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The objective of this investigation was to evaluate quantitat.ive 

electroencephalography (EEG) as a measure of CNS stimulation . The reproducibility 

and sensitivity of quantitative EEG was compared to neuroendocrine, mood , and 

psychomotor performance measures. 

The study was conducted in two parts . The first part investigated the inter- and 

intra-individual variability associated with a series of pharmacological response 

measures under baseline (no drug) conditions .  It was an open-label pilot study in  

which eight healthy male volunteers underwent a series of tests (EEG , visual 

continuous performance task (CPT) , a finger tapping task, and self-rated mood scales) 

repeated eight ti mes over a 1 2  hour period on three occasions, one week apart. The 

second part evaluated the sensitivity of quantitative EEG to dextroamphetamine (DA) 

compared to other response measures. It was a double-blind , placebo-controlled , 

four-period crossover study in eight healthy male volunteers . Subjects received 5 mg , 
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10 mg, or 20 mg DA or placebo orally, and underwent the same series of tests as 

well as blood collection for serum prolactin and DA determination , eight times over a 

1 2  hour period . A GC method allowing quantitation of 2ng/mL DA in serum was 

developed. 

The greatest between-day, within-day , and intrasubject variability was associated 

with quantitative EEG. Learning effects were observed for the psychometric tests, 

and first session effects were apparent for several of the tests including the EEG . 

EEG response to DA was observed only in the 3 subjects who had baseline alpha 

activity greater than 35 % .  There was a statistically significant decrease in serum 

prolactin levels after DA administration, with the largest decrease observed after the 5 

mg dose. Mood scales showed that 3 of 9 subjects experienced dysphoria after DA 

dosing. The effect on mood was generally greater as the dose increased. One subject 

was discontinued from the study because he experienced intense dysphoria after the 5 

mg dose. Doses could not be distinguished based on the results of the psychometric 

tests. Effects on mood , serum prolactin levels, and performance as measured by CPT 

and finger tapping were not correlated with the EEG changes observed . 

Pharmacokinetic evaluation showed that the rate of DA absorption appears to decrease 

as the dose increases. 

Quantitative EEG conducted under our study conditions and study population 

was not more sensitive for the assessment of CNS stimulation than the other response 

measures evaluated . The sensitivity may be improved by screening volunteers to 

select subjects with higher background alpha activity . 



CHAPTER 1 

Introduction 

Accurate and reproducible measures of drug effect on the central nervous 

system (CNS) are needed in order to study the pharmacodynamics of centrally-acting 

drugs. I Pharmacodynamics, or the relationship between drug concentration in the 

systemic circulation and pharmacologic effect, is important because it contributes to 

the interindividual variability observed in drug response. Determining the association 

between drug concentration and subsequent response is necessary for optimizing drug 

therapy . Studies of the pharmacodynamics of centrally-acting drugs have been limited 

primarily by the difficulty in obtaining quantitative measures of CNS response . 2  

Ideal ly,  a measure of drug effect used in pharmacodynamic studies should be 

quantitative, objective, and non-invasive. General ly ,  there should be a gradual , rather 

than an all-or-none, change in the response measure with changing drug 

concentration . The measure should be sensitive to small differences in drug 

concentration . The pharmacodynamic measure should be reproducible both within 

and between individuals .  It is important to be able to measure the response 

repeatedly in the same individual without changes occurring due to learning or 

tolerance. Lastly ,  the response measure should be meaningful ;  the measured response 

should relate to the therapeutic or toxic clinical effects of the drug. 2.3 



Various psychometric tests, ranging from self-rating scales of psychologic state 

to computerized performance tasks, have been used to assess the pharmacodynamics 

of centrally-acting drugs.2.4•s Psychometric tests are noninvasive and the response 

can be quantitated. However, these tests are not ideal pharmacodynamic measures. 

Although some tests can measure certain aspects of behavior as a function of drug 

response, they are more or less subjective and may not be reproducible. Many 

psychometric tests are not suitable for repeated measures, since learning and 

motivational factors influence the results of subsequent tests. These limitations may 

contribute to insensitivity of the measures to small changes in serum drug 

concentrations. The relationship of performance on psychometric tests to the "real 

life" behavioral and psychologic effects of drugs are also difficult to define. 

Therefore, psychometric tests are not entirely acceptable as eNS response measures. 

More recently ,  quantitative EEG has been employed to measure eNS 

pharmacodynamics. 2.6 Many studies using EEG to profile or classify psychoactive 

drugs have been conducted , but few studies have attempted to correlate EEG 

parameters with concurrently measured drug concentrations and response to 

psychometric tests. Pharmacodynamic modeling of the EEG effects of eNS 

depressants such as anesthetic agents7.8·9. IO and benzodiazepinesl l . 12 . 1 3 . 1 4  has 

2 

been performed successfully. Quantitative EEG is objective, noninvasive, and derived 

parameters change gradually with changes in plasma drug concentration. Repeated or 

continuous measures of the EEG can be made, although a familiarization session 

before the study is advisable to avoid a first-session effect due to anxiety. IS 

Learning effects on the EEG have not been reported.2 Recording of the EEG also 



requires less subject cooperation than completion of psychometric tests. The 

reproducibility and sensitivity of quantitative EEG parameters however, requires 

further evaluation. The behavioral or psychologic meaning of changes in EEG 

parameters is also unclear. If these issues can be addressed , quantitative EEG may 

become a preferred measure of CNS pharmacodynamic response. 

3 

This study was designed to evaluate quantitative EEG as a pharmacodynamic 

tool to measure CNS stimulation. Dextroamphetamine was chosen as the model 

compound for this evaluation. Dextroamphetamine is a sympathomimetic amine 

known to have potent CNS stimulant effects. The d isomer of amphetamine is 3 to 4 

times more potent in exciting the CNS than the I isomer. 16 Single doses have been 

administered safely to normal volunteers. Its concentration in the systemic circulation 

can be measured adequately by gas chromatographic assay methods and it does not 

have active metabolites that play a clinically significant role after single doses. 17 

The renal excretion of dextroamphetamine is dependent on urinary pH and volume, so 

acidifying the urine will result in constantly enhanced excretion. When urine pH is 

maintained between 5 and 5.5, the elimination half-life of dextroamphetamine is 

approximately 7 hours. I S  Dextroamphetamine has been reported to decrease delta 

activity and increase alpha and beta activity on the EEG . 19.20 Mood changes after 

dextroamphetamine have been measured using a variety of rating 

scales .2 1 .22.23.24.25 It also produces measurable effects on performance 

tasks .26.27.2s.29.30 Dextroamphetamine affects the neurotransmitters dopamine, 

norepinephrine, and serotonin. 3 1  Changes in these neurotransmitter systems result in 

changes in the release of hormones such as prolactin. The prolactin release after 



dextroamphetamine administration could also be used in this study as a 

pharmacodynamic response measure. Based on these characteristics, 

dextroamphetamine was chosen as a model compound to test the sensitivity of 

quantitative EEG as a pharmacodynamic measure of eNS stimulation. 

1 . 1  Objectives 

4 

These studies were designed to test the following hypotheses: 1 )  quantitative 

EEG is a sensitive and reproducible measure of the eNS 's response to 

sympathomimetic drugs as compared to more widely used methods such as 

psychometric testing, subjective rating scales, or neuroendocrine tests and 2) changes 

in the EEG after sympathomimetic drug administration are related to the behavioral , 

psychological and neuroendocrine effects observed as well as the plasma concentration 

of the drug. 

Two studies were conducted. The purpose of the first study was to investigate 

the inter- and intra-individual variability associated with a series of potential eNS 

pharmacodynamic response measures, including quantitative EEG , under baseline (no 

drug) conditions.  Results from this study were used to design a study of quantitative 

EEG as a pharmacodynamic measure for eNS stimulation . The second study was 

designed to examine the relationship between EEG changes after administration of 

dextroamphetamine and 1) performance on automated psychometric tests, 2) serum 

prolactin levels, 3) subjective response as assessed by self-rated mood scales, and 4) 

serum concentration of dextroamphetamine. The sensitivity of EEG parameters to 

dextroamphetamine concentration in serum was compared with that of more subjective 

measures. 



1 . 2 Rationale 

It is necessary to understand the pharmacodynamic and pharmacokinetic factors 

influencing the response to a drug to optimize drug therapy for the individual patient 

and to support efficient and rational development of new drugs. 32 To accomplish 
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this task, quantitative, sensitive, accurate, and reproducible measures of drug effect 

are needed. Identification of a suitable measure of the eNS 's  response to drugs has 

proven to be particularly difficult. EEG has been used to qualitatively describe the 

effects of drugs on the eNS since its development by Hans Berger in 1929.33 With 

the advent of the Fast Fourier transform and advanced digital computing, EEG has 

become a quantitative as well as a qualitative descriptor of brain electrical activity . 

The sensitivity and reproducibility of the EEG as a pharmacodynamic measure 

requires further evaluation. In addition, the behavioral and psychological meaning of 

drug-induced EEG changes remains unclear . These studies were designed to evaluate 

the sensitivity and reproducibility of EEG as a response measure compared to 

psychometric tests that are more often used , and to provide a better understanding of 

the relationship of the EEG to the clinical effects of the drug. A more sensitive, 

reproducible measure of eNS response is necessary to evaluate the effects of the 

aging process and various disease states on the pharmacodynamics of centrally-acting 

drugs. In addition , an improved eNS response measure for sympathomimetic drugs 

is needed to evaluate the eNS-stimulating properties of drugs such as 

phenylpropanolamine, where the degree of eNS stimulation and its potential clinical 

significance in man is controversial .34  



CHAPTER 2 

Literature Review 

2.1 Quantitative Electroencephalography 

EEG is the recording of changes in the electrical potential of various regions of 

the brain as measured by electrodes placed on the scalp. These fluctuating electrical 

potentials or brain waves can be characterized by their voltage or amplitude, and 

frequency. Brain wave patterns vary depending on the region of the brain being 

measured , the level of consciousness of the subject, and the age of the subject. EEG 

is used to record the spontaneous background activity of the brain or the activity 

evoked by external sensory stimulation.  

Attempts to quantitate the patterns observed in  the EEG began with the earliest 

EEG recordings. 35 The EEG tracing shows fairly irregular patterns, and cannot 

easily be described by explicit mathematical relationships. Rather, it is characterized 

in  statistical terms, by probability distributions and averages . 36 As advances in  

computing technology have developed , a variety of techniques have become available 

for analyzing EEG data quantitatively .  Some of these include frequency or spectral 

analysis ,  bispectral analysis, topographic mapping,  compressed spectral arrays,  and 

significance probability mapping.35.37 EEG signals are processed by Fast Fourier 

transformation , aperiodic analysis, wavelet analysis, and other techniques. 38 EEG 

6 
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measurements can be described by various scores (dependent variables) in various 

domains (independent variables). Domains include the time domain (score versus 

time), the frequency domain (score versus frequency) and the spatial domain (score 

versus electrode location) .  A wide range of  scores have been used, including 

intensity or amplitude, power or the square of the amplitude, coherence, z-scores, 

relative power, peak frequency, frequency ratios, functions from discriminant 

analysis, slope descriptors (activity, mobility and complexity) , values from period and 

zero-crossing analysis, and parameters from autoregressive modeling or spectral 

parameter analysis. Quantitative analysis of the EEG results in a massive amount of 

information and some sort of data reduction is usually necessary. 36 Various statistical 

descriptors have been employed for this purpose. A number of computerized systems 

for quantitative EEG analysis are now commercially available. 

Many potential problems in the techniques and the interpretation of quantitative 

EEG have been identified . The functional significance of changes in quantitative EEG 

parameters is largely unknown . The role of quantitative EEG in diagnosing 

conditions affecting the brain and monitoring response to treatment is 

controversial . 39•35 A considerable amount of research employing quantitative EEG 

techniques is currently being conducted , but the clinical utility of quantitative EEG 

remains to be confirmed. Despite the current limitations of quantitative EEG 

technology and our incomplete understanding of the meaning of quantitative EEG 

data, it is still one of the only ways to continuously and noninvasively examine the 

functioning brain with fraction-of-a-second temporal resolution.4o Significant 

technological developments, such as computerized tomography and magnetic 



8 

resonance imaging provide superior structural resolution, but do not evaluate dynamic 

brain activity . Positron emission tomography and single-photon emission 

computerized tomography examine brain function by tracking blood flow and local 

cerebral metabolism, but lack the temporal resolution of EEG. Interest in the use of 

quantitative EEG to understand brain physiology and behavior, to diagnose brain 

dysfunction and to monitor the effects of therapeutic interventions continues. 

2 . 1 . 1  Use of Quantitative EEG in Drug Research 

Evidence of eNS activity for many compounds ranging from aspirin to 

hormones has been provided by EEG studies.4 1  The EEG has been used to examine 

the effects of drugs on the central nervous system since Hans Berger' s  descriptions of 

EEG changes following cocaine, scopolamine, morphine and barbiturate 

administration in the 1 930s .33 It was not until the 1 950s however, that systematic 

studies of the effects of medications on the EEG were conducted by Bente, Iti l ,  Fink 

and others. 42 As computer technology and its applications in EEG analysis grew, 

investigators in the 1 960s began using quantitative EEG patterns in an attempt to 

classify psychoactive compounds and predict responders to therapy. 33.41 Early studies 

relating EEG changes after drug administration to effects on behavior were not 

entirely successful, and apparent dissociations between the EEG and behavior resulted 

in waning interest in the utility of EEG in psychopharmacology from the mid 1 960s 

until the mid 1 970s. In the 1 970s, renewed interest in EEG and drug research 

developed . 33 S ince that time, technology for quantitating EEG has also grown 

tremendously.  Use of quantitative techniques to examine drug effects has proven 



9 

much more useful than visual inspection of EEG records because drugs induce 

changes in the EEG following acute administration of therapeutic doses that are within 

normal variability . 41  Controlled experiments and mathematical signal analysis are 

needed to identify drug-induced EEG changes. 

Quantitative EEG has been employed in a wide variety of applications in clinical 

psychopharmacology including classification of psychoactive drugs42,43, prediction 

and investigation of CNS activity early in a drug ' s  development',45,46, 

examination of the CNS toxicity of drugs whose primary action is outside the 

CNS47.48.49, comparison of the bioavailability of various dosage forms of 

psychoactive drugs42.50.5 1 .52, and investigation of the pharmacodynamics of 

centrally-acting drugs. Quantitative EEG has not proved to be as useful to study drug 

abuse or to predict responders to drug treatment.41  The use of quantitative EEG to 

evaluate pharmacodynamic relationships will be reviewed in more detail below. 

Pharmacodynamic studies examine the relationship between drug concentration 

in the systemic circulation and pharmacologic effect. Pharmacodynamic studies 

employing EEG as a measure of pharmacologic effect have investigated the time 

course , peak effect, and duration of CNS activity for many psychoactive drugs.41 

Because the psychological and behavioral meaning of EEG changes following drug 

administration is not well defined , the EEG is considered to be a surrogate measure of 

drug effect. 53,54 The clinical relevancy of EEG changes has not been established. 

Quantitative EEG has been used most successfully to establish pharmacokinetic­

pharmacodynamic relationships for two groups of drugs--anesthetic agents and the 

benzodiazepines. 
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Anesthetic drugs cause profound effects on the EEG as subjects progress from 

consciousness to unconsciousness. 54 By quantitating these EEG effects and applying 

pharmacodynamic modelling procedures, much has been learned about the clinical 

pharmacology of anesthetic agents. Quantitative EEG techniques have been used to 

investigate intravenous anesthetics (thiopental , etomidate, methohexital , and propofol) ,  

opiates (fentanyl , alfentanil , sufentanil ,  and morphine) , dissociative anesthetics 

(ketamine) and benzodiazepines (midazolam) . 54  Pharmacodynamic studies of 

thiopental using the spectral edge of the EEG as a response measure have examined 

the rate of equilibration of thiopental between the blood and the sites of action , 

individual eNS sensitivity to thiopental , and whether acute tolerance to the drug 

develops during repeated infusions. 8.7 Studies of the EEG effects of fentanyl and 

alfentanil have found that the differences in the time course of the clinical effects of 

these opioids can be explained by differences in the rate of equilibration between 

effect site and plasma concentrations. 55 Using the median frequency of the EEG 

power spectrum as a response measure, investigators have also employed 

pharmacodynamic modelling to examine differences in the eNS activity of the 

enantiomers of ketamine.9 Parameters from aperiodic analysis of the EEG were found 

to be suitable for measuring the pharmacodynamic effects of midazolam during 

anesthesia, I3 .56 and EEG effects have been used to compare the eNS potencies of 

benzodiazepines . 14 Pharmacodynamic modelling of EEG effects has also been used to 

examine the effect of age on the pharmacodynamics of thiopental .57.58 The use of 

quantitative EEG in pharmacodynamic investigations has been most successful with 

the anesthetic agents, perhaps due to the alterations in consciousness and associated 
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substantial EEG changes produced by these drugs . There is also some evidence that 

the EEG changes observed with anesthetic agents are related to the depth of anesthesia 

achieved ,8  so the EEG changes may also be a clinically meaningful response measure. 

Pharmacodynamic studies using quantitative EEG have also been productive for 

the benzodiazepines when the drugs are given in doses and by routes of administration 

that do not result in loss of consciousness . S9 EEG changes have been used to study 

tolerance to a1prazolam in healthy volunteers , 1 2  the time course of eNS activity after 

loprazolam administration in the elderly,60 and the circadian variation in the eNS 

effects of midazolam .61  Measures that have been used to describe benzodiazepine 

effects on the EEG include percent alpha activity,61 total amplitude in the 1 3  - 30 Hz 

range, I I  and spectral edge. 12 Quantitative EEG is an objective measure of the effects 

of benzodiazepines , and EEG changes may correspond to changes in sedation , mood , 

psychomotor performance, and memory. S9 

Much work still remains in realizing the potential of EEG in drug research.  

Investigations in  drug classification with EEG is  continuing .62.63 Quantitative EEG 

is an objective, noninvasive, continuous response measure which shows promise for 

understanding the pharmacodynamics of eNS-active drugs . Quantitative EEG has 

been used most successfully to study the pharmacodynamics of anesthetics and 

benzodiazepines , but its utility for other drugs requires further work. The 

relationship between EEG changes and important aspects of performance, mood, and 

cognition is unclear. The utility of EEG compared to other eNS response measures 

also requires further investigation . 



2 . 1 .2 Methodology in Pharmaco-EEG Studies 

A number of methodological issues are important in the studies incorporating 

quantitative EEG as a response measure. They have been raised by investigators in 

pharmaco-EEG and quantitative EEG more generally . The quantitative EEG 

parameters obtained at the end of a study lie at the end of a long chain of 

physiological , technical , and mathematical steps that are all susceptible to error and 

artifact. Careful control of experimental conditions in pharmaco-EEG studies is 

essential . This review will address subject screening, the testing environment, 

familiarization sessions, control of vigilance, artifact minimization , choice of 

reference electrode, number of EEG channels recorded , length of data sample, 

stimulation modalities, definition of classic frequency bands, and choice of EEG­

derived parameters for measuring response. 

Careful subject screening to ensure a homogenous subject group is essential. 

1 2  

Demographic, physical , and psychological attributes can influence the EEG and the 

response to psychoactive drugs. The EEG depends on factors other than the drug 

under study, including age, gender, and medical history.4 1  Smoking and smoking 

withdrawal can also alter the EEG. 41 Correlations between quantitative EEG and the 

menstrual cycle have been described . 41 The EEG response to drugs is influenced by 

the emotional status and neuropsychological traits of the subject, and the baseline 

EEG pattern prior to drug administration.41 .64 Some studies require screening EEGs 

to contain a certain level of alpha activity for example, for the subject to be eligible 

for entry into the study.65.66 Drug effects on mood, performance, and the EEG 

have been shown to depend on psychological selection criteria. 67 Some investigators 
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recommend that subjects be interviewed before beginning each study period 

concerning the quality and duration of their sleep the night before dosing . 67 If the 

sleep is more than one hour under the average length of sleep for the subject, the 

investigation is delayed by one week. Guidelines for conducting Pharmaco-EEG 

studies in man suggested by an expert group organized at the Federal Health Office of 

the Institute for Drugs (Berlin) state that subjects should be as homogeneous as 

possible with respect to demographic characteristics, medical status, sleep history, use 

of tobacco, personality characteristics (such as emotional lability, neuroticism , and 

extroversion/introversion) , and reaction to stress . 68 If these variables cannot be 

controlled , they should as least be documented . 

Careful control of the testing environment is critical to the success of pharmaco­

EEG studies. The setting in which experiments are conducted and procedures used to 

collect pharmacodynamic data can affect the EEG .41  EEG changes can occur with 

changes in blood pressure, heart rate, sleep habits, and blood sugar.41  Stressful 

testing situations can trigger neurohormonal changes that can affect the EEG .41  

Unsystematic changes in the testing environment are particularly problematic and can 

affect the data enough to alter the results of statistical analysis.41  Factors important to 

standardize between treatment periods include time of day for the recording , quality 

of the previous night ' s  sleep, and type and scheduling of meals.41 Subjects must be 

isolated from sensory stimulation and intermittent disturbances during EEG 

recordings.41  Some studies have been carried out in sound-attenuated electrically­

shielded room with the recording equipment isolated from the subject. 69 Subjects 

have worn headphones to exclude external noise . 70 In general , experiments should 
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be designed to avoid spontaneous fluctuations in vigilance. Wong recommended that 

quantitative EEG measurements be obtained in a quiet, dark environment. 71 The 

subject should be instructed to remain relaxed and alert. This setting fosters 

decreased vigilance, and may be inappropriate for studying sedative drugs or 

potentially useful for studying stimulants.41 The guidelines suggested by the expert 

group of the Federal Health Office of the Institute for Drugs state that factors that 

should be controlled include room temperature, humidity , sound level and light 

intensity, intermittent disturbing events , organization of the measurement setting, 

position of the subject, amount and nature of sensory stimulation , degree of 

interaction with staff, adaptation to the situation, level of vigilance, time of recording, 

and ti ming and type of meals. 68 

Familiarization sessions are necessary to acclimate subjects to the testing 

environment and the study procedures prior to administering study treatments. Irwin 

and Fink report that less EEG changes and a more stable level of alertness occurred 

during the first session in pharmaco-EEG studies than on subsequent days. IS They 

postulate that this increased alertness is due to unfamiliarity with the testing situation . 

Herrmann notes that an single blind adaptation day is necessary because subjects are 

often restless and anxious on the first day in a study.  67 

Vigilance is a term used to describe the behavior of watching for and 

responding to irregular critical signals .72 It encompasses the concepts of attention , 

attentiveness, and arousal . Vigilance is the primary factor affecting the resting 

EEG.41 Alpha amplitude is attenuated when subjects reported a subjective feeling of 

decreased vigilance.49 Some studies have included both a vigilance-controlled and a 



resting EEG recording at each measurement time.73 During the vigilance-controlled 

EEG the technician tries to keep the subject alert by arousing the subject when signs 

of drowsiness appear on the EEG. Pooling data across subjects whose alert EEG 

patterns are intrinsically different can result in loss of information .70 Subjects may 

also be requested to perform a simple auditory continuous performance task to 

stabilize the level of vigilance. 74 Another method proposed to aid in the 

maintenance of vigilance is to have subjects continuously press a button.75 If they 

release the button , a tone sounds to arouse them. Changes in vigilance are easier to 

detect in subjects with high background alpha activity.74 Some investigators have 

given snacks every few hours rather than heavy meals at usual meal times during 

pharmaco-EEG studies to reduce the effects of heavy meals on vigilance.73 

15  

I t  is important to accurately select artifact-free epochs for quantitative EEG 

analysis . 76 Artifacts can occur due to eye movement, muscle activity ,  respiratory 

motion, glossal and pharyngeal movement, sweating, poor electrode contact, and 

ambient electrical fields. n Some artifacts unique to quantitative EEG also occur, 

such as leakage and smearing. 35 Leakage results in increased frequency values across 

the whole spectrum and occurs when data with a nonzero initial and final value is 

used for a frequency transformation. Smearing is the artifactual broadening of peaks 

in the frequency domain resulting from the use of certain filters designed to reduce 

leakage. Detection of artifacts is not an easy task. Automated artifact rejection may 

be helpful, but the detection rates are not sufficiently high at this point to replace a 

detailed review of the EEG record for artifacts by the electroencephalographer. 35.78 

Artifact monitoring electrodes can be used to measure vertical and horizontal eye 
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movements to aid i n  the artifact rejection process. Artifacts are most prominent in 

the delta and theta frequency ranges.17 Editing of the EEG record to remove artifacts 

should be conducted by an individual blinded to the treatment that the subject received 

to ensure that marking of artifacts is not drug-specific.67 

Choice of reference electrodes also presents a problem . 3S Many different 

reference sites have been suggested, including linked clavicles, linked mandibles, 

chin ,  linked ears, nose, vertex , an average of an electrodes closest neighboring 

electrodes, and an average of all other electrodes. Any of these reference sites can 

become contaminated with EEG or other electrical activity, which obscures the 

interpretation of the EEG . There is no convincing evidence that one referencing 

scheme is preferable to another for quantitative EEG.69 In pharmaco-EEG, where the 

methodology is highly standardized , the choice of reference may be unimportant as 

long as the reference is not active.69 Most investigators use linked ears as the 

reference point for quantitative EEG studies . 17  Linked ears is an effective reference 

as long as the potentials are relatively low in amplitude and uncorrelated .79 If one 

or both of the ears is very active, the results can be very misleading. Unlike 

traditional EEG , quantitative EEG techniques often allow for the recording of several 

reference sites simultaneously .  Different references can then be examined during data 

analysis. 

The number of EEG channels recorded during pharmaco-EEG studies is also 

important. Different numbers of electrodes are applied to the scalp for quantitative 

EEG measurements by different investigators. Typically, 1 6  to 32 electrodes are 

used. Investigators have used as few as 2 and as many as 128.  There is no 
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consensus on the number or placement o f  electrodes for quantitative EEG beyond the 

traditional 10-20 system of 2 1  electrodes. 35 Spatial distribution of EEG effects may 

be important for assessing the effects of drugs, so a sufficient number of electrodes to 

permit examination of spatial distributions are necessary,'41 The number of electrodes 

is limited by the expense of amplification and filtering equipment, computer speed and 

storage capacity, and difficulty of attaching large numbers of electrodes quickly and 

accurately . TI 

The epoch length and duration of each recording also requires consideration . 

Quantitative EEG data is usually acquired and processed in very short segments of 

time termed epochs or frames. The typical length is several seconds, but can be as 

long as 30 seconds. Usually, successive epochs are acquired and analyzed , so that 

the entire recording last for several minutes. The epoch length needs to be short 

enough to allow for rejection of all artifact contaminated epochs without jeopardizing 

the entire recording, but long enough so that the frequency analysis can accurately 

determine the lowest frequency components. 35 The number of epochs recorded is also 

important. Stability or ergodicity of the EEG refers to changes in the EEG (such as 

change of state or vigiJance) during the recording or between recording sessions. The 

recording should be short enough to minimize changes in state during the recording, 

but long enough to gather sufficient artifact-free epochs for further analysis.35 BEG 

activity must be sampled over a period that is sufficiently long to insure that it is 

representative of the state of the subject.TI Herrmann reports that a 5 minute 

recording was long enough to ensure that means were not overly dependent on 

random variation and short enough to minimize the effects of fluctuating vigilance.67 



A variety of stimulation modalities have been incorporated in pharmaco-EEG 

studies. Under conditions of no stimulation, spontaneous EEG is measured during 

some level of alertness such as alert with eyes-open or eyes-closed, drowsy, or in 

other sleep states. In general , the level of vigilance maintained during spontaneous 

EEG recordings must be carefuUy controlled. The improved control of situational 

variability during sensory stimulation may result in improved sensitivity of evoked 

phenomena compared to quantitation of spontaneous EEG .41 
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The definition of the classic frequency bands is also an important consideration 

in quantitative EEG studies. The classic EEG frequency bands are often defined as 0-

4 Hz for delta, 5-7 Hz for theta, 8- 1 3  Hz for alpha, and 1 4  Hz or greater for beta.35 

In quantitative techniques however, different divisions between the bands are 

sometimes employed. For example, frequency ranges may be defined to allow for 

even breaks at 4 Hz intervals (4 , 8, and 1 2  Hz) . Band definitions are also chosen 

based on clinical experience or statistical methods such as factor analysis .77 There is 

quite a bit of variability between manufacturers and investigators in the definitions of 

the frequency bands, so it is important to know the delineation used in a particular 

investigation when evaluating results . 35 

A wide variety of EEG-derived parameters have been used as response variables 

in pharmaco-EEG studies. Several response variables from spectral analysis have be 

used for comparing treatments.77 Power, which is the square of the amplitude, 

emphasizes very active areas, while amplitudes provide good resolution of mid- and 

low-range activity . Relative power or amplitude (which is calculated by dividing the 

total power or amplitude in the given frequency band by the total power or amplitude 
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across all frequency bands) controls for absolute differences in magnitude between the 

measures, thus facilitating a direct qualitative comparison between subjects. Spectral 

edge, or the frequency below which 95 % of the total EEG power is located, have 

been used to quantitate the effects of benzodiazepines and anesthetics. Several 

parameters from aperiodic analysis have also been used for this purpose. 54 Irwin65 

proposed a measure called the spectral difference index which is a measure of the 

difference between two relative power spectra. This index was found to be a 

sensitive EEG discriminator between drug and placebo sessions for a variety of drugs. 

A similar parameter, the spectral dynamics measure has also been proposed. 80 

Response variables may differ in their sensitivities among subjects, and results of 

studies may differ depending on the response measure under consideration .65 For 

general anesthetics for example, different response measures have been useful for 

each class of drugs. 54 There is no ideal measure of drug response based on the EEG 

for all drugs. Measures should show within-individual baseline consistency and a 

minimal response to placebo. Appropriate measures for different classes of drugs and 

the clinical relevance of changes in these measures requires further investigation . 

Obtaining consistent, accurate results in pharmaco-EEG studies depends in large 

part on carefully controlling the conditions under which the investigation is conducted. 

Some of the factors that must be considered in designing, conducting and interpreting 

pharmaco-EEG studies are discussed above. In the next section , statistical issues 

important for interpreting the results in these studies are reviewed. 
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2 . 1 . 3 Statistical Problems in EEG Analysis 

Statistical difficulties arise in the analysis of pharmaco-EEG studies primarily 

due to the multiplicity of observations: A large number of EEG parameters are 

derived from at least several electrode sites at several points in time. 81 The studies 

are usually crossover in design , with placebo and several drugs or dose levels of a 

drug administered. Other measures such as psychometric tests and mood scales may 

also be coHected. Because of the sizable amount of data and multiple inferential 

statistical statements, classical methods of confmnatory statistics used in clinical trials 

cannot be applied directly. The large number of measurements inflates the likelihood 

of finding chance differences from placebo (alpha error) . In addition , data in EEG 

studies is usually gathered from a small number of subjects. Because of the small 

number of subjects, statistical generalizations are seldom possible. 

Several approaches have been proposed to address the issue of multiplicity of 

observations. To apply a confirmatory statistical analysis ,  a few response measures 

believed to have the must important clinical significance could be chosen for 

hypothesis testing prior to initiating the study. The p-value must then corrected for 

the multiple comparisons by methods such as the Bonferroni correction . 82 Another 

strategy is to reduce the total number of variables for hypothesis testing by pooling 

variables. This could involve summing across groups of electrodes or frequency 

bands, or performing techniques such as a principal components analysis. 82 Again, 

correction of the p-value for the number of comparisons being made is necessary . 

Yet another strategy, although impractical, would be to use a very large number of 

subjects in the study. 
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In many pharmaco-EEG studies, confirmatory statistical analyses are not 

feasible. It may not be possible to pre-select effect measures to examine before 

conducting the study, especially for new drugs. It may also be of interest to examine 

a large number of variables to generate new hypotheses. In these cases , statistical 

analysis is treated as exploratory in nature. Whenever large numbers of post-hoc 

analyses are performed in exploratory data analysis, replication of the results in 

comparable prospective controlled studies is necessary. When this type of validation , 

which is the most convincing, is not feasible, alternate approaches can be considered , 

several statistical validation schemes could be used . 78 These strategies involve 

reserving a portion of the data for testing the results obtained with the rest of the 

data. 

As an alternative to confirmatory and exploratory analysis, Abt has proposed a 

concept termed "Descriptive Data Analysis" for topographical EEG data. 83,&4 In 

this approach , expected differences between the treatments based on previously 

reported studies and patterns apparent from examining the data are evaluated 

statistically without adjustment of the level of significance. The results of these 

analyses are used to make descriptive inferential statements about the data, but not to 

reject null hypotheses. This approach takes into account the idea that greater 

confidence can be placed in statistical results if they have biological relevance (for 

example, if results are related to dose level , are consistent across subjects, or reflect 

the behavioral effects or pharmacokinetics of the drug) . 

Several solutions have been applied to the problem of multiplicity of 

observations in pharmaco-EEG studies. None of these approaches is entirely suitable 



however, and more work is necessary to address this problem . 

2.2 Dextroamphetamine 

Dextroamphetamine, a sympathomimetic amine with CNS stimulant properties, 

was chosen as a model compound to study the sensitivity of quantitative EEG as a 

pharmacodynamic measure. Amphetamines have been used clinically since 1935 to 

treat conditions such as obesity , narcolepsy, hypotension, and attention deficit 
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disorder. Currently, dextroamphetamine preparations are subject to control under the 

Federal Controlled Substances Act of 1 970 as Schedule II drugs. Characteristics of 

dextroamphetamine and its effects on the central and peripheral nervous system are 

described in the following sections. 

2.2.1 Chemical Slructure 

Dexlroamphetamine is the d isomer of amphetamine ({3-phenylisopropylamine) . 

The chemical structure is shown in Figure 2.1. Dextroamphetamine is a basic drug, 

with a pKa of 9.90.  Amphetamine was first synthesized in 1 887 . 17 

Figure 2. 1 The chemical structure of amphetamine 
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2 .2 .2  Pharmacology8S 

Amphetamine is an indirectly acting sympathomimetic drug with potent eNS 

stimulant properties. The d isomer, dextroamphetamine, is three to four times more 

potent as a eNS stimulant than the I isomer. The I isomer is slightly more potent in 

its effects on the cardiovascular system. Amphetamines affect the eNS , the 

cardiovascular system and smooth muscle. 

In the eNS , amphetamines stimulate the medullary respiratory center, the 

cerebral cortex and possibly the reticular activating system. The resulting 

psychological effects depend on the dose and the state and personality of the person 

taldng it. Amphetamines can cause changes in mood (Section 2 . 2 . 6) and in 

performance on various mental and motor tasks (Section 2 . 2 . 7) .  Usage for long 

periods of time or at high doses is usually followed by fatigue and depression . 

Amphetamines have also been reported to decrease appetite perhaps through action on 

the lateral hypothalamic feeding center. 

Amphetamine's action on the eNS appears to result from the release of biogenic 

amines from their storage sites in the nerve terminals of neurons in the eNS . Release 

of norepinephrine appears to be related to increased alertness, appetite suppression , 

and some aspects of motor stimulation. At higher doses, dopamine release appears to 

be responsible for other aspects of altered motor activity and stereotyped behavior. 

At even higher doses, release of 5-hydroxytryptamine (serotonin) may result in 

disturbances of perception. In addition , amphetamine is believed to exercise a direct 

agonistic effect on serotonin receptors. Release of these various neurotransmitters is 

associated with changes in the levels of peptide hormones of the anterior pituitary . 
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These changes are discussed in Section 2 .2 .5 .  

