold on

plot(MeanMiss(:,1),Bounds(:,1),’b:’,MeanMiss(:,1),Bounds(:,4),’b:’,’LineWidth’,2)

plot(MeanMiss(:,2),Bounds(:,2),’r:’,MeanMiss(:,2),Bounds(:,5),’r:’,’LineWidth’,2)

plot(MeanMiss(:,3),Bounds(:,3),’g:’,MeanMiss(:,3),Bounds(:,6),’g:’,’LineWidth’,2)
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D.2 C

D.2.1 Motor calibration

This code is used for calibrating the home position of the first-generation 6D platform via

Arduino board. The rest position was specified the point when the medial face of every

slider 55 mm from the track brace. Reseting the origin resets the 6D location value stored

on the on-board memory.

/*

Slider Calibration Program

Commericialization Project 2015-1016

Thomas Dwyer

Heavily Modified by Mark Ostyn

Units in mm

Degrees in Rads

Requires LiquidCrystal, Encoder, and EEPROM Library

*/

//Libraries

#include <LiquidCrystal.h>

#include <Encoder.h>

#include <EEPROM.h>

//Pinouts

int allOutputs[] =

{17,16,48,54,47,55,57,56,62,23,22,24,26,25,27,28,29,39,7,44,19,42,18,38,41,40,11,12,43};

#define M1_step 17 //X

#define M1_dir 16

#define M1_en 48
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#define M2_step 54 //Y

#define M2_dir 47

#define M2_en 55

#define M3_step 57 //Z

#define M3_dir 56

#define M3_en 62

#define M4_step 23 //E0

#define M4_dir 22

#define M4_en 24

#define M5_step 26 //E1

#define M5_dir 25

#define M5_en 27

#define M6_step 29 //E2

#define M6_dir 28

#define M6_en 39

#define FanToggle 7

#define BEEPER 44

#define LCD_RS 19

#define LCD_ENABLE 42

#define LCD_D4 18

#define LCD_D5 38

#define LCD_D6 41

#define LCD_D7 40

#define ButtonLeft 11

#define ButtonRight 12

#define ButtonClick 43
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LiquidCrystal lcd(LCD_RS, LCD_ENABLE, LCD_D4, LCD_D5, LCD_D6, LCD_D7);

Encoder myEnc(ButtonLeft, ButtonRight);

//LCD Vars

int LastPosition = 0;

int CursorPosition = 0;

int CursorPositionLast = 0;

boolean UpdateLCD = false;

boolean clicked = false;

int TurnDirection = 1;

void setup(){

Serial.begin(9600);

//Prepare LCD GUI

lcd.begin(20,4);

lcd.clear();

lcd.setCursor(0,0);

lcd.print("6D Robotic Platform");

lcd.setCursor(0,1);

lcd.print("Calibration Program");

delay(1000);

lcd.clear();

lcd.setCursor(0,0);

lcd.print("WARNING!");

lcd.setCursor(0,1);

lcd.print("Stepping from M6 to");

lcd.setCursor(0,2);

lcd.print("M1 resets internal");

lcd.setCursor(0,3);
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lcd.print("position memory");

delay(5000);

lcd.clear();

lcd.setCursor(0,0);

lcd.print("Adjust Motor #:");

lcd.setCursor(0,2);

lcd.print("1");

//Set motor pins to Outputs

for(int m = 0; m < sizeof(allOutputs); m++){

pinMode(allOutputs[m], OUTPUT);

digitalWrite(allOutputs[m], LOW);}

//Encoder inputs

pinMode(ButtonLeft, INPUT_PULLUP);

pinMode(ButtonRight, INPUT_PULLUP);

pinMode(ButtonClick, INPUT_PULLUP);

digitalWrite(FanToggle, HIGH); }

void loop(){

//LCD Control

double Position = myEnc.read();

if(Position > LastPosition + 1){

TurnDirection = 1;

ActivateStepperMotors();

delay(100);

LastPosition = Position;}

if(Position < LastPosition - 1){
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TurnDirection = 0;

ActivateStepperMotors();

delay(100);

LastPosition = Position;}

if(UpdateLCD){

lcd.setCursor(0,2);

lcd.print((CursorPosition+1));

