
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2018

Smartphone User Privacy Preserving through Crowdsourcing Smartphone User Privacy Preserving through Crowdsourcing

Bahman Rashidi
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Information Security Commons, and the Theory and Algorithms Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5540

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarscompass.vcu.edu%2Fetd%2F5540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarscompass.vcu.edu%2Fetd%2F5540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5540?utm_source=scholarscompass.vcu.edu%2Fetd%2F5540&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c©Bahman Rashidi, June 2018

All Rights Reserved.

SMARTPHONE USER PRIVACY PRESERVING THROUGH CROWDSOURCING

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

by

BAHMAN RASHIDI

August 2014 to June 2018

Director: Dr. Carol Fung,

Assistant Professor, Department of Computer Science

Virginia Commonwewalth University

Richmond, Virginia

June, 2018

Acknowledgements

I would like to express my special appreciation and thanks to my advisor Dr. Carol

Fung, you have been a tremendous mentor for me. I would like to thank you for encour-

aging my research and for allowing me to grow as a research scientist. Your advice on

both research as well as on my career have been invaluable. I would also like to thank my

committee members, Dr. Vivian Motti, Dr. Wei Cheng, Eyuphan Bulut and Dr. Kun Sun

for serving as my committee members even at hardship. I would like to thank to my family

and my beloved wife, Zhuo. Thank you for supporting me for everything, and especially I

can’t thank you enough for encouraging me throughout this experience.

i

TABLE OF CONTENTS

Chapter Page

Acknowledgements . i

Table of Contents . ii

List of Tables . viii

List of Figures . x

Abstract . xvii

1 Introduction . 1

1.1 Android Privacy Preserving . 2
1.2 Risk Analysis and Malware Detection 4

1.2.1 Risk Assessment . 5
1.2.2 Malware Detection . 7

1.3 Bot User Detection . 10
1.4 Smartphone Permission Notification 12
1.5 Application Recommendation System 12

2 Android Crowdsourcing-based Privacy Preserving 14

2.1 Preliminary Crowdsourcing Model . 14
2.1.1 Problem Definition . 15
2.1.2 System Design . 15
2.1.3 Conclusion . 20

2.2 Bayesian Inference-based Android Resource Access Permission Rec-
ommendation with RecDroid . 21
2.2.1 Problem Definition . 21
2.2.2 Recommendation System Design 22
2.2.3 Rank RecDroid Expert Users . 23
2.2.4 Response Aggregation through Weighted Voting 26
2.2.5 Experiments . 28
2.2.6 Simulation Setup . 28
2.2.7 Expertise Rating and the Impact of Parameters 28

ii

2.2.8 Coverage and Accuracy of RecDroid Recommendation 29
2.2.9 Conclusion . 32

2.3 Android Permission Recommendation Using Transitive Bayesian
Inference Model . 32
2.3.1 Problem Definition . 33
2.3.2 Expert Users Seeking . 34

2.3.2.1 Assumptions and Notations 34
2.3.2.2 The Users Expertise Rating Problem 35
2.3.2.3 Users Connected to the Seed Expert 37
2.3.2.4 Users Connected to a Regular User 39
2.3.2.5 Multi-hop User Rating Propagation 41
2.3.2.6 Multi-path User Rating Aggregation 43
2.3.2.7 Recommendation Algorithm 44

2.3.3 Implementation . 45
2.3.3.1 Permission Control User Interaction 46
2.3.3.2 Android Framework Modification 47
2.3.3.3 DroidNet recommendation server 48

2.3.4 Experiments . 48
2.3.4.1 Simulation Setup . 48
2.3.4.2 Expertise Rating and Confidence level 49
2.3.4.3 Quality of DroidNet Recommendations 52
2.3.4.4 Usability Evaluation . 55
2.3.4.5 Data Analysis . 57
2.3.4.6 Survey Statistics . 58

2.3.5 Threats and Defenses . 59
2.3.5.1 False Recommendations: 59
2.3.5.2 Bot Users: . 60
2.3.5.3 Application Crashing and DroidNet’s Overhead: 61
2.3.5.4 Privacy Concerns: . 62
2.3.5.5 Newly Published Applications (Cold Start) 63
2.3.5.6 Platform Dependency: 64

2.3.6 Conclusion . 64

3 Android Application Behavioural Risk Analysis 66

3.1 XDroid: An Android permission control using Hidden Markov Models . 66
3.1.1 Problem Definition . 67
3.1.2 Background . 67

3.1.2.1 Hidden Markov Model 68

iii

3.1.2.2 Finding the unknown parameters 69
3.1.2.3 Finding the optimal state sequence 70

3.1.3 System Design . 72
3.1.3.1 Interaction Portal . 73
3.1.3.2 Risk assessment . 73
3.1.3.3 User Profiling . 74
3.1.3.4 Alert Customization . 75

3.1.4 Model . 75
3.1.4.1 Hidden Markov Model 75
3.1.4.2 Compute Unknown Parameters 77
3.1.4.3 Initialization set . 78
3.1.4.4 The forward procedure 78
3.1.4.5 The backward procedure 78
3.1.4.6 Finding the Optimal State Sequence 79
3.1.4.7 Observations . 80
3.1.4.8 Extracting packages’ names. 81
3.1.4.9 App dispatcher. 82
3.1.4.10 Recording apps’ logs. 82
3.1.4.11 Filtering. 82
3.1.4.12 Parsing. 82
3.1.4.13 Model Training and Testing 84

3.1.5 Permission Risk Assessment . 86
3.1.5.1 Resource risk assessment 86
3.1.5.2 User profiling . 89
3.1.5.3 Customized Alert generator 89

3.1.6 Parameter updating through online learning 90
3.1.7 Activity logger implementation 91

3.1.7.1 App installation pop-up 92
3.1.7.2 System call and permission enforcement 92
3.1.7.3 XDroid server . 93

3.1.8 Experimental Results . 93
3.1.8.1 Experiment Setup . 94
3.1.8.2 The Running States of Malicious and Benign Apps 95
3.1.8.3 Model accuracy and reliability 96
3.1.8.4 Risk evaluation . 98

3.1.9 Conclusion . 102
3.2 Malware Detection Using Support Vector Machine and Active Learning 103

3.2.1 Problem Definition . 104

iv

3.2.2 Background . 104
3.2.2.1 Support Vector Machines 105
3.2.2.2 Active Learning . 107

3.2.3 Support Vector Machine Model 108
3.2.3.1 Data Collection . 109
3.2.3.2 Model Building . 111
3.2.3.3 Model Training . 111
3.2.3.4 Active Learning . 113

3.2.4 Evaluation . 114
3.2.4.1 Experiment Setup . 114
3.2.4.2 Training Dataset Visualization 115
3.2.4.3 Model Accuracy and Reliability 117
3.2.4.4 Model Stability Evaluation 119
3.2.4.5 Active Learning Evaluation 121

3.2.5 Conclusion and Future Work . 123

4 Bot User Detection . 125

4.1 A Game-Theoretic Model for Defending Against Malicious Users
in the Recommendation System . 125
4.1.1 Problem Definition . 125
4.1.2 Background . 126

4.1.2.1 Attack RecDroid Recommendation System 126
4.1.2.2 Malicious User Detection 127
4.1.2.3 Bayesian Games . 129

4.1.3 Game Theoretic Model . 130
4.1.3.1 Normal Form . 131
4.1.3.2 Extensive Form . 133
4.1.3.3 Bayesian Nash Equilibrium (BNE) 133
4.1.3.4 Practical Implication of BNEs 135

4.1.4 Discussion . 136
4.1.5 Conclusion . 137

4.2 Extended Game-Theoretic Model . 137
4.2.1 Problem Definition . 138
4.2.2 Malicious User Detection . 138
4.2.3 Extended Game-Theoretical Model 140

4.2.3.1 Normal Form . 142
4.2.3.2 Extensive Form . 143
4.2.3.3 Bayesian Nash Equilibrium (BNE) 144

v

4.2.3.4 Comparison Between the Two Detection Strategies 147
4.2.3.5 Incentive Compatibility of RecDroid 147

4.2.4 Discussion . 148
4.2.5 Conclusion . 149

4.3 BotTracer: Bot User Detection Using Clustering Method in RecDroid . . 150
4.3.1 Problem Definition . 150
4.3.2 Background . 151

4.3.2.1 RecDroid Trust Computation and Malicious Users Filtering 151
4.3.2.2 Attack RecDroid Recommendation System 153

4.3.3 Model . 154
4.3.3.1 Malicious (bot) Users . 154
4.3.3.2 Feature Identification and Construction 154
4.3.3.3 Similarity Calculation . 156
4.3.3.4 Clustering Method . 157

4.3.4 Experimental Results . 158
4.3.4.1 Simulation Setup . 158
4.3.4.2 Performance and Accuracy 159

4.3.5 Conclusion . 162

5 Permission Notification Model . 164

5.1 Permission Notification . 164
5.1.1 Problem Definition . 164
5.1.2 Introduction . 165
5.1.3 Model . 167

5.1.3.1 Factors . 167
5.1.3.2 Multi-Interface . 168
5.1.3.3 User Interface . 169

5.1.4 User Study . 173
5.1.4.1 Study setup . 173
5.1.4.2 Model Preference . 175
5.1.4.3 View Preference . 177

5.1.5 Discussion . 180
5.1.5.1 Consistency . 180
5.1.5.2 Action recommendation 183

5.1.6 Conclusion . 183

6 Similar Safe Applications Recommendation 184

6.1 Similar Safe Applications . 184

vi

6.1.1 Problem Definition . 185
6.1.2 DroidVisor: A Safe Application Recommendation System 185

6.1.2.1 Background . 186
6.1.2.2 DroidVisor Design . 188
6.1.2.3 Evaluation . 194
6.1.2.4 Conclusion . 198

References . 200

Vita . 205

vii

List of Algorithms

1 Seek spanned expert users . 20

2 Weighted Voting for Recommendation Decision 27

3 Rate All Regular Users . 44

4 Weighted Voting for Recommendation . 45

5 Permission Enforcing Flow . 49

6 Risk computation . 87

7 Updating process . 89

8 LESK Algorithm Pseudo-Code . 188

viii

LIST OF TABLES

Table Page

2.1.1Recommendation Decision Table . 20

2.3.1Notations . 35

2.3.2Diversity of Participants (Education level) 56

2.3.3Diversity of Participants (Age) . 56

2.3.4Users’ opinion on data and device security 59

2.3.5DroidNet’s Trustworthiness and Ease-of-Use 59

3.1.1Notations . 69

3.1.2Notations . 76

3.1.3Keyword samples . 83

3.1.4Probability Mass Function results . 96

3.1.5Performance Measurement - Recall (Rc), Precision (Pr), F-Measure (F),
Accuracy (Ac) . 99

3.1.6Risk level distribution . 100

3.1.7Resource average usage statistics . 102

3.2.1Kernel Definitions . 106

3.2.2Performance Measurement - Recall, Precision, F1-Measure 119

3.2.3Resource average usage statistics (top K = 10 best features) 121

4.1.1payoff matrices (RecDroid, Users) . 131

4.2.1payoff matrices (RecDroid, Users) . 143

ix

4.3.1Notations . 156

4.3.2Evaluation of clustering results . 160

5.1.1Diversity of Participants (Education level) 174

5.1.2Diversity of Participants (Age) . 174

5.1.3Diversity of Participants (Gender) . 175

5.1.4Users feedback on their preferred model . 176

5.1.5Users feedback on their preferred view of the multi-view model 179

6.1.1Examples of permissions and their security risk levels. 192

6.1.2Evaluation of number of topics. 194

6.1.3Trial category weights. 195

6.1.4Evaluation of Trial 1. 196

6.1.5Evaluation of Trial 2. 196

6.1.6Evaluation of Trial 3. 197

6.1.7DroidVisor’s versus Google Play’s similar app recommendation for “Chrome
Browser - Google". 197

x

LIST OF FIGURES

Figure Page

1.5.1Thesis sections structure. 13

2.1.1RecDroid Service Overview . 16

2.1.2Permission request flow in RecDroid . 18

2.1.3An example of DroidNet on Telegram app: (a) probation and trusted in-
stallation modes; (b) users pick which critical resources to be monitored;
(c) pop-up for permission granting with suggestion from DroidNet and its
confidence. 18

2.2.1Forgetting and Conservative factor: (a) Expertise level of users with differ-
ent forgetting factor; (b) 100 percent of requests are answered; (c) Exper-
tise level of users for different conservation factors 29

2.2.2Expertise ratings of: (a) Low expertise nodes; (b) Medium expertise nodes;
(c) High expertise nodes . 30

2.2.3Coverage and Accuracy: (a) The percentage of requests that RecDroid
makes recommendation; (b) The percentage correct recommendations that
RecDroid makes; (c) The percentage of users who pass expert filtering and
participate into recommendation voting . 30

2.2.4Coverage of overall requests vs. coverage of seed experts 32

2.3.1DroidNet user connectivity network: (a) overall view of the network; (b)
users’ connectivity (User-Seed and User-User) 35

2.3.2The illustration of four cases of DroidNet graphs. (a) a user is connected
directly to a seed user; (b) a user is connected to a non-seed user; (c) a
multi-hop rating propagation case; (d) a multi-path rating aggregation case. . . 38

2.3.3DroidNet implementation architecture overview 46

xi

2.3.4The illustration of four small user profiles designed for our evaluation: (a)
the user is connected directly to a seed user; (b) the user is far from seed
by distance 1 intermediate user; (c) the multi-path rating propagation case;
(d) a multi-path rating case, designed for α and β calculation convergence. . . 50

2.3.5Calculated user expertise and confidence level: (a) expertise level of user
with different initial expertise level; (b) computed confidence level of user
with different initial expertise level. 51

2.3.6Influence of neighbors on expertise rating: (a)(b) expertise rating of a user
with only one user in its locality and different expertise ratings (U1,U2);
(c) expertise rating of a user with two users in its locality and different
expertise levels; (d) expertise rating of users for different number of α and
β calculation iterations; (e) expertise rating distribution after rating users
with different actual expertise rating. 52

2.3.7Coverage and accuracy of rating and recommendation: (a) generated dataset
based on teh Long-tail distribution; (b) percentage of requests that Droid-
Net makes recommendation for; (c) percentage correct recommendations
that DroidNet makes; (d)(e) accuracy of generated recommendations and
seed expert coverage relation. 53

2.3.8Correctness and recommendation positive response/following rates: (a) ex-
pertise ratings of participants; (b) users responses analysis; (c) applica-
tions’ permission requests analysis; (d) recommendations’ accuracy under
different normalized τe and a fixed τd = 0.5. 54

2.3.9DroidNet implementation architecture overview 61

2.3.10Use one-way ID hashing to protect users’ privacy 63

3.1.1XDroid system overview . 72

3.1.2Resource request flow in XDroid . 72

3.1.3User Interfaces: (a) illustrates the risk computed risk levels for app’s re-
quested resources; (b) shows a popup notifying user the risk level of re-
source at runtime; (c) managing the permission policies after installation. . . . 74

3.1.4An overview of the proposed HMM model 77

xii

3.1.5The architecture of the XDroid system . 81

3.1.6An illustration of the Networking observation tree 83

3.1.7A sample snapshot of a malicious app’s output log 83

3.1.8An illustration of the Viterbi algorithm . 85

3.1.9Users network overview . 88

3.1.10Training and updating process . 90

3.1.11Training and update process using online learning technique 91

3.1.12Permission request logging . 93

3.1.13Model output and frequency of switches between the states: (a) the output
of model for a given malicious app; (b) the output of the model for a given
normal app. 95

3.1.14Accuracy of the model on the training sets 97

3.1.15Accuracy of the model on the test sets . 97

3.1.16Accuracy of the model on both test and training sets 98

3.1.17Accuracy of the model on both test and training sets with different set sizes . . 99

3.1.18Applications’ computed risk levels: (a) the distribution of risk levels for
both malicious and normal apps training datasets; (b) the impact of user’s
response on the overall risk level; (c) the impact of user’s response on
the risk level of a resource; (d) the impact of the forgetting factor on the
computed risk level of a resource . 101

3.2.1DroidCat instrumentaiton tool architecture 109

3.2.2SVM model and the active learning component architecture 112

3.2.3Radial-Basis Function (RBF) and Linear kernel comparison on a sample dataset 112

3.2.4Illustration of Batch learning and Online learning 114

xiii

3.2.5Pairwise visualization of the dataset used for training and testing the model
by four app behaviours (permission request, Ads lib., WiFi, and Activity
Manager) as axises . 116

3.2.6Visualizing average resource request by malicious and benign apps for per-
mission request, Ads lib., WiFi, and Activity Manager: (a) malicious apps;
(b) benign apps. 116

3.2.7Evaluation of model’s accuracy using Cross-Validation and parameter (γ,C)
tuning: (a) (γ = 5.5e−4,C = 1.0); (b) (γ = 5.5e−4,C = 0.5).(c)
(γ = 5.5e−4,C = 0.3); (d) (γ = 5.5e−4,C = 0.1). 118

3.2.8Model accuracy evaluation: (a) accuracy of the model with different sizes
of training dataset and evaluated by training and test datasets for 10 runs;
(b) evaluated True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) of the model. 118

3.2.9Applied noise to the training set for evaluating the stability of the model
under different strengths (S) (strength=1, · · · , 10) 120

3.2.10Evaluation of noise and feature impacts: (a) accuracy of the model under
different settings of noised data and noise strengths; (b) evaluating model’s
accuracy by training the model with different sets of the features using K-
Best features (K = 1, · · · , 10) . 120

3.2.11Accumulative accuracy of the model using Active Learning for incoming
new instances with different trained models and Oracle’s expertise "1":
(a) accuracy of model trained with 10 malware; (b) accuracy of model
trained with 20 malware; (c) accuracy of model trained with 40 malware;
(d) accuracy of model trained with 100 malware. 122

3.2.12Accumulative accuracy of the model using Active Learning for incom-
ing new instances: under different settings of Oracle’s expertise (OE) and
batch sizes: (a) accuracy of model with different Oracle’s expertise (0.6, 0.7, 0.8,

and 0.9); (b) accuracy of the model with different batch sizes (10, 30, 60,

and 90). 123

4.1.1RecDroid system environment and detection system 127

4.1.2Extensive form of the Bayesian game . 132

xiv

4.2.1RecDroid system environment and detection system 139

4.2.2Extensive form of the Bayesian game . 144

4.3.1RecDroid system environment and detection system 151

4.3.2Users’ response timeline to an app request 155

4.3.3Dendrogram clustering results with given threshold. 159

4.3.4Impact of the number of responded malicious apps: (a) number of detected
user groups for different number of malicious apps and cutoffs; (b) the
influence of size of app pool on true positive rate. 161

4.3.5Influence of the responded malicious apps quantity on the accuracy of the
clustered users. 162

5.1.1Current iPhone, Android and Windows phone’s privacy notification 166

5.1.2The process of generating multiple views of privacy risks to be presented to users 169

5.1.3User Interfaces of 5 the views: (a) shows View 1 with highest of level in-
tricacy; (b) shows View 2 which is similar to view 0 but it includes some
assessed risks; (c) illustrates View 3 with the assessed risks for every re-
quested resource; (d) shows View 4 that includes an overall risk of the app;
(e) shows View 5 shows that an app is malicious or not 171

5.1.4Mode selection for privacy risk views (a) illustrates user interface of se-
lecting a mode to see the views; (b) shows the interface of selecting views
for both modes; (c) shows the interface of list of apps and their views. 172

5.1.5Designed buttons for the views. 173

5.1.6Location of participant of our user study. 175

5.1.7Participants model preferences in terms of single and multiple views. 176

5.1.8Participants preferences in terms of single and multiple views: (a) Partici-
pants model preference by experience of malware; (b) Participants model
preference by security concern. 178

xv

5.1.9Participants preferences in terms of single and multiple views: (a) Partic-
ipants model preference by experience of malware; (b) Participans model
preference by security concern. 179

5.1.10Correlation between gender, malware experience, and view preference: (a)
Correlation between gender and view preference; (b) Correlation between
malware experience and view preference. 180

5.1.11A chain of closed-loop control systems. 182

5.1.12A chain of closed-loop control systems. 183

6.1.1DroidVisor’s process flowchart. 190

6.1.2User Interfaces: (a) illustrates Google Chrome’s related apps using our
proposed model; (b) shows more details of popular messenger application
WhatsApp. 190

6.1.3GUI design of weight tuner for DroidVisor. 193

6.1.4Progression of app filtration steps for the “Chrome Browser - Google" app. . . 197

xvi

Abstract

SMARTPHONE USER PRIVACY PRESERVING THROUGH CROWDSOURCING

By Bahman Rashidi

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Dr. Carol Fung,

Assistant Professor, Department of Computer Science

In current Android architecture, users have to decide whether an app is safe to use

or not. Expert users can make savvy decisions to avoid unnecessary private data breach.

However, the majority of regular users are not technically capable or do not care to consider

privacy implications to make safe decisions. To assist the technically incapable crowd, we

propose a permission control framework based on crowdsourcing. At its core, our frame-

work runs new apps under probation mode without granting their permission requests up-

front. It provides recommendations on whether to accept or not the permission requests

based on decisions from peer expert users. To seek expert users, we propose an expertise

rating algorithm using a transitional Bayesian inference model. The recommendation is

based on aggregated expert responses and their confidence level. As a complete framework

design of the system, this thesis also includes a solution for Android app risks estimation

based on behaviour analysis. To eliminate the negative impact from dishonest app owners,

we also proposed a bot user detection to make it harder to utilize false recommendations

through bot users to impact the overall recommendations. This work also covers a multi-

view permission notification design to customize the app safety notification interface based

xvii

on users’ need and an app recommendation method to suggest safe and usable alternative

apps to users.

xviii

CHAPTER 1

INTRODUCTION

Mobile apps have brought tremendous impact to businesses, social, and lifestyle in recent

years. Various app markets offer a wide range of apps from entertainment, business, health

care and social life. Android app markets, which share the largest user base, have gained a

tremendous momentum since its first launch in 2008. According to the report by Android

Google Play Store, the number of apps in the store has reached 2.2 million in June 2016,

surpassing its major competitor Apple App Store [75]. The rise of Android phones brought

the proliferation of Android apps, resulting in an ever-growing application ecosystem [6].

As users rely more on mobile devices and apps, the privacy and security concerns

become prominent. Malicious third-party apps not only steal private information, such as

contact list, text messages, online accounts, and location from their users, but also cause fi-

nancial loss to users by making secretive premium-rate phone calls and text messages [68].

At the same time, the rapid growth in the number of apps makes it impractical for app mar-

ket places, such as Google App Store, to thoroughly verify if an app is malicious or not. As

a result, mobile users are left to decide whether an app is safe to use or not. This approach

leaves little obstacle for malicious apps to be installed by users. In addition, unlike iOS,

Android device owners do not have to root or "jailbreak" their devices to install apps from

“unknown sources”. This gives Android users broad capability to install pirated, corrupted

or banned apps from Google Play simply by changing a systems setting. This provides

further incentive for the users to install third-party applications from various (potentially

untrusted) app markets [3, 4, 2], but exposes their privacy to significant security risks [5].

More specifically, in the current Android architecture, users have to decide what re-

1

sources are given to an app at installation time. Unauthorized communications among

apps are prohibited. However, such permission control mechanism has been proven to be

ineffective in protecting users from malicious apps. A study shows that more than 70%

of smartphone apps request to collect data irrelevant to the main function of the app [1].

Among the 1.4 million apps in Google Play, a significant percentage of them have permis-

sions going beyond the apps’ intended use. The situation is even worse in the third-party

markets which are also available to Android users. In addition, such study shows that only

a very small portion (3%) of users pay attention and make correct responses to requests

for resource permission at installation, since they tend to rush through to get to use the

application. The current Android permission warnings do not help most users make correct

security decisions [32].

1.1 Android Privacy Preserving

Realizing these shortcomings in the current Android architecture, several efforts have

been made to address the problems. Many resource management systems are proposed such

as in [53, 58, 47]. Going down to the system level, L4Android [43] isolates smartphone OS

for different usage environments in different virtual machines (VMs). QUIRE [26] provides

a set of extensions addressing a form of attack, called resource confused deputy attacks, in

Android. However, such approaches are not efficient since users are either not paying

attention to permissions being requested or not aware of the permissions’ implications.

Hence, no mechanism that assumes users to have high technical and security knowledge

will be usable for a wide audience.

As pointed out in [32, 31], the reasons for the ineffectiveness of the current permission

control system include: (1) inexperienced users do not realize resource requests are irrele-

vant and could compromise their privacy, (2) users have the urge to use the app and may be

have to give up their privacy in order to use the app. To address this problem, we propose

2

DroidNet, a framework to assist mobile users in controlling their resource usage and pri-

vacy through crowdsourcing. First, the framework allows users to use apps without having

to grant all permissions. Second, DroidNet allows one to receive help from expert users

when permission requests appear. Specifically, DroidNet allows users to install untrusted

apps under a "probation" mode, while the trusted ones are installed in normal "trusted”

mode. In probation mode, users make real-time resource granting decisions when apps are

running. The framework facilitates a user-help-user environment, where expert users are

identified and their decisions are recommended to inexperienced users.

Exploring user perceptions of privacy on smartphones using crowdsourcing has al-

ready been investigated. Agarwal et al. propose PMP [8] which collects users’ privacy

protection decisions and analyses them to recommend them to other iOS users. However,

their recommendations are based on simple majority voting which results in high false

recommendation rates.

Liu et al. investigated people’s privacy preferences by capturing apps logs and analyz-

ing them to identify a small number of profiles that simplify decision makings for mobile

users [46]. Profiles were mined from logs by using SVM techniques. However, they do not

include users’ expertise in their study and this might cause false recommendation.

Lin et al. investigated the feasibility of identifying a small set of privacy profiles to

help users manage their privacy profiles [45]. Instead of relying on smartphone users’

decisions on permission requests, they identified the privacy profiles using Androguard, a

static code analysis tool. They analyzed the purpose for which an app requests a permission

and identified the permissions that satisfy the least privilege policy. Thus, they can find a

set of necessary permissions for apps.

Liu et al. proposed PriWe in which they crowdsource users’ decisions on permission

requests and identify users’ expectations [49]. In their work, they focus on finding users

with similar responses to permission requests. After finding similar users and applying

3

a recommendation algorithm they identify some privacy profiles and recommend them to

those who have similar strategy for responding to permission requests.

Ismail et al. propose a crowdsourcing solution to find a minimal set of permissions

that will preserve the usability of the app for diverse users [39]. Their approach has a few

shortcomings. Repackaging apps for all possible permission combinations is not practical.

Also their inability to differentiate between inexperienced and malicious users makes their

recommendations of limited quality. Yang et al. [84] propose a system to allow users to

share their permission reviews with each other. Users leave comments on permissions

and the system ranks reviews and recommends top quality reviews to users. Shahriyar

proposes Gort [11], an analysis technique that analyzes app behavior while taking into

account the context and semantics of the app. Gort uses a three-phase crowd analysis

approach, in which crowd workers are asked whether it makes sense for the application to

use its requested resources and tasks. App Ops [10], a feature in Android v4.3, allows users

to selectively disable permissions for apps on their phones. However, Google removed this

feature in their next update, reporting that it was experimental and could cause apps to

behave in unexpected ways.

The common feature of those approaches is that they do not consider users’ expertise

in privacy profiling or permission recommendations. In contrast, considering the fact that

most users are inexperienced, we proposed an expertise ranking algorithm to evaluate the

expertise level of users for higher quality recommendations.

1.2 Risk Analysis and Malware Detection

In this section of the thesis, we propose two malware detection and app risk assessment

models. The proposed models help the crowdsourcing framework to assess the malicious-

ness of apps in cases when the crowdsourcing model is unable to generate recommenda-

tions for users. This happens when there is not a sufficient amount of information about

4

apps to make recommendations. Therefore, the proposed models in this section, will enable

the framework to help users for those apps.

1.2.1 Risk Assessment

Depending on the technology used, malware detection techniques can be divided into

static and dynamic methods, where the former focuses on static code analysis of apps’ and

the latter investigate apps’ maliciousness at runtime [30, 29, 74]. One major drawback

of static analysis is that it does not detect vulnerabilities introduced at runtime [37, 28].

Dynamic analysis identifies vulnerabilities at runtime and supports the analysis of appli-

cations without actual code. It also identifies vulnerabilities that might have been false

negatives in static code analysis [15, 29]. In this project, we proposed an Android app risk

assessment approach to measure the risk of those apps that are newly published and the

recommendation system does not cover. We analyze Android apps’ behaviors as they run

on the device, and propose XDroid, a dynamic analysis method based on Hidden Markov

Models (HMM) [42]. A HMM engine can be used to model the runtime behaviors of an

app, including malicious and normal ones.

In our approach, we consider other inputs such as API calls, time, ads libraries, and

sensitive permission requests to build a comprehensive HMM. We discovered that the in-

troduction of the time feature significantly improves the detection accuracy of the model.

In our approach, we first log apps’ behaviors through an instrumentation tool that we devel-

oped, by our research lab, called DroidCat. Then a filtering and parsing method is applied

to syntheze and organize the captured behaviors. We train and test the HMM model using

a dataset of known malicious apps and normal apps. Our experimental results demonstrate

that our proposed model achieves high accuracy in detecting malicious apps.

Several research efforts have focused on the principles and practices of managing re-

source usage and Android security [53, 58, 25, 12] and privacy protection. Stochastic mod-

5

els are a powerful method to model security problems or defend against attacks. Solutions

based on those models have been widely discussed in literature. Stochastic processes and

specifically Markov chains have been extensively used to model security attacks. Although

HMMs have been explored as technique for detecting malware for personal computers, to

the best of our knowledge only few approaches [23, 76, 82, 21] have been proposed that use

HHMs to address the mobile security issues, such as users’ privacy preserving, malicious

apps detection, and targeted malware.

Chen et al. [23] proposed a hidden Markov model to detect Android malicious apps at

runtime. This approach is the closest to our model. Their approach is based on application

intents passing through the Android binder only. However, only relying on the apps’ intents

as observations is not sufficient in order to decide whether the app is malicious or not.

For example, they do not take into account the malicious API calls (Ads libraries), time,

sensitive permission requests etc. This can be the reason why their detection accuracy

is 67%. In contrast, we take all these features into account and achieve better accuracy.

Additionally, the malware dataset we used to evaluate our approach is large (5560).

Xie et al. [82] propose a behavior-based malware detection system, called pBMDS,

which adopts a probabilistic approach through correlating user inputs with system calls

to detect anomalous activities in mobile phones. They mainly focus on recognizing non-

human behavior instead on known behavior of malicious apps in order to detect applications

that misuse the SMS/MMS and email services. In order to detect behavior anomalies, they

analyze a series of GUI interactions, such as keypad interactions, between the user and the

device. To evaluate their approach, they do not apply the technique to Android platform

and use Linux-based smartphones instead. They only use three ad-hoc malicious apps for

evaluating the technique, while we used a dataset with 5560 malwares. Additionally, they

do not evaluate the proposed technique with goodware to understand how many benign

apps are mistakenly recognized as malware, while we evaluated our model also on benign

6

apps.

Canfora et al. [21] propose a static analysis technique based on opcodes sequences to

detect malware. The main difference with our model is that they use a static model, which

consists of discrete wavelet transform (DWT) to segment the files and a distance function

(edit distance) to compute the similarity of apps.

Suarez-Tangil et al. [76] proposed a stochastic model to address targeted malware. The

context where a malicious behavior takes place plays a key role in their approach. In order

to capture how the users interact with an app or a set of apps, they rely on a discrete-time

first-order Markov process.

The major difference between our model and the existing ones is that they do not use a

comprehensive app behavior analysis in their model training. The definition and discovery

of proper observations, such as apps’ intents, API calls, and time-stamp, make our model a

unique solution in terms of Android malware detection. In addition, our model updates the

model’s parameters dynamically based on users’ preferences through a self-train strategy.

To the best of our knowledge, this the first model to help users through risk alerts generated

by a well-trained HMM model and gets updated in a real-time manner.

1.2.2 Malware Detection

In general, malware detection techniques include static analysis and dynamic analy-

sis. Analyzing Android apps’ codes and the Control Flow Graph (CFG) is the key part

of every static-based malware analysis. Using the CFG analysis, the model is able to find

the malicious API calls and put a set of predefined restrictions on them as well as sys-

tem calls [29, 63]. Since static-based malware analysis only focuses on the apps’ code

including API and syscalls, it is not able to detection malicious behaviors happening at

the runtime [28]. In contrast, dynamic analysis captures all the runtime activities of apps

and run a deep analysis on them to detect the malicious behaviors and activities during the

7

runtime [29]. In this paper, we study Android apps’ behaviors as they run on the device,

and propose an active learning method using Support Vector Machines (SVM). SVM can

be used to classify apps in order to distinguish between malicious and benign ones. The

active learning method empowers the model to retrain itself at a low cost.

In our approach, we not only consider apps’ activities such as API cals and syscalls,

but also the time that the activities occur. This can help to build a comprehensive set of

features to be used as our training set. By introducing the time as a feature (timestamp

of activities), we notice that this can significantly enhance the malicious app detection

accuracy of the proposed model. The first step of our model is to log apps’ activities

using our own developed instrumentation tool called DroidCat. After capturing the logs a

filtering and parsing mechanism is applied to syntheze and clean the captured activity logs.

We train the SVM model and test it using a dataset of known malicious and benign apps.

Our experimental results demonstrate that our proposed model achieves high accuracy in

detecting malicious apps.

Several research efforts have focused on the principles and practices of managing re-

source usage and Android security [53, 25] and privacy protection [8, 66, 64]. Machine

learning has been shown to be a powerful method to model security attacks or defend

against attacks. The models are designed to detect and classify malicious activities. These

machine learning solutions have been widely discussed in literature. As a machine learning

model SVMs have been extensively used to model security attacks. In the last two years,

a few approaches [52, 70, 80, 55, 56] have been proposed using SVM to address the mo-

bile security problems such as assuring users’ privacy, and detecting malicious apps, and

targeted malware.

Nissim et al. [56] proposed a machine learning model, called ALDROID, to detect

Android malicious apps at runtime. The proposed model is the closest one to our model.

The model is based on active learning and updates the machine learning model periodically.

8

ALDROID uses active learning to reduce the labeling efforts of security experts, and en-

ables a frequent process for enhancing the framework’s detection model. ALDROID uses

exploitation as query strategy. The model is trained by features that are based on the ap-

plication’s static code analysis. To construct the training dataset, they extracted requested

permissions from AndroidManifest.xml as features. They claim that their model is

behavioral-based. However static knowledge does not represent the actual apps’ behaviors.

In contrast, our model captures actual apps’ behaviors and thus has higher accuracy and

robustness. In addition, we conducted a set of comprehensive experiments to evaluate the

stability and reliability of our model.

Narayanan et al. [55] proposed an adaptive Android malware detection solution, called

DroidOL, based on online learning. The model aims at updating the learning model to be

able to address the malware population drift. The training dataset was collected manually

from official and unofficial app markets such as Google Play, FDroid, and SlideMe. To

build the ground truth the collected apps were labeled using VirusTotal. They assumed that

the model receives labeled data, which is not inter-procedural control flow sub-graph (static

analysis). Also their model is based on a shakey ground, which means they assume that

the model receives labeled data periodically and retrains the model. These all can be the

reasons that the accuracy of the model is low. In contrast, our model uses active learning

to handle the new unlabeled data.

Sahs et al.[70] proposed a machine learning based system for the detection of malware

on Android devices. The training set of their model is limited to only the permissions

(built-in and non-standard), and control flow graphs (CFGs) of the input applications. They

evaluated the model using 91 malware apps, which is a much small set of apps. They did

mention the ground truth for their dataset, but relying on static information such as CFGs

and permissions list cannot be a strong metric.

The major difference between our proposed model and the existing ones is that they

9

do not use a comprehensive app behavior analysis in their model training. The definition

and discovery of proper observations, such as apps’ intents, API calls, and time-stamp,

make our model a unique solution in terms of Android malware detection. In addition, our

proposed model updates the model’s parameters using active online learning as its query

strategy. To the best of our knowledge, ours is the first model to detect malware using a

real-human app instrumentation data and active learning.

1.3 Bot User Detection

Providing a user-help-user environment, where expert users’ decisions are recom-

mended to inexperienced users is the main goal of our recommendation system. There-

fore, the decisions from expert users determine what recommendation the recommendation

system will provide to inexperienced users. However, this also opens the door for ma-

licious/dishonest users to misguide the recommendation system’s recommendations. For

instance, the developer of malicious applications can create/employ many dummy users

and gain high level of expertise through responding to other apps. However, those dummy

users send dishonest responses to targeted requests from malicious apps to mislead the rec-

ommendation from the recommendation system. A Sybil detection function may be able to

detect some dummy users for the recommendation system system. However, a sybil detec-

tion function may not discover all dummy users and they are still influential when attackers

are savvy enough to evade the detection system. Studying what the attacker can do to make

maximum profit through malicious user attack and what the recommendation system can

do to minimize the damage caused by attack is our focus in this proposed game model.

In order to analyze the attackers’ strategies and actions in the interaction with the

recommendation framework, we use a game-theoretical model to analyze the behavior

and strategies from both users including attackers and the recommendation system. More

specifically, a static Bayesian game [38] is used and Nash equilibria of the game are inves-

10

tigated. In this Bayesian game the defender does not know the type of its opponent(regular

or malicious) so it is also an incomplete information game [33]. Through this Bayesian

game formulation, we are able to help the recommendation system select best strategies to

play against the attacker and minimize the potential damage caused by attackers (malicious

users).

Liu et al. [48] proposed a game-theoretical approach to model the interactions be-

tween a DDoS attacker and a network administrator (system). They model the network and

infer the attackers’ intents, objectives, and strategies to observe the importance of modeling

and its effects on risk assessment and harm prediction. Jormokka et al. [40] presented a few

examples of static game models with complete information (players’ information) where

each example represents an information warfare scenario. Lye et al. [50] and Alpcan et al.

[9] proposed two game-theoretical solutions to analyze the interactions between malicious

attackers of system, IDS, and security of a computer network. In both works, they focus on

the existing network parameters and the interactions between attacker and defender (sys-

tem). Zhu, et al. [88, 87] proposed game-theoretical models to incentivize collaboration in

intrusion detection networks (IDN). In this work, a game-theoretical model is proposed to

analyze the behavior of IDSs in network and incentivize their participation by strategical

game policy design. Due to the complexity of attackers’ activities, many efforts have been

proposed towards the risk assessment, modeling the attackers’ activities (behavior), and

cybersecurity strategies [22, 81, 85, 34].

In spite of the existing similarities between the our recommendation system and its

architecture and related proposed works such as having an attacker in one side and a de-

fender on the other side, there are differences, which seem to be significant and make these

proposed models inapplicable to the recommendation framework. For example, interaction

between the recommendation framework and users is different and more complicated than

these models. Therefore, due to this inconsistency between the proposed models and the

11

recommendation framework, we need to design a game model, which is more consistent to

the recommendation features. The proposed model should be able to model the interactions

(request/response) between the game’s players.

1.4 Smartphone Permission Notification

Another important problem of the privacy preserver system is how to present the pri-

vacy and permission risks to users. The big variation of users’ knowledge about apps pri-

vacy risks turns the problem into a challenging one. In the case of Android privacy, lack of

experience and knowledge raises similar concerns. Therefore, facilitating the process of in-

forming users about the risk of apps is a key challenge. We aim at designing and developing

a permission privacy risk notification mechanism that helps users understand privacy risks

regardless of their background and experience. The mechanism takes usability, reliability

and performance into account.

In order to achieve such model, considering users’ knowledge and interface prefer-

ence, our model generates multiple views of the security and privacy risk related to app

permissions and resource usage. Users have the choice to select a view which they prefer

the most. After selecting a view, users will see the privacy and security risk related to their

app through the interface/view they prefer. We conducted a user study to evaluate the us-

ability of the model. Our study results show that users are significantly interested in using

our proposed model. It is worth noting that users’ interests are almost equally distributed

among the views. This proves that users with different backgrounds and preferences are

interested in different views.