The effects of  amphetamine on  the cardiovascular system result from a 

combination of release of norepinephrine from peripheral nerve terminals and direct 

action on peripheral ex and f3 receptors. Administration of amphetamine results in 

increased systolic and diastolic blood pressure. Heart rate is increased or may be 

slowed by compensatory reflex.ive mechanisms. Effects on smooth muscle, as in the 

gastrointestinal tract, is variable, depending on the state of enteric activity. If activity 

is high , amphetamine may cause relaxation with slowing of movement of intestinal 

contents. On the other hand , if the gastrointestinal system is already relaxed, activity 

may be increased . 

Because amphetamines act on multiple receptors and neurotransmitters in the 

peripheral and central nervous systems, measures of response associated with several 

body systems can be used to assess amphetamine pharmacodynamics. Although the 

mechanisms are not well understood, some measures of CNS stimulation , such as 

mood scales and psychomotor performance tasks are more directly related to 

pharmacological action on specific neurotransmitters or areas of the CNS than others. 

For measures based on changes in the EEG after administration of amphetamine, the 

relationships are even less clear. Changes in the EEG following amphetamine 

administration are discussed in Section 2 .2 .4 .  

2 .2 .3  Pharmacoldnetics 

The pharmacoldnetics of amphetamine have been studied in normal and drug­

dependent volunteers since the 1 950s. The pharmacoldnetic literature for 



amphetamine was recently reviewed by Busto and colleagues . 86 A summary of 

pharmacokinetic parameters obtained from studies in normal volunteers is shown in 

Table 2 . 1 .  Data on the absorption, distribution and excretion of amphetamine is  

presented below. 
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Absorption. Information about the rate and extent of amphetamine absorption 

from the gastrointestinal tract is limited. Beckett and Rowland8? analyzed urinary 

excretion data by the Wagner-Nelson Method and determined that the absorption of 

amphetamine appears to be complete within 2 .5  hours of an oral dose of 10 mg d­

amphetamine ( I  subject) or 15 mg I-amphetamine (3 subjects) . Angrist and 

colleagues88 report that maximum concentrations following 0.25 mg/kg and 0.5 

mg/kg of amphetamine given orally occurred 2-3 and 3-4 hours after administration 

respectively. At I hr, the average plasma levels were lower for the high dose than 

for the low dose. The authors hypothesize that differences between the brands of 

tablets used to prepare the doses in the high and low dose study may account for this 

observation. Wan and colleagues report that concurrent administration of enteric­

coated ammonium chloride or sodium bicarbonate orally did not appear to affect the 

rate or extent of amphetamine absorption . 18 The presence of food does not appear to 

alter the absorption of amphetamine. 88 

Distribution . Protein binding of racemic ( ± ) ,  d- (+) ,  and /- (-) amphetamine 

was determined using an ultrafiltrate technique at plasma concentrations of 1 0  to 1 00  

ng/mL. Plasma protein binding was similar for the two isomers, about 1 6 % Y  

Cerebrospinal fluid concentrations are about 80 % of that observed i n  plasma, which 

reflects the extent of protein binding .89 The apparent volume of distribution after 



Table 2. 1 Summary of Amphetamine Pharmacokinetic Studies in Normal Volunteers 

Reference Isomer Dose/Route Urine pH C ... 
(ng/mL) 

Wan. + /- 1 0  mg PO alkalinized 

Matin & 
Azarnoff' 8 

+ /- 10 mg PO acidified 

+ 10 mg PO alkalinized 

- 10 mg PO alka! inized 

Beckett & + 1 5  mg PO acidified 
Rowland" 

15 mg PO acidified -

+ 10 mg PO acidified 

+ 1 3  mg IV acidi fied 

Davis. + /- 5 . 8  nM IV acidi fied 

Kopin. 
Lemberger 
& alkalinized 

Axelrod90 

Beckett. + 15 mg PO uncontrolled 44 
Salmon & 
Mitchard91 acidified 49.5 

Angrist. + 0.25 mg/kg uncontrolled 39.6' 
Corwin. PO ( ±  2 . 8) 
Bartlik & 
Cooper" 3 5 . 3b 

( ±  3 .4) 

+ 0.5 mg/kg uncontrolled 67.� 
PO (± 5 .45) 

C... = maximum serum or plasma concentration observed 
T... = time at which C ... occurs 
CI = apparent total body clearance 
t ll2 = elimination half-life 

a = fasting 
b = non fasting 

T ... CI 

(hr) (m1/min) 

1 6- 1 1 5  

242-539 

2-3 

2-3 

3-4 
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tll2 
(hr) 

17 .0 ( + )  
23 . 7  (-) 

6 . 8  ( + )  
7 . 7  (-) 

1 5 . 6  ( + )  

25.0 (-) 

4.9 

5.6 

5 . 5  

4 .5  

8- 10 .5  

16-3 1 



oral amphetamine is approximately 250 L in normal healthy volunteers92 and similar 

between the enantiomers, indicating extensive distribution . 18 
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Excretion. Amphetamine is eliminated by excretion unchanged in the urine and 

by metabolism. In a study of amphetamine pharmacokinetics following 1 0  mg oral 

doses, Wan and associates found that plasma amphetamine levels decline 

monoexponentially following absorption and can be adequately described by a 1 -

compartment model . 1 8  Peak concentrations following administration of either isomer 

were proportional to dose. 

The excretion of amphetamine in urine is dependent on the urine pH and urine 

flow. When the urine is acidified , the excretion of unchanged amphetamine is 

approximately four times that of the deaminated metabolites (hippuric and benzoic 

acids) . When the urine is alkalinized, excretion of the deaminated metabolites is 

approximately equal to that of the unchanged drug.90 The elimination half-life under 

conditions of acidic urine production (PH < 6.0) is 8 to 10 .5 hours, while under 

alkaline conditions (PH > 7.5) ,  the half-life was prolonged to 1 6  to 3 1  hours.90 The 

renal clearance of amphetamine also depends on urine flow. When the pH is between 

5 and 6, renal clearance is about half as much if flow is less than 30 mLlhr than if 

flow is 30- 1 25 mLlhr. Diuresis, with flows greater than 1 25 mLlhr, further increases 

renal clearance of amphetamine.93 In a study by Beckett and Rowland87 however, 

the influence of urine flow rate on the urinary excretion rate of amphetamine appeared 

to be minimal .  The rate of urinary excretion of amphetamine is  directly proportional 

to amphetamine plasma concentrations when urine is maintained under acidic 

conditions. This does not hold true when urine pH is allowed to fluctuate.91 Under 
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uncontrolled conditions for urine pH, amphetamine renal clearance can be accounted 

for by glomerular filtration . Under acidic conditions however, the renal clearance is 

much higher than the glomerular filtration rate, indicating that other processes are 

contributing to the overall renal clearance. Beckett and associates hypothesize that the 

drug passes from blood to urine as the urine flows down the kidney tubules due to the 

high concentration gradient of un-ionized drug across the membrane.91 

After a 5 mg oral dose of [14C]amphetamine, 90 % of the 14C was excreted into 

the urine (PH not controlled) in 3 to 4 days, with about 60 - 65 % excreted on Day 

1 .94 On Day I ,  approximately 30 % of the 14C was excreted unchanged. Metabolites 

included 4-hydroxyamphetamine (3 %) ,  benzoic acid (2 1 % )  and hippuric acid ( 1 6 %) .  

Hydroxyamphetamine is pharmacologically active, but probably does not exert a 

clinically significant effect after a single dose of amphetamine. d-amphetamine has a 

shorter elimination half-life than I-amphetamine, because d-amphetamine is 

metabolized more rapidly. I S  This is more apparent under basic urine conditions, 

when metabolism is the major route of elimination . Metabolism of amphetamine by 

deamination is stereospecific94, and occurs more extensively for the d- isomer. The 

elimination half-life in chronic amphetamine abusers is significantly longer than in 

drug-naive control subjects. The difference was not apparent under acidic urine 

conditions,  but was noticeable under alkaline urine conditions.93 This may be due to 

increased tissue affinity for amphetamine in drug-dependent individuals. 

Amphetamine does not appear to undergo hepatic recycling , as none was found 

in the bile (free or conjugated) after the administration of 10 mg d-amphetamine 

sulfate of a cholecystectomy patient with a bile duct fistula.s7 
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2 .2 .4  EEG Changes after Amphetamine Administration 

EEG changes following amphetamine administration have been reported in 

normal volunteers after single doses in several studies. In an early study,  Pfeiffer and 

associates9S examined EEG changes in 20 male volunteers (2 1 -30 years of age) after 

receiving racemic amphetamine (0. 1 mg/kg) intravenously, dextroamphetamine ( 1 5  

mg) orally, or placebo intravenously and orally i n  a crossover fashion. EEG changes 

were quantitated using a measure termed cortical electrical energy. Activity from the 

left parietal area was integrated for the intravenous doses, and left occipital activity 

was integrated for oral doses. After intravenous dosing, the mean cortical electrical 

energy and its variability were significantly decreased (p < 0.05) 20-25 minutes after 

the infusion compared to control (before dosing). No difference was seen at 0-5 , lO­
I S ,  30-35 , or 40-55 minutes after the infusion . After oral dosing, mean cortical 

activity was significantly (p < 0.05) decreased at 60-70 minutes after dosing, and its 

variability was significantly decreased at 30-40, 60-70, and 90- 100 minutes after 

ingestion compared to control . No changes were observed 1 20- 1 30 minutes after 

dosing. Changes in cortical electrical energy appear to be short-lived following 1 5  

m g  oral doses of dextroamphetamine. 

In a later study by Fink and colleagues,2° single 10 mg doses of 

dextroamphetamine were administered to female normal volunteers and the EEG was 

recorded for 30 minutes before and four hours after dosing. To be included in the 

studies, subjects had to have at least 50% alpha in the occipital region. A bipolar 

montage with bifrontal and right occipital-vertex leads was used. The state of 

alertness was maintained using an auditory reaction time task.  Data were analyzed 



using a period analysis program which produced 19 EEG measures for each 60 sec 

epoch. Epochs with artifacts in greater than 20% of the sample were deleted. A 

mean and standard deviation was computed for each measurement time from the 

artifact-free epochs. These investigators report a significant first session effect. 

Decreased delta activity compared to baseline was observed soon after dosing and 

lasted throughout the testing period. Alpha activity increased and remained elevated 

through 3 hrs of testing. 
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In another study of the EEG effects of dextroamphetamine in normal volunteers, 

Hamilton and associatesl9 examined twelve healthy male and female subjects aged 20-

4 1  years. Subjects received placebo, dexamphetamine 5 mg and dexamphetamine 1 0  

mg orally. Eyes closed EEG was measured before dosing and at 2 . 5  and 5 . 75 hours 

after dosing. Significant increases compared to placebo were noted only in the alpha 

(7 .5  to 1 3 . 5  Hz) and beta ( 1 3 .5  to 26 Hz) frequency bands following the 1 0  mg dose 

at 2 .5  hr. The EEG was only examined twice after dosing, so the duration of the 

effect is difficult to assess . No significant effect at any time was observed however 

after the 5 mg dose of dextroamphetamine. 

Matejcek72 studied the EEG effects of dextroamphetamine in six healthy male 

volunteers in a placebo-controlled, randomized , double-blind, crossover study. 

Subjects were screened for well-defined alpha rhythm in the parietal and occipital 

regions on a resting EEG with eyes closed to obtain a homogeneous group with 

respect to EEG characteristics. Subjects underwent a familiarization procedure where 

they received a placebo and completed all tests as if on a study day prior to 

randomization to treatments. Subjects received single oral doses of 5 and 1 0  mg 



dextroamphetamine and placebo at intervals of one week during the study. Twenty 

minutes of resting EEG with eyes closed was recorded from leads �-c" O)-C" P4-

C" and P)-C, at 0, 2 ,  4, 6, and 8 hr after drug administration . These investigators 

found a dose-dependent decrease in the proportion of delta and theta activity and an 

increase in that of alpha activity, particularly at the 2 hr measurement. There was a 

trend toward an increased percentage of beta activity, but it was not statistically 

significant.  They conclude that dextroamphetamine possesses vigilance-promoting 

properties and that the observed EEG changes correlate with this effect. 

3 1  

In a recent double-blind, placebo-controlled crossover pharmacodynamic study 

utilizing EEG measures, conducted by Saletu and colleagues,96 single 20 mg doses of 

dextroamphetamine and placebo were administered orally to 1 8  healthy male and 

female volunteers. EEGs were recorded before dosing at 2, 4, 6 and 8 hours after 

dosing. Administration of dextroamphetamine resulted in increased total power, 

decreased delta and theta power, and increased alpha and beta power on the EEG and 

the changes were observed from 2 to 8 hours after dosing. The peak amphetamine 

plasma concentrations were approximately 50 ng/mL and occurred about 2 hours after 

dosing. When the level of vigilance was controlled during the EEG recording, no 

differences between dextroamphetamine and placebo were observed. 

These studies demonstrate that EEG changes occur following doses of at least 

1 5  mg of dextroamphetamine in normal volunteers and they can be followed over 

time. The duration of effect is unclear however. Increases in fast activity and 

decreases in slow activity on the EEG are most frequently reported . In his review of 

drug effects on the EEG, Glaze97 notes that amphetamines primarily increase beta 
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and alpha activity , but this is difficult to detect upon visual analysis of the EEG 

record. Computerized drug profiling studies·3 indicate that the increase in alpha 

activity after dextroamphetamine administration occurs over the parietal and occipital 

areas. Correlation of these changes with changes in mood, performance, or serum 

concentration are not well-described. Studies by Lukas and associates98 indicate that 

EEG alpha activity is significantly increased during periods of drug-induced euphoria 

following intravenous administration of amphetamine. They note that it appears that a 

threshold level and a relatively rapid rate of increase in plasma drug concentrations is 

necessary for this euphoria to occur. They also report that it is difficult to study the 

relationships between mood changes and brain electrical activity without introducing 

artifacts into the EEG recording. Further work in this area is warranted . 

2 .2 .5  Neuroendocrine Changes after Amphetamine Administration 

A wide variety of drugs are known to influence anterior pituitary hormone 

secretion . Changes in hormone secretion are another potential source of 

pharmacodynamic response measures. Evidence suggests that drugs with different 

pharmacological actions have different effects on the secretion of anterior pituitary 

hormones and that secretion patterns can be used to discern a drug's  effects on the 

CNS .99 Amphetamines alter secretion of a number of these hormones, including 

Adrenocorticotrophic hormone (ACTH), prolactin ,  thyroid stimulating hormone 

(TSH) , follicle stimulating hormone (FSH), luteinizing hormone (LH) , and growth 

hormone. 100 Prolactin response was chosen as a representative neuroendocrine 

measure for dextroamphetamine effects in this study because prolactin levels have 



been measured after amphetamine administration in a number of studies and the 

Clinical Research Center Core Laboratory has considerable experience analyzing 

serum and plasma prolactin following pharmacologic challenge. 
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An understanding of the factors influencing the secretion of prolactin are 

important for interpreting the neuroendocrine response to amphetamine. Many of 

these factors are reviewed by Kuret and Murad. 1ol The synthesis and storage of 

prolactin takes place primarily in the pituitary lactotrophs. Placental tissue can also 

synthesize prolactin .  Normal plasma concentrations of prolactin range from 5 to 1 0  

ng/mL, with concentrations i n  males lower than those i n  females. A number of 

physiological factors can increase the secretion of prolactin including sleep, stress, 

hypoglycemia; fluctuations in estrogen concentrations, and exercise. Secretion of 

prolactin shows a circadian rhythm, with peak concentrations occurring during sleep. 

In addition , minute to minute fluctuations are also observed due to the pulsatile nature 

of prolactin secretion . Prolactin ' s  half-life in plasma is approximately 1 5  to 20 

minutes. Prolactin secretion from the pituitary is primarily under negative control by 

the hypothalamus. Secretion is inhibited by release of prolactin release-inhibiting 

hormone (PRlH) from the hypothalamus. Some evidence suggests that prolactin 

secretion is controlled by dopaminergic neurons and that PRlH is actually dopamine. 

Prolactin secretion is then predominately inhibited by dopamine. Serotonin however 

stimulates the secretion of prolactin .  99 

Dextroamphetamine has been reported to cause both increases and decreases in 

the secretion of prolactin. Results from several studies are summarized in Table 2 .2 .  

The effect on  secretion may depend on  the dose and route of  administration . 
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Dextroamphetamine is believed to affect dopamine release at lower doses and 

serotonin release at higher doses, and thus may cause opposing effects on prolactin 

secretion. In a study by Nurnberger and associates,31 normal volunteers were given 

intravenous doses of amphetamine after pretreatment with haloperidol and 

amphetamine without pretreatment in a crossover study. No change in prolactin 

compared to baseline was observed following amphetamine alone, but a large increase 

was observed when amphetamine was preceded by haloperidol . This increase was 

much larger than that observed after haloperidol alone in a previous study. 

Haloperidol blocks dopamine (D:J receptors, and therefore would be expected to 

increase prolactin levels. It was hypothesized that the significant rise in prolactin 

observed after amphetamine plus haloperidol was due to the unopposed effects of 

serotonin on prolactin secretion . Amphetamine effects through doparninergic 

mechanisms, which should decrease prolactin secretion , would be blocked by the 

haloperidol , and only the stimulatory effects of serotonin would remain .  A second 

possible mechanism was also proposed : amphetamines may release endogenous 

opiates that may stimulate prolactin secretion. None of these studies have examined 

the dose-response relationship between dextroamphetamine dose and prolactin 

secretion over a dosage range including low and high doses. Further work 

characterizing this relationship is needed . 



Table 2 .2  

Dose 

20 mg 

30 mg 

0.3 mg/kg 

0. 10  mg/kg 

0. 1 5  mg/kg 

20 mg 

10  mg 

20 mg 

Summary of Studies Reporting the Effect of Dextroamphetamine on 
Prolactin Secretion in Normal Volunteers 

Route Subjects Change in Serum 
Prolactin 

Oral 24 (male) Statistically 
significant increase 
compared to placebo 

Oral 1 0  (male No difference from 
and placebo 
female) 

IV 8 (male Increase compared 
and to baseline, but not 
female) significant 

IV 1 2  (male) No difference from 
basel ine 

IV 12 (male) Statisticall y 
significant increase 
compared to 
baseline 

Oral 1 8  (male No difference from 
and baseline 
female) 

Oral 9 (male) Statisticall y 
significant decrease 
compared to 
baseline 

Oral 9 (male) Statistically 
significant decrease 
compared to 
baseline 

Reference 

Jacobs, 
Silverstone & 
Reesloo 

Dommisse, 
Schulz, 
Narasimhachari , 
et al 1<12 

Nurnberger, 
Simmons-Alling, 
Kessler, et al31 

Halbreich , Sachar, 
Asnis, et al 103 

Halbreich , Sachar, 
Asnis, et al 103 

Saletu , 
Grunberger, 
Anderer, et al96 

Wells, Silverstone 
& Reesl� 

Wells, S ilverstone 
& Reesl� 
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2 . 2 . 6  Mood Changes after Amphetamine Administration 

Amphetamines have been noted to produce alterations in mood in a number of 

clinical studies. lOS The primary effect on mood is euphoria or feelings of well-
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being. About 20% of individuals however, experience dysphoria. IOl The subjective 

effects produced by amphetamine depend on the user, the environment, the dose, and 

the route of administration. 106 The euphoriant activity of amphetamine is believed 

to be mediated by dopaminergic mechanisms in the CNS .IOS A summary of selected 

studies of the effects of oral amphetamines on mood in man are presented in Table 

2 . 3 .  These studies suggest that the predominate effect of oral amphetamine on mood 

is euphoria. The effect is greater at higher doses ( 1 5  - 30 mg), but can be measured 

in doses as low as 5 mg. The I -mg dose did not elicit a measurable response on 

mood . The maximum effect on mood appears to occur 1 - 3 hrs after dosing and may 

last longer than 6 hr. The higher the dose, the longer the effect. 

Several scales have been used to measure mood changes following amphetamine 

administration . Both self-rated and observer-rated scales have been utilized . In 

choosing such a measurement tool for use in a pharmacodynamic study of stimulant 

response, the validity, reliability and suitability for repeated measures must be 

considered . Visual analog scales have been used in a number of studies to measure 

euphoria. Visual analog scales are easy for the subject to complete, easy for the 

investigator to score, do not require a great deal of motivation from the subject, and 

the rater is not restricted by demarcations on the scale in how fine a discrimination 

can be made. lU7 Visual analog scales can be valid and reliable for measuring the 

effects of drugs acting on the CNS , and can be used to measure effects repeatedly 



Table 2 .3  

Dose 

30 mg 

10 and 
20 mg 

5 mg 

1 and 
10 mg 

5 and 
1 0  mg 

1 5  mg 
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Summary of Selected Studies Reporting the Effects of Oral 
Amphetamine on Mood in Healthy Volunteers 

Subjects Mood Scales Results 

1 0  (male Hopkins Mood Statistically significant 
and Scale & The increase in well-being 
female) Amphetamine compared to placebo 

Interview Rating 
Scale 

9 (male) Visual Analog Scale Dose-related increase 
(Miserable--Happy) in subjective rating of 

mood lasting from 1 -3 
hr ( l Omg) and 1 - > 4hr 
(20mg) 

3 1  (male Profile of Mood Increased scores for 
and States - modified vigor, friendliness, 
female) elation, arousal and 

positive mood 
compared to placebo, 
maximum at 3hr and 
continuing 
> 6hr in some 

9 Visual Analog Scale No effect with 1 mg; 
(female) ( depressed--elated) 10 mg produced 

elevation of mood 
maximum at 1 . 5 hr 
and lasting up to 2 . 5  
hr but not statistically 
significant 

1 2  Visual Analog Scale Increased alertness, 
(males excitation, interest, 
and elation compared to 
females) placebo ( 1 0  > 5) at 2 

hr, with effects 
persisting on some 
measures > 5 hr 

9 Visual Analog Scale Increased alertness, 
(males) & Symptom extroversion, euphoria 

Oriented Preference and stimulation 
Scale compared to placebo 

Reference 

Dommisse, 
Schulz, 
Narasimha-
chari , et al102 

S ilverstone 
Wells & 
Trenchard24 

Johanson & 
Uhlenhuth108 

Jain,  
Kyriakides, 
Silverstone, 
et al109 

Hamilton, 
Smith & 
peckl9 

Taeuber, 
Zapf, Rupp, 
et al30 
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after drug administration . Scores on visual analog scales of euphoria have been used 

to distinguish doses of amphetamine (See Table 2 . 3) .  

Other scales, such as the Profile o f  M ood  States (POMS)1 l0, the NIMH Self­

rating Scale22 and the Addiction Research Center Inventory (ARCI) 1 1 l  scales have 

been used to measure euphoria. These scales usually take longer to complete and 

require more subject motivation . A modification of the ARCI has been studied by 

Martin and colleagues21 to measure euphoria in studies of amphetamine. They 

administered questions from the PCAG (sedation), MBG (euphoria) , LSD (dysphoria 

and psychoses) and BG (an empiric amphetamine scale) subscales of the ARCI to 

male prisoners before and after dosing with amphetamine. Based on the results of 

this study, they constructed an I I -item amphetamine scale (A) that included those 

items on the ARCI that showed a significant linear regression of response against dose 

for 3 doses of amphetamine (7 . 5 ,  1 5  and 30 mg/70 kg) . The BG (amphetamine) 

sub scale of the ARCI has also been used by other investigators studying amphetamine 

response.2J The ARCI has been shown to reliably distinguish between amphetamine 

effects. I I I  In our studies, we used the MBG subscale of the ARCI and the A scale 

developed by Martin ,  modified to measure amphetamine responses over a five-point 

range. 

2 . 2 . 7  Changes in Performance after Amphetamine Administration 

A large number of studies have investigated the effects of amphetamine on 

psychomotor and perceptual performance using laboratory based performance tests 

such as finger tapping, reaction time, critical flicker fusion, digit symbol substitution, 

tracking tasks , and mental arithmetic. 105 The reported effects of amphetamine on 
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psychomotor, perceptual , and intellectual function are conflicting. Some studies 

report no changes while others report changes on some tasks. A summary of selected 

studies on the effects of oral amphetamine on performance in normal volunteers is 

presented in Table 2.4 .  

Several factors impact on the usefulness of psychometric test results in 

describing pharmacodynamic effects of CNS active drugs.4 Motivational factors can 

influence the response to many psychometric tests. Expectations of the subjects, level 

of payment, intentions of the volunteers and expectations of the investigator can all 

influence experimental results. The effects of practice, learning and memory on 

performance must also be considered . Many components, besides the effect of the 

drug, involving factors such as personality ,  motivation and expectations determine 

performance on a psychometric test. These factors should be controlled for as much 

as possible in the design and conduct of the study to improve the usefulness of 

psychometric tests. Experiments should be double-blind and placebo-controlled . 

Subjects must be carefully screened and those administering the tests well-trained . 

Adequate practice sessions are essential. 

For our studies, two tasks were chosen to measure the response to 

dextroamphetamine. The first was an attentional task (continuous performance task 

(CPT» and the second was a motor task (finger tapping) . Similar tasks have been 

used by other investigators to measure the effects of amphetamine on performance. 

Computerized versions of these tasks were chosen to allow for improved 

standardization of procedures, accurate measurement and recording of responses, and 

ease of use. 1 1 2  A major disadvantage to these tasks however, is  that reliability and 
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Table 2 .4  Summary of  Selected Studies on  the Effects of  Oral Amphetamine on 
Psychomotor Performance in Healthy Volunteers 

Dose Subjects Tests Results Reference 

1 5  mg 9 (males) Choice reaction time, simple Significant increase only in Taeuber, 
reaction time, mental CFF and correct solutions Zapf, Rupp, 
arithmetic, critical flicker on mental arithmetic et al)() 
fusion (CFF) compared to placebo 

5 and 1 2  Auditory vigilance test, For both doses, significant Hamilton, 
1 0  mg (males Auditory reaction time, increase in percent correct Smith & 

and tapping test on auditory vigilance test, Peckl9 
females) decreased reaction time, no 

difference in tapping 

0 . 25 1 6-low Motor activity test, skin Increased performance on Rapoport, 
and dose, 1 5- conductance reaction time, CPT (high dose), decreased Buchsbaum, 
0 .5  high dose visual continuous reaction time (low dose), Weingartneret 
mg/kg (males) performance task , learning beneficial effects on the aP I)  

task learning task (both doses) 

5 mg 8 (males) Symbol-Digit Substitution No significant differences Schmedtje, 
Task (DSST), Simple from placebo Oman, Letz, 
Reaction Time, Pattern et al26 
recognition, Digit Span, 
Pattern Memory 

10 mg 1 1  CFF, Discriminant Reaction No significant differences Berchou & 

(males Time from placebo Blockl l'  
and 
females) 

1 0  mg 6 (males) Tremor, Precision Hole No significant differences Domino, 
Steadiness, Tracking from placebo except in the Albers, 

compensatory tracking task Potvin, et al21 
which requires sustained 
concentration and motor 
coordination 

5 ,  10,  12  Wobble Board , Pursuit Dose-related improvement Evans, 

and 1 5  (males) Meter, Delayed Auditory in stability (eyes closed) on Martz, 

mg Feedback the Wobble Board, and on Lemberger et 
rapid response on the 8129 
Pursuit Meter only 
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validity for these particular versions has not been established. If some of the subjects 

are unfamiliar with computers, learning time may be increased. Studies of validity 

(i.e. , is the task truly measuring attention?) are necessary before claims concerning 

the drugs effects on performance can be made. 

2 .2 . 8 Cardiovascular Changes after Amphetamine Administration 

Amphetamines affect the cardiovascular system through direct and indirect 

actions on a and f3 receptors. Systolic and diastolic blood pressure have been 

reported to increase following administration of amphetamines. Heart rate may 

increase or decrease. Gaut, Pocelinko, Abrams and Daltonl lS studied thirteen obese 

subjects in a double-blind , randomized , crossover design where subjects received 20 

mg of dextroamphetamine and placebo. Blood pressure and heart rate were measured 

before dosing and at I and 3 hr after dosing . They found an increase in systolic 

blood pressure compared to placebo of 2 1 . 8 %  ( ± 7.4%) and 14 .0% ( ±4 . 5 % )  at I and 

3 hr following amphetamine dosing respectively. Diastolic blood pressure increased 

20. 6% ( ± 6. 1 %)  at I hr and 1 5 . 2 %  ( ± 4.9%) at 3 hr after amphetamine 

administration compared to placebo. Heart rate increased less dramatically, with a 

change compared to placebo of 0. 8 %  (±3 .4%)  at 1 hr and 12 .4% ( ±  1 . 9%)  at 3 hr 

after amphetamine dosing . All of these changes were statistically significant (p < 

0.05) except for heart rate at 1 hr (not significant) . Hamilton and associates19 report a 

rise in heart rate and diastolic blood pressure, but not of diastolic blood pressure after 

I O  mg of dextroamphetamine compared to placebo. 

Studies of the effects of amphetamine on blood pressure and heart rate in 
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animals suggest that tonic and reflex (baroreceptor) neural activity obscure the pressor 

and tachycardic effects of amphetamine on peripheral nerves. Simpsonl l6 reported 

that blood pressure and heart rate increases after amphetamine administration to male 

Wistar rats and that this increase is larger and more sustained in animals pretreated 

with chlorisondamine. Chlorisondamine is a ganglionic blocker which eliminates 

tonic and reflex neural activity. This suggests that the conflicting results of the effect 

of amphetamine on the cardiovascular system , especially heart rate, may be mediated 

by baroreceptor reflexes or CNS influences on the peripheral responses. In 

chlorisondamine-pretreated animals, there was a positive relationship between the 

amount of drug administered and the magnitude of the cardiovascular responses. 



CHAPTER 3 

Part I - Reproducibility of Control Responses 

3 . 1 Specific Aims 

The purpose of this study was to investigate the inter- and intra-individual variability 

associated with a series of potential CNS pharmacodynamic response measures under 

baseline (no drug) conditions. These measures included quantitative EEG , automated 

psychometric tests, and self-rated mood scales. Within day and between day 

reproducibility was evaluated . Responses for each measure were examined for 

evidence of circadian changes and learning effects. Results from this study were used 

to design subsequent studies of quantitative EEG as a pharmacodynamic measure for 

CNS stimulation .  

3 .2  Methods 

3 .2 . 1 Clinical Study of Control Responses 

The clinical portions of this study were conducted at the Clinical Research 

Center at Virginia Commonwealth University . The Committee on the Conduct of 

Human Research at Virginia Commonwealth University reviewed and approved the 

study protocol and the informed consent form before the study began . The study 
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protocol and consent form are in Appendix A .  

This study was an open-labeled pilot study i n  which healthy volunteers 

underwent a series of tests (electroencephalography ,  automated psychometric tests, 

and self-rated scales of mood) on three occasions one week apart. On each of the 

three study days, the series of tests were repeated eight times over a 1 2  hour period. 

Subjects undertook the study in groups of one or two. 

Subjects. Eight healthy volunteers participated in this study.  Subjects were 

recruited from within the hospital and schools at Virginia Commonwealth University. 

Volunteers were considered for inclusion in the study if they were nonsmokers 

between the ages of 1 8  and 35 ,  and determined to be in good health based on the 

results of a medical history, physical examination, laboratory tests (including a 

SMAC-20, CBC , and urinalysis) , 1 2-lead electrocardiogram, and vital signs. 

Volunteers were excluded from the study if they 1) had a history of drug addiction , 

alcohol abuse, or psychological dependence on drugs, 2) had a first degree relative 

(mother, father, or siblings) with a history of mental illness or alcohol/drug abuse, 3) 

took any medications chronically or had taken any prescription or investigational 

drugs in the four weeks prior to starting the study,  or 4) had a normal daily caffeine 

intake greater than two cups of coffee. Before entering the study, each subject signed 

an informed consent form attesting that his participation was voluntary and that the 

study procedures were explained. 

Procedure. During each of the three study periods, the following procedure was 

observed: 

Beginning 72 hours before each study day, subjects avoided caffeine, alcohol , 
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and all medications, including over-the-counter medications. Subjects entered the 

study facility at 7:00 a .m.  on the study day and were released after completion of the 

1 2  hr test battery on the same day. Subjects fasted from midnight on the evening 

before the study day until after the 4 hr test battery. Lunch was served after the 4 hr 

test battery and dinner at 10 hr after the baseline test battery. The menu was similar 

during each study period. 

Five-minute segments of 28 channel EEG were recorded for each subject using 

a NeuroScience Brain Imager (San Diego, CA) with eyes closed at 0, 1 ,  2, 3, 4, 6, 8,  

and 1 2  hrs. Subjects reclined in a hospital bed with the lights off during the 

recordings. They were asked to count back from 500 by 3s to maintain vigilance. 

The electrodes were placed using an Electro-cap according to the 1 0/20 International 

System with 8 additional electrodes located 50% between the standard 1 0/20 

placement. Omni-Prep «D.O. Weaver & Co. ,Aurora, CO) was used to prepare the 

scalp and Electro-Gel (Electro-Cap International , Inc. , Dallas, TX) was used as the 

conducting gel . Linked ears were used as a reference. Four additional electrodes 

were placed to monitor for vertical and lateral eye movements and electromyographic 

activity. Electrodes in the cap, ear clips, and eye movement monitors were made of 

tin .  Electrode impedances were checked before each recording, and maintained at 

less than 5 . 6  kohms and similar between electrodes. Disturbances in the room or 

subject movement during the EEG was recorded. The Brain Imager filters were set 

as follows: Low filter - 0.30 Hz, High filter - 40 Hz, Notch filter - off. The raw 

EEG was stored on optical disks. The system integrity of the Brain Imager was 

checked weekJy throughout the study to ensure stability of channel calibration and 



proper filter functioning. EEG recordings on Study Day 1 for Subject 1 (TM) were 

made simultaneously on the Brain Imager and a standard EEG machine (Grass 

Instruments Model 8- 1 80, Quincy, MA) . The electro-cap was connected to both 

input boards by an adapter. The pen recordings from the standard EEG machine 

were reviewed by a board certified electroencephalographer who determined that 

recordings from the electro-cap were acceptable. 

Each subject completed a computerized visual CPT (NeuroScan, Inc . )  at 0, 1 ,  

2 ,  3 ,  4 ,  6 ,  8 and 1 2  hr. In this task, the digits 0 through 9 briefly appear on the 

screen .  The subject presses the left button of the mouse when a 0 appears and the 

right button for all other digits. The interstimulus interval varied from 0. 8 to 1 .2 

seconds. A total of 120 stimuli were presented during each testing session. Two 

practice sessions were completed before beginning the 0 hr test battery. 
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Subjects completed a computerized motor task, finger tapping (NeuroScan, Inc.)  

at 0,  1 ,  2 ,  3 ,  4 ,  6 ,  8 and 1 2  hr.  During this task, subjects tap the mouse button as 

fast as possible for 10 seconds, first with their right hand and then with their left. A 

total of three trials with each hand were completed during each testing session . Two 

practice sessions were completed before beginning the 0 hr test battery. 

A self-rated scale (Appendix B) based on the MBG (a measure of euphoria) and 

the A (a measure of amphetamine effects) subscales of the Addiction Research Center 

Inventory Scales described by Martin et al .2 1  was completed by each subject at 0, 1 ,  

2 ,  3 ,  4 ,  6 ,  8 and 1 2  hr. The scale consisted of 23 questions which the subject 

responded to on a scale of 1 to 5 .  At the same times, a 100 m m  visual analog mood 

scale (Appendix C) was completed. 