UpdateLCD = false;}

if(!digitalRead(ButtonClick) && !clicked){

clicked = true;

CursorPosition++;

UpdateLCD = true;}

if(digitalRead(ButtonClick) && clicked){

clicked = false;}

if(CursorPosition > 5){

CursorPosition = 0;

lcd.clear();

lcd.setCursor(0,0);

lcd.print("Setting Internal");

lcd.setCursor(0,1);

lcd.print("Position");

EEPROM.write(0, 127); // X Position [mm]

EEPROM.write(8, 127); // Y Position [mm]

EEPROM.write(16, 127); // Z Position [mm]

EEPROM.write(24, 127); // alpha [deg]

EEPROM.write(32, 127); // beta [deg]
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EEPROM.write(40, 127); // gamma [deg]

delay(1000);

lcd.clear();

lcd.setCursor(0,0);

lcd.print("Adjust Motor #:");

lcd.setCursor(0,2);

lcd.print("1");}}

void ActivateStepperMotors(){

int motorArray1[] =

{M1_step,M2_step,M3_step,M4_step,M5_step,M6_step};

int motorDirArray[] = {M1_dir,M2_dir,M3_dir,M4_dir,M5_dir,M6_dir};

Serial.println("stepping");

for(int s = 0; s < 20; s++){

Serial.println(s);

digitalWrite(motorArray1[CursorPosition], HIGH);

digitalWrite(motorDirArray[CursorPosition], TurnDirection);

delay(1);

digitalWrite(motorArray1[CursorPosition], LOW);}}
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D.2.2 6D platform positioning

This code is used for controlling the first-generation 6D platform via Arduino board with

output to an LCD monitor. The program was controlled with a two-direction dial and

single button press. The code allows movement to 20 preset 6D positions. The program

assumes that the platform has been calibrated using the previous program. The code stores

the current position in the on-board non-volatile memory, and is updated with each motor

step.

/*

Plate Position Control V5

Senior Design 2015-1016 / Commercialization Project

Thomas Dwyer and Mark Ostyn

Length in mm

Arcs in Rads

Requires LiquidCrystal, Encoder, and EEPROM Library

*/

// Libraries

#include <LiquidCrystal.h>

#include <Encoder.h>

#include <EEPROM.h>

// Pinouts

int allOutputs[] =

{17,16,48,54,47,55,57,56,62,23,22,24,26,25,27,28,29,39,7,44,19,42,18,38,41,40,11,12,43};

#define M1_step 17 //X

#define M1_dir 16

#define M1_en 48
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#define M2_step 54 //Y

#define M2_dir 47

#define M2_en 55

#define M3_step 57 //Z

#define M3_dir 56

#define M3_en 62

#define M4_step 23 //E0

#define M4_dir 22

#define M4_en 24

#define M5_step 26 //E1

#define M5_dir 25

#define M5_en 27

#define M6_step 29 //E2

#define M6_dir 28

#define M6_en 39

#define fan0 7

#define BEEPER 44

#define LCD_RS 19

#define LCD_ENABLE 42

#define LCD_D4 18

#define LCD_D5 38

#define LCD_D6 41

#define LCD_D7 40

#define BTN_EN1 11

#define BTN_EN2 12

#define BTN_ENC 43
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LiquidCrystal lcd(LCD_RS, LCD_ENABLE, LCD_D4, LCD_D5, LCD_D6, LCD_D7);

Encoder myEnc(BTN_EN1, BTN_EN2);

// Global Vars

const double pi = 3.1415926535898;

const double degrad = pi/180;

const double Height = -83;

const double SocketU[6][3] = {{120, -40, -19},

{120, 40, -19},

{-25.35898385, 123.9230485, -19},

{ -94.64101615, 83.92304845, -19},

{ -94.64101615, -83.92304845, -19},

{-25.35898385, -123.9230485, -19}};

const double InnerRef[6][3] = {{ 0, -25, Height},

{ 0, 25, Height},

{ 21.65063509, 12.5, Height},

{-21.65063509, -12.5, Height},

{-21.65063509, 12.5, Height},

{ 21.65063509, -12.5, Height}};

const double OuterRef[6][3] = {{ 250, -25, Height},

{ 250, 25, Height},

{-103.3493649, 229.0063509, Height},

{-146.6506351, 204.0063509, Height},

{-146.6506351, -204.0063509, Height},

{-103.3493649, -229.0063509, Height}};

const double RailRefVect[6][3] = {{ 250, 0, 0},

{ 250, 0, 0},
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{-125, 216.5063509, 0},