1.5 Application Recommendation System

In current Android systems, the application recommendation function is an important

feature that users can find a similar and secure application to replace a risky one. The

12

Crowdsourcing Framework

Risk Assessment & Malware Detection

Permission Notification

Similar App Recommendation

Malicious User Detection

Bayesian Inference Permission Recommendation

Transitive Bayesian Inference Permission Recommendation

Game Theory-based Model against Malicious Users

Extended Game Theory-based Model against Malicious Users

Transitive Bayesian Inference Permission Recommendation

XDroid: Application Risk Assessment

Malware Detection using Machine Learning (SVM)

Multi-view Permission Risk Notification Model

Similar Secure Application Recommender

Fig. 1.5.1.: Thesis sections structure.

current recommendation system provided through Google and the Google Play store pre-

sumably recommends applications similar to a target application while accounting for the

popularity of each application. However, it does not take the security feature of each appli-

cation or users preferences into consideration. In this project, we aim at proposing an app

recommendation system that provides users with fine-grained and customizable application

recommendations. The app recommendation system considers other metrics such as popu-

larity, security, and usability. More specifically, the app recommender system provides an

interface for users to configure the weight on each metric and a recommendation algorithm

that generates a list of recommended applications based on the combined scores.

Figure 1.5.1 shows an overview of the sections of the thesis. For each section of the

project, there are at least one proposed solution. For example, as you can see, we proposed

three malicious user and bot detection models for section three.

13

CHAPTER 2

ANDROID CROWDSOURCING-BASED PRIVACY PRESERVING

In this project, we study the security and privacy issues of the Android OS. We review

the existing proposed solutions and approaches toward addressing the issues. As the main

part of this project, we present a permission control framework that assists inexperienced

users to make a low-risk decision as for whether a permission request should be granted

or denied. We elaborate the evolution of the project from the preliminary idea to the most

recent version of the framework.

2.1 Preliminary Crowdsourcing Model

This project is to provide a framework which allows users to install untrusted apps

under a “probation” or a “trusted” mode. In the probation mode, users make real-time

permission control during an app’s running time. The framework also facilitates a user-

help-user environment, where expert users’ decisions are recommended to inexperienced

users. The framework provides the following functionalities:

• Two app installation modes for any new apps: trusted mode and probation mode. In

probation mode, an app requests permission from users to access sensitive resources

(e.g. GPS traces, contact information, friend list) when needed. In trusted mode, the

app is fully trusted and all permissions are all granted.

• A recommendation system to guide users with permission granting decisions, by

serving users with recommendations from expert users on the same apps.

14

2.1.1 Problem Definition

The rapid growth of smartphone application market raises security and privacy con-

cerns regarding untrusted applications. Studies have shown that most apps in markets re-

quest to collect data irrelevant to the main functions of the apps. Traditional permission

control design based on one-time decisions on installation has been proven to be not ef-

fective to protect user privacy and poorly utilize scarce mobile resources (e.g. battery). In

this work, we propose RecDroid, a framework for smartphone users to make permission

control in real time and receive recommendations from expert users who use the same apps.

This way users can benefit from the expert opinions and make correct permission granting

decisions. We describe our vision on realizing our solution on Android and show that our

solution is feasible, easy to use, and effective.

2.1.2 System Design

Our general approach is to build RecDroid with four functional processes, of which

two are on mobile clients and the remaining two are on remote servers. On the client side,

RecDroid allows users to install apps in a permission tracking mode, and provides recom-

mendations to users on resource permission requests from mobile apps. On the server side,

collected users responses are processed and mined to extract safe responses. In particu-

lar, RecDroid (1) collects users permission-request responses, (2) analyzes the responses

to eliminate untruthful and biased responses, (3) suggests other users with low-risk re-

sponses to permission requests, and (4) ranks apps based on their security and privacy risk

level inferred from users’ responses. Figure 2.1.1 shows an overview of RecDroid service,

which is composed of a thin OS patch allowing mobile clients to automatically report users

responses to and receive permission request response suggestions from a RecDroid service.

Before going into further details about individual components, we first describe the

15

Apps Ranks

Permission responses
<AppID, PerReq, Response>

Permission Recommendation
Ap

p
in

st
al

la
tio

n

Android App
Markets

Permission
Control
Portal

Thin OS
Patch

RecDroid Server

Mobile Client

- Bad Response Filtering
- Seed/Savvy Users Search
- Response Recommendation
- Apps Ranking

Fig. 2.1.1.: RecDroid Service Overview

permission handling procedure during an installation a mobile app with RecDroid. When a

user first downloads and installs an application from app stores, the installer requests per-

mission to access resources on the device. Instead of being sent to the operating system’s

legacy permission handler (e.g. Package Manager Service on Android) , the requests pass

through RecDroid checks, which are installed on the mobile client at OS level. Figure 2.1.2

illustrates the permission checking and granting flow on RecDroid. In the first installation

of an app, RecDroid allows the app to be installed on one of the two modes: Trusted and

Probation (tracking mode), as shown in Figure 2.1.3(a). All requested permissions will

be permanently granted to the app as specified by the user, if Trusted mode was selected.

Otherwise, in Probation mode, RecDroid will compare the requested permissions with a

predefined list of critical permissions that is of concern to users, such as location access,

contact access, and messaging functions, etc. Regarding the installation mode selection,

RecDroid also recommends an installation mode to the users based on collected data. For

example, for new apps and apps that frequently receive rejections on permission requests,

a probation installation mode should be recommended to users. With critical permissions,

RecDroid client queries the online RecDroid service to get response recommendations for

the permissions, specifically for the apps to be installed. Upon receiving the answer from

16

the recommendation service, RecDroid client pops up a request, combined with the sug-

gested response, to the user, as shown in Figure 2.1.3(c). Based on the suggested response,

the user decide to grant or deny permission to access to certain resource. If a user chooses

to deny a request, dummy data or null will be returned to the application. For example, a

denied GPS location request could be responded with a random location. That decision is

both recorded in RecDroid client and populated back to RecDroid server for app ranking

and analysis. Only then, the request is forwarded to legacy permission handler for book

keeping and minimizing RecDroid’s unexpected impact on legacy apps. It is important to

note that this process only happens once, when the app is first installed. Later, after collect-

ing users responses and preferences; and having a security and privacy ranking of the app,

RecDroid server should decide and notify RecDroid client whether to pop up permission

requests or automatically answer them based on prior knowledge. Therefore, RecDroid

strives to achieve a balance between the fine-grained control and the usability of the sys-

tem.

In order to realize RecDroid service, four main challenges need to be addressed.

• How do we instrument the operating system to intercept resource requests with the

minimum amount of changes to the system such that it does not affect normal and

legacy operations of the device? At the same time, how do we make that instrumen-

tation work on both existing legacy apps and coming apps?

• Given that the responses from users are subjective, could be biased, and even mali-

cious, how do we design the recommendation and ranking system that could detect

and then filter out untruthful or biased responses?

• How do we bootstrap and expand the recommendation system? Since this is a partic-

ipatory service, it is important to have a sustainable and scalable approach that could

provide valuable recommendations to all applications. It is certainly a challenging

17

Is the app
probated?

YesApplication
requests access

App is
notified

No

Yes

No

Yes

No

App DroidNet

Is the permission
controlled?

Does user
agree?

User Android OS

Serve the request

Block & Record
the request

Serve, Record and Add
the request to Trusted list

Server

Agents:

Fig. 2.1.2.: Permission request flow in RecDroid

(a) (b) (c)

Fig. 2.1.3.: An example of DroidNet on Telegram app: (a) probation and trusted installation modes; (b) users pick which critical
resources to be monitored; (c) pop-up for permission granting with suggestion from DroidNet and its confidence.

mission given millions of apps out there on different apps market places, and more

to come.

Next, we will provide our vision on addressing the above mentioned challenges. At a

high level, we propose a participatory framework to collect and analyze users’ response to

provide recommendations to users and rank apps based on the plausibility of their permis-

sion requests. In our proposed system, a Permission Control Portal installed on the mobile

devices intercepts apps’ permission requests, records the requests, and collect users’ re-

18

sponse to the requests.

Intercepting permission requests: Since intercepting permission requests requires

OS level access, we create a small software patch to modify client’s operating system. We

investigated different potential approaches to perform OS modification and designed a so-

lution that causes minimum impact to legacy apps and applicable to a broad range of OS

versions, hardware platforms, and permission access models. One might argue that collect-

ing this permission granting behaviors from users could raise privacy concern. However,

since the portal does not collect any actual sensitive information, the data it collects doesn’t

contain private information. In fact, the portal merely communicates three-tuple data in the

form of <AppID, Permission Request, User’s responses>.

Bootstrapping the service: In order to suggest plausible responses to users, RecDroid

starts from a set of seed expert users and make recommendation based on their responses.

However, it is impractical to have our expert users to provide plausible responses to hun-

dreds of thousands of apps available on the market. To address this scalability challenge, we

propose a spanning algorithm that searches for external expert users based on the similarity

of their responses to our set of internal experts, in combination with the user’s accumulative

reputation. Our recommendation for an app is based on the average of top N expert users

in combination with the response that is selected by majority of participants. Having the

same nature as the spanning algorithm described in [67], RecDroid spanning algorithm is

sketched as follow.

Algorithm 1 describes our external expert users search method. In its simplest form,

if the similarity of unguided (without recommendation) responses from a user and the re-

sponses from our seed experts to the same app is high, then we recruit that user into the

spanned expert users list. This base method could be further improved by understanding

the criticality of a given user by looking at their responses to permission requests across

multiple apps. For example, a response from a user that always says “Accept” to all per-

19

mission requests might not be weighted as high as that of a user that has a diverse set of

positive and negative responses. It is certainly true that the more responses our seed expert

user send to the system, the more spanned expert users we can find.

Algorithm 1 Seek spanned expert users
1: Notations :
2: U :the set of all users
3: Ei :the set of initial seed expert users
4: Es :the set of spanned expert users
5: for each user u in U \ Ei do
6: if The percentage of matching unguided responses from u and Ei is higher than a threshold θ and the number of matching

samples is higher than τ then
7: Es = Es ∪ u
8: end if
9: end for

Table 2.1.1 shows the permission decision table for the recommendation system. When

a resource access request pops up, our system searches for the response from our seed ex-

perts to the same request first. If a match is found then send the response of the expert

user as our recommendation and with high confidence. If only the response from a spanned

expert user is found, then send the expert response as our recommendation with medium

confidence, otherwise no recommendation is made.

Table 2.1.1.: Recommendation Decision Table

Top recommender Recommendation Confidence

Seed expert Response from the expert High
Spanned expert Response from the expert Medium
Others No recommendation -

2.1.3 Conclusion

We presented our vision for implementing RecDroid, a smartphone permission con-

trol and recommendation system which serves the goal of helping users perform low-risk

resource accessing control on untrusted apps to protect their privacy and potentially im-

prove efficiency of resource usages. We propose a framework that allows users to install

apps in either trusted mode or probation mode. In the probation mode, users are prompt

20

with resource accessing requests and make decisions to grant the permissions or not. Rec-

Droid also provides expert recommendations on permission granting decisions to reduce

the user’s risk of making false decisions. We implemented our system on Android phones

and demonstrate that the system is feasible and effective.

2.2 Bayesian Inference-based Android Resource Access Permission Recommenda-

tion with RecDroid

In this section, we use a Bayesian Inference model to improve our preliminary mode.

The contributions of this project are as follows:

• Two app installation modes for apps that is about to be installed: trusted mode and

probation mode. In probation mode, at run time, an app has to request permission

from users to access sensitive resources (e.g. GPS traces, contact information, friend

list) when the resource is needed. In trusted mode, the app is fully trusted and all

permissions are all granted.

• An architecture to intercept and collect apps’ permission requests and responses,

from which recommendations are made as for what permission from which apps

should and should not be granted.

• A recommendation system to guide users with permission granting decisions, by

serving users with recommendations from expert users on the same apps.

• A user-based ranking algorithm to rank security risks of mobile apps.

2.2.1 Problem Definition

With the exponential growth of smartphone apps, it is prohibitive for apps market

places, such as Google App Store for example, to thoroughly verify if an app is legitimate

or malicious. As a result, mobile users are left to decide for themselves whether an app is

21

safe to use. Even worse, recent studies have shown that most apps in markets request to

collect data irrelevant to the main functions of the apps, which could cause leaking of pri-

vate information or inefficient use of mobile resources [1]. To assist users to make a right

decision as for whether a permission request should be accepted, we propose RecDroid.

RecDroid is a crowdsourcing recommendation framework that collects apps’ permission

requests and users’ permission responses, from which a ranking algorithm is used to eval-

uate the expertise level of users and a voting algorithm is used to compute an appropriate

response to the permission request (accept or reject). To bootstrap the recommendation

system, RecDroid relies on a small set of seed expert users that could make reliable recom-

mendations for a small set of applications. Our evaluation results show that RecDroid can

provide high accuracy and satisfying coverage with careful selection of parameters. The

results also show that a small coverage from seed experts is sufficient for RecDroid to cover

the majority of the app requests.

2.2.2 Recommendation System Design

In RecDroid, the responses to permission requests from all users are logged by a cen-

tral server and they can be used to generate recommendation to inexperienced users to help

them make right decisions to avoid unnecessary permission granting. For example, if a

restaurant finding app is requesting access to the users camera, then the request is suspi-

cious and very likely will be declined by an expert user. The responses of expert users are

then aggregated and the system would suggest other users of the same app not to accept

the similar requests. However, how to find expert users and how to aggregate the responses

from expert users are the focus of this section.

22

2.2.3 Rank RecDroid Expert Users

In this section, we investigate an algorithm to seek expert RecDroid users. Suppose

we have a set of users U and among them setE ⊂ U is a set of initial seed expert users. For

instance, the security experts are employed by RecDroid to monitor the permission requests

from apps. The seed experts respond to the permission requests from selected apps based

on their professional judgment. Their responses are considered accurate and are used in the

system as ground truth. However, due to limited budget and manpower, the number of apps

that can be covered by seed experts is small, compared to the entire app base that RecDroid

monitors. In this section, we use set A to denote all apps that are monitored by RecDroid.

Suppose initially each of our seed expert users E have responded to a set of apps of

their choice. The apps responded by a seed expert user e ∈ E is denoted by A(e). Since

there may be multiple permission requests popped up during an app usage, we use R(a) to

denote the set of requests the app a ∈ A may have. We use Re to denote all requests that

are covered by RecDroid seed expert users, named labeled requests. Then we have,

Re = ∪∀e∈E∪∀a∈A(e)R(a) (2.1)

How to determine whether a user is expert user or not? In our approach we propose a

ranking algorithm to evaluate the expertise level of a user based on the ratio of correctness

on his/her responses to app requests. Let pi denote the probability that user i correctly

responds to permission requests. Our mission is to estimate pi based on the number of

correct and incorrect responses that user i has responded in the past. Our approach is to

observe all labeled requests that are independently responded (without recommendation)

by the user, and compute the ranking of the user based on the number of correct/incorrect

responses to those requests. For the convenience of presentation, we drop the subscript i in

the rest of the notations.

23

We use notation α to represent the cumulative number of requests that are responded

consistent with seed experts and β requests are responded opposite to the experts’ advice

(note that the labels from seed experts arrive later than the user’s responses). Furthermore,

we use a random variable X ∈ {0, 1} to denote a random variable that a user answers

the permission requests correctly or not. Where X = 1 represents that user responds to

a request correctly, vice versa. Therefore, we have p = P(X = 1). Given a sequence of

observations on X , a beta distribution can be used to model the distribution of p.

In Bayesian inference, posterior probabilities of Bernoulli variable given a sequence

of observed outcomes of the random event can be represented by a beta distributions. The

beta-family of probability density functions is a continuous family of functions indexed by

the two parameters α and β, where they represent the accumulative observation of occur-

rence of outcome 1 and outcome 0, respectively. The beta PDF distribution can be written

as:

f(p|α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (2.2)

The above can also be written as,

p ∼ Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1 (2.3)

In our scenario, the parameters α and β are the accumulated number of observations

that the user respond to the permission request correctly and incorrectly, respectively.

Let xn ∈ {0, 1} be the nth observation in the past, where n ∈ N. The accumulative

observations of both correct and incorrect responses from a user after n observations can

be written as,

24

αn =
n∑
k=1

qn−kxk + qnC0 (2.4)

=xn + qxn−1 + ... + qn−1x1 + qnC0

βn =
n∑
k=1

qn−k(1− xk) + qnC0 (2.5)

=(1− xn) + q(1− xn−1) + ... + qn−1(1− x1) + qnC0

Where C0 is a constant number denoting the initial believe of observations; q ∈ [0, 1]

is the remembering parameter which is used to discount the influence from past experience

and therefore emphasize the importance of more recent observations.

Equation 2.4 and 2.5 can also be written into an iterative form as follows:

α0 = β0 = C0 (2.6)

αn = xn + qαn−1 (2.7)

βn = (1− xn) + qβn−1 (2.8)

Let random variable Y represent the possible value that the true expertise level of a

user can be, then we have,

E[Y] =
α

α + β
(2.9)

δ2[Y] =
αβ

(α + β)2(α + β + 1)
(2.10)

We use s to represent the expertise ranking of the user. Then we can compute s using

the following formula,

25

s =max(0,E[Yi]− tθδ[Yi])

=max(0,
α

α + β
− tθ

√
αβ

(α + β)2(α + β + 1)
) (2.11)

Where t ∈ [0,∞) represents a conservation factor where a higher value means our

ranking mechanism is more conservative to less confident estimation. θ =
√

2−q
1−q is the

normalization factor, which is to decouple the forgetting factor and expertise rating.

We can see that the higher ratio a user responds to permission requests correctly, the

higher ranking score it receives through RecDroid system; the more samples the system

knows about the user, the higher score it receives.

Given the ranking scores of users, we can use a simple threshold τ to identify expert

users from novice users. That is, if a user i has si ≥ τ , then it is labeled as an expert

user. The ranking scores will be used to make recommendations to other app users when

permission requests pop up.

In the next subsection, we propose an algorithm to generate recommendation on app

permission requests based on existing responses from other users who have used the same

app.

2.2.4 Response Aggregation through Weighted Voting

When a user receives a permission request from an app in probation mode, RecDroid

system attempts to make a recommendation to the user regarding whether he/she should

grant the request. If the app has been investigated by our seed expert users, then the re-

sponse from the seed experts will be recommended to the user. However, due to the lim-

itation of our seed experts, majority of apps may not be covered by seed experts. In this

case, we aggregate the responses from other users and recommend the aggregated response

26

if confidence level is high enough.

The proposed approach in this model is called weighted voting. The voting process is

divided into three steps: qualification, voting, and decision. The algorithm is described in

Algorithm 2.

Algorithm 2 Weighted Voting for Recommendation Decision
1: This algorithm is to decide whether to make recommendation, and what recommendation to make given the response from other

regular users.
2: Notations :
3: M :the set of users who have responded to the permission question
4: si :the ranking of the ith user
5: xi :the response of the ith user
6: τe :the minimum required ranking score to be classified into expert users
7: τd :the recommendation threshold
8: a, b :the cumulative ballots for reception and rejection decision
9: D0 :the initial ballot count for both decisions
10: //initialize voting parameters
11: a = b = D0

12: for each user u in M do
13: if su > τe then
14: //only qualified users responses are considered into the voting
15: if xu = 1 then
16: a+ = su
17: else
18: b+ = su
19: end if
20: end if
21: end for
22: //decision making based on final ballots result
23: if a

a+b
> 1− τd then

24: Recommend to accept the request
25: else if a

a+b
< τd then

26: Recommend to reject the request
27: else
28: No recommendation
29: end if

In the qualification step, only responses from qualified users are included into the

voting process. Initially the ballot count for reception and rejection decisions are equally

initialized to D0. For each qualified voter, the weight of the cast ballot is the ranking score

of the voter. After the voting process finishes, the average ballot score is used to make a

final decision. If the average ballot score exceeds a decision threshold, then corresponding

recommendations are made. Otherwise, no recommendation is made.

27

2.2.5 Experiments

To evaluate the performance of RecDroid, we conducted a set of simulation experi-

ments to measure the accuracy, reliability, and effectiveness of the system.

2.2.6 Simulation Setup

As a proof of concept we set up a RecDroid users profile to be a set of 100 users

consisting of three different levels of expertise. Note that the expertise we refer here is

the probability that a user answers permission requests correctly (a.k.a. consistent with

standard answers). Among the 100 users, 40% are with a high level of expertise (0.9), 30%

are with a medium level of expertise (0.5), and the remaining 30% are with a low level

of expertise (0.1) . Unless particularly specified in the experiments, we fix the number of

requests answered by users to 100.

Our simulation environment is MATLAB 2013 on a Windows machine with 2.5Ghz

Intel Core2 Duo and 4G RAM. All experimental results are based on an average of 100

repeated runs with different random seeds.

2.2.7 Expertise Rating and the Impact of Parameters

The remembering parameter q (Equation 2.4) and conservation factor t (Equation 2.11)

are two essential parameters that RecDroid uses for user expertise rating. In this experi-

ment we study the impact from the two factors and determine the parameter choices for the

rest of the experiments.

In the first experiment, we track the RecDroid expertise rating of a high expertise (0.9)

with the number of labeled requests they have answered under different remembering factor

settings. In the second experiment, we deliberately configure the user so it immediately

turns to be malicious and gives opposite responses after the 100 honest requests.

28

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Requests

E
xp

er
ti

se
 R

at
in

g

q=0.99
q=0.95
q=0.9
q=0.8
q=0.7

(a)

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of Requests

E
xp

er
ti

se
 R

at
in

g

q=0.99
q=0.95
q=0.90
q=0.8
q=0.7

(b)

0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

Conservation Factor t

E
xp

er
ti

se
 R

at
in

g

 High
Medium
Low

(c)
Fig. 2.2.1.: Forgetting and Conservative factor: (a) Expertise level of users with different forgetting factor; (b) 100 percent of requests
are answered; (c) Expertise level of users for different conservation factors

From Figure 2.2.1(a) we can see that with higher q setting, the curves are smoother.

This is because a high q means the expertise rating largely depends on past accumulation,

which brings stableness to expertise rating. However, from Figure 2.2.1(b) we can see that

high q also represents less flexibility to sudden change. To leverage the pros and cons, we

decide to fix q = 0.9 in the rest of this section.

In the third experiment, we track the expertise rating of high, medium, and low ex-

pertise users after 100 labeled requests under different t setting. Figure 2.2.1(c) shows that

with higher t setting, the rating of all users are lower. We chose a moderate setting t = 0.1

in the rest of this section.

Figure 2.2.2 shows the expertise rating of the three types of users (with expertise

0.1, 0.5, and 0.9). The blue boxes represents the central 50% of the expertise rating data

while the red bars are the medium values of the samples. The vertical whiskers indicate the

range of all data except outliers, which are represented by red crosses.

2.2.8 Coverage and Accuracy of RecDroid Recommendation

In this experiment we evaluate the performance of RedDroid recommendation by mea-

suring its recommendation coverage and accuracy. We define coverage to be the percentage

of the requests that RecDroid decides to give recommendation to users given the existing

responses from users participating RecDroid. We define accuracy to be the percentage of

29

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xp

er
ti

se
 R

at
in

g

Number of Requests

(a)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xp

er
ti

se
 R

at
in

g

Number of Requests

(b)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xp

er
ti

se
 R

at
in

g

Number of Requests

(c)
Fig. 2.2.2.: Expertise ratings of: (a) Low expertise nodes; (b) Medium expertise nodes; (c) High expertise nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert Filtering Threshold

P
er

ce
n

ta
g

e
o

f
R

eq
u

es
ts

 C
o

ve
re

d
 B

y
R

ec
D

ro
id

Td = 0.04
Td = 0.08
Td = 0.12
Td = 0.16
Td=0.2

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert Filtering Threshold

P
er

ce
n

ta
g

e
o

f
A

cc
u

ra
cy

Td = 0.04
Td = 0.08
Td = 0.12
Td = 0.16
Td = 0.2

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Expert Filtering Threshold

N
u

m
b

er
 o

f
C

o
n

si
d

er
ed

 U
se

rs

High
Medium
Low

(c)
Fig. 2.2.3.: Coverage and Accuracy: (a) The percentage of requests that RecDroid makes recommendation; (b) The percentage correct
recommendations that RecDroid makes; (c) The percentage of users who pass expert filtering and participate into recommendation
voting

correct recommendation that RecDroid makes. Note that if a request is covered by a seed

expert, then RecDroid always recommend the response from the seed expert.

In the first experiment we investigate the scenario that 100 requests receive responses

from all 100 users, except seed experts. RecDroid uses Algorithm 1 to determine whether

to make a recommendation to new users or not and what recommendation it should make.

Note that we assume all 100 users have received expert rating scores previously. We plot in

Figure 2.2.3(a) and Figure 2.2.3(b) the percentage of requests (among 100) that RecDroid

decides to make recommendation and percentage correct recommendations that RecDroid

makes, under different τe and τd settings. We can see that with higher τd (which means

wider acceptance range for the recommending decision, see Algorithm 1), the coverage

increases while the accuracy decreases. This is because the more selective RecDroid is

regarding the voting score results, the higher accuracy it achieves and less voting results

30

will be qualified for recommendation. We also notice that the accuracy increases with

experts filtering threshold τe. However, with very low or very high τe, the coverage is

low. This is because when all users are included in the decision process, the conflict of

responses among users leads to low voting score and therefore RecDroid is less likely to

make recommendations. On the other side, high filtering threshold causes few or no users

are qualified to voting process, which also leads to no recommendation.

Figure 2.2.3(c) depicts the result on percentage of qualified users of the three types un-

der different τe setting. We can see that with higher expert filtering threshold τe, less users

can be involved in the decision process as described in Algorithm 1. Also the involving

rate of low expertise users is lower than high expertise users.

Finally, we simulate a scenario that no users are rating previously and all users have

responded to 100 request. As a coordinator of the RedDroid system, we hire a seed expert

to respond to some application requests as ground truth, which will then be used to rate the

expertise of other users. Regarding the requests not covered by the seed expert, RecDroid

may provide recommendation based on the response from other users. We study the cov-

erage rate by seed expert and the percentage of requests that are covered by RecDroid. As

shown in Figure 2.2.4, the overall RecDroid recommendation rate increases with coverage

rate from the seed expert. The linear line represents the coverage rate from the seed user.

The difference between the overall coverage and seed expert coverage is called the bonus

coverage. Higher bonus coverage represents a higher utilization of Recdroid. From an

economic point of view, if we consider the coverage of seed expert brings cost to the Rec-

Droid coordinator (since the seed expert is hired), then the bonus coverage brings saving

to the coordinator. The decision makers can choose the optimal seed coverage based on its

optimal profit. Note that in the above experiment, the values of simulation parameters are

τe = 0.5, τd = 0.2, q=0.9, and t=0.1.

31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Requests Covered by Expert Seeds

P
er

ce
n

ta
g

e
o

f
R

eq
u

es
ts

 C
o

ve
re

d
 b

y
R

ec
D

ro
id

Overall Coverage
Seed Expert Coverage
Bonus Coverage

Fig. 2.2.4.: Coverage of overall requests vs. coverage of seed experts

2.2.9 Conclusion

In this section we presented RecDroid, an Android permission control and recommen-

dation system which serves the goal of helping users perform low-risk resource accessing

control on untrusted apps to protect their privacy and potentially improve efficiency of re-

source usages. We propose a framework that allows users to install apps in either trusted

mode or probation mode. In the probation mode, users are prompt with resource accessing

requests and make decisions to grant the permissions or not. Our RecDroid recommenda-

tion algorithm can effectively use crowdsourcing techniques to find expert users in the user

base and provide recommendation based on the responses from expertise nodes. Our eval-

uation results demonstrate that RecDroid recommending system can achieve high accuracy

and coverage when parameters are carefully selected. We also show that RecDroid only

need a small seed expert coverage to bootstrap the system. We implemented our system

on Android phones and demonstrate that the deployment of such system is feasible and

effective.

2.3 Android Permission Recommendation Using Transitive Bayesian Inference Model

To support this user-help-user environment, an effective expert user seeking is the

major challenge. DroidNet starts from a small set of trusted expert users (seed users) and

propagates the expert evaluation using a transitional Bayesian learning model. We evaluate

32

the effectiveness of the model through simulation and survey data from real users. The

major contributions of this project include:

• A comprehensive Android permission control framework to facilitate a user-help-

user environment in terms of permission control.

• A novel transitive Bayesian inference model to propagate expertise rating of users in

a network through pairwise similarity among users.

• A low-risk recommendation algorithm which can help inexperienced users with per-

mission control decision making.

• A prototype implementation of the system and real user evaluation on the usability

of the system.

2.3.1 Problem Definition

In current Android architecture, users have to decide whether an app is safe to use or

not. Expert users can make savvy decisions to avoid unnecessary privacy breach. How-

ever, the majority of normal users are not technically capable or do not care to consider

privacy implications to make safe decisions. To assist the technically incapable crowd, we

propose DroidNet, an Android permission control framework based on crowdsourcing. At

its core, DroidNet runs new apps under probation mode without granting their permission

requests up-front. It provides recommendations on whether to accept or reject the permis-

sion requests based on decisions from peer expert users. To seek expert users, we propose

an expertise ranking algorithm using a transitional Bayesian inference model. The rec-

ommendation is based on the aggregated expert responses and its confidence level. Our

simulation and real user experimental results demonstrate that DroidNet provides accurate

recommendations and covers the majority of app requests given a small coverage from a

small set of initial experts.

33

2.3.2 Expert Users Seeking

The key challenge of DroidNet is to seek experts from the regular users in the Droid-

Net. In DroidNet users’ responses to permission requests are recorded by a central server

and the responses from expert users are used to generate recommendations to help inexpe-

rienced users make low-risk decisions.

DroidNet starts from a small set of trusted seed expert users, and propagate the ex-

pertise evaluation based on similarity among users using a transitive Bayesian inference

model [67]. This section describes the model in more detail.

2.3.2.1 Assumptions and Notations

DroidNet can be seen as a network G = {s ∪ U , E}, which consists of a seed expert

s, a set of n regular users U = {U1,U2, · · · ,Un}, and a set of edges E = {eij|Ri ∩ Rj >

θ,∀i, j}, where Ri denotes the set of permission requests answered by user i(j). Edge eij

∈ E denotes the set of permission requests to which both users have answered. Users are

connected if the number of commonly answered requests exceeds threshold θ.

The seed expert (SE) is one or a set of trusted expert users who might be employed

by a DroidNet facilitator to provide correct responses to permission requests. It is worth

noting that the seed experts follow the principle of least privilege, where a minimal set of

permissions that are necessary for apps’ legitimate purposes are defined to determine the

correct responses for permission requests. This way, their responses do not depend on user

preferences or context. However, due to the high cost of human labor, the seed expert can

only cover limited number of applications. Therefore, identifying expert users from regular

users can expand the coverage of apps that can benefit from DroidNet recommendations.

Let Rs denote the set of requests covered by seed experts. Then the common set of

requests answered by both the seed user and user i can be written as Rsi = Rs ∩ Ri.

34

Table 2.3.1.: Notations

Notation Description

U {U1, · · · ,Un}: Set of n DroidNet users in the system.
s The seed user.
Ri The set of requests responded by user i in the past.
pi The true expertise level of user i.

Ri,Ci The expertise rating and rating confidence of user i.
(αij ,βij) The similarity tuple between user i and j.
(αi,βi) The expertise level distribution parameters for user i.

Table 3.1.2 lists the notations we use in this section.

2.3.2.2 The Users Expertise Rating Problem

Before getting into the details, we show a general view of the users network. Fig-

ure 2.3.1(a) presents a comprehensive view of DroidNet’s user network. In this network

we can see different types of users and communities. Figure 2.3.1(b1),(b2) show the User-

Seed and User-User connections.

Very Low (VL)

Low (L)

Medium (M)

High (H)

Isolated Community

Isolated User

Seed Expert

App Overlap

(a)

Seed User Direct User App Overlap

High (H) Medium (M) Overlapped Apps

(b)

Fig. 2.3.1.: DroidNet user connectivity network: (a) overall view of the network; (b) users’ connectivity (User-Seed and User-User)

The expertise level of a user i, denoted by pi ∈ [0, 1], is the likelihood that the user

35

makes correct permission granting decisions. Given the set of responses that user i has

given to permission requests and their corresponding ground truth, a Bayesian inference

model can be used to estimate pi.

Definition 1. (Expertise Rating and Rating Confidence) Assume that the likelihood that a

user i makes correct decision (pi) satisfies a distribution Yi with pdf fi(x). Then we define

the estimated expertise level of the user to be:

Ri = E[Yi] =

∫ 1

x=0

xfi(x)dx,

The confidence level of the estimation is:

Ci = 1− θδ[Yi] = 1− θ
(∫ 1

x=0

(x−Ri)
2fi(x)dx

)1

2

where θ is the normalization factor. Therefore, the expertise seeking problem can be

described as follows:

Problem 2. (Expertise Rating Problem) Given a seed user s, a set of users U = {U1, ...,Un},

and a DroidNet graph G = {U ∪ s, E}. The expertise rating problem is to find the posterior

distributions of all pi, given their past history of responses to permission requests.

Before presenting the solution, we first define the concept of similarity and then dis-

cuss a special case where a user is connected to a seed expert only.

Definition 3. (Similarity of Two Users) Let i and j be two users who have responded to

a common set of permission requests Rij, then we define the similarity between i and

j as the tuple (αij , βij), where αij and βij denote the accumulated number of consistent

responses and inconsistent responses to those common requests, respectively.

Let {xk ∈ {0, 1}|1 ≤ k ≤ n} denote a sequence of n observations in history, where

36

xk = 1 means that the two users provided consistent responses at the kth overlapped re-

quest, and vice versa. The similarity tuple can be computed as follows:

α
(n)
ij =

n∑
k=1

qn−kxk + qnC0 (2.12)

=xn + qxn−1 + ... + qn−1x1 + qnC0

β
(n)
ij =

n∑
k=1

qn−k(1− xk) + qnC0 (2.13)

=(1− xn) + q(1− xn−1) + ... + qn−1(1− x1) + qnC0

WhereC0 is a constant weighting the initial belief; q ∈ [0, 1] is the remembering factor

which is used to discount the influence from past experience and therefore emphasizes the

importance of more recent observations.

2.3.2.3 Users Connected to the Seed Expert

We start with the case that a user i who has a common set of responded requests with

the seed expert (see Figure 2.3.2(a)). In such case, our approach is to compute the similarity

tuple (αsi, βsi) between the user and the seed, and then the distribution of pi based on the

observations.

We have the following Lemma:

Lemma 4. Let i be a user i that has only one seed expert neighbor in the DroidNet graph.

Let (αsi, βsi) be the similarity tuple of i and the seed expert. Then the rating of the user can

be estimated as follows:

Ri =
αsi

αsi + βsi
(2.14)

Ci =1−
√

12αsiβsi
(αsi + βsi)2(αsi + βsi + 1)

(2.15)

37

Proof. Since the seed expert’s advice is assumed correct, α and β are indeed the number

of correct and incorrect responses that the user answered in the past. Let a random variable

X ∈ {0, 1} denote whether a user answers the permission requests correctly or not. X = 1

indicates that user responds to a request correctly, vice versa. Therefore, we have p =

P(X = 1). Given a sequence of observations on X , a beta distribution can be used to

model the distribution of p.

In Bayesian inference theory, posterior probabilities of Bernoulli variable given a se-

quence of observed outcomes of the random event can be represented by a Beta distribu-

tions. The Beta-family of probability density functions is a continuous family of functions

indexed by the two parameters α and β, where they represent the accumulative observation

of occurrence of outcome 1 and outcome 0, respectively. The beta PDF distribution can be

written as:

f(p|α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (2.16)

The above can also be written as,

p ∼ Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1 (2.17)

According to Definition 1, we have Equation (2.14) and (2.15).

S

αsi, βsi

i S

i

j 1

m

i

(a) (b) (c) (d)

…

u

i

αui, βui

Fig. 2.3.2.: The illustration of four cases of DroidNet graphs. (a) a user is connected directly to a seed user; (b) a user is connected to a
non-seed user; (c) a multi-hop rating propagation case; (d) a multi-path rating aggregation case.

38

2.3.2.4 Users Connected to a Regular User

Due to the limited coverage of the seed user, there may be many users who do not have

direct overlap with the seed user (see Figure 2.3.2(b)). To rate users who are connected only

to a regular user with known expert rating, we can use the following theorem:

Theorem 5. Let i be a user connected to a user u with known expertise level pu > 1
2

in the

DroidNet graph; let (αui, βui) be the similarity tuple of i and u, where αui ≥ βui. Then pi

satisfies a Beta distribution: pi ∼ Beta(αi, βi), where

αi =
αuipu + βui(pu − 1)

2pu − 1
(2.18)

βi =
αui(pu − 1) + βuipu

2pu − 1
(2.19)

Proof. Let random variables Xi ∈ {0, 1} and Xu ∈ {0, 1} denote a random event that

user i and u respond to permission requests correctly or not. Xi(Xu)= 1 means that user

i(u) responds to a permission request correctly. Therefore, we have pi = P(Xi = 1) and

pu = P(Xu = 1)

Using Bayes theory, the probability that a consistent response being a correct response

is formulated as follows:

39

P(Xi = 1|Xi = Xu)

=
P(Xi = Xu|Xi = 1)P(Xi = 1)

P(Xi = Xu)

=
P(Xu = 1|Xi = 1)P(Xi = 1)

P(Xi = 1,Xu = 1) + P(Xi = 0,Xu = 0)

=
P(Xu = 1)P(Xi = 1)

P(Xi = 1)P(Xu = 1) + P(Xi = 0)P(Xu = 0)

=
pipu

pipu + (1− pi)(1− pu)
(2.20)

Similarly, the probability that an inconsistent response being a correct response is

formulated as follows:

P(Xi = 1|Xi 6= Xu)

=
P(Xi = Xu|Xi 6= 1)P(Xi = 1)

P(Xi 6= Xu)

=
pi(1− pu)

pi(1− pu) + (1− pi)pu
(2.21)

Note that αi and βi denote the cumulative observations that user i responds correctly.

Then αi and βi can be obtained indirectly from αui and βui from the formula below,

αi =αuiP(Xi = 1|Xi = Xu) + βuiP(Xi = 1|Xi 6= Xu)

βi =αuiP(Xi = 0|Xi = Xu) + βuiP(Xi = 0|Xi 6= Xu)

The above equation set can be transformed into:

40

αi =
αuipipu

pipu + (1− pi)(1− pu)
+

βuipi(1− pu)
pi(1− pu) + (1− pi)pu

(2.22)

βi =
αui(1− pi)(1− pu)

pipu + (1− pi)(1− pu)
+

βuipu(1− pi)
pi(1− pu) + (1− pi)pu

(2.23)

Note that the estimated expertise level of user i can be written as Ri = αi/(αi + βi).

However, the actual expertise level pi of user i is unknown. An iterative method can be

used to iteratively update Equations (2.22) and Equation (2.23) starting from R
(0)
i = 1

2
and

at each round t replaces pi with the last round expertise level R(t−1)
i . The process stops

when R(t)
i converges.

Alternatively we can solve Equation set (2.22) and (2.23) by replacing pi with αi/(αi+

βi). Then we get (5) and (6).

2.3.2.5 Multi-hop User Rating Propagation

Since not all users are connected to the seed user, a rating propagation model is called

upon to rate users who are indirectly connected to the seed. As shown in Figure 2.3.2(c),

user i has overlap with the seed user, so it can be ranked through our Bayesian ranking

algorithm described in Lemma 4. User j only has overlap with user i, so it can be ranked

based on its similarity to user i. However, Theorem 5 only works when the expertise of user

i is known. Therefore, here we use an iterative method to update the rating of all regular

users in DroidNet.