The test battery was conducted in the following sequence: 1 )  EEG, 2) visual 

CPT, 3) rating scales, and 4) finger tapping. 

3 .2 .2  Data Analysis 

The measures of response that were examined for the test battery described 

above are listed in Table 3 . 1 .  

Table 3 . 1 Response Measures Evaluated in Part I - Reproducibility of Control 
Responses 

EEG Variables 

TP Total Power - all frequencies (p. Y� 
TPD Total Power - Delta band (p. y2) 
TPT Total Power - Theta band (p. y2) 
TPA Total Power - Alpha band (p.y2) 
TPBI Total Power - Beta I band (p. y2) 
TPBII Total Power - Beta II band (p. Y� 
Psychometric test 

RPD Relative Power - Delta band 
RPT Relative Power - Theta band 
RPA Relative Power - Alpha band 
RPBI Relative Power - Beta I band 
RPBII Relative Power - Beta II band 

FfLT Finger Tapping with Left Hand (taps/sec) 
FfRT Finger Tapping with Right Hand (taps/sec) 
CPTPC Percent Correct on Continuous Performance Task (%)  
CPTAL Average Latency on Continuous Performance Task (sec) 

Mood Scales 

RS Total Score on Self-Rated Mood Scale 
Y AS Score on Visual Analog Mood Scale 
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EEG Analysis. As each EEG was recorded, the signal was processed by a Fast 

Fourier Transform procedure, to determine the amplitude of the EEG in five 

frequency bands (Delta: 0 .39 - 3 .9 Hz, Theta: 4 .3  - 7 .8  Hz, Alpha: 8 .2  - 1 1 . 7  Hz, 

Beta I: 12 . 1 - 16 .0  Hz, and Beta II: 16 .4 - 30.0 Hz) at each electrode. Each of the 



five-minute recordings was reviewed and edited to remove each 2 .5  second epoch 

(frame) that contained artifacts (eye movements, muscle movement,  electrode 

artifacts, or disturbances noted during the recording) . 1 I7· 1 1 8.3S The remaining 
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frames were averaged using the EEG statistical operations package on the Brain 

Imager to form an average topographical map representing the five minute recording. 

Recordings with fewer than 24 artifact-free frames were not processed further and 

were listed as " missing " .  To compute the average map, the Brain Imager first forms 

sub-averages from consecutive groups of eight frames each . 1 19 The voltage value 

measured at each of the 28 electrodes for the first eight frames are added together and 

then divided by 8, the number of frames. This process is then repeated for the next 

group of 8 frames and so on . The overall average is then formed by averaging the 

sub-averages. The overall average ftle contains the average amplitude in each of the 

5 frequency bands at each of the 28 electrodes. This ftle was then transferred from 

the Brain Imager to an IBM compatible 80386 personal computer. ISTAT 

(NeuroScience, Inc . )  a statistical package for EEG processing was used to prepare 

ASCII files of the average files. These files were then imported into the Quattro Pro 

spreadsheet software (Borland International , Scotts Valley, CA) for further 

processing. 

Power was determined for each average recording by squaring the amplitude 

values at each electrode in each frequency band.  Total amplitude and total power in 

each frequency band was calculated by summing the amplitude or power at each of 

the electrodes for a given frequency band. Total amplitude and total power across all 

frequency bands was calculated by adding together the total amplitude or total power 
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in each of the frequency bands. Relative power in each frequency band was 

calculated by dividing the total power in the given frequency band by the total power 

across all frequency bands. 

Approximately 6 months after the first EEG editing process, EEGs from one 

period for three subjects were re-edited by the same investigator to examine the 

reliability of the EEG editing process over time. These edited EEGs were averaged 

and transferred as described above, and total power in each frequency band was 

calculated. These EEGs are referred to as the reliability sample. 

Psychometric test analysis. For the computerized visual CPT, latency of 

response was determined for each trial during the session . The average latency of 

response and the percent of correct responses for each test session was determined. 

For the finger tapping task,  the average rate (taps/sec) of finger tapping for each hand 

was calculated for each session by averaging the results of the three trials conducted 

during each session . The effect of learning on test performance was evaluated by 

examining plots of the test score versus the cumulative test battery number during the 

entire study. A total of 30 test batteries were attempted during the study (10 on each 

of the 3 study days) . 

Rating scales. A total score on the self-rated mood scale was determined for 

each test session by summing the scores obtained for each of the 23 items on the 

scale. A score between 0 and 100 was obtained for the visual analog mood scale for 

each test session by measuring the number of millimeters between the left end of the 

scale and the mark placed by the subject. 
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3 .2 .3  Statistical Methods 

Within-day, between-day and inter-subject variability was examined for each 

response variable. Within-day variability for each response measure was determined 

by calculating the mean , standard deviation , and relative standard deviation of the 

response at each time point for each study day for each subject. Relative standard 

deviation, also termed coefficient of variation , is defined as the standard deviation 

divided by the mean and expressed as a percentage. Between-day variability for each 

response was determined by calculating the mean , standard deviation , and relative 

standard deviation of the mean response for each study day for each subject. Inter­

subject variability was determined by calculating the mean , standard deviation, and 

relative standard deviation of the response on all study days at all time points for each 

subject. 

To look at the effect of study day and time of day on the response measures, a 

repeated measures analysis of variance with study day, time of day, and subject as 

factors and the response as the dependent variable was performed using the PROC 

GLM procedurel20 in SAS. The residuals were tested for normality using PROC 

UNIVARIATE120• This procedure computes the Shapiro-Wilk statistic, W, for the 

null hypothesis that the residuals are normally distributed. When the probability of a 

smaller value of W was less than or equal to 0. 1 ,  the null hypothesis of normality was 

rejected. The hypothesis of normally distributed residuals was rejected for most of 

the variables tested in this study, so a rank transform was performed on the values for 

the response measures. The ranks for each response measure for each study day were 

compared using repeated measures analysis of variance with study day, time of day, 
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and subject as factors and each rank transformed response as the dependent variable. 

To examine the reliability of the EEG editing process over time, Pearson 

product moment coefficients were calculated between the total power and power in 

each frequency band obtained during the first and second editing of the reliability 

sample. The multivariate procedure PROC CANCORR120 in SAS was used for this 

computation . The correlation coefficients obtained between the first and second 

editing are termed stability coefficients. 12 1 

3 .3  Results 

Nine male volunteers were entered into the study. Demographic and physical 

characteristics of the subjects are shown in Table 3 .2 .  All of the subjects were 

judged to be healthy based on the results of a physical examination , a medical history, 

and clinical laboratory tests before entering the study. Eight subjects completed the 

study. Subject 4 (BR) dropped out after the first period for personal reasons. None 

of the subjects reported adverse events related to the study procedures. 

Within-day variability for each of the response measures is presented in Figures 

3 . 1 and 3 .2 .  These figures show the average (M) and range (H - L) of the relative 

standard deviation of each response at each time point for each study day for each 

subject. Within-day variability ranged from 0 to 80 percent for the response measures 

investigated . The highest variability was associated with total EEG power in the delta 

frequency band and other EEG-derived parameters and the lowest variability was 

noted for the computerized psychometric tests. 
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Table 3.2 Demographic and Physical Characteristics of Participants in Part I -
Reproducibility of Control Responses 

Subject Initials Age (years) Weight (kg) Race 
Number 

TM 24 9 l . 8  Black 

2 MP 39 83 .6 White 

3 SW 36 78. 2  White 

4 BR 23 63 .0 Black 

5 MM 20 69. 1 White 

6 AT 25 90.9 White 

7 JC 34 63. 2  Hispanic 

8 ML 33 90.9  Black 

9 SW 26 70.5 White 

Between-day variability for each response measure is presented in Figures 3 .3  

and 3 .4 .  These figures show the average (M) and range (H-L) of  the relative 

standard deviation of the mean response for each study day for each subject. 

Between-day variability was in general lower than within-day variability and ranged 

from 2 to 48 percent. The average within-day variability was less than 20% for all of 

the measures. Again, the highest variability was associated with parameters derived 

from the EEG . 

Intersubject variability for each response measure is presented in Figures 3 .5  

and 3 .6 . These figures show the average (M) and range (H-L) of  the relative 

standard deviation of the mean response for all study days for each subject. 

Intersubject variability ranged from 2 to 87 percent, with the highest variability again 

observed for the EEG measures. The lowest intersubject variability was noted for the 
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Figure 3 . 5  Intersubject variability for the rating scales and psychometric tests 
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computerized performance tests. Intersubject variability was greater than both within­

day and between-day variability. 

Learning effects were observed for the finger tapping and CPT. Figures 3 .7  

and 3 . 8  show representative plots of  scores on  these tests versus test battery number. 

Each task was administered a total of 30 times to each subject during the entire study. 

Similar plots for all subject are presented in Appendix D.  These plots show that 

performance on the visual CPT and finger tapping continues to improve after the first 

2 to 6 test sessions for most subjects, when a relatively stable level of performance is 

achieved . Each study day, the number of test sessions necessary to reach a stable 

level of performance is decreased. 

Results from the analysis of variance showed that the main effect of time of day 

is statistically significant (p < 0.05) for several of the response measures, including 

the visual analog mood scale, finger tapping, average latency on the CPT, and EEG 

power in the Theta and Beta II  frequency bands. Examples from representative 

subjects illustrating these effects are shown in Figures 3.9 and 3 . 1 0. In a comparison 

of the results on Study Day 1 with those on Study Days 2 and 3 for the self-rated 

mood scale, finger tapping with the right hand, percent correct on the CPT and EEG 

total power in the delta frequency band showed statistically significant (p < 0.05) 

differences. Scores on these measures attained on the first day of testing are different 

than those achieved on subsequent days. Examples demonstrating this effect are 

shown in Figures 3 . 1 1  and 3 . 12 .  

Missing data was problematic for several of  the measures studied. Self-rated 

scales of mood show few if any missing values because they can be completed rapidly 
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Figure 3 . 1 1  Example of the first day effect on the self-rated mood scale (Data from 
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and do not require any equipment that is subject to mechanical problems. The 

computerized psychometric tests showed a higher number of missing data points due 

primarily to breakdowns of the computerized system, such as failure of the computer 

hard disk drive for example. Approximately 5 % of the CPT and fmger tapping tests 

were lost. Approximately 5 % of the measurements were missing for the EEG as 

well . These measurements were lost primarily due to excessive artifacts present 

during the recordings. 

Results from the reliability of the EEG editing process over time show high 

correlation (correlation coefficient > 0 .90) for all of the EEG-derived measures 

evaluated. Results from the canonical correlation between the first and second editing 

are presented in Table 3 . 3 .  

Table 3 .3  Correlations Between the Results of  the First and Second EEG Editing 
Procedure 

EEG Measure Correlation Coefficient 

Total Power - Delta 0 .9 12  

Total Power - Theta 0.93 1 

Total Power - Alpha 0.938 

Total Power - Beta I 0 .992 

Total Power - Beta II 0.997 

Total Power 0 .970 

3 .4  Discussion 

This study was designed to evaluate the variability associated with a series of 

potential response measures of CNS stimulation and to provide information needed for 



planning future studies of quantitative EEG as a pharmacodynamic tool. Response 

measures evaluated included self-rated assessments of mood, computerized 

psychometric tests and electroencephalography.  
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Intersubject variability was greater than intrasubject variability for these 

response measures, indicating that a crossover design should be considered for future 

studies. In a crossover design , the comparison of treatments is based on within­

subject or intrasubject variability. 122 Because intrasubject variability is less than 

intersubject variability the crossover design would be more powerful than a parallel 

group design for examining treatment differences. 

Two potential disadvantages to the crossover design must also be considered. 

The first is the possibility of a differential carryover effect and the second is the 

impact of missing data. Carryover effect can be minimized by incorporating a 

sufficientl y long washout period between each leg of the study. Determining the 

duration of the washout period so that it is long enough to ensure that no measurable 

drug levels remain in the system when the next period begins is relatively simple. 

Psychological carryover may be more difficult to control. For example, a subject's 

response on a rating scale may be influenced by previous treatments because the 

frame of reference changes. Later treatments are compared with the earlier ones. 

This phenomenon has been observed in studies of psychoactive drugs. 122 Missing data 

may be a more significant problem . Missing data complicates the statistical analysis 

and the design loses efficiency. There is an increased opportunity for data to be lost 

to the analysis in a crossover design ,  since each subject must provide data on more 

than one occasion . Loss of computerized psychometric test data could be minimized 
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by keeping a backup personal computer available to run the STIM program. Loss of 

EEG data is more difficult to control . Pre-screening subjects and excluding those 

with excessive eye movement artifacts is one approach that may decrease missing 

data. Also controlling the testing environment for noise level and temperature may 

reduce data loss. Excessive noise may increase eye movements and high temperatures 

may result in poor electrode performance due to sweating of the scalp .123 Having 

the subject hold cotton gauze lightly against the closed eyelids may also decrease eye 

movement artifacts. Despite these limitations, a crossover design was chosen over a 

parallel design for future studies due to the efficiency of the design when intersubject 

variability is greater than intrasubject variability and the resulting need for a smaller 

number of subjects . 

Based on the results of this study, incorporation of a placebo period into the 

crossover design is also desirable. The analysis of variance showed statistically 

significant effect of time of day for several of the response measures studied , 

indicating circadian variability in the response under baseline (no drug) conditions. 

Circadian periodicity in the wakeful EEG has been reported by other 

investigators . 124,61 For measures with circadian variability , the availability of a 

placebo period for comparison with drug treatments is preferable to using the baseline 

(0 hr) as the only control . 

EEG and some psychometric test responses may be different on the first day of 

testing than on subsequent days for some subjects, as indicated by the statistical 

comparison of responses on Study Day 1 versus those on Days 2 and 3 .  These first 

session effects have been previously reported for EEG studies of drug effects. I S  
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These authors hypothesize that the during the first session, subjects maintain arousal 

because of unfamiliarity with the testing environment and study procedures. They 

suggest the incorporation of a familiarization session in EEG studies prior to study 

initiation to overcome this limitation . Differences in relative power in the alpha band 

between EEGS recorded one week apart under no drug conditions has been reported 

by Sebban and associates. 125 They hypothesize that this variability is l inked to an 

habituation to the testing environment with time. Our results and those of other 

authors indicate that familiarization sessions are necessary for pharmacodynamic 

studies using quantitative EEG . 

Learning effects were also observed for the psychometric tests. Response 

measures that show learning effects are more difficult to use in pharmacodynamic 

studies, because the learning effect can confound the drug effect under study. To 

ensure that subjects are performing at a relatively stable level before receiving the 

treatments, practice sessions are necessary . Between 4 and 6 testing sessions were 

needed on the first study day for the majority of subjects in this study .  These 

practices could be incorporated into the familiarization session . In addition , at least 2 

practices are needed each study day based on the performance observed in this study. 

This study also demonstrates that it is feasible to conduct a study where subjects 

undergo testing as often as every hour without unreasonable stress on the study 

schedule or fatigue for the subjects. A test session could be completed in 

approximately 15 minutes. Subjects tolerated the procedures well ,  including wearing 

the electro-cap continuously for longer than 12 hours. Subjects reported that the 

informed consent form adequately described the study procedures . 
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By incorporating a crossover design with a placebo period, practice sessions for 

the computerized psychometric tests and a familiarization session before the study, 

these response measures should be suitable for future studies. A verage between-day 

variability for all of the response measures was less than 20 % ,  which is relatively 

low compared to expected potential drug effects. The greatest variability was 

associated with the EEG measures studied when the data is collected in the clinical 

setting . This may mean that the EEG measures will be the least sensitive of the 

measures for distinguishing drug effects. The sensitivity of the EEG as a 

pharmacodynamic measure requires further investigation . 

3.5 Conclusions 

Based on the results of this study, subsequent studies for the purpose of 

evaluating quantitative EEG as a pharmacodynamic tool should incorporate a placebo­

controlled, crossover design. A familiarization session to acquaint the subjects with 

the study setting and procedures is necessary to reduce first-session effects. Practice 

sessions are needed for the psychometric tests to minimize the effects of learning on 

the comparison of treatments. The testing sessions can feasibly be conducted at least 

hourly, and subjects can tolerate the procedures for as long as 1 2  hours. The 

response measures studied are suitable for future studies to evaluate quantitative EEG 

as a pharmacodynamic tool for measuring CNS stimulation. 



Chapter 4 

Part II - Comparison of Quantitative Electroencephalography to Behavioral , 
Psychological and Neuroendocrine Measures of Response to Dextroamphetamine 

4. 1 Specific Aims 

The purpose of this study was to evaluate the usefulness of quantitative EEG as 

a measure of CNS response to stimulants. The study was designed to examine the 

relationship between EEG changes after administration of dextroamphetamine and 1 )  

performance o n  automated psychometric tests, 2)  serum prolactin levels,  3)  subjective 

response as assessed by self-rated mood scales, and 4) serum concentration of 

dextroamphetamine. The sensitivity of EEG parameters to dextroamphetamine 

concentration in serum was compared with that of more subjective measures. 

4.2 Methods 

4.2 . 1 Clinical Study of Response to Dextroamphetamine 

The clinical portions of this study were conducted at the Clinical Research 

Center at Virginia Commonwealth University . The Committee on the Conduct of 

Human Research at Virginia Commonwealth University reviewed and approved the 

study protocol and the informed consent form before the study began. The protocol 
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and consent form for this study are in Appendix A .  

This study was a double-blind, placebo-controlled four-period crossover study 

with healthy, male volunteers assigned to randomly ordered treatment sequences. 

Subjects undertook the study in groups of two. The start of each study period was 

separated by a washout period of at least one week. Subjects received one of four 

treatments during each study period: dextroamphetamine 20 mg, dextroamphetamine 

10 mg, dextroamphetamine 5 mg or placebo as a single oral dose according to the 

randomization schedule (Appendix E) . Eight volunteers were scheduled to be 

enrolled in the study. The number of subjects included was the minimum that would 

ensure that at least two subjects were assigned to each treatment sequence. 

Subjects. The volunteers were considered for inclusion in the study if they were 

nonsmokers determined to be in good health based on the results of their medical 

history, physical examination , and electrocardiography and had no clinically 

significant deviation from the normal range of values determined in laboratory tests 

consisting of complete blood count, urinalysis, and clinical chemistry. Volunteers 

were excluded from the study if they 1 )  had a history of drug addiction, alcohol 

abuse, or psychological dependence on drugs, 2) had a first degree relative (mother, 

father or siblings) with a history of mental illness or alcohol/drug abuse, 3) took any 

medications chronically or had taken any prescription or investigational drugs in the 

four weeks prior to starting the study or 4) had a normal daily caffeine intake of 

greater than two cups of coffee. Before enrolling in the study, all subjects underwent 

an EEG and psychometric testing familiarization period lasting for at least 4 hours. 

Subjects with a high number of artifacts on the EEG or who could not tolerate 
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wearing the electro-cap for extended periods of time were excluded. Before entering 

the study,  each subject signed an informed consent form attesting that his participation 

was voluntary and the study procedures were explained. The physical examination, 

electrocardiography,  and laboratory tests were repeated within one week of the 

conclusion of the subject's participation in the study. 

Procedure. During each of the four study periods, the following procedure was 

followed: 

Beginning 72 hours before each study day, subjects avoided caffeine, alcohol , 

and all medications, including over-the-counter medications. Subjects also began a 

low monoamine diet that was maintained throughout the study period. Tyramine­

containing foods such as liver, fermented or dried sausage, canned or dried fish, 

sauerkraut, fava beans, fermented beverages, and cheese were restricted. The low 

tyramine diet was instituted as a safety measure, because tyramine can displace 

norepinephrine from storage sites and indirectly cause a rise in blood pressure. Much 

of the dietary tyramine is metabolically inactivated presystemically, but the degree to 

which this occurs may be genetically determined . 126 The degree of influence of 

tyramine in combination with dextroamphetamine on blood pressure may vary 

between individuals, so dietary tyramine was maintained at a low level for all 

subjects. Imposing a very similar diet for all subjects may also serve to make the 

response to dextroamphetamine more uniform across subjects. 

Subjects entered the study facility on the evening of the day preceding each day 

of dextroamphetamine or placebo dosing and were not released until after the 

collection of the last blood sample of the study period. Subjects were required to 
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have a negative urine drug screen and breath alcohol test during each study period 

before receiving dextroamphetamine or placebo. Subjects fasted from midnight on the 

evening before dosing until after the 4 hr blood sample was drawn. Water was 

permitted during the fasting period. Lunch was served after the 4 hr blood sample 

and dinner at 10 hours after dosing. All meals were low in tyramine content and 

large quantities of foods potentially promoting alkalinization of the urine (such as 

milk, nuts, vegetables and fruits) were avoided. The same menu was served on 

corresponding days of each study period. Subjects began a period of bed rest one 

hour before dextroamphetamine or placebo administration that continued until after 

the 6 hr test battery . 

Repeated 2 gram oral doses of ammonium chloride (4 x 500 mg enteric-coated 

tablets, Rugby Laboratories Inc. , West Hempstead , NY) were given to acidify the 

urine and enhance the excretion of dextroamphetamine at the following times: - 12 ,  -8, 

-2, 2 ,  6, 10 ,  14, and 18 hr after dextroamphetamine or placebo dosing as described 

by Wan et alY Subjects received a light snack prior to the - 1 2  and -8 hr ammonium 

chloride dosing to minimize potential gastrointestinal distress. 

Subjects received one of the four treatments: dextroamphetamine 20 mg, 

dextroamphetamine 10 mg, dextroamphetamine 5 mg, or placebo orally. Both the 

subjects and the investigator were blinded to treatment. Doses were prepared by the 

MCV Hospitals Department of Pharmacy and dispensed by the MCV Hospitals 

Investigational Pharmacy. Dexedrine tablets (SKF Laboratories, Philadelphia, PA) 

containing 5 mg dextroamphetamine sulfate were used to prepare the doses. The 

tablets were placed in opaque gelatin capsules to maintain blinding. Sufficient lactose 



was added to the capsules to make all doses the same weight. Placebo capsules 

contained lactose only. Each dose was administered as two capsules. 
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Prior to dosing, a heparin containing catheter was inserted into a forearm vein 

for access to blood sampling. Seven-mL samples for determination of 

dextroamphetamine concentration were collected in red-top tubes with no additives at 

the following times: pre-dose, 1 ,  1 .33,  2,  2 .33,  3 ,  3 . 33 , 4,  6, 8 ,  12 ,  1 8 ,  and 24 hr 

after dextroamphetamine or placebo dosing. Blood samples were allowed to clot, 

centrifuged (within 1 hour of venipuncture) for 10 minutes, serum harvested, and 

stored at -20 degrees Celsius until analysis. Five-mL samples for the determination 

of prolactin concentration were collected in red-top tubes with no additives at the 

following times: pre-dose, I ,  2, 3, 4 ,  5 and 6 hr after dextroamphetamine or placebo 

dosing. Blood samples were allowed to clot, centrifuged (within 1 hour of 

venipuncture) for 1 0  minutes , serum harvested , and stored at -20 degrees Celsius until 

analysis. 

Subjects completely emptied their bladders just before dextroamphetamine or 

placebo dosing and the urine pH was determined using a pH meter (Corning) 

immediately at room temperature after gently shaking the specimen. Two 25 mL 

aliquots of the urine were retained and frozen until analysis. Urine was then collected 

over the following intervals after dextroamphetamine or placebo dosing: 0-2 hr, 2-4 

hr, 4-8 hr, 8- 12  hr, 12- 1 8  hr, 1 8-24 hr. The pH of the urine voided at the end of 

each collection interval was determined and the total volume of urine collected during 

the interval was measured. A 25 mL aliquot of the urine was retained and frozen 

until analysis for dextroamphetamine concentration. Subjects were required to drink 



at least 1 20 mL of water every hour beginning one hour before dextroamphetamine 

dosing and continuing through the four hours after dosing. 
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Five-minute segments of 28 channel EEG were recorded for each subject using 

a NeuroScience Brain Imager (San Diego, CA) with eyes closed at 0, 1 ,  2, 3, 4, 6, 8 ,  

and 12  hrs . Subjects reclined in a hospital bed with the lights off during the 

recordings. They were asked to count back from 500 by 3s to maintain vigilance. 

The electrodes were placed using an Electro-cap according to the 10/20 International 

System with 8 additional electrodes located 50% between the standard 10/20 

placement. Omni-Prep «D.O. Weaver & Co. ,Aurora, CO) was used to prepare the 

scalp and Electro-Gel (Electro-Cap International , Inc. , Dallas, TX) was used as the 

conducting gel . Linked ears were used as a reference. Four additional electrodes 

were placed to monitor for vertical and lateral eye movements and electromyographic 

activity . Electrodes in the cap, ear clips, and eye movement monitors were made of 

tin .  Electrode impedances were checked before each recording, and maintained at 

less than 5 . 6  kohms and similar between electrodes. Disturbances in the room or 

subject movement during the EEG was recorded. The Brain Imager filters were set 

as follows: Low filter - 0.30 Hz, High filter - 40 Hz, Notch filter - off. The raw 

EEG was stored on optical disks . System integrity of the Brain Imager was checked 

weekly throughout the study to ensure stability of channel calibration and proper filter 

functioning. 

Each subject completed a computerized visual CPT (NeuroScan , Inc . )  at 0, 1 ,  

2,  3 ,  4 ,  6, 8 and 1 2  hr. In this task, the digits 0 through 9 briefly appear on the 

screen. The subject presses the left button of the mouse when a 0 appears and the 



right button for all other digits. The interstimulus interval varied from 0.8 to 1 .2 

seconds. A total of 120 stimuli were presented during each testing session. Two 

practice sessions were completed before beginning the 0 hr test battery. 

7 1  

Subjects completed a computerized motor task, finger tapping (NeuroScan, Inc. )  

at 0 ,  1 ,  2 ,  3 ,  4 ,  6,  8 and 1 2  hr. During this task, subjects tap the mouse button as 

fast as possible for 10  seconds, first with their right hand and then with their left. A 

total of three trials with each hand were completed during each testing session. Two 

practice sessions were completed before beginning the 0 hr test battery. 

A self-rated scale (Appendix B) based on the MBG (a measure of euphoria) and 

the A (a measure of amphetamine effects) sub scales of the Addiction Research Center 

Inventory Scales described by Martin et al .21 was completed by each subject at 0, 1 ,  

2,  3 ,  4 ,  6,  8 and 12  hr. The scale consisted of 23 questions which the subject 

responded to on a scale of 1 to 5 .  At the same times, a 100 mm visual analog mood 

scale (Appendix C) was completed . 

Blood pressure (sitting) and heart rate were measured at the following times: 

predose and 1 ,  2, 3, 4, 6, 8, 12 ,  and 24 hr after dextroamphetamine or placebo 

dosing using a Dynamap (Critikon, Tampa, FL) . 

When above measurements were scheduled at the same time, they were 

conducted in the following sequence: 1 )  urine collection , 2) blood samples, 3) EEG, 

4) CPT, 5) rating scales, 6) finger tapping and 7) vital signs with the blood sample 

being collected at exactly the scheduled time. 

All subjects were observed for symptoms and signs of clinical intolerance to the 

drugs or procedures and asked to report any adverse effects. These were evaluated 



by the physician monitor for their clinical significance and potential need for 

treatment. 

At the conclusion of his participation in the study, each subject was asked to 

identify which treatment he believed he had received during each period. 

4.2.2 Sample analysis 
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Assays for amphetamine in serum were performed by the author at the School 

of Pharmacy. Method development was conducted with the guidance of Clark March 

in the Biopharmaceutical Analysis Laboratory and is described in section 4 .2 .2a. The 

final method is described in section 4.2 .2b.  Validation of the method is described in 

section 4 .2 .2c. Description of the analysis of the subject samples from the clinical 

study is in section 4 .2 .2d. Amphetamine in urine was analyzed by a GC-MS method 

in the MCVH Toxicology Laboratory under the direction of Dr. Alphonse Poklis. 

The method is described in section 4 .2 .2e. Urine samples for subjects 1 ,  2, 4, 6,  8, 

9 and 10 were analyzed for amphetamine concentration. Assays for prolactin in 

serum were performed using an RIA method by Linda Lawrence, M.S .  in the Clinical 

Research Center Core Laboratory at MCV. Description of the method is found in 

section 4 .2 . 2f. 

4 .2 .2a Analytical Method Development for Amphetamine in Serum 

Analytical method development for amphetamine in serum began in September 

of 199 1 ,  after the completion of the clinical study. Requirements set forth to guide 

initial method selection included 1) ability to quantitate serum concentrations in the 
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range of 1 ng/mL (expected concentrations at 24 hours after 5 mg dose) to 60 ng/mL 

(expected peak concentration after 20 mg dose), 2) 1 mL or smaller serum sample 

needed for each extraction, and 3) necessary equipment and expertise available within 

the School of Pharmacy and supplies reasonable in cost. To achieve quantitation at 

serum levels in the low ng/mL range, gas chromatographic (GC) methods with 

detection of derivatized drug by mass spectrometry (MS), electron-capture detection 

(BCD), flame-ionization detection (FID), or nitrogen-phosphorus detection (NPD) are 

most likely to be useful . 127.17 Of these methods, GC-MS is the most sensitive. 

Equipment to perform the analysis by GC-MS was not readily available however, so 

alternatives were considered. A GC equipped with an ECD and an NPD was 

available, so a method for amphetamine in plasma, urine, and cerebral spinal fluid 

using GC_NPDI28. 129. 130 developed by Dr. Narasimhachari at VCU was chosen 

as the initial method to investigate. 

In Dr. Narasimhachari 's  method , the internal standard l3-methylphenethylamine 

is added to l -mL aliquots of plasma containing amphetamine. The sample is 

alkalinized by the addition of 0.5 mL of 2 N NaOH, salinized with 1 gram of NaCI 

and extracted twice with 5 mL of ethyl acetate. The organic layer is separated, 

pooled, and then back extracted with 0.5 mL of 0.5 N HCI and the organic layer 

discarded . The acid extract is alkalinized with 0.5 mL of 2N NaOH and extracted 

into 5 mL of ethyl acetate. The organic layer is  separated and mixed with 0.5 mL 

CS
2 

and set aside for 2 hours. The sample is then washed with 0.5 mL of 0.5 N 

HCI, the organic layer is evaporated to dryness, and then reconstituted in 1 00  JLL of 

ethyl acetate and injected onto the GC column. A Hewlett Packard 5840 GC with a 
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nitrogen-specific detector was used. Three columns were used: I )  a 1 . 3-m glass 

column packed with 2 %  OV- l O I  on Chromosorb WHP, 2) a 1 . 3-m glass column 

packed with 3 %  SP-2250 on Supelcoport 100-200 mesh and 3) a 0.65-m glass column 

with 3 %  OV-225 on Chromosorb WHP. The oven temperature was 140"C or 145°C, 

the injector temperature was 250"C and the detector temperature was 3000c. This 

method provided retention times of less than 3 minutes for both the analyte and 

internal standard. 

Dr. Narasimhachari 's  method required modification for use in our laboratory 

because of equipment differences. The method was adapted for use with a 5890 

Series II GC with nitrogen-phosphorus detector, 7673 Autosampler and controller, 

3396 Series II integrator, and capillary column fittings (Hewlett Packard Co. , 

Avondale, PA) as follows: 

A 15-m DB5 capillary column with internal diameter of 0.32 mm and fIlm 

thickness of 0.25 microns (J&W Scientific, Folsom, CA) was used with injections 

made in the splitless mode. Helium was used as the carrier gas, with a column flow 

of 1 . 2 mLimin at an injector temperature of 2000C,  detector temperature of 250"C 

and column temperature of l 000C.  To l -mL samples containing amphetamine and {3-
methylphenethylamine in water was added 0.5 mL I N  NaOH and 5 mL ethyl acetate. 

The organic layer was separated and retained , and 0. 1 mL CS2 was added. After 1 

hour, the samples were evaporated to dryness and reconstituted with 50 ILL ethyl 

acetate. 1 ILL was injected onto the column. 

These initial conditions did not provide adequate sensitivity for amphetamine. 

In addition , an interfering peak at the retention time of the internal standard was 
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present. The following factors were modified in an attempt to improve sensitivity and 

chromatography:  1 )  integrator attenuation (-2, - 1 ,  0, 1 or 2), 2) injection volume ( 1 , 2 

or 3 �L), 3) purge valve reset time (0.5 ,  0.75 ,  1 ,  or 1 .5 �L), 3) injection port 

temperature (90, 100, or 1 1 0"C), 4) oven temperature program (rate = 2 ,  5 ,  10 or 

15°C/min), 5) injection port liner type (untapered or dual-tapered),  6) reconstitution 

solvent (ethyl acetate, toluene, toluene:methanol [96:4] , dodecane or isooctane), 7) 

volume of C� added (25 ,  50, 75, 100, 125 or 150 �L) , 8) volume of ethyl acetate 

for extraction (2 , 3 ,  4 ,  5 or 6 mL), and 9) choice of internal standard (j3-
methylphenethylamine or a-phenethylamine. Modifications to these factors improved 

the sensitivity somewhat , but the interfering peak remained . 

Samples of amphetamine and ,s-methylphenethylamine in serum were prepared 

and extracted . Many interfering peaks were present, so a three-step extraction 

procedure similar to that described by Narasimhachari (discussed above) was tried. 

To each sample, 0 .5 mL of I N NaOH and 5 mL ethyl acetate were added. The 

organic layer was separated and 0.5 mL of 0.5 N HCl was added. The organic layer 

was separated and discarded . To the aqueous layer, 0.5 mL or 1 N NaOH and 5 mL 

of ethyl acetate was added . The organic layer was separated and 50 �L of C� was 

added. After 1 hour, the samples were evaporated to dryness, reconstituted with 20 

�L of ethyl acetate, and 2 �L were injected. The three-step extraction resulted in 

fewer interfering peaks, but did not eliminate them. In an attempt to remove or 

reduce the interfering peaks, the following factors were modified : 1 )  source of 

reagents, 2) preparation and storage of reagents, 3) pipet tips and extraction tubes 

used, and 4) type of extraction solvent (toluene or ethyl acetate) . Despite these 



modifications, problems with sensitivity and selectivity remained . Selectivity 

problems may have eventually been solved because the reagents appeared to be 

responsible, but concentrations in serum of less than 5 - 10 ng/mL were not 

quantifiable, so sensitivity was the major limiting problem. 
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Derivatization in gas chromatography can be used to improve chromatography,  

as with the isothiocyanate derivative of amphetamine'28, or  to enhance the detectability 

of a compound by introducing detector-oriented labels onto it. 131 The latter 

approach has been particularly successful with derivatives that enhance detection by 

ECD.  A number of  halogenated reagents have been used to derivatize primary 

arnines for subsequent analysis by GC-ECD. 132 The decision was made to switch to 

ECD and investigate alternative derivatizing reagents in an attempt to improve 

sensitivity and perhaps selectivity. 

The next experiments employed the same GC and column with the addition of 

an ECD to replace the NPD. Helium (grade 5) flow through the column was 1 .25 

mLimin with an injection port temperature of 200"C, detector temperature of 300"C 

and column temperature programmed at 1 10"C for 1 .5 min , increase at 10°C/min to 

1 60°C and hold for 10 min. 5 %  methane in argon was used as the make-up gas 

flowing at 65 mllmin. Splitless injection was used with a dual tapered liner and 

purge valve reset time of 0.75 min. 