{-125, 216.5063509, 0},

{-125, -216.5063509, 0},

{-125, -216.5063509, 0}};

// Read internally stored position and set as current position

int TempCurrentPosition[6] = {EEPROM.read(0),

EEPROM.read(8),

EEPROM.read(16),

EEPROM.read(24),

EEPROM.read(32),

EEPROM.read(40)};

double CurrentPosition[6] = {0,0,0,0,0,0};

double CurrentSldPos[6] = {0,0,0,0,0,0};

double TargetPosition[] = {0, 0, 0, 0, 0, 0};

double TargetDist[6] = {0,0,0,0,0,0};

double NewPos[6] = {0,0,0,0,0,0};

double NewSldPos[6] = {0,0,0,0,0,0};

double TargetMaxDist = 0;

double MaxStep = 0.05; //Maximum plate displacement per step (mm,

smaller = higher resolution)

double StepFactor = 0;

double P[6] = {0,0,0,0,0,0};

// LCD Vars

int lastPos = 0;

int cursorPos = 0;

int cursorPosLast = 0;

boolean lcdUpdate = false;

boolean clicked = false;

void setup(){
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Serial.begin(9600);

//Prepare LCD GUI

lcd.begin(20,4);

lcd.begin(20,4);

lcd.setCursor(0,0);

lcd.print("6D Robotic Platform");

lcd.setCursor(0,1);

lcd.print("VCU");

delay(1000);

lcd.clear();

lcd.setCursor(0,0);

lcd.print("Current Position:");

lcd.setCursor(0,2);

lcd.print("*");

lcd.setCursor(0,3);

lcd.print("0");

lcd.setCursor(1,3);

lcd.print("1");

lcd.setCursor(2,3);

lcd.print("2");

lcd.setCursor(3,3);

lcd.print("3");

lcd.setCursor(4,3);

lcd.print("4");

lcd.setCursor(5,3);

lcd.print("5");

lcd.setCursor(6,3);

lcd.print("6");

lcd.setCursor(7,3);
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lcd.print("7");

lcd.setCursor(8,3);

lcd.print("8");

lcd.setCursor(9,3);

lcd.print("9");

lcd.setCursor(10,3);

lcd.print("A");

lcd.setCursor(11,3);

lcd.print("B");

lcd.setCursor(12,3);

lcd.print("C");

lcd.setCursor(13,3);

lcd.print("D");

lcd.setCursor(14,3);

lcd.print("E");

lcd.setCursor(15,3);

lcd.print("F");

lcd.setCursor(16,3);

lcd.print("G");

lcd.setCursor(17,3);

lcd.print("H");

lcd.setCursor(18,3);

lcd.print("I");

lcd.setCursor(19,3);

lcd.print("J");

// Set motor pins to Outputs

for(int m = 0; m < sizeof(allOutputs); m++){

pinMode(allOutputs[m], OUTPUT);

digitalWrite(allOutputs[m], LOW);}

// Encoder inputs
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pinMode(BTN_EN1, INPUT_PULLUP);

pinMode(BTN_EN2, INPUT_PULLUP);

pinMode(BTN_ENC, INPUT_PULLUP);

// Start Fan

digitalWrite(fan0, HIGH);

// Convert the single byte stored position to mm and deg

for(int i=0; i<3; i++){

CurrentPosition[i] = round((TempCurrentPosition[i]-127)/8.53);}

for(int i=3; i<6; i++){

CurrentPosition[i] = round((TempCurrentPosition[i]-127)/4.26)/10;}

calculate(CurrentPosition[0],CurrentPosition[1],CurrentPosition[2],CurrentPosition[3],CurrentPosition[4],CurrentPosition[5]);//(x,y,z,theta,phi,gamma)

for(int i = 0; i < 6; i++){

CurrentSldPos[i] = P[i];}}

void loop(){

// Get distance and maximum between current and target position

TargetMaxDist = 0;

for(int i = 0; i < 6; i++){

TargetDist[i] = TargetPosition[i]-CurrentPosition[i];

if(abs(TargetDist[i]) > abs(TargetMaxDist)){

TargetMaxDist = abs(TargetDist[i]);}}

// Find intermediate position between current and target positions

with change <= to MaxStep
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if(TargetMaxDist != 0){