Corollary 5.1. Let i be a regular user directly connected to a set of users Ni. The ratings

of the neighbors at round t are (αti, β
t
i), then the rating tuple (α(t+1)

i , β(t+1)
i) of user i at time

t+ 1, can be computed as follows:

41

α
(0)
i =β

(0)
i = 1,∀i, s.t.Ui ∈ U

α
(t+1)
i =

∑
k∈Ni

(αikα
(t)
i α

(t)
k

α
(t)
i α

(t)
k + β

(t)
i β

(t)
k

+
βikα

(t)
i β

(t)
k

α
(t)
i β

(t)
k + α

(t)
k β

(t)
i

)
β

(t+1)
i =

∑
k∈Ni

(αikβ
(t)
i β

(t)
k

α
(t)
i α

(t)
k + β

(t)
i β

(t)
k

+
βikα

(t)
k β

(t)
i

α
(t)
i β

(t)
k + α

(t)
k β

(t)
i

)
(2.24)

Proof. From Equation (2.22) and (2.23) we learn that the rating of a node can be computed

using the similarity with a source of known rating. We use (αki , βki) denote the transformed

observation on user i passed by user k, then we have:

αki =
αkipipk

pipk + (1− pi)(1− pk)
+

βkipi(1− pk)
pi(1− pk) + (1− pi)pk

βki =
αki(1− pi)(1− pk)

pipk + (1− pi)(1− pk)
+

βkipk(1− pi)
pi(1− pk) + (1− pi)pk

By replacing pi with αi

αi+βi
and pk with αk

αk+βk
, we have:

αki =αki
αkαi

αkαi + βkβi
+ βki

βkαi
βkαi + αkβi

,∀k ∈ {1, 2, ...,m}

βki =αki
βkβi

αkαi + βkβi
+ βki

αkβi
βkαi + αkβi

,∀k ∈ {1, 2, ...,m}

In Bayesian inference theory, the observations on one variable can be cumulated

through simple summation on all observations, given that they are observed independently.

In this case the rating of a user can be represented by the total number of positive and

negative observations observed by connected users on different paths. Given that αi and βi

represent the cumulative positive/negative observations on user i, we have:

42

αi =α1
i + ... + αmi =

m∑
k=1

αki

βi =β1
i + ... + βmi =

m∑
k=1

βki (2.25)

2.3.2.6 Multi-path User Rating Aggregation

A user may have overlap with multiple other users. As shown in Figure 2.3.2(d), user i

is connected to m other users. The overlap with multiple users can be seen as observations

from multiple sources and those observations can be aggregated to generate a more accurate

ranking of user i.

Corollary 5.2. Let i be a user who has overlap with a set of usersM = {U1,U2, ...,Um}

with corresponding similarity tuples S = {(α1i, β1i), ..., (αmi, βmi)}. Then we have:

αi =α1
i + ... + αmi =

m∑
k=1

αki

βi =β1
i + ... + βmi =

m∑
k=1

βki (2.26)

where,

αki =αki
αkαi

αkαi + βkβi
+ βki

βkαi
βkαi + αkβi

,∀k ∈ {1, 2, ...,m}

βki =αki
βkβi

αkαi + βkβi
+ βki

αkβi
βkαi + αkβi

,∀i ∈ {1, 2, ...,m}

Proof. This results are derived from Corollary 5.1 by iteratively computing αi and βi on

node i in a graph starting from initial setting α(0)
i = 1 and β(0)

i = 1.

43

Algorithm 3 Rate All Regular Users
1: Compute expertise rating of all regular users in DroidNet
2: Notations:
3: R(U): the current rating of all users
4: R̂(U): the last round rating of all users
5: s: the seed expert
6: Ui: the ith user
7: G = (V ,E): the generated graph of users and overlaps
8: RU : the set of rated users
9: QU : the queue of users to be rated
10: //parameters initialization
11: set R(s) = 1 and R(U) = 0.5

12: while (Distance(R(U), R̂(U)) > ε) do
13: RU ← s
14: QU ← findNeighbors(s)

15: R̂(U)← R(U)

16: while (u← remove(QU) is not null) do
17: //Users rating using Corollary 5.2
18: R(u)← computeRating(u)

19: RU ← RU ∪ u
20: N = findNeighborsNotInRUorQU(u,G)

21: push(N ,QU)

22: end while
23: end while

Our approach to determine the order of user rating is to start from the direct neighbours

of the seed user, and then we expand the list by looking for the next hop users, and so on.

An iterative algorithm is described in Algorithm 3 which rates all regular users in DroidNet.

The iteration stops when the difference between two rounds of ratings are sufficiently close.

2.3.2.7 Recommendation Algorithm

After rating users in the network, the next phase is to generate recommendations based

on responses from expert users. We propose a weighted voting method to handle the de-

cision making. The voting process is divided into three phases: qualification, voting, and

decision. The algorithm is described in Algorithm 4.

In the qualification phase, only responses from qualified users are included into the

voting process. Initially the ballot count for reception and rejection decisions are equally

44

initialized to D0. For each qualified voter, the weight of the cast ballot is the rating score

of the voter. After the voting process finishes, the average ballot score is used for a final

decision. If the average ballot score exceeds a decision threshold (τd), then corresponding

recommendations are made. Otherwise, no recommendation is made.

Algorithm 4 Weighted Voting for Recommendation
1: Notations :
2: R(u),C(u) :the rating score and rating confidence of user u
3: x(u) :the response to permission request from user u
4: τe, τc :the minimum rating score and rating confidence to be considered as an expert user
5: τd :the recommendation threshold
6: a, b :the cumulative ballots for yes or no decision
7: D0 :the initial ballot count for both decisions
8: a = b = D0

9: //Users filtering and ballots casting
10: for each user u who responded to the request do
11: if R(u) > τe and C(u) > τc then
12: if x(u) = 1 then
13: a+ = R(u)

14: else
15: b+ = R(u)

16: end if
17: end if
18: end for
19: //decision making based on final ballots count
20: if a

a+b
> τd then

21: Recommend to accept the request with confidence a
a+b
− τd

22: else if a
a+b

< 1− τd then

23: Recommend to reject the request with confidence 1− a
a+b
− τd

24: else
25: No recommendation
26: end if

2.3.3 Implementation

The goal of DroidNet is to provide a platform for users to grant permissions to apps

based on recommendations from expert users. To prove the concept feasibility, we imple-

mented a prototype of DroidNet. More specifically, we modify the permission manage-

ment component of the Android operating system, and developed an Android application

allowing users to monitor and manage resource access permissions at fine-grain level. Fig-

ure 2.3.3 shows DroidNet’s implementation architecture. DroidNet is installed by applying

45

a software patch which includes modifications on the Android operating system level and

a pre-installed app DroidNet.apk on the application level.

Application Context

ContextImpl.java
checkPermission()
checkCallingPermission()
enforce()

IActivityManager

Components

Services, Activities,…
ActivityManagerService

ActivityManagerNative

Package Manager Service
checkPermission()
checkUidPermission()
checkComponentPermission()

Package Installer

InstallAppProgress.java

Permission PID UID

P
ro

c
e

s
s
 B

o
u

n
d

a
ry

Parcel Structure

S
e

c
u

ri
ty

 E
x
c
e

p
ti
o

n

Probated Apps
Repository

(PAR)

Requests/
Recommendations

Repository
(RRR)

- Package IDs
- Package flags

- Probated permissions
- Permission flags
- UIDs / PIDs

<PermissionID, UID>
<PermissionID, UID>

Memory (SD Card)

- Requests
- Reponses
- Recommendations
- Users expertise levels

Server Repository

Server

DroidNet Portal

Users

• User expertise ranking

• Bad response filtering

• Response recommendation

• App ranking

• Expert user discovery

<PermissionID, UID, User ID>

Modified for DroidNet Developed for DroidNet Unmodified Framework Off Device On Device

- DroidNet.apk
- Defining policies
- App installation
- Popup generatingApp Markets

App Ranks

A
n

d
ro

id
 F

ra
m

e
w

o
rk

<Recommendation>

<Installation Mode>

2

6

7

12

43

1

9 10

8 11
5

Fig. 2.3.3.: DroidNet implementation architecture overview

2.3.3.1 Permission Control User Interaction

DroidNet users have an option to install apps under a probation mode. We use the

app “Telegram” (a popular chat application) as an example. The first screenshot (Fig-

ure 2.1.3(a)) displays two options when installing the app on the smartphone, e.g. proba-

tion mode and trusted mode. If the user selects the probation mode, then the application

will be added to a list of monitored apps on the phone. On the other hand, if the user se-

lects the trusted mode, then the application will be installed with all requested permissions

granted.

For each installed app, users can use the pre-installed DroidNet application to view a

list of apps which are under the probation mode. If the user clicks on an app in the list,

a set of requested resources is displayed (Figure 2.1.3(b)) where checked resources are

monitored. By default all sensitive resources are monitored; however users can change this

default.

46

If an app is installed under the probation mode, whenever the app requests to access to

a resource under monitoring, the user is informed by a pop-up (Figure 2.1.3(c)). In addition,

DroidNet recommends a decision to users with a confidence level. If the user chooses to

follow the recommendation, the request of the application will be served; otherwise the

request will be blocked.

2.3.3.2 Android Framework Modification

To implement a real-time resource permission control, DroidNet monitors all resource

access requests (system calls) at runtime. We modified a few components and methods in

Android framework to meet our goal.

App Installation Mode: To allow users to have the option to install under probation or

trusted mode, we modified the Package Manager Service, which plays the main role in the

installation of apps and their requested permissions management. Installation is managed

by the PackageInstaller activity and when an application installation is completed, a notifi-

cation is sent to InstallAppProgress.java, which is the place we added a post install prompt

to ask users if they would like to put application on probation mode.

If a user selects the trusted mode installation then the app would not be managed by

DroidNet, and no information will be recorded about the application. If the user selects the

probation mode, DroidNet records app’s UID and the set of requested permissions by the

probated app in the Probated Apps Repository (PAR) and Request/Recommendation Repos-

itory (RRR) repositories. Note that communication is supported by using these repositories

that all layers (framework and application) read and write from.

System Calls monitoring and Permission Enforcement: Our implementation is de-

signed to be extensible and generic. While our implementation requires multiple changes

in one place, it does not require modifications on every permission request handler, as it was

the case on some previous works, such as in MockDroid [18]. The modification is presented

47

in the form of a framework patch, which can be executed from a user’s space, making this

technique easier to adopt. In order to design an extensible and central permission enforcing

point, we modified methods such as enforcePermission, checkPermission, and

enforceCallingPermission of ContextImpl.java class of the context component of

Android. These methods are called whenever an application seeks to use some permissions

that are not hardware related. When the methods are called, it is passed an UID and a

permission name. We first check to see if the UID is a system call. If yes then we check

the repository to see if the UID is present, and if it is, what value the flag associated with

the passed in permission has. Algorithm 3 shows the flow of permission enforcement for

incoming permission requests.

2.3.3.3 DroidNet recommendation server

Recording the users’ responses and providing decision recommendations to users are

essential to DroidNet. For this purpose we maintain a remote server to record the responses

on an online server and also compute recommendations according to the recorded responses

from users. The DroidNet clients request recommendations from the server when needed.

2.3.4 Experiments

For a comprehensive evaluation of the DroidNet system, we use simulation to evaluate

the performance of the expert rating and recommendation algorithms.

2.3.4.1 Simulation Setup

As a proof of concept, we created a set of DroidNet users’ profiles consisting of four

different levels of expertise. The expertise level we refer here is the probability that a user

responds to permission requests correctly (a.k.a. consistent with the correct responses).

User profiles consist of users with a high (H) expertise (0.9), medium (M) expertise (0.7),

48

Algorithm 5 Permission Enforcing Flow
1: This algorithm is to decide whether to grant a requested permission to app or deny it
2: Notations :
3: PAR :Probated Apps Repository
4: RRR :Request/Recommendation Repository
5: flag :denotes that permission is probated
6: uid :Package identifier
7: p :Permission name (identifier)
8: r :user’s response for a permission request
9: //initialize voting parameters
10: while (there is an incoming permission request) do
11: Fetch UID’s info from PAR
12: if uid /∈ PAR then
13: //grant the requested permission
14: else
15: Fetch apps’ probated Ps from RRR

16: if p’s flag = True then
17: //grant the requested permission
18: else
19: Prompting user through a popup
20: if r = True then
21: //grant the requested permission and record the user’s response
22: else
23: //deny the request and record the user’s response
24: end if
25: end if
26: end if
27: end while

low (L) expertise (0.5), and the remaining are users with a very low (VL) expertise (0.1).

Note that VL is considered to be malicious since their responses are misleading most of the

time. In order to measure the effectiveness of the DroidNet expertise rating, we use a few

study cases of multi-hop and multi-path propagation. In all experiments we set q = 1%.

Our simulation environment is C++ on a Windows machine with 3.6Ghz Intel Core

i7 and 16GB RAM. All results are based on an average of 500 repeated runs with different

random generator seeds.

2.3.4.2 Expertise Rating and Confidence level

To evaluate the effectiveness of the rating and recommendation model, we start from 4

study cases on a set of nodes with designed configuration. The average number of permis-

sion requests per app is set to 5 and the maximum number of requests is 500. Figure 2.3.4

49

shows the four case studies and their configurations.

(a) (b) (c) (d)

S

S S
M

VL

H

LHH

/L/M/H

VL/L/M/H

L/M/H

HVL/L/M/H

S

Fig. 2.3.4.: The illustration of four small user profiles designed for our evaluation: (a) the user is connected directly to a seed user; (b)
the user is far from seed by distance 1 intermediate user; (c) the multi-path rating propagation case; (d) a multi-path rating case, designed
for α and β calculation convergence.

We start from a simple case study in which a user is connected to a seed expert only

(Figure 2.3.4(a)), and study the expertise ratings and rating confidence when the user is

initialized with H, M, L and VL expertise ratings, respectively. Figure 2.3.5(a) shows the

estimated expertise rating for all four types of user’s expertise. We can see that when

the number of overlapped requests increases, the estimated expertise ratings approach to

their true expertise levels. Figure 2.3.5(b) shows the corresponding confidence levels of

estimation. The confidence level also increases with the number of overlapped apps. From

these results, we can see that DroidNet can have high quality users’ expertise rating when

the user has sufficient requests overlapping with the seed expert.

In the second case study (Figure 2.3.4(b)), we investigate the influence of intermediate

users on the expertise rating propagation. We set user 1 with L, M and H expertise and user

2 with H expertise. Figure 2.3.6(a) shows that the expertise rating of user 2 is influenced

by the expertise level of user 1. The higher expertise of the intermediate node, the closer

user 2’s is rated to its actual expertise level. We call a high expertise node has a high rating

conductivity. We also conclude that through multi-hop rating propagation, we can find

expert users who do not have direct overlap with the seed expert.

50

Fig. 2.3.5.: Calculated user expertise and confidence level: (a) expertise level of user with different initial expertise level; (b) computed
confidence level of user with different initial expertise level.

In the third case study (Figure 2.3.4(c)), we show the expertise rating of user 3 with

two intermediate users between user 3 and the seed expert. We vary the type of user 1 to

be void (non-existing), H, M, and L expertise and vary the type of user 2 to be H, M, L,

and VL. Figure 2.3.6(b) shows that the conductivity of rating is high if one of the paths has

high conductivity node.

Figure 2.3.6(c) shows the expertise rating of five users (with expertise 0.1, 0.5, 0.7,

and 0.9) for the case study shown in Figure 2.3.4(d). As we described in Algorithm 5, we

continue updating the expertise rating parameters (α and β) of a user until they converge

to a stable value. In this experiment, we show the convergence speed of different types

of users through iterating α and β calculation process 10 times start from 1 iteration to

10 iterations. From these results we can see that after 10 iterations all ratings converge to

stable values, while the user directly connected to the seed expert achieves stableness after

one computation cycle.

In the next experiment we test our technique on a medium size network with 400 users

and 250 apps in total (Figure 2.3.1(a)). We set up 100 users for each type (VL, L, M and

H). Users choose to install 20 apps out of 250 apps randomly. Figure 2.3.6(d) presents

the distribution of the final expertise ratings for all 400 users marked by different colors.

51

Fig. 2.3.6.: Influence of neighbors on expertise rating: (a)(b) expertise rating of a user with only one user in its locality and different
expertise ratings (U1,U2); (c) expertise rating of a user with two users in its locality and different expertise levels; (d) expertise rating
of users for different number of α and β calculation iterations; (e) expertise rating distribution after rating users with different actual
expertise rating.

We can see that the estimated expertise ratings are clustered around their actual expertise

levels; however false positives and false negatives exist.

To evaluate the relationship between the seed expert coverage and false positive on

user classification, we repeated the last experiment under 10 different seed expert coverage

rates, while using the same configuration. As shown in Figure 2.3.7(a), the number of users

assigned to high rating group increases when the seed expert coverage increases.

2.3.4.3 Quality of DroidNet Recommendations

Making accurate permission granting recommendations is the main purpose of Droid-

Net. We thus evaluate the quality of DroidNet recommendations using two metrics: cov-

52

erage and accuracy. Coverage is the percentage of the requests for which DroidNet can

offer recommendation to users, while accuracy is the percentage of correct recommenda-

tion that DroidNet makes. Note that if a request is covered by a seed expert, DroidNet

always recommends the response from the seed expert.

Fig. 2.3.7.: Coverage and accuracy of rating and recommendation: (a) generated dataset based on teh Long-tail distribution; (b) percent-
age of requests that DroidNet makes recommendation for; (c) percentage correct recommendations that DroidNet makes; (d)(e) accuracy
of generated recommendations and seed expert coverage relation.

In order to conduct the simulation close to the real-life scenario as much as possible,

we decided to build a network of users and apps proportionally close to the number of

Android users (' 2B) and apps (' 2M). Thus, we generated a network with 500K users

(125K per each user type) and 500 apps. We set the number of permissions per app and

number of apps per user to be 5 and 2 respectively. The number of users per apps follows

the Long-tail distribution. To generate such dataset of users/apps and assign the apps to

53

Fig. 2.3.8.: Correctness and recommendation positive response/following rates: (a) expertise ratings of participants; (b) users responses
analysis; (c) applications’ permission requests analysis; (d) recommendations’ accuracy under different normalized τe and a fixed τd =
0.5.

the users, we used the power-law distribution formulation. Power-law distribution formula

is f(cx) = a(cx)−k = c−kf(x) ∝ f(x), in which x denotes the range of the distribution,

a denotes the normalization constant (maximum popularity), k denotes the distribution

shape parameter and c is a constant value for scaling the distribution. Fig. 2.3.7(a) shows

the distribution of users and apps. For the sake of clarity, only a part of the distribution is

illustrated. In this configuration, the number of the most (app 1) and least (app 500) popular

apps’ users are ≈ 500K and ≈ 11 respectively.

Figs. 2.3.7(b) and Figs. 2.3.7(c) show the coverage and accuracy of DroidNet under

different τe and τd settings. We can see that with lower values of τd (Algorithm 2), the cov-

erage is higher while the accuracy is lower. This shows the trade-off between the coverage

54

and accuracy. We also notice that the accuracy increases with increasing values of the ex-

perts filtering threshold τe. However, with very high τe, the coverage is low. This is because

when all users are included in the decision process, the conflict of responses among users

leads to low voting score and therefore DroidNet is less likely to make recommendations.

In this experiment, the seed experts coverage is set to 1% of the apps.

To evaluate the relationship between the seed expert coverage and false positive on

user classification, we repeated the last experiment under 5 different seed expert coverage

rates, while using the same configuration. In this experiment, we also show the difference

between two scenarios in terms of covering apps by seed experts. First, when seed experts

cover apps randomly selected among top 10% apps and second, when seed experts cover

the top 1% apps. It is worth mentioning that the τe is set to 0.9 in both scenarios. As shown

in Fig. 2.3.7(d)(e), the number of users assigned to high rating group increases when the

seed expert coverage increases in both scenarios. The main difference is that using the

long-tail distribution helps classifying users more accurately (Fig. 2.3.7(e)).

In the last experiment, we also compare the performance of DroidNet and the PMP

system [8]. Fig. 2.3.7(c) shows that the PMP achieves the accuracy of 0.57, whereas Droid-

Net’s accuracy is higher than 0.8.

2.3.4.4 Usability Evaluation

We also evaluated DroidNet through real user experiments. We collected user data to

measure the accuracy, reliability, ease-of-use and practicality of the system described as

follows.

Participants: We recruited 100 real users to participate in our experiments. To intro-

duce diversity of the participants, we have users from different educational levels (High-

School (HS), Undergraduate (UG), Graduate (G) and Others (O)). Table II shows the di-

versity of the participants in our experiments with respect to educational levels. The par-

55

ticipants with a higher education degree (undergraduate and graduate) were selected from

different majors (engineering and non-engineering). We purposely selected 20 of the grad

participants from Computer Science major to see whether participants’ majors matters or

not. Table III also shows the diversity of our participant in terms of age ranges. We hired

participants from different ages (18-50) to conduct a comprehensive usability experiment.

It is worth noting that 38% and 62% of our participants are female and male respectively.

Table 2.3.2.: Diversity of Participants (Education level)

Educational Level High-School Undergrad Grad Others

Number of users 16 20 28 36

Table 2.3.3.: Diversity of Participants (Age)

Age range 18− 19 19− 25 25− 35 35− 50

Number of users 21 35 37 7

Applications: We selected 12 applications to be evaluated in our experiments. The se-

lected apps include 6 "trusted" apps (top ranked) and 6 aggressive (not ranked) apps. We

define trusted apps to be those developed by trusted developers such as Instagram (social

network), Weather Channel (weather category), etc. We define aggressive apps to be the

apps that request irrelevant resources that they do not need. The apps request various re-

sources including Internet communication, location, camera, storage (photos/media/files),

SMS service, and user’s contacts. We selected apps from different app categories such as

communication, social network, finance, weather, music-audio, card game, and arcade. In

each of these categories we downloaded a pair (trusted and aggressive) of apps. There are

72 permission requests in total.

Devices and OS: To prepare for the experiment, we built a customized Android ROM

(Android 4.3, Jelly Bean) equipped with DroidNet system. We have used 4 LG Nexus 4

devices running DroidNet system.

Server: DroidNet records all responses from users and stores them on an online server.

56

The server is implemented on a LAMP stack and uses CentOS, Apache, SQLite3, and the

latest version of php.

We asked all participants to respond to the permission requests independently. Among

the 72 requests, only 30 requests have DroidNet recommendations available. Those recom-

mendations are created on purpose and may be incorrect to test how likely users will follow

those recommendations blindly. We collected the responses from all users for analysis. The

ground truth of all permission requests were provided by our seed expert.

2.3.4.5 Data Analysis

Before presenting the results, we show an overall view of the expertise level of users.

Fig. 2.3.8(a) shows the expertise rating (unormalized) of all participants based on our col-

lected data and ground truth provided by our seed expert. After applying our expertise

rating algorithm on the recorded responses, the expertise rating results of users range from

0.1 (lowest) to 0.92 (highest). Considering the calculated users’ expertise ratings, we clas-

sify them into four types, users with very low (< 0.1), low (0.1-0.5), medium(0.5-0.7), and

high (> 0.7) level of expertise. In this figure, we can see that participants with higher level

of education have higher expertise level. As we described in the participants demographic

section, 20 of the participants had graduate degrees. 15 of the grad participants have exper-

tise level between 0.9− 1. Out of this number 13 of them are Computer Science students.

From this result, we can prove that educational background has a direct relation with the

expertise level.

To study the correlation between user behavior and their expertise level, we selected

two groups of users. Group A are users who are savvy (expertise rating higher than 0.8) and

group B are inexperienced (expertise rating below 0.5). Fig. 2.3.8(b) shows the responses

from users from the two groups. The correctness rate (C) is the percentage of correctly

answered requests, and the following rate (FR) is the percentage of requests which followed

57

the DroidNet recommendations. We see a strong correlation between the correctness rate

and users groups and a weak correlation between the following rate and user groups. Users

in group A achieves much higher correctness rate and behave more conservative in terms

of granting permissions. In other words, the accept rate (AR) is lower.

We also divided apps into two different groups: trusted group (group 1) and aggressive

group (group 2). Fig. 2.3.8(c) shows the responses received for both types of apps. We can

see that requests from the apps in group 1 are more likely to be accepted by users, and

a higher accuracy rate is also observed for trusted apps. There is no strong correlation

between the following rate and app groups.

To evaluate the effectiveness of DroidNet on real data, we run the DroidNet recom-

mendation algorithm on the collected real user data with parameter setting τd = 0.5. Note

that the recommendations are made only based on the users responses by ignoring the seed

experts and normalizing expertise ratings. Fig. 2.3.8(d) shows that the percentage of in-

correct recommendations decreases, while the cases of no recommendation increases for

increasing values of τe. When τe is too high, no recommendation will be made.

2.3.4.6 Survey Statistics

Along with the real data collection, we also conducted a survey to measure different

factors of DroidNet. In addition to participating in our test, we asked all the 100 users to

fill in a questionnaire and answer to some objective multiple-choice questions. Table 2.3.4

shows that the majority percentage (66%) people are concerned with their data privacy on

mobile phones, while a large percentage (42%) people believe that the smart phone they

use is secure.

We also surveyed the Ease-of-Use and trustworthiness of the DroidNet system. Ta-

ble 2.3.5 shows that the majority (84%) of the participants believed that DroidNet is easy

to use. 72% of the users think that DroidNet’s recommendations are reliable.

58

Table 2.3.4.: Users’ opinion on data and device security

Device Security Secure Neutral Not secure Total

Privacy Concern
Concerned 28% 23% 15% 66%
Neutral 11% 7% 3% 21%
Not concerned 3% 7% 3% 13%
Total 42% 37% 21% 100%

Table 2.3.5.: DroidNet’s Trustworthiness and Ease-of-Use

Level Low Medium High

Metric
Ease-of-Use 2% 14% 84%
Trustworthiness 8% 20% 72%

2.3.5 Threats and Defenses

Although the purpose of DroidNet is to protect inexperienced smartphone users from

being attacked by malicious apps, DroidNet itself may be the target of attacks. In this

section, we discuss a few potential threats to DroidNet that we can foresee at this stage. We

then show that through integrating strategic defensive design into DroidNet framework, we

can detect, deter, or mitigate such threats. We also address the privacy concerns which may

rise from DroidNet users and we show that our privacy-aware data collection design can

reduce this concern to a minimum.

2.3.5.1 False Recommendations:

One of the main important threats is the injection of false responses to mislead the

recommendation system. For example, during the external expert users seeking process,

malicious users/attackers behave well in order to be rated as expert users. After being

chosen as expert users, they turn around and suggest dishonest recommendations to mislead

the recommendation system.

We have investigated this potential threat and developed a multi-agent game theory

model to study the gain and loss of malicious user and the DroidNet defense system.

59

We derived a system configuration to discourage rational attackers to launch such attacks.

Through the proposed game model we analyzed the interaction (request/response) between

DroidNet users and DroidNet system using a static Bayesian game formulation. In the

game, both the DroidNet system and attackers choose the best response strategy to max-

imize their expected payoff and we studied the Nash Equilibria of the game. We also

identified the strategies that DroidNet can use to disincentivize attackers in the system,

since they have no gain by attacking the system.

2.3.5.2 Bot Users:

Bot users are fake users which are set up and controlled by attackers to fulfill some

specific purpose. For example, the vendor of a malicious app may create many “exper”

DroidNet users who will be honest when responding to other applications except to the

particular app owned by their “master”. Since DroidNet heavily relies on the responses

from expert users, many dishonest expert users may misguide DroidNet into providing

wrong recommendations if not detected and handled properly. How to detect those bot

users and mitigate their impact is an important problem for DroidNet.

In order to address this issue, we have developed a clustering-based method for finding

groups of bot users controlled by the same masters, which can be used to detect bot users

with high reputation scores. The key part of the proposed method is to map the users into

a graph based on their similarity (features) and apply a clustering algorithm to group users

together. Specifically, we found that malicious users controlled by the same master may:(i)

download and respond to the malicious app at as soon as the app is available; (ii) have

unusual high overlap on the apps they installed and responded since they are from the same

master; (iii) respond to the malicious app differently than benign expert users. We consider

the above three features as behaviors of malicious (bot) users. We then apply a customized

weighted distance function to aggregate them into the similarity between users. After that,

60

we use a hierarchical clustering method to group users based on their distances. We used

“Agglomerative” type of hierarchical clustering, which is a “bottom up” approach and

generate dendrogram. As our future work, we plan to apply other clustering methods such

as k-means or some advanced clustering algorithms. We study this threat and present our

solutions in details in Part 4.

2.3.5.3 Application Crashing and DroidNet’s Overhead:

In the current implementation of DroidNet, we created an OS patch from all the mod-

ifications. Since users have to apply the OS patch to be able to use DroidNet service, it

may not be practical for most users. Therefore, as a secondary implementation plan, our

framework can be also implemented at the application level in order to make the service

accessible to the majority of users by installing an app. This implementation can also avoid

app crashing in case of permission denial.

U
np

ro
ba

te
d

Ap
ps

(T
ru

st
ed

 A
pp

s)

Is
ol

at
ed

Ap
ps

Virtualized Apps (Untrusted Apps)

Syscall
Inspector

BROKER
Syscall API hook

Probated Apps

DroidNet ApplicationServer

App Ranks

Android App
Markets

- Expertise ranking
- Bot detection
- Recommendation
- App ranking
- Expert seeking

Remote Server

Recommendations

User Interaction

Android Application Framework

Fig. 2.3.9.: DroidNet implementation architecture overview

As our future plan, we can utilize Android isolated processes to be able to run apps at

the application level. Figure 2.3.9 shows the application-level implementation architecture.

In this implementation isolated processes can be utilized to virtualize apps by loading them

into the DroidNet and execute them. This way, system calls and permission requests can

61

be captured by a component called Broker using Android internal/hidden APIs. The Bro-

ker is a system call API hook between the application level and the Android framework.

In this implementation users only need to install the DroidNet app that can be deployed

without firmware modifications or root privileges. One promising example of utilizing

Android isolated processes can be Boxify [14]. Boxify is a solution that runs apps at the

application level. Boxify has been evaluated and the evaluation results demonstrate its ca-

pability to enforce permission control without incurring a significant runtime performance

overhead [14]. In addition, using this implementation, apps do not crash upon permission

denial, which is an important improvement compared to the current implementation.

Intercepting API calls and syscalls, and enforcing permission control imposes some

performance overhead. As one of the main use-cases, Boxify facilitates fine-grained per-

mission control because of it low overhead and runtime robustness. As reported [14], the

performance of Boxify is evaluated through a prototype containing both API calls and

syscalls. Intercepting API calls to the application framework imposes ans overhead around

1%. For syscalls, a ≈ 100µs overhead is observed. However, the employed evaluation

benchmark depicts the worst case scenario and the overall performance impact on apps

is much lower. The measured overall performance overhead by executing several bench-

marking apps on top of Boxify, is an acceptable degradation of 1.6% − 4.8%. Therefore,

since DroidNet’s main activities are calls interception and permission enforcement, we can

conclude that Boxify is an effective platform to implement DroidNet on top of it.

2.3.5.4 Privacy Concerns:

DroidNet is a crowdsourcing-based solution and seeking expert users in the network

is an important task. DroidNet collects permission responses from all participating users to

discover experts. To protect the privacy of users, we design a privacy-aware data collection

mechanism that uses hashing and salting method (Figure 2.3.10) to protect the true identity

62

of the users. The salt is randomly generated upon installation. Note that this mechanism

provides double-blind protection, which means that an attacker who successfully attacked

the database will not be able to reverse the function to find out the real phone ID or even

verify whether a given phone ID is in the database. Therefore, the identity of the users

is well-protected, and our mechanism does not compromise the usability of the collected

data.

User request

Phone-ID

App-ID
Resource
Response

Salt value

@W2$

Hash
Algorithm

Hk(@W2$Phone-ID)

Hash value

EG#32S&GID@KI

ID App-ID Rss. Resp.

Users profiles

EG#32S&GID@KI

FD#32S&HUI@LO

MN#32S&BNU@II

135

135

198

GPS

SMS

Camera

Y

Y

N

………………. … … …

Client Side Server Side

Fig. 2.3.10.: Use one-way ID hashing to protect users’ privacy

2.3.5.5 Newly Published Applications (Cold Start)

DroidNet collects resource access requests and user responses and generate recom-

mendations using the presented algorithms in this section. One issue of relying on users

for generating recommendations can be lack of sufficient amount data (user responses).

This phenomena is called Cold Start This happens when apps are newly published in app

markets and there is not sufficient amount of data about the apps. To address such issue,

we proposed an Android risk assessment model using hidden Markov model (HMM) to

assess the risk of newly published apps. The proposed model falls into behavioral-based

approaches. The input to the model is apps’ activities and the output is the risk of misusing

resources. The model is also equipped with an online learning mechanism that helps to

tune the model’s sensitivity based on users’ preferences. We study this issue and present

our approach in details in Chapter 3.

63

2.3.5.6 Platform Dependency:

A well-designed model is a model that is independent of the specific technological

platform used to implement it. Such model is called platform-independent. In other words,

a platform independent model performs effectively and it is not restricted by the type of en-

vironment provided. We believe that DroidNet is a platform-independent model that can be

applied and implemented on various mobile operating systems and hardware platforms. In

the case of Android OS updates (at any layer), since the DroidNet model itself is platform-

independent, so it can be adapted to the updates. In other words, as long as Android is

using a permission-based mechanism as one of its security mechanism, DroidNet can be

applied to it.

2.3.6 Conclusion

In this section we presented DroidNet, an Android permission control and recommen-

dation system which serves the goal of helping users perform low-risk resource accessing

control on untrusted apps to protect their privacy and potentially improve efficiency of re-

source usages. We propose a framework that allows users to install apps in either trusted

mode or probation mode. In the probation mode, users are prompted with resource ac-

cessing requests and make decisions on whether to grant the permissions or not. To assist

inexperienced users to make low-risk decisions, DroidNet provides recommendations on

permission granting based on the responses from expert users in the system. In order to

do so, DroidNet uses crowdsourcing techniques to search for expert users using a tran-

sitive Bayesian inference model. Our evaluation results demonstrate that DroidNet can

effectively locate expert users in the system through a small set of seed experts. The rec-

ommending algorithm achieves high accuracy and good coverage when parameters are

carefully selected. We implemented our system on Android phones and demonstrate that

64

the system is feasible and effective through real users experiments.

65

CHAPTER 3

ANDROID APPLICATION BEHAVIOURAL RISK ANALYSIS

As we previously mentioned, our crowdsourcing-based model is able to generate recom-

mendations for apps which we have a sufficient amount of information about apps and also

responses to permission requests from users on those apps. In cases there are not enough

information about apps we rely on a set of risk analysis and malware detection models

which mainly work in static and dynamic analysis manners. In this section, we elaborate

the details of two Android app risk assessment and malware detection frameworks to assess

the risk of the apps based on their behaviours on the user’s phone. The frameworks utilize

hidden Markov models (HMM) and machine learning model to assess the risk of apps and

classify them as malicious or benign. The proposed models assess the risk through analyz-

ing app’s activity log. In addition, we also design an online learning mechanism to enhance

the flexibility of the model based on user’s preferences.

3.1 XDroid: An Android permission control using Hidden Markov Models

The major contributions of the work reported in this section include:

• An instrumentation tool that facilitates app behaviour logging in order to generate

high quality dataset for analysis.

• A comprehensive time-aware Android app behaviour analysis, which is based on the

apps’ intents and actions, as well as extra features that further improves detection

accuracy.

• A trained hidden Markov model which can decide whether an app is malicious or not

66

based on its behaviour.

• A dynamic model which can be updated in real time to integrate users’ preferences.

This is potentially the first time that an HMM online learning model is used on ma-

licious app control in smartphone security.

3.1.1 Problem Definition

Android users are allowed to install third-party applications from various open mar-

kets. This raises security and privacy concerns since the third-party applications may be

malicious. Unfortunately, the increasing sophistication and diversity of the malicious An-

droid applications render the conventional defenses techniques ineffective, which results in

a large number of malicious applications to remain undetected. In this section we present

XDroid, an Android application and resource risk assessment framework based on the Hid-

den Markov Model (HMM). In our approach, we first map the applications’ behaviours into

an observation set, and we attach timestamps to some observations in the set. We show that

our novel use of temporal behaviour tracking can significantly improve the malware detec-

tion accuracy, and that the HMM can generate security alerts when suspicious behaviours

are detected. Furthermore, we introduce an online learning model to integrate the input

from users and provide adaptive risk assessment. We evaluate our model through a set of

experiments on the DREBIN benchmark malware dataset. Our evaluation results demon-

strate that the proposed model can accurately assess the risk levels of malicious applications

and provide adaptive risk assessment based on user input.

3.1.2 Background

In this section we briefly review some background knowledge of Hidden Markov Mod-

els (HMM) and the problems that we need to address using HMMs to be able to compute

67

the risk-level of Android apps.

3.1.2.1 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical Markov model which is widely used

in science, engineering and many other areas (speech recognition, optical character recog-

nition, machine translation, bioinformatics, computer vision, finance and economics, and

in social science) [42]. Markov Models provide powerful abstraction for time series data,

but fail to address one of the most common scenarios [42]. For example, how can we rea-

son about a series of states if we cannot observe the states directly, but can only observe

some probabilistic function of those states? A HHM can be used to explore this scenario.

In this section we model the Android apps’ behaviour and compute the risk-level of their

activities and device resource usage.

The Hidden Markov Model is a variant of a finite state machine which can be rep-

resented by a set of hidden states Q = {q1, q2, · · · , q|Q|}, a set of observations O =

{o1, o2, · · · , o|O|}, a set of transition probabilities A = {αij = P (qt+1
j |qti)}, and a se-

ries of output (emission) probabilities B = {βik = P (ok|qi)}. Among the above notations,

P (a|b) is the conditional probability of event a given event b; t = 1, · · · ,T is the time;

qti is the event that the state is qi at time t. In other words, αij is the probability that

the next state is qj given that the current state is qi; βik is the probability that the out-

put is ok given that the current state is qi. The initial state probabilities are denoted by

Π = {πi = P (q1
i)|∀1 ≤ i ≤ |Q|}, which is the inital probability of all states at time 1.

In HMM the current state is not observable. However, each state produces an output with

a certain probability (denoted by B). An HMM can also be represented using a compact

triple (λ = (A,B, Π)) [59]. Table 3.1.2 shows the notations and preliminaries.

There are two fundamental problems that we need to address when using HMMs:

How to determine unknown parameters and how to find optimal state sequence. We briefly

68

Table 3.1.1.: Notations

Notation Description

Q {qi}, i = 1 · · · ,N : Set of n hidden states .
A A = {αij = P (qtj)} Transition probabilities
O O = {ok}, k = 1, · · · ,M : Observations (symbols)
B B = {βik = P (ok|qi)}: Emission probabilities
Π Π = {πi = P (q1i)|∀1 ≤ i ≤ |Q|} Initial state probabilities.
Ot Ot ∈ O: Observation at time t.
Qt Qt ∈ Q: State at time t.

describe the two problems and their solutions in the next sections.

3.1.2.2 Finding the unknown parameters

One of the challenge of making the HMMs applicable to malicious Android apps

detection is to define parameters Q,A,O,B, Π, and find the most likely set of state transi-

tion and output probabilities. To solve this problem, we use Baum-Welch algorithm (a.k.a

Forward-Backward algorithm) [60]. We call this step HMMs Training. The algorithm has

two main steps, Forward and Backward procedures.

Initialization set λ = (A,B, Π) with random initial conditions. The algorithm updates

the parameters of λ iteratively until convergence, following the next procedures.

The forward procedure We define αti = P (O1, · · · ,Ot,Qt = qi|λ), which is the proba-

bility of seeing the partial sequence O1, · · · ,Ot and the ending state Qt at time t is qi. We

can compute αti recursively as follows:

α1
i = πibi(O

1) (3.1)

αt+1
j = bj(O

t+1)
N∑
i=1

αtiαij (3.2)

where bi(Oj) is the probability that observation Oj at time j given state i.

69

The backward procedure We define βti to be the probability of the ending partial sequence

Ot+1, · · · ,OT given that we started at state qi, at time T . We can efficiently compute βti as:

βTi = 1 (3.3)

βti =
N∑
j=1

βt+1
j αijbj(O

t+1) (3.4)

using α and β, we can compute the following variables:

γti ≡ P (Qt = qi|O,λ) =
αtiβ

t
i∑N

j=1 α
t
jβ

t
j

(3.5)

ξtij ≡ P (Qt = qi,Q
t+1 = qj|O,λ) =

αtiαijβ
t+1
j bj(O

t+1)∑N
i=1

∑N
j=1 α

t
iαijβ

t+1
j bj(Ot+1)

(3.6)

where γti is the probability that the state at time t is qi, and ξtij is the probability the

state at t is Qi and the state at t + 1 is qj . With γ and ξ , we can define update rules as

follows:

πi = γ1
i (3.7)

αij =

∑T−1
t=1 ξ

t
ij∑T−1

t=1 γ
t
i

(3.8)

βik =

∑T
t=1 δ(O

t, ok)γ
t
i∑T

t=1 γ
t
i

(3.9)

3.1.2.3 Finding the optimal state sequence

One of the most common queries of a HMMs is to ask what was the most likely

series of states given an observed series of outputs. In the other words, we should choose

the best state sequence that maximizes the likelihood of the state sequence for the given

observation sequence. The solution to this problem is using Viterbi algorithm [78]. The

Viterbi algorithm is similar to the forward procedure except that it only tracks the maximum

70

probability instead of the total probability.