The first derivatizing reagent investigated was trifluoroacetic anhydride (TFAA). 

Samples of amphetamine and is-methylphenethylamine were extracted using three 

different extraction solvents: ethyl acetate, toluene, and ethyl ether/hexane (8 :2). 

The derivatizing reagent was added to the organic extract and the mixture was heated 
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in a water bath at 50"C for 20 min. Samples were evaporated to dryness, reconstituted 

with ethyl acetate and 2 I'L were injected into the GC. No analyte peaks could be 

detected. Poole & Poolel33 reported the relative response of the ECD to 

haloalkylacyl derivatives of amphetamine. Responses relative to monochloroacetyl 

derivatives are as follows: trichloroacetyl 540, trifluoroacetyl < 0. 1 ,  

pentafluoropropionyl 40, heptafluorobutyryl 90, perfluorooctonyl 230, and 

pentafluorobenwyl 770. Based on these responses, trifluoroacetyl derivatives are 

least detectable, making TF AA a poor choice for derivatizing reagent. Subsequent 

experiments were conducted with trichloroacetyl chloride (rCA) and 

pentafluorobenzoyl chloride (PFB) as derivatizing reagents. 

When TCA and PFB were compared directly at the same concentration using 

toluene as the extraction solvent that the derivatization reaction was carried out in,  

peak height was less than half with TCA than with PFB. The peak shape however, 

was improved with the TCA derivative. To achieve quantitation as low as 1 ng/mL 

of amphetamine in serum,  it was decided to continue with the PFB derivative which 

provided greater detector response. The following factors were examined to improve 

sensitivity and selectivity using the PFB derivative: 1) concentration of PFB chloride 

(0.001 , 0.0 1 , 0. 1 ,  1 ,  10 or 100%),  2) addition of pyridine as an acid receptor to 

facilitate the derivatization reaction , 13I 3) concentration of pyridine added (0.01 , 0. 1 ,  

1 or 10%) , 4) volume of serum sample needed (0.5 or 1 mL), 5) storage of diluted 

derivatizing reagent (store in refrigerator, room temperature or dilute just prior to 

use) , 6) volume and concentration of NaOH and HCI solutions for extraction to 

determine the minimum acid and base that could be used while still maintaining 
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adequate pH at each step for effective extraction, 7) source of solvents (Fisher or 

Burdick & Jackson) ,  8) source of derivatizing reagent (Aldrich or Regis) , 9) removal 

of trace amounts of water prior to derivatization step, 10) method for washing 

glassware (with and without a final rinse in toluene) , 1 1 ) column type (DB- 1 7  or DB-

5) and 12)  type of extraction and centrifuge tubes (pyrex or borosilicate glass). After 

adjusting these factors, it appeared that the lowest level of quantitation that could be 

achieved was 2 ng of amphetamine per mL of serum,  which represents a peak height 

that was eight time the biological noise at the retention time for amphetamine. The 

retention times of amphetamine and ,s-methylphenethylamine were 14 .3  and 14 .6  min 

respectively . 

4 .2 .2b Description of the Analytical Method for Amphetamine in Serum 

The final method that was validated (section 4 .2 .2c) and used to analyze 

samples from the clinical study is described below. The reagents and supplies used 

for the assay are listed in Table 4. 1 .  

Sample preparation . Add 1 mL of serum, 25 J.LL of internal standard solution (2 

J.Lg/mL) ,and 0.5 mL of 0 .5  N NaOH to a culture tube. Vortex briefly. Add 5 mL 

ethyl acetate to the culture tube and vortex intermittently for 30 sec. Centrifuge for 

10  min at 1500 rpm. Transfer the ethyl acetate layer to a clean culture tube. Add 5 

mL of 0.001 N HCl . Vortex for 30 sec. Centrifuge for 10  min at 1 500 rpm. 

Aspirate the ethyl acetate layer to waste. Add 0.5 mL of 0.5N NaOH and vortex 

briefly.  Add 1 mL toluene and vortex for 30 sec. Centrifuge for 10  min at 1500 

rpm. Transfer toluene layer to centrifuge tube previously rinsed in toluene. Add 5 



Table 4. 1 Reagents and Supplies Used for Assay of Amphetamine in Serum 

1 .  d-Amphetamine, 1 mg/mL in methanol (All tech Associates, Deerfield, IL) 

2 .  ,s-Methylphenethylamine, 99  % (Aldrich Chemical Co. , Milwaukee, WI) 

3 .  Pyridine, silylation grade (pierce, Rockford, IL) 

4 .  Pentafluorobenzoyl chloride (Regis Chemical Company ,  Morton Grove, IL) 

5 .  Sodium hydroxide, ASC (Fisher Scientific, Fair Lawn, NJ) 

6. Hydrochloric acid, ASC (Fisher Scientific) 

7. Methanol , HPLC grade (Fisher Scientific) 

8 .  Toluene, High Purity (Baxter Healthcare Corp . ,  Burdick & Jackson Division, 
Muskegon , MI) 

9 .  Ethyl Acetate, High Purity (Baxter Healthcare Corp. , Burdick & Jackson 
Division) 

10.  Distilled , deionized water 

1 1 .  Helium, grade 5 .0  (AIRCO Medical Gases, Ashland, VA) 

12 .  5% Methane in  argon (AIRCO Medical Gases) 

1 3 .  Nitrogen , Medical grade (AIRCO Medical Gases) 
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14 .  Borosilicate glass screw cap culture tubes , 16  X 125mm, with teflon-lined caps 
(Baxter Diagnostics, Inc. , Scientific Products Division, McGaw Park, IL) 

15 .  Borosilicate glass screw cap centrifuge tubes, 10 mL, with teflon-lined caps 
(Scientific Products) 

1 6. Borosilicate glass transfer pipets, 5 3/4 inches (Scientific Products) 

17 .  Autosampler vial inserts, flat bottom, 200 JLL (Sun Brokers,  Wilmington , NC) 

1 8 .  Autosampler vial caps, teflon-lined rubber septum (Sun Brokers) 

19 .  Glass syringes, model 701 ,  (Hamilton Co. , Reno, NY) 
20. Injection port liner, dual tapered, 4mm 10, 800 JLL volume (Hewlett Packard, 

Avondale, PA) 
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ilL of 1 % pyridine and 5 ilL of 1 % pentafluorobenzoyl chloride. Vortex briefly. 

Place centrifuge tube in water bath at 50"C for 30 min. Evaporate toluene mixture to 

dryness under a flow of nitrogen in a Turbo-Vap LV evaporator (Zymark Corp. , 

Hopkington, MA) . Reconstitute the residue with 100 ilL of ethyl acetate and vortex 

briefly. Transfer the sample to an autosampler vial with insert and cap. Inject 1 ilL 

into the GC. 

Chromato�raphic Conditions. A 5890 Series IT gas chromatograph with nickel 

63 electron-capture detector, 7673 autosampler and controller and 3396 Series II 

integrator (Hewlett Packard Co. ,Avondale, PA) was used for the analyses. The 

column was a 15 m capillary DB-5 column with internal diameter of 0 .32 mm and 

film thickness of 0 .25 Ilm (J & W Scientific, Folsom, CA). The following gas flow 

rates were used : column - 1 .4 mLimin at 80"C (helium) , column head pressure - 5 

psi (helium), septum purge - 50 mLimin (helium), split - 3 mL/min (helium), make­

up gas - 65 mLimin at 300"C and pressure 50 psi (5 % methane in argon). 

Temperatures for the system were: injector - 200"C, detector - 300"C, oven program -

80°C for 1 . 5 min then 1000C/min to 2500C then 2500c for 1 min. The purge valve 

reset time was 0.75 min and the splitless injection mode was used. 

Data Evaluation. The amphetamine concentration of the prepared standards (50 

ng/mL, 20 ng/mL, 10 ng/mL, 5 ng/mL, 3 ng/mL, and 2 ng/mL) was regressed 

against the peak area ratio of amphetamine to internal standard to obtain calibration 

curves. The data was better described by a power function than a linear function , 

because the power function minimized the difference between back-calculated values 

and actual values for the highest standards. The following regression equation was 
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used: 

y = axb 

where x = concentration of amphetamine standard, y = peak area ratio, and a and b .  

are constants. The constants a and b were calculated with the linear regression 

function of Quattro Pro (Borland International , Inc. , Scotts Valley, CA) using a log 

transform of the data. An example calibration curve is shown in Figure 4 . 1 .  

4 .2 .2c Analytical Method Validation for Amphetamine in Serum 

The method was evaluated with respect to specificity, limit of quantitation , 

linearity , precision within a run, precision and accuracy between runs, extraction 

recovery , and stability of prepared samples. Analysis of spiked samples whose 

concentrations were unknown to the analyst were performed to further assess the 

accuracy of the method. The effects of freezing, thawing, and storage of the samples 

prior to analysis was also evaluated . 

Specificity. Serum collected during the placebo period of the clinical study 

from nine study volunteers and serum harvested from two additional donors was 

examined for the presence of potential interferences with amphetamine or the internal 

standard . I -mL samples were extracted, derivatized and injected on the GC. These 

chromatograms were inspected for the presence of interfering peaks at the retention 

times of amphetamine and the internal standard . Two of the samples had small peaks 

that interfered with amphetamine that were 1 2  % and 17  % of the peak height of the 2 

ng/mL standard. These were not considered to be significant interferences for this 

analysis. Chromatograms from the samples collected from the study volunteers are 
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Figure 4. 1 An example calibration curve for assay of amphetamine in serum 



presented in Appendix F. Serum from these sources was then used to prepare 

standards and controls for use during the method validation and subject sample 

analyses. 
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Limit of Quantitation. The lowest standard concentration of amphetamine for 

this analysis was established at 2 ng/mL of serum.  At this concentration, the peak 

height of amphetamine was eight times the noise of a amphetamine-free biological 

sample at the retention time of amphetamine. The mean back calculated concentration 

for the 2 ng/mL standard obtained during the analytical validation runs (average of 1 2  

analyses) was 2 .0  ng/mL with a relative standard deviation, expressed as a percent (%  

RSD) , of 7 .91  % .  

Linearit)'. Amphetamine serum concentrations over the range from 2 to 50 

ng/mL were evaluated for the calibration curve. Peak concentrations for subject 

samples following the 20 mg dose of amphetamine were expected to be approximately 

50 ng/mL. The standards and controls used for this evaluation were made using 

pooled serum from two of the sources evaluated for possible interferences. 

Calibration curves from six analytical runs, with duplicates of each standard 

concentration in each run , were examined. A blank serum sample was also analyzed 

with each run . Example chromatograms of each standard and control from one run 

are presented in Appendix G.  The constants (a and b) and the correlation coefficients 

of the calibration curves are presented in Table 4.2 .  As an additional measure of the 

appropriateness of the curve modeling , the calculated concentrations of the standards 

(back-calculated from the regression line) were examined . The back-calculated 

concentrations are presented in Table 4 .3 .  The RSD (%)  indicates the variability in 
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Table 4 .2  Regression Statistics for Serum Calibration Curves 

Date Run Number a b Correlation 
Coefficient 

1 /27/92 0.0275 0 .84 1 4  0.9979 

1 /28/92 2 0 .028 1 0 .84 1 6  0.9959 

1 /30/92 3 0.0287 0. 8490 0.9992 

2/8/92 4 0.0298 0. 8422 0.9988 

2/ 15/92 5 0. 0323 0 .825 1 0.9967 

2/1 8/92 6 0.03 1 3  0. 8069 0.9975 

Mean 0.0296 0. 8344 0. 9977 

SD 0.0019 0 .0142 0.001 1 

RSD ( % )  6 .41  1 .  7 1  0. 1 2  
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Table 4 . 3  Concentrations of Standards Back-calculated from the Regression 
Equations 

Amphetamine Concentration (ng/mL) 

Run No. 50 20 10  5 3 2 

54 . 35 19 .75 10 .41  4 .78 2 . 84 2 . 1 3  

53 .00 17 .35 9 . 8 1  4 .72 2 . 88 2.28 

2 5 1 .66 19 .95 1 1 . 57 5 . 65 3 . 2 1  1 . 89 

43 . 74 1 8 . 87 9 .97 5 . 68 2 . 85 1 . 66 

3 . 47.75 19 .59 10. 17  5 .03 2 . 88 1 .94 

5 1 . 2 1  2 1 .26 9 .73 5 . 17  2 . 82 2 . 1 8  

4 50.49 20.26 10. 8 1  5 .06 3 .03 2 .04 

50. 1 7  19 .94 9 .5 1 4 .30 3 . 1 1  2 .05 

5 5 1 .56 20. 83 10 .80 4 . 86 3. 19  1 . 86 

4 1 .25 22.22 1 1 . 1 3 4 .66 2 .68 2 . 1 1  

6 48.40 1 8 .47 9 .54 4 .63 3 .08 1 .96 

47.67 24 . 23 10.92 4 .79 3 .24 1 . 93 

Mean 49. 27 20.23 10 .36 4 .94 2.98 2.00 

SD 3 . 62 1 .72 0 .65 0.39 0. 17  0. 1 6  

RSD( %)  7 . 35 8 .49 6.26 7 .86 5 . 85 7 .91  

DFA(%) - 1 .46 1 . 1 3 3 .64 - 1 . 1 2 -0.53 0. 1 2  
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the calibration curves and the difference from actual , expressed as a percent (OF A %)  

shows the accuracy of  the calibration curves. DFA (%)  is calculated as: DFA(%) = 
[(mean - actual)/actual] x 100. These results indicate that the range of the calibration 

curve (2 ng/mL to 50 ng/mL) for amphetamine is appropriate and the variability is 

acceptable. 

Precision within a run. To evaluate precision within a run , six replicates of 

control samples (prepared by spiking blank serum with amphetamine at 35, 7 .54,  and 

3 .5  ng/mL) were analyzed in a single run .  The results of these analyses are presented 

in Table 4 .4 .  The variability, expressed as RSD (%) ,  is acceptable for the purposes 

of this analytical method. 

Precision and accuracy between runs. To evaluate precision and accuracy 

between runs, control samples (prepared by spiking blank serum with amphetamine at 

35 , 7 .5  and 3 . 5  ng/mL) were analyzed in six analytical runs. The results are shown 

in Table 4 .5 .  Precision was assessed by examining the RSD (%)  of each control 

across the 6 runs. Accuracy is reflected in the DFA (%) for each control across the 6 

runs. The precision and accuracy between runs for this method was acceptable. 

Extraction recovery. Extraction recovery was assessed by comparing results 

from serum samples spiked with amphetamine and carried through the extraction and 

derivatization step to results from blank serum samples carried through the extraction 

and then spiked with amphetamine just prior to derivatization . This process examines 

extraction recovery, but does not assess the efficiency of the derivatization reaction . 

To perform the recovery study, blank serum was spiked to amphetamine 

concentrations of 50, 5 and 2 ng/mL (3 samples at each concentration). These 
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Table 4.4 Data for Within-Run Precision 

Amphetamine Concentration (ng/mL) 

Replicate No. 35 7 .5  3 .5  

1 34. 60  8.03 3 . 25 

2 30. 88 7 .63 3 .26 

3 33.02 7.99 3 .05 

4 34 . 67 7 .66 3 . 10 

5 33 .80 7 .74 3 . 4 1  

6 33. 1 6  8 .09 3 . 2 1  

Mean 33 . 36 7 .86 3 . 2 1  

SD 1 .27 0. 19  0. 1 2  

RSD ( % )  3 . 82 2 .36 3 .63 

Table 4 .5  Data for Precision and Accuracy Between Runs 

Amphetamine Concentration (ng/mL) 

Run No. 35 7 .5  3 .5  

30. 87 7 .85 3 .49 

2 33.22 7 .72 3 . 1 6  

3 32.79 7 .4 1  3 .45 

4 34 . 60 8 .03 3 . 25 

5 29 .56 7 .29 3 .30 

6 32 .00 6 .90 3 .62 

Mean 32. 17  7.53 3.38 

SD 1 . 78 0 .4 1  0. 17  

RSD ( % )  5 .53 5 .44 5 .03 

DFA ( % )  -8.09 0.40 -3.43 
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samples and nine blank serum samples were extracted using the procedure described 

in section 4 .2 .2b.  Just before the addition of the derivatizing agent, the blank serum 

extracts were spiked with amphetamine to 50, 5 and 2 ng/mL (3 samples at each 

concentration). All samples were then derivatized and injected into the GC. 

Recovery was calculated as the mean peak height of the unextracted samples divided 

by the mean peak height of the extracted samples, expressed as a percent. The results 

are presented in Table 4 . 6. The extraction recovery of amphetamine was 53 .6 % ,  

42 . 5 %  and 47. 4 %  at 2 ,  5 and 50 ng/mL respectively. The extraction recovery of the 

internal standard was 49.5 % .  Spiking the amphetamine into toluene alone, rather 

than the toluene-serum extract was attempted initially,  but this resulted in greater peak 

heights for the extracted samples than the unextracted samples. This indicates the 

presence of a matrix effect in the derivatization or detection of amphetamine. 

Stability of prepared samples. To examine the stability of prepared samples, 

four standard curves were extracted and then exposed to various conditions. The first 

set of standards were carried through the entire procedure and injected into the GC 

immediately.  The second set of standards were carried through the entire procedure 

and allowed to sit on the autosampler tray (at room temperature) for 24 hours before 

they were injected. The third set of standards was carried through the extraction, 

derivatization and dry-down steps. Prior to reconstitution , the samples were stored in  

a freezer at -20°C for 24 hours. The samples were then brought to room temperature, 

reconstituted and injected into the GC. The fourth set of standards was carried 

through the entire process until they were ready to inject. They were then stored at -

20°C for 24 hours. They were then brought to room temperature and injected. The 
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results of these experiments are given in Table 4.7.  These results indicate that the 

samples can be processed and stored under any of these conditions without loss of the 

ability to detect amphetamine concentrations in the sample. 

Analysis of blinded Spiked samples. Ten blank serum samples were spiked with 

amphetamine at concentrations within the calibration curve range of the assay. The 

concentrations of amphetamine in these samples were unknown to the analyst at the 

time of the analyses. These results were used to further evaluate the accuracy of the 

method. The average DFA (%)  for the ten samples was 7.62 % .  The results are 

shown in Table 4 .8 .  These results provide further evidence that the accuracy of the 

method is adequate its intended use. 

Effects of freezing and thawing. A set of controls (35 ,  7.5 and 3 .5  ng/mL) was 

prepared and frozen. The controls were thawed 2 days later and a I -mL aliquot was 

analyzed for amphetamine concentration. The remainder of the sample was re-frozen. 

The controls were thawed again 8 days later, a I -mL aliquot was analyzed for 

amphetamine concentration, and the remainder of the sample was re-frozen . The 

freeze/thaw cycle was repeated 2 days later and then 20 days later (a total of four 

times) to test the stability of amphetamine in serum to repeated freezing and thawing. 

The results are presented in Table 4.9.  Repeated freezing and thawing did not 

significantly affect the concentrations of amphetamine in the controls. 

Stability of amphetamine in serum samples under storage conditions. This 

experiment was conducted to study the stability of serum samples containing 

amphetamine under the same storage conditions as the samples from the clinical study 

were stored . The first serum samples from the clinical study were collected in May, 



Table 4 .6  Extraction Recovery of  Amphetamine and �-methylphenethylamine 
from Serum 

Compound Concentration Mean Mean Recovery 
(ng/mL) Extracted Unextracted (%)  

Peak Height Peak Height 

Amphetamine 2 569 1 062 53.6 

Amphetamine 5 799 1 879 42.5 

Amphetamine 50 1 6 1 54 34080 47.4  

�-methyl- 50 59619  1 20506 49.5 
pheneth y lamine 

Table 4 .7 Results of Stability Study of Prepared Samples 

Amphetamine Peak Area Ratio to Internal Standard 

Standard 50 20 10  5 3 2 
Set 

0 .601  0. 2 1 8  0. 157 0. 109 0.074 0.046 

2 0. 670 0. 344 0. 1 38 0.087 0.06 1  0.044 

3 0. 754 0. 305 0. 1 39 0. 107 0.064 0.053 

4 0.687 0.270 * 0.087 0.061  0.034 

Mean 0.678 0.284 0. 145 0.098 0.065 0.044 

SO 0.063 0.054 0.01 1 0 .012  0.006 0.008 

RSO ( %)  9 .29 19 .01  7.59 12 .24 9 .54 17 .73 

* Sample lost due to autosampler failure 

90 



9 1  

Table 4 . 8  Results of Analysis of Blinded Spiked Samples 

Amphetamine Added Amphetamine Found Percent Difference From 
(ng/mL) (ng/mL) Actual (DFA %)  

38 .5  39.57 2 .78 

0 BLQ 0 

6 .0 6.78 1 3 .00 

6.0 6 .03 0.50 

38.5 37.05 -3.77 

3 .5  4 .24 2 1 . 14 

0 BLQ 0 

3 .5  3 . 84 9 .7 1  

24.4 22. 12  -9. 34 

24. 4  20.5 1  - 15 .94 

Mean 7 .62 

BLQ = Below limit of quantitatlOn 

Table 4 .9  Effect of Repeated Freezing and Thawing on the Stability of 
Amphetamine in Serum 

Amphetamine Concentration (ng/mL) 

Cycle No. 35 7.5 3.5 

29. 17  7 .35 3 .05 

2 32.69 8 .22 3.42 

3 37.54 7.29 4 . 1 7  

4 28 .22 7 .65 3.5 1 

Mean 32 .07 7.63 3 .54 

SD 4.04 0.43 0.47 

RSD (%)  1 2 . 60 5 . 64 1 3 .28 

DFA (%)  -8.37 1 . 73 1 . 14 
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1 99 1  and were stored at -20"C in polypropylene culture tubes. Stability samples were 

prepared at this time by spiking blank serum with amphetamine to 10  and 40 ng/mL. 

The stability samples were stored in polypropylene culture tubes and frozen at -20"C 

in the same freezer as the study samples until March 1992, when analysis of the study 

samples was complete. At this time they were thawed for analysis. The 

concentrations determined for the 10 ng/mL and 40 ng/mL samples were 9. 10  and 

4 l .03 ng/mL, respectively. This indicates that amphetamine was stable in serum 

stored for 10 months at -20"C under the same storage conditions as the study samples. 

4.2 .2d Analysis of Subject Serum Samples for Amphetamine 

Samples were analyzed in batches made up of two standard curves (one at the 

beginning and one at the end of the run), two of each of three controls (35 , 7.5,  3 .5 

ng/mL), with a control run after each group of 7 study samples, a blank serum 

sample, and study samples from one subject (39 samples) . The following study 

samples were diluted before analysis by adding 0.5 mL blank serum to 0.5 mL study 

sample: 20 mg dose - 1 ,  1 . 33,  2, 2 .33,  3, 3 .33,  and 4 hr and 10 mg dose - 1 ,  1 .33, 

and 2 hr. A 35 ng/mL control was similarly diluted and analyzed with each run . 

Each batch contained a total of 59 samples. 

Results from both standard curves were used to determine the regression 

equation for each batch. In one batch (run on 3/4/92) , the first and second halfs of 

the run were different from one another. The peak height of the internal standard 

was higher during the second half of the run, so the two sets of standards could not 

be used to make a single standard curve. The regression of the curve from the first 
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set of standards was used to calculate concentrations for the first half of the samples 

and the regression of the curve from the second set of standards was used to calculate 

concentrations for the second half of the samples. All quality control samples were 

acceptable using this procedure, and repeat analysis of a portion of the samples from 

both the first and second half gave similar results to the first analysis. Regression 

statistics for the standard curves are presented in Table 4 . 10.  Concentrations for the 

standards back-calculated from the regression equations are shown in Table 4 . 1 1 . 

Concentrations for the quality control samples for each batch back-calculated from the 

regression equations are presented in Table 4 . 12 .  When the control samples that fell 

outside of the precision limits (outside ±2.58 X SO of the mean obtained for all of 

the runs) or accuracy limits (more than ±25 % of the mean obtained for all of the 

runs) are excluded , the RSO ( % )  for the 35 ng/mL (diluted), the 35 ng/mL 

(undiluted) ,  the 7.5 ng/mL and the 3 .5  ng/mL control were 17 .0% , 9 .4 % , 9 .8% , and 

1 2 . 1 % respectively .  

Samples with values less than 2 .0  ng/mL were considered to be below the limit 

of quantitation and were designated BLQ. Study sample analyses were repeated for 

the following reasons: 1) the concentration determined was greater than highest 

standard (50 ng/mL) , 2) poor chromatography, 3) the back calculated value for the 

control run before or after the study sample was either more than ± 25 % of the mean 

obtained for all of the runs (outside of accuracy limits) or outside ±2.58 X SO of the 

mean obtained for all of the runs (outside of precision l imits) , or 4) the value for the 

study sample appeared to be an outlier on a plot of concentration versus time. The 

original results were considered to be confirmed if the repeat value is within ± 20 %  



Table 4 . 10  Regression Statistics for Standard Curves from Analysis of Subject 
Samples 

Date a b Correlation 
Coefficient 

2/25/92 0.0234 0. 8628 0.9933 

2/29/92 0.0248 0. 8489 0.9942 

3/2/92 0.0235 0. 8455 0.9942 

3/4/921 0.0267 0 .8 124 0.99 1 3  

0 .0190 0. 8406 0.9975 

3/8/92 0.024 1 0. 8285 0.9865 

3/ 10/92 0.0233 0 .8783 0.9932 

31 1 1 /92 0.0 183 0.9 133 0.9989 

3/ 15/92 0.02 1 9  0.91 10  0.996 1 

31 17/92 0 .0190 0.9 1 84 0.9828 

Mean 0.0224 0. 8660 0.9930 

SD 0.0028 0.0360 0.0050 

RSD(%)  12 .48 4. 13  0.46 
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a =  Concentrations for samples from first half of batch calculated from regression 
of first standard curve and the for the second half from the second standard 
curve. 
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Table 4 . 1 1  Back-Calculated Concentrations for Standards from Analysis of Subject 
Samples 

Date 50 ng/mL 20 ng/mL 10 ng/mL 5 ng/mL 3 ng/mL 2 ng/mL 
Standard Standard Standard Standard Standard Standard 

2/25/92 56.25 22.28 10.74 5 .9 1  2 .76 2 .25 
44 . 87 19 .08 7 .64 5 . 5 1  2.59 1 .95 

2/29/92 55 .24 20.99 10 .91  5 .62 3 . 38 2 .26 
52.92 1 6.33 8 .23 4 .64 2 .59 1 .95 

3/2/92 50.49 22. 39 10 .66 5 . 87 3 .30 2 . 1 7  
54.99 1 6 .77 8 .40 4 .09 2.90 1 .94 

3/4/92 58 .40 17 .30 8 .05 5 . 8 1  3 .35 1 . 89 
50. 4 1  19 .20 1 1 .28 4 .39 2 .95 2 . 1 2  

3/8/92 59.08 a 7.79 6. 17  3 .77 2 .43 
55 .63 15 .08 10.40 4 .26 2 . 80 1 . 68 

3/ 10/92 43.94 2 1 . 1 4 1 1 .46 4 .90 2 . 88 2 .46 
48. 7 1  22 . 85 8 . 78 5 . 76 2 .7 1  1 .59 

31 1 1192 52 . 39 20.79 9.02 5 . 12 2 . 85 2. 1 8  
50. 83 19 . 1 3  9.99 5 .0 1  2 . 83 2.09 

3/15/92 49. 80 19 .05 10 .90 5 . 14 3 .71  2 .09 
52.39 20. 4 1  8 .49 5 .04 2 .56 1 . 87 

311 7/92 3 1 .33 2 1 . 27 9.00 4 .68 2.76 1 . 86 
78 . 7 1  19 .27 10. 1 1  6 .01  3 .54 1 .9 1  

Mean 52.58 19 .6 1  9.55 5 .22 3 .0 1  2.04 

SD 8 . 87 2 . 17  1 .26 0 .62 0 .38 0.23 

RSD ( % )  1 6 . 86 1 1 .08 1 3 . 19  1 1 .97 1 2 .59 1 1 . 14 

DFA -5 . 1 5 1 .96 4.53 -4 .37 -0.43 - 1 .92 

a = Standard rejected due to poor chromatography 
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Table 4 . 12  Back-Calculated Concentrations for Quality Control Samples from 
Analysis of Subject Samples 

Date 35 ng/mL 35 ng/mL 7.5 ng/mL 3 .5  ng/mL 
control control control control 

(diluted) 

2/25/92 30. 85 42.62" 8.40 3 . 35 
30.82 6. 8 1  3 .55 

2/29/92 36.69 33.05 7 .8 1  4 . 1 5  
26.87 5 .67 2 . 59 

3/2/92 46. 16" 33 .85 8 .42 3 . 60  
32 . 7 1  7.00 3 . 1 6  

3/4/92 40.29 36.42 7.56 2 .92 
28.38 7.79 3 . 30 

3/8/92 34 .03 35 . 22 6.52 2.93 
32 . 1 9 6 .88 2 .98 

3/ 10/92 26.24 36.28 7.25 3 .72 
27.66 7 .3 1  5 .05" 

31 1 1 /92 26.26 30.04 6.46 3 . 29 
27 .79 6.76 3 . 27 

31 15/92 3 1 . 85 33.23 8 . 17 3 .24 
34.09 7.55 3 .20 

3/ 1 7/92 25 .53 30. 60 8 . 1 1  2 .65 
30.78 7 .33 3 .66 

Mean 33. 10  32 . 37 7 .32 3 . 37 

SD 6 .61  3 .76 0.72 0.55 

RSD 19 .98 1 1 . 6 1  9 .80 1 6.43 
( % )  

DFA 5 . 43 7.52 2 . 37 3 .79 

a = Outside accuracy and precision limits 
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of the original value. If there was a discrepancy between the original and the repeat 

value, a third assay was performed. If the third assay agreed with the original, then 

the two values were averaged and reported. If the third assay agreed with the second, 

then the two were averaged and reported. If the third assay agreed with both the 

original and the second assay, then the mean of all three values was reported. Seven 

study samples were repeated due to controls falling outside the accuracy and precision 

limits, one was repeated because the assayed value was greater than 50 ng/mL, six 

were repeated due to poor chromatography, and 14 were repeated based on the plot of 

concentration versus time. 

4 .2 .2e Analytical Method for Amphetamine in Urine 

This method was developed in the MCVH Toxicology Laboratory under the 

direction of Dr. Alphonese Poklis. The extraction and derivatization is based on the 

method of Meeker and Reynolds. l34 Briefly, urine samples containing amphetamine 

were spiked with internal standard , made basic, and then extracted with chlorobutane. 

The analytes in chlorobutane were derivatized with pentafluoropropionic anhydride. 

The chlorobutane was evaporated, the residue reconstituted in ethyl acetate, and a 

portion injected into the gas chromatograph with mass selective detector. 

Standards and controls. A reference standard at 1 .0 mg/mL d-amphetamine in 

methanol (Radian Corporation, Austin ,  TX) was used to prepare working standards by 

spiking drug-free urine with d-amphetamine to 0.2,  0.5 , 1 .0, 2 .0,  4.0,  6.0 and 8.0 

ILg/mL. The internal standard was ds-amphetamine (Radian Corporation) with 0. 1 mL 

of a 10 ILg/mL solution added to each specimen prior to analysis. Controls were 
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prepared by spiking drug-free urine to 1 and 4 ILg/mL with d-amphetamine. 

Apparatus and procedures. Analyses were performed using an HP model 5890 

gas chromatograph coupled to an HP model 5971 A  mass selective detector (Hewlett­

Packard, Avondale, CA). Data processing was performed with a HP Chemstation 

with Version 3 .0  software. A 12m x 0.2mm glass capillary HP- 1 column was used. 

The injector temperature was 25O"C and the oven temperature was programmed with 

initial temperature of 1 80"C held for 2 minutes and then increased 1 0"C/min to a flnal 

temperature of 250"C. The retention time of d-amphetamine under these conditions 

was 3 .95 minutes. The mass selective detector was operated in the SIM mode, with 

d-amphetamine monitored at ions 9 1 , 1 1 8  and 190 m/z and the deuterated internal 

standard at 96, 123 and 194 ml z. 

Sample preparation . Briefly,  2-mL samples of urine were spiked with internal 

standard , made alkaline by the addition of ammonium hydroxide, then extracted with 

4 mL of chlorobutane. Three mL of the chlorobutane layer was removed and 

evaporated to 2 mL at room temperature under nitrogen . 100 ILL of 

pentafluoropropionic anhydride (Regis Chemical Co. , Morton Grove, IL) was added 

to the chlorobutane extract, the mixture was capped and heated in a dry heat block at 

70°C for 1 5  min . The mixture was allowed to cool and was evaporated to dryness 

under nitrogen at room temperature. The residue was reconstituted with 50 ILL of 

ethyl acetate and injected into the GC/MS . 

Subject Samples. Samples were analyzed for all three active treatments for 

Subjects 1 ,  4 ,  6,  8 ,  9 and 10.  Only the 5 mg and 20 mg doses were analyzed for 

Subject 2 .  Samples were not analyzed for Subjects 3 ,  5 and 7. 
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4 .2 .2f Analytical Method for Prolactin in Serum 

The analysis for prolactin concentration in serum was performed in the Clinical 

Research Center Core Laboratory by Linda Lawrence, M.S .  using a 

radioimmunoassay (RIA) (Amersham Corp. , Arlington Heights, IL). The analyses 

were performed in January and February, 1992 . Prolactin is stable in serum over the 

9 month period that the samples were stored when frozen at -20"C. \35 

In this method, a known amount of radiolabeled prolactin (prolactinJ251) is added 

to prolactin in the serum sample and competes for a limited number of binding sites 

on a prolactin specific antibody. The proportion of the prolactinJ25I that binds to the 

antibody is inversely related to the concentration of prolactin in the serum sample. 

The prolactin bound to the antibody is reacted with a second antibody, and the 

precipitated double antibody complex is separated by centrifugation . The supernatant 

containing unbound prolactin is discarded, and the proportion of prolactinJ251 in the 

precipitate is measured by a gamma scintillation counter. The concentration of 

prolactin in the sample is determined by interpolation from a serum concentration­

response curve established using serum reference standards. 

Details of the procedure are described by the manufacturer (prolactin RIA Kit 

instructions, Code 1M. 1 06 1  , Amersham Corporation, June 1989) . Assays were 

performed using the long protocol .  Standard curves were constructed using 0, 5 ,  15 ,  

50,  100 and 200 ng/mL prolactin standards. According to the manufacturer's 

specifications, controls were also run with the study samples (RIA Control Serum, Set 

3, Cat. No. 07 1 66 1 20, ICN Biomedicals Inc .) .  If controls fell outside of the 

laboratory quality controls limits, then the assays were repeated. 
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Sensitivity, defined as the smallest amount of prolactin that can be  distinguished 

from zero using this kit, is reported by the manufacturer to be approximately 1 .5 

ng/mL. This value is the prolactin concentration that causes a decrease in count of 

two times the standard deviation from the zero prolactin standard using standard 

counting procedures. Values below 1 .5 ng/mL were considered to be below the limit 

of quantitation (BLQ) . 

Reproducibility of the Prolactin RIA Kit was evaluated by the manufacturer 

using freeze-dried control sera. The within assay coefficient of variation was 4 .3 % ,  

3 .5 % ,  and 2 . 4 %  for the low, medium , and high controls respectively. The between 

assay coefficient of variation was 5 . 7 % ,  4 .6% and 5 . 8 %  for the low, medium and 

high controls respectively. Cross-reactivity of the antiserum with other pituitary and 

placental hormones was less than 0.2 % .  