StepFactor = MaxStep/TargetMaxDist;

for(int i = 0; i < 6; i++){

if(abs(TargetDist[i]) < MaxStep){

NewPos[i] = TargetPosition[i];}

else{

NewPos[i] = CurrentPosition[i] + (TargetDist[i]*StepFactor);}}

int TempPos[6];

calculate(NewPos[0],NewPos[1],NewPos[2],NewPos[3],NewPos[4],NewPos[5]);

for(int i = 0; i < 3; i++){

TempPos[i] = round(NewPos[i]*8.53)+127; }

for(int i = 3; i < 6; i++){

TempPos[i] = round(NewPos[i]*10*4.26)+127;}

for(int i = 0; i < 5; i++){

EEPROM.write(8*i, TempPos[i]);}

for(int i = 0; i < 6; i++){

NewSldPos[i] = P[i];}

ActivateStepperMotors();}

//LCD Control

double pos = myEnc.read();

if(pos > lastPos + 1){

if(cursorPos < 19){

cursorPosLast = cursorPos;

cursorPos++;
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lcdUpdate = true;}

lastPos = pos;}

if(pos < lastPos - 1){

if(cursorPos > 0){

cursorPosLast = cursorPos;

cursorPos--;

lcdUpdate = true;}

lastPos = pos;}

if(lcdUpdate){

lcd.setCursor(cursorPosLast,2);

lcd.print(" ");

lcd.setCursor(cursorPos,2);

lcd.print("*");

lcdUpdate = false;}

if(!digitalRead(BTN_ENC) && !clicked){

clicked = true;

// Stored example positions

if(cursorPos == 0){

TargetPosition[0] = 0; TargetPosition[1] = 0; TargetPosition[2] =

0; TargetPosition[3] = 0; TargetPosition[4] = 0;

TargetPosition[5] = 0;}

if(cursorPos == 1){

TargetPosition[0] = 10; TargetPosition[1] = 0; TargetPosition[2] =

0; TargetPosition[3] = 0; TargetPosition[4] = 0;

TargetPosition[5] = 0;}

if(cursorPos == 2){
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TargetPosition[0] = 0.9; TargetPosition[1] = -3.9;

TargetPosition[2] = -5.8; TargetPosition[3] = 1.9;

TargetPosition[4] = -1.6; TargetPosition[5] = 0.5;}

if(cursorPos == 3){

TargetPosition[0] = -4.1; TargetPosition[1] = 0.2;

TargetPosition[2] = -3.9; TargetPosition[3] = -0.2;

TargetPosition[4] = -1.0; TargetPosition[5] = 0.7;}

if(cursorPos == 4){

TargetPosition[0] = 4.9; TargetPosition[1] = 0.2;

TargetPosition[2] = -0.6; TargetPosition[3] = -1.5;

TargetPosition[4] = 1.2; TargetPosition[5] = -0.4;}

if(cursorPos == 5){

TargetPosition[0] = -6.2; TargetPosition[1] = 6.4;

TargetPosition[2] = -5.4; TargetPosition[3] = -1.0;

TargetPosition[4] = -1.9; TargetPosition[5] = -0.5;}

if(cursorPos == 6){

TargetPosition[0] = 3.7; TargetPosition[1] = 5.9;

TargetPosition[2] = 6.9; TargetPosition[3] = -0.4;

TargetPosition[4] = 1.7; TargetPosition[5] = 2.0;}

if(cursorPos == 7){

TargetPosition[0] = -6.3; TargetPosition[1] = 2.9;

TargetPosition[2] = -6.1; TargetPosition[3] = 0.4;

TargetPosition[4] = 0.9; TargetPosition[5] = -1.9;}

if(cursorPos == 8){

TargetPosition[0] = -2.6; TargetPosition[1] = 2.4;