Let δti be the maximal probability of state sequences of the length t that end in state i

and produce the t first observations for the given model. That is,

δti = max{P (Q1, · · · ,Qt−1;O1, · · · ,Ot|Qt = qi)} (3.10)

The two differences between Viterbi algorithm and the Forward algorithm are: (1)

it uses maximization in place of summation at the recursion and termination steps, (2) it

keeps track of the arguments that maximize δti for each t and i, storing them in the N by

T matrix ψ. This matrix is used to retrieve the optimal state sequence at the backtracking

step.

We initial the model as:

δ1
i = πibi(O

1) (3.11)

ψ1
i = 0, i = 1, · · · ,N (3.12)

The recursion steps are:

δtj = maxi[δ
t−1
i aij]bj(O

t) (3.13)

ψtj = argmaxi[δ
t−1
i aij] (3.14)

Finally the most probable sequence’s probability p(T) and the most probable last state q(T)

given O are:

p(T) = maxi[δ
T
i] (3.15)

q(T) = argmaxi[δ
T
i] (3.16)

We can have the path (state sequence) through backtracking:

q(t) = ψt+1
q(t+1), t = T − 1,T − 2, · · · , 1 (3.17)

71

3.1.3 System Design

The ultimate goal of XDroid is to monitor the behaviour of apps and generate alerts

to users when suspicious app behaviours are detected. Figure 3.1.1 shows the architecture

design of XDroid. The system contains components on the server side and the mobile

device side. Each XDroid device contains an Interaction Portal and an Activity Logger. The

interaction portal provides an interface for users to interact with the device. The activity

logger is used to monitor the activities of the apps. The server side components include

Risk Assessment, User Profiling, and Alert Customization. In the rest of this section, we

describe the key features of the server.

• Risk assessment
• User profiling

• Alert customization

Apps Risk-levels

Risk alerts
<AppID, ResID, Risk>

App log
User’s response <AppID, ResID, User ID>

Ap
p

in
st

al
la

tio
n

Android App
Markets

Interaction
portal

Activity
logger

XDroid Server

Mobile Client

Fig. 3.1.1.: XDroid system overview

risk-threshold
passed?

Does user
block?

App request

Serve the request

Block & Tune the
model

Serve, Record and Add
the request to Trusted list

App is notified

No

Yes No

Yes

App XDroid User OS

Server

Agents:

Fig. 3.1.2.: Resource request flow in XDroid

72

3.1.3.1 Interaction Portal

The interaction portal is to facilitate the interaction between users and devices. In-

stead of sending requests to the Android system’s legacy permission handler (e.g. Package

Manager Service), the XDroid handles the permission requests through the process illus-

trated in Figure 3.1.2. For example, when a user installs a popular messaging application

and choose to monitor its behaviour using XDroid, the requested resources are displayed

along with their estimated risk levels (Figure 3.1.3(a)). The numbers in the screenshots are

generated as example and not actual risks. The user can check resources he/she want to

monitor. If a resource is monitored and its suspicious activities are detected, the user is

informed through a dialog box (Figure 3.1.3(b)). The user can decide whether to block the

resource access or allow it based on the estimated risk suggested by XDroid.

For each installed app, the user can use the pre-installed XDroid application to view

a list of apps which are under monitoring. If the user clicks on an app in the list, a set of

requested resources is displayed (Figure 3.1.3(c)) where checked resources are monitored.

By default all sensitive resources are monitored, and can be changed by the user.

3.1.3.2 Risk assessment

The purpose of the risk assessment is to provide a quantitative estimation on how

likely a resource access from an app causes damage to users. For example, a SMS access

from a puzzle game app may be malicious and XDroid can pop up a reminder for users to

block it.

To assess the risk level of resource accesses, the activities of the apps are monitored

by activity loggers and the data is sent to the server for analysis. Our risk assessment mech-

anism uses a Hidden Markov Model (HMM) to analyze the behaviour sequences (Section

3) and provides users with a risk level of involved resource accesses.

73

Telegram
Resource Access Risk Levels

Your personal information

Camera

Your messages

Your location

Check all to monitor

Network communication

Storage

Phone state and identity

High

Low

Low

Low

Med

Med

OK

High

(a)

Do you allow it?

- Phone state and identity

Telegram usage of:

Never ask me again for this

resource.

Risk Alert

Block Allow

Estimated risk level:
High

(b)

XDroid: Application

Applications

9:32

XDroid: Application

Applications

9:32

Permission Risks: Telegram

Your personal information

Camera

Your messages

Your location

Network communication

Storage

Phone state and identity

High

Low

Low

Low

Med

Med

OK

High

(c)

Fig. 3.1.3.: User Interfaces: (a) illustrates the risk computed risk levels for app’s requested resources; (b) shows a popup notifying user
the risk level of resource at runtime; (c) managing the permission policies after installation.

3.1.3.3 User Profiling

We are aware that users may have different tolerance level on various resources. For

example, user A, is very concerned with leaking his/her location to a third party, while user

B does not care about it. To provide customized risk estimation, we build user profiles.

We assign each new user with an initial tolerance model and update the user profile after

receiving the users’ permission control decisions. For example, if a user agrees to the GPS

access every time it is requested, the tolerance level of the user with respect to GPS access

is high.

74

3.1.3.4 Alert Customization

The purpose of XDroid user profiling is to provide customized risk assessment to

users. Upon installing a new app, XDroid provides risk level estimation by integrating

the apps’ behaviours and past responses from all users who responded to the same app

requests. This way, we help users make a decision on wether to monitor the permission

requests or not. If users choose to monitor an app’s permission, after capturing sufficient

behaviour log, XDroid computes the risk level of that permission by considering the new

logs and alerts the user. Users’ responses (block or allow) to the permission request alerts

are integrated to provide customized alerts.

3.1.4 Model

In this work, we use hidden Markov model (HMM) for Android malicious apps risk

assessment. We transform the app resource risk computation problem into a HMM prob-

lem with two states: malicious and normal. We map the app’s behaviour into the HMM

observations. To train the HMM model, we capture the behaviours from both malicious

and normal apps and use them to generate an initial trained HMM for risk estimation. In

this section we first present our HMM model and then explain how we use it for customized

permission risk level estimation.

3.1.4.1 Hidden Markov Model

An HMM is a statistical Markov model widely used in science, engineering and many

other areas (speech recognition, optical character recognition, machine translation, bioin-

formatics, computer vision, finance and economics, and in social science) [42, 35]. Markov

models provide powerful abstraction for data expressed as time series, but are unable to

support reasoning about a series of states given some observations related to those states.

75

A HHM can be used to address such shortcoming. In this section we model the Android

behaviour sequence into a HMM, and compute the risk levels of given resource usage.

The Hidden Markov Model is a variant of a finite state machine which can be rep-

resented by a set of hidden states Q = {q1, q2, · · · , q|Q|}, a set of observations O =

{o1, o2, · · · , o|O|}, a set of transition probabilities A = {αij = P (qt+1
j |qti)}, and a se-

ries of output (emission) probabilities B = {bik = P (ok|qi)}. Among those notations,

P (a|b) denotes the conditional probability of event a given event b; t = 1, · · · ,T is the

time; qti denotes the event that the state is qi at time t. In other words, αij is the probabil-

ity that the next state is qj given that the current state is qi; bik is the probability that the

output is ok given that the current state is qi. The initial state probabilities are denoted by

Π = {πi = P (q1
i)|∀1 ≤ i ≤ |Q|}, which is the initial probability of all states at time 1 (ini-

tial time). In the HMM the current state is not observable. However, each state produces

an output with a certain probability (denoted by B). An HMM can also be represented

using a compact triple (λ = (A,B, Π)) [59]. Table 3.1.2 summarizes the notations and

preliminaries.

Table 3.1.2.: Notations

Notation Description

Q {qi}, i = 1 · · · ,N : Set of n hidden states .
A A = {αij = P (qtj)} Transition probabilities
O O = {ok}, k = 1, · · · ,M : Observations (symbols)
B B = {bik = P (ok|qi)}: Emission probabilities
Π Π = {πi = P (q1i)|∀1 ≤ i ≤ |Q|} Initial state probabilities.
Ot Ot ∈ O: Observation at time t.
Qt Qt ∈ Q: State at time t.

Figure 3.1.4 shows the HMM for Android app behaviour modeling. The HMM con-

sists of three states: Start, Normal (0) and Malicious (1). The set of observations are defined

using apps’ behaviours during runtime (see Section 3.1.4.7). The HMM parameters are:

initial state probabilities Π = [π1, π2], state transition probabilitiesA = [α00,α01,α10,α11],

malicious state emission probabilities BM = [b11, b12, · · · , b1N] and normal state emission

76

probabilities BN = [b01, b02, · · · , b0N].

O1 O2 O3 ON

↵10

↵00
↵11

↵01

⇡1 ⇡2

Start

1 (M)0 (N)

b1Nb11 b12 b13

b01 b02 b03 b0N

· · ·

Fig. 3.1.4.: An overview of the proposed HMM model

How to determine the unknown parameters and how to seek optimal state sequence of

HMM given a sequence of observations are two major challenges. In the next sections we

describe these two problems and their solutions.

3.1.4.2 Compute Unknown Parameters

One of the challenges in utilizing the HMM to model the behaviour of Android apps

is to define parameters Q,A,O,B, Π, and find the most likely set of state transition and

output probabilities. We use two states Q = {0, 1} to denote that the app is behaving

normal (0) or malicious (1). The observation set O is the set of time-aware system calls

expressed using a keywords set (see Section 3.1.4.7). To defineA and B, we use the Baum-

Welch algorithm (a.k.a Forward-Backward algorithm) [60]. We call it HMMs Training. The

algorithm has two main steps, Forward and Backward procedures.

77

3.1.4.3 Initialization set

Let λ = (A,B, Π) with random initial conditions. The algorithm updates the parame-

ters of λ iteratively until convergence, following the next procedures.

3.1.4.4 The forward procedure

We define αti = P (O1, · · · ,Ot,Qt = qi|λ), which is the probability of seeing the

partial sequence O1, · · · ,Ot and the ending state Qt at time t is qi. We can compute αti

recursively as follows:

α1
i = πibi(O

1) (3.18)

αt+1
j = bj(O

t+1)
N∑
i=1

αtiαij (3.19)

where bi(Oj) is the probability that observation Oj at time j given state i.

3.1.4.5 The backward procedure

We define βti to be the probability of the ending partial sequence Ot+1, · · · ,OT given

that we started at state qi, at time T . We can efficiently compute βti as:

βTi = 1 (3.20)

βti =
N∑
j=1

βt+1
j αijbj(O

t+1) (3.21)

using α and β, we can compute the following variables:

γti ≡ P (Qt = qi|O,λ) =
αtiβ

t
i∑N

j=1 α
t
jβ

t
j

(3.22)

ξtij ≡ P (Qt = qi,Q
t+1 = qj|O,λ) =

αtiαijβ
t+1
j bj(O

t+1)∑N
i=1

∑N
j=1 α

t
iαijβ

t+1
j bj(Ot+1)

(3.23)

where γti is the probability that the state at time t is qi, and ξtij is the probability the

78

state at t is Qi and the state at t+1 is qj . Let function δ(x, y) be 1 if x = y and 0 otherwise.

With γ and ξ, we can define update rules as follows:

πi = γ1
i (3.24)

αij =

∑T−1
t=1 ξ

t
ij∑T−1

t=1 γ
t
i

(3.25)

bik =

∑T
t=1 δ(O

t, ok)γ
t
i∑T

t=1 γ
t
i

(3.26)

3.1.4.6 Finding the Optimal State Sequence

One of the most common queries of a HMM is to find the most likely series of states

given an observed series of observations. In our case, we can find the state sequence (e.g.,

NMNNNNMN...) that most likely happens given the observation sequence. This prob-

lem can be solved using Viterbi algorithm [78]. The Viterbi algorithm is similar to the

forward procedure except that it only tracks the maximum probability instead of the total

probability.

Let δti be the maximal probability of state sequences of the length t that end in state i

and produce the t first observations for the given model. That is,

δti = max{P (Q1, · · · ,Qt−1;O1, · · · ,Ot|Qt = qi)} (3.27)

The two difference between Viterbi algorithm and the Forward algorithm are: (1) the

Viterbi algorithm uses maximization in place of summation at the recursion and termination

steps, (2) the Viterbi algorithm keeps track of the arguments that maximize δti for each t

and i, storing them in the N by T matrix ψ. This matrix is used to retrieve the optimal state

sequence at the backtracking step.

We initial the model as:

79

δ1
i = πibi(O

1) (3.28)

ψ1
i = 0, i = 1, · · · ,N (3.29)

The recursion steps are:

δtj = maxi[δ
t−1
i aij]bj(O

t) (3.30)

ψtj = argmaxi[δ
t−1
i aij] (3.31)

Finally the most probable sequence’s probability p(T) and the most probable last state q(T)

given O are:

p(T) = maxi[δ
T
i] (3.32)

q(T) = argmaxi[δ
T
i] (3.33)

We can have the path (state sequence) through backtracking:

q(t) = ψt+1
q(t+1), t = T − 1,T − 2, · · · , 1 (3.34)

3.1.4.7 Observations

Our vision to specify app behaviour is to view the running app as a black-box and

focus on its interaction with the Android OS. In this case, a typical interface to monitor is

the set of system and API calls that the app invokes during running time. Every action that

involves communication with the apps’ resources (e.g., accessing the file system, sending

SMS/MMS over the network, accessing the location services, calling Ads API libraries,

and accessing the network) requires the app to launch OS services or API calls.

In order to instrument apps to capture the behaviour logs, we developed our own tool

DroidCat. We did not choose to use existing instrumentation tools, such as Robotium and

80

App SchedulerAPK Files

Package names

An
dr

oi
d’

s
 A

D
B

adb calls
incoming logs

Raw
log files

Final
logs

Filtering & Parsing system

.APK

.APK.APK.APK.APK

.APK .APK.APK

App
dispatcher
(Loader)

APK 1 APK 2 … APK N

An
dr

oi
d

de
vi

ce

Risk Assessment Notification Generator
Risk level notification

App log

State sequence

DroidCat

HMM Model Users profile
repository

Parameter Tuner
-States transitions
-Emission

User response

Interaction
Portal

C
lie

nt
 S

id
e

Se
rv

er
 S

id
e

10

Activity
Logger

7 6 5

21
4

3

12

8

11

9

Fig. 3.1.5.: The architecture of the XDroid system

uiautomator, because of their drawbacks. For example, Robotium cannot handle Flash or

Web components nor simulate the clicking on soft keyboard, and it is not suitable for multi-

process applications tests. Therefore, we decided to develop DroidCat. Figure 3.1.5 shows

the XDroid system extended with the integration of DroidCat. The main merit of Droid-

Cat is that it instruments apps through real human-interaction, so we can get behaviour

logs which highly represent real world Android apps’ behaviours. In the rest of this sec-

tion we briefly explain the major instrumentation process of DroidCat, which includes the

following steps:

3.1.4.8 Extracting packages’ names.

DroidCat extracts Android packages’ names using the Android aapt tool. This tool

is part of the Android SDK (and build system) and allows us to view, create, and update

Zip-compatible archives (zip, jar, apk). This component creates a queue and add the

81

packages’ names into it. As you can see from Figure 3.1.5, this component is embedded

into the App Scheduler component of XDroid.

3.1.4.9 App dispatcher.

DroidCat automatically loads Android apk files into an Android device, installs and

runs them using the Android ADB logcat tool and add them to the App Scheduler. This

component has a timer that lets apps to run for a specific time period. It executes the same

process for all apps.

3.1.4.10 Recording apps’ logs.

DroidCat records every app’s log into a text file (raw log files) separately without

applying any of logcat priority filtering tags (e.g., V, D, I etc.). We use apps’ PID as an

identifier to capture their logs.

3.1.4.11 Filtering.

In this step DroidCat filters the logs and removes irrelevant logs such as the logs related

to loading, installing, running and killing apps’ process.

3.1.4.12 Parsing.

After filtering the log files, DroidCat eliminates unnecessary information and extract

important keywords. Each keyword refers to a sensitive resource access request, an API

call, or Android action constants. In the context of HMM, we call them observations.

In our model, we focus not only on the Intents generated by the apps but also on API

libraries that generate unwanted Ads or cause permission escalation. In total we defined

150 keywords under various categories. Table 3.1.3 lists some selected sample keywords

from 6 categories.

82

Table 3.1.3.: Keyword samples

Resource Corresponding Keywords

Ads libraries ’AdMob’, ’Ads’, ’Wooboo’, ’AdsMOGO’, etc.
Network ’browser’, ’http’, ’wifi’, ’signal’, ’cell’, etc.
Messaging ’MMS’, ’SMS’, ’MmsService’, ’getSmsCount’, etc.
Location services ’GPS’, ’ACCESS-COARSE-LOCATION’, ’location’, etc.
File system ’mount’, ’unmount’, ’Storage’, ’Modify’, etc.
Calling/Contacts ’CallLOG’, ’CARRIER’, ’INCALL’, ’TELECOM’, etc.

Networking

Wifi Data

W
ifi

w
ifi

_s
ta

tu
s

w
ifi

se
rv

ic
e

w
ifi

co
nn

ec
tio

n

ca
rri

er ce
ll

si
gn

al

M
M

S
se

rv
ic

e

tra
ns

m
it

Internet http

networkstate connectivity_service

L1

L2

L0……

… …

Fig. 3.1.6.: An illustration of the Networking observation tree

D/AdsMOGO SDK(30331): Hashed device ID is:
e8a1112658fdeb899033567722ef3e8c
D/AdsMOGO SDK(30331): AdsMOGO SDK Version:…

I/AdsMOGO SDK(30331): Finished creating adM
I/AdsMOGO SDK(30331): Stored config info
not present or expired, fetching fresh data
D/AdsMOGO SDK(30331): Hashed device ID is:
e8a1112658fdeb899033567722ef3e8c
D/AdsMOGO SDK(30331): AdsMOGO SDK Version:…

I/AdsMOGO SDK(30331): Finished creating adM
D/AdsMOGO SDK(30331): ", "timestamp": -1}
D/AdsMOGO SDK(30331): location is ON
I/AdsMOGO SDK(30331): Rotating Ad
D/AdsMOGO SDK(30331): Dart is <...
D/AdsMOGO SDK(30331): Showing Config:
D/AdsMOGO SDK(30331): Mogo_ID: b2609...
D/AdsMOGO SDK(30331): CountryCode: us
D/AdsMOGO SDK(30331): HTTP/1.1 200 OK
D/AdsMOGO SDK(30331): Prefs{b2609a99a...
{"config": "{"extra":{"location_on“... \\
"red":0,"green":0,"blue":0,"alpha":1},...

Fig. 3.1.7.: A sample snapshot of a malicious app’s output log

Figure 3.1.6 shows the observation hierarchical tree of the Networking service (L0) on

a device. We can see that the networking service action keywords are split into two main

categories (L1) - networking through data service or wifi service. Both categories have

their own action keywords (L2).

Figure 3.1.7 shows a sample snapshot of a malicious app’s log. This app uses a ma-

licious advertising API library that can result in permission escalation. This advertising

component has access the host app’s permissions and can misuse the granted permissions.

We can see that the app has access to the GPS service and IMEI information (highlighted

with color).

When analyzing the parsed logs, we noticed that for some resources such as “WiFi”,

83

malicious and normal apps have different patterns with respect to the timing of requests

during app running. For example, the malicious apps tend to request the WiFi network

during the first quarter of their running time period. Because of this, we include the timing

of requests and library calls as a feature. Among of the 150 keywords, we added the timing

feature to 55 of of them. We finally defined 205 time-dependent and time-independent

observations in total. We summarize the features and factors that we have considered in

our as follows:

• App system calls: system and regular API calls that apps invoke during runtime are

considered as main part of our decision process. Every action that involves commu-

nication with the apps’ resources (e.g., accessing the file system, sending SMS/MMS

over the network, accessing the location services, and accessing the network) requires

the app to launch OS services or API calls.

• Ads API libraries: in contrast with the described existing approaches and in order to

make our detection process more comprehensive, we also captured Ads API libraries

logs.

• Activity timestamp: after looking at the time that apps made their system calls, we

noticed that malicious apps made system calls in the first quarter of their runtime.

We decided to consider time as an additional (secondary) feature in our detection

process.

3.1.4.13 Model Training and Testing

After defining observations and parsing logs into sequences of time-dependent and

time-independent observations, we trained the HMM model using the Baum-Welch algo-

rithm. In order to do it, we needed to define the initial state transition probabilities A and

84

0 (N)

1(M)

0 (N)

1(M)

0 (N)

1(M)

0 (N)

1(M)

Observation 1 Observation 2 Observation 3 Observation M
t0 t1 tM�1 tMTime

State N

State M

Sample output: NM M M

…

…

…

…

Start

⇡ 1
.b 01

⇡
2 .b

11

↵00

↵01

↵10

↵11

(⇡2.b11.↵00).b02

(⇡1.b01.↵01).b12

…

Fig. 3.1.8.: An illustration of the Viterbi algorithm

emissions probabilities B. We computed the initial emissions probabilities of each obser-

vation based on its frequency of occurrence in all malicious and normal apps’ logs. We also

initialized all the states’ transitions probabilities with fixed value 0.5. After initialization,

we applied the Baum-Welch algorithm to find the parameters A and B given sequences of

observations.

To validate the accuracy of the HMM-based risk computation, we used app’s be-

haviour log as input to the Viterbi algorithm to get the most possible state sequence of

the app. Figure 3.1.8 visualizes the test process based on the Viterbi algorithm. The

Viterbi algorithm uses backtracking method (Eq. 3.34) to compute the optimal state se-

quence path given observations, such as (MNN· · ·NMM). For example, the highlighted

path in Figure 3.1.8 shows a path from start state (observation1) to the final observed data

(observationM) state. Algorithm 6 presents the risk calculation process of the XDroid in-

cluding backtracking process and in more details. We explain the details ofComputeRick(S)

function in the next subsection.

85

3.1.5 Permission Risk Assessment

Another purpose of the HMM is to compute the risk of the resource access from apps.

In this section we explain the process of the permission risk assessment and explain how

we can perform user profiling and customized alerts.

3.1.5.1 Resource risk assessment

To assess the risk of each resource requested from an app, we track the observation

logs and users’ decisions on permission requests (allow or block). An online HMM learning

technique is used to update the HMM parameter sets for each app. Note that the initial

HMM parameters for each app are learned from the base training dataset and the HMM

will be refined further through integrating inputs from users.

86

Algorithm 6 Risk computation
1: This algorithm is to find the most possible sequence of output given a sequence of observations
2: Input :

3: An observation sequence o[t]{Android apps’ logs}
4: A transition matrix A
5: An observation likelihood vector b[i,o[t]]
6: Output :
7: v[i, t] : the probability matrix
8: S : the sequence of output
9: Notations :
10: v[] : the path probability matrix
11: c : the index to the v matrix
12: bp: the back pointer
13: the current probability v[i, t+ 1]

14: N : the number of states
15: //initialize voting parameters
16: v[0, 0]← 1

17: for i = 0 to |T | do
18: for i = 0 to |N | do
19: for each transition i from s do
20: if k > v[i, t+ 1] then
21: {when the current probability is higher}
22: v[i, t+ 1]← k

23: bp[i, t+ 1]← s

24: end if
25: end for
26: end for
27: end for
28: //finalizing the optimal path
29: repeat
30: add(S,MAX(v[:, c])

31: {highest probability state in the column c}
32: c+ +
33: until c = |T |{repeats until we have the full path}
34: ComputeRisk(S){computing the app’s risk based on our formulation}

Figure 3.1.9 illustrates users’ relationship with a graph. Each node represents a user.

Each edge means there is an overlap of installed apps between two users. We define a set

of users who share at least one app a group. A user can belong to different groups. A group

can have overlap with other groups. As we can see in Figure 3.1.9, G1,G2, · · · ,GM are

the groups and G1 ∩G2 is the overlap of G1 and G2. An isolated user is the user who does

not have overlap with any other user. In Figure 3.1.9, ui is an isolated user.

Let P = {p1, p2, · · · , pN} be the set of all apps’ permissions, A = {a1, a2, · · ·

, aM} be the set of all apps, andU = {u1,u2, · · · ,uK} be the set of all users. Then the set of

user i’s apps and their permissions can be written asUi = {(a1, p1), (a1, p2), · · · , (aM , pN)}.

87

Let S be the optimal state sequence path given observations. We estimate the risk level

of a single permission i as follows:

Rpi =

∑|S|
i=1 δ(Si,M)

|S| (3.35)

where
∑|S|

i=1 δ(Si,M) is the number of malicious states in the sequence, and |S| is the

length of the sequence.

In order to estimate the average risk level of a permission in the whole network, we

use the following formula:

Rall(pi) =

∑|U |
j=1 Rpij

|U | (3.36)

where Rpij is the reported risk level of user j for permission i and |U | is the number

of users that answered the risk alert for permission pi in the network.

ui
S

u1

u2

..
.

u3

u5

u6

u7

u4

u8

u9
u10

u11
u12

u13

uN

G1

G2

G1 ∩ G2

G
u6,7

2

GM

G u
5,S2 , G u

6,S2 , G u
7,S2

Gu1,S
1 , Gu2,S

1 , Gu3,S
1 , Gu4,S

1

ui,S

G
u8,

S

M

, ..
., G

uN
,S

M

Fig. 3.1.9.: Users network overview

88

3.1.5.2 User profiling

We record all users’ profiles into the repository on the server. Each user profile in-

cludes a customized HMM parameter tuner, users’ past responses to apps’ permission re-

quests, apps’ behaviour logs reported by the user’s device, and the risk levels for all apps

and corresponding resources.

3.1.5.3 Customized Alert generator

This component is responsible for generating customized alerts and notifying the

users. Alerts are displayed through popups (Figure 3.1.3(b)), which contain the risk level

of the permission and users can choose to either block or accept the permission request.

Note that the risk level estimation is customized based on each user’s tolerance level to that

specific resource. For example, a GPS call may be acceptable for one user but prohibited

for another.

Algorithm 7 Updating process
1: This algorithm is to train and update the model
2: Input :

3: Incoming observed data D0, · · · ,D∞{incoming blocks of observations from apps }
4: λ0 : the initial model
5: Output :

6: Trained and updated model λ1, · · · ,λ∞{model updates, after every processed block of observation}
7: Notations :
8: tflag : model training status
9: dflag : new incoming data block
10: if tflag = false then
11: {if the model has not been trained}
12: λ1 ← train(λ0,D0) {training the model}
13: else
14: loop
15: {an infinite loop, listening for incoming logs from apps}
16: if dflag = true then
17: {if there is a new block of data for apps}
18: λn ← update(λn−1,Dn−1){updating the model using the existing new data blocks}
19: end if
20: end loop
21: end if

89

3.1.6 Parameter updating through online learning

To integrate users’ preferences to the customized risk alerts, we use an online learning

technique[54], which optimize a log-likelihood function through HMM parameters updat-

ing. These techniques are derived from another method which uses batch input for compu-

tation [54, 41]. However the key difference of online learning is that the HMM parameter

updates are based on the currently presented subsequence (observations from apps) of ob-

servations without iterations [42, 41]. Algorithm 6 presents the learning process for updat-

ing the HMM model using incremental data blocks (apps observations), where the updates

are triggered periodically after a certain amount of apps’ logs are collected. As shown in

Figure 3.1.11, D1,D2, · · · ,Dn are the blocks of training data available to the model at time

t1, t2, · · · , tn. The update process starts with an initial risk value m0 which constitutes the

prior knowledge of the domain through training process with existing datasets. During the

incremental training, m0 is updated to m1 with input D1, and so on. In our model, a data

block contains a sequence of observations related to a resource with which the risk level is

computed.

λ0
D0

λ1

λ2

..

D1

…

λ1
1

λ2
1

λM
1

D1

Fig. 3.1.10.: Training and updating process

Figure 3.1.10 shows the update process after receiving an incoming block of data.

The model updates the parameters in a sequential manner after every single observation

90

and it results in a set of partially updated models (λ1
1,λ2

1, · · · ,λM1) after M steps. When

the update process completes we have a final model λ1. Therefore, the update process

tunes the corresponding emissions probabilities based on the users responses to risk alerts.

Algorithm 7 shows the updating process in more details.

TimeD1 D2 Dn

Training Updating 1 Updating N-1
m0 m1 m2

mN�1 mN· · ·

· · ·

Fig. 3.1.11.: Training and update process using online learning technique

The online learning technique proposed by Mizuno et al. [54] is based on the Baum-

Welch algorithm. It applies a decayed accumulation of the state densities and a direct

update of the model’s parameters after each subsequence of observations. Starting with an

initial model λ0, the conditional state densities are iteratively computed after processing

each subsequence (r) of observations of length T by:

T−1∑
t=1

ξtr+1(i, j) = (1− ηr)
T−1∑
t=1

ξtr(i, j) + ηr

T−1∑
t=1

ξtr+1(i, j) (3.37)

T∑
t=1

γtr+1(j)δ(Ot, ok) = (1− ηr)
T∑
t=1

γtr(j)δ(O
t, ok) + ηr

T∑
t=1

γtr+1(j)δ(Ot, ok) (3.38)

where the learning rate (forgetting factor) ηk is expressed in polynomial form ηr =

(
1

t
). The ηk parameter can be initialized manually or automatically (time dependent). The

norm time-dependent means that the impact on the learning rate will discount through

time. Using this parameter we can control the impact of the former models on the updating

process. Note that the HMM parameters are directly updated using equations (3.25, 3.26).

3.1.7 Activity logger implementation

As shown in the architecture design (Figure 3.1.5), each XDroid client device contains

an activity logger to capture the behaviour of apps and report them to the XDroid server.

91

To implement a real-time resource permission control, XDroid monitors all resource access

requests and apps’ activities at runtime. We modified a few components and methods

in Android OS source code to meet our goal. Figure 3.1.12 shows the implementation

architecture.

3.1.7.1 App installation pop-up

To give users the option to have their apps monitored, we modified the Package Man-

ager Service, which plays the key role in permissions management. Installation is managed

by the PackageInstaller activity and when an app installation process is completed, a notifi-

cation is sent to InstallAppPregress.java, which is the place we prompt users and ask them

if they like to monitor some permissions. If a user chooses to monitor some permissions

of an app, XDriod records the app’s UID and the selected permissions into the repositories

for Monitored Apps (MAR) and Request/Risk (RRR) respectively.

3.1.7.2 System call and permission enforcement

Towards the goal of extensible and generic implementation, we managed to have mul-

tiple changes in one place, which avoids modifications on each permission request handler.

The modification is presented in the form of an OS patch, which can be executed from a

user’s space, making this technique easier to adopt. More specifically, we modified meth-

ods enforcePermission, checkPermission, and enforceCallingPermission

of the ContextImpl.java class in the context component. These methods are called whenever

an app uses a permission which is not hardware related, through passing a UID and a per-

mission name. On the server side, XDroid is used to filter and parse the logs (Figure 3.1.5),

which will be the input source for the HMM model.

92

Application Context
ContextImpl.java
checkPermission()
checkCallingPermission()
enforce()

IActivityManager

Components

ActivityManagerService

ActivityManagerNative

Package Manager Service
checkPermission()
checkUidPermission()
checkComponentPermission()

Package Installer

InstallAppProgress.java

Pr
oc

es
s

Bo
un

da
ry

Parcel Structure

Se
cu

rit
y

Ex
ce

pt
io

n

Monitored Apps
Repository

(MAR)

Requests/Risk
Repository

(RRR)

- Package IDs
- Package flags

- Denied permissions
- Permission flags
- UIDs

<PermissionID, UID>

<PermissionID, UID>

Memory (SD Card)
XDroid Portal

Users

Modified for XDroid Developed for XDriod Unmodified Framework Off Device On Device

- Defining policies
- App installation
- Popup generating

An
dr

oi
d

Fr
am

ew
or

k

<Resource granting decision>
Permission PID UID

- Services
- Activities

22

26

27

23 24

21

212

29 210

28 211

Fig. 3.1.12.: Permission request logging

3.1.7.3 XDroid server

Recording the users’ responses and providing decision recommendations to users are

essential to XDroid. For this purpose we maintain a remote server to record the responses

on an online server and also compute recommendations according to the recorded responses

from users. The XDroid clients request recommendations from the server when needed.

3.1.8 Experimental Results

In this section we present our experiments evaluating the proposed model. We first

explain our experimental setup and then the results on the performance of the HMM based

93

risk assessment model. We validate the accuracy of the model in terms of recognizing

malicious apps from normal apps. We also evaluate the computed risk levels and the impact

from parameters.

3.1.8.1 Experiment Setup

In this section we describe the experimental environment, hardware, software and the

dataset that we used to train and test the model.

Hardware: To log apps’ behaviours we used 5 LG Nexus 4 devices equipped with An-

droid OS version 4.3. We chose Android 4.3 version because all apps in our datasets are

compatible with this version. We also configured the devices and turned on all sensitive

resources (services) such as WiFi, Bluetooth and GPS. We ran our DroidCat on a 64-bit

Windows machine with 3.30GHz Intel Xenon, 16G RAM.

Software: Our experimental environment is MATLAB 2015 running on the same Win-

dows machine. We implemented the Baum-Welch algorithm with default tolerance 1e-4

and the Viterbi algorithm to train and test the model. The tolerance level of Baum-Welch

algorithm controls how many steps the algorithm executes before the function returns an

answer.

Datasets: To have an effective HMM risk assessment model, we need to train the model

with sufficient behaviour logs from both malicious and normal apps. We obtained our

malicious apps set from the Computer Security Group of University of Gottingen, which

was collected under the Drebin project [13]. The dataset contains 5560 malicious apps

from 179 different malware families. We selected 700 apps from this dataset so that we

have multiple apps from every malware family. In addition to the 700 malicious apps, we

collected 700 benign apps from various categories of Android apps. We randomly selected

94

Time (time period)

(a)

TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10

M
al

ic
io

u
s/

N
o
rm

al
 S

ta
te

s

0

0.2

0.4

0.6

0.8

1

Normal state Malicious state Switch frequency

Time (time period)

(b)

TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10

M
al

ic
io

u
s/

N
o
rm

al
 S

ta
te

s

0

0.2

0.4

0.6

0.8

1

Normal state Malicious state Switch frequency

Fig. 3.1.13.: Model output and frequency of switches between the states: (a) the output of model for a given malicious app; (b) the
output of the model for a given normal app.

500 malicious and 500 benign apps from both datasets (malicious and benign) and use them

as training sets for the model. The remaining 200 apps from each dataset are used as test

set to test the performance of the trained model.

In terms of behaviour logging, we set the timer in the DroidCat’s App Scheduler to

2 − 5 minutes per app and it took around 79 hours to capture all logs through human

interactions with the 1400 apps.

3.1.8.2 The Running States of Malicious and Benign Apps

In order to demonstrate how the HMM switches between normal and malicious states

during the risk-assessment process, we randomly selected two apps from the malicious and

normal datasets. We used their behaviours logs as input and used the Viterbi algorithm to

generate output sequences. We divided the outputs into 10 time-periods (T). Figure 3.1.13

(a) and (b) show the probability of normal and malicious output states and the frequency

of switching in between them, given the behaviour sequences collected from the apps. We

observed that the model switches frequently in between the normal and malicious states at

the beginning (as a sign of uncertainty of categorization), and after receiving sufficient data

it converges to a malicious (normal) state. Note that we define the switch frequency to be

the percentage of transition states over the total number of states in the output sequence.

95

For example, letmt be the number of times that the state switches from normal to malicious

or from malicious to normal, and mo be the overall number of output states observed, then

we have the switch frequency f = mt/mo. Note that 0 ≤ f ≤ 1. We observed that the

output sequence from different apps follow the same pattern on convergency.

We also computed the average probability of being in normal or malicious states using

probability mass function (PMF) for the apps in the previous experiment. Table 3.1.4 shows

the probabilities of normal and malicious output states for both malicious and normal apps.

We can see that the model results in high percentage of normal (93%) state for the benign

app, and high percentage of malicious (86%) state for the malicious app.

Table 3.1.4.: Probability Mass Function results

State Normal Malicious

PMF (Normal app) 93% 7%
PMF (Malicious app) 13% 86%

3.1.8.3 Model accuracy and reliability

In this experiment, we study the accuracy of the model. After training the HMM,

we measure the true positive rate (TP) and false positive rate (FP) regarding the computed

risk levels’ accuracy. TP refers to probability that malicious apps risk levels are computed

correctly by the model, whereas FP is the probability that a benign app risk level is falsely

computed. Note that true negative rate (TN) and false negative rates (FN) can be derived

from TP and FP. We start with the risk threshold from 0 and increase it by 0.05 each

round till it reaches 1. Figure 3.1.14(a) shows that TP and FP drop when the risk threshold

increases. The FP and TP drop rate increase drastically when the threshold passes 0.5 and

0.6, respectively. From Figure 3.1.14(b) we can see that the TP and TN cross at around

90% accuracy when the threshold is around 0.7.

We applied the trained HMM model to the test set with 200 malicious and 200 benign

96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision Threshold

T
ra
in
in
g
T
P
an
d
F
P

(a)

TP
FP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision Threshold

T
ra
in
in
g
T
P
an
d
T
N

(b)

TP
TN

Fig. 3.1.14.: Accuracy of the model on the training sets

apps, and show the results in Figure 3.1.15. As we can see, the accuracy is slightly lower

than the ones on the training set. From this experiment, we can see that our model achieves

high accuracy to compute the malicious apps’ risk levels. When the risk threshold θ is 0.7,

the risk assessment system achieves 88% accuracy on TP and TN on the training set and

80% TP and TN on the test set. In the merged results presented in Figure 3.1.16, we can

see that the false positive rate is higher in the test set than the training set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision Threshold

T
es
t
T
P
-
F
P

(a)

TP
FP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision Threshold

T
es
t
T
P
-
T
N

(b)

TP
TN

Fig. 3.1.15.: Accuracy of the model on the test sets

97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision Threshold

T
es
t
an
d
T
ra
in
in
g
T
P
-
F
P

(a)

Test TP
Test FP

Training TP
Training FP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision Threshold

T
es
t
an
d
T
ra
in
in
g
T
P
-
T
N

(b)

Test TP
Test TN

Training TP
Training TN

Fig. 3.1.16.: Accuracy of the model on both test and training sets

Considering 0.7 as an ideal risk threshold, we carried out another experiment to study

the influence of training dataset size on the TP and TN. In this experiment, we cross-

validated the model by splitting the training data into different sizes. We trained the HMM

model with one set and test the result using the other. The size of the training set start from

100 and increases by 100 each round. Figure 3.1.17 shows that the TP and TN increase with

the size of the training dataset. We also see that when the training datasets reaches 800 the

accuracy of risk computation does not get better by increasing the training dataset, which

means the training dataset of 800 (400 malicious apps and 400 benign apps) is sufficient.

Table 3.2.2 presents the performance of the model on the test dataset in terms of Re-

call, Precision, F-Measure and Accuracy for all ten training dataset sizes. We can see that

all performance indicators increase with the training dataset size until it reaches 800.

3.1.8.4 Risk evaluation

In this section we study the risk levels of apps and their resources through experiments.