4 .2 . 3  Pharmacokinetic Data Analysis 

Pharmacokinetic analysis based on serum data was performed using both 

noncompartmental and compartmental approaches. Methods used for the analysis of 

the serum data are discussed in section 4 .2 .3a. Pharmacokinetic analysis methods 

based on urine data is presented in section 4 .2 .3b. Statistical methods used to 

compare the pharmacokinetic data obtained for the three doses of amphetamine are 

described in  section 4 .2 .3c.  

4 .2 .3a Serum Data Analysis 

The pharmacokinetic variables estimated from the serum data for this study 
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were drug concentrations in serum at each sampling time, the maximum drug 

concentration (C.,..J, the time from dosing to Cmu: (T.,..J ,  the terminal (elimination) 

rate constant (k), areas under the drug concentration-time curve extrapolated to 

infinity (AUCoo), the apparent total body clearance normalized for bioavailability, F 

(CIfF), the mean residence time (MRT) and the absorption rate constant (ka). 
Determination of these variables is discussed by Gibaldi and Perrier. l36 Plots of 

amphetamine concentrations in serum versus time, In amphetamine concentration 

versus time, and amphetamine concentration divided by dose versus time were 

constructed. Cmu: was defined as the maximum serum concentration observed in the 

24 hr following dosing. T mu: is the time (relative to dosing) that Cmu: occurred. The 

elimination rate constant, k, was calculated by log-linear regression as the slope of the 

final linear portion of the In serum drug concentration versus time curve. At least 

three concentration-time points were used to determine k. 

AUCoo,  CIfF and MRT were calculate by noncompartmental methods using the 

Quattro Pro (Borland International, Scotts Valley, CA) spreadsheet 

NONCOMP.WK I ,  Version 2 . 1 developed by Dr. Jurgen Venitz, Department of 

Pharmacy and Pharmaceutics, VCU. AUCoo was calculated by first determining the 

A UC from 0 hr to the time (twJ of the last measured concentration (CwJ by the l inear 

trapezoidal rule and then extrapolating the area to time 00 by adding the last observed 

concentration divided by the terminal rate constant (AUCoo = AUCO-wt + Cw/k) . 

Cl/F was calculated by dividing the dose administered by AUCoo'  MRT was 

calculated by dividing AUMCoo by AUCoo'  AUMC"" was calculated by determining 

area under the moment curve (AUMC) from 0 hr to Cla,t using the linear trapezoidal 
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rule by summing individual areas calculated by 

and then extrapolating the area to time 00 by adding «fwtCIu/k) + C..j�) .  

The "goodness" of  the estimates of  AUC", were evaluated by  examining the 

ratio of the extrapolated portion of AUC to AUC", ([C..jk]/AUC",). The ratio 

(expressed as a percent) ranged from 1 1  to 4 1  % for the 5 mg dose, 7 to 23 % for the 

10  mg dose, and 9 to 17%  for the 20 mg dose. For the 5 mg dose, the ratio was 

greater than 20 % for 3 of the subjects (8, 9, and 10). Less than 20 % of the total area 

was extrapolated for all subjects after the 10 and 20 mg doses. Similarly, estimates 

of AUMC", were evaluated by examining the ratio of the extrapolated portion of 

AUMC to AUMC",.  The ratio, expressed as a percent, ranged from 3 1  to 73 % for 

the 5 mg dose, 25 to 58%  for the 10  mg dose, and 28 to 47 % for the 20 mg dose. 

The estimates of AUC", were better than the estimates of AUMC"" because the 

contribution of the extrapolated portion of the area to the total AUC was smaller. 

Because T mu appeared to increase as the dose increased for a majority of the 

subjects, absorption rate of amphetamine at different doses was examined using 

compartmental pharmacokinetic methods. Pharmacokinetic compartmental models 

were fit to the serum amphetamine concentration versus time data using the nonlinear 

regression program PCNONLIN, Version 3 .0  (SCI Software, Lexington, KY). 

Several models,  including one-compartment with first order input and first order 

output with and without a lag time and two-compartment with first order input and 
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first order output from the central compartment with and without a lag time, and 

several weighting schemes, including 1 ,  l /y and l /y2, were evaluated. The Gauss­

Newton algorithm with the Levenberg modification was used as the estimation 

method. Initial values were obtained using the curve stripping program RSTRIP 

(Micromath, Salt Lake City, UT). The model which best fit the data was chosen 

based on the following criteria: 1 )  minimize the estimated standard error of the 

parameter estimates for k and ka, 2) random distribution of positive and negative 

deviations of the calculated function values, 3) minimize AIC (Akaike criteria) which 

is defined as the sum of squares corrected for the number of variables, and 4) random 

scatter in the plots of weighted residuals versus calculated values and weighted 

residuals versus the independent variable based on visual inspection of the plots , and 

5) minimize the condition number of the matrix of partial derivatives. 

Based on these criteria, the one compartment model with first order input and 

first order output without a lag time was the most appropriate model to describe the 

data for all subjects and all doses. For most subjects, using a weight of l /Y2 resulted 

in the best fit. Data from subjects 3 ( 10  and 20 mg dose) , 5 (5 mg dose) , 6 (20 mg 

dose) , 7 (5 and 10 mg dose) , and 8 ( 10  mg dose) were best modeled using a weight 

of 1 .  ka from the most appropriate model and weighting was used to compare 

treatments. 

Values for each of the pharmacokinetic variables were transferred to the V AX 

computer system (Digital Equipment Corporation) in VCU Health Sciences 

Computing Services for statistical analysis. 
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4.2 .3b Urine Data Analysis 

The pharmacokinetic variables estimated from the urine data for this study were 

the urinary excretion rate at the midpoint of the each urine collection interval , the 

elimination rate constant (1<:), and the renal clearance (Cl,.) . The dependency of Clr on 

urine pH and flow was examined. The natural log of the urinary excretion rate (the 

amount of drug excreted during the collection interval divided by the collection time) 

was plotted against time at the midpoint of the urine collection interval . The 

elimination rate constant (1<:) is equal to the negative of the slope of this line. To 

calculate Clf> the urinary excretion rate was plotted against serum concentration at the 

midpoint of the urine collection interval . If the serum concentration was not 

measured at this time, it was calculated by log-linear interpolation from the 

measurements made before and after the midpoint. Clr was determined from the slope 

of this plot. The first collection interval was excluded when evaluating Cl,. because 

the serum concentration at the midpoint of this interval was not representative of the 

entire interval due to the variability in the drug absorption process. The effect of 

urine flow and urine pH on Clr were examined by plotting Cl,. at each collection 

interval versus urine pH and urine flow at each collection interval in SAS . A 

smoothing function was used to smooth the response surface. 

4 .2 .3c Statistical Methods 

Descriptive statistics (mean, standard deviation and relative standard deviation) 

were calculated for each pharmacokinetic variable. Dose-dependency of the 

calculated pharmacokinetic parameters was evaluated by fitting the data for each 



pharmacokinetic parameter to a crossover model using a univariate mixed effects 

analysis of variance (model with both fixed and random effects) of the form 

Y ijk = JL + OJ + Tj + tk(i) + fjjk 

1 = 1 ,2 ,3 ,4  

j = 1 ,2 ,3  

k = 1 ,2 ,  . . .  , 8  
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where Yjjk is the response for the kth subject in the ith sequence in the jth 

period , JL is the overall mean , OJ is the effect of the ith sequence, Tj is the effect 

of the jth period , and tk(i) is the effect of the kth subject within the ith sequence, 

and fjjk is the random error associated with Yjjk• The fjjk are assumed to be 

normally distributed random variables with mean of 0 and common variance u,2. 

It is also assumed that the nested effects for subject are random and 

independently distributed with mean of 0 and common variance u/ , and 

independent of fjjk ' 

Model fitting was performed using PROC MIXED in SAS . J37 PROC MIXED 

allows modelling of the mean of y, as in the standard linear model , and also the 

variance of y .  The estimation method used for the covariance parameters was 

restricted maximum likelihood (REML) . The variance of y is modelled by choosing 

the form of the variance structure matrices. Simple (random effect) , unstructured, 

and time series (autoregressive) structures were evaluated. The autoregressive 

structure resulted in improved model fitting based on maximization of the Akaike's  
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Information Criterion for most variables. The autoregressive structure indicates that 

the correlation between measurements is less if they are made further apart in time. 

For pharmacokinetic parameters where the analysis with autoregressive variance 

structure did not converge, the simple structure was used. 

For pharmacokinetic parameters where the effect of treatment was significant (p 

< 0.05),  multiple comparisons of the treatments were performed using the 

ESTIMA TE procedure. 

The residuals were tested for normality using PROC UNIV ARIA TE120. This 

procedure computes the Shapiro-Wilk statistic, W, for the null hypothesis that the 

residuals are normally distributed . When the probability of a smaller value of W was 

less than or equal to 0. 1 ,  the null hypothesis of normality was rejected . The residuals 

were normally distributed for all of the pharmacokinetic variables examined . 

4 .2 .4  Pharmacodynamic Data Analysis 

The measures of response that were examined for each of the tests assessing 

pharmacodynamic effect are listed in Table 4 . 1 3 .  

4 .2 .4a EEG Analysis 

As each EEG was recorded , the signal was processed by a Fast Fourier 

Transform procedure, to determine the amplitude of the EEG in five frequency bands 

(Delta: 0.39 - 3 .9  Hz, Theta: 4 . 3  - 7 . 8  Hz, Alpha: 8 .2  - 1 1 .7 Hz, Beta I: 12 . 1 - 16.0 

Hz, and Beta II: 1 6.4  - 30.0 Hz) at each electrode. Each of the five-minute 

recordings was reviewed and edited to remove each 2 .5  second epoch (frame) that 



Table 4. 1 3  

EEG Variables 

Response Measures Evaluated in Part II - Comparison of Quantitative EEG for 
Assessment of CNS Stimulant Response 
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Total Amplitude - all frequencies (p.V) 
Total Amplitude - Delta band (p.V) 
Total Amplitude - Theta band (p.V) 
Total Amplitude - Alpha band (p.V) 
Total Amplitude - Beta I band (p.V) 
Total Amplitude - Beta II band (p.V) 
Total Power - all frequencies (p.Vl) 
Total Power - Delta band (p.V2) 

Total Amplitude (Central electrodes) - all frequencies (p.V) 
Total Amplitude (Central electrodes) - Delta band (p.V) 
Total Amplitude (Central electrodes) - Theta band (p.V) 
Total Amplitude (Central electrodes) - Alpha band (p.V) 
Total Amplitude (Central electrodes) - Beta I band (p.V) 
Total Amplitude (Central electrodes) - Beta II band (p.V) 
Total Power (Central electrodes) - all frequencies (p.Vl) 
Total Power (Central electrodes) - Delta band (p.V2) 

Total Power - Theta band (p.Vl) Total Power (Central electrodes) - Theta band (p.Vl) 
Total Power - Alpha band (p.Vl) Total Power (Central electrodes) - Alpha band (p.Vl) 
Total Power - Beta I band (p.Vl) Total Power (Central electrodes) - Beta I band (p.Vl) 
Total Power - Beta II band (p.Vl) 
Relative Power - Delta band 

Total Power (Central electrodes) - Beta II band (p.Vl) 

Relative Power - Theta band 
Relative Power - Alpha band 

Relative Standard Deviation of Ampljtude - Delta Band (% )  
Relative Standard Deviation o f  Amplitude - Alpha Band ( % )  

Relative Power - Beta I band 
Relative Power - Beta II band 

Total Amplitude (Occipital electrodes) - all frequencies (p. V) 
Total Amplitude (Occipital electrodes) - Delta band (p.V) 
Total Amplitude (Occipital electrodes) - Theta band (p. V) 
Total Amplitude (Occipital electrodes) - Alpha band (p.V) 
Total Amplitude (Occipital electrodes) - Beta I band (p. V) 
Total Amplitude (Occipital electrodes) - Beta II band (p.V) 
Total Power (Occipital electrodes) - all frequencies (p. Vl) 
Total Power (Occipital electrodes) - Delta band (p.V2) 
Total Power (Occipital electrodes) - Theta band (p. Vl) 
Total Power (Occipi tal electrodes) - Alpha band (p. Vl) 
Total Power (Occipital electrodes) - Beta I band (p.Vl) 
Total Power (Occipital electrodes) - Beta II band (p. V2) 

Psychometric tests 

Percent Correct on Continuous Performance Task ( %) 
Average Latency on Continuous Performance Task (sec) 

Mood Scales 

Total Score on Self-Rated Mood Scale 

Neuroendocrine test 

Prolactin serum concentration 

Cardiovascular measures 

Heart Rate 
Diastolic Blood Pressure 
Systolic Blood Pressure 

Finger Tapping with Left Hand (taps/sec) 
Finger Tapping with Right Hand (taps/sec) 

Score on Visual Analog Mood Scale 
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contained artifacts (eye movements, muscle movement, electrode artifacts, or 

disturbances noted during the recording). 1 17, 1 1 8  The remaining frames were averaged 

using the EEG statistical operations package on the Brain Imager to form an average 

topographical map representing the five minute recording. Recordings with fewer 

than 24 artifact-free frames were not processed further and were listed as " missing" .  

To compute averages and standard deviations representing th e  5-minute recording, the 

Brain Imager first forms sub-averages and sub-standard deviations from consecutive 

groups of eight frames each , 1 19 The amplitude in each frequency band (determined by 

FFf) measured at each of the 28 electrodes for the first eight artifact-free frames are 

added together and then divided by 8 ,  to determine the SUb-average. The sub­

standard deviation is also calculated. This process is then repeated for the next group 

of 8 frames and so on . The overall average and standard deviation is then formed by 

averaging the sub-averages and calculating their standard deviation . The overall 

average file contains the average amplitude in each of the 5 frequency bands at each 

of the 28 electrodes. The overall standard deviation file contains the standard 

deviation of the amplitude in the 5 frequency bands at each of the 28 electrodes. 

These files were then transferred from the Brain Imager to an IBM compatible 80386 

personal computer. 1ST A T (NeuroScience , Inc.) a statistical package for EEG 

processing was used to prepare ASCII files of the average and standard deviation 

files. These files were then imported into the Quattro Pro spreadsheet software 

(Borland International , Scotts Valley, CA) for further processing. 

Power was determined for each average recording by squaring the amplitude 

values at each electrode in each frequency band. Total amplitude and total power in 
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each frequency band was calculated by summing the amplitude or power at each of 

the electrodes for a given frequency band. Total amplitude and total power across all 

frequency bands was calculated by adding together the total amplitude or total power . 

in each of the frequency bands. Relative power in each frequency band was 

calculated by dividing the total power in the given frequency band by the total power 

across all frequency bands. 

Relative standard deviation (RSO) for each average recording was determined 

by dividing the standard deviation in each frequency band for each electrode by the 

average for the same frequency band and electrode, expressed as a percentage. The 

mean RSO was then calculated by averaging the RSO for all electrodes for each 

frequency band. 

Total amplitude and power in the central and occipital areas for each frequency 

band were calculated by adding together the amplitude or power at the central 

electrodes (C3 ,  CZ, and C4) and the occipital electrodes (0 1 ,  OZ and 02) 

respectively,  for a given frequency band. Total amplitude and total power in the 

central and occipital areas across all frequency bands was calculated by adding 

together the total amplitude or total power in the central and occipital areas 

respectively across all frequency bands. Frontal alpha power was not examined 

because it is more likely to be contaminated by eye movement artifacts. 

Values for the response measures calculated were transferred to the relational 

database Paradox (Borland International , Scotts Valley, CA) for data management and 

further analysis. 
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4 .2 .4b Analysis of Other Response Measures 

For the computerized visual CPT, latency of response was determined for trial 

during the session . The average latency of response and the percent of correct 

responses for each test session was determined. For the finger tapping task, the 

average rate (taps/sec) of finger tapping for each hand was calculated for each session 

by averaging the results of the three trials conducted during each session. 

A total score on the self-rated mood scale was determined for each test session 

by summing the scores obtained for each of the 23 items on the scale. A score 

between 0 and 100 was obtained for the visual analog mood scale for each test session 

by measuring the number of millimeters between the left end of the scale and the 

mark placed by the subject. Values for heart rate, systolic blood pressure and 

diastolic blood pressure were transcribed from the Dynamap (Critikon , Tampa,FL) 

output. Serum prolactin concentrations were determined as outlined in section 4 .2 .2e.  

Values for the response measures were transferred to the relational database 

Paradox (Borland International , Scotts Valley, CA) for data management and further 

analysis. 

4 . 2 .4c Pharmacodynamic methods 

Response-time profiles for each response measure were tabulated and plotted for 

each subject during each treatment. Baseline response for each measure during each 

treatment was defined as the value obtained at 0 hr, before receiving the study 

medication . Maximum response for each measure (E"..J was determined as the 

highest response observed during the 12  hours after receiving the study medication. 
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Minimum response (E..wJ was the lowest observed effect during the 1 2  hours after 

dosing. If more than one value for the response measure was missing, the Em.x or 

E...m was assigned as " missing" .  Maximum response during the first 4 hours (G.,.,. -

( l st 4 hr» was the highest value observed during the first four hours after dosing for 

each response measure. Minimum response during the first 4 hours (E...m - ( l st 4 hr» 

was the lowest effect observed during the first 4 hours after dosing. The response 

during the first four hours was examined separately,  because the effect was expected 

to be greatest during this time period. If one or more values for the response measure 

were missing, the Em.x - ( l st 4 hr) or E...m - ( 1 st 4 hr) was assigned as " missing" . 

Based on previous studies and examination of the data, either the maximum response 

(for responses that increase with increasing dose) or the minimum response (for 

responses that decrease with increasing dose) was chosen to represent the drug effect 

for each response measure. 

An effect time (ET) for each response measure after each treatment was 

calculated by: 

ET = ( I  EI -� I * 1 ) + ( 1 �-� I  *2) + ( 1 E:J-� 1  *3) + ( I E4-� 1  *4) + ( 1 �-� I  *6) + 

( I  Eg-� I *8) + (  1 EI2-� 1  * 1 2) 

where � = response at 0 hr E4 = response at 4 hr 

EI = response at 1 hr � = response at 6 hr 

� = response at 2 hr Eg = response at 8 hr 

E:J = response at 3 hr EI2 = response at 12 hr 
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This value was used as an indicator of the length of time that the response measure 

could distinguish a drug effect, weighted toward the later times (and lower 

concentrations). If a value for the response measure was missing at any time point, 

the ET was assigned as " missing" .  

I n  addition, each subject was given a euphoria score ( l  for euphoria and - 1  for 

dysphoria) for each treatment based on the self-rated mood scale scores and the visual 

analog mood scale scores. If the scores increased after dosing, the subject was given 

a score of 1 for that treatment. If the scores decreased after dosing, the subject was 

given a score of - 1  for that treatment. During the placebo period a euphoria score of 

o was assigned . 

Values for E.nu, E.nu - ( 1 st 4 hr) , �, EDlin, Emm - ( l st 4 hr) , ET and the 

euphoria score were transferred to the V AX computer system (Digital Equipment 

Corporation) in VCU Health Sciences Computing Services for subsequent analysis. 

4 .2 .4d Statistical Methods 

Because there are many variables of interest in this statistical analysis, the 

multiplicity of desired inferential statements about the data becomes problematic. 

Adjusting the level of significance (a) for the multiple statistical comparisons being 

made as in traditional confirmatory analysis would result in extremely small a values 

and virtually no likelihood of detecting any statistically significant differences. Using 

the concept of Descriptive Data Analysis as described by Abt138•J39, expected 

differences between the treatments based on previously reported studies and patterns 

apparent from examining the data were evaluated statistically without adjustment of 
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the level of significance. The results of these analyses were used to make descriptive 

inferential statements about the data, but not to reject null hypotheses. 

Pharmacodynamic parameters that were evaluated using DDA included: decrease in 

serum prolactin , increase or decrease in mood scores for both rating scales, decreased 

average latency on the CPT, decreased percent correct on the CPT, increased rate of 

finger tapping, increase in heart rate and blood pressure, increase in EEG fast activity 

(total alpha and beta power) and decrease in EEG slow activity (total delta and theta 

power) . Statistical comparisons for other pharmacodynamic parameters were treated 

as exploratory data analysis. They were used to generate hypotheses rather than to 

form final conclusions based on the data. 

Descriptive statistics (mean, standard deviation and relative standard deviation) 

were calculated for each pharmacodynamic variable for each response measure. 

Pharmacodynamic variables obtained during each treatment for each response measure 

were compared by fitting the data for each pharmacodynamic variable to a crossover 

model using a univariate mixed effects analysis of covariance of the form 

Yjjk = p. + OJ + Tj + rk(� + fjjk + 'Ymj 

1 = 1 ,2 ,3 ,4 

j = 1 ,2 , 3,4 

k = 1 ,2 ,  . . .  ,8 

m = 1 ,2 , (3) 

where Yjjk is the response for the kth subject in the ith sequence in the jth 
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period, p. is the overall mean, OJ is the effect of the ith sequence, 'lrj is the effect 

of the jth period, �i(i) is the effect of the kth subject within the ith sequence, 'Ymj 

is the effect of the mth covariate in the jth period and Gjk is the random error 

associated with Y ijk. The fjjk are normally distributed random variables with 

mean of 0 and common variance (J/. It is also assumed that the nested effects 

for subject are random and independently distributed with mean of 0 and 

common variance (J/, and independent of fjjk . 

Model fitting was performed using PROC MIXED in SAS. 137 Because the 

number of subjects receiving each of the four treatment sequences was not equal, the 

design was unbalanced . PROC MIXED is particularly useful for analyzing 

unbalanced designs and data sets with missing values. PROC MIXED allows 

modelling of the mean of y, as in the standard linear model , and also the variance of 

y. The estimation method used for the covariance parameters was restricted 

maximum likelihood (REML). The variance of y is modelled by choosing the form 

of the variance structure matrices. Simple (random effect) , unstructured , and time 

series (autoregressive) structures were evaluated. The autoregressive structure 

resulted in improved model fitting based on maximization of the Akaike's Information 

Criterion for most variables. The autoregressive structure indicates that the 

correlation between measurements is less if they are made further apart in time. 

Analysis using the unstructured variance structure would not converge for this data 

set. For pharmacodynamic parameters where the analysis with autoregressive 

variance structure did not converge, the simple structure was used. 
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For pharmacodynamic parameters where the effect of treatment was significant 

(p < 0.05),  multiple comparisons of the treatments were performed using the 

ESTIMATE procedure. 

Two covariates, � and the treatment that the subject thought they had received 

during each period (fRT 1Ub) , were used in the analysis of ET scores and E...u (or 

E",;,J. An additional covariate, the euphoria score, was used in the analysis of E...u -
( 1 st 4 hr) or E.nm - ( 1 st 4 hr) . 

The residuals were tested for normality using PROC UNIV ARIA TEI2O. This 

procedure computes the Shapiro-Wilk statistic, W, for the null hypothesis that the 

residuals are normally distributed. When the probability of a smaller value of W was 

less than or equal to 0. 1 ,  the null hypothesis of normality was rejected. The residuals 

were normally distributed for the pharmacodynamic variables examined. 

To assess the discriminating ability of the statistical tests performed for selected 

response measures, statistical power was estimated. 140 Because the calculations of 

power for crossover models is quite complex , the power of the F test for analysis of 

variance (fixed effect model) was determined . This estimation of power does not take 

into account the crossover design of the study and therefore is a conservative 

estimate. The Pearson-Hartley charts of the power of the F test were used to 

determine power. 140 For this study, the number of degrees of freedom in the 

numerator of F (III) is the number of treatments minus one, or 3 .  The level of 

significance (0') was selected at 0.05 .  The number of degrees of freedom in the 

denominator of F (IIJ which is the number of subjects if not a crossover study (8 

subjects x 4 periods) minus the number of treatments (4) , or 28. "2 = 30 was used to 



estimate power from the Pearson-Hartley charts. The noncentrality parameter (¢), 
which is a measure of how unequal the treatment means for the response are, was 

calculated by: 

¢ =  

where n = the sample size at each factor level 

r = the number of factor levels 

(1 = the standard deviation (square root of the estimated residual 

variance) 

I'-j = mean for treatment i 
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Values for (1 were obtained from the model fitting information in the output of PROC 

MIXED in SAS, and values for I'-j were obtained using PROC MEANS in SAS. With 

a, v . .  and V2 and estimates of ¢,  power can be obtained from the Pearson-Hartley 

chart. 

Results of the statistical analysis for prolactin, the self-rated mood scales, the 

computerized psychometric tests and quantitative EEG were used to compare the 

sensitivity of these response measures. 
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4 .3  Clinical Results 

Ten male volunteers were entered into the study. Demographic and physical 

characteristics of the subjects are shown in Table 4 . 14.  All of the subjects were 

judged to be healthy based on the results of a physical examination , a medical history, 

and clinical laboratory tests before entering the study. Eight subjects completed the 

study. Subject 5 was removed from the study after completing the second study 

period. During the first period, he received 5 mg of dextroamphetamine, and 

experienced an intense dysphoric reaction. He became tearful ,  anxious and 

withdrawn for approximately two hours after dosing. His mood improved as the 

morning progressed , and he wished to continue the study. No treatment for the 

adverse reaction was administered and he fully recovered. He returned for a placebo 

period (Study Period 2), but did not receive higher doses of dextroamphetamine. 

Subject 3 was removed from the study after completing the second study period due 

to an non study-related injury sustained at work between Study Periods 2 and 3. He 

began taking anti-infective medications prophylactically after the injury, and therefore 

did not meet the criteria to continue in the study. 

Adverse experiences were reported by four of the subjects . Subject 7 reported 

mild diarrhea and Subject 9 experienced mild pain in the chest during several study 

periods. The chest pain was not associated with EKG abnormalities and was 

diagnosed as gastroesophageal reflux by the medical monitor. These adverse 

experiences were attributed to the administration of ammonium chloride, because they 

began before the administration of dextroamphetamine. These adverse effects did not 

require discontinuation of the ammonium chloride and the subjects received no 
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Table 4 . 1 4  Demographic and Physical Characteristics of Participants i n  Part I I  -
Comparison of Quantitative Electroencephalography to 
Behavioral ,Psychological and Neuroendocrine Measures of Response to 
Dextroamphetamine 

Subject Initials Age (years) Weight (kg) Race 
Number 

TM 25 90. 7  Black 

2 MM 20 72.0 White 

3 JM 32 7 1 . 3  White 

4 FD 24 77. 7  Asian 

5 DK 19  67. 3  White 

6 MC 23 85.5  White 

7 BB 2 1  83.0 White 

8 PS 23 105 . 5  White 

9 AW 27 103 .0  Asian 

10 DA 28 68.0 Black 
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treatment for these symptoms. Subject 3 complained of feeling restless and "jittery" 

for approximately 3 hours after receiving the 20 mg dose of dextroamphetamine. 

Subject 5 experienced an intensely dysphoric mood after 5 mg of dextroamphetamine 

and was dropped from the study as described above. Laboratory tests, physical exam 

and electrocardiogram performed at the completion of the study revealed no clinically 

significant abnormalities compared to tests performed before entering the study. 

After each subject completed the study, they were asked which treatment they 

believed they had received during each period. The results are presented in Table 

4 . 1 5 .  

Subjects remained blinded to the treatment throughout their participation i n  the 

study.  The principal investigator was blinded during the clinical portion of the study 

and the editing of the EEGs. The principal investigator was un blinded before the 

analysis of the serum samples and further data analysis. The medical monitor for the 

study was blinded during the clinical portion of the study, but the blind was broken to 

evaluate the adverse effects experienced by Subject 5 .  

4 . 4  Pharmacokinetic Evaluation 

4 .4 . 1 Results 

The amphetamine concentration in serum versus time and the log amphetamine 

concentration in serum versus time plots after dextroamphetamine doses of 5 ,  1 0  and 

20 mg for each subject are shown in Appendix H.  Plots for two representative 

subjects are shown in Figures 4 .2 - 4 .5 .  Amphetamine serum concentration versus 

time profiles for almost all subjects and doses show multiple peaks during the first 3 -
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Figure 4 .3  Log amphetamine serum concentration versus time profile for Subject 2 
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4 hours after dosing. After this point, all subjects show a smooth monoexponential 

decline in serum concentrations. Individual profiles have between one to four peaks 

in the serum concentration . With the exception of the multiple peaks, the serum data 

is adequately described by a one compartment pharmacokinetic model with first order 

input and first order output. 

Mean pharmacokinetic parameters determined by noncompartmental analysis of 

the serum concentration data are presented in Table 4 . 16 .  The average Cmu was 15 .4  

( ±  3 . 7) , 30 . 8  ( ±  5 . 3) and 54 . 8  ( ± 16 .3) ng/mL for the 5 , 10 and 20 mg doses 

respectively. The average AUC .. was 148 .8  (± 30.9) ,  274.9 ( ±  42.4) and 574.5 (± 

1 1 5 .2) ng/mL*hr for the 5 ,  10 and 20 mg doses respectively. The values for Cmax 

and AUC .. are proportional to the dose administered. The elimination rate constants 

are similar between the doses, and correspond to an elimination half-life of 6.5 to 7.5 

hours. Tmax increased from 2. 1 (± 0 .7) hr at the lowest dose to 2 . 8  (± 0 .7) hr at the 

highest dose, although this was not statistically significant. Values for ka determined 

by compartmental analysis of serum concentration data are presented in Table 4 . 1 7. 

The absorption rate seems to decrease and T mu appears to increase as the dose 

increases. 

Plots of amphetamine concentration in serum divided by dose versus time were 

used to determine whether amphetamine can be characterized by linear 

pharmacokinetics in the dose range studied. These plots are located in Appendix I .  

They demonstrate that amphetamine appears to follow linear pharmacokinetics over 

the dose range studied. To examine the dose dependency of the calculated 

pharmacokinetic parameters, the data for each pharmacokinetic parameter were fit to 



Table 4 . 1 5  Subjects' Ranking o f  Treatment Order versus Actual Treatment 
Sequence Received 

Subject Number 

2 

3 

4 

5 

6 

7 

8 

9 

l O  

Subject's Ranking 

o - 20 - ( l O) - (5) 

0 - l O  - 5 - 20 

*** 

o - ( l O) - (5) - 20 

*** 

5 - 20 - 0 - 10 

10 - 20 - 5 - 0 

20 - ( ) - ( ) - ( ) 

1 0  - 0 - 20 - 5 

o - ( ) - ( ) - 20 

* = Did not receive treatments 
*** = Did not provide a ranking of treatments 
( )  = Unsure of ranking 

Actual Treatment 
Sequence 

5 - 0 - 20 - lO  

0 - lO  - 5 - 20 

l O  - 20 - * - * 

20 - 5 - lO  - 0 

5 - 0 - * - *  

0 - 10 - 5 - 20 

lO - 20 - 0 - 5 

20 - 5 - l O  - 0 

5 - 0 - 20 - l O  

0 - l O  - 5 - 20 
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Table 4. 1 6  Mean (± SO) Pharmacokinetic Parameters for Amphetamine Based on 
Noncompartmental Analysis of the Serum Concentration Data" 

Dose 

Parameter 5 mg 1 0  mg 20 mg 

k ( l /hr) 0. l O7 ( ±  0.022) 0 .099 (± 0.02 1 )  0.094 ( ±  0 .012) 

CIDIX (ng/mL) 15 .4 (± 3 .7) 30. 8 ( ±  5 . 3) 54 . 8  (± 1 6. 3) 

T IDIX (hr) 2 . 1 (± 0 .7) 2 . 6  ( ±  0.7) 2 . 8  ( ±  0 .7) 

CliP (L/hr/kg) 0.42 (± 0.06) 0.45 ( ±  0.06) 0.43 ( ±  0.07) 

MRT (hr) lO .6  ( ±  l .9) 1 l . 3  (± l .9) 1 l . 8  (± l . 3) 

AUC"" 148 .8  ( ±  30.9) 274.9 (± 42 .4) 574.5  (± 1 15 .2) 
(ng/mL*hr) 

a = Includes available data from all 10 subjects. 
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a crossover model using a univariate mixed effects analysis of variance. The effect of 

treatment was not statistically significant for k, Tmu, ClIF, and MRT. Cmu, AVC", 

and lea showed a significant treatment effect (p < 0.05).  For Cmu and AVC"" all 

treatments were statistically different from one another, with the highest value 

associated with the highest dose and the lowest value associated with the lowest dose. 

For lea, the lowest dose was statistically different from the two higher doses. Values 

for lea plotted against dose are shown in Figure 4.6.  Values for lea increase as the 

dose decreases, indicating that absorption is slowed at higher doses of amphetamine. 

Plots of the excretion rate of amphetamine into urine versus time and log of the 

excretion rate of amphetamine into urine versus time are shown in Appendix J. Plots 

for two representative subjects are shown in Figures 4.7 - 4 . 10 .  Elimination rate 

constants based on the urine data are presented in Table 4 . 1 8 .  The elimination rate 

constants obtained from serum data are in general smaller than those obtained from 

urine data. 

Plots of excretion rate of amphetamine into urine versus serum concentration at 

the midpoint of the urine collection interval for each dose for each subject are 

presented in Appendix K.  In  a number of  these plots i t  i s  evident that the renal 

clearance is not constant throughout the study period. The influence of urine pH and 

urine flow on renal clearance of amphetamine were evaluated by examining a three­

dimensional plot of renal clearance versus urine pH versus urine flow (Figure 4. 1 1 ) .  

As urine pH decreases, renal clearance increases. As urine flow decreases, 

instantaneous renal clearance decreases. Fluctuations in urine pH were relatively 

small (Range: 4 .6  - 6.5).  Urine flow ranged from 0.008 to 0 .6 125 Llhr. Renal 
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Table 4 . 1 7  Values for ka ( l/hr) Determined b y  Compartmental Analysis o f  Serum 
Amphetamine Concentration Data 

SYQj�t � 
2.52 

2 1 . 79 

3 b 

4 1 .92 

5 0.38 

6 2 . 80 

7 8 .77 

8 1 . 55 

9 1 . 1 9 

1 0  1 . 22 

Mean 2 .46 

SD 2.47 

a = Includes available data for all 10 subjects 
b = Subject did not receive this dose 

Dose 

� 2Q..mg 
0.40 1 . 30 

0.43 0.52 

5 . 63 0.33 

0.98 0.53 

b b 

1 . 27 0 .41  

0. 1 7  0.72 

0 .32 0.78 

0 .37 1 .23 

1 .02 1 .0 1  

1 . 1 7 0.76 

1 .  7 1  0 .35 
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Table 4 . 1 8  Elimination Rate Constants (k) for Amphetamine Determined from 
Serum and Urine Data Analysis 

Urine Serum 

Dose � � � � � � 
Sl!Qi�t 

0. 080 0. 1 1 1  0.075 0.073 0.070 0.072 

2 0. 1 29 a 0. 1 30 0.093 0. 1 0 1  0.075 

4 0.089 0.084 0.095 0. 123 0. 1 1 6 0.096 

6 0. 1 23 0. 1 1 2 0.095 0. 1 09  0. 1 14 0 . 1 00  

8 0. 157 0. 1 78 0.088 0 .099 0.087 0. 103 

9 0. 1 3 1  0 . 140 0. 155 0. 140 0. 1 3 1  0. 1 00  

1 0  0. 1 24 0. 101  0. 1 25 0.079 0.075 0 .097 

Mean 0. 1 19 0. 1 2 1  0. 1 09 0. 1 02 0.099 0.092 

SD 0.026 0.033 0.028 0.024 0 .023 0 .0 13  

a = urine samples not analyzed 
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clearance values ranged from 0 to 55 Llhr. The urine flow rate appears to have less 

effect on renal clearance than urine pH does. 