TargetPosition[2] = -5.5; TargetPosition[3] = -0.9;

TargetPosition[4] = 0; TargetPosition[5] = 1.5;}
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if(cursorPos == 9){

TargetPosition[0] = 2.5; TargetPosition[1] = 6.2;

TargetPosition[2] = -6.6; TargetPosition[3] = 0.4;

TargetPosition[4] = 0.3; TargetPosition[5] = 1.7;}

if(cursorPos == 9){

TargetPosition[0] = 5.6; TargetPosition[1] = 0.7;

TargetPosition[2] = -5.5; TargetPosition[3] = 0.8;

TargetPosition[4] = -1.1; TargetPosition[5] = 1.2;}

if(cursorPos == 10){

TargetPosition[0] = -8.3; TargetPosition[1] = -3.0;

TargetPosition[2] = -1.3; TargetPosition[3] = -1.1;

TargetPosition[4] = -0.2; TargetPosition[5] = -1.6;}

if(cursorPos == 11){

TargetPosition[0] = 8.6; TargetPosition[1] = 8.8;

TargetPosition[2] = -3.8; TargetPosition[3] = -1.5;

TargetPosition[4] = 1.9; TargetPosition[5] = -0.9;}

if(cursorPos == 12){

TargetPosition[0] = 5.5; TargetPosition[1] = 7.5;

TargetPosition[2] = 8.5; TargetPosition[3] = -0.8;

TargetPosition[4] = 0.2; TargetPosition[5] = 0.7;}

if(cursorPos == 13){

TargetPosition[0] =-0.3; TargetPosition[1] = 1.0;

TargetPosition[2] = -1.4; TargetPosition[3] = -0.7;

TargetPosition[4] = 0.1; TargetPosition[5] = 0.7;}

if(cursorPos == 14){

TargetPosition[0] = -0.3; TargetPosition[1] = 1.0;
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TargetPosition[2] = -1.4; TargetPosition[3] = -0.7;

TargetPosition[4] = 0.1; TargetPosition[5] = -0.7;}

if(cursorPos == 15){

TargetPosition[0] = -1.3; TargetPosition[1] = 2.5;

TargetPosition[2] = -6.3; TargetPosition[3] = -0.3;

TargetPosition[4] = -1.1; TargetPosition[5] = -1.5;}

if(cursorPos == 16){

TargetPosition[0] = -1.0; TargetPosition[1] = 1.7;

TargetPosition[2] = 8.1; TargetPosition[3] = 0;

TargetPosition[4] = 0; TargetPosition[5] = 0.9;}

if(cursorPos == 17){

TargetPosition[0] = 1; TargetPosition[1] = 1; TargetPosition[2] =

1; TargetPosition[3] = .2; TargetPosition[4] = .2;

TargetPosition[5] = .2;}

if(cursorPos == 18){

TargetPosition[0] = 0; TargetPosition[1] = 0; TargetPosition[2] =

0; TargetPosition[3] = 0; TargetPosition[4] = 0;

TargetPosition[5] = 0;}

if(cursorPos == 19){

TargetPosition[0] = 5; TargetPosition[1] = 5; TargetPosition[2] =

5; TargetPosition[3] = 1; TargetPosition[4] = 1;

TargetPosition[5] = 1;}}

if(digitalRead(BTN_ENC) && clicked){

clicked = false;}}

// Calculates necessary slider positions - expects mm and deg

void calculate(double x_i, double y_i, double z_i, double theta_i,
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double phi_i, double gamma_i) {

// Initialize

double Translate[] = {x_i, y_i, z_i};

double FinalPosition[6][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0};

// The 3D positions of every socket after transformations

double RM3[6][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0};

double dx[6] = {0, 0, 0, 0, 0, 0};

double SocketUInnerRef[6][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0};

double SocketUInnerCross[6][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0};

double SocketURailDist[6] = {0, 0, 0, 0, 0, 0};

double SocketUInnerDist[6] = {0, 0, 0, 0, 0, 0};

double SocketUProjectionDist[6] = {0, 0, 0, 0, 0, 0};

double Slider[6] = {0, 0, 0, 0, 0, 0};