We discuss the risk computation and the impact of users’ preferences on the computed

risk levels. We use cross validation to evaluate the impact of the parameter ηk (forgetting

98

200 400 600 800 1K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set size

T
ra
in
in
g
T
P
-
T
N

(a)

TP
TN

200 400 600 800 1K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set size

T
es
t
T
P
-
T
N

(b)

TP
TN

Fig. 3.1.17.: Accuracy of the model on both test and training sets with different set sizes

Table 3.1.5.: Performance Measurement - Recall (Rc), Precision (Pr), F-Measure (F), Accuracy (Ac)

Size TP TN FP FN Rc Pr F Ac

100 0.70 0.65 0.35 0.30 0.70 0.67 0.68 0.68
200 0.75 0.67 0.33 0.25 0.75 0.69 0.72 0.71
300 0.77 0.69 0.31 0.23 0.77 0.71 0.74 0.73
400 0.80 0.70 0.30 0.20 0.80 0.73 0.76 0.75
500 0.82 0.71 0.29 0.18 0.82 0.74 0.78 0.77
600 0.86 0.74 0.26 0.14 0.86 0.77 0.81 0.80
700 0.87 0.75 0.25 0.13 0.87 0.78 0.82 0.81
800 0.88 0.76 0.24 0.12 0.88 0.79 0.83 0.82
900 0.88 0.76 0.24 0.12 0.88 0.79 0.83 0.82

1000 0.88 0.76 0.24 0.12 0.88 0.79 0.83 0.82

factor) on the estimated risk levels for apps’ resources access. The ηk rate for the first three

experiments is set using the time-variant polynomial form.

In the first experiment we compute the average risk levels for all malicious and normal

apps in our datasets. Figs. 3.1.18 (a1) and (a2) show the results of the risk computation for

two app groups, malicious and normal apps respectively. We can see in the Figure 3.1.18

(a) that the computed risk levels for normal apps start from near 0 to 0.8, and risk levels

for malicious apps start from 0.4 to 1. The distribution of the computed risk levels is

presented in Table 3.1.6. We can see that 450 (90%) of the malicious apps have risk levels

higher than 0.7, whereas only 30 (6%) normal apps risks are above this level. The results

99

of this experiment show that risk level is an effective criteria to separate malicious apps

from normal apps. Figure 3.1.18 (a) also show the normal distribution (N (µ,σ2)) of the

computed risk levels using the Gaussian function. The median (µ) and standard deviation

(σ) of the risk levels for the malicious and normal apps are (µ = 0.79,σ = 0.1) and

(µ = 0.56,σ = 0.14) respectively.

Table 3.1.6.: Risk level distribution

Type 0-0.1 0.1-0.3 0.3-0.5 0.5-0.7 0.7-0.1

Normal 25 4 97 344 30
Malicious 0 0 2 48 450

In the second experiment, we study the impact of the user responses on the average

risk level of an app. We define a scenario where we target the risk level of the network

resource of a malicious app. Without any user input, the risk level of the resource is 0.9.

We plot the change curves of the estimated risk levels of the same resource before and after

users chose to “allow” or “block” the resource access. For the sake of clarity of figures

we rescaled the app’s running time from 0 to 1. At the beginning there is no log input for

the resource so that risk level is 0. Then we start to feed log files of the malicious app

and the risk level of the app increases drastically to 0.9. At time 0.3 we inject two types of

responses to the system and observe its impact to the risk value of the app. Figure 3.1.18(b)

illustrates the impact of the user’s response to the estimated risk levels. We can see that if

the user’s response is “Allow”, the model turns to be less conservative and the risk level

of the resource decreases. On the other hand, if user’s response is “Block”, the risk level

increases (the user is more conservative). When no user response is in place, the risk level

of the app remains at around the same level. From this experiment we can see that the risk

assessment model can adapt to the user’s responses and provide customized risk levels.

In the third experiment, we still use the same scenario as the last experiment, but this

time we focus on the estimated risk levels for the network resource only. Figure 3.1.18(c)

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100 σ=0.1

µ=0.79

(a1)

N
u
m
b
er

of
A
p
p
s

N (µ,σ2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

σ=0.14

µ=0.56

(a2)

Risk level

N
u
m
b
er

of
A
p
p
s

(a)

N (µ,σ2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
is
k
le
ve
l

(b)

Block
Allow

No Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
is
k
le
ve
l

(c)

Block
Allow

No Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
is
k
le
ve
l

(d)

?? φ

?? B:0.6
?? A:0.6
?? B:0.7
?? A:0.7
?? B:0.8
?? A:0.8
??B:0.9
?? A:0.9

Fig. 3.1.18.: Applications’ computed risk levels: (a) the distribution of risk levels for both malicious and normal apps training datasets;
(b) the impact of user’s response on the overall risk level; (c) the impact of user’s response on the risk level of a resource; (d) the impact
of the forgetting factor on the computed risk level of a resource

shows the computed risk level for both “Allow” and “Block” responses. We can see that

this result also shows the influence of the user response. However, the risk level drops

faster in the case that “Allow” is chosen by the user. The impact from user response is

higher since it is focused on one resource only.

The last experiment is to study the impact of the learning rate parameter ηk (forgetting

factor) on the computed risk levels by the system. In this experiment we ran the experiment

101

multiple times with different settings for ηk. We let ηk change from 0.6 to 0.9 and observe

its impact on the risk values. Figure 3.1.18(d) shows that the higher ηk is, the higher impact

user’s responses have on the risk levels. This is because higher ηk means more emphases

on the recent input, which is the user’s responses.

Table 3.1.7.: Resource average usage statistics

Resource Malicious Normal

Ads API 115.3 11.8
Bluetooth 3.2 0.6
Browser 5 0.86
Call 4.8 0.87
IMEI 3.7 2.4
MMS 2.5 0.5
SMS 3.4 0.1
Root command 14.3 3.2
Boot inquiry 2.4 0.1
Zygote 7.6 0.9

Finally, we did a statistic analysis on the collected logs from the training and test

datasets and computed the average resource usage per app for both malicious and normal

apps. Table 3.1.7 shows the result and, as we expected, malicious apps requested and used

sensitive resources more than normal apps.

3.1.9 Conclusion

In this section, we propose XDroid, an Android app resource access risk estimation

framework using hidden Markov model. We first define and select features to represent

behaviours of Android apps and collect them through our own developed human-oriented

instrumentation tool DroidCat. A filtering and parsing method is then employed to synthe-

sis and organize the captured behaviours. We train the model with a proper malicious app

dataset using the Baum-Welch algorithm and test it with different test datasets using the

Viterbi algorithm. Through our model, we can compute the risk level of those apps that be-

have malicious with high level of accuracy. The model informs users the risk level of their

apps in real-time. Our model is able to update the model’s parameters dynamically using

102

an on-line algorithm and users’ preferences. Our experimental results demonstrate that our

proposed model achieve a satisfying accuracy in terms of true positive and false positive

rate. Our evaluation results also show that our model can effectively provide customized

risk estimations depending on users’ preferences. As our future work, we plan to apply

more external features to further improve the detection accuracy. We also plan to include

the users’ expertise level into the risk level computation process for better accuracy.

3.2 Malware Detection Using Support Vector Machine and Active Learning

In this section, we elaborate the details of a machine learning-based model which

is aim at detection malicious apps. The model detects malicious apps using a dynamic

behavioral-based analysis. Our proposed model is equipped with an online learning feature

which enables online training and updating our model. This way, the model is able to

self-tune itself against new types of malicious apps. The major contributions of the work

reported in this section include:

• An instrumentation tool that facilitates app behaviour logging in order to generate

high quality dataset for analysis.

• A comprehensive time-aware Android app behaviour analysis, which is based on the

apps’ intents and actions, as well as extra features that further improve detection

accuracy.

• A trained SVM model which can decide whether an app is malicious or not based on

its behaviour.

• An Active Learning model which can retrain the SVM model to be able to detect

malicious apps with behaviours different than the apps in training set.

103

3.2.1 Problem Definition

The increasing popularity of Android phones and its open app market system have

caused the proliferation of malicious Android apps. The increasing sophistication and

diversity of the malicious Android apps render the conventional malware detection tech-

niques ineffective, which results in a large number of malicious applications remaining

undetected. This calls for more effective techniques for detection and classification of

Android malware. Hence, in this project, we present an Android malicious application de-

tection framework based on the Support Vector Machine (SVM) and Active Learning tech-

nologies. In our approach, we extract applications’ activities while in execution and map

them into a feature set, we then attach timestamps to some features in the set. We show that

our novel use of time-dependent behaviour tracking can significantly improve the malware

detection accuracy. In particular, we build an active learning model using Expected error

reduction query strategy to integrate new informative instances of Android malware and

retrain the model to be able to do adaptive online learning. We evaluate our model through

a set of experiments on the DREBIN benchmark malware dataset. Our evaluation results

show that the proposed approach can accurately detect malicious applications and improve

updatability against new malware.

3.2.2 Background

In this section we briefly review some background knowledge about Support Vector

Machine (SVM) and Active Learning, including how an SVM model works and can be

evaluated. We also explain how active learning can help update the model by incoming

new instances.

104

3.2.2.1 Support Vector Machines

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a

separating hyperplane [24]. In other words, given labeled training data (supervised learn-

ing), the algorithm outputs an optimal hyperplane which can be used to categorize new

data examples. An SVM training algorithm builds a model that assigns new instances to

one class or another, making it a non-probabilistic binary linear classifier. Regardless of

the dimensions of the sets (finite or infinite), if the input sets are not linearly separable,

SVM maps the original sets into a higher-dimensional space, presumably making the sepa-

ration easier. This transformation to a high-dimensional space increases the computational

load [24].

To reduce the computational load of the dot product operation which is needed in the

dimension transformation and improve the accuracy of classifying data sets, SVM uses

kernel functions. A kernel function helps accelerate the dimension transformation compu-

tation [24]. The mathematical definition of a kernel function is as follows:

K(x, y) = 〈(x), f(y)〉 (3.39)

where K is the kernel function, x, y are n dimensional inputs, f is a map from n-

dimension to d-dimension space (d is much larger than n). In this equation, 〈x, y〉 denotes

the dot product. In other words, a kernel function can also be understood as a measure

of similarity between two data points. For example, a kernel function K takes two data

points xi and yj ∈ Rd, and produces a similarity score, which is a real number, i.e., K :

Rd × Rd → R.

SVM has some advantages that make it unique. Some of the advantages are: (i) it has a

lower computational complexity, (ii) it is effective in cases where the number of dimensions

is greater than the number of samples, (iii) it uses a subset of training points in the decision

105

function (called support vectors), so it is also memory efficient, and (iv) different kernel

functions can be specified for the decision function. Next we elaborate the two key steps

of SVM: training and evaluation [69].

Training: In order to classify datasets, the SVM model needs to be trained. As we de-

scribed previously, SVM is a supervised learning model. The supervised learning is the

process of inferring a function from labeled training dataset. The training dataset shall

consist of a set of data points together with their labels (classes). The training dataset is

then used by SVM to produce an inferring function, which can be used for classifying new

instances [69].

In addition to the training set, a kernel function needs to be selected for the SVM

model. The effectiveness of the selected kernel depends on the training datasets. The

kernel selection and its regularization parameters is a challenging issue. Model overfitting

may occur if the kernel model or its parameters are not selected appropriately. There are

a few options for kernels such as Linear, Radial Basis Function (RBF), and Polynomial.

Formal definition of these kernels are listed in Table 3.2.1.

Table 3.2.1.: Kernel Definitions

kernel Mathematical Formulation

Linear K = (X,Y) = XTY
Polynomial K = (X,Y) = (γ ·XTY + r)d, γ > 0
Radial Basis Function (RBF) K = (X,Y) = exp(−γ· ‖ X − Y ‖2), γ > 0

In the table r, d, and γ are the coefficient value, degree of polynomial, and the in-

fluence of a single training example. When training an SVM with the RBF kernel, two

parameters must be considered: C and γ. The parameter C, which is common to all SVM

kernels, controls the trade off between the misclassification of training examples and the

simplicity of the decision surface. γ defines how much influence a single training example

has. The larger γ is, the closer other examples must be to be affected.

106

Evaluation (Validation): In order to evaluate the performance and accuracy of a SVM

model, cross-validation can be used. Cross-validation is a technique to assess how a statis-

tical analysis will be generalized to an independent set. Cross-validation has different types

such as Leave-p-out, k-fold, and etc [69, 24]. In the leave-p-out technique we use p data

points as the validation set and the remaining data points as the training set. The model can

be evaluated for different values of p. In k-fold validation, the dataset is randomly sliced

into k equal sized data chunks. Of the k chunks, one chunk is retained as the validation

set for testing the model, and the remaining k − 1 chunks are used as training data. The

cross-validation process is then repeated k times (the number folds), with each of the k

chunks used exactly once as the validation data. In the evaluation section of this project,

we evaluate our model using these techniques.

3.2.2.2 Active Learning

Active learning is sometimes called “query learning”. It is a special case of semi-

supervised machine learning in which a learning algorithm is able to interactively query

the user (or some other information source) to obtain the desired outputs at new data

points [27]. Active learning technique can be used as a tool to retrain a machine learn-

ing model with new instances (unlabeld data points). For example, to be able to detect new

trends of “spam” in an email service, newly flagged emails as spam by users can be con-

sidered as new instances to retrain machine learning models. Here mailing service users

are called “Oracle” and active learning techniques utilizes their opinions to label new in-

stances and add them to the training sets. The labeling process refers to the process of

measuring app’s risk by experts and labeling them as malware or benign. In other words,

the key idea behind active learning is that a machine learning model can achieve higher ac-

curacy if it is allowed to choose the instances from which it learns. This is why the model

chooses instances with a higher level of informativeness and achieve higher accuracy con-

107

secutively [72, 27].

There are several different problem scenarios in which the learner (model) may be able

to ask queries on new data instances. Out of all the active learning techniques, the major two

are the stream-based selective sampling and the pool-based sampling. The former is used

when the model queries the unlabeld instance in an online (real-time) manner and the latter

is used when new instances are stored in a pool (collection) of data and the learner queries

the pool to label when needed. In our proposed model we use the stream-based technique.

Next we elaborate the formal definition of active leaning and its query strategy [36].

Formal definition: Let T be set of all data in the original dataset. For example, in our

model, T includes all apps that are known as malware or benign. During each retraining,

say the ith, the dataset T is split into three sub-datasets: TKi - known data points, TUi -

unknown data points, and TCi - a subset of TUi selected to be labeled by the Oracle. If the

active learning technique is based on a stream-based learning, then | TUi |= 1.

Query strategy: Query strategy, also called “utility measures”, is the process of choosing

new incoming data instances to retrain the model. In other words, this process should

determine which data point should be labeled [72]. There are several query strategies in

active learning. For example, a query strategy based on “uncertainty sampling” selects

query instances which have the least label certainty under the current trained model. This

simple approach is not computationally expensive compared to others.

3.2.3 Support Vector Machine Model

In this work, we use SVM and active learning for Android malicious app detection.

We model the malicious app detection problem as a machine learning problem with two

classes: malicious and benign. We map the app’s behaviour onto the SVM training dataset

108

features. To train the SVM model, we capture the behaviours from both malicious and

benign apps and use them to generate an initial trained SVM for malicious app detection.

In this section we first present our SVM model and then explain how we can retrain the

model using new instances to be able detect new types of malicious apps.

3.2.3.1 Data Collection

Our vision to specify app behaviour is to view the running app as a black-box and focus

on its interaction with the Android OS. In this case, a typical interface to monitor is the set

of system and API calls that the app invokes during its running time. Every action that

involves communication with the apps’ resources (e.g., accessing the file system, sending

SMS/MMS over the network, accessing the location services, calling Ads API libraries,

and accessing the network) requires the app to launch OS services or API calls.

App SchedulerAPK Files

Package names

A
n

d
ro

id
’s

A

D
B

adb calls

incoming logs

Raw

log files
Final

logs

Filtering & Parsing system

.APK

.APK.APK.APK.APK

.APK .APK.APK

App
dispatcher

(Loader)

APK 1 APK 2 … APK N

A
n
d

ro
id

 d
e
v
ic

e
DroidCat

Interaction

Portal

Activity

Logger

7 6 5

21

4

3

Fig. 3.2.1.: DroidCat instrumentaiton tool architecture

We used DroidCat instrumentation tool to capture apps’ logs (behaviours). The reason

we did not use the existing instrumentation tools in the market such as Robotium and

uiautomator was because of their drawbacks and low accuracy. For example, Robotium

cannot handle Flash or Web components nor simulate the clicking on soft keyboard, and it is

not suitable for multi-process applications tests. Using DroidCat, we can capture the actual

log activities of apps. DroidCat’s architecture is illustrated in Figure 3.2.1. One of the main

advantages of DroidCat is that it instruments apps through real human-interaction, so we

109

capture the actual activities of apps which highly assimilate real-life apps’ behaviours. As

you can see in the architecture, DroidCat is composed of multiple components. Every one

of the components is in charge of a task.

The first task is to extract the packages’ names. We used aapt tool to accomplish

it. The tool is designed to work with archive files. Since Android apps are in the format

of APK (a type of archive files), we utilize the appt tool to read archive files. In addition,

because this tool is embedded into the Android SDK, it does not impose a high performance

overhead to the process.

After reading the packages’ names and recording them, out next step is to run the apps.

In order to run an app, we should load it into the device’s memory. We used ADB logcat

tool to load the apps. The loading process also includes installing the apps and running

them as well. App dispatcher component is in charge of the loading process. This compo-

nent also determines the amount of time that the apps should run. By running the apps, we

are able to capture the activities logs and record them at the time of instrumentation.

We call the collected logs from the previous step "raw" logs. The raw logs need to be

filtered in order to eliminate the unnecessary information such as loading/installing/running

logs.

Parsing: After filtering the log files, DroidCat eliminates unnecessary information and

extracts important keywords. Each keyword refers to a sensitive resource access request,

an API call, or Android action constants. We can also call them features. In our model,

we focus not only on the generated Intents by apps but also on API library calls that cause

permission escalation or generate unwanted Ads. In total we defined 150 keywords under

various categories. When analyzing the parsed logs, we noticed that for some resources

such as “WiFi”, malicious and benign apps have different patterns in the timing of requests

during app running. For example, the malicious apps tend to request the WiFi network

110

during the first quarter of their running time period. Because of this, we include the timing

of requests or library calls as an additional feature. Among of the 150 keywords, we added

the timing feature to 56 of them. Therefore, we defined 206 time-dependent and time-

independent observations in total.

3.2.3.2 Model Building

In this section we describe our RBF-based SVM model and its components. We start

from the motivation of using SVM as a malicious app detection method and why RBF

works the best for the model. We also elaborate the active learning component of the

proposed model and its query strategy in details.

Figure 3.2.2 shows the overall view of our model. The key components of the model

are Model building, Model evaluation, Model optimization. The model also has the ca-

pability of active learning using Informativeness Measurement and Oracle. The decision

model is trained by a set of instances, called Historical Data, which is used as training set

for the model. For new incoming instances, our model is able to label them using Oracle

for active learning.

3.2.3.3 Model Training

For our model we choose SVM for classification algorithm. This is due to the large

number of captured features from the data (206 features). It is difficult to find a separation

boundary using other machine learning classifiers or clustering algorithms. A major advan-

tage of SVMs is that the data can be transformed to a high-dimension space, where we can

find a separation hyperplane using linear or RBF kernels.

By visualizing our collected data, we noticed that our data is not linearly separable.

This is common when the training dataset has a large number of features. Figure 3.2.3

illustrates our training dataset using two features. The X axis and Y axis are the features.

111

Historical Data
(Training set)

.APK.APK .APK.APK

Model building

Model evaluation Model optimization

Model Training

H
y
p

e
rp

a
ra

m
e

te
r

tu
n

in
g

Te
s
ti
n

g
 m

o
d

e
l

Model training

Oracle

In
fo

rm
a

ti
v
e

n
e

s
s
 m

e
a

s
u

re
m

e
n

t

N
e
w

 i
n
s
ta

n
c
e
 l
a
b

e
lin

g

u
s
in

g
 A

c
ti
v
e
 L

e
a
rn

in
g

Label & Add to train set
N

e
w

 A
p

p
 L

o
g

s

.APK

.APK

…

.APK

.APK

App Markets
Internet

Updating risk

Fig. 3.2.2.: SVM model and the active learning component architecture

We trained our classification model using a sample set of our data with both linear and RBF

kernels and plotted the separation boundaries. We can see that the RBF-based model can

achieve cleaner separation compared to the linear kernel. Therefore, we use RBF as the

kernel function in our model.

Fig. 3.2.3.: Radial-Basis Function (RBF) and Linear kernel comparison on a sample dataset

112

3.2.3.4 Active Learning

We also integrate active learning into our model to be able to use new apps as training

data points. To design an active learning model, two critical questions must be answered: 1)

How often the model should be retrained to keep the detection rate high?, and 2) what query

strategy should be used? We elaborate our answers to these questions in what follows.

Learning: Our strategy is to use a stream-based learning. This way the model queries

new apps instantly and makes a decision on whether it should be labeled by the Oracle or

not. There are two different types of stream-based learning: Online learning (one new app

at a time) and Batch learning (a group of apps at a time). In online learning, the model

decides whether to discard or process (label) a new data. In batch learning, the model

collects new data until it reaches a certain size (batch size) and then decides whether to

process them or not. Figure 3.2.4 (a) and (b) shows an overview of both online learning

and batch learning respectively.

Query Strategy: Query strategy is the most influential part of an active learning-based

model. Choosing a good strategy increases the accuracy of the model for future unknown

apps. To achieve this goal, we chose the Expected error reduction strategy to query new

apps. This strategy aims at labeling apps that minimizes the model’s future generalization

error. The idea is to estimate the expected future error of a model trained using the original

dataset L = 〈x, y〉 and test it with the remaining data U (new data) and then query the new

apps with minimal expected future error. An approach to minimize the expected 0/1-loss is

as follows:

x∗0/1 = argmin
∑
u∈U

Ey[Hθ+〈x,y〉(Y | u)] (3.40)

113

where θ+〈x,y〉 denotes the updated model after it has been retrained with the training

app 〈ux,uy〉 added to L. In this equation, Ey and Hθ+〈x,y〉 are the expectation over possible

labeling of x and uncertainty of u after retraining with x respectively. Here, since we do

not know the actual label of the query app, we approximate the label using expectation over

all possible labels under the current model θ.

…Training Updating 1 Updating N-1

Time
Observation 1 Observation 2 Observation N-1

m0 m1 m2 mN−1 mN

t0 t1 tN−1

…Training Updating 1 Updating N-1

Time
Batch 1

m0 m1 m2 mN−1 mN

(a) Online Learning

Batch 2 Batch N-1

Ob

t
′
0 t

′
1 t

′
N−1

(b) Batch Learning ∀i, ti < t
′
i

Fig. 3.2.4.: Illustration of Batch learning and Online learning

3.2.4 Evaluation

We present our evaluation results in this section. More specifically, we measure the

accuracy of the model and then evaluate the stability of the model by adding noise to the

training set. After that we evaluate the model under different settings of features using

K-Best features. Finally we evaluate the active learning model under different settings of

Oracle’s expertise and batch sizes.

3.2.4.1 Experiment Setup

Software and Hardware Our experiment environment is python 3.6 running on same ma-

chine. We implemented all of our experiments using scikit-learn libraries powered

by Google [57]. The libraries that are used in our experiments include model_selection,

114

train_test_split, confusion_matrix, SVC, cross_val_score, SelectKBest, and etc. It is worth

mentioning that to capture the actual logs of apps in our experiments, we used 4 LG Nexus

4 smartphones. We turned on all the sensitive resources such as Wifi, Bluetooth, and GPS.

Datasets In order to conduct our evaluation experiments, we used a Android malware

dataset called Drebin project [13]. The dataset includes more than 5K apps from 179 dif-

ferent malware families. We selected 700 apps from this dataset so that we have multiple

apps from all the malware families. In addition to the 700 malicious apps, we collected 700

benign apps from various categories of Android apps. We randomly selected 500 malicious

and 500 benign apps from both datasets (malicious and benign) and use them as training

sets for the model, and the remaining 200 apps from each dataset are used as test set to test

the performance of the model.

We defined the running time per app to be 2− 5 minutes in the App Dispatcher com-

ponent. In total, the log capturing process (instrumentation) took around 79 hours for all

the apps through human interactions.

3.2.4.2 Training Dataset Visualization

Before presenting the validation results, we visualize our data set using four features

pairwisely. We selected permission manipulation, Ads lib. usage, HTTP request, and

Activity manager interference features from the original dataset. Figure 3.2.5 shows the

visualization results. In this figure, the x and y axis are a pair of the selected features repre-

senting the number of times that malicious and benign apps have requested those resources.

We can see from the figures that the distribution of the malicious apps is more diverse than

benign apps. Regardless of some differences, there is some overlap among malicious and

benign apps. To visualize the distributions, we visualize the average usage of resources in

Figure 3.2.6. We can see the comparison of the average resource usage by malicious and

115

Fig. 3.2.5.: Pairwise visualization of the dataset used for training and testing the model by four app behaviours (permission request, Ads
lib., WiFi, and Activity Manager) as axises

Fig. 3.2.6.: Visualizing average resource request by malicious and benign apps for permission request, Ads lib., WiFi, and Activity
Manager: (a) malicious apps; (b) benign apps.

benign apps. The blue boxes in the figures represent the data range from the second quarter

to the third quarter of the data sample, while the red bars are the medium values of the

samples. The vertical whiskers indicate the range of all data except outliers. The outliers

116

are not plotted in the figures (which can be very large number).

3.2.4.3 Model Accuracy and Reliability

In the first experiment, we assess the accuracy of the model. We first tuned the model

to find the best parameter configuration. Since we use RBF as our kernel function, we need

to find the best values for C and γ. We used scikit-learn model_selection library to

find the optimal kernel function and values for parameters. As a result, RBF was selected

as the optimal kernel with C = 1 and γ = 5.5e−4. After finding the optimal configuration

for the model, we cross-validated our model on the training set to measure the average

accuracy µ and standard deviation σ. Figure 3.2.7 shows the cross-validation results under

different settings of C. We can see that with optimal setting for γ when C = 1, we have

the highest average accuracy above 90% and a low deviation (Figure 3.2.7(a)) and when

C = 0.1 (model is not tuned), the average accuracy drops and the standard deviation is

higher (Figure 3.2.7(d)).

The second experiment is also on the model accuracy. We evaluated the reliability

of the model using the leave-p-out validation technique. We split the training set into 10

subsets and train the model with one set or multiple sets. We increase the size of the

training set to start from 10% and increases by 10% each round. We validated the accuracy

using the training as well as our validation sets. We ran the experiment for 10 times to

plot the average accuracy and confidence interval in Figure 3.2.8(a). The results show that

by increasing the training set size, the accuracy of model increases. We can also see that

the accuracy of the model on the test set is lower than that of the the training set. The

reason that we achieved such high accuracy is that, in contrast with existing approaches,

we consider time in our features. We also see that with only 50% of the training set, the

model is able to predict almost as accurately as that with 100% on the training set, which

shows the reliability of the model.

117

Fig. 3.2.7.: Evaluation of model’s accuracy using Cross-Validation and parameter (γ,C) tuning: (a) (γ = 5.5e−4,C = 1.0); (b)
(γ = 5.5e−4,C = 0.5).(c) (γ = 5.5e−4,C = 0.3); (d) (γ = 5.5e−4,C = 0.1).

Fig. 3.2.8.: Model accuracy evaluation: (a) accuracy of the model with different sizes of training dataset and evaluated by training and
test datasets for 10 runs; (b) evaluated True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) of the
model.

We also carried out another experiment on the accuracy by measuring the True Pos-

itive (TP), True Negative (TN), False Positive (FP), and False Negative of our perdition.

118

Figure 3.2.8(b) shows the evaluation results. Table 3.2.2 shows the performance of the

model on the test dataset in terms of Recall, Precision, F1-Measure for different training

set sizes. We can see that all performance indicators increase with the training dataset size.
Table 3.2.2.: Performance Measurement - Recall, Precision, F1-Measure

Size Recall Precision F1-Measure

10% 0.78 0.80 0.79
20% 0.80 0.86 0.83
30% 0.80 0.89 0.84
40% 0.80 0.91 0.85
50% 0.81 0.93 0.86
60% 0.81 0.93 0.87
70% 0.81 0.94 0.87
80% 0.82 0.94 0.87
90% 0.83 0.96 0.88

3.2.4.4 Model Stability Evaluation

In this subsection we assess the stability of the model. We define stability as the

robustness of the model against noisy or incomplete malicious apps behaviours added to

the training set. To evaluate the stability, we generated noisy data and mixed it with the

training set. We generated the noise using the Gaussian distribution (N = (µ,σ)), a very

common noise in machine learning validation process with different strengths 1 to 10. The

generated noise is a vector of numbers in the size of (|Features|) that is added to the data

points. Figure 3.2.9 shows the generated noise for this experiment. We also added the

noise to the training set under different size settings from 5% of the dataset to 20% to see

the effects of the noise if different portion of the dataset is affected. Figure 3.2.10(a) and

(b) show the impact of the noise on the accuracy of the model using both training and test

sets respectively. As you can see, when the strength and size of the noise increase, the

accuracy slightly decreases. From this result, we can see that the model is still stable even

after adding high strength noise to 20% of the training set.

In the second experiment on model’s stability, we used univariate feature selection

to measure the impact of features. Univariate feature selection works by selecting the

best features based on univariate statistical tests. Among the univariate feature selection

119

Fig. 3.2.9.: Applied noise to the training set for evaluating the stability of the model under different strengths (S) (strength=1, · · · , 10)

Fig. 3.2.10.: Evaluation of noise and feature impacts: (a) accuracy of the model under different settings of noised data and noise
strengths; (b) evaluating model’s accuracy by training the model with different sets of the features using K-Best features (K =
1, · · · , 10)

methods, we used KBest feature selection and evaluated the accuracy of the model for

different sets of features on both training and test sets. Figure 3.2.10(c) shows the results of

this experiment. From those results, we understand that a combination of features including

high and low score features is necessary to keep the accuracy high. The reason is that, if

the top K high score features do not represent the differences of classes, the result will be

a biased and overfit trained model. As you can see the accuracy of the model increases

by adding more features and at some point (starting from 100) it stays stable. Table 3.2.3

shows the top 10% best features together with the average requests by malicious and benign

apps.

120

Table 3.2.3.: Resource average usage statistics (top K = 10 best features)

Feature WiFi Ads MMS SMS Blue. Brow. Root Boot Zygot Call

Malicious 29.9 42 12.3 36.4 17.2 12.8 14.3 2.4 7.6 4.8
Benign 12 8.1 1.7 5.2 5.4 6.3 3.2 0.1 0.9 0.87

3.2.4.5 Active Learning Evaluation

In this section, we evaluate the active learning component of the model. We use three

metrics to evaluate the performance of the active learning model. They are: 1) the speed of

retraining the model to detect new instances; 2) the impact from the Oracle’s expertise on

the model’s accuracy for the future apps; 3) the impact of the batch size when retraining

the model using batch learning.

In the first experiment, we designed a scenario in which the model is initially trained

by all the benign apps with different number of malicious apps. The rest of the malicious

apps will be evaluated by the trained model and then verified by Oracle before they are

added to the training set. Our goal is to assess how the active learning can help retrain

the model to achieve higher accuracy in real time. In this experiment, since we are using

labeled data, we can emulate an Oracle with expertise 1 who can accurately label all new

apps. Figure 3.2.11 shows the evaluation results for this experiment. As you can see, the

model is able to retrain the model by adding new labeled apps and improves the accuracy of

the model. We can also see that when the initial model is trained with more malicious apps,

the initial accuracy is higher. For example in Figure 3.2.11(d), when the number of initial

malicious apps is 100, the accuracy increases quickly. We can also see that the detection

accuracy fluctuates at the beginning in almost all cases. The reason is that the model is not

sufficiently trained at the beginning and makes wrong predictions until more training data

come in to improve the detection accuracy.

In the second experiment, we set the expertise of Oracle to different levels (0.6, 0.7,

0.8, and 0.9). In this scenario the initial model is trained with 50 malicious apps and all

121

Fig. 3.2.11.: Accumulative accuracy of the model using Active Learning for incoming new instances with different trained models and
Oracle’s expertise "1": (a) accuracy of model trained with 10 malware; (b) accuracy of model trained with 20 malware; (c) accuracy of
model trained with 40 malware; (d) accuracy of model trained with 100 malware.

the benign apps. In this experiment we aim to see the impact of Oracle’s expertise on

the model’s accuracy. Figure 3.2.12(a) shows the accumulative accuracy of the model for

the new incoming malicious apps. We can see that with lower expertise, the accumulative

accuracy increases slower than that with higher Oracle’s expertise.

In the last experiment, we evaluate the accuracy of the model when our query strategy

is based on batch learning. For this experiment, we fixed the Oracle’s expertise to be 1 and

50 apps are used for the initial model. We also set the size of batch to be 10,30,60, and 90.

Figure 3.2.12(b) shows the experiment results. We can see that the accumulative accuracy

has a direct relation with the batch size. With smaller batch size, the model gets retrained

more frequently than when using large batch sizes. Compared with the previous two ex-

122

Fig. 3.2.12.: Accumulative accuracy of the model using Active Learning for incoming new instances: under different settings of Oracle’s
expertise (OE) and batch sizes: (a) accuracy of model with different Oracle’s expertise (0.6, 0.7, 0.8, and 0.9); (b) accuracy of the model
with different batch sizes (10, 30, 60, and 90).

periments with online learning (batch size=1), the accumulative accuracy is proportionally

lower even though it has higher computational complexity. Therefore, choosing a proper

batch size is critical for active learning.

3.2.5 Conclusion and Future Work

In this project, we propose an Android malicious app detection framework using SVM

and active learning. We first define and select features to represent behaviours of Android

apps and collect them through our own developed human-oriented instrumentation tool

DroidCat. A filtering and parsing method is then employed to synthesize and organize the

captured behaviours. We train the model with a proper malicious app dataset using the

RBF kernel and test it with test datasets. Through our model, we can detect malicious apps

with high accuracy. On top of the SVM model we implemented an active learning method

to improve the stability and robustness of the detection model against new instances of

Android malware. Our experimental results demonstrate that our proposed model achieves

satisfying accuracy in terms of true positive and false positive rate and adapts the detection

model for new malware trends.

Optimal Query Strategy: In our model, the type of query strategy that we use has a

high impact on the model’s performance and accuracy. In this model, we used the expected

123

reduce error strategy and achieved a reasonable performance. In order to improve the

model, we can apply other query strategies to see if they can have better performance

in terms of cost-effectiveness and accuracy. For example, some of the existing strategies

measure the quality of the new data points and if they pass a quality threshold they can be

included into the training set [73].

New Classes of Malware: One of the main important threats to any malware detection

system is new trends (classes) of malware with very different behavioural patterns. In such

a scenario, the model should be able to detect and retrain itself. One solution to this is using

progressive learning. In progressive learning, the model is able to detect new classes and

add them to the training set. Therefore, the training set will have more labels. This method

can be implemented on top of the active learning method. Such a method for learning and

training the model can be used if the model can be trained with a dataset with multiple

(more than 2) labels.

124

CHAPTER 4

BOT USER DETECTION

In this project, we study the potential threats to the permission control recommendation sys-

tem and propose corresponding solutions to defend against them. Since the system heavily

relies on the responses from expert users, a number of dishonest users who have already

received high expertise rating may misguide the system into providing wrong recommen-

dations if not detected and handled properly. The research of this part is to answer this

questions: How to detect those dishonest users and mitigate their impact on the system?.

We propose two game-theoretical and clustering-based models to protect the system agains

malicious users.

4.1 A Game-Theoretic Model for Defending Against Malicious Users in the Recom-

mendation System

In this section, we propose a game-theoretical model to protect the recommendation

component of the system against malicious users. Malicious users can mislead the rec-

ommendation component by giving false responses to permission requests. The proposed

game-theoretical model (static Bayesian game) aims to predict malicious users’ behaviors

and take proposer actions against their attacks.

4.1.1 Problem Definition

RecDroid is a smartphone permission response recommendation system which uti-

lizes the responses from expert users in the network to help inexperienced users. However,

in such system, malicious users can mislead the recommendation system by providing un-

125

truthful responses. Although detection system can be deployed to detect the malicious

users, and exclude them from recommendation system, there are still undetected malicious

users that may cause damage to RecDroid. Therefore, relying on environment knowledge to

detect the malicious users is not sufficient. In this work, we present a game-theoretic model

to analyze the interaction (request/response) between RecDroid users and RecDroid system

using a static Bayesian game formulation. In the game RecDroid system chooses the best

response strategy to minimize its loss from malicious users. We analyze the game model

and explain the Nash equilibrium in a static scenario under different conditions. Through

the static game model we discuss the strategy that RecDroid can adopt to disincentives at-

tackers in the system, so that attackers are discouraged to perform malicious users attack.

Finally, we discuss several game parameters and their impact on players’ outcome.

4.1.2 Background

In this section, we study the attack scenario on the recommendation system.

4.1.2.1 Attack RecDroid Recommendation System

RecDroid makes recommendations on permission requests based on the responses

from expert users. In order to successfully attack the recommendation system with mini-

mum cost, the attacker needs to do the following:

• The attacker should create multiple malicious expert users. Note that since only one

user is recognized per phone by RecDroid, creating each new users implies obtaining

new phones, which costs certain amount of money for the attacker.

• Each phone has to be managed to install sufficient number of apps and answer per-

mission requests from those apps correctly in order to obtain expert ranking from

RecDroid. Since RecDroid only takes responses from expert users for recommenda-

126

Recommendation
System

Ve
rifi

ca
tio

n
Sy

st
em

Environment Knowledge Expert Users

RecDroid SystemUsers

Fig. 4.1.1.: RecDroid system environment and detection system

tion, malicious users who does not reach expert ranking will not influent the recom-

mendation system of RecDroid.

• When all malicious users are trained to be experts, all users start to install the mali-

cious app (that the attacker possibly owns) and answer the permission requests dis-

honestly in order to mislead RecDroid.

• The attack should be performed as soon as the malicious app is released to public

to minimize its cost. This is because when the app are already responded by many

other normal expert users, the influence from a few malicious expert users will be

reduced due to the voting mechanism of RecDroid to make decisions. The best time

to influence RecDroid is at the time which apps are released.

4.1.2.2 Malicious User Detection

RecDroid has a malicious user detection process to assist its recommendation system.

During the detection process, RecDroid detects the users’ type (malicious or regular) based

on the users’ action in responding to permission requests. There are two distinct approaches

for malicious user detection: one is the machine-learning (ML) approach and the other is

the human verification approach. The ML approach utilizes the behavior similarity among

127

malicious users and it labels a user to be malicious if it is adequately similar to a known

malicious user in terms of behavior. For example, they were created at about the same

time and installed similar set of apps. Compared to the human verification, it costs much

less and is much more efficient. However, it can be easily evaded if the malicious users

are sufficiently well designed so they do not share much commonality. The human-based

verification approach dedicates a human labor to verify the responses to the app requests

and can discover malicious users. This approach can have much lower false positive rate

and false negative rate compared to the ML-based approach. However, the cost of human

verification has much higher cost so it shall not be used to verify all applications.

In our context, we assume RecDroid uses a human-based approach to verify malicious

users. It is a practical approach since it is reliable and is much easier to implement. Fig-

ure 4.1.1 illustrates the relation between the users (malicious or regular) and the RecDroid

system. As we can see, the recommendation system takes input from expert users (normal

or malicious) to generate recommendation to new users regarding whether to grant access

to permission requests or not. For an application that is chosen for verification, the rec-

ommendation will go through a verification process first to check whether it matches the

correct answer from a human expert (verifier). If it does not match, then there might be a

malicious user attack and the verifier can easily find out malicious expert users. Therefore,

with the verification a malicious user attack can be easily discovered and the attack easily

fails. If an app is not chosen to be verified, then the recommendation will be sent to new

users directly. If there is a malicious user attack then the attack succeeds. Note that al-

though human verification is reliable, there are still false positive and false negative cases

since human makes mistakes sometimes.

128

4.1.2.3 Bayesian Games

In many situations the model may begin with some player having some information

about something relevant to her decision making. These are called games of incomplete

information, or Bayesian games. (Incomplete information is not to be confused with im-

perfect information in which players do not perfectly observe the actions of other players).

Although any given player does not know the private information of an opponent (i.e. pay-

offs), she will have some beliefs about what the opponent knows, and we will assume that

these beliefs are common knowledge [77].

A Bayesian game can be modeled by introducing Nature as a player in a game. Na-

ture assigns a random variable to each player which could take values of types for each

player and associating probabilities or a probability density function with those types (in

the course of the game, nature randomly chooses a type for each player according to the

probability distribution across each player’s type space) [77].