4.4 .2 Discussion 

The pharmacokinetic characteristics of amphetamine observed in this study are 

consistent with those noted by other investigators (See Section 2 .2 . 3) .  Amphetamine 

pharmacokinetics are linear over the dose range studied , with Cmax and AUC"" 

proportional to dose. Acidification of the urine by administration of enteric-coated 

ammonium chloride results in a constantly enhanced excretion of amphetamine. With 

the exception of the multiple peaks present during the absorption phase, the serum 

concentration versus time profile is adequately described by a one compartment 

pharmacokinetic model with first order input and first order output. 

Multiple peaks are present in the serum concentration versus time profile for 

almost all doses for all subjects. Similar profiles have been obtained by other 

investigators, although their significance has not been addressed. Beckett and 

coUeagues91 show plasma data from one subject under conditions of acidic and 

uncontrolled urine pH. Under acidic conditions, two peaks are present in the first 3 

hours. Under uncontrolled urine pH, three peaks are present, with the third occurring 

9 hours after dosing. Possible explanations for these multiple peaks include analytical 

variability, enterohepatic recycling, 14 1 , 142 resorption of drug from the bladder,143 

delayed gastric emptying of part of the dose, I44, 145,146 different rates of 

absorption at different sites along the GI tract, 147,148 discontinuous 

absorption, 149,150 variable dissolution of the dosage form ,151  or accumulation in a 
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post-absorptive storage area (such as hepatic parenchymal tissue) followed by release 

and reabsorption. 142 

Analytical variability is not the likely cause of the multiple peaks observed in 

this study, because the analytical method was validated and repeat analysis of samples 

obtained during the period of multiple peaks for two subjects gave similar results to 

the first analysis. Analytical variability may contribute to the effect however, since 

the highest variability in quality control samples was obtained from the high control 

that had been diluted prior to analysis. Most of the serum samples obtained during 

the first three hours were higher in concentration and were diluted prior to analysis. 

Enterohepatic recycling is also not likely to be responsible for the double peaks. 

Beckett and Rowland87 found no amphetamine or its conjugates present in the bile of a 

cholecystectomy patient with a bile duct fistula at 2 ,  4, 8 and 24 hr after oral 

administration of 10  mg of dextroamphetamine. Also, peaks due to biliary excretion 

and reabsorption are often seen after meal times, when the gallbladder contracts, 

which was not the case in this study. The dosage form administered is probably not 

responsible for the multiple peaks either, since they have been observed after the 

administration of an oral solution .91 It also does not appear that fluctuations can be 

explained by transfer of drug from plasma to stomach contents with subsequent 

reabsorption in the intestine because after intravenous administration, less than 1 % of 

the administered dose could be measured in gastric contents during the first 40 

minutes after dosing.91 Based on the data obtained in our study, it is not possible to 

elucidate the mechanism behind the multiple peaks observed. Any of the remaining 

hypotheses may be contributing to the phenomenon . 
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In part because of the multiple peaks observed, relatively large differences in 

serum amphetamine concentrations are observed between the samples collected at the 

start of the pharmacodynamic measurements (on the hour) and those collected at the 

end of the pharmacodynamic measurements (at 20 minutes after the hour). To before 

pharmacokinetic-pharmacodynamic modeling of the response data, especially for the 

data collected during the first four hours, the serum concentration at the time the 

response was actually measured should be estimated. Since the pharmacodynamic 

endpoints were always collected in the same order and the time of the measurement 

was recorded, it would be possible to approximate the actual concentration at the time 

the measurement was made. 

The pharmacokinetic parameters calculated in this study are similar to those 

determined by other investigators. Under conditions of acidified urine, the half-life of 

amphetamine is approximately 5 to 8 hours. In this study,  the half-life of 

amphetamine was approximately 7 hours. ClfF was similar to that reported by 

Beckett & colleagues.91 Under conditions of acidified urine, they found that ClfF was 

242 - 539 mllmin.  In this study , ClfF was approximately 500 mlfmin. 

Although not statistically significant, T max appears to increase as the dose 

increased. This phenomenon was also observed in the study by Angrist and 

associates, 88 where two groups of subjects received either a high or a low dose of 

amphetamine. T max was longer for the group who received the higher dose (3-4 

hours) than those who received the lower dose (2-3 hours). The dosage forms 

administered in the Angrist study were tablets, but a different brand was used to 

prepare each blinded dose level , so differences between the dosage forms was cited as 
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a possible explanation for the differences in Tmax. To further examine this observation 

in our study, lea was estimated for each subject at each dose assuming first order 

absorption. The blood sampling scheme used in this study was not optimized to 

characterize the absorption process, so estimates for T max and lea must be interpreted 

cautiously. Values for lea decreased as the dose increased, indicating the absorption 

was slowed at the higher doses. Statistical analysis showed that lea was significantly 

larger at the 5 mg dose, but that there was no difference between the 10 and 20 mg 

doses. 

One possible explanation for the slowing of absorption with increasing 

amphetamine dose is that amphetamine's effects on the gastrointestinal tract influence 

its own absorPtion . Amphetamine can inhibit gastrointestinal smooth muscle activity, 

thus slowing the intestinal transit time and delaying gastric emptying.85.152 A 

slowing of gastric emptying should delay the absorption of a drug like 

amphetamine. 153 Amphetamine is basic drug with a pKa of 9.9.  In the acidic 

conditions of the stomach, amphetamine is ionized and is unlikely to be absorbed. It 

must arrive at the small intestine for significant absorption to take place. 

Amphetamine's  influence on its own absorption could be viewed as a 

pharmacodynamic response measure for effects on the gastrointestinal system. 

Another potential explanation for the observed decrease in absorption rate as the 

dose increases is that the apparent amphetamine absorption rate is a saturable process. 

Simulation studies performed by Couet and colleaguesl54 indicate that T max increases 

as the dose increases for a drug that undergoes saturable absorption. AUC remains 

proportional to dose when it assumed that there is no limitation on the time that the 
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drug is in contact with the absorption site. Similar effects on Tmax and AUe were 

observed in our study,  so saturable absorption may be possible. Further research is 

needed to confirm the observations noted in this study and to elucidate the mechanism 

behind the dose-dependent absorption of amphetamine. 

The elimination rate constants calculated based on the serum and urine data 

were dissimilar for some subjects. Possible explanations for this observation are 1 )  

that estimates of average excretion rate during each collection interval do not 

adequately represent the instantaneous excretion rate at the midpoint of the collection 

interval , since the collection interval was approximately equal to the half-life of the 

drug during later intervals, 2) an insufficient number of data points was available for 

the urine data to provide a reliable estimate of k,  and 3) concentrations of 

amphetamine were near the limit of quantitation of the urine assay during later 

collection intervals, and small errors at low concentrations are magnified when 

multiplied by large urine volumes. Estimates of k from serum data are more reliable 

in this study. 

To obtain a constant renal clearance and minimize the effects of 

pharmacokinetics on the pharmacodynamic effects observed, control of urine pH and 

flow rate are essential . In this study, pH was maintained within a fairly narrow range 

(4 .5  to 6.5) and the influence on renal clearance was still apparent. Urine flow also 

affected renal clearance in this study. Other investigators also observed this effect'l3 , 

while others did nor!? Urine flow was not controlled in this study. Subjects were 

required to maintain a high level of oral fluid intake (at least 1 20 mL per hour for the 

first four hours after dosing), but subjects were allowed additional water and the 
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actual intake was quite variable between subjects. In future studies, controlled intake 

of fluids would be more appropriate. 

4.4 .3  Conclusions 

Amphetamine is characterized by l inear pharmacokinetics within the dosage 

range of 5 to 20 mg. Control of urine pH by administration of oral ammonium 

chloride results in constantly enhanced excretion of amphetamine. Multiple peaks are 

present in the serum-concentration time proftle, indicating that some process of 

cyclical or discontinuous absorption is occurring. The absorption rate of 

amphetamine appears to be dependent on the dose. As the dose increases, absorption 

is slowed . Further studies are needed to determine the mechanisms behind the 

multiple peaks observed in the serum concentration-time proftle and the dose­

dependent rate of absorption of amphetamine. 

To examine whether amphetamine is affecting its own absorption through its 

pharmacological effect on gastrointestinal transit ,  a clinical study similar to that of 

Robertson and colleagues155 could be conducted. Each subject should receive 

placebo, several dose levels of dextroamphetamine given as an oral solution, and an 

intravenous dose of dextroamphetamine in a crossover design . Along with the 

amphetamine dose or placebo, subjects would receive a capsule filled with pellets 

labelled with 99MTc sodium pertechnetate as described by Coupe and colleagues. 156 

A gamma camera could then be used to image the pellets as they move through the 

gastrointestinal tract, to enable estimation of gastric emptying and small intestinal 

transit. Frequent blood samples should be obtained during the first three hours after 
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drug administration to better characterize the absorption process . . Values for lea could 

then be estimated by fitting the serum concentration data to a one compartment 

pharmacokinetic model and using the method of Wagner and Nelson. IS? Data from 

both intravenous and oral doses would permit the use of deconvolution techniques to 

study the absorption of amphetamine. ISS Values for the absorption rate constant 

could be compared to effects on gastrointestinal transit to provide information about 

potential mechanisms for amphetamines influence on its own absorption. 

4.5 Pharmacodynamic Evaluation 

The results of the pharmacodynamic evaluation are presented below. Results, 

discussion and conclusions for the central nervous system and cardiovascular response 

measures are in section 4 .5 . 1 and 4 .5 .2  respectively .  The sensitivity and 

reproducibility of the response measures will be compared in Chapter 5 .  

4 . 5 . 1 Central Nervous System Response Measures 

The results for quantitative EEG, serum prolactin ,  the rating scales, and the 

psychometric tests are presented and discussed in the following sections. Plots for 

Subject 3 are not presented because he did not receive a placebo. His data was 

included in the statistical analysis however. 

4 .5 . 1a  Quantitative Electroencephalography 

4 .5 . 1a( 1 )  Results 
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Plots of baseline and placebo corrected total EEG power across all electrodes in 

each of the five frequency bands versus time for each subject who completed the 

study are presented in Appendix L. The EEG response values plotted at each time 

point were obtained by subtracting the baseline (0 hr) value for each treatment from 

the values at later time points for that treatment. The baseline corrected placebo 

profile was then subtracted from the baseline corrected profiles for the active 

treatments. Data for Subject 9 are not included because insufficient EEG data was 

collected during the placebo period. A review of these plots and similar plots of 

relative EEG power does not reveal EEG patterns consistent with increasing 

dextroamphetamine dose for most of the subjects. Relative standard deviation in the 

alpha and delta frequency bands also do not appear to change consistently with dose. 

Based on the work of other investigators (Section 2 .2 .4),  increases in power in the 

alpha and beta frequency bands and decreases in power in the delta and theta 

frequency bands would be expected after amphetamine dosing. 

For two of the subjects (Subjects 4 and 6) , EEG changes are apparent with 

increasing dextroamphetamine dose. The effect becomes greater as the dose 

increases. Subject 4 showed an increase in total power across all frequency bands, an 

increase in alpha power, and an increase in beta I power. These changes are shown 

in Figures 4 . 1 2  - 4 . 14 .  The EEG effects appear to be longer in duration as the dose 

increases . The increase in alpha power lasted 6 to 8 hours after the 20 mg dose, 6 

hours after the 10 mg dose, and 4 to 6 hours after the 5 mg dose. The maximum 

effect was apparent at 4 hr for all doses. Subject 6 showed an increase in total 

power, a decrease in theta power, and an increase in alpha power. These changes are 
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Figure 4. 1 2  Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 4 
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Figure 4. 1 3  Baseline and placebo corrected total EEG power i n  the alpha frequency 
band versus time profile for Subject 4 
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Figure 4 . 1 4  Baseline and placebo corrected total EEG power in the beta I frequency 
band versus time profile for Subject 4 
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shown i n  Figures 4 . 1 5  - 4. 1 7. The maximum effect occurred at 1 h r  for all doses. 

These changes are more prominent when power from only the occipital electrodes is 

examined . Changes in alpha power from the occipital electrodes for Subject 6 is 

presented in Figure 4 . 1 8 . Examination of plots of power from the occipital and 

central electrodes for all subjects did not reveal EEG changes other than those seen in 

plots of power from all electrodes. Changes in alpha power were more pronounced in 

the occipital region however. 

Subjects 4 and 6 are distinguished from the other subjects who completed the 

study by their baseline EEG characteristics. Average baseline total and relative power 

across all electrodes for each subject is presented in Table 4 .  19 .  Subjects 4 ,  6 and 8 

have much higher total power across all electrodes and in the alpha frequency band. 

These subjects also show greater than 35 % of the total EEG power in the alpha 

frequency band. Each of these subjects show EEG changes after dextroamphetamine 

dosing compared to the other subjects, although for Subject 8, the greatest response is 

observed after the 10 mg dose. The EEG response in total power in the alpha 

frequency band for all subjects are shown in Figures 4 . 1 9  - 4 .25 to illustrate this 

point. The EEG changes do not appear to be related to the mood response of the 

subjects. Subjects 6 and 8 experienced euphoria, while Subject 4 experienced 

dysphoria in response to dextroamphetamine. 

Statistical comparison of the values for E..w. (or E..w,) , E..w. - ( 1 st 4 hr) (or E..w. -

( 1 st 4 hr)) and ET for each of the EEG response variables for all subjects did not 

show any significant differences between the treatments that are consistent with 

increasing dextroamphetamine dose. The residuals were normally distributed for 
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Figure 4 . 1 5  Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 6 
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Figure 4 . 1 6  Baseline and placebo corrected total EEG power in  the theta frequency 
band versus time profile for Subject 6 
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Figure 4. 1 7  Baseline and placebo corrected total EEG power in  the alpha frequency 
band versus time profIle for Subject 6 
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Figure 4 . 1 8  Baseline and placebo corrected total EEG power in  the alpha frequency 
band from the occipital electrodes versus time profIle for Subject 6. 
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Table 4 . 19  Mean (RSD%) Total (fP) and Relative (RP) EEG Power Across All 
Electrodes at Baseline (0 hr) for Each Subject 

S TP TP TP TP TP TP RP RP RP RP RP 
u (PV� Delta Theta AJpha Beta I Beta Delta Theta AJpha Beta I Beta II 
b (Pv� (PV') (PV� (Pv� II 
j (Pv� 

1 75 1 9  7023 878 1 340 236 455 0.608 0. 1 1 8  0. 1 85 0.03 1  0.059 

(20.7) (24.5) (2 1 . 1 ) (49.8) (54.7) (59.0) ( 1 7.2) ( 1 7.9) (54.2) (34.7) (40. 1 )  

2 6547 3913 1 1 07 850 275 403 0. 599 0. 1 69 0. 1 30 0 . 042 0.061 

(8.2) (8.7) ( 1 7.6) (20.6) (23.4) ( 1 4.3) (7.3) ( 1 2.4) ( 1 7.8) ( 1 5 .5) (7. 1 )  

4 1 6980 6076 2834 6869 465 736 0. 367 0. 1 68 0.396 0.027 0 . 043 

( 1 1 . 5 )  ( 1 9 . 3) ( 1 2 . 8) (39.6) (3 1 . 8) (24.2) (29.3) ( 1 3 .9) (30.0) (25 .8) ( 1 7.7) 

6 34545 9954 4609 1 89 1 9  5 00  563 0.287 0 . 1 34 0.549 0.014 0.016 

(50.0) (60. 1 )  (53.6) (48.0) (5 1 .6) (64 .8) (21 .2) (1 4.5) (8.5) (36.4) (75.6) 

7 9 1 06  4758 1 1 36 2658 1 92 362 0 . 5 1 9  0 . 128 0.295 0.02 1  0.037 

(22.8) (28.9) ( 1 2.3) (20.9) (37.9) (72.6) ( 1 0.7) (23.2) ( 1 6.4) (29 . 1 )  (49.5) 

8 1 7484 65 1 2  2760 7 1 59 424 630 0.398 0 . 1 66  0.374 0.026 0.037 

(38.9) (38.4) (32.4) (59.0) (26.5) (38 . 1 )  (38 . 8) (27.6) (4 1 .5) ( 1 9.5) (22.7) 

9 9993 4772 1 44 1  3059 302 4 1 9  0.487 0 . 1 44 0.298 0.030 0.041 

( 1 5 . 1 )  ( 1 4. 8) ( 1 5 . 1 )  (45 .5) ( 1 3 .7) (35.6) (24.8) ( 1 .5)  (37.0) (8.4) (25 . 8 )  

10 8467 4954 1 059 1 764 204 486 0.569 0 . 129 0.2 1 8  0.025 0.060 

(24.6) (42.5) ( 1 5 .2) (25.6) ( 1 8 .0) ( 1 7 . 4) ( 1 8 . 9) (20.0) (37.6) (30.0) (28.3) 
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Figure 4 _ 1 9  Baseline and placebo corrected total EEG power i n  the alpha frequency 
band versus time profile for Subject 1 
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Figure 4_20 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 2 
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Figure 4 . 2 1  Baseline and placebo corrected total EEG power i n  the alpha frequency 
band versus time profile for Subject 4 
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Figure 4 .22 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 6 
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band versus time profile for Subject 7 
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Figure 4.24 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 8 
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Figure 4 . 25 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profUe for Subject 10 
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these variables, so transformation of the data was not necessary. Estimates of the 

power of the statistical tests were low for many of the variables. Statistical power for 

tests of E....x (or E.ruJ for total and relative power ranged from 0.20 to 0.96. Power 

was lower for relative power than total power and lower in the alpha and beta 

frequency bands than the delta and theta bands. 

Baseline response �) was a significant covariate for the vast majority of the 

EEG response variables, indicating that baseline response accounted for a significant 

portion of the variability in E....x. The baseline response differed from week to week 

for all subjects. As can be seen in Table 4 . 19 ,  the RSD% of baseline values for the 

EEG response variables for each subject ranged from 2 to 75 % .  The greatest 

variability was observed in the alpha and beta frequency bands. There was no 

apparent relationship between study period and baseline EEG characteristics. 

Excessive artifacts were present in 1 8  of the EEGs collected , resulting in 6% of 

the EEGs being designated as missing. The baseline EEG was missing for Subject 5 

(5 mg dose) , Subject 7 (5 mg dose), and Subject 9 (placebo). 

4 .5 . l a(2) Discussion 

Changes in the EEG related to dextroamphetamine dose were observed in less 

than one-half of the subjects who completed the study. Those subjects who 

demonstrated dose-related changes had similar baseline EEG characteristics. Their 

percentage of baseline EEG in the alpha frequency band was greater than 35 % .  They 

also showed higher total EEG power at baseline than the other subjects. Screening of 

subjects for a high baseline level of alpha activity may be necessary to study the 
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pharmacodynamics of CNS stimulation. Since vigilance changes are easier to detect 

in subjects with high background alpha activity74, vigilance-promoting effects of CNS 

stimulants may only be apparent on the EEG for subjects with high baseline alpha 

activity. In the eyes closed condition, decreased arousal is accompanied by decreased 

alpha activity , especially in subjects with high background alpha activity . 159 

Because alpha power may vary with normal aging, the results obtained in this study 

may not be generalizable to very young or very old subjects. 160 

Another potential explanation for the variable effect on the EEG between 

subjects may be the vigilance control method used during the EEG recording. In a 

study reported after this investigation was completed, Saletu and colleagues reported 

that EEG changes were evident after 20 mg dextroamphetamine compared to placebo 

only when EEGs were recorded under resting (not vigilance-controlled) conditions.96 

Vigilance control reduced the magnitude of EEG effects and altered the time course of 

effects observed. In our study,  vigilance was controlled to a degree by instructing 

subjects to count backward from 500 by 3s during the recording. Compliance with 

these instructions could not be verified objectively. Other techniques, such as holding 

a button that alarms if the pressure is relaxed, ensure that vigilance is maintained. In 

our study, the level of vigilance maintained could have been different between 

subjects with subsequent differences in the magnitude of the response. Also, 

vigilance may not have been equally controlled for all of the study periods for an 

individual subject. The EEG editing process may also have resulted in a potential 

preferential selection of drowsy records over awake records due to lower artifacts in 

the drowsy records .  If  this in fact occurred, the results of the study may be biased 



towards the more drowsy, giving different results than if it were a sample of only 

awake records. 

1 5 1  

The differences i n  EEG response between subjects do not appear to be related to 

the type of mood response to dextroamphetamine experienced by the subject. Mood 

changes observed in this study are discussed in detail in Section 4 .5 . 1c.  Whether 

subjects felt euphoria or dysphoria did not seem to influence whether EEG changes 

were observed for an individual . Categorizing subjects as EEG responders or 

nonresponders does not result in the same grouping as categorizing subjects as 

euphoric or dysphoric. 

Baseline values for EEG variables also play an important role in interpreting the 

data. Baseline values were different between weeks in the study. Differences in 

baseline values between the fIrst study period and later periods were not evident, 

indicating that the familiarization session was suffIcient to accustom subjects to the 

study environment and procedures. It is necessary to take into account the baseline 

level when comparing treatments for an individual . Baseline values were also a 

signifIcant covariate in the statistical analysis. Differences in baseline values between 

weeks may be related to differences in the testing environment, level of stress 

perceived by the subject, or quality of the subject ' s  previous night's  sleep.4 1 An 

adequate determination of the baseline is essential for examining the EEG response to 

dextroamphetamine. Error in this measurement or loss of this measurement due to 

artifacts has the potential to greatly influence the outcome of the data analysis. 

Therefore, making more than one baseline EEG measurement before dosing may be 

worthwhile. 
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Examination of smaller groups of electrodes (occipital and central electrodes) 

did not contribute added discriminating ability over that provided by examining a sum 

of all of the electrodes. Because alpha activity is most prominent over the occipital 

region, the effects on alpha power were more evident there. EEG effects were not 

apparent in the occipital or central regions that were not evident across all of the 

electrodes. 

Statistical comparisons of the treatments revealed no significant differences 

between the doses for any of the EEG variables. Since only those subjects with high 

background alpha activity show EEG response to dextroamphetamine, pooling the data 

across all of the subjects in this study masks any differences in EEG effects between 

the treatments. The study sample was heterogenous with regard to background alpha 

activity, and the sample was too small to perform statistical analysis on subgroups of 

patients. Statistical power was relatively low to detect differences between 

treatments. An increased sample size or more homogenous subject group with respect 

to alpha activity is necessary for statistical analysis of treatment differences. Other 

investigators have noted that differences between the alert EEG patterns of individuals 

are important factors when attempting to elucidate subtle effects in the EEG indicative 

of vigilance changes. They suggest that pooling data across subjects results in loss of 

information . 159 

The number of EEG recordings containing excessive artifacts was similar to that 

observed in Part I of this study in which no drug was administered (Chapter 3) . The 

pharmacological action of dextroamphetamine and the drawing of blood samples does 

not appear to significantly increase the number of artifacts obtained on the EEG 
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recordings. The average variability between baseline EEG responses on each study 

day was also similar to that observed in Part I of the study. 

In conclusion, dose-related EEG changes after dextroamphetamine 

administration were observed only in a subgroup of patients who had high baseline 

alpha activity. For these subjects, the EEG response was higher in magnitude and 

longer in duration as the dose increased. Because the subject group was heterogenous 

with respect to baseline alpha activity, statistical analysis was not useful for examining 

differences in EEG response between the treatments. The baseline EEG measurement 

must also be taken into account when comparing treatments. Future studies 

attempting to use EEG to measure eNS stimulation should include a screening 

procedure to obtain a homogenous subject group with respect to background alpha 

activity and a more dependable determination of baseline values for EEG variables 

during each period. 

4.5 . l b  Prolactin Response 

4 .5 . 1b( l )  Results 

Plots of baseline and placebo corrected serum prolactin versus time for each 

subject are presented in Appendix M. The serum prolactin values plotted at each time 

point were obtained by subtracting the baseline (0 hr) value for each treatment from 

the values at later time points for that treatment. The baseline corrected placebo 

profile was then subtracted from the baseline corrected profiles for the active 

treatments. Representative plots from Subjects I and 6 are shown in Figures 4 .26 and 
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4 .27. Based on these plots, it appears that there is an inverse relationship between 

dose and effect on prolactin . Serum prolactin decreases after the administration of 

dextroamphetamine, with the maximum decrease occurring after the 5 mg dose. The 

duration of the effect is also longer after the 5 mg dose. 

The maximum effect on serum prolactin is observed between 1 and 4 hr. It 

occurs at the same time after each dose level for an individual . The onset of effect is 

apparent at 1 hr for the lower doses in most subjects, but is delayed until 2 hr at the 

higher dose in some subjects. The effects on serum prolactin are usually evident until 

at least 5 hr. Subject 10 shows little change in serum prolactin in response to dose. 

Prolactin response does not appear to be related to whether the subject experiences 

euphoria or dysphoria, since prolactin generally decreased for all subjects regardless 

of the direction of mood alterations. 

Statistical comparison of the maximum decrease in serum prolactin CEmm) for 

each treatment confirms this observation. The mean Ealin for the baseline and placebo 

corrected serum prolactin values were 8 .8  ng/mL, 8 .2  ng/mL, and 4.3  ng/mL for the 

5 ,  1 0  and 20 mg doses respectively.  The mixed effects analysis of covariance showed 

a statistically significant effect for treatment (p < 0.05) , with all treatments different 

from placebo. The power for this statistical test was estimated to be 0 .85 .  The 

statistical tests could not distinguish between the treatments however. 

Baseline serum prolactin values were not statistically significant covariates in the 

mixed effects analysis of covariance. There was, however, notable variation between 

the baseline values obtained during each period for many of the subjects. Baseline 

serum prolactin values for each subject are presented in Table 4 .20. There does not 
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Figure 4 _26 . Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 1 
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Figure 4 _27 Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 6 



appear to be a correlation between the serum prolactin level and the study period. 

The pattern of prolactin secretion obtained during the placebo period for the 

subjects who completed the study is presented in Figure 4.28.  For most subjects, 

prolactin levels remain within the normal range of approximately 5 to 1 0  ng/mL. 

Subject 2 shows unusually high levels of prolactin for a young healthy male. 
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When the baseline and placebo corrected serum prolactin concentrations for 

each subject at each dose level are plotted against the serum amphetamine 

concentrations obtained at the same time, hysteresis is observed in approximately 70% 

of the plots. One-half of these hysteresis loops are in the clockwise direction and 

one-half are in the counterclockwise direction . The direction is consistent within a 

subject. Representative plots are presented in Figure 4 .29 (clockwise hysteresis) , 

Figure 4 . 30 (counterclockwise hysteresis) , and Figure 4 .3 1  (no hysteresis) . The 

direction of the loop does not appear to be related to baseline prolactin levels ,  mood 

response, or absorption rate constant of dextroamphetamine observed for each subject. 

4 . 5 . 1b(2) Discussion 

Serum prolactin levels, like the EEG parameters, are a surrogate measure of the 

effect of dextroamphetamine on the central nervous system . Drugs that increase 

dopaminergic neurotransmission in the CNS reduce prolactin secretion and drugs 

which increase serotonergic neurotransmission in the CNS increase prolactin 

secretion. Dextroamphetamine is believed to affect dopamine release at lower doses 

and serotonin release at higher doses , and thus may cause opposing effects on 

prolactin secretion , ss Amphetamines may also exert direct agonist action at central 
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Figure 4 _29 Baseline and placebo corrected serum prolactin concentration versus 
serum amphetamine concentration for Subject 6 (5 mg dose) 
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Table 4 .20 Serum Prolactin Levels at Baseline (0 hr) for Each Subject 

Subject Period Period Period Period Mean RSD (%) 
1 2 3 4 (ng/mL) 

10 .2  5 .0 5 .9  8 .5  7 .4  32.2 

2 7 .6  9 .5 5 .4  12 .9  8 .9  35.9 

3 3 .0  2 .0  2 . 5  28 .3 

4 7 .8  1 1 .0 6.9 5 .7  7.9 28.9 

5 8 .2  2 .0  5 . 1 86.0  

6 4 .0 4 .3  10 .6  4 .0  5 .7  56 .8  

7 9 .0 5 . 7  3 . 0  7.4 6 .3  40.7 

8 4 .0  4 .0  3 .0  1 3 .0 6.0 78.0 

9 4 .9  5 . 1  3 . 5  1 5 . 0  7 . 1 74.4  

10  14 .0  8 . 3  8.0 1 1 .0 10 .3  27.2 

serotonin receptors. In this study, prolactin secretion diminished after 

dextroamphetamine administration, with the greatest decrease occurring after the 

lowest dose. One potential explanation for this observation is that at the 5 mg dose, 

dextroamphetamine primarily acts to release dopamine from storage sites in the nerve 

terminal . As the dose increases, serotonin is also released , which opposes the effect 

of dopamine on prolactin secretion . 

Previous studies have reported that dextroamphetamine causes both increases 

and decreases in the secretion of prolactin (see Section 2 .2 .5) The effect on secretion 

appears to depend on the dose administered . Most studies show no change or an 

increase in prolactin levels after oral dextroamphetamine doses of 20 - 30 mg. Few 

studies have reported the effects of lower doses on prolactin secretion. Wells and 

colleagues observed decreased prolactin levels after 10  and 20 mg oral doses of 
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dextroamphetamine, with the greatest decrease observed for the 20  mg dose.104 Our 

data suggests that a portion of the variability in prolactin response between studies 

may be due to the doses administered. Our findings have implications for research 

involving prolactin response to the administration of amphetamines in the study of 

psychiatric illnesses. Prolactin response in normal controls in these pharmacological 

challenge studies may depend on the dose administered. Further work is needed to 

determine whether psychiatric illness alters this dose effect relationship. 

Spontaneous fluctuations in prolactin secretion were observed during the placebo 

period for all subjects. Prolactin secretion shows a circadian rhythm.  Superimposed 

upon this are minute-to-minute fluctuations due to factors such as stress and exercise. 

To reduce differences in these fluctuations between periods, the subjects were 

required to remain reclining in bed beginning one hour before dosing until after the 6 

hr prolactin levels were drawn. The fluctuating nature of prolactin secretion in the 

absence of drug treatment emphasizes the necessity of including a placebo period to 

aid in the interpretation of potential drug effects. Pharmacodynamic models have 

been developed which include the fluctuation of the hormone secretion . 161 These 

models have improved predictive capability compared to those which consider the 

placebo response to be constant. 

Baseline serum prolactin levels during each period also showed differences from 

period to period for all of the subjects. These differences could be due to different 

levels of stress or other factors which can increase prolactin secretion. Higher 

baseline levels were not apparent during the first period, when higher levels of stress 

might be anticipated due to the subjects not being well-acquainted with the study 



environment. As with the EEG, it may useful in future studies to make more than 

one baseline determination of prolactin levels. 
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Hysteresis loops are observed in plots of serum prolactin concentration versus 

serum amphetamine concentration for 2/3 of the subjects. Because the direction of 

the hysteresis differs between subjects, it is difficult to postulate potential mechanisms 

contributing to the phenomenon. In fact, because it occurs equally in both directions, 

there may be no true hysteresis present. The fluctuating nature of the serum 

amphetamine concentrations noted during the first four hours after drug administration 

may also contribute to the discrepancy observed in the direction of the hysteresis. 

As with the EEG measures discussed in the previous section, serum prolactin 

response does not appear to be directly related to the clinical or therapeutic effects of 

dextroamphetamine. Alterations in EEG measures and serum prolactin levels were 

not associated with the direction or magnitude of the mood change experienced by the 

subjects. The effects of dextroamphetamine on mood in these subjects will be 

discussed in detail in the next section. 

4 . 5 . 1c  Mood Rating Scales 

4 .5 . 1c( 1 )  Results 

Plots of baseline and placebo corrected rating scale scores (self-rated mood scale 

and visual analog mood scale) versus time for each subject are presented in Appendix 

N. The rating scale scores plotted at each time point were obtained by subtracting the 

baseline (0 hr) value for each treatment from the values at later time points for that 
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treatment. The baseline corrected placebo profile was then subtracted from the 

baseline corrected profiles for the active treatments. Plots of the self-rated mood 

scale and the visual analog mood scale responses versus time for a subject who 

experienced euphoria after dextroamphetamine administration (Subject 2) are shown in 

Figures 4 . 32 and 4 . 33 .  Similar plots for a subject who experienced dysphoria after 

dextroamphetamine administration (Subject 4) are shown in Figures 4 . 34 and 4 . 35 .  

Dysphoria (based on the self-rated mood scale scores) was reported after 20% 

of the dextroamphetamine doses given. Subject 4 experienced dysphoria after all 3 

doses and Subject 8 became dysphoric only after the 20 mg dose. Subject 5 became 

intensely dysphoric after the 5 mg dose, and was consequently discharged from the 

study. At the 5 mg dose level , no change in mood occurred for 4 of the 9 subjects 

evaluated. At the 20 mg dose, only 1 subject did not experience a change in mood. 

When subjects experienced a change in mood (based on the self-rated mood 

scale scores) , it was generally apparent by the 1 hr measurement. The change in 

mood was typically greatest for the 20 mg dose, although Subjects 4 and 7 showed 

similar effects at all 3 dose levels .  The maximum effect occurred between 1 and 3 

hours for most subjects. The duration of the mood changes generally ranged from 3 

to 8 hr, with a longer duration noted after the highest dose. The subject who 

experienced the most intense euphoria following the 20 mg dose (Subject 2) still had 

elevated mood scale ratings when measurements were discontinued at 1 2  h .  

Statistical analysis of the Emu and ET values for the self-rated mood scale 

showed no significant differences between treatments. When differences between the 

treatments that the subjects believed they had received during each period were 
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Figure 4 .32 Baseline and placebo corrected self-rated mood scale score versus time 
plot for Subject 2 
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Figure 4 . 33 Baseline and placebo corrected visual analog mood scale score versus 
time plot for Subject 2 
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Figure 4 _34 Baseline and placebo corrected self-rated mood scale score versus time 
plot for Subject 4 
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time plot for Subject 4 
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compared, statistically significant differences were found (p < 0.05). During the 

period when subjects believed that they had received the 20 mg dose, E....x was 

significantly greater than that obtained in the other periods. The other " treatments" 

were not statistically different. Statistical analysis of the E....x values for the visual 

analog mood scales showed no significant differences between actual treatments or the 

treatments the subjects believed they had received. Estimated power for these tests 

was less than 0 .3  however. In addition, no significant effect of sequence was noted 

for the mood ratings. 

The visual analog mood scale scores show less consistent change with dose than 

the self-rated mood scale. After 60% of the administered doses, scores were less than 

baseline at I hr. Subject 2,  who showed the highest euphoria based on the self-rated 

mood scale also has the highest response on the visual analog mood scale. Scores for 

Subjects I and 4 showed little change with dose. 

Baseline mood scale scores for both scales were not statistically significant 

covariates in the mixed effects analysis of covariance. Average baseline mood scale 

scores for each subject are presented in Table 4 .2 1 .  There does not appear to be a 

correlation between the baseline mood scale scores and the study period. 

4 .5 . l c(2) Discussion 

A bimodal distribution of mood response was observed in this study. Most 

subject-dose combinations resulted in euphoria, but some (20%)  resulted in dysphoria. 