// Dimensions of the robot

double H = -55; //Rail height from ground

double W = 25; //Half Width of Rail

double L = 100; //Length of Linkages

double SL = 250; //Slider Length

double SA = sin(theta_i*degrad);

double CA = cos(theta_i*degrad);

double SB = sin(phi_i*degrad);

double CB = cos(phi_i*degrad);

double SG = sin(gamma_i*degrad);

double CG = cos(gamma_i*degrad);

double RM11 = CB*CG;

199



double RM12 = SA*SB*CG-CA*SG;

double RM13 = CA*SB*CG+SA*SG;

double RM21 = CB*SG;

double RM22 = SA*SB*SG+CA*CG;

double RM23 = CA*SB*SG-SA*CG;

double RM31 = -SB;

double RM32 = SA*CB;

double RM33 = CA*CB;

// Apply net rotation matricies - RM3 is the transformed SocketU;

for(int i = 0; i < 6; i++){

RM3[i][0] = SocketU[i][0]*RM11 + SocketU[i][1]*RM12 +

SocketU[i][2]*RM13;

RM3[i][1] = SocketU[i][0]*RM21 + SocketU[i][1]*RM22 +

SocketU[i][2]*RM23;

RM3[i][2] = SocketU[i][0]*RM31 + SocketU[i][1]*RM32 +

SocketU[i][2]*RM33;}

for(int i = 0; i < 6; i ++){

// Add rotated plate to base position

FinalPosition[i][0] = Translate[0] + RM3[i][0];

FinalPosition[i][1] = Translate[1] + RM3[i][1];

FinalPosition[i][2] = Translate[2] + RM3[i][2];}

for(int i = 0; i < 6; i ++){

for(int j = 0; j < 3; j ++){

SocketUInnerRef[i][j] = FinalPosition[i][j] - InnerRef[i][j];}

SocketUInnerCross[i][0] = RailRefVect[i][1]*SocketUInnerRef[i][2]
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- RailRefVect[i][2]*SocketUInnerRef[i][1];

SocketUInnerCross[i][1] = RailRefVect[i][2]*SocketUInnerRef[i][0]

- RailRefVect[i][0]*SocketUInnerRef[i][2];

SocketUInnerCross[i][2] = RailRefVect[i][0]*SocketUInnerRef[i][1]

- RailRefVect[i][1]*SocketUInnerRef[i][0];

SocketURailDist[i] =

sqrt(SocketUInnerCross[i][0]*SocketUInnerCross[i][0]

+SocketUInnerCross[i][1]*SocketUInnerCross[i][1]

+SocketUInnerCross[i][2]*SocketUInnerCross[i][2])

/SL;

dx[i] = sqrt(L*L - SocketURailDist[i]*SocketURailDist[i]);

SocketUInnerDist[i] =

sqrt(SocketUInnerRef[i][0]*SocketUInnerRef[i][0]

+SocketUInnerRef[i][1]*SocketUInnerRef[i][1]

+SocketUInnerRef[i][2]*SocketUInnerRef[i][2]);

SocketUProjectionDist[i] =

sqrt(SocketUInnerDist[i]*SocketUInnerDist[i] -

SocketURailDist[i]*SocketURailDist[i]);

Slider[i] = dx[i] + SocketUProjectionDist[i];

Serial.println(Slider[i]);

P[i] = Slider[i];}}

void ActivateStepperMotors(){

// Motor and thread specs

double pitch = 1.25;
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int stepsPerRot = 215;

int motorSpeed = 4; // = 300/RPM, must be int > 0. Max 4, 75RPM

double SldDist[6];

double SldMaxDist = 0;

int stepsNeeded;

float stepsPerMotor[6];

int stepDir[6];

double stepProgress = 0;

double SliderPositions[6];

// Get slider displacements and the maximum

for(int i = 0; i < 6; i++){

SldDist[i] = abs(CurrentSldPos[i] - NewSldPos[i]);

//Detects rotation direction

if(CurrentSldPos[i]-NewSldPos[i] >= 0){

stepDir[i] = 0;}

else{

stepDir[i] = 1;}

//How many steps each motor must make in the next operation

stepsPerMotor[i] = stepsPerRot*SldDist[i]/pitch;