Regarding the features of the RecDroid and its users, modeling the recommendation

system through designing a Bayesian game model is a feasible and appropriate way. The

idea behind the Bayesian game model is that generally an attacker/defender game is an

incomplete information game where the defender is uncertain about the type of its opponent

(regular or malicious). A Bayesian game model provides a framework for the defender to

select its strategies based on its belief about the type of its opponent. As we mentioned, the

most important characteristic of the system is that players are aware of the type of others

and that is why in this type of games we have an external node (nature) to distinguish them

from each other [33]. In the next section we describe the game model and how we design

it.

129

4.1.3 Game Theoretic Model

Here are two types of users in RecDroid (malicious users and regular users). Detecting

malicious users is a critical task for RecDroid. Since one attacker can create multiple

malicious users, so what the RecDroid really plays with is either an attacker or a normal

user. To study the interaction between the RecDroid system and users, we use a two-player

static Bayesian game to model the behaviors of both parties. The static Bayesian game has

two players: RecDroid users and the RecDroid system. The RecDroid users have private

information about their types and the types are unknown to the RecDroid system. However,

the type of RecDroid system is a common knowledge to all players (system and users).

An attacker player has two strategies: Attack and Not attack when sending responses

to permission requests from an app. The regular user has only one strategy: Not attack.

Although regular users may make mistakes sometimes (e.g. click some wrong button when

providing a feedback) and behave similarly to an attacker, but this issue does not have a high

impact to be included in strategies and we assume that regular users always provide correct

responses [79]. When attack strategy is used, the attacker manipulate all malicious users to

respond dishonestly to permission requests from an app. For example, the malicious expert

users accept all malicious resource requests from an app, in order to mislead RecDroid into

wrong recommendations. Correspondingly, the RecDroid system has two strategies: Verify

and Not verify the correct responses for the app. When a verify strategy is used, RecDroid

system allocates a seed expert to verify the responses to the requests from an application.

This way the malicious attack fails.

We use ω1,ω2 to denote security value, which are the gain/loss for both the attacker

and RecDroid. For example, an attacker choose to attack RecDroid, it needs to create

multiple malicious users and train them into expert users (with cost), and then all attackers

accept malicious permission requests from an application. If RecDroid does not detect

130

Table 4.1.1.: payoff matrices (RecDroid, Users)

(a) Player i is malicious

Verify Not verify

Attack (1− 2α)ω1 − ca, (2α− 1)ω2 − cv ω1 − ca,−ω2

Not attack 0,−βω2 − cv 0, 0

(b) Player i is regular

Verify Not verify

Not attack 0,−βω2 − cv 0, 0

this behavior, RecDroid will make incorrect recommendation and losses ω2 amount of its

security value, which can be the loss of reputation by making wrong recommendations to

users. For an attacker ω1 means the gain of a successful attack by tricking inexperienced

users into accepting malicious permission requests of a malicious application.

4.1.3.1 Normal Form

In this subsection we present the game in a static normal form. Table 4.1.1 shows the

payoff matrices of the Two-player game in normal form game style. In the payoff matrices,

α and β indicate the detection rate (true positive) and false alarm rate (false positive) of

RecDroid by using human verification, and α, β ∈ [0, 1]. ω1,ω2 are the security value

as we previously mentioned. The cost of attacking and verifying are denoted by ca and cv,

where ca, cv > 0. For example, the attacker needs to spend ca amount of money to purchase

a number of smart phones and spend time to set them up into malicious mode to be able

to influent the RecDroid system. The RedDroid needs to pay a seed expert cv amount

of money to verify the correct responses to the permission requests from an application,

in order to detect attacker’s attacks. We assume that ω1,ω2 are greater than ca, cv, since

otherwise attackers and RecDroid system do not have incentive for attacking the system

and verifying the users’ responses, respectively.

131

N

Player i : regularPlayer i : attacker

Not attackNot attackAttack

Player j : RecDroid

Not verifyVerify

µ0 1 � µ0

(0,��!2 � cv)(0,��!2 � cv) (0, 0)(0, 0)(!1 � cm,�!2)

((1 � 2↵)!1 � cm, (2↵� 1)!2 � cv)

Not verifyVerifyNot verifyVerify

Fig. 4.1.2.: Extensive form of the Bayesian game

Table 4.1.1(a) describes the payoff matrices of the RecDroid system and attackers. We

can see that the expected gain for the RecDroid in (Attack, Verify) strategy combination is

αω2−(1−α)ω2 = (2α−1)ω2, in which (1−α) is the false negative rate and a same for the

attacker’s payoff. This can be explained as: if verification successfully detects attack, then

RecDroid gains reputation, otherwise RecDroid loses reputation. With the combination of

Not attack and Verify or Not verify strategies, the payoff for the attackers is always 0 and

the RecDroid’s payoff is depends on the false positive rate.

Table 4.1.1(b) shows the payoff matrices for the RecDroid system and regular users.

The payoff value for the user is 0 for all the RecDroid’s strategies, and the RecDroid’s

payoff when it plays verify for the Not attack responses is−βω2−cv, which is based on the

false positive rate of the detection system. Although we mainly focus on malicious users

in the model, but we also consider the regular users and their actions in the calculations.

132

4.1.3.2 Extensive Form

In this subsection we show another presentation of the game. Figure 4.1.2 shows the

extensive form of the game. In this form we can see the possible moves of the players and

their choices on each decision state. In the figure, node N indicates the nature, and µ0 rep-

resents the probability that RecDroid is playing with an attacker, who will create malicious

smartphone users to cheat in the system. For regular users, the only strategy is to respond

to the requests honestly. RecDroid decides whether to verify the application permission

requests or not depending on the µ0 value as well as other parameters. Each terminal (leaf)

node of the game tree has a 2-tuple of payoffs (RecDroid/user), which implies there is a

payoff for each player at the end of every possible play.

4.1.3.3 Bayesian Nash Equilibrium (BNE)

As the main objective for players in the game is to try to gain higher expected payoff.

On one hand, attackers try to minimize the probability of being detected by RecDroid

system, on the other hand, RecDroid tries to detect attackers with less cost. As described

previously, the payoff of the strategies for both the players depends on different parameters.

The parameters include the false positive and true positive of malicious user detection or

nature node (N). It is worth noting that the parameter µ0 determined by nature has a high

impact on payoffs of the players.

In the rest of this section, we analyze the Bayesian Nash equilibrium of the game

under different circumstances. The µ0 represents the defined probabilities, by which nature

node shows the prior knowledge of the system about the users.

• The first case is when player i decides to plays Attack if it is an attacker, Not attack

when it is a regular user. In this case, if RecDroid decides to Verify the incoming

133

responses. the expected payoff of RecDroid is as follow:

Epj(V erify) = µ0((2α− 1)ω2 − cv)− (1− µ0)(βω2 + cv), (4.1)

and when the RecDroid decides to play Not verify the expected value would be

Epj(Not− verify) = −µ0ω2, (4.2)

then if

Epj(V erify) ≤ Epj(Not− verify) (4.3)

⇒ µ0 ≥
(1 + β)ω2 + cv
(2α + β − 1)ω2

,

the best strategy for RecDroid is to play Verify. In this case if the RecDroid plays

Verify, then Attack strategy is not the best strategy for attackers and they change their

strategy to Not attack. So, this strategy combination can not be a BNE. However, if

µ0 <
(1 + β)ω2 + cv
(2α + β − 1)ω2

,

the best strategy for the RecDroid is Not verify. Therefore, attacker strategy for

attackers, Not attack for regular users and Not verify for RecDroid is a pure-strategy

BNE.

• The other case is when an attacker plays the Not attack strategy and regular user plays

Not attack strategy, regardless of µ0, then RecDroid’s dominant strategy is to play Not

verify. If the RecDroid plays Not verify, then the best strategy for the attackers is to

play Attack. Therefore, this strategy combination cannot be a BNE.

134

The above analysis shows that there is no pure-strategy BNE when µ0 ≥
(1 + β)ω2 + cv
(2α + β − 1)ω2

.

However, we can find a mixed-strategy BNE for this case. We let p denote the probability

that an attacker plays Attack. We let q denote the probability that RecDroid plays Verify.

We have

Epj(V erify) = pµ0((2α− 1)ω2 − cv) (4.4)

−(1− p)µ0(βω2 + cv)

−(1− µ0(βω2 + cv)),

Epj(Not− verify) = −pµ0ω2 (4.5)

then by imposing

Epj(Not− verify) = Epj(V erify) (4.6)

⇒ p∗ =
βω2 + cv

(2α + β)ω2µ0

.

In order to calculate mixed-strategy for users we impose

Epi(Attack) = Epi(Not− attack) (4.7)

⇒ q∗ =
ω1 − ca
2αω1

.

Finally, after calculating the p and q probabilities, we have the mixed-strategy ((p∗ if Attack

attacker, Not attack if regular), q∗, µ0) when µ0 ≥
(1 + β)ω2 + cv
(2α + β − 1)ω2

.

4.1.3.4 Practical Implication of BNEs

We can summarize the implication of the BNEs we have found above as follows:

• When the probability of attacker is small enough, aka. µ0 <
(1 + β)ω2 + cv
(2α + β − 1)ω2

, then

there is no incentive for RecDroid to verify any application responses.

135

• When the probability of attacker is not small enough, aka. µ0 ≥
(1 + β)ω2 + cv
(2α + β − 1)ω2

,

then the RecDroid should play verify sometimes in order to minimize its damage.

• However, in the second case, if RecDroid plays verify with probability q∗ =
ω1 − ca
2αω1

,

there is no profit difference whether the attacker plays attack or not attack. Therefore,

there is no incentive for attackers to perform attack under this case. Furthermore, if

q∗ >
ω1 − ca
2αω1

, then it is better off for attackers to play not attack.

From the above results, we can see the impact from µ0 to the solutions of the game

model. In the discussion section we will further discuss the impact of other parameters in

different cases.

4.1.4 Discussion

As we described in the previous sections, we have some parameters in the proposed

model and they all have some impact on the outcome of the players in a Bayesian game.

In this section we discuss two important parameters α and µ0, which are essential in our

formulations. When the RecDroid’s belief of µ0 is high, which means the probability that

the RecDroid system playing with an attacker is high, then RecDroid should have a high

probability to play verify strategy in order to get optimal payoff. If the parameter α is high

and beta is low, which means the human verifier is more reliable, then the probability of

RecDroid playing verify is low.

From Equation (7) we can see that the border-line verify probability q∗ is influenced

by parameters ω1, ca, and α. Higher ω1, lower ca, and lower α imposes higher probability

of verity strategy. It is because (1) the cost of being attacked is higher, the RecDroid

system should be more cautious and play more “verify strategy”. (2) the lower that cost of

attack, the attackers will be more likely to attack and therefore, RecDroid should increase

probability of verification. (3) the lower α is, the less reliable the human experts, then

136

RecDroid should increase the probability of verification.

4.1.5 Conclusion

In this work, we presented a game-theoretic model for the RecDroid recommendation

system to analyze the interaction between RecDroid and the users (attacker, normal). In

the system, we try to maximize the security of the system when it does not have enough

information about the users’ type. We defined the strategy space for both the players (Rec-

Droid system, users) in a static scenario. We also discussed the parameters that influence

the final outcome of the players. In the proposed static game, the RecDroid always assume

fixed prior probabilities about the types of his opponent throughout the entire game period.

We show that the static game leads to a mixed-strategy BNE when the RecDroid’s belief of

player i (users) being malicious is high and to a pure-strategy BNE when the RecDroid’s

belief of player i being malicious is low.

We proposed a game-theoretic model to optimize the RecDroid’s strategies to min-

imize the damage from the attacks. RecDroid can use the proposed model to detect the

malicious responses from normal responses of the users and eliminate them from recom-

mendation system. Although it can increase the accuracy of the system, there is still a way

to improve the model. The proposed model was a static Bayesian game and modeling the

system in a dynamic way can improve the accuracy more. Using a dynamic model can help

the RecDroid to use the behavioral history of the users and the game to improve its prior

knowledge, α, and consequently the malicious user detection rate.

4.2 Extended Game-Theoretic Model

In this section, we present an extended version of the proposed game-theoretical model

in Section 4.1. We extended the set of actions that RecDroid can take in case of an attack

from malicious users side. Extending the actions set by including Machine Learning and

137

Human Verification actions can help RecDroid to defend the recommendation component

against rational attackers.

4.2.1 Problem Definition

RecDroid is an Android smartphone permission control framework which provides

fine-grained permission control regarding smartphone resources and recommends the per-

mission control decisions from savvy users to inexperienced (novice) users. However,

malicious users, such as dummy users created by malicious app owners, may attempt to

provide untruthful responses in order to mislead the recommendation system. Although a

sybil detection function can be used to detect and remove some dummy users, undetected

dummy users may still be able to mislead RecDroid framework. Therefore, it is not suf-

ficient to depend on sybil detection techniques. In this work, we investigate this problem

from a game-theoretical perspective to analyze the interaction between users and RecDroid

system using a static Bayesian game-theoretical formulation. In the game, both players

choose the best response strategy to minimize their loss in the interactions. We analyze the

game model and find both pure strategy Nash equilibrium and mixed strategy Nash equi-

librium under different scenarios. Finally, we discuss the impact from several parameters

of the designed game on the outcomes, and analyzed the strategy on how to disincentives

attackers through corresponding game design.

4.2.2 Malicious User Detection

In order to reduce the influence from malicious users, RecDroid has a malicious user

detection function. In the detection step, RecDroid detects the type of users (malicious or

normal) based on the users’ behavior in responding to resource requests. There are two

distinct options for RecDroid to perform malicious user detection: one is the machine-

learning-based (ML) approach and the other is the human-based approach. The ML ap-

138

proach uses the similarity among malicious users in terms of their behaviors, and labels

malicious users if they adequately similar to known malicious users in terms of behavior.

For example, they were created at around the same time, installed similar set of apps, and

they have similar responses to app requests. Compared to the human verification, ML-

based detection costs much less and is much more efficient. However, it may not be able

to detect malicious users created by sophisticated attackers. For example, malicious users

can be created without sharing much commonality. On the other hand, the human-based

verification approach uses a human labor to manually verify the responses to the app re-

quests and compare them with the responses from other users. This way malicious users

can be discovered and the attack fails. The human-based approach can have much lower

false-positive rate and false-negative rate compared to the ML-based approach. However,

the cost of human verification approach can be much higher so it shall not be used verify

all applications.

RecDroid SystemUsers
(Regular/Malicious)

Recommendation
System

Human
Verification

ML
Detection

Fig. 4.2.1.: RecDroid system environment and detection system

Figure 4.2.1 illustrates the interaction between the users (malicious or normal) and the

RecDroid framework. As show in the figure, the recommendation system takes responses

from expert users (normal or malicious) and make recommendation to new users regarding

whether to grant access to requests or not. An application that is chosen for verification,

the recommendation is used to detect if there is a malicious users attack. If a ML-based de-

tection method is used, then it will compare the similarity among users of the app and raise

139

alarm if suspicious malicious users are found. After that the responses from suspicious

malicious users are then removed from RecDroid system. If a human-based approach is

found, the ground truth of responses is revealed and dishonest malicious users are discov-

ered. However, if an application is not chosen to be verified, then the recommendation will

be sent to new users directly. Therefore, without malicious user detection, a malicious user

attack may succeed. However, malicious user detection methods may bring false-positive

and false-negative. They also bring extra cost to RecDroid.

4.2.3 Extended Game-Theoretical Model

There are two types of users in RecDroid, malicious and regular users. Detecting

malicious users is a critical tasks for RecDroid. Since one attacker can create multiple

malicious users, so what the RecDroid really plays with is either an attacker or a normal

user. To study the interaction between the RecDroid system and users, we use a two-player

static Bayesian game to model the behaviors of both parties. The static Bayesian game

has two players: RecDroid users and the RecDroid framework. The RecDroid users have

private information about their types and the types are unknown to the RecDroid system.

However, the type of RecDroid framework is a common knowledge to all players (system

and users).

Previously, we proposed a game-theoretical model [62], in which RecDroid has only

two actions Verify and Not Verify. In the previous work, the verification system was only

based on collected environmental information from apps and their developers and static

analysis results. Since malicious users are in different levels of maliciousness, relying on

these information as criteria to detect all types of malicious users (compolex and simple

behaviour) was not effective. We improved the model in a way that verification system is

based on Machine Learning and Human Verification approaches. An attacker player has

two strategies: Attack and Not attack when sending responses to permission requests from

140

an app. The regular user has only one strategy: Not attack. When attack strategy is used,

the attacker manipulates all malicious users to respond dishonestly to permission requests

from an app. For example, the malicious expert users accept all malicious resource requests

from an app, in order to mislead RecDroid into wrong recommendations.

Correspondingly, the RecDroid system has three strategies: Human Verification, ML

Verification, and No Verification. When the no verification strategy is used, RecDroid

makes recommendation based on all experts’ responses without caring whether those re-

sponses are from malicious users or not; when ML verification is selected, RecDroid uses

a machine learning approach to detect suspicious malicious users who are controlled by

the same attacker, and those responses from suspicious users will not be considered by

RecDroid recommendation; when human verification is chosen, a human expert will man-

ually respond to permission requests from an app. ML verification is based on collected

responses from users. In our ML verification system we consider users’ responses as re-

sponse history in order to assess the risk of considering responses in our recommendations.

If assessed risk is high the response will be ignored with high probability and accept if the

risk is low. This way malicious users’ responses are not considered and the attack fails.

Although human verification is the most accurate verification strategy in our system, it

requires extra cost to the defender side due to human labor.

In order to track the payoffs of players in the game, we use ω1 to denote the security

value of the attacker, which is the gain of the attacker by performing a successful attack. For

example, after a successful attack to RecDroid, a number of extra users accept malicious

requests and it brings ω1 extra profit through the attack. ω2 is used to denote security value

of RecDroid, which is the gain of a successful recommendation or the loss if compromised.

For example, if RecDroid does not detect this behavior, RecDroid will make incorrect

recommendations regarding the app and losses ω2 of its security value, which can be the

loss of reputation by making wrong recommendations to users. If RecDroid successfully

141

detects attacks and removes malicious users, it gains reputation and we assume the gain is

also ω2.

4.2.3.1 Normal Form

In this subsection we present the game in a static normal form. Table 4.2.1 depicts

the matrices of payoffs of the Two-player game in normal form game style. In the pay-

off matrices, αm and βm indicate the detection rate (true-positive) and false alarm rate

(false-positive) of RecDroid by using machine-learning detection, and αm, βm ∈ [0, 1].

We assume the cost of using machine detection is negligible (i.e., cm = 0). We also

assume human experts are reliable so that their decisions are consistently correct (i.e.,

αh = 1, βh = 0). ω1,ω2 are the security value as we previously mentioned. The cost

of attacking and human verification are denoted by ca and ch, where ca, ch > 0. For exam-

ple, the attacker needs to spend ca amount of money to purchase a number of smart phones

and spend time to set them up into malicious mode to be able to influent the RecDroid

system. The RedDroid needs to pay a seed expert ch amount of money to verify the correct

responses to the permission requests from an application, in order to detect attacks. We as-

sume that ω1,ω2 are greater than ca, ch, since otherwise the attacker does not have incentive

to attack and the RecDroid system has no incentive to use human verification, respectively.

Table 4.2.1(a) describes the payoff matrices of the RecDroid system and attackers.

We can see that the expected gain for the RecDroid in (Attack, ML Detection) strategy

combination is −(1 − αm)ω2 = (αm − 1)ω2, in which (1 − αm) is the false-negative rate

and a same for the attacker’s payoff. This can be explained as: if the ML detector does

not detect attack, then RecDroid generates incorrect recommendation and loses reputation.

When the attacker chooses the Not attack strategy, the payoff for the attackers is always 0

and the RecDroid’s payoff is depends on the false-positive rate and detection cost, in the

ML Detection and Human Verification cases, respectively.

142

Table 4.2.1.: payoff matrices (RecDroid, Users)

(a) Player i is malicious

ML Detection Human Verification No Detection

Attack (1− αm)ω1 − ca, (1− αh)ω1 − ca, ω1 − ca,−ω2

(αm − 1)ω2 − cm (αh − 1)ω2 − ch
Not attack 0,−βmω2 − cm 0,−βhω2 − ch 0, 0

(b) Player i is regular

ML Detection Human Verification No Detection

Not attack 0,−βmω2 − cm 0,−βhω2 − ch 0, 0

Table 4.2.1(b) shows the payoff matrices for the RecDroid system and regular users.

The payoff value for the regular user is 0 for all RecDroid’s strategies. The RecDroid’s

payoff depends on the strategies it plays. For example, when it plays ML Detection the

payoff is −βmω2, which means the cost that RecDroid system lose the chance to make

correct recommendation by falsely label some users to be malicious. Although we mainly

focus on malicious users in the model, but we also consider the regular users and their

actions in the calculations.

4.2.3.2 Extensive Form

In this section we show a different presentation form of the proposed game. Fig-

ure 4.2.2 shows the extensive form of the game. In this form we can see all the possible

moves of the players and their choices on each decision state. In the figure, the root N

indicates the nature node, and µ0 represents the probability that RecDroid is playing with

an attacker over an app. The attacker may create multiple malicious smartphone users to

attack the system. For regular users, the only strategy is to respond to the incoming requests

honestly. RecDroid decides whether to verify the app’s resource request or not depending

on the µ0 value as well as the other parameters of the game. Each terminal (leaf) node of

143

N

Player i : regularPlayer i : attacker

Not attackNot attackAttack

Player j : RecDroid

No detection

H
um

an
 v

er
ifi

ca
tio

n

µ0 1 � µ0

(0, 0)(0, 0)(!1 � cm,�!2)

((1 � 2↵)!1 � cm, (2↵� 1)!2 � cv)

ML d
ete

cti
on

(0,��H!2 � ch)(0,��H!2 � ch)

(0,��m!2 � cm)(0,��m!2 � cm)

((1 � 2↵H)!1 � ca, (2↵H � 1)!2 � ch)

No detection

H
um

an
 v

er
ifi

ca
tio

nM
L

de
te

ct
ion

No detection

H
um

an
 v

er
ifi

ca
tio

n

M
L

de
te

ct
ion

Fig. 4.2.2.: Extensive form of the Bayesian game

the game tree has a 2-tuple of payoffs (RecDroid/user), which implies there is a payoff for

each player at the end of every possible play.

4.2.3.3 Bayesian Nash Equilibrium (BNE)

As the main objective for all players in the game is to try to gain higher expected pay-

off. On one hand, attackers try to minimize the probability of being detected by RecDroid

system, on the other hand, RecDroid tries to detect attackers with less detection cost. As

described previously, the payoff of the strategies for both the players depends on differ-

ent parameters. The parameters include the false-positive and true-positive of malicious

user detection or nature (N). It is worth noting that the parameter µ0 determined by nature

has a high impact on payoffs of the players. In order to simplify the analysis, we group

the strategy ML Detection and Human Verification into the strategy Detection and drop

their subscripts h,m in presentation. We will compare the two detection strategies when the

144

Detection strategy is selected.

We first analyse the Bayesian Nash equilibrium of the game under different possible

circumstances. The µ0 denotes the defined probabilities, by which nature node shows the

prior knowledge of the system about the users.

• The first possible case is when player i decides to play Attack if it is an attacker, Not

attack when it is a normal user. In this case, if RecDroid decides to play Detection

for the incoming responses from users. The RecDroid’s expected payoff is as follow:

Epj(Detection) = µ0((α− 1)ω2 − c)− (1− µ0)(βω2 + c), (4.8)

and when the RecDroid decides to play No Detection the expected value would be

Epj(NoDetection) = −µ0ω2, (4.9)

then if

Epj(Detection) > Epj(NoDetection) (4.10)

⇒ µ0 ≥
βω2 + c

(α + β)ω2

,

the best possible strategy for RecDroid is to play Detection. In this case if the Rec-

Droid plays Detection, then the attacker only stays in strategyAttack if and only if

(1 − α)ω1 − ca > 0 ⇒ α < 1 − ca
ω1

, which forms a Bayesian Nash Equilibrium.

Therefore, under this condition, the Attack strategy for attackers, the Not attack for

regular users and Detection for RecDroid is one pure-strategy BNE.

In another case, if

145

µ0 <
βω2 + c

(α + β)ω2

,

the best strategy for the RecDroid is No Detection. Therefore, under this condition,

the Attack strategy for attackers, the Not attack for regular users and No Detection

for RecDroid is another pure-strategy BNE.

• The other case is when an attacker plays the Not attack and regular user plays Not

attack strategy, regardless of µ0, then RecDroid’s dominant strategy is to play Not

verify. If the RecDroid plays No Detection, then the best strategy for the attackers is

to play Attack. Therefore, this strategy combination cannot be a BNE.

The above analysis shows that there is no pure-strategy BNE when µ0 ≥
βω2 + c

(α + β)ω2

and α ≥ 1− ca
ω1

. However, we can find a mixed-strategy BNE for this case. We let p denote

the probability that an attacker plays Attack. We let q denote the probability that RecDroid

plays Detection. We have

Epj(Detection) = pµ0((α− 1)ω2 − c) (4.11)

−(1− p)µ0(βω2 + c)

−(1− µ0)(βω2 + c),

Epj(No−Detection) = −pµ0ω2 (4.12)

then by imposing

Epj(No−Detection) = Epj(Detection) (4.13)

⇒ p∗ =
βω2 + c

(α + β)ω2µ0

.

146

In order to calculate mixed-strategy for users we impose

Epi(Attack) = Epi(Not− attack) (4.14)

⇒ q∗ =
ω1 − ca
αω1

.

In summary, we have the mixed-strategy ((P [Attack] = p∗ for attackers, Not attack

for regular), P [Detection] = q∗ for RecDroid) under the condition that µ0 ≥
βω2 + c

(α + β)ω2

and α ≥ 1− ca
ω1

.

Correspondingly, we have the payoff for both players at mixed-strategy BNE are

Epi(Attack) = Epi(Not− attack) = 0,

Epj(Detection) = Epj(No−Detection) =
βω2 + c

α + β
(4.15)

4.2.3.4 Comparison Between the Two Detection Strategies

The above results shows the binary condition of the defender’s strategies: Detection

or No Detection. However, when the strategy Detection is chosen, there are actually two

choices: ML Detection or Human Verification. RecDroid always chooses the strategy that

brings higher payoff for the system. From Equation (4.15) we have, at the mixed strategy

BNE, if ch > βmω2

αm+βm
, then the human verification strategy is chosen at the mixed-strategy

BNE, otherwise the ML detection strategy is chosen at the mixed BNE.

4.2.3.5 Incentive Compatibility of RecDroid

We can summarize the implication of the BNEs that we have found above as follows:

• When the probability of attacker is small enough, aka. µ0 <
βmω2 + c

(αm + βm)ω2

=

βmω2

(αm + βm)ω2

and µ0 <
βhω2 + ch

(αh + βh)ω2

=
ch
ω2

, then there is no incentive for RecDroid

to use any detection process for users’ responses.

147

• When the probability of attacker is not small enough, aka. µ0 ≥ min(
βmω2

(αm + βm)ω2

,
ch
ω2

),

then the RecDroid should either use ML detection or Human verification to check the

input users responses, whichever costs less.

• However, in the second case, if RecDroid plays Detection with probability q∗ =

ω1 − ca
αω1

, there is no profit difference whether the attacker plays attack or not attack.

Therefore, there is no incentive for attackers to perform attack in this case. Further-

more, if q∗ >
ω1 − ca
αω1

, then it is better off for attackers to play not attack. This way,

RecDroid system disincentives attackers from attacking the system.

• It is worth noting that the payoff in Equation (4.15) is the maximum payoff RecDroid

can obtain given that the system provides disincentive for attackers to attack the

system.

4.2.4 Discussion

As we described previously, we have a number parameters in our proposed model and

they all have impact on the outcome of the players in this Bayesian game. In this section

we discuss two important and main parameters α and µ0, which are essential with a high

impact in our formulations. When the RecDroid’s belief of µ0 is high (high probability),

which means the probability that the RecDroid system playing with an attacker is high,

then RecDroid should play verify strategy with a high probability in order to get optimal

payoff. If the parameter α is high and beta is low, which means the human verifier is more

reliable, then the probability of RecDroid playing verify is low.

From Equation (7) we can see that the border-line verify probability q∗ is influenced

by parameters ω1, ca, and α. Higher ω1, lower ca, and lower α imposes higher higher

probability of verity strategy. It is because (1) the cost of being attacked by system is

higher, the RecDroid system should be more cautious and play more verify strategy.; (2)

148

the lower that cost of attack, the attackers will be more likely to attack and therefore,

RecDroid should increase probability of verification; (3) the lower α is, the less reliable the

human experts, then RecDroid should increase the probability of verification.

In addition, since verification system is based on human and machine learning ap-

proaches, it causes some challenges. First, using human verification as a tool to verify the

incoming responses requires extra cost to the defender side due to human labor. Second,

since applying machine learning approach needs enough collected information from users

such as their responses history and environmental information, at the beginning of running

the system we cannot provide the ML system with enough information for bootstrapping

step of the system.

4.2.5 Conclusion

In order to analyse the interaction (permission request/user’s response) between Rec-

Droid recommendation framework and users (attacker/malicious, regular/normal), we pro-

posed a static Bayesian game-theoretical model. Since RecDroid does not have enough

knowledge about the users’ type (maliciousness feature of users), we try to maximize and

enhance the security of the framework’s recommendations to users through training the sys-

tem. As any two-player game needs to be provided with strategies spaces, we defined the

possible strategy space for both the players (RecDroid system, users) based on a static game

scenario. We also discussed the parameters of the proposed game that influence the final

outcome of the players and challenges which are caused by Machine Learning approach

and Human verification system as verify strategy of the RecDroid. In the proposed static

Bayesian game, the RecDroid always assume fixed prior probabilities about the types of his

opponent throughout the entire game period. Using Machine Learning and Human verifica-

tion approaches can improve the accuracy of the prepared recommendations by RecDroid.

We proved that the proposed static Bayesian game leads to a mixed-strategy BNE when

149

the RecDroid’s belief of player i (users) being malicious is high (high probability) and to a

pure-strategy BNE when the RecDroid’s belief of player i being malicious is low.

Using game theory to optimize the RecDroid’s strategies to minimize the damage

from the attacks by malicious users (fraudulent users) is our main focus in this work. As

we described before, using ML and Human verification approaches causes some serious

challenges, but RecDroid can use the proposed model to detect the malicious responses

from normal (non-malicious) responses of the users and disregard them from recommen-

dation system. Although it can increase the accuracy of the system, there is still a way to

improve the model. The proposed model was a static Bayesian game and modeling the sys-

tem in a dynamic (updating the current players’ beliefs during the time) way can improve

the accuracy of recommendations more. Using a dynamic model can help the RecDroid to

use the activity history of the users and the game to improve its prior knowledge, α, and

consequently the malicious user detection rate. Although using a dynamic model brings

more overhead such as more calculation, updating the prior knowledge can improve the

accuracy significantly.

4.3 BotTracer: Bot User Detection Using Clustering Method in RecDroid

Following the presented game-theoretical models in Sections 4.1 and 4.2, in this sec-

tion, we present a clustering-based model to protect the expert seeking component and

detect bot users. The clustering model uses a set of well-defined features to detect bots at a

very early stage.

4.3.1 Problem Definition

RecDroid is a smartphone permission management system which provides users with

a fine-grained real-time app permission control and a recommendation system regard-

ing whether to grant the permission or not based on expert users’ responses in the net-

150

RecDroid SystemUsers
(Regular/Malicious)

Recommendation
System

Human
Verification

Clustering-based
Bot Detection

Threshold-based
User Filtering

Malicious User Detection Component

Responses

Analytic
results

Fig. 4.3.1.: RecDroid system environment and detection system

work. However, in such a system, malware owners may create multiple bot users to mis-

guide the recommendation system by providing untruthful responses on the malicious app.

Threshold-based detection method can detect malicious users which are dishonest on many

apps, but it cannot detect malicious users that target on some specific apps. In this work,

we present a clustering-based method called BotTracer to finding groups of bot users con-

trolled by the same masters, which can be used to detect bot users with high reputation

scores. The key part of the proposed method is to map the users into a graph based on their

similarity and apply a clustering algorithm to group users together. We evaluate our method

using a set of simulated users’ profiles, including malicious and regular ones. Our exper-

imental results demonstrate high accuracy in terms of detecting malicious users. Finally,

we discuss several clustering features and their impact on the clustering results.

4.3.2 Background

In this section we briefly describe the RecDroid recommendation system and potential

strategies that an attacker can use to cheat in RecDroid system.

4.3.2.1 RecDroid Trust Computation and Malicious Users Filtering

In order to find expert users in the network, RecDroid uses Bayesian Inference model

to compute the estimated trust level of users. The trust value of a user is based on the

151

cumulative number of correct responses and incorrect responses observed by RecDroid.

The feedback from a user is only considered as expert responses if the trust value of the

user is higher than a threshold. When the number of cumulative observations is sufficiently

high, the trust value of a user is estimated using the following equation:

s ≈ α

α + β
(4.16)

where α represents the cumulative number of correct responses the user has in the past; β

is the cumulative number of incorrect responses.

RecDroid’s recommendation system has a simple threshold-based user filtering sys-

tem, which eliminates the impact from malicious users and inexperienced users. For in-

stance, the responses from a user is only considered in the recommendation computation if

its trust value is higher than a threshold θt. However, this method is not effective to detect

targeted bot attacks, where bot users build up their expertise level by behaving honestly on

all other apps except a few targeted apps. For example, an attacker may create a set of bot

users and each bot installs a set of legit apps and respond to their request correctly. This

way all bots will build high trust values after some time. However, those bots also install

a malicious puzzle game app owned by the attacker and all accept the intrusive text mes-

saging permission from the app in order to mislead the RecDroid recommendation. The

simple trust-based filtering method is not effective to this type of attack. Figure 4.3.1 shows

the overall architecture of RecDroid’s malicious user detection.

RecDroid also uses human verification to detect malicious users [62, 61]. In this pro-

cess, human verifiers randomly choose users and verify their responses manually. This way,

malicious users may be discovered by human experts. However, the human verification has

much higher cost so it is not practical to cover all apps.

In order to protect RecDroid from bot attacks on targeted apps, we need an automatic

bot detection method which can discover bot users which are controlled by masters. We

152

propose BotTracer, a machine-learning based bot users detection mechanism. We first

analyze the similarity features of bot users and then apply clustering method to group bot

users together.

4.3.2.2 Attack RecDroid Recommendation System

The purpose of Recdroid is to provide low-risk recommendations on permission re-

quests based on the responses from expert users. However, malicious users can attack

the system by manipulating the RecDroid recommendation. For example, the owner of a

malicious app may create many fake (bot) users and use them to mislead RecDroid recom-

mendation system. A typical attacking strategy can be described as follows:

• The attacker can create multiple malicious expert users. Note that since RecDroid

enforces one-user-per-phone policy [65, 66], which limits the number of bot users

the attacker can create due to the high device cost.

• Each phone should install sufficient number of apps and respond permission requests

from those apps correctly in order to obtain expert ranking from RecDroid. In order

to boost the expertise levels of bot users, the attacker should prepare a pool of legit

apps and corresponding correct responses to the requests from those apps. With that

the bot users can build their trust value based on the provided correct responses.

However, it takes time and effort to look for apps and find correct responses to the

requests. Therefore, we can assume the app pool is relatively small.

• After all bot users are rated to be experts, all users start to install the targeted mali-

cious app (that the attacker possibly owns) and answer the permission requests dis-

honestly in order to mislead RecDroid’s recommendation system.

• The attack should be performed soon after the malicious app is released to public to

minimize its cost. This is because when the app is already responded by many other

153

normal expert users, the influence from a few malicious expert users will be reduced

due to the voting mechanism of RecDroid to make decisions. Therefore, the best

time to influence RecDroid is at the beginning.

4.3.3 Model

In BotTracer, we try to involve applying clustering to detect malicious (fake) users.

In order to defend against targeted bot attacks, we propose BotTracer, a clustering-based

solution to detect bot users in RecDroid. There are two types of users in RecDroid system,

malicious and regular users. We transform the malicious users detection problem into

a clustering problem with two clusters, malicious and regular. To build the clustering

method, we need to define related features of both malicious and regular users.

4.3.3.1 Malicious (bot) Users

We define bot users as fake users who are set up by attackers to serve the purpose

of manipulating the RecDroid recommendation system through responding to permission

requests dishonestly. A group of bot users can be controlled by the same master attacker.

The attacker can set up a number of real devices equipped with RecDroid and the user on

each device (one per device) installs a number of apps and responds to apps’ permission

requests. The master has control over the bot users to complete the objective, such as

changing the permissions’ recommendation of their targeted apps.

4.3.3.2 Feature Identification and Construction

There are three key types of information related to users’ apps and their responses to

requests: app overlaps (F1), time of response (F2) and response similarity (F3). We use

a network graph to represent the users using RecDroid system and the distance between

users is computed using a function of the three above features. The features are explained

154

in further detail as follows:

app overlaps: For a pair of users, the app overlap is defined to be the number of

apps that the two users have in common (installed apps). Intuitively, the more app overlaps

between two users, the more similarity between the users.

Time of response: the time period that the app is published in the market until a

permission request is responded by a user after installation. Tracking the response time is

important since the most effective time period that the attacker can influence the system is

at the beginning of the app being published, such as the first 24 hours, when few regular

users have installed and responded to the app. This way, malicious bot users can change

the recommendations toward their objectives. Therefore, we predict that bot users are the

first group of users that respond to the malicious apps’ requests after the app is published.

Figure 4.3.2 illustrates the apps installation timeline. As we can see, users (u0 − u3)

respond to permission requests in the time period of ∆t1, so that they have higher influence

on recommendations than users respond in ∆t2. Therefore, to manipulate the RecDroid

response to a permission request effectively, bot users should respond to requests during

the first time period. We use ti ∈ {0, 1} to represent the response time to a request i, where

1 represents early phase response (∆t1).

u0 u1 u2 u3 u4 · · · un

Time
t0 t1 t1

�t1 �t2

Fig. 4.3.2.: Users’ response timeline to an app request

Response similarity: Because bot users share the same app response pool from the

attacker, their responses to the same requests should be highly similar. As we mentioned,

RecDroid’s recommendation is based on majority voting of expert users. In other words,

if most of the responses to a request are consistent with the ones from expert users, then

with a high probability the system’s recommendation would be the same as the majority

155

response. Attackers are more likely to succeed if the bots’ responses are consistent and

out-number the regular users’ responses. We can use this feature along with the two other

features to cluster bot users together.

The purpose of the defined features is to use them to define the distance between

users so that we can apply a clustering method to group bot users. The proposed method

is designed to capture key information from the proposed features in order to distinguish

malicious users from regular ones.

Table 4.3.1.: Notations

Notation Description

D {D1, ...,Dn}: Set of n RecDroid users profiles.
n The total number of users in the system.
m The total number of app requests in the system
S(i, j) The distance function.
Di

pr The set of app requests and corresponding responses for user i.
Di

pr1 The set of app requests and corresponding early phase responses for user i.
ω1,ω2 The assigned weights (0.5) to the features

4.3.3.3 Similarity Calculation

In this section we present our proposed distance function (similarity function) that we

use in BotTracer. Since RecDroid users’ profiles are high-dimensional data (high number

of parameters) such as the set of installed apps, responses to requests and the time of re-

sponses, none of the commonly used distance functions are applicable to our case. In order

to calculate the distances between users, we propose a weighted distance function, which

weights the proposed features and aggregates them into the similarity between users. The

details of the aggregation function is described as follows.

Let D = {D1, ...,Dn} denote the set of n RecDroid users’ profiles. The user i’s

profile can be presented by a set of app requests that user i responded, the responses, and

corresponding response time, written as Di = {{p1, r1, t1}, {p2, r2, t2}, ..., {pk, rk, tk}},

where k is the number of app requests user i has responded. Note that pj ∈ {1, 2, 3, ...,m},

rj ∈ {0, 1}, and tj ∈ {0, 1} , ∀j ≤ k.

156

Let S(i, j) denotes the distance function between users i and j. The common set of

responses by both users i and j can be written as |Di
pr ∩ Dj

pr|, where Di
pr is the set of

responded requests and corresponding responses for user i. We add ω1 as the weight so

we have |Di
pr ∩ Dj

pr|ω1. To integrate the timing into the function, we multiply the size of

common set of requests responded by both users within early response time period, denoted

by |Di
pr1 ∩Dj

pr1|, by ω2, where Di
pr1 is the set of responded requests that are responded in

early period by user i and their corresponding responses. Note that ω1 + ω2 = 1. Finally,

we divide the sum of the above two values by the size of common set of requests. Equation

(4.17) demonstrates the formula. Table 4.3.1 lists the notations we use in this section.

S(i, j) =
|Di

pr ∩Dj
pr|ω1 + |Di

pr1 ∩Dj
pr1|ω2

|Di
p ∪Dj

p|
(4.17)

Using the proposed distance function, we are able to calculate the similarity of users. Since

BotTracer works based on the distance of objects and not similarity, then we define the

distance between user i and j to be L(i, j) = 1− S(i, j).

4.3.3.4 Clustering Method

In terms of the clustering method, we chose hierarchical clustering method. In data

mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or

HCA) is a method of cluster analysis, which seeks to build a hierarchy of clusters. Strate-

gies for hierarchical clustering generally fall into two types: Agglomerative and Divisive.

We use Agglomerative type, which is a “bottom up” approach: each observation starts in

its own cluster, and pairs of clusters are merged as one moves up the hierarchy. In general,

the merges and splits are determined in a greedy manner, which is based on the calculated

distances from our proposed distance function [83]. The results of hierarchical clustering

are usually presented in a dendrogram. A dendrogram is a tree diagram frequently used to

illustrate the arrangement of the clusters produced by hierarchical clustering.

157

4.3.4 Experimental Results

In this section we describe our experiments to evaluate the proposed model. We con-

ducted a set of experiments to evaluate the accuracy of our proposed HMM model.

4.3.4.1 Simulation Setup

As a proof of concept, we created a set of RecDroid users’ profiles (maximum 300

users) consisting of 11 different user groups including 10 bot groups controlled by different

attackers and one regular user group. We assign a number of bot users (from 10 to 15

randomly) to each bot group and 150 users to the regular group. All malicious user groups

consist of users with a high level of expertise. The expertise levels of regular users are

uniformly distributed between (0, 1). It is noteworthy as an evaluator that we have the

correct responses to all apps’ permissions.

We set the total number of apps in the system to be 550 and among them 50 are

malicious apps. Each user in the system installs 10 distinct apps. However, for regular

users the 10 apps are randomly chosen from the entire app pool (550 of them), while the

bot users apps are randomly chosen from a smaller set selected by their masters (see Section

II-C).

We configured each app to contain 5 permission requests. We generated both mali-

cious and regular users’ responses to permission requests based on their expertise levels.

The higher the expertise level, the higher probability the response is correct. We recorded

each response from a user using a tuple {pk, rk, tk}, where pk is the kth request number;

rk and tk are the corresponding responses and responding time period. All responses are

recorded using a set Di for user i.

Our simulation environment is MATLAB 2015 on a Windows machine with 2.5Ghz

Intel Core2 Duo and 4G RAM. All experimental results are based on an average of 10

158

repeated runs with different random user profiles. All experiments are run numerous times

and the average value is plot in results.

4.3.4.2 Performance and Accuracy

We use hierarchical clustering method to group users. The clustering result can be

represented by a dendrogram tree. Figure 4.3.3 illustrates a dendrogram of one of our

experiments. Each user is represented by a vertical blue line. When two lines join together,

then they are clustered together. As we can see in Fig 4.3.3, users are merging at different

heights in the dendrogram tree. A given distance threshold results in a number of clusters.

For example, when the cut-off threshold is 0.6 (red line), it gives us three clusters (red

boxes). Note that if the number of users in a detected cluster is higher than our threshold

(10) we consider it as a finalized cluster.

Users
1 100 200 300

D
is

ta
n

ce

0

0.2

0.4

0.6

0.8

1
cutoffLink

Fig. 4.3.3.: Dendrogram clustering results with given threshold.

In the first experiment, we study the impact from the number of malicious apps that a

bot group has handled to the number of detected malicious groups, given different cutoff

thresholds. Fig 4.3.4(a) shows that the number of detected malicious groups increases when

each bot group handles more malicious apps. This is because when a bot group cheated

159

on more malicious apps, their bot users’ similarity increases, thus easier to be discovered.

However, regardless of the malicious apps quantity, an appropriate cut-off threshold can

lead to higher cluster detection rate. The figure also shows that, in most cases, the optimal

cut-off thresholds are between 0.6 to 0.8. When the threshold raises higher than 0.8, the

number of detected clusters drops abruptly. This is because almost all users are clustered

together.

In order to verify the validity of the detected clusters by BotTracer, we carried out a

cluster evaluation analysis. Since we have the highest number of clusters at cut-off 0.7,

we evaluated all the detected clusters at this cut-off. Table 4.3.2 represents the evaluation

results for all different numbers of malicious apps settings when the cut-off is 0.7. We

calculate the F-measure (F-score) value using Equation (4.18). As we can see, by increasing

the number of malicious apps, our clustering solution groups more users with a higher

precision and recall. In addition, since the F-measure calculation is based on the precision

and recall factors, it increases consequently.

Fmeasure = 2.
precision.recall

precision+ recall
(4.18)

Table 4.3.2.: Evaluation of clustering results

Feature Precision Recall F-Measure Clustered Total

Malicious apps
1 29% 100% 45% 36 123
2 41% 100% 58% 52 126
3 61% 100% 76% 83 134
4 69% 100% 81% 87 126
5 72% 100% 84% 90 124
6 79% 100% 89% 103 128
7 83% 100% 91% 110 122
8 90% 100% 94% 126 126
9 95% 100% 97% 123 123

10 100% 100% 100% 121 121

In the rest of the experiments, we will evaluate the accuracy of bot detection. In

this section we use the false negative rate(FN) and false positive rate(FP) to measure the

160

Distance Cutoff Criterian
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

. o
f

C
lu

st
er

ed
 G

ro
u

p
s

0

10

20

30

40

50

60

70

80

90

100
No. of M apps: 1
No. of M apps: 2
No. of M apps: 3
No. of M apps: 4
No. of M apps: 5
No. of M apps: 6
No. of M apps: 7
No. of M apps: 8
No. of M apps: 9
No. of M apps: 10

(a)

App Pool Increment Percentage
10 50 70 100

T
ru

e
P

o
si

ti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cutoff = 0.8
Cutoff = 0.7
Cutoff = 0.6
Cutoff = 0.5

(b)

Fig. 4.3.4.: Impact of the number of responded malicious apps: (a) number of detected user groups for different number of malicious
apps and cutoffs; (b) the influence of size of app pool on true positive rate.

detection accuracy of BotTrace. FN is the probability that a bot is not detected, while FP

is the probability that a regular user is classified as a bot. Equation 4 show the formula

we use to compute the FN and FP, where set GT contains the ground truth of all users

(regular or bot) and set A contains the corresponding detection results. Note that ai, bi ∈

{0(regular), 1(bot)}.

A = {a1, a2, ..., an} GT = {b1, b2, ..., bn}

FP =

N∑
i=1

ai(1− bi)

N∑
i=1

(1− bi)
, FN =

N∑
i=1

(1− ai)bi

N∑
i=1

bi

(4.19)

As we described previously, an attacker should prepare a pool of correct responses

to apps requests so that bot users can use them to boost their expertise levels. However,

sharing common apps increases similarity among bots and make them easier to detect. In

the second experiment, we observe the impact from the apps pool size that attackers use

161

to the true positive detection rate and false positive detection rate, given different cutoff

settings. In this experiment, we change the size of the app pool for each group of users

by 10%, 50%, 70% and 100% percentages. Fig 4.3.4(b) illustrates the results. As we can

see the larger the pool size an attacker uses, the less likely it gets detected. This is because

when the app pool is small, bot users tend to have high similarity since they have high

overlap on the app choices and responses. However, building large app pool introduces

high cost for attackers therefore not practical for attackers.

Cutoff level
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 P

o
si

ti
ve

 &
 F

al
se

 N
eg

at
iv

e

0

0.2

0.4

0.6

0.8

1
(a) No. of Malicious apps: 1

FP
FN

Cutoff level
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 P

o
si

ti
ve

 &
 F

al
se

 N
eg

at
iv

e

0

0.2

0.4

0.6

0.8

1
(b) No. of Malicious apps: 6

FP
FN

Cutoff level
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 P

o
si

ti
ve

 &
 F

al
se

 N
eg

at
iv

e

0

0.2

0.4

0.6

0.8

1
(c) No. of Malicious apps: 8

FP
FN

Cutoff level
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 P

o
si

ti
ve

 &
 F

al
se

 N
eg

at
iv

e

0

0.2

0.4

0.6

0.8

1
(d) No. of Malicious apps: 10

FP
FN

Fig. 4.3.5.: Influence of the responded malicious apps quantity on the accuracy of the clustered users.

In the last experiment, we study the impact from the cut-off threshold on the FN and

FP bot detection ratios. Fig 4.3.5 depicts the results under different number of malicious

apps settings. As we can see, with a higher number of malicious apps the bonnet handles,

the more separated the regular users and bot users. This is because the more bots cheat

on malicious apps, the higher similarity among them. In all cases the cut-off threshold 0.8

gives the lowest FP and FN rates.

4.3.5 Conclusion

RecDroid is an Android permission recommendation system which allows users to

grand app permission request in a fine-grained manner in real time, and receive assistance

from RecDroid recommendation based on expert users. However, attackers can create fake

users (bots) to cheat in the system in order to mislead RecDroid to make incorrect recom-

mendation. In this section, we propose BotTracer, a clustering-based method to detect bot

162

users in RecDroid. We first analyze the RecDroid recommendation mechanism, includ-

ing how experts are evaluated and how recommendations are made. We then analyze the

attacking strategies for attacker using bot users. In order to detect the bot users in Rec-

Droid, we first define a similarity function between users based on their app overlap and

response similarity. We then propose a customized distance function to measure the sim-

ilarity between users. After that, we use a hierarchical clustering method users to group

users based on their distances. Our evaluation based on simulated malicious and regular

users has shown BotTracer has a strong performance and reliability. As our future work,

we plan to apply other clustering methods such as k-means or some advanced clustering

algorithms and compare them with the hierarchical method.

163

CHAPTER 5

PERMISSION NOTIFICATION MODEL

In this chapter, we study how to evaluate the usability of our privacy preserving framework

and propose a permission risk notification mechanism of Android OS. We also discuss the

shortcomings of the current smartphone security systems and propose a novel notification

mechanism to enhance the usability for general smartphone users.

5.1 Permission Notification

In this section, we design a permission privacy notification mechanism to help users

with different backgrounds to understand the actual privacy risks of apps. We also propose

a set of usability measurement metrics to evaluate the usability of the notification system.

5.1.1 Problem Definition

Mobile devices have unprecedented access to sensitive personal information. While

users report having privacy concerns, they may not actively consider the privacy risk while

downloading apps from smartphone application marketplaces. Currently, Android users

have only the Android permission request notification, which appears once an app attempts

to access a resource and the users can choose to grant or deny the requests [71]. The current

privacy notification interface provides little information to help users understand the risk

of granting the permission requests. In this work, we will study how privacy notifications

can play an active role in assisting users in making correct decision regarding whether to

grant a permission request or not. To address this issue, we plan to design an effective

privacy notification mechanism that helps user to understand the risk behind granting a

164

permission by taking user’s technical background into consideration. The implementation

of our model will include enhancing User Interface (UI), interpreting apps’ activities risks,

and users’ preferences. We will also propose a set of metrics to evaluate the usability of the

notification system. In order to evaluate the usability of our mechanism, we will conduct a

set of user surveys.

5.1.2 Introduction

Current smartphone devices and mobile operating systems regulate applications ac-

cess to all or a certain number resource permissions such as (e.g., SMS, camera, network,

etc.). Different devices and operating systems have different strategies in handling the

resource access permissions. For example, previous versions of Android requested all re-

quired permission by apps at the installation time. Android users had to grant all requested

permission to apps up-front to be able to use the apps. On iOS and Android M and later,

operating systems prompt users at runtime the first time applications request any of per-

missions on devices [17].

Research has shown that a small number of smartphone users read the Android installation-

time permission list and requested permissions [7]. There are a few reasons that not many

smartphone users pay attention to the privacy notifications or permission requests at the

installation-time. First, users tend to rush through the installation process and install apps

and use. Second, users are not aware of the fact that the privacy and security risks that

an additional permission may cause can be very serious and result in private information

leakage or other types of security threats. Third, users are not concerned about the privacy

risks of granting unnecessary and excessive permissions to apps. This can be also a com-

binations of the last two reasons. Fourth, lack of knowledge in IT or mobile privacy and

security is another major challenge. Users with lower level of knowledge in IT, may not

be able to understand the permission requests and actions (grant or deny) they should take.

165

Fifth, considering the fourth reason and also the existing permission request notification

models, users are left with “grant” or “deny” questions with no assistance. Therefore, in all

above mentioned reasons, the result would be granting excessive permissions to apps [44].

Figure 5.1.1 shows permission notification for iOS, Android and Windows smartphones.

They all have almost the same strategy and similar UIs and questions.

Fig. 5.1.1.: Current iPhone, Android and Windows phone’s privacy notification

In order to address such issue, there two important factors that need to be considered;

users knowledge and model design. These two factors need to be considered before design-

ing any permission notification model. We discuss these two factors in details in the next

section.

In our proposed model, we consider all the important factors in designing an effec-

tive permission notification model. In this model, users’ knowledge, understanding of the

permission notification, and also the design of the the UI are the key factors we consider.

166

5.1.3 Model

In this section we elaborate the proposed model in details. We first explain the factors

we consider in our model and then our UI design process.

5.1.3.1 Factors

As we previously mentioned, two important factors that we consider in our model are

users knowledge and the design of user interfaces.

Users knowledge: as one of the key factors in privacy and security notifications models,

users’ knowledge has a high impact. Regardless of the design of existing permission re-

quest notification models in which they consider all users the same and show users the same

notification. This results in an ineffective permission notification model. We all are aware

of the fact that users have different levels of knowledge when it comes to security, privacy,

and IT. This is a challenge in designing uniform (existing models) permission notifications.

The users knowledge and background include the amount of knowledge that they have

in IT, their education level, etc. The likelihood of a making random decisions on granting

permission by a user who has never been exposed to information on IT is higher that a user

who is at least familiar with IT concepts including permissions. The same fact can be true

about users with a small knowledge and users with high level of IT knowledge. Therefore,

in our model we consider users knowledge as an important factor.

Model design: design of a permission notification model is a challenging process. Con-

sidering the preferences, knowledge, and users attitudes towards security and privacy is-

sues, makes it a challenging task to satisfy all users. Lack of considering these factors

in design of a permission notification system results in an ineffective model. The con-

sequences of a poorly designed model are not just limited to users satisfaction. It may

167

also result in private information leakage, financial loss, and serious security and privacy

threats. The design of a permission notification has two aspects. First, what to put in the

notification so that users can understand the content of it. This aspect becomes a complex

task when users come from different backgrounds and have different understandings of

the content. Second, the interface design of a permission notification is another important

aspect of the design process. The user interface (UI) has a high impact on the success of

delivering the actual privacy risk of permissions. Therefore, it is vital to consider these

factors in designing any security and privacy model.

5.1.3.2 Multi-Interface

Users knowledge level has a direct relation with understanding the contents of a no-

tification. To assist users, in our model, we design multiple interfaces containing the in-

formation about the requested permissions from apps. Each interface is called a view of

information. Each view has three features defined as follows:

Granularity: we define the granularity to be the format, scale and quantity of in-

formation we put into a notification. For example, the actual activity logs of an app are

considered as fine grained and showing the overall risk of an app is considered as coarse

grained.

Intricacy: intricacy refers to the complexity of the information in terms of under-

standing, technical level and also interpretation by users. As an example, the actual activity

logs are considered as high intricacy (because it needs knowledge of app API and system

calls) and overall risk (the risk is presented in common spoken language) of an as low

intricacy.

Co-equality: co-equality refers to the consistency of the information we put into the

notification. For example, a skilled user’s interpretation from the actual logs of apps should

be the same or close to a user with low expertise from the overall risk of apps.

168

(CE, G, I)
View V1 V2 Vn-1 Vn

 : Information UnitsCE: Co-Equality G: Granularity I: Intricacy

>>'(, ,)

= N0 = Nn
Nn Nn-1<

= Nn-1
Nn-1 Nn-2<

= N2
N2 N1<

= N1
N1 N0<

>>'(, ,) >>'(, ,)
V0

…

…
…

…

…

…

…

In
iti

al
 in

pu
t

Fig. 5.1.2.: The process of generating multiple views of privacy risks to be presented to users

Figure 5.1.2 shows an overall view of the views we have designed in our model.

As you can see, multiple views have different characteristics in terms of granularity, co-

equality and intricacy. The format of contents in each view differs from other views (from

left to right the granularity decreases). In addition, the level of intricacy is decreasing as

well.

5.1.3.3 User Interface

In this case-study we provide users multiple views to present the actual privacy risks

of Android apps running on devices, so that they can select their preferred view that they

can interpret the best. Fig. 5.1.3 shows the designed views. The views are different from

each other in terms of the features we mentioned above. The information that these views

provide are as follows:

• View 1: This interface provides the most detailed information about applications’

behaviours and activities (Privacy related raw data is shown).

• View 2: This interface does some risk assessment process on the information pro-

vided at level 0. The red numbers are assessed risks of the app. The red lines are

suspicious activities that the app have had during runtime.

• View 3: This interface shows the assessed risk level of each requested permission

169

(resource) by the application. The assessed risk is course-grained to 5 levels.

• View 4: This interface shows the overall risk level of the app and possible misused

resources.

• View 5: This view suggests that an app is malicious or not.

User preference: The interaction portal (interfaces and setting) is to facilitate the inter-

action between users and devices. Through this component, we enable users to manage the

privacy risk of permission notification of their devices. They can change the configuration

and select their preferred views to monitor the risk of installed apps.

In our model we designed the system in way that users can choose their preferred

views manually or automatically in which users leave it up to the system. The system

shows privacy risks of the system and requested permissions to users through the selected

views. If a user does not select a view, system selects one as a default view to be used.

In our design, users are able to select views per app. Fig. 5.1.4(b) shows the portal that

users can see what views are being selected for what apps. Users are able to change it at

any-time.

Users will be informed about the privacy risks in three different ways. First, they

can find the information at the device’s setting. Second, they can receive the information

at runtime using pop-ups. Third, they can see the information at the installation time.

In the third way, the information that users will see is calculated from other users in the

community (those who have previously installed and used the app).

Action recommendation: In general, following the permission notifications, users are

asked to take an action on apps. In the existing solutions, there are only two options “allow”

or “deny”. However depending on the activities and behaviours of apps, these set of actions

170

Privacy Notification – App’s Activities

Network

SMS

Location Service (GPS)

Storage

Contacts

Camera

...

...

...

...

...

...

Total Usage: 1289

WiFi

Phone Avg: 784

In Background: 84%

In Foreground: 16%

Sent Data: 874 Received Data: 415

WifiStateMachine 1642 Sep 14,2016 – 2:34 PM

ConnectivityService 1642 Sep 14,2016 – 3:14 PM

WifiStateMachine 1642 Sep 14,2016 – 5:34 PM

WifiStateMachine 1642 Sep 14,2016 – 5:34 PM

ConnectivityService 1642 Sep 14,2016 – 6:44 PM

WifiStateMachine 1642 Sep 14,2016 – 6:46 PM

Activity PID Date & Time

...

(a)

Privacy Notification – Risky activities

Network

SMS

Location Service (GPS)

Storage

Contacts

Camera

...

...

...

...

...

...

Total Usage: 1289

WiFi

Phone Avg: 784

Resourc’s Risk: 84%

Phone Risk Avg: 21%

WifiStateMachine 1642 Sep 14,2016 – 2:34 PM

ConnectivityService 1642 Sep 14,2016 – 3:14 PM

WifiStateMachine 1642 Sep 14,2016 – 5:34 PM

WifiStateMachine 1642 Sep 14,2016 – 5:34 PM

ConnectivityService 1642 Sep 14,2016 – 6:44 PM

WifiStateMachine 1642 Sep 14,2016 – 6:46 PM

Activity PID Date & Time

...

Risk: 84%

Risk: 61%

Risk: 32%

Risk: 65%

Risk: 78%

(b)

Privacy Notification – Risk per resource

Network

SMS

Location Service

Storage

Contacts

Camera

(c)

Privacy Notification – Overall risk

Overall Risk Level:

This application seems like is misusing the

following resources:

- SMS

- Location Service

- Contacts

- WiFi

OK

(d)

Application Maliciousness

This application is Malicious.

Uninstall Why uninstall?! See more info…

(e)

Fig. 5.1.3.: User Interfaces of 5 the views: (a) shows View 1 with highest of level intricacy; (b) shows View 2 which is similar to view
0 but it includes some assessed risks; (c) illustrates View 3 with the assessed risks for every requested resource; (d) shows View 4 that
includes an overall risk of the app; (e) shows View 5 shows that an app is malicious or not

171

Detailed View

This configuration presents the most detailed

statistics of an app. The information included app

resource usage and its activity log. We recommend

this option to those who have knowledge on

application and Android activities.

OK

Select the Default View

(a)

Allow

Privacy Notification – Risk per resource

Network

SMS

Location Service

Storage

Contacts

Camera

Block Uninstall

Less info.More info.

(b)

Fig. 5.1.4.: Mode selection for privacy risk views (a) illustrates user interface of selecting a mode to see the views; (b) shows the
interface of selecting views for both modes; (c) shows the interface of list of apps and their views.

may not work. For example, if an app is malicious and has access to a set of sensitive

resources, denying a single permission may not block the privacy and security risks. The

proper actions in such case would be uninstalling the app to avoid this scenario.

In addition to the multi-interface model, we also provide users with a set of actions

they can take. The actions vary depending on the risk of apps. For example, if the risk of

app is high, the actions we recommend users to take are different from an app which is low

risk. For each notification that our model generates, we also recommend a set of actions.

Some actions are more strict than others. Figure 5.1.5 shows a set of actions buttons we

recommend to users. For example, Figure 5.1.5(a) is recommended when apps are low risk

and it is not necessary to recommend more strict actions. Figures 5.1.5(c)(d) recommend

more strict actions including “uninstall”. In the case of uninstall, we also provide users with

a detailed explanation to inform them about the reasons behind the action we recommend.

Using the action recommendation system, we not only show users the risk behind

172

Allow Block Allow Block Uninstall

Allow Block Uninstall Uninstall Why uninstall?! See more info…

(a) (b)

(c) (d)
Fig. 5.1.5.: Designed buttons for the views.

apps, but also a set of proper actions that users can take.

5.1.4 User Study

In this section we discuss the results of a survey we conducted to evaluate the usabil-

ity of our model. We tend to answer the following questions in our user study; “Is there a

need/interest for a privacy/security notification system showing different views with differ-

ent amount of information about the privacy/security risk of apps/permissions?” and also

if the answer to the first question is yes, then “Is the interest distributed among all views or

only one or two specific views?”.

5.1.4.1 Study setup

In order to answer the questions mentioned in this section, we designed a survey to

collect users feedback on the proposed model. Our user survey included three parts; “Lab

study”, “Training” and “Feedback collection”.

Lab study: before we publish the survey on Amazon MTurk we conducted a lab

study to resolve any ambiguity with the survey, so that participants will not have any issue

to understand the topic of our survey and also the contents are easy to read and understand.

During this step, we made a set of corrections and redesigned the survey.

Training: before asking users’ opinions, we decided to give necessary information

to participants, so they understand the concept and technical terms in our survey. We ex-

plained the concept of permission notification to participants together with explanation of

the single view (existing models) and also our model (multi view). To avoid making any

173

bias in participants, we designed the survey to be neutral and only focusing on the facts

about the models.

Feedback collection: in order to collect feedback from users we used Amazon MTurk

platform to publish our survey. We set the language and location of participants to be

English speaking countries and English respectively. The reason behind this was that the

content of the survey was in English. This helped us to have a successful training process.

Figure 5.1.6 shows the targeted locations to launch our user study. We set the locations to

be US, UK, Canada, Australia and New Zealand.

Table 5.1.1 presents the education level of participants. We set the education to “High-

School”, “Undergraduate” and “Graduate and above”. Table 5.1.2 shows the demographic

information related to the age of participants. We did not set the configuration for the age

in our survey, so that we could get feedback from a wide range of ages. Finally, Table 5.1.3

shows the diversity of gender among our participants. In our survey, we decided to keep a

balance in number of participants from each gender.

In order to avoid making any bias in our survey, we decided to move the demographic

information collection step to the end of survey. This way, participants will not be affected

by the answers they give to the demographic information. Therefore, when participants are

answering the preference questions, they do not have to give answers based on the answers

they give to our demographic information.

Table 5.1.1.: Diversity of Participants (Education level)

Educational Level High-School Undergrad Graduate and above

Number of participants 41 104 55

Table 5.1.2.: Diversity of Participants (Age)

Age 20-30 30-40 40-50 50-60

Number of participants 53 82 41 24

174

Table 5.1.3.: Diversity of Participants (Gender)

Gender Female Male Others

Number of partiipants 90 107 3

United States

Canada United Kingdom

Australia

New Zealand

Fig. 5.1.6.: Location of participant of our user study.

5.1.4.2 Model Preference

In this section, we present users’ feedbacks on the single-view and multi-view models.

Before we collect their feedbacks, we presented them a neutral explanation of the function-

alities and features of each model. In this step, we only focused on the facts and features of

the models. We designed this section in a way that users will navigate through the views.

For each view, we also added an explanation, so that participants understand the features

of each view.

Figure 5.1.7 shows the preferences of participants. As you can see, 170 of participants

in our survey preferred the multi-view model and only 30 participants prefer to user the

single-view model. This shows that participants significantly prefer to use the multi-view

model.

In order to confirm the fact the participants have a clear understanding of both models,

we decided to ask their reasons on choosing the models as a requirement. This way, we can

make sure that they understand what they choose. We received 25 words per sentence in

175

170

30

0

20

40

60

80

100

120

140

160

180

Multi-View Single-View

Multi-View

Single-View

Fig. 5.1.7.: Participants model preferences in terms of single and multiple views.

average from participants, which is sufficiently long to understand/interpret their reasons.

We used ”voyant-tools” word processor to do an analysis on the inputs from participants.

Table 5.1.4 shows the most common phrases among the participants feedbacks for both

models. As highlighted in the table, we can see that participants have a clear understand-

ing of both models. The core reason behind choosing single-view is “simplicity” and “less

information”. In contrast, those who chose multi-view mention “more features”, “interest

in more information” and also “”ability to choose”. From these feedbacks, we can con-

clude that participant had a good understanding of models before they chose. They mainly

pointed out the actual reasons we set to behind each model.

Table 5.1.4.: Users feedback on their preferred model

Model Single-View Multi-View

Phrases ’easier to use’ ’a lot more information’
’less information ’ ’risks of applications’
’simple’ ’has more features’
’less details’ ’seems more useful’
’simplistic’ ’i would like to know more’
’easy to understand’ ’more options’

’I can choose’

In order to see the correlation among some of the factors in our survey and the model

preference, we measured the preference of participants with respect to “malicious app expe-

rience” and “security concern” factors. Figure 5.1.8(a) shows the model preference among

176

users who have experienced mobile malware apps. In order to make sure that participants

have a good understanding of what a malware is, we explained this term during the training

process. As you can see, those who have experienced malware, prefer the multi-view model

over the single-view. The reason behind this may be the fact that they want to know more

about the permission risks of apps. Additionally, those who have experienced malware

on their devices, are already familiar with the concept of malware and they have a better

understanding of malicious apps. We also noticed this fact from participants feedback in

Table 5.1.4 (understanding of malicious activity and risks).

As security concern was one of the items we collected participants’ answers, we de-

cided to see the relation between the model preference with respect to the security concern

of participants. Figure 5.1.8(b) shows the model preference of participants with consider-

ing the security concern. As you can see, participants with higher level of concern are more

interested in using the multi-view model.

The feedback from participants answers the question “Is there a need/interest for a

privacy/security notification system showing different views with different amount of in-

formation about the privacy/security risk of apps/permissions?”. 85% of participants pre-

ferred the multi-view model which is designed to give users more insight about their apps.

In addition, users with different backgrounds and security concerns, chose our proposed

model over the single-view model. Therefore, the answer to this question is that users are

in need of such system and also they have the understanding of what they need.

5.1.4.3 View Preference

In this section, we analyze the feedback from participants who prefer to use the multi-

view model. We wanted to see if the view preferences are being distributed among different

views. The distribution of preference among views shows the need for a model with differ-

ent views containing different types of information about the privacy risks of permission.

177

0%

10%

20%

30%

40%

50%

60%

70%

No Yes

Multi-View

Single-View

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Multi-View

Single-View

(b)

Fig. 5.1.8.: Participants preferences in terms of single and multiple views: (a) Participants model preference by experience of malware;
(b) Participants model preference by security concern.

Those participants who chose the multi-view model as their preferred model, were later ask

to choose the view they prefer the most among all views. They were presented with de-

tails for each view including the features, purpose of the view, and the type of information

included in the view. Figure 5.1.9(a) shows the distribution of participants’ preferences

among the views. As you can see, each view is being selected by a number of participants.

This answers the questions of “Is the interest distributed among all views or only one or

two specific views?”. View 3 is the most preferred view among all views. We believe the

reason behind this is the fact that this view provides a moderate amount of risk information

and at the same time it is visually appealing. We can see that 34 and 38 participants are

interested in view 1 and 2 respectively, which is surprisingly higher than our expectations.

We also calculated the correlation between view preference, gender and malware ex-

perience. Figure 5.1.10(a) shows the correlation between the gender factor and view pref-

erence. The correlation between female and male participants for all views is 0.71. As you

can see, except for the View 2, both gender categories follow the same pattern. That is

the reason behind the 0.71 correlation. It is worth mentioning the a correlation of 1 means

that the two variables/factors always follow the same pattern. Figure 5.1.10(b) shows the

correlation between malware experience and view preference. The calculated correlation

178

34
38

49

29

20

0

10

20

30

40

50

60

View 1 View 2 View 3 View 4 View 5

View 1

View 2

View 3

View 4

View 5

(a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

Undergraduate High School Graduate and

above

View 1

View 2

View 3

View 4

View 5

(b)

Fig. 5.1.9.: Participants preferences in terms of single and multiple views: (a) Participants model preference by experience of malware;
(b) Participans model preference by security concern.

value for this factor was 0.07, which is very small. This shows that there is almost no cor-

relation between experiencing malware and views that participants have selected. View 3

is the only view that both categories follow the same pattern.

As we did for the model preference, we required participants to leave a reason for the

view they prefer. This way, we can make sure that they understand views they chose. We

received 27 words per sentence in average from participants, which is sufficiently long to

understand/interpret their reasons. Table 5.1.5 shows the processed feedbacks from partic-

ipants. The core phrases from participants are highlighted in the table. As you can see,

participants have correct understanding of the core purposed behind each view.

Table 5.1.5.: Users feedback on their preferred view of the multi-view model

View View 1 View 2 View 3 View 4 View 5

Phrases ’most information’ ’has risk assessment’ ’multiple risks’ ’summarized’ ’simple’
’detailed information’ ’detailed information’ ’assessed risk’ ’easy to understand’ ’quick info.’
’most detailed’ ’malicious activity’ ’not much details’ ’overall risk’ ’less confusing’

’like the 5 level’ ’summary of risk’
’visually appealing’ ’informative’
’easy to understand’ ’shows misused resources’

179

0

5

10

15

20

25

30

View 1 View 2 View 3 View 4 View 5

Female Male

(a)

0

5

10

15

20

25

30

View 1 View 2 View 3 View 4 View 5

No Yes

(b)

Fig. 5.1.10.: Correlation between gender, malware experience, and view preference: (a) Correlation between gender and view preference;
(b) Correlation between malware experience and view preference.

5.1.5 Discussion

In this section we discuss some of the challenges related to the model. We also propose

our solutions for the challenges. As we previously mentioned, consistency among the

designed views is a key aspect. Users with different levels of knowledge should be able

to understand/interpret the views the same. In addition, as we mentioned, recommending

actions to users for each view is another challenge.

5.1.5.1 Consistency

Consistent views can help users to make correct decisions regardless of their back-

ground and knowledge. To be able to achieve such consistency, there should be a control

system to evaluate the consistency of the views. Our proposed solution to address this chal-

lenges it to equip the model with Control Theory to be able to tune the views and enhance

the consistency of views.

The main objective of control theory is to control a system. It helps a system to control

the input-output flow and also make sure that the system’s output follows a desired value.

Control theory controls the input flow of a system and influences the behaviour of dynamic

180

systems [86]. On the other words, it models a (non)physical system, using mathematical

modeling, in terms of inputs, outputs and various components with different behaviours,

use control systems design tools to develop controllers for those systems and implement

controllers in physical systems employing available technology. This way, we can achieve

a certain level of control over the behaviour of systems and manipulate them to the system

behave in a desirable manner [19].

In order to be able to apply control theory to our model, we made modification in

the architecture of a control theory unit. Fig. 5.1.11 illustrates the basic architecture of

an adapted control theory system. We made changes in the processing unit of a control

theory unit. The reason we made this change is that we needed to evaluate the quality

of view before we generate it. That is why we made a short-cut in the model and until

the qualification are not met our model does not generate the views. The components are

explained as follows:

Processing Unit: A plant of a control theory system is the part of the system to be

controlled. On the other words, a part of system that is responsible for generating the

output is usually referred to as the plant. The usual objective of control theory is to control

plant, so its output follows a desired value, called the reference (r), which may be a fixed

or changing value.

Input Quality Estimator: The controller (compensator or simply filter) determines

the setting of the control input needed to achieve the reference input. The controller com-

putes values of the control input based on current and past values of control error. On the

other words, The controller provides satisfactory characteristics for the total system.

Input Adaptation: The system for measurement of a variable (or signal) is called

a sensor. The sensor transforms the measured output so that it can be compared with

the reference input (e.g., smoothing stochastic of the output). It monitors the output and

compares it with the reference. The difference between actual and desired output, called

181

the error (e) signal, is applied as feedback to the input of the system, to bring the actual

output closer to the reference.

Figure 5.1.11 shows an adapted version of a control theory unit. In this unit, the input

is risk information we need to generate a view. The information can be the raw logs of

apps or an evaluated risk. Depending on the design of a view, the units can change. The

change can be the format of input required to generate the view and also the format of

output for the view. The controller component of each unit, measures the qualification of

the view. It measures the quality of input and makes decision whether the input and output

requirements are being met or not.

New Input
Manipulated Input

_
+

e

u
r

y

Input
Adaptation

Processing

Unit

Input Quality Estimator

P
re

s
e

n
t
to

 U
s
e

r

C1 : Criteria 1
C2 : Criteria 2

CN : Criteria N

… P
re

S
y

s
te

m
 i
n

p
u

t

System

output
+

+
Fig. 5.1.11.: A chain of closed-loop control systems.

Because there are multiple views in out proposed model, we need a chain of nodes to

be able to generate all the views. Figure 5.1.12 shows a chain of units. Except the first unit,

the output of the previous unit is the input for the next unit. Using such model, we can make

sure that each view is being controlled in terms required qualifications. The controller can

be customized depending on the policies and rules we set. As you can see, there should be a

set of criteria to meet. It is worth mentioning that to be able to evaluate the consistency, we

also need to have an evaluation process after applying such model. The evaluation process

can be in the shape of user survey and collecting users feedback to evaluate the fact that

they have the same understanding of the views.

182

_

+

e

ur

y

Input
Adaptation

Processing
Unit

P
re

s
e

n
t
to

 U
s
e

r

C1 : Criteria 1

C2 : Criteria 2

CN : Criteria N

…

P
re

View N

S
y

s
te

m
 i
n

p
u

t
N

Output N

+_

+

e

ur

y

Input
Adaptation

Processing
Unit

Quality Estimator 0

P
re

s
e

n
t
to

 U
s
e

r

C1 : Criteria 1

C2 : Criteria 2

CN : Criteria N

…

P
re

View 0

S
y

s
te

m
 i
n

p
u

t
0

Output 0

+ _

+

e

ur

y

Input
Adaptation

Processing
Unit

P
re

s
e

n
t
to

 U
s
e

r

C1 : Criteria 1

C2 : Criteria 2

CN : Criteria N

…

P
re

View 1

S
y

s
te

m
 i
n

p
u

t
1

Output 1

+

…Quality Estimator 1 Quality Estimator N

Fig. 5.1.12.: A chain of closed-loop control systems.

5.1.5.2 Action recommendation

As recommending actions (buttons) in our views and interfaces is a key part of the

model, there should be a mechanism on which actions should be selected and offered to

users. For such mechanism, we mainly rely on the actual risk of apps. A threshold-based

system can be a solution to such challenge. Defining a set of thresholds and mapping each

risk threshold to a set of actions is the solution. For example, for an app with high risk

activities, we can define a set of “Block” and “Uninstall” and for apps with low risk we

offer milder actions such as “Block” and “Deny”.

5.1.6 Conclusion

In this section we proposed a model for generating multiple permission notifications.

Our model considers users background and knowledge and generates views with differ-

ent levels of intricacy and granularity. Using this model, users have the option to choose

their preferred interface and view. Users can choose the view that they can understand the

most and are more comfortable using it. Our user study shows that users are more inter-

ested in have a multi interface permission notification mechanism. Additionally, our study

also shows that users’ interests are distributed among different views. Users with different

backgrounds have different preferences. Based on our study, users with higher concerns in

terms of security and privacy of their smartphones and personal information, have higher

interest in our multi view model. Finally, our user study showed that there is a need for

such model and also users are interested in multiple views instead of one.

183

CHAPTER 6

SIMILAR SAFE APPLICATIONS RECOMMENDATION

In this chapter, we design and evaluate an Android secure application recommendation sys-

tem that provides users with fine-grained and customizable app recommendation. This app

recommendation system shall take the security aspect of apps into consideration through

a security scoring method based on requested permissions. We will discuss the design,

scoring metric and algorithms, and the graphical user interface for users to configure their

preferences on rating metrics.

6.1 Similar Safe Applications

Android app recommendation system is an important feature for our user privacy pre-

serving framework. Besides providing similar apps, the recommendation also takes the

privacy and security aspect of the apps into account. The goal of this project is to provide

a list of similar apps with the lowest privacy risks. This topic is one of our future works

toward dissertation completion.

The contribution of this work can be summarized as follows:

• We propose a novel Android app recommendation system that takes the security

features as well as three other app metrics into consideration.

• We propose multiple methodologies to score the apps on all corresponding metrics.

• We evaluate the effectiveness of the system and compare it to the existing Google

recommendation using real data.

184

6.1.1 Problem Definition

In current Android systems, the application recommendation function is an important

feature that users can use to find a similar application to replace a targeted one. The current

recommendation system provided through Google and the Google Play store presumably

recommends applications similar to a target application while accounting for the popularity

of each application. However, it does not take the security features of each application or

users preferences into consideration when doing so. In this project, we will design and

develop an Android feature that provides users with fine-grained and customizable applica-

tion recommendations. Compared to the Google store recommendation function, the new

feature not only consider the similarity of the apps, but also other metrics such as popu-

larity, security, and usability. More specifically, it allows users to configure the weight of

the metrics that can be used to rate the apps. We also provide a recommendation algorithm

that generates a list of recommended applications based on the combined scores. We will

evaluate the usability of our system and the quality of recommendations and compare it to

the existing Google recommendations.

6.1.2 DroidVisor: A Safe Application Recommendation System

In the current Android systems, the application recommendation function is an im-

portant feature that users can use to find a similar application to replace a targeted one.

The current recommendation system provided through Google and the Google Play store

presumably recommends applications similar to a target application while accounting for

the popularity of each application. However, it does not take the security features of each

application or user preferences into consideration when doing so. In this section, we pro-

pose DroidVisor, an Android tool that provides users with fine-grained and customizable

application recommendations. Compared to the Google store recommendation function,

185

DroidVisor not only use the similarity to a preselected target application, but also consid-

ers other metrics such as popularity, security, and usability. More specifically, DroidVisor

provides an interface for users to configure the weight of each metric and a recommenda-

tion algorithm that generates a list of recommended applications based on the combined

scores. We evaluate our proposed criteria and the quality of recommendation through use

case studies. Finally, we present our findings through a discussion of accuracy as well as

possible ways to improve our recommendation results.

6.1.2.1 Background

To compute the similarity of two applications, we use an NLP approach. In this sec-

tion, we discuss the Latent Dirichlet Allocation (LDA) [20]method and Lesk algorithm that

are used to find similarity scores between apps.

Latent Dirichlet Allocation LDA [20], is described as a generative probabilistic model

that can be used to model the topics of a document. LDA is a three-level hierarchical

Bayesian model, in which each item of a collection is modeled as a finite mixture over

an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an

underlying set of topic probabilities [20]. The primary goal of LDA is to define a general

list of topics that represent key terms behind a document or set of documents. After each

topic is defined, different word types are classified and placed into each topic.

Learning for Language Toolkit: The MAchine Learning for LanguagE Toolkit, referred

to as MALLET, is a Java-based package for statistical natural language processing, docu-

ment classification, clustering, topic modeling, information extraction, and other machine

learning applications to text [51]. The MALLET topic modeling toolkit contains efficient,

sampling-based implementations of Latent Dirichlet Allocation that we will be utilizing

186

later on in order to visualize outputs in a clear, textual format.

MALLET has multiple optional input parameters, but we need not concern ourselves

with the utilization of most of them. We are however concerned with training MALLET,

as it involves machine learning, and having it acclimate to different application genres and

classifications. For the required inputs, we need the location of our applications descrip-

tions, the number of "topics" we want, and the destination the output should be placed

in.

Sense Disambiguation In the context of Natural Language Processing, Word Sense Dis-

ambiguation (WSD) is the process of identifying the “sense" of a word, or there meanings

in the context of which they reside, that may possibly have multiple meanings. It is an ap-

proach that uses a words relative proximity to another in text and then attempts to analyze

the context of which it resides in to find common themes.

The practice involves use of a predefined dictionary with the inclusion of homonyms,

or words that sound the same. As every dictionary has a different interpretation of what a

word can mean contextually, alternatively known as the "sense" of a word, problems arise

when different dictionaries or thesaurus are available. One solution to this is the use of a

common data bank known as WordNet. WordNet is a computational lexicon that encodes

concepts as synonym sets

Lesk The Lesk algorithm, introduced by Michael E. Lesk in 1986, is based on the as-

sumption that words in a given text file or description will tend to share a common topic or

meaning. A simplification of Algorithm 8, which is a modified version of the original Lesk

algorithm written by Satanjeev Banerjee and Ted Pederson [16], would typically be used

to compare the dictionary definition of an ambiguous word with the terms contained in its

neighborhood or surrounding section.

187

We later modify our own version of Algorithm 8 and use it to form our matrix visual-

ization of textual similarity between applications.

Algorithm 8 LESK Algorithm Pseudo-Code
1: for all word w[i] in in the phrase do
2: let BEST_SCORE = 0
3: let BEST_SENSE = null
4: for all sense sense[j] of w[i] do
5: let SCORE = 0
6: for all other word w[k] in the phrase, k != i do
7: for all sense sense[l] of w[k] do
8: SCORE = SCORE + num of words that occur
9: occur in the gloss of both sense[j] and sense[l]
10: end for
11: end for
12: if SCORE > BEST_SCORE then
13: BEST_SCORE = SCORE
14: BEST_SENSE = w[i]
15: end if
16: end for
17: if BEST_SCORE > 0
18: output BEST_SENSE
19: else
20: output “Could not disambiguate w[i]”
21: end if
22: end for

6.1.2.2 DroidVisor Design

DroidVisor is an Android app recommendation system that takes the security aspect

of apps into consideration through a novel security scoring method based on requested per-

missions. In this section, we discuss the design of DroidVisor, including the scoring metric

and algorithms, and our graphical user interface for weighing metrics and recommenda-

tions.

Selection When providing app recommendations to users, the first step is to identify

several metrics that users may be interested in, but which data are also available. The four

metrics that we adopted are described as follows:

Similarity: Similarity is the core metric since the purpose of recommendation is to

find replacement apps that are both similar and secure. The similarity of two apps can be

188

measured through comparing the textual descriptions of the apps. The description typically

contains the app’s purpose, what users may be able to achieve through usage, the device

requirements, or what a developer may want to mention.

Security: The security risk of apps is also a critical concern for smartphone users.

An important novelty of DroidVisor is taking the security risk of apps into account in the

recommendation. The security risk level of apps can be estimated through the permissions

an app requests.

Popularity: Popularity can be also taken into consideration for the recommendation

algorithm because users tend to pick more popular apps to install. The popularity can be

measured using the number of downloads by users.

Usability: Usability measures how well the apps are designed and function, which

is another typical metric that users care about. Usability can be measured by user ratings

given to each individual app on a scale from 0.0 to 5.0.

Design DroidVisor uses the process shown in Figure 6.1.1 to compute the recommen-

dation scores in order to find the recommend apps. The process can be divided into four

key steps: initial filtration, keyword filtration, metric scoring computation, and normalized

sorting. Once the final similarity score, σ, is calculated, DroidVisor then displays the high-

est scored apps to its users as shown in Figure 6.1.2(a). When a user chooses to see the

details of an app, it will be displayed in a fashion identical to Figure 6.1.2(b).

Initial filtration: In order to access the available apps, we did some primary filtra-

tion based on category (genre) to narrow down the scope of the initial search. We did this

through a simple process that reads the category information of each app from its descrip-

tion in the dataset. We start with the set of apps Google Play lists as similar to the target app

and recursively obtain similar apps in regards to our target app until the set is of sufficient

size. Finally, we only keep the apps if they are in the same category of the target app and

189

Start
Select Application

Input Package Name

Initial Filtration Text
Parsing

Topic Modeling
Keyword Filtration

Filtered Application Data
Collection

No Yes

Similarity Score
Computation

Target Application
Selection

 Categorical
Sort

Weighted

Display Top Results End

Genre CreationIn
iti

al
iz

at
io

n
Fi

ltr
at

io
n

D
at

a
C

ol
le

ct
io

n
U

se
r I

nt
er

ac
tio

n

Fig. 6.1.1.: DroidVisor’s process flowchart.

Top Applications

Chrome Browser - Google
Communication

Downloads: 6,663,300

Google Inc.

DroidVisorD✓

1.

2.

3.

4.

5.

Aon Browser
Aon Browser – Adblocker Mini

Opera Mini – fast web browser
Opera

CM Browser – Fast & Light
Cheetah Mobile (AppLock & AntiVirus)

Orbot: Proxy with Tor
The Tor Project

Dolphin - Best Web Browser 🐬
Dolphin Browser

Top Applications

Chrome Browser - Google
Communication

Downloads: 6,663,300

Google Inc.

DroidVisorD✓

Aon Browser
Aon Browser – Adblocker Mini

Opera Mini – fast web browser
Opera

CM Browser – Fast & Light
Cheetah Mobile (AppLock & AntiVirus)

Ninesky Browser
ninesky.com

Dolphin - Best Web Browser 🐬
Dolphin Browser

(a)

Description
WhatsApp Messenger is a

FREE messaging app

available for Android and

other smartphones…

Downloads 49,311,496

Android Version

Content Rating

Permissions View

Everyone

4.0+

WhatsApp Messenger is a

FREE messaging app

available for Android and

other smartphones…

User Rating 4.4

Details

WhatsApp Messenger
Communication

WhatsApp Inc.

DroidVisorD✓

(b)

Fig. 6.1.2.: User Interfaces: (a) illustrates Google Chrome’s related apps using our proposed model; (b) shows more details of popular
messenger application WhatsApp.

190

abandon the rest as they are not relevant enough to analyze.

Keyword filtration: After initial filtration, the list of apps that we have descriptions of

is still relatively large. We then further filter the apps based on keywords. This is done

by assigning each genre a list of non-generic keywords and setting a chosen threshold in

which the minimum number of keywords in an apps description must be met for it to be

added to our final pool. It can also be done by placing a cap on how many apps are allowed

in score calculation. If we choose to employ the app capping method, we simply analyze N

number of apps with the highest number of keywords in common with our target app. This

is done through a process known as Topic Modeling, or Latent Dirichlet Allocation , using

the MAchine Learning for LanguagE Toolkit (MALLET).

Once our app specific keywords have been defined, we then go through the process of

checking each text description in the remaining target apps pool and assigning them scores

corresponding to the number of keywords each of their respective texts contain. For exam-

ple, if we had the textual description of “A dog jumps over a log” with the keyword pool

{dog,wolf , rabbit, log, boat} that particular app and description would receive a matching

score of 2 due to containing “dog” and “log”.

We are now given the choice of placing apps into our final pool based on whether

they meet a threshold for a minimum number of keywords, or our capping method by

selecting N amount of apps with the highest amount of matching keywords. In order to

keep consistent sizes for our final app pools amongst various different genres and target

apps we chose to employ our capping method setting N , our final app pool size, to 75. If

in the anomalous case that our target app did not make it into its own final app pool we

choose to remove the app with the lowest keyword matching score in our pool and replace

it with our target app.

Metric score computation: At this stage we have established a pool of related apps

191

Permissions Risk
Install shortcuts L

Set an alarm L
Control vibration L

Network connection status L
Device app history M
Close other apps M

Make app always run M
Retrieve running apps M

Photos/Media/Files H
Read contacts H
Get location H

Use microphone H

Table 6.1.1.: Examples of permissions and their security risk levels.

to the target app. By utilizing Natural Language Processing (NLP) overlap measures, we

create a matrix visualization of app similarity scores for all apps inside of our pool using

the Word Sense Disambiguation (WSD) algorithm known as Lesk. We then visualized and

mapped each score in an adjacency matrix format, where each column and row represented

a separate app and the matrices elements representing how related one apps description is

to another.

To calculate the security scores we first compute the risk score by counting the num-

ber of permissions requested by each application. We analyze each application and its

individual permissions and assign each of the permissions a value of "L", "M", or "H",

corresponding with low, medium, and high risk when accessed by an application in an iso-

lated manner (meaning not in concurrence with any other permissions). The examples of

permission risks are shown in Table 6.1.1. We assign different weights to different levels,

where low/medium/high correspond to weight 0.33/0.67/1.0 respectively. Once we find

the score corresponding to each permission we then sum them together. An application

score for the popularity and user rating categories are taken by looking at the downloads

and user rating metric provided by Google Play.

In addition, the usability scores can simply be the rating scores, and the popularity

scores can be computed by taking the logarithm of the number of downloads an app has

and then normalizing all popularity scores by dividing using the highest value found. All

192

Similarity

Popularity

Rating

Security

Weight Preferences

SetCancel

Fig. 6.1.3.: GUI design of weight tuner for DroidVisor.

four scores of each app are stored in a matrix for easy access.

Normalized scoring and sorting: The scoring methods on each metric produce

metrics scores with different range scope. For example, the scores of usability is within

[0, 5] while the scores of popularity is within [0,∞]. Our next step is to normalize them

into the range of [0, 1]. This can be done by dividing each individual apps score with the

highest value found in that metric. Note that β̄ij is the normalized score for metric i and app

j and βij is the unnormalized score.

β̄ij = βij/max
∀j

(βij) (6.1)

To tune and customize results for each user we incorporated a weighted sort or slider to

be placed into the graphical user interface (GUI), which can be seen in Figure 6.1.3. Each

individual user is able to select how much is the importance of each metric, with each

section of the slider ranging from 0.0 to 1.0. Each normalized score is then multiplied out

by the chosen weight each user has picked. These totals per app are then summed together

to simply see which apps receive the highest score, as shown in the equation below:

σj =
3∑
i=1

αi ∗ β̄ij + α4 ∗ (1− β̄4
j) (6.2)

where σj refers to the total score for app j; αi is the weight of metric i set by the user. Note

that the security score is the complement of the risk score due to their opposite meanings.

193

6.1.2.3 Evaluation

In order to evaluate our proposed approach, we conducted a set of experiments fol-

lowing the DroidVisor design.

Experimental Setup To evaluate our work on a real-life app, we use the Google Chrome

app, with the associated package name com.android.chrome, as an example. We

collected the initial pool of apps, as described in Section 4.3.3, to populate our target app

genre, which is“Communication”.

In our sample, the actual size of the initial pool before any form of filtration was 471

unique apps. After the initial filtration it is diminished to 251 apps. We then collect the

textual descriptions of each app, provided their respective developer, and stored them for

more reliable access.

While the previous filtration narrowed our pool size, we are still relying on genre

classification to further reduce the pool. As described in the filtration step, we did this

through a process called Topic Modeling utilizing Latent Dirichlet Allocation and a tool

developed by Andrew McCallum called MALLET.

After carefully analyzing the results and accounting for pool degradation, we came

to consensus that 2 is a suitable number of topics for MALLET in which we have a suffi-

cient number of keywords for various description lengths, yet repetition of words remains

minimized to avoid any possible topic overlap (see Table 6.1.2). We continued on with our

final filtration step, which generated our complete app pool of 75 on which we perform our

comparisons as shown in Figure 6.1.4.

Table 6.1.2.: Evaluation of number of topics.

Topics
Keywords

Total Unique Non-unique Overlap

1 19 19 0 0.00%
2 38 37 1 2.63%
3 57 55 2 3.51%
4 76 73 3 3.95%

194

After completing the app pool we moved on to evaluating the relevance and metrics of

each of the apps that remains using our four primary categories. Obtaining our popularity

and rating scores and then normalizing them was straight forward, however we had to

compute our similarity and security parameters.

To compute our remaining apps similarity scores we needed to compare the textual

description in the final pool of apps to one another. We did so using a Perl implementation

of the Lesk algorithm. To get our permission scores we used our permission calculation

method.

Once all of the four categorical scores were calculated, and normalized, we multiplied

them with each of their corresponding α weights, or slider weights given by the user, as

seen in Table 6.1.3, to get our σ scores. We recorded each response and visualized the top

apps for “Chrome Browser - Google” in a fashion similar to Figure 6.1.2(a).

Table 6.1.3.: Trial category weights.

Trial
Category

α Similarity α Popularity α Usability α Security

Trial 1 1.0 0.0 0.0 0.0
Trial 2 1.0 0.5 0.25 0.0
Trial 3 1.0 0.0 0.0 1.0

Our experiment environment is the IDE Eclipse Mars on a Windows 10 machine with

a 2.6Ghz Intel i7 Core and 12G RAM. All experiments were run numerous times to confirm

accuracy and are represented graphically as well as tabularly.

Trial 1 The results in our first trial were completed in order to emulate how we imagine

the Google Play store currently displays top apps. We tuned the weight values of each

category to its respective value shown in Table 6.1.3.

These values were then multiplied by DroidVisor’s four categorical scores calculated

for each measure to result in the final σ each app receives for that particular category. Table

6.1.4 shows our evaluation for the most relevant apps with highest scoring criteria and

overall σ value when we used “Chrome Browser - Google” as our target app. These apps

195

represent the top-most relevant apps out of our final pool of 75 apps relating to our target

app.

Table 6.1.4.: Evaluation of Trial 1.

App
Category

β Similarity β Popularity β Rating β Security σ Total

Aon Browser 1.00 .444 .851 .278 1.00
Opera Mini -

fast web... .409 .836 .936 .139 .409
CM Browser -
Fast & Light .333 .818 .957 .147 .333

Ninesky
Browser .278 .602 .894 .156 .278
Dolphin -

Best Web... .275 .830 .957 .102 .275

Trial 2 The results in our second trial were completed in an identical fashion to our first

trial, to emphasize the addition of the popularity and usability categories in conjunction

with the similarity category previously tuned in Trial 1 section. In order to see if we could

recommend a list of apps which are slightly more well known amongst app users, we put

medium emphasis on the popularity category and slight emphasis on usability (see Table

6.1.3) when tuning our α values in order to see if we could recommend a list of apps which

are slightly more well known amongst app users.

Table 6.1.5.: Evaluation of Trial 2.

App
Category

β Similarity β Popularity β Rating β Security σ Total

Aon Browser 1.00 .444 .851 .278 1.43
Opera Mini -

fast web... .409 .836 .936 .139 1.06
CM Browser -
Fast & Light .333 .818 .957 .147 .982
WhatsApp
Messenger .199 1.00 .936 .075 .933
Dolphin -

Best Web... .275 .830 .957 .102 .929

Trial 3 We again follow the previous trials for our third trial in order to display the

core purpose behind DroidVisor. We put heavy emphasis on the similarity and security

categories (see Table 6.1.3) when tuning our α values in order to see if we could recommend

a list of apps which focus on the users safety, privacy, and security.

196

Table 6.1.6.: Evaluation of Trial 3.

App
Category

β Similarity β Popularity β Rating β Security σ Total

Aon Browser 1.00 .444 .851 .278 1.28
Viber Mess-
ages & Ca... .230 .686 .872 1.00 1.23
Opera Mini -

fast web... .409 .836 .936 .139 .548
Ghostery Pr-

ivacy Browser .196 .523 .872 .294 .490
CM Browser -
Fast & Light .333 .818 .957 .147 .480

Filtration Step

1 2 3

0

50

500

450

400

350

300

250

200

150

100

N
u

m
b

e
r

o
f

R
e

m
a

in
in

g
 A

p
p

lic
a

ti
o

n
s

471

251

75

Fig. 6.1.4.: Progression of app filtration steps for the “Chrome Browser - Google" app.

Results Discussion We can see that with respects to the similarity feature, which is pri-

oritized in Trial 1, DroidVisor’s quality of recommendations seems much higher than those

of the current Google Play store. This is seen by simply examining the amount of browsers

that appear in the top list of apps similar to “Chrome Browser - Google” (see Table 6.1.7).

DroidVisor’s top 5 apps all consist of browsers while only 2 of the 5 apps Google Play

recommend, Firefox and Opera Mini, are browsers.

While some of the apps that appear in our similarity list may not be well known, we

adjust for this in Section Trial 2, by increasing popularity and rating weights, and the out-

DroidVisor Google Play
Aon Browser Gmail
Opera Mini - WhatsApp

fast web... Messenger
CM Browser - Firefox.
Fast & Light Browse Freely

Ninesky
Browser Messenger
Dolphin - Opera Mini -

Best Web... fast web...

Table 6.1.7.: DroidVisor’s versus Google Play’s similar app recommendation for “Chrome Browser - Google".

197

puts again look promising. However, our observed results for DroidVisor start to appear

more closely related to the recommendations by the Google Play Store with the addition of

the popular messaging app “WhatsApp Messenger”, which currently has over 49 million

downloads, confirming our hypothesis of Google accounting for downloads when recom-

mending apps.

The first drastic change we see in DroidVisor’s recommendations is when we tune to

adjust for the addition of the security feature. We see the addition of two new apps to our

top list. Immediately we notice one of these apps, “Viber Messages & Calls Guide”, does

not match the criteria of actual similarity to our app in the sense of its intended purpose.

When analyzing why this app was added to our top list we can immediately see the reason

was because it requests very few permissions from the user. However, the second new app,

“Ghostery Privacy Browser”, matches our tuned criteria weights almost perfectly. It is both

a browser and places heavy emphasis on security and privacy, as indicated by its name and

permission usage.

Overall results look promising with minor refinement being needed in regards to tex-

tual analysis, which is completely dependent on the developers part, and the possible inclu-

sion of handling permission usage and requests in conjunction with one another to assess

the true risk level of an app.

6.1.2.4 Conclusion

DroidVisor is an Android application recommendation system which allows users to

select a target application, define preference to weight recommendation metrics, and then

display a list of applications a user may find more usable than their selected target applica-

tion. We propose the four metrics a user may find relevant are textual similarity, number of

downloads, user rating, and security. Our evaluation based on real data has shown that in

its current form the outputs are satisfying at recommending highly similar and secure apps.

198

As our future work, we plan to apply other categories into our summation/score measure

in order to create a more accurate representation of what applications may fit the needs of

a user.

199

REFERENCES

[1] What is the price of free. http://www.cam.ac.uk/research/news/what-is-the-price-of-free.

[2] Appslib android apps market, Last Visit: August, 2015. http://slideme.org/.

[3] Appslib android market, Last Visit: August, 2015. https://appslib.com/.

[4] F-droid - free and open source android app repository, Last Visit: August, 2015. https://f-droid.org/.

[5] Bit9 report: Pausing google play: More than 100,000 android apps may pose security risks, Last Visit: May, 2015.
https://www.bit9.com/files/1/Pausing-Google-Play-October2012.pdf.

[6] Gartner: 1.1 billion android smartphones, tablets expected to ship in 2014, Last Visit: May, 2015.

[7] Mcafee q3 2011 threats report shows 2011 on target to be the busiest in mobile malware history, Last Visit: May, 2018.
https://www.mcafee.com/hk/about/news/2011/q4/20111121-01.aspx.

[8] Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: Detecting and mitigating privacy leaks on ios devices using crowdsourcing.
In Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’13, pages
97–110, New York, NY, USA, 2013. ACM.

[9] Tansu Alpcan and T Basar. A game theoretic analysis of intrusion detection in access control systems. volume 2, pages 1568–
1573.

[10] Ron Amadeo. App ops: Android 4.3’s hidden app permission manager, control permissions for individual
apps! http://www.androidpolice.com/2013/07/25/app-ops-android-4-3s-hidden-app-permission-manager-control-permissions-
for-individual-apps/.

[11] Shahriyar Amini. Analyzing mobile app privacy using computation and crowdsourcing. In Dissertations, 2014.

[12] Chinmayee Annachhatre, Thomas H. Austin, and Mark Stamp. Hidden markov models for malware classification. Journal of
Computer Virology and Hacking Techniques, 11(2):59–73, 2015.

[13] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and explainable detection
of android malware in your pocket. In NDSS. The Internet Society, 2014.

[14] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-fledged app
sandboxing for stock android. In 24th USENIX Security Symposium (USENIX Security 15), pages 691–706, Washington, D.C.,
August 2015. USENIX Association.

[15] Thoms Ball. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes, 24(6):216–234, October 1999.

[16] Satanjeev Banerjee and Ted Pedersen. An adapted lesk algorithm for word sense disambiguation using wordnet. In International
Conference on Intelligent Text Processing and Computational Linguistics, pages 136–145. Springer, 2002.

[17] David Barrera, Jeremy Clark, Daniel McCarney, and Paul C. van Oorschot. Understanding and improving app installation security
mechanisms through empirical analysis of android. In Proceedings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’12, pages 81–92, New York, NY, USA, 2012. ACM.

[18] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mockdroid: trading privacy for application function-
ality on smartphones. In HotMobile’11, pages 49–54.

[19] Shankar P Bhattacharyya, Lee H Keel, and Aniruddha Datta. Linear control theory: structure, robustness, and optimization. CRC
press, 2009.

[20] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003.

[21] Gerardo Canfora, Francesco Mercaldo, and Corrado Aaron Visaggio. An hmm and structural entropy based detector for android
malware: An empirical study. Computers & Security, 61:1 – 18, 2016.

[22] L Carin, G Cybenko, and J Hughes. Cybersecurity strategies: The queries methodology. Computer, 41:20–26, 2008.

200

[23] Yang Chen, M. Ghorbanzadeh, K. Ma, C. Clancy, and R. McGwier. A hidden markov model detection of malicious android
applications at runtime. In Wireless and Optical Communication Conference (WOCC), 2014 23rd, pages 1–6, May 2014.

[24] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.
Cambridge University Press, 2000.

[25] Jonathan Crussell, Ryan Stevens, and Hao Chen. MAdFraud: Investigating ad fraud in android applications. In 12th CMSAS,
MobiSys ’14, pages 123–134, New York, NY, USA, 2014. ACM.

[26] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S Wallach. Quire: Lightweight provenance for smart phone
operating systems. In USENIX Security Symposium, 2011.

[27] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary environments: A survey. IEEE Computational
Intelligence Magazine, 10(4):12–25, Nov 2015.

[28] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
droid: An information-flow tracking system for realtime privacy monitoring on smartphones. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10, pages 393–407, Berkeley, CA, USA, 2010. USENIX
Association.

[29] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study of android application security. In Proceedings
of the 20th USENIX Conference on Security, SEC’11, pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

[30] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajarajan. Android security: A survey of issues,
malware penetration, and defenses. IEEE Communications Surveys Tutorials, 17(2):998–1022, Secondquarter 2015.

[31] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android permissions demystified. In 18th CCS,
pages 627–638. ACM, 2011.

[32] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner. Android permissions: User
attention, comprehension, and behavior. In UPS, SOUPS ’12, pages 3:1–3:14. ACM.

[33] D Fudenberg and J Tirole. Game theory. In Game Theory. MIT Press, Cambridge, Massachusetts.

[34] Carol J Fung and Raouf Boutaba. Design and management of collaborative intrusion detection networks. In Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium on, pages 955–961. IEEE, 2013.

[35] M. Gales and S. Young. The Application of Hidden Markov Models in Speech Recognition. Foundations and trends in signal
processing. Now Publishers, 2008.

[36] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A survey on concept drift adaptation.
ACM Comput. Surv., 46(4):44:1–44:37, March 2014.

[37] Anjana Gosain and Ganga Sharma. A survey of dynamic program analysis techniques and tools. In Suresh Chandra Satapathy,
Bhabendra Narayan Biswal, Siba K. Udgata, and J.K. Mandal, editors, Proc. of the 3rd International Conference on Frontiers of
Intelligent Computing: Theory and Applications (FICTA’14), Odisha, India, volume 327, pages 113–122. Springer International
Publishing, November 2015.

[38] John C Harsanyi. Games with incomplete information played by bayesian players, i-iii part i. the basic model. Management
science, 14(3):159–182, 1967.

[39] Qatrunnada Ismail, Tousif Ahmed, Apu Kapadia, and Michael K. Reiter. Crowdsourced exploration of security configurations. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 467–476, New York,
NY, USA, 2015. ACM.

[40] J Jormakka and V.E. Molsa. Modeling information warfare as a game. volume 4(2), pages 12–25. Journal of Information Warfare,
2005.

[41] W. Khreich, E. Granger, A. Miri, and R. Sabourin. A comparison of techniques for on-line incremental learning of hmm parameters
in anomaly detection. In Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium
on, pages 1–8, July 2009.

[42] Wael Khreich, Eric Granger, Ali Miri, and Robert Sabourin. A survey of techniques for incremental learning of {HMM} parame-
ters. Information Sciences, 197:105 – 130, 2012.

201

[43] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and Michael Peter. L4android: A generic operating
system framework for secure smartphones. In SPSMD, SPSM ’11, pages 39–50, New York, NY, USA, 2011. ACM.

[44] Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist, and Joy Zhang. Expectation and purpose: Under-
standing users’ mental models of mobile app privacy through crowdsourcing. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, UbiComp ’12, pages 501–510, New York, NY, USA, 2012. ACM.

[45] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. Modeling users’ mobile app privacy preferences: Restoring usability in a
sea of permission settings. In Symposium On Usable Privacy and Security (SOUPS 2014), pages 199–212, Menlo Park, CA, July
2014. USENIX Association.

[46] Bin Liu, Jialiu Lin, and Norman Sadeh. Reconciling mobile app privacy and usability on smartphones: Could user privacy profiles
help? In Proceedings of the 23rd International Conference on World Wide Web, WWW ’14, pages 201–212, New York, NY, USA,
2014. ACM.

[47] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. DECAF: Detecting and characterizing ad fraud in mobile apps. In 11th
USENIX CNSDI, NSDI’14, pages 57–70, Berkeley, CA, USA, 2014. USENIX Association.

[48] P Liu, W Zang, and M Yu. Incentive-based modeling and inference of attacker intent, objectives, and strategies. volume 8, pages
78–118.

[49] R. Liu, J. Cao, L. Yang, and K. Zhang. Priwe: Recommendation for privacy settings of mobile apps based on crowdsourced users’
expectations. In 2015 IEEE International Conference on Mobile Services, pages 150–157, June 2015.

[50] Kong Lye and Jeannette Wing. Game strategies in network security. International Journal of Information Security, 4:71–86, 2005.

[51] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit. http://www.cs.umass.edu/ mccallum/mallet, 2002.

[52] Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Machine learning aided android malware classification.
Computers & Electrical Engineering, pages –, 2017.

[53] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to estimate app energy consumption. In 18th
CMCN, Mobicom ’12, pages 317–328, New York, NY, USA, 2012. ACM.

[54] Jun Mizuno, Tatsuya Watanabe, Kazuya Ueki, Kazuyuki Amano, Eiji Takimoto, and Akira Maruoka. Discovery Science: Third
International Conference, DS 2000 Kyoto, Japan, December 4–6, 2000 Proceedings, chapter On-line Estimation of Hidden Markov
Model Parameters, pages 155–169. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[55] A. Narayanan, L. Yang, L. Chen, and L. Jinliang. Adaptive and scalable android malware detection through online learning. In
2016 International Joint Conference on Neural Networks (IJCNN), pages 2484–2491, July 2016.

[56] Nir Nissim, Robert Moskovitch, Oren BarAd, Lior Rokach, and Yuval Elovici. Aldroid: efficient update of android anti-virus
software using designated active learning methods. Knowledge and Information Systems, 49(3):795–833, 2016.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[58] Orlando R. E. Pereira and Joel J. P. C. Rodrigues. Survey and analysis of current mobile learning applications and technologies.
ACM Comput. Surv., 46(2):27:1–27:35, December 2013.

[59] L. R. Rabiner and B. H. Juang. An introduction to hidden markov models. IEEE ASSP Magazine, pages 4–15, January 1986.

[60] Lawrence Rabiner. First hand: The hidden markov model. IEEE Global History Network, pages 4–15, October 2013.

[61] Bahman Rashidi and Carol Fung. Disincentivizing malicious users in recdroid using bayesian game model. Journal of Internet
Services and Information Security (JISIS), 5(2):33–46, May 2015.

[62] Bahman Rashidi and Carol Fung. A game-theoretic model for defending against malicious users in recdroid. In Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium on (IM’15), Ottawa, Canada, pages 1339–1344, May 2015.

[63] Bahman Rashidi and Carol Fung. A survey of android security threats and defenses. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications (JoWUA), 6(3):3–35, September 2015.

202

[64] Bahman Rashidi, Carol Fung, and Tam Vu. Recdroid: A resource access permission control portal and recommendation service
for smartphone users. In Proceedings of the ACM MobiCom Workshop on Security and Privacy in Mobile Environments, SPME
’14, pages 13–18, New York, NY, USA, 2014. ACM.

[65] Bahman Rashidi, Carol Fung, and Tam Vu. Recdroid: A resource access permission control portal and recommendation service
for smartphone users. In Proc. of the ACM MobiCom Workshop on Security and Privacy in Mobile Environments (SPME ’14),
Maui, Hawaii, USA, pages 13–18. ACM, September 2014.

[66] Bahman Rashidi, Carol Fung, and Tam Vu. Dude, ask the experts!: Android resource access permission recommendation with
recdroid. In Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on, pages 296–304, May 2015.

[67] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems handbook. In Francesco Ricci, Lior
Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook, pages 1–35. Springer US, 2011.

[68] Wilson Rothman. Smart phone malware: The six worst offenders. http://www.nbcnews.com/tech/mobile/
smart-phone-malware-six-worst-offenders-f125248.

[69] M. Rychetsky. Algorithms and Architectures for Machine Learning Based on Regularized Neural Networks and Support Vector
Approaches. Shaker Verlag GmbH, Germany, December 2001.

[70] J. Sahs and L. Khan. A machine learning approach to android malware detection. In 2012 European Intelligence and Security
Informatics Conference, pages 141–147, Aug 2012.

[71] Florian Schaub, Rebecca Balebako, Adam L. Durity, and Lorrie Faith Cranor. A design space for effective privacy notices. In
Eleventh Symposium On Usable Privacy and Security (SOUPS 2015), pages 1–17, Ottawa, 2015. USENIX Association.

[72] Burr Settles. Active learning literature survey. Computer Sciences Technical Report, 1648, 2010.

[73] Burr Settles and Mark Craven. An analysis of active learning strategies for sequence labeling tasks. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, pages 1070–1079, Stroudsburg, PA, USA,
2008. Association for Computational Linguistics.

[74] Pooja Singh, Pankaj Tiwari, and Santosh Singh. Analysis of malicious behavior of android apps. Procedia Computer Science,
79:215 – 220, 2016. Proceedings of International Conference on Communication, Computing and Virtualization (ICCCV) 2016.

[75] The Statistics Portal Statista. Number of apps available in leading app stores as of june 2016.
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/.

[76] Guillermo Suarez-Tangil, Mauro Conti, Juan E. Tapiador, and Pedro Peris-Lopez. Computer Security - ESORICS 2014: 19th
European Symposium on Research in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I, chapter
Detecting Targeted Smartphone Malware with Behavior-Triggering Stochastic Models, pages 183–201. Springer International
Publishing, Cham, 2014.

[77] Steven Tadelis. Game theory: An introduction. Princeton University Press, January 6, 2013.

[78] A. J. Viterbi. A personal history of the viterbi algorithm. IEEE Signal Processing Magazine, 23(4):120–142, July 2006.

[79] Kevin Walsh and Emin Gün Sirer. Fighting peer-to-peer spam and decoys with object reputation. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Economics of Peer-to-peer Systems, P2PECON ’05, pages 138–143, Philadelphia, Pennsylvania, USA,
2005.

[80] Songyang Wu, Pan Wang, Xun Li, and Yong Zhang. Effective detection of android malware based on the usage of data flow
{APIs} and machine learning. Information and Software Technology, 75:17 – 25, 2016.

[81] Cui Xiaolin, Tan Xiaobin, Zahang Yong, and Xi Hongsheng. A markov game theory-based risk assessment model for network
information system. volume 3, pages 1057–1061.

[82] Liang Xie, Xinwen Zhang, Jean-Pierre Seifert, and Sencun Zhu. pbmds: A behavior-based malware detection system for cellphone
devices. In Proceedings of the Third ACM Conference on Wireless Network Security, WiSec ’10, pages 37–48, New York, NY,
USA, 2010. ACM.

[83] Rui Xu and II Wunsch, D. Survey of clustering algorithms. Neural Networks, IEEE Transactions on, 16(3):645–678, May 2005.

203

http://www.nbcnews.com/tech/mobile/smart-phone-malware-six-worst-offenders-f125248
http://www.nbcnews.com/tech/mobile/smart-phone-malware-six-worst-offenders-f125248

[84] Liu Yang, Nader Boushehrinejadmoradi, Pallab Roy, Vinod Ganapathy, and Liviu Iftode. Short paper: Enhancing users’ com-
prehension of android permissions. In Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM ’12, pages 21–26, New York, NY, USA, 2012. ACM.

[85] Xia You and Zhang Shiyong. A kind of network security behavior model based on game theory. pages 950–954.

[86] Jerzy Zabczyk. Mathematical control theory: an introduction. Springer Science & Business Media, 2009.

[87] Quanyan Zhu, Carol Fung, Raouf Boutaba, and Tamer Basar. A game-theoretical approach to incentive design in collaborative
intrusion detection networks. In Game Theory for Networks, 2009. GameNets’ 09. International Conference on, pages 384–392.
IEEE, 2009.

[88] Quanyan Zhu, Carol Fung, Raouf Boutaba, and Tamer Basar. Guidex: A game-theoretic incentive-based mechanism for intrusion
detection networks. Selected Areas in Communications, IEEE Journal on, 30(11):2220–2230, 2012.

204

VITA

Bahman Rashidi is currently pursuing the Ph.D. degree in computer science with the Vir-

ginia Commonwealth University. His research interests include distributed systems, mobile

systems and privacy issues in smartphone devices. He received the master’s degree in com-

puter engineering from the Iran University of Science and Technology (IUST), Tehran, Iran,

in 2014. He is the recipient of the Outstanding Early-Career Student Researcher Award and

Outstanding Research Paper Award from the VCU computer science department in 2015

and 2018 respectively.

205

	Smartphone User Privacy Preserving through Crowdsourcing
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Android Privacy Preserving
	Risk Analysis and Malware Detection
	Risk Assessment
	Malware Detection

	Bot User Detection
	Smartphone Permission Notification
	Application Recommendation System

	 Android Crowdsourcing-based Privacy Preserving
	Preliminary Crowdsourcing Model
	Problem Definition
	System Design
	Conclusion

	Bayesian Inference-based Android Resource Access Permission Recommendation with RecDroid
	Problem Definition
	Recommendation System Design
	Rank RecDroid Expert Users
	Response Aggregation through Weighted Voting
	Experiments
	Simulation Setup
	Expertise Rating and the Impact of Parameters
	Coverage and Accuracy of RecDroid Recommendation
	Conclusion

	Android Permission Recommendation Using Transitive Bayesian Inference Model
	Problem Definition
	Expert Users Seeking
	Assumptions and Notations
	The Users Expertise Rating Problem
	Users Connected to the Seed Expert
	Users Connected to a Regular User
	Multi-hop User Rating Propagation
	Multi-path User Rating Aggregation
	Recommendation Algorithm

	Implementation
	Permission Control User Interaction
	Android Framework Modification
	DroidNet recommendation server

	Experiments
	Simulation Setup
	Expertise Rating and Confidence level
	Quality of DroidNet Recommendations
	Usability Evaluation
	Data Analysis
	Survey Statistics

	Threats and Defenses
	 False Recommendations:
	Bot Users:
	Application Crashing and DroidNet's Overhead:
	Privacy Concerns:
	Newly Published Applications (Cold Start)
	Platform Dependency:

	Conclusion

	 Android Application Behavioural Risk Analysis
	XDroid: An Android permission control using Hidden Markov Models
	Problem Definition
	Background
	Hidden Markov Model
	Finding the unknown parameters
	Finding the optimal state sequence

	System Design
	Interaction Portal
	Risk assessment
	User Profiling
	Alert Customization

	Model
	Hidden Markov Model
	Compute Unknown Parameters
	Initialization set
	The forward procedure
	The backward procedure
	Finding the Optimal State Sequence
	Observations
	Extracting packages' names.
	App dispatcher.
	Recording apps' logs.
	Filtering.
	Parsing.
	Model Training and Testing

	Permission Risk Assessment
	Resource risk assessment
	User profiling
	Customized Alert generator

	Parameter updating through online learning
	Activity logger implementation
	App installation pop-up
	System call and permission enforcement
	XDroid server

	Experimental Results
	Experiment Setup
	The Running States of Malicious and Benign Apps
	Model accuracy and reliability
	Risk evaluation

	Conclusion

	Malware Detection Using Support Vector Machine and Active Learning
	Problem Definition
	Background
	Support Vector Machines
	Active Learning

	Support Vector Machine Model
	Data Collection
	Model Building
	Model Training
	Active Learning

	Evaluation
	Experiment Setup
	Training Dataset Visualization
	Model Accuracy and Reliability
	Model Stability Evaluation
	Active Learning Evaluation

	Conclusion and Future Work

	 Bot User Detection
	A Game-Theoretic Model for Defending Against Malicious Users in the Recommendation System
	Problem Definition
	Background
	Attack RecDroid Recommendation System
	Malicious User Detection
	Bayesian Games

	Game Theoretic Model
	Normal Form
	Extensive Form
	Bayesian Nash Equilibrium (BNE)
	Practical Implication of BNEs

	Discussion
	Conclusion

	Extended Game-Theoretic Model
	Problem Definition
	Malicious User Detection
	Extended Game-Theoretical Model
	Normal Form
	Extensive Form
	Bayesian Nash Equilibrium (BNE)
	Comparison Between the Two Detection Strategies
	Incentive Compatibility of RecDroid

	Discussion
	Conclusion

	BotTracer: Bot User Detection Using Clustering Method in RecDroid
	Problem Definition
	Background
	RecDroid Trust Computation and Malicious Users Filtering
	Attack RecDroid Recommendation System

	Model
	Malicious (bot) Users
	Feature Identification and Construction
	Similarity Calculation
	Clustering Method

	Experimental Results
	Simulation Setup
	Performance and Accuracy

	Conclusion

	 Permission Notification Model
	Permission Notification
	Problem Definition
	Introduction
	Model
	Factors
	Multi-Interface
	User Interface

	User Study
	Study setup
	Model Preference
	View Preference

	Discussion
	Consistency
	Action recommendation

	Conclusion

	 Similar Safe Applications Recommendation
	Similar Safe Applications
	Problem Definition
	DroidVisor: A Safe Application Recommendation System
	Background
	DroidVisor Design
	Evaluation
	Conclusion

	 References
	Vita