The rate of dysphoria observed in this study is similar to that reported by other 

investigators. Almost 40 years ago, von Flesinger and associates l62 reported that 
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Table 4.2 1 Average Mood Rating Scale Scores at Baseline (0 hr) for Each Subject 

Subject Self-Rated Mood Scale Visual Analog Mood Scale 

Number Mean RSD %  Mean RSD %  

1 52.0 6. 8 48.3 8 .5 

2 59.3 8 .4 45 . 5  20.0 

4 66.5  3 .4  53 . 3  7 . 3  

5 60.0 25.9 52.0 2 1 . 8  

6 60.0 4.9 48.5 4.3 

7 70.0 1 . 7 59.0 23.0 

8 79 .0 1 . 7 56.5 17 .7 

9 69. 3  0 .7  50. 8 4 .4  

10  57. 8  2 . 2  4 1 . 3  20.4 

20% of normal subjects were dysphoric after receiving amphetamine. Their subjects 

also underwent psychological testing that showed more immature Rorschach scores 

for the dysphoric subjects compared to the euphoric subjects. Angrist and 

colleagues88 reported that 2 out of seven subjects showed decreased self-ratings of 

"happy" after 0.25 mg/kg of dextroamphetamine given orally. They also found that 

under fasting conditions, 4 subjects had increases in self-rating for "happy" ,  while 

with food , 6 subjects had increases in self-rating for "happy" .  Dommisse and 

associateslO2 also found a similar rate of dysphoria following 30 mg of oral 

dextroamphetamine. Psychological or personality differences between subjects may 

contribute to the heterogeneity in mood response observed in our study, but this 

cannot be examined because psychological testing was not performed . It may also be 

related to the study conditions, such as conducting testing while subjects are fasting 

and drawing blood samples. Subject 5 ,  who experienced intense dysphoria after the 5 
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mg dose, was the youngest participant in the study, had no experience with the 

hospital environment, and had never been a research subject before. Dose seems to 

play a role as well . Subject 8 became dysphoric only after the highest dose. These 

observations suggest that the mood response to dextroamphetamine results from a 

complex interaction between individual sensitivity , the study environment, and the 

dose administered. 

Because of the heterogeneity in the mood response to dextroamphetamine, 

statistical analysis did not show significant differences between the treatments. The 

study sample was too small to perform subgroup analysis. The maximum self-rated 

mood scale scores were statistically significantly higher during the period when 

subjects believed that they had received the 20 mg dose. The subjects expected to 

feel euphoric or at least better after receiving dextroamphetamine, perhaps because of 

previous knowledge about the drug or information provided in the informed consent. 

Consequently, they ranked the period during which they felt the best as the highest 

dose level . Subject 2, who experienced euphoria, ranked his treatments correctly. 

Subject 4 on the other hand, experienced dysphoria and ranked his doses in the 

inverse order. 

The visual analog mood scale showed less consistent responses with dose than 

the self-rated mood scale. The visual analog mood scale asked subjects to rank on a 

100 m m line how they felt between "the worst they had ever felt" and "the best they 

had ever felt" . This is a very broad range, and may have been less sensitive than the 

self-rated mood scale for examining euphoria. In addition, the subject's score on the 

visual analog scale may have been influenced by feelings other than those measured 
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by the self-rated mood scale. The self-rated mood scale is designed to measure 

euphoria, and very similar scales have been shown to discriminate between dose 

levels of amphetarnine in normal volunteers. The self-rated mood scale may be a 

more specific indicator of euphoria/dysphoria than the visual analog mood scale. 

There was no significant effect of sequence in the statistical analysis of the results 

from both mood scales. It might be expected that the subject's frame of reference for 

rating mood would change based on the experience of prior study periods, obscuring 

the interpretation of the mood scale results. In our study,  the ratings on the scales do 

not appear to be greatly influenced by the order in which the treatments were 

received. 

Baseline responses were less variable for the mood rating scales than for the 

EEG parameters and prolactin levels. They also were not significant covariates in the 

analysis of covariance. The variability was slightly higher for the visual analog scale 

than the self-rated mood scale. One measurement before dosing appears to be 

sufficient to characterize the baseline response during each period. No difference in 

baseline responses between the first period and subsequent periods was evident, 

indicating that the familiarization session was adequate for most subjects to feel 

familiar with the testing environment. Subject 5 is an exception to this generalization. 

His baseline mood response was quite different in Period 1 ,  when he received the 5 

mg dose, than in Period 2 ,  when he received the placebo treatment (a score of 49 

versus 7 1  for the self-rated scale, and 44 versus 60 for the visual analog scale) . 

Although he experienced intense dysphoria during Period 1 and was not aware that he 

was receiving a placebo in Period 2 ,  his baseline mood scores were much higher 
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during the second period. His anxiety about participating in the study may have 

influenced his mood response to dextroamphetamine. The familiarization session , 

which did not include blood sampling and drug administration , was not sufficient to 

acclimate the subject to the study environment. He was much more at ease prior to 

dosing during Period 2 than during Period 1 .  Administering two blinded placebo 

treatment periods, one prior receiving the drug under study and the second 

randomized in with the active treatments, would be useful to minimize this effect. 

4 .5 . 1d Computerized Psychometric Tests 

4 . 5 . 1d( l )  Results 

Plots of baseline and placebo corrected psychometric test scores (CPT average 

latency, CPT percent correct, and finger tapping rate for the right and left hand) 

versus time for each subject are presented in Appendix O. The psychometric test 

scores plotted at each time point were obtained by subtracting the baseline (0 hr) 

value for each treatment from the values at later time points for that treatment. The 

baseline corrected placebo profile was then subtracted from the baseline corrected 

profiles for the active treatments. Representative plots for these response measures 

from Subject 1 are presented in Figures 4 .36 - 4 .39 .  

A review of these plots for each subject reveals no obvious changes consistent 

with dextroamphetamine dose for either the CPT measures or the finger tapping task. 

Changes observed after dosing were small and fluctuated around the baseline for most 

subjects. The baseline and placebo-corrected, percent-correct on the CPT did not 
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Figure 4.38 Baseline and placebo corrected finger tapping rate with the right hand for 
Subject 1 
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Subject 1 
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increase or decrease by greater than 10% after any of the treatments for any of the 

subjects. The baseline and placebo corrected average rate of finger tapping did not 

increase or decrease by more than 3 taps per second for the right hand or 2 taps per 

second for the left hand for any of the subjects. Statistical analysis of the G...x or 

<Emm) and ET values for each response measure showed no significant differences 

between treatments at the alpha level of 0.05 .  Estimated power for these statistical 

tests was 0.45,  0.50, 0.45, and 0 .88 for the CPT average latency, the CPT percent 

correct, the finger tapping right hand, and the finger tapping left hand respectively. 

The baseline values were significant covariates in the analysis of covariance for 

the CPT average latency and the finger tapping (left hand). Average baseline values 

for the psychometric tests for each subject are presented in Table 4 .22 .  The 

variability in baseline values between periods was low compared to the other response 

measures. The CPT average latency was more variable at baseline than the percent 

correct. Finger tapping with the left hand was more variable than finger tapping with 

the right hand . Baseline values measured during Period I were not noticeably 

different from those measured during subsequent periods. 

4 . 5 . 1d(2) Discussion 

Based on visual inspection of the baseline and placebo corrected psychometric 

test response versus time plots and the statistical analysis of the G...x (or E.ruJ values 

for each treatment for each subject, it appears that performance on the psychometric 

tests was not influenced by the drug treatment administered. This is consistent with 

the results reported by other investigators (see Section 2 . 2.7) .  While some studies 
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Table 4 .22 Average Psychometric Test Scores at Baseline (0 hr) for Each Subject 

Subject Continuous Performance Task Finger Tapping Task 

A verage Latency Percent Right Hand Left Hand 
(sec) Correct (%)  (taps/sec) (taps/sec) 

Mean RSD% Mean RSD Mean RSD % Mean RSD % 
% 

0.407 1 9 . 8  99 .0  1 . 1  5 .03 1 . 9 4 . 38 3 .7  

2 0 .35 1 1  5 . 3  99 .4 0.4 5 . 7 1  3 .9  4 .94 2 .7  

4 0. 3704 6.5  99 .3  0 .6  6 .59 1 . 2  5 .32 2 . 8  

5 0. 3603 0.4 99.2  1 . 2 5 . 00  5 . 7  4 .40 8 .7  

6 0 . 3060 4. 1 98.3 1 .9 5 .08 1 . 5 4 .5  1 .6 

7 0.2372 7 .4  94. 2  4 . 3  6.61 10 .6 4 .62 5 .4 

8 0 .33 15  6 .5 99 .0 0 .8  4 .9 1  18 .6  4 .23 3 .9  

9 0. 3922 1 1 . 3  97. 5  3 . 1 4 .95 3 . 1 4.43 2 .2  

10  0 .3812  5 . 1 99. 6  0.5 4 .66 1 5 . 2  5 . 22 10 .3  

report changes in performance on some tests after subjects receive amphetamine, 

many others report no differences after drug administration . The computerized tests 

employed in our testing environment were not able to detect differences between the 

treatments. The power for the statistical tests for these response measures were 

relatively low. With a larger sample size, the small differences observed between 

treatments may have been statistically significant. 

Performance on the tasks did not appear to consistently increase or decrease 

during the dosing intervals. The responses measured as baseline at each period also 

showed no patterns of increasing or decreasing as the study progressed. This 

indicates that the practice tests during the familiarization session and prior to baseline 

measurements during each period were probably sufficient to minimize learning 
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effects on the test results. 

Variability between the baseline measurements for the psychometric tests at each 

period for each subject were less than those observed for the EEG measures, prolactin 

levels,  and mood scale scores. The average latency was more variable than the 

percent correct on the CPT. The task was not difficult, and subjects performed it 

with less than 10% errors after the first few practices leaving little room for 

improvement. The speed of response as measured by the average latency however is 

likely to be more variable. Baseline scores for finger tapping with the left hand was 

more variable than baseline scores for finger tapping with the right hand. All of the 

subjects in this study were right handed . This may explain why the baseline for the 

left hand is more variable than the baseline for the right. 

These psychometric tests did not prove to be useful for distinguishing the effects 

of dextroamphetamine on performance. Dextroamphetamine, at the doses studied , 

may in fact have no effect on elements of performance these tests are intended to 

measure. Alternatively ,  the observations may be affected by characteristics of the 

particular tests administered , the environment in which the tests were given , or 

characteristics of this subject sample. 

4 .5 . 1e  Conclusions 

A number of response measures were used in this study to assess CNS 

stimulation . Dose-related EEG changes were observed in only 3 of the subjects. The 

characteristic that distinguished these subjects from the nonresponders was the level of 

background alpha activity . Statistical analysis was not useful for comparing 



176 

treatments, because there were too few subjects to perform subgroup analysis based 

on background alpha activity. Future studies of CNS stimulation should exclude 

volunteers that show less than 35 % alpha activity on screening EEG recordings. 

Prolactin levels showed dose related changes in the majority of the subjects. In 

general , prolactin levels decreased after dextroamphetamine administration , with the 

greatest effect occurring at the lowest dose level . Statistical analysis showed 

significant differences between placebo and the treatments. The treatments could not 

be distinguished from each other however. Baseline serum prolactin levels were 

variable from period to period. Future studies should include more than one 

measurement of serum prolactin prior to drug administration. 

Mood scales also showed a heterogenous response, with some subjects showing 

euphoria and some showing dysphoria. Dysphoria occurred 20% of the time, which 

is similar to the rate reported by other investigators. The self-rated mood scale was 

more useful than the visual analog mood scale for distinguishing between dose levels. 

The effect on mood may be dependent on dose, since one subject experienced 

dysphoria only at the highest dose. Another subject experienced intense dysphoria, 

which may have been related to his anxiety about participating in a study for the first 

time. Future studies should include two blinded placebo periods, one as the first 

study period and the second randomized with the active treatments. 

The average latency and percent correct on the CPT and the rate of finger 

tapping with the right and left hand were not useful for distinguishing between the 

dextroamphetamine dose levels. This result may indicate that amphetamine does not 

affect attention and motor performance. Alternatively ,  it may indicate that these 



particular tasks administered in our study environment to our study population were 

not sensitive enough to measure the performance changes that occurred . 

The sensitivity, reproducibility, and suitability of each of these tests for 

pharmacodynamic studies of CNS stimulation will be compared and discussed in 

Chapter 5 .  

4 .5 .2  Cardiovascular Response Measures 
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The results for blood pressure and heart rate are presented and discussed in the 

following sections. These responses were measured both for subject safety and as an 

assessment of stimulant effects outside of the central nervous system . Subject 3 are 

not presented because he did not receive a placebo. His data was included in the 

statistical analysis however. 

4 . 5 . 2a Blood Pressure 

4 .5 .2a( l )  Results 

Plots of baseline and placebo corrected systolic and diastolic blood pressure 

versus time for each subject are presented in Appendix P. The blood pressure values 

plotted at each time point were obtained by subtracting the baseline (0 hr) value for 

each treatment from the values at later time points for that treatment. The baseline 

corrected placebo profile was then subtracted from the baseline corrected profiles for 

the active treatments. Representative plots for these response measures from Subject 

2 are presented in Figures 4 .40 - 4 .4 1 . 
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Figure 4 .40 Baseline and placebo corrected diastolic blood pressure versus time for 
Subject 2 
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A review of these plots for each individual indicates that in general , both 

systolic and diastolic blood pressure rises after the administration of 

dextroamphetamine. The average increase in the baseline and placebo corrected 

diastolic blood pressure was 1 2.2 ,  1 3 .6,  and 1 6.5 mmHg after the 5 ,  10 ,  and 20 mg 

doses respectively. The average increase in the baseline and placebo corrected 

systolic blood pressure was 15 . 3  mmHg after the 5 mg dose, 19 . 1 mmHg after the 10  

mg  dose, and 29 .5  mmHg after the 20 mg dose. The magnitude and duration of the 

effect varies among individuals. 

Statistical analysis of the I;..... values for diastolic blood pressure showed a 

significant treatment effect (p < 0.05) .  Power for this statistical analysis was high 

compared to the analysis of the eNS measures; power was 0 .97 for diastolic blood 

pressure. Statistical comparison of the treatments showed the 10 and 20 mg doses 

were significantly different than placebo and the 5 mg dose was significantly different 

from the 20 mg dose. The 5 mg dose was not different from the 10 mg dose, and the 

10  mg dose was not different from the 20 mg dose. Statistical analysis of the ET 

(defined in Section 4 .2 .4c) values for diastolic blood pressure revealed no significant 

difference between treatments. 

Statistical analysis of the I;..... values for systolic blood pressure revealed no 

significant differences between the treatments. The estimated power for this 

comparison was low (0.6) however. The variability between subjects in systolic 

blood pressure was greater than for diastolic blood pressure. Baseline systolic blood 

pressure was also a significant covariate in the analysis of covariance. As with 

diastolic blood pressure, statistical analysis of the ET values for systolic blood 
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pressure revealed no significant differences between treatments. 

A verage baseline values for diastolic and systolic blood pressure for each 

subject are presented in Table 4.23. The RSD% for baseline blood pressure was less 

than 20% for all subjects, but for most of the subjects, it was less than 1 0 % .  The 

baseline diastolic blood pressure was a significant covariate in the analysis of 

covariance. In general , subjects with higher baseline blood pressure showed a lower 

blood pressure increase. 

No consistent pattern of hysteresis is present in plots of baseline and placebo 

corrected blood pressure versus serum amphetamine concentration measured at the 

same time. Representative plots from Subject 4 are presented in Figures 4.42 - 4.44.  

4 .5 . 2a(2) Discussion 

The increase in blood pressure observed in this study is similar to the reported 

by other investigators (see Section 2 .2 .8) .  There was a statistically significant 

difference in maximum diastolic blood pressure between the treatments, with the 

largest increase observed for the highest dose level . The rise in systolic blood 

pressure was more variable between subjects, resulting in lower power for the 

statistical comparison of treatments. A larger sample size would be necessary to 

distinguish the treatments based on maximum systolic blood pressure. 

The highest diastolic blood pressures observed during the study were 102 ,  94, 

and 90 mmHg following the 20 mg dose for Subjects 2, 9, and 4 respectively. These 

blood pressures were observed 2 to 3 hours after dosing. Blood pressure remained 

above 90 mmHg for no longer than 1 to 2 hours. Blood pressure increases were not 
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of sufficient magnitude or duration to require medical intervention for any of the 

subjects. 

Table 4 .23 Average Blood Pressure at Baseline (0 hr) for Each Subject 

Subject Diastolic Blood Pressure Systolic Blood Pressure 
(mmHg) (mmHg) 

Mean RSD % Mean RSD % 

70.5  4 .7  1 25 . 3  8 . 7  

2 70.0 1 1 .7  1 1 6.0 12 .9  

4 7 1 . 3  5 .4  127.0 6.4 

5 74 .0  13 .4  122.5 1 5 . 6  

6 69.0 9 .8 1 3 1 .0 8 .9  

7 66.5 2 .6 128 .8 4 . 1 

8 60. 3  5 . 7  1 25 . 8  6.3 

9 80.3  1 1 .4  1 36 .8  1 1 .0 

10 69.3  7 .2  1 12 .3  5 .5  

Baseline blood pressure was a significant covariate in the analysis of covariance, 

indicating that the baseline blood pressure accounts for a significant amount of the 

variability in response that was observed. In general , subjects with lower baseline 

blood pressures showed a higher increase in blood pressure. The variability in 

baseline values between periods was relatively low, and did not seem to be associated 

with the period in which it was measured. Baseline blood pressure during Period 1 

was not consistently higher or lower than during other periods. One exception to this 

generalization may be Subject 5, who was withdrawn from the study due to an intense 

dysphoric reaction. His baseline diastolic blood pressure was higher during Period 1 
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(8 1 mmHg) when he experienced dysphoria after the 5 mg dose than during Period 2 

(67 mmHg) when he received the placebo. At baseline during Period 1 ,  his blood 

pressure was elevated and his mood scale scores were lower. His baseline 

psychological and physical state may have contributed to his dysphoric episode. 

Because baseline blood pressure levels contribute to the blood pressure response 

observed, adequate characterization of the baseline levels is essential. In this study, 

all measurements were made after subjects had been supine for at least 5 minutes. 

Taking more than one baseline measurement may improve the determination of the 

baseline response. 

4 .5 .2b Heart Rate 

4 .5 .2b( l )  Results 

Plots of baseline and placebo corrected heart rate versus time for each subject 

are presented in Appendix Q. The heart rate values plotted at each time point were 

obtained by subtracting the baseline (0 hr) value for each treatment from the values at 

later time points for that treatment. The baseline corrected placebo profile was then 

subtracted from the baseline corrected profiles for the active treatments. A 

representative plot for this response measure from Subject 2 is presented in Figure 

4.45. 

A review of these plots for each individual indicates that, in general , heart rate 

increases after the administration of dextroamphetamine. The average increase in the 

baseline and placebo corrected heart rate was 10 .3 ,  16 .4 ,  and 23. 1  bpm after the 5 ,  

1 0, and 20  mg doses respectively. The magnitude and duration of the effect varies 
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among individuals, but appeared to increase as the dose level increased. 

Statistical analysis of the Emu values for heart rate showed a significant 

treatment effect (p < 0.05) . Power for this statistical analysis was similar to that 

observed for diastolic blood pressure; power was 0.90 for heart rate. Statistical 

comparison of the treatments showed the 10  and 20 mg doses were significantly 

different than placebo and the 5 mg dose was significantly different from the 20 mg 

dose. The 5 mg dose was not different from the 1 0  mg dose, and the 10 mg dose 

was not different from the 20 mg dose. The baseline heart rate was a significant 

covariate in the analysis of covariance. 

Statistical analysis of the ET values for heart rate also revealed significant 

differences between treatments. The average ET for each treatment was 3 .8 ,  3 .9 ,  

5 . 8 , and 9 . 1 for the placebo, 5 mg,  10  mg,  and 20 mg dose levels respectively. 

Comparison of the treatments showed that response after the 20 mg dose was 

significantly different than the 5 mg dose and placebo. Other treatments were not 

statistically different from each other. Power for this statistical analysis was 0.96. 

Average baseline values for heart rate for each subject are presented in Table 

4 .24 .  The RSD % for baseline blood pressure was less than 12 % for all subjects. 

A verage baseline heart rate ranged from 46 to 64 bpm.  Plots of baseline and placebo 

corrected heart rate versus serum amphetamine concentration measured at the same 

time demonstrated no consistent pattern of hysteresis. Representative plots from 

Subject 9 are presented in Figures 4 .46 - 4.48. 



40 

30 

20 

� !!!. 10 
w .... � 
!r 0 � 
:I: 

-10 

-20 

-30 
o 

.. 

JilT 

10 20 30 40 � 
SERUM AMPHETAMINE CONCENTRATION (NG/Ml) 

1 87 

60 70 

Figure 4 .46 Baseline and placebo corrected heart rate versus serum amphetamine 
concentration for Subject 9 (5 mg dose) 
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Table 4 .24 Average Heart Rate at Baseline (0 hr) for Each Subject 

Subject Heart Rate (bpm) 

Mean RSD% 

1 55 . 5  4 . 3  

2 54.5  10.0 

4 58 .8  10. 1 

5 53.0 10.7 

6 46.5 4 . 1 

7 62 . 5  1 1 .4 

8 46. 3  9 .9 

9 64.0 4.2 

10  45 . 8  5 . 8  

4 .5 .2b(2) Discussion 

In this study, an increase in heart rate was observed for most subjects. Other 

investigators have reported both increases and decreases in heart rate after 

dextroamphetamine administration (see Section 2 .2 . 8) .  There was a statistically 

significant difference in maximum heart rate between the treatments, with the largest 

increase observed for the highest dose level . None of the subjects experienced an 

elevation of heart rate that would be considered tachycardia ( > 100 bpm) . 

The ET was also greater as the dose increased. ET is an indicator of the length 

of time that the response measure could distinguish a drug effect, weighted toward the 

later times (and lower concentrations). Heart rate is the only response measure for 

which there was a statistically significant treatment effect for ET. 

Baseline heart rate was a significant covariate in the analysis of covariance, 

indicating that the baseline heart rate accounts for a significant amount of the 
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variability in response that was observed. The variability in baseline values between 

periods for each subject was relatively low, and did not seem to be associated with 

the period in which it was measured . Baseline heart rate during Period 1 was not 

consistently higher or lower than during other periods. Baseline heart rate did not 

appear to be correlated with the magnitude of change in heart rate after 

dextroamphetamine dosing. As with blood pressure, adequate determination of the 

baseline heart rate is essential. 

4 .5 .2c Conclusions 

Blood pressure and heart rate increased after the administration of 

dextroamphetamine for most subjects at most dose levels. The increases were not of 

sufficient magnitude or duration to pose significant risk to the subjects. Only one 

subject briefly experienced a diastolic blood pressure greater than 100 mmHg. 

The maximum blood pressure and heart rate observed was greater as the dose 

increased . The was a statistically significant treatment effect for diastolic blood 

pressure and heart rate. The 10 and 20 mg doses were significantly different than 

placebo and the 5 mg dose was significantly different from the 20 mg dose. The 5 

mg dose was not different from the 10 mg dose, and the 10  mg dose was not different 

from the 20 mg dose. 

Adequate characterization of the baseline heart rate and blood pressure is 

important .  Baseline levels contribute to the variability in response observed. In 

future studies, more than one measurement of heart rate and blood pressure before 

dosing would be beneficial in establishing the baseline response. 



CHAPTER 5 

Comparison of Pharmacodynamic Response Measures 

In this chapter, the pharmacodynamic response measures used in this study are 

compared. The relationships between responses on different measures for each 

subject are examined .  The characteristics of each measure are evaluated relative to 

those an ideal pharmacodynamic measure, including sensitivity , reproducibility ,  and 

clinical relevance. 

5 . 1  Results 

The direction of change in baseline and placebo corrected response after 

dextroamphetamine dosing for each response measure at each dose level for each 

subject is presented in Table 5 . 1 .  A review of the data in this table reveals 

few obvious relationships among the response measures. Increased EEG alpha 

activity is observed in 3 of the 9 subjects. No other response measures (mood scales, 

serum prolactin ,  or psychometric tests), show a similar pattern of response. Serum 

prolactin decreases in a majority of the subjects, and this change does not directly 

reflect EEG activity, mood, or psychomotor performance. Mood scales show a 

dichotomous response. Some subjects experience euphoria and some dysphoria at a 

given dose level . Subjects with dysphoria do not appear to have unique responses on 

19 1  
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Table 5 . 1  Comparison of Subject Responses on Each Pharmacodynamic Measure 

S Do"" EEG Serum Self- VilUal CFT CFT Finger Finger BP Heart 
u Total Prolactin Rlted Analog Average Percent Tip - TIp - Rate 

b Alpha uvel Mood Mood Latency COrTeCt IOght uft 

j Power Selle Selle 

1 5 - , - - t , - t t t 

1 0  - , - - t , - t t t 

20 - , t - t , - - t t 

2 5 - , - - - - , t , -

1 0  - , t t , - - t t t 

20 - , t t t - - t t t 

4 5 - , , - , - - t t t 

10 t , , - , - - t t t 

20 t , , - , - - t t t 

5 5 - - , , - - - - , t 

10 - - - - - - - - - -

20 - - - - - - - - - -

6 5 t , - - - - - - t t 

10 t , , - - - - t t t 

20 t - t t , t - t t t 

7 5 - , - t t t , t - t 

1 0  - , - , , , , , , , 

20 - - - , , - , , , , 

8 5 - - - - - - , , - t 

1 0  , - - - - - , , - , 

20 - - , , - - , t - t 

9 5 - - - - t , - t , -

1 0  - , - t t , - t t -

20 - - t t t , - t t -

10 5 - - t , - - t t t -

10 - - t , t - t t t t 

20 - - t t - - t t t t 
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other pharmacodynamic measures that could be used to predict the direction of the 

mood response. In general , the psychometric tests do not show consistent changes 

across subjects and doses, except that finger tapping rate with the left hand increases 

in most subjects. Heart rate and blood pressure increase for most subjects, but the 

cardiovascular changes do not mirror changes in any of the CNS response measures. 

To compare the time course of the pharmacologic effects as measured by each 

pharmacodynamic measure for individual subjects, plots of baseline and placebo 

corrected response after the 20 mg dextroamphetamine dose versus time were 

prepared. These are presented in Figures 5 . 1  - 5 . 8 . The first panel in each plot 

shows the serum amphetamine concentration for those time points were response 

measures were made on the left y-axis (-- -) and serum prolactin concentration (- + -) 

on the right y-axis. The second panel shows EEG total alpha power on the left y-axis 

(-- -) and self-rated mood scale score on the right y-axis (- +-) .  The third panel 

shows CPT average latency on the left y-axis (-- -) and finger tapping rate with the 

left hand on right y -axis (- + -) .  The fourth panel shows diastolic blood pressure on 

the left y-axis (-- -) and heart rate on the right y-axis (- + -) .  Examination of these 

plots shows that serum prolactin levels usually peak earlier than or at the same time 

as the serum amphetamine concentrations. Mood scale scores generally reach their 

maximum change in either direction before or coincident with the peak serum 

amphetamine concentrations .  When EEG alpha power increases, the time of 

maximum response does not appear to relate to the time of the maximum serum 

amphetamine concentration. Maximum diastolic blood pressure occurs before the 

maximum heart rate, with the peak heart rate usually occurring later than the 
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Figure 5 . 1 Serum amphetamine concentration versus time and baseline and placebo 
corrected pharmacodynamic responses versus time plots after the 20 mg 
dose for Subject 1 .  (- - - refers to left y-axis and -+- refers to right y­
axis) 
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Figure 5 .2  Serum amphetamine concentration versus time and baseline and placebo 
corrected pharmacodynamic responses versus time plots after the 20 mg 
dose for Subject 2 .  (-- - refers to left y-axis and - + - refers to right y­
axis) 
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corrected pharmacodynamic responses versus time plots after the 20 mg 
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Figure 5 . 7  Serum amphetamine concentration versus time and baseline and placebo 
corrected pharmacodynamic responses versus time plots after the 20 mg 
dose for Subject 9 .  (--- refers to left y-axis and -+- refers to right y­
axis) 
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maximum serum amphetamine concentration is achieved. 

To examine the relationship between maximum pharmacodynamic response and 

maximum serum amphetamine concentration, the maximum (or minimum) baseline 

and placebo corrected response observed after the 20 mg dextroamphetamine dose was 

plotted against the maximum serum amphetamine concentration. These plots are 

presented in Figure 5 .9 .  The first row of plots shows the maximum serum prolactin 

verses the maximum serum amphetamine concentration Oeft) and maximum EEG 

alpha power versus maximum serum amphetamine concentration (right) . The second 

row of plots shows the maximum absolute change (increase or decrease) in self-rate 

mood scale versus maximum serum amphetamine concentration Oeft) and the 

minimum CPT average latency versus maximum serum amphetamine concentration 

(right) . The third row shows the maximum finger tapping rate with the left hand 

Oeft) and maximum diastolic blood pressure (right) versus maximum serum 

amphetamine concentration . The fourth row shows the maximum heart rate (left) 

versus maximum serum amphetamine concentration . The correlations between the 

maximum CNS response and maximum serum amphetamine concentration are 

relatively low for most measures. Correlation coefficients of 0.07, 0 .34, 0.4 1 ,  and 

0.04 were obtained for serum prolactin levels, mood scale scores, CPT average 

latency, and finger tapping with the left hand.  Correlation with the EEG alpha power 

was the highest of the CNS measures, with r = 0.83. Correlation for the 

cardiovascular measures was higher than for the CNS measures, with r = 0.91  for 

diastolic blood pressure and r = 0 .87 for heart rate. 

Because this project was designed to evaluate the sensitivity and utility of 
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quantitative EEG response to dextroamphetamine compared to other measures, the 

relationship between maximum EEG alpha power and maximum response for other 

pharmacodynamic measures after the 20 mg dose of dextroamphetamine was 

examined. Plots of maximum (or minimum) baseline and placebo corrected prolactin 

(first row - left) , mood (first row - right) , CPT average latency (second row - left), 

finger tapping rate with the left hand (second row - right) , diastolic blood pressure 

(third row - left) , and heart rate (third row - right) response versus maximum baseline 

and placebo corrected EEG alpha power are presented in Figure 5 . 10. Correlation of 

the EGG alpha power with the CNS measures is low, while correlation with the 

cardiovascular parameters is relatively high . 

Based on observations made in Part I and Part n of this study, each 

pharmacodynamic response measure was rated relative to criteria for an ideal 

pharmacodynamic measure. These ratings are presented in Table 5 .2 .  Justification 

for these ratings and discussion of the results noted above are addressed in the next 

section. 

5 .2  Discussion 

The onset, magnitude, and duration of pharmacologic effect observed after 

dextroamphetamine dosing appears to depend on the response measure and individual 

subject under consideration. Generalization about the relationships between response 

on the various pharmacodynamic measures has proven difficult. For example, mood 

scales show a heterogenous response, while none of the other measures seem to 

reflect this dichotomy. Physiological or psychological indicators of dysphoria could 
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Table 5 .2  Characteristics of each CNS Pharmacodynamic Response Measure 

Serum EEG Mood CPT Finger 
Prolactin Total Scales Tapping 

Levels Alpha 
Power 

Non-invasive - + +  + + +  + + +  + + +  

Quantitative + + +  + + +  + + +  + + +  + + +  

Objective + + +  + +  + + + +  + + +  

Suitable for ·Repeated + +  + + +  + +  + + 
Measures 

Clinically Meaningful + + + + +  + +  + +  

Susceptible to First Session + + +  + +  + +  + +  
Effects 

Low Between-Period + + + +  + + +  + + +  
Variability of Baseline 
Values 

Low Potential for Missing + + +  + + +  + +  + +  
Data 

Sensitivity for + +  + + +  - -

Distinguishing Dextro-
amphetamine Dose Levels 
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not be identified in the responses assessed by the other pharmacodynamic measures. 

EEG response was only observed in 3 subjects, but response on other measures do not 

reflect this observation. These subjects do not differ from other subjects in response 

on other measures. Maximum EEG alpha power after the 20 mg dose correlates most 

closely with the maximum cardiovascular parameters. This may be because EEG 

alpha power, diastolic blood pressure, and heart rate correlate most highly with serum 

amphetamine concentration. Patterns in the time course of the effects of the eNS 

measures were also obscure. Responses from different eNS measures do not seem to 

follow the same time course or relate directly to the serum amphetamine 

concentrations. None of the measures reflected the dose-related changes in the 

absorption rate of dextroamphetamine. This may indicate that the eNS response 

measures are not measuring the same thing, the measures differ in sensitivity or 

reproducibility, or the degree of eNS stimulation changes during the testing session. 

Based on observations made in Parts I and IT of this study, each response 

measure was evaluated against the criteria for an ideal pharmacodynamic response 

measure. An ideal measure should: 1 )  be noninvasive, quantitative and objective, 2) 

suitable for repeated measures, 3) be insensitive to first session effects, 4) show low 

variability between periods as baseline, 5) have low potential for missing data, 6) 

measure a response that relates to some clinically relevant outcome, and 7) be 

sensitive and reproducible so that changes in dose levels (or serum concentration) of 

the drug can be discerned. Each of the measures meet some of these criteria, but 

none fulfills them all .  The last criteria listed above, which these studies were 

designed to address, is  the most important. 
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Each of the measures investigated in this study permits quantitation of the 

response. The mood scales, CPT, finger tapping, and EEG are noninvasive although 

the recording the EEG does result in some discomfort to the subject. Collection of 

serum prolactin levels requires venipuncture, so it is the most invasive of all of the 

response measures. The serum prolactin levels, CPT, and finger tapping task are the 

most objective of the measures. The self-rated and visual analog mood scales are the 

least objective of the measures, since they depend on the subject's individual 

assessment of the drug effect .  The EEG data falls between mood scales and the other 

measures. The processing of the EEG requires editing, which is subjective in nature. 

Blinding of the EEG reviewer should reduce the subjectiveness of the process. 

Another approach , which was not utilized in this study, would be to automate the 

EEG artifact detection and elimination. 

The EEG is the most suitable for repeated measures. Once the electrodes are 

applied, recordings can be made continuously with little subject cooperation beyond 

remaining vigilant. Serum prolactin can also be measured repeatedly, but the 

frequency is limited by the total volume of blood that can be drawn from the subject. 

Mood scales can also be measured repeatedly, but if administered too frequently, 

subjects become bored with the questions or their answers may become unduly 

influenced by the answers on the previous test session . The CPT and finger tapping 

tasks are the least suitable for repeated measures. During Part I of the study, learning 

effects were demonstrated for the computerized tests. Although the learning effects 

can be minimized with adequate practice sessions, these tasks require a higher degree 

of subject cooperation and motivation than the other tasks. Some subjects complained 
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that their hand became tired during the finger tapping task, which limits how 

frequently it can be repeated. The CPT requires that the subject maintain attention 

and motivation. During Part II of this study, the frequency of the computerized test 

sessions did not appear to seriously interfere with measurement of response. 

In Part I of the study, each measure except serum prolactin was evaluated for 

first session effects. Scores on the self-rated mood scale, finger tapping with the right 

hand, percent correct on the CPT and EEG total power in the delta frequency band 

showed different responses on the first study day than on subsequent study days. This 

difference may be due to anxiety about participating in the study or other factors 

associated with being unacquainted with the study procedures. Serum prolactin has 

the potential to show first session effects as well, since prolactin levels are affected by 

stress. Prior to Part II of the study, subjects underwent a familiarization session that 

was similar to a study day except it was shorter and did not involve blood drawing, 

urine collection or drug administration . When the results of Part II were examined, a 

first-period effect was not present for most of the subjects, suggesting that the 

familiarization session was adequate. Study period was not significant in the 

statistical analysis and the baseline values were not noticeably different during Period 

1 than during other periods. One notable exception to this observation is the 

experience of Subject 5 .  During Period I ,  his baseline CNS and cardiovascular 

responses were quite different than those measured in Period 2 ,  which may have 

contributed to the intense dysphoria experienced by the subject. To minimize this 

type of effect in future studies of CNS active drugs, a familiarization session that is 

identical to a study period where the subjects receive a placebo and are blinded should 
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b e  incorporated into the study design. 

An ideal pharmacodynamic measure should also show low variability between 

periods as baseline. The measure should not vary significantly due to confounding 

factors, but show a stable response at baseline throughout the study. In our studies, 

EEG variables and serum prolactin showed the highest baseline variability. These 

measures are influenced by a number of factors including psychological state, stress, 

and level of vigilance. The mood scales and psychometric tests showed much lower 

variability at baseline than the EEG and prolactin. With significant variability at 

baseline, careful control of the study conditions and accurate determination of the 

baseline response is necessary. 

Pharmacodynamic measures should also have low potential for missing data. 

The self-rated mood scales are least likely to show missing data. The only time they 

are missing is if the subject refuses to complete it, the investigator forgets to 

administer it, or the rating scale forms are misplaced, all of which are highly unlikely 

and could occur for any of the measures. Psychometric test data and serum prolactin 

values are also unlikely to show missing data, except when the computer, heparin 

lock, or RIA assay fails. The EEG is most likely to result in missing data. In our 

studies, 5 - 1 0 %  of the data was classified as missing because less than 24 artifact­

free epochs were present after the editing was complete. This occurred despite efforts 

to minimize artifacts. Missing data complicates statistical analysis and may 

necessitate studying a larger number of subjects to obtain conclusive results. 

A pharmacodynamic measure ideally should have clinical relevance. Change in 

the measure should have clinically important meaning. This goal has proven elusive 
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for many CNS pharmacodynamic measures. Intuitively,  mood scales seem to be 

measuring mood alteration, which is clinically relevant for CNS stimulants. The 

mood scales used in these studies, particularly the self-rated mood scale, have face 

validity for measuring euphoria or dysphoria. This may be more or less true for a 

given scale, but in general , changes in these scales have clinical meaning. Each scale 

must be validated and results with a particular scale may not be consistent with other 

validated scales. Psychometric tests may also reflect clinically meaningful changes. 

The tasks used in this study were fairly simple however, and their relevance to 

complex, "real life" situations is unknown. The behavioral or psychological meaning 

of changes in serum prolactin levels and EEG variables are much less clear. They 

may be surrogate measures of more clinically relevant effects, but more work is 

needed to define these relationships. 

Surrogate measures are useful only if response on these measures reflect 

clinically important changes. One of the objectives of this study was to determine if 

EEG changes observed after the administration of CNS stimulants correlated with 

clinical outcomes. The results of this study provided no evidence that the drug­

induced EEG changes are correlated with changes in mood or psychometric 

performance. Similar EEG changes were observed in subjects who experienced 

euphoria and subjects who experienced dysphoria. The pattern of EEG changes also 

did not mirror changes in psychometric performance. This study did not suggest 

psychological or behavioral meaning for changes in serum prolactin levels either. 

Despite the unclear meaning of surrogate measures, they are still useful in drug 

development. Changes in these measures can indicate that a drug is influencing CNS 



2 1 2  

activity an d  may b e  useful i n  studying the influence o f  disease processes, aging, or 

other drugs on the CNS. Further work is needed to elucidate clinical correlates for 

EEG and serum prolactin changes. 

Most importantly, pharmacodynamic measures should be reproducible and 

sensitive to the dose of the drug administered or the concentration of the drug at some 

collection site (usually serum or plasma). The primary objective of this research was 

to examine the sensitivity and reproducibility of quantitative EEG compared to other 

pharmacodynamic measures for the assessment of CNS stimulation. Based on Part I 

of this study,  within-day variability, between-day variability, and intersubject 

variability was greatest for the EEG measures when no drug was administered. The 

psychometric tests were the least variable. These results indicate that EEG measures 

are less reproducible than the other measures under the testing conditions employed in 

our studies. This was also evident in the variability of the baseline values in Part II 

of the study. It may be possible to reduce this variability by selecting subjects with 

very similar background EEG patterns (especially alpha activity) and personality 

characteristics, more carefully controlling the level of vigilance, and controlling 

factors in the testing environment such as noise level , temperature, and interaction 

with staff. Reproducibility also impacts the sensitivity of a measure. If measures are 

not reproducible, they are less likely to be sensitive to small changes in drug 

concentration or dose. 

The results of Part II of this study provide evidence of the comparative 

sensitivity of the pharmacodynamic measures investigated. Indicators of sensitivity 

include: 1 )  ability to distinguish dose levels based on the maximum or minimum 



response observed on the various measures by statistical analysis, 2) the 

discriminating ability of the measures as indicated by the estimates of power 

2 1 3  

for the statistical analyses, 3) the ability to measure drug effect as serum 

concentrations of dextroamphetamine are declining as assessed by the ET parameter, 

and 4) the correlation between maximum serum amphetamine concentrations and the 

maximum response determined with each response measure. 

Statistical analysis of the E...u (or E..uJ values for each response measure showed 

that not all of the measures could distinguish the dose levels of the drug. Significant 

treatment effects consistent with dose were observed for serum prolactin , diastolic 

blood pressure, and heart rate. The mood scales, EEG, psychometric tests, and 

systolic blood pressure showed no significant differences. Estimated statistical power 

was also highest for serum prolactin (0. 85),  diastolic blood pressure (0.97) , and heart 

rate (0.90) . Estimated power for the EEG alpha power (0.25) , the self-rated mood 

scale ( < 0 .20) , the visual analog mood scale (0.30) , CPT average latency (0.45) , 

CPT percent correct (0.50) finger tapping with the right hand (0.45) and systolic 

blood pressure (0.60) were lower. Finger tapping with the left hand showed adequate 

statistical power (0. 88) , but no treatment effects were observed. Statistical power for 

the mood scales were low primarily because of the dichotomous response observed in 

the small study sample. EEG changes were also only present in a portion of the 

subjects. A larger sample size that permitted subgroup analysis may have shown 

statistical differences for these measures. Power for the psychometric tests was 

higher than for the mood and EEG measures, so the performance on psychometric 

tests, indeed, may not be correlated with dose. Results from the statistical analysis of 



E...u (or E.wJ values suggest that the cardiovascular parameters are more sensitive 

than the CNS measures, and that serum prolactin is the most sensitive of the CNS 

measures. 
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The ET was calculated as an indicator of whether the measure was able to 

detect drug effect as concentrations became lower at later time points. The only 

measure able to distinguish between treatment based on ET was heart rate. None of 

the CNS measures showed a significant difference in ET between treatments. These 

results again indicate that the cardiovascular measures are more sensitive than the 

CNS measures. 

Correlations between maximum serum amphetamine concentration and 

maximum pharmacodynamic response show a strong correlation for maximum total 

EEG alpha power (r = 0 .83), diastolic blood pressure (r = 0 .91 )  and heart rate 

(0. 87) . Correlation coefficients are less than 0.5 for the other measures. These 

results imply that the cardiovascular parameters and EEG total power are most 

sensitive to the maximum serum concentrations of amphetamine. 

The indicators of sensitivity evaluated suggest that the cardiovascular measures, 

especially heart rate and diastolic blood pressure, are sensitive measures of stimulant 

effects. The cardiovascular measures are more sensitive than the CNS measures. Of 

the CNS measures, serum prolactin appears to be the most sensitive. The 

psychometric tests appear to be the least sensitive of the measures. Review of the 

response versus time plots at each dose level for the self-rated mood scale suggest that 

the mood scale may also be a sensitive measure. The largest effect is usually 

observed at the highest dose level . Because the response is dichotomous, statistical 
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comparisons appear to mask treatment differences. With a larger sample that 

permitted sub-group analysis, it is likely that significant differences between doses 

would be apparent. The EEG alpha power may also be a sensitive measure. In this 

study, there appeared to be a relationship between maximum increase in alpha power 

and maximum serum amphetamine concentration. Unfortunately,  only three subjects 

showed changes in alpha power after amphetamine dosing, so statistical power was 

very low. If only subjects with greater than 35 % alpha power at baseline were 

included in the study, significant differences between the treatments may have been 

apparent. 

Our studies did not provide evidence that quantitative EEG is more sensitive 

than other eNS measures for assessing eNS stimulation. Other investigators have 

reported that EEG has proved to be sensitive to drug action at drug concentrations 

lower than where changes are seen in neuropsychological tests.41 Studies that report 

this finding have all been performed with benzodiazepines, which cause a decrement 

in psychomotor performance and cause significant and characteristic EEG changes. 

This phenomenon has not been reported for eNS stimulants. This has also been 

viewed as a criticism of quantitative EEG, because EEG changes are present at drug 

concentrations when no behavioral changes are evident, so the meaning of the changes 

is unclear. It has been postulated that the sensitivity of EEG may be even greater 

when specific sensory stimulation modalities are employed , because situational 

variability (that decreases reproducibility) will be better controlled.41 
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5 . 3  Conclusions 

Each of the CNS measures evaluated in this study fulfills one or more of the 

criteria for an ideal pharmacodynamic measure to a greater or lesser extent, but none 

of them can be considered an ideal measurement tool. The study was designed to 

evaluate quantitative EEG as a pharmacodynamic measure of CNS stimulation, and 

the following can be concluded from these studies: 1 )  Quantitative EEG is 

noninvasive, although it results in more discomfort to the subjects than mood scales 

and psychometric tests, 2) It is more objective than subject-rated mood scales, but due 

to the editing process, may not be as objective as the psychometric tests, 3) EEG is 

the most suitable for repeated measures of all the tools assessed in this study, 4) The 

behavioral and psychological meaning of quantitative EEG changes is unclear, and the 

results of this study did not shed much light on this problem, 5) The EEG and other 

measures evaluated are susceptible to first session effects, so a familiarization period 

is necessary, 6) The EEG shows the most baseline variability between periods and the 

lowest within-day, between-day, and intersubject reproducibility of the measures 

studied , 7) Quantitative EEG has the highest potential for missing data of the 

measures evaluated , and 8) EEG is not more sensitive than the other measures under 

the conditions of this study. Further work is needed to identify subject groups or 

study conditions that can improve the sensitivity of EEG for measuring CNS 

stimulation . 



CHAPTER 6 

Overall Conclusions and Significance of Findings 

The primary objective of these studies was to test the following hypotheses: 1 )  

quantitative EEG i s  a sensitive and reproducible measure of the CNS's  response to 

sympathomimetic drugs as compared to more widely used methods such as 

psychometric testing, subjective rating scales, or neuroendocrine tests and 2) changes 

in the EEG after sympathomimetic drug administration are related to the behavioral , 

psychological and neuroendocrine effects observed as well as the plasma concentration 

of the drug. Based on the results obtained in these studies, quantitative EEG 

conducted under our study conditions and subject population was not more sensitive 

for assessment of CNS stimulation than the other CNS response measures evaluated . 

Quantitative EEG showed higher within-day, between-day , and intersubject variability 

than the other CNS measures studied , indicating that it is less reproducible under 

baseline conditions. Dose levels of dextroamphetamine could not be distinguished 

from placebo in the study population as a whole. A subset of the subjects studied 

showed notable EEG changes consistent with dose after dextroamphetamine 

administration . All of these subjects showed higher ( > 35 %) alpha activity at 

baseline. Differences in mood, inhibition of prolactin secretion , and psychomotor 

performance in these subjects compared to the rest of the subjects were not apparent. 
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Relationships between EEG changes and changes on other eNS measures could not be 

identified, although maximum change in EEG alpha JX>wer was related to the 

maximum serum amphetamine concentration . 

In addition to the findings addressing the primary objectives of the studies, 

conclusions can be drawn from secondary objectives and observations made during 

the course of the data collection and analysis: 

1 )  A gas chromatographic method with electron-capture detection of the 

pentafluorobenzoyl derivative of amphetamine is suitable for the 

determination of serum amphetamine concentrations as low as 2 ng/mL, 

which permits characterization of the pharmacokinetics of amphetamine 

following a 5 mg oral dose. 

2) Dextroamphetamine appears to show dose-dependent effects on the rate of 

absorption , with the fastest rate of absorption observed after the 5 mg dose. 

This phenomenon has not been described previously for amphetamines. 

3) The is an inverse relationship between dose and inhibition of prolactin 

secretion . The largest decrease in serum prolactin levels occurs after the 

lowest dose. This dose-resJX>nse relationship has not been reJX>rted 

previousl y.  

4) In general , the cardiovascular measures (heart rate and blood pressure) were 

more sensitive than the eNS measures employed in this study. Results from 

cardiovascular measures can be used to distinguish dose lower doses of 

dextroamphetamine than results from the eNS measures. 

5) The self-rated mood scale (adapted from the scale proJX>sed by Martin ,  et al . ,  
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based on the ARCI scales) was able to distinguish dose-related euphoria and 

dysphoria. 

6) The psychometric tests employed in this study were not useful for 

distinguishing dose levels of amphetamine under our study conditions. 

The primary significance of the findings from these studies is their importance 

for the design of future studies in the area. The studies were pilot in nature and 

intended to generate new hypotheses as well as provide evidence that supports or 

refutes the h ypotheses stated at the start of the investigation . Our results indicate that 

the placebo-controlled , crossover design is appropriate for pharmacodynamic studies 

using the CNS measures we investigated . Several of the tests show within day 

variability and circadian variation in the response, and the intersubject variability is 

higher than the intrasubject variability . Because many of the responses to drug 

depend on the baseline response, it is important to accurately characterize the baseline 

response by carefully controlling the prestudy conditions and measuring the baseline 

response more than once. In addition , a familiarization period is necessary for all of 

the tests , and our observations suggest that it should be identical to a study period. 

This could be accomplished by incorporating two placebo periods into the study ,  one 

at the beginning of the study (single-blind) and one randomized with the treatments 

(double-blind) . These design considerations are relevant for any pharmacodynamic 

study using quantitative EEG . For studies using quantitative EEG specifically to 

study CNS stimulation , our investigations suggest that prescreening of subjects for 

background alpha activity greater than 35 % is necessary to obtain measurable changes 
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in the EEG activity after drug administration. Screening subjects for similar 

personality traits may also improve the reproducibility of quantitative EEG for 

measuring eNS stimulation . These design modifications should improve the 

sensitivity and reproducibility of quantitative EEG to measure eNS stimulation. 

Quantitative EEG shows promise as a measure of eNS effects, but further work is 

needed before the technique will improve our ability to investigate the 

pharmacodynamics of weaker eNS stimulants or the effects of age, disease , and other 

drugs on the pharmacodynamics of eNS stimulants. 



REFERENCES 

22 1 



222 

References 

1 .  Holford NHG,  Sheiner LB. Kinetics of pharmacologic response. Pharmac Ther 
1 982; 1 6: 143-66. 

2 .  Dingemanse J ,  Danhof M,  Breimer DO. Pharmacokinetic-pharmacodynamic 
modeling of CNS drug effects: an overview. Pharmac Ther 1 988; 38 :  1 -52.  

3 .  Erb R.  Drug effect determination: proven and potential methodologies. In:  Smith 
R, Kroboth P, Juhl R (eds) . Pharmacokinetics and pharmacodynamics - research 
design and analysis. Cincinnati: Harvey Whitney Books, 1986:5 1 -64.  

4 .  Hindmarch I .  Psychomotor function and psychoactive drugs. Br J Clin Pharmac 
1980; 10 :  1 89-209. 

5 .  Wittenborn JR. Psychomotor tests i n  psychopharmacology. In : Hindmarch I ,  
Stonier PO (eds) . Human psychopharmacology: measures and methods. New York: 
John Wiley and Sons, 1987:69-78. 

6. Fink M. Quantitative pharmaco-EEG to establish dose-time relations in clinical 
pharmacology. In : Herrmann WM (ed). Electroencephalography in drug research . 
New York: Gustav Fischer Verlag, 1982: 17-22. 

7. Stanski DR, Hudson RJ, Homer TO, et al .Pharmacodynamic modeling of 
thiopental anesthesia. J Pharmacokinet Biopharm 1984: 12 :223-40. 

8 .  Hudson RJ, Stanski DR, Said man U, et al . A model for studying depth of 
anesthesia and acute tolerance to thiopental . Anesthesiology 1983: 59 : 30 1 -8 .  

9 .  Schuttler J,  Stanski DR, White PF,  et  al. Pharmacodynamic modeling of the EEG 
effects of ketamine and its enantiomers in mail . J Pharmacokinet Biopharm 1987; 
1 5 :24 1 -53 .  

10 .  Scott JC, Stanski DR. Decreased fentanyl and afentanil dose requirements with 
age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J 
Pharmacol Exp Ther 1987; 240: 1 59-66. 

I I .  Greenblatt OJ, Ehrenberg BL, Gunderman J, et al . Pharmacokinetic and 
electroencephalographic study of intravenous diazepam , midazolam, and placebo. 
Clin Pharmacol Ther 1989; 45 : 356-65 . 



223 

12 .  Kroboth PD, Smith RB, Erb RJ. Tolerance to alprazolam after intravenous bolus 
and continuous infusion: psychomotor and EEG effects. Clin Pharmacol Ther 1988; 
43:270-7. 

1 3 .  Buhrer M, Maitre PO, Hung 0, et al . Electroencephalographic effects of 
benzodiazepines. I. Choosing an electroencephalographic parameter to measure the 
effect of midazolam on the central nervous system . Clin Pharmacol Ther 1 990; 
48:544-54. 

14 .  Buhrer M,  Maitre PO, Crevoisier C,  et al .  Electroencephalographic effects of 
benzodiazepines. 11. Pharmacodynamic modeling of the electroencephalographic 
effects of midazolam and diazepam. Clin Pharmacol Ther 1 990; 48:555-67. 

1 5 .  Irwin P ,  Fink M .  Familiarization session and placebo control i n  EEG studies of 
drug effects. Neuropsychobiology 1983: 1 0: 1 73-77. 

16 . Hoffman BB, Lefkowitz RJ. Catecholamines and Sympathomimetic Drugs. In : 
Gilman AG, Rall TW, Nies AS, et al (eds) . The Pharmacological Basis of 
Therapeutics. New York: Pergamon Press. 1990: 1 87-220. 

1 7 . Amphetamine. In:  Baselt RC. Disposition of Toxic Drugs and Chemicals in Man . 
Davis, CA: Biomedical Publications. 1982 ;42-45 . 

1 8 .  Wan SH, Matin SB, Azarnoff DL. Kinetics, salivary excretion of amphetamine 
isomers, and effect of urinary pH. Clin Pharmacol Ther 1978; 23:585-90. 

19 .  Hamilton MJ ,  Smith PR, Peck AW. Effects of bupropion, nomifensine and 
dexamphetamine on performance, subjective feelings, autonomic variables and 
electroencephalogram in healthy volunteers. Br J Clin Pharmac 1 983 ; 1 5 : 367-74. 

20. Fink M, Shapiro DM, ltil TM. EEG profiles of fenfluramine, amobarbital and 
dextroamphetamine in normal volunteers. Psychopharmacologia (Berl) 197 1  ; 
22: 369-83 .  

2 1 .  Martin WR ,  Sloan JW, Sapira ID, et al . Physiologic, subjective, and behavioral 
effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and 
methylphenidate in man. Clin Pharmacol Ther 197 1 ; 12 :245-58.  

22. Van Kammen DP, Murphy DL. Attenuation of the euphoriant and activating effects 
of d- and I-amphetamine by lithium carbonate treatment. Psychopharmacologia 
(Berl) 1 975 ; 44: 2 15-24. 

23.  Angrist B, Gershon S .  Variable attenuation of amphetamine effects by lithium. Am 
J Psychiatry 1979; 1 36:806- 1 0. 

24. Silverstone T, Wells B, Trenchard E. Differential dose-response effects of 
dextroamphetamine sulphate on hunger, arousal and mood in human volunteers. 
Psychopharmacology 1983; 79:242-5 . 



224 

25 . Smith RC, Davis JM. Comparative effects of d-amphetamine, I-amphetamine, and 
methylphenidate on mood in man. Psychopharmacology 1977;53: 1 - 12 .  

26 .  Schmedtje IF, Oman CM, Letz R, et  al . Effects of  scopolamine and 
dextroamphetamine on human performance. Aviat Space Environ Med 1988; 
59:407- 1 0. 

27. Domino EF, Albers JW, Potvin AR, et al . Effects of d-amphetamine on 
quantitative measures of motor performance. Clin Pharmacol Ther 1972; 1 3 :25 1 -
57.  

28 .  Morselli PL, Placidi GF, Maggini C,  et al. An integrated approach for the 
evaluation of psychotropic drug in man: studies on amphetamine, relationship 
between drug levels and psychophysiological measurements. Psychopharmacologia 
(Berl) 1976; 46: 2 1 1 -7.  

29. Evans MA, Martz R, Lemberger L, et al .  Effects of dextroamphetamine on 
psychomotor skills. Clin Pharmacol Ther 1976; 19:777-8 1 .  

30. Taeuber K, Zapf R, Rupp W, et al.  Pharmacodynamic comparison of the acute 
effects of nomifensine, amphetamine and placebo in healthy volunteers. Int J Clin 
Pharmacol Biopharm 1 979; 1 7: 32-7. 

3 1 .  Nurnberger n ,  Simmons-Alling S ,  Kessler L ,  et al .  Separate mechanisms for 
behavioral , cardiovascular, and hormonal responses to dextroamphetamine in man . 
Psychopharmacology 1984; 84: 200-4. 

32.  Peck CC, Barr WH, Benet LZ, et al. Opportunities for integration of 
pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug 
development. Pharm Res 1 992; 9 : 826-33. 

33 .  Fink M.  Pharmacoelectroencephalography: a note on its history. 
Neuropsychobiology 1984; 12 :  1 73-8. 

34 . Lasagna L. Phenylpropanolamine--A Review. New York: JOhn Wiley & Sons 
1988: 146-9. 

35 . Nuwer MR. Quantitative EEG: I .  Techniques and problems of frequency analysis 
and topographic mapping. J Clin Neurophysiol 1988;5 :  1 -43. 

36. Dumermuth G.  Molinari L. Spectral analysis of the EEG--Some fundamentals 
revisited and some open problems. Neuropsychobiol 1987; 17 : 85-99. 

37 . Dumermuth G,  Molinari L. Spectral analysis of EEG background activity. In:  
Gevins AS, Remond A.  Handbook of Electroencephalography and Clinical 
Neurophysiology (Revised series) Vol. I .  Methods of Analysis of Brain Electrical 
and Magnetic Signals. Amsterdam: Elsevier Science Publishers B.  V .  (Biomedical 
division) ,  1987:3 1 -83. 



225 

38. Tismer C,  Jobert M. Wavelet and EEG signal analysis. Presented at the Seventh 
Biennial Meeting of the International Pharmaco-EEG Group, Boca Raton, FL, May 
22-25 , 1 992. 

39. American Psychiatric Association Task Force on Quantitative Electrophysiological 
Assessment. Quantitative electroencephalography:  A report on the present state of 
computerized EEG techniques. Am J Psychiatry 1 99 1 ; 148 :96 1 -4 .  

40. Gevins AS. Introduction. In Gevins AS, Remond A (eds) . Methods of Analysis of 
Brain Electrical and Magnetic Signals. EEG Handbook (revised series, Vol. 1 ) .  
Amsterdam: Elsevier Science Publishers B .V .  (Biomedical Division) 1987: 1 - 14 .  

4 1 .  Sannita WG. Quantitative EEG in human neuropharmacology--Rationale, history, 
and recent developments. Acta Neurol (Napoli) 1990; 12 :389-409. 

42 . Saletu B .  EEG imaging of brain activity in clinical psychopharmacology. In:  
Maurer K (ed).  Topographic Brain Mapping of EEG and Evoked Potentials. Berlin: 
Springer-Verlag 1989:482-506. 

43.  Saletu B, Grunberger J .  Drug profiling by computed electroencephalography and 
brain maps, with special consideration of sertraline and its psychometric effects. 
J Clin Psychiatry 1988;49[Suppl] :59-7 1 .  

44. Saletu B, Grunberger J ,  Taeuber K, Nitsche V.  Relation between 
pharmacodynamics and kinetics: EEG and psychometric studies with cinolazepam 
and nomifensine. In:  Herrmann WM (ed). Electroencephalography in Drug 
Research. New York: Gustav Fischer Verlag, 1982:89- 1 1 1 . 

45 . Itil, TM. The significance of quantitative pharmaco-EEG in the discovery and 
classification of psychotropic drugs. In: Herrmann WM (ed).  EEG in Drug 
Research. New York: Gustav Fischer Verlag 1982: 1 3 1 -57. 

46. Saletu B, Darragh A,  Salmon P, Coen R. EEG brain mapping in evaluating the 
time-course of the central action of DUP 996--A new acetylcholine releasing drug. 
Br J Clin Pharmac 1989;28: 1 - 1 6. 

47. Itil TM, Hil KZ. The establishment of CNS toxicity of drugs. In : Herrmann WM 
(ed). EEG in Drug Research .  New York: Gustav Fischer Verlag, 1 982:23-29. 

48 .  Shucard DW, Spector SL, Euwer RL, et  al . Central nervous system effects of 
antiasthma medication--An EEG study. Ann Allergy 1985 ;54: 1 77-84. 

49. Matousek M,  Hjalmarson A,  Petersen I. The use of the EEG for assessment of 
vigilance changes caused by beta-blockers. Neurospychobiol 1984; 12 :55-9. 

50. Itil TM, Itil KZ. The significance of pharmacodynamic measurements in the 
assessment of bioavailability and bioequivalence of psychotropic drugs using CEEG 
and dynamic brain mapping. J Clin Psychiatry 1986;47[Suppl] :20-7. 



226 

5 1 .  Itil TM, Cabana B, Purich E, et al . Relative bioavailability following single oral 
doses of two generic products of diazepam relative to valium using both standard 
plasma levels and computer-analyzed electroencephalography measurements. Integr 
Psychiatry 1985 ; 3 :  24S-4 1 S .  

52. Fink M. Pharmaco-electroencephalography as a method to assess bioequivalence 
of central nervous system active substances in humans. Integr Psychiatry 
1985 ;3 :  1 2S-23S. 

53.  Stanski DR. Clinical pharmacodynamics of general anesthetics and analgesics. 
Presented at the Integration of Pharmacodynamics, Pharmacokinetics and 
Toxicokinetics in Rational Drug Development Conference, Arlington, VA, April 
24-26, 1 99 1 .  

54. Stanski DR. Pharmacodynamic modeling of anesthetic EEG drug effects. Presented 
at the Seventh Biennial Meeting of the International Pharmaco-EEG Group, Boca 
Raton , FL, May 22-25, 1992. 

55. Ebling WF, Lee EN, Stanski DR. Understanding pharmacokinetics and 
pharmacodynamics through computer simulation: I. The comparative clinical 
profiles of fentanyl and alfentanil . Anesthesiol 1990;72 :650-8. 

56. Breimer LTM, Hennis PI , Burm AGL, et al . Quantification of the EEG effect of 
midazolam by aperiodic analysis in volunteers--pharmacokinetic/pharmacodynamic 
modelling. Clin Pharmacokinet 1990; 1 8 :245-53.  

57. Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and 
anesthetic requirement. Anesthesiol 1985 ;62 :714-24. 

58.  Stanski DR, Maitre PO. Population pharmacokinetics and pharmacodynamics of 
thiopental : the effect of age revisited . Anesthesiol 1990;72 :4 12-22 . 

59. Greenblatt 01 . Kinetic-dynamic studies of benzodiazepines: the EEG as a window 
to the brain. Presented at the Seventh Annual Meeting of the International 
Pharmaco-EEG Group, Boca Raton , FL, May 22-25 , 1 992. 

60. Mamelak M ,  Bunting P, Galin H, et al . Serum and quantitative 
electroencephalographic pharmacokinetics of loprazolam in the elderly .  1 Clin 
Pharmacol 1988;28: 376-83 . 

6 1 .  Koopmans R ,  Dingemanse 1 ,  Danhof M ,  et al .  The influence of dosage time of 
midazolam on its pharmacokinetics and effects in humans. Clin Pharmacol Ther 
1 99 1  ;50: 1 6-24. 

62 . Herrmann WM. Classification of psychotropic drugs based on EEG and 
performance test variables. Presented at the Seventh Annual Meeting of the 
International Pharmaco-EEG Group, Boca Raton, FL, May 22-25 , 1992. 



227 

63. Itil TM, LeBars P, Eralp E. Classification of psychotropics based on brain 
mapping model. Presented at the Seventh Biennial Meeting of the International 
Pharmaco-EEG Group, Boca Raton, FL, May 22-25 , 1992. 

64. Fink M.  Quantitative EEG in human psychopharmacology:  drug patterns. In : 
Glaser G (ed).  EEG and Behavior. New York: Basic Books 1 963 : 177-97. 

65 . Irwin P. Spectral difference index: A single EEG measure of drug effect. 
Electroencephalogr Clin Neurophysiol 1982;54:342-6. 

66. Sittig W, Badian M, Rupp W, Taeuber K. Performance tests and pharmaco EEG 
after 1 ,4 and 1 ,5 benzodiazepines. In: Herrmann WM . Electroencephalography in 
Drug Research .  New York: Gustav Fischer Verlag, 1982: 1 1 3-29. 

67. Herrmann WM . Development and critical evaluation of an objective procedure for 
the electroencephalographic classification of psychotropic drugs. In: Herrmann WM 
(ed) .  Electroencephalography in Drug Research.  New York: Gustav Fischer Verlag 
1982 :249-35 1 .  

68. Stille G ,  Herrmann WM . Guidelines for Pharmaco-EEG studies in Man. In : 
Herrmann WM (ed). Electroencephalography in Drug Research. New York: Gustav 
Fischer Verlag 1982:X-XIX . 

69. Anderer P, Saletu B, Kinsperger K, Semlitsch H. Topographic brain mapping of 
the EEG in neuropsychopharmacology--Part I. Methodological aspects. Meth Find 
Exptl Clin Pharmacol 1987;9:371 -84. 

70. Belyavin A, Wright NA . Changes in electrical activity of the brain with vigilance. 
Electroencephalogr Clin Neurophysiol 1987;66: 1 37-44. 

7 1 . Wong PKH . Introduction to topographic analysis. Presented at the Topographic 
EEG Analysis and Brain Mapping Conference, Saint Vincent, Italy, September 7-
10,  1989. 

72. Matejcek M. Vigilance and the EEG : Psychological , physiological and 
pharmacological aspects. In : Herrmann WM . Electroencephalography in Drug 
Research. New York: Gustav Fischer Verlag, 1982 :404-508. 

73 . Saletu B. The use of pharmaco-EEG in drug profiling. In: Hindmarch I ,  Stonier 
PD (eds) .  Human Psychopharmacology:  Measures and Methods, Vol . I .  New 
York: John Wiley & Sons 1987: 173-200. 

74. Coppola R, Herrmann WM . Psychotropic drug proftles: Comparisons by 
topographic maps of absolute power. Neuropsychobiol 1987 ; 1 8 :97- 1 04 .  

75 . Ott H, McDonald RI, Fichte K, Herrmann WM . Interpretation of correlations 
between EEG-power-spectra and psychological performance variables within the 
concepts of "subvigilance" ,  "attention" and "psychomotoric impulsion" .  In: 



228 

Herrmann WM . Electroencephalography in Drug Research. New York: Gustav 
Fischer Verlag 1982:227-47. 

76. Nolfe G. Fundamentals of EEG spectral analysis. Acta Neurol (Napoli) 
1 990; 12 :372-88. 

77. Kahn EM, Weiner RD, Brenner RP, Coppola R. Topographic maps of brain 
electrical activity--Pitfalls and precautions.  Bioi Psychiatry 1988;23 :628-36. 

78. Gevins AS. Overview of computer analysis. In : Gevins AS, Remond A. Handbook 
of Electroencephalography and Clinical Neurophysiology (Revised series) Vol. I .  
Methods of Analysis of Brain Electrical and Magnetic Signals. Amsterdam: 
Elsevier Science Publishers B.V. (Biomedical division) , 1987: 3 1 -83. 

79. MacGillivray BB, Sawyers FJP. A comparison of common reference, average and 
source derivations in mapping. In : Samson-Dollfus D (ed) .  Statistics and 
Topography in Quantitative EEG. Paris: Elsevier 1988:72-87. 

80. Albrecht V, Honig J, Palus M, et al. Analyzing pharmacodynamic effects of 
psychotropic drugs via spectral dynamics of EEG . Presented at Seventh Biennial 
Meeting of the International Pharmaco-EEG Group, Boca Raton , FL, May 22-25 , 
1992. 

8 1 .  Ferber G ,  Abt K ,  Gevins A ,  Koch G ,  Jobert M .  Statistical analysis for Pharmaco­
EEG studies. Presented at the Seventh Biennial Meeting of the International 
Pharmaco-EEG Group, Boca Raton , FL, May 22-25 , 1992. 

82 . Oken LS ,  Chiappa KH . Statistical issues concerning computerized analysis of 
brainwave topography. Ann Neurol 1986; 19 :493-7. 

83.  Abt K. Statistical aspects of neurophysiologic topography. J Clin Neurophysiol 
1 990;7:5 19-34. 

84. Abt K. Descriptive data analysis (DDA) in quantitative EEG studies. In: Samson­
Dollfus D (ed) .  Statistics and Topography in Quantitative EEG. Paris: Elsevier, 
1988: 1 50-60. 

85 . Hoffman BB, Lefkowitz RJ. Catecholamines and sympathomimetic drugs. In : 
Gilman AG, Rall TW, Nies AS, Taylor P (eds) . Goodman and Gilman's The 
Pharmacological Basis of Therapeutics, 8th edition . New York: Pergamon Press 
1990; 1 87-220. 

86. Busto U, Bendayan R, Sellers EM. Clinical pharmacokinetics of non-opiate abused 
drugs. Clin Pharmacokinet 1989; 16:  1 -26. 

87. Beckett AH, Rowland M. Urinary excretion kinetics of amphetamine in man. J 
Pharm Pharmacol 1965; 17 : 826-39. 



229 

88. Angrist B, Corwin 1 ,  Bartlik B, Cooper T. Early pharmacokinetics and clinical 
effects of oral d-amphetamine in normal subjects. Bioi Psychiatry 1987;22: 1 357-68. 

89. Anggard E, Gunne LM, 10nsson LE, Niklasson F. Pharmacokinetic and clinical 
studies on amphetamine dependent subjects. Eur 1 Clin Pharmacol 1970;3 :3 - 1 l .  

90. Davis 1M, Kopin U, Lemberger L, Axelrod 1 .  Effects of urinary pH on 
amphetamine metabolism. Ann NY Acad Sci 197 1 ;  1 79 :  493-50 l .  

9 1 .  Beckett AH, Salmon lA, Mitchard M .  The relation between blood levels and 
urinary excretion of amphetamine under controlled acidic and under fluctuating 
urinary pH values using [14C]amphetamine. 1 Pharm Pharmac 1969;2 1 :25 1 -8. 

92. Rowland M. Amphetamine blood and urine levels in man . 1 Pharm Sci 
1969;58:508-9. 

93.  Gunne LM, Anggard E. Pharmacokinetic