//Largest of those

if(abs(SldDist[i]) > abs(SldMaxDist)) {

SldMaxDist = SldDist[i];}}

//Number of steps needed

stepsNeeded = stepsPerRot*SldMaxDist/pitch;

// Array for holding step timings
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float stepIndex[6][stepsNeeded];

for(int i = 0; i < 6; i++){

for(int j = 0; j < stepsNeeded; j++){

stepIndex[i][j] = 0;}}

// Spreads each step sequence evenly over the max steps needed

for(int m = 0; m < 6; m++){

for(int s = 0; s < stepsPerMotor[m]; s++){

//Catch overflow

double skipSize = stepsNeeded/stepsPerMotor[m];

if(round((s+1)*skipSize) > stepsNeeded){

stepIndex[m][stepsNeeded] = 1;}

else{

stepIndex[m][round((s)*skipSize)] = 1;}}}

int stepCountTest = 0;

for(int s = 0; s < stepsNeeded; s++){

stepCountTest++;

digitalWrite(M1_step, stepIndex[1][s]);

digitalWrite(M1_dir, stepDir[1]);

digitalWrite(M2_step, stepIndex[2][s]);

digitalWrite(M2_dir, stepDir[2]);

digitalWrite(M3_step, stepIndex[3][s]);

digitalWrite(M3_dir, stepDir[3]);

digitalWrite(M4_step, stepIndex[4][s]);

digitalWrite(M4_dir, stepDir[4]);

digitalWrite(M5_step, stepIndex[5][s]);

digitalWrite(M5_dir, stepDir[5]);

digitalWrite(M6_step, stepIndex[0][s]);

digitalWrite(M6_dir, stepDir[0]);

delay(motorSpeed);

digitalWrite(M1_step, LOW);
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digitalWrite(M2_step, LOW);

digitalWrite(M3_step, LOW);

digitalWrite(M4_step, LOW);

digitalWrite(M5_step, LOW);

digitalWrite(M6_step, LOW);}

// Define new current pos

calculate(NewPos[0],NewPos[1],NewPos[2],NewPos[3],NewPos[4],NewPos[5]);

for(int i = 0; i < 6; i++){

CurrentSldPos[i] = P[i];

CurrentPosition[i] = NewPos[i];}

// Display info

lcd.setCursor(0,1);

lcd.print(" ");

lcd.setCursor(0,1);

lcd.print(round(CurrentPosition[0]));

lcd.print(" ");

lcd.print(round(CurrentPosition[1]));

lcd.print(" ");

lcd.print(round(CurrentPosition[2]));

lcd.print(" ");

lcd.print(round(CurrentPosition[3]));

lcd.print(" ");

lcd.print(round(CurrentPosition[4]));

lcd.print(" ");

lcd.print(round(CurrentPosition[5]));}
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Figure D.1: User interface of LabVIEW positioning system

D.3 LabVIEW
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Figure D.2: Block diagram of slider precalculation

206



Figure D.3: Block diagram of slider position calculation
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Figure D.4: Block diagram of stepping algorithm. For the major false case, the cumulative
motion is set to zero, the previous and secondary cumulative are set to the current position.
This ensures that the first step is always off. For the minor false case in frame 4, no step is
generated, and the value for cumulative 2 is reported for the cumulative position.

208



Figure D.5: Block diagram of simple slider translation program
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Figure D.6: Block diagram of target validity check

Figure D.7: Block diagram of symmetric uniform random selection
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Figure D.8: Block diagram of random target selection

Figure D.9: Block diagram of display speed reduction
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Figure D.10: Block diagram of target calculation and execution program
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Figure D.11: Block diagram of buffering program.

Figure D.12: Block diagram of execution software.
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Figure D.13: Block diagram of calibration program.
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Figure D.14: Block diagram of non-realtime motion correction simulation statistical anal-
ysis.
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Figure D.15: Block diagram of LabVIEW non-realtime simulated patient.

Figure D.16: Block diagram of Box-Muller transform used to obtain normally-distributed
random numbers.

Figure D.17: Block diagram of initialization of the real-time motion monitoring program.
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Figure D.18: Block diagram of the simulated real-time patient.
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Figure D.19: Block diagram of monitoring program for the real-time motion monitoring
program.
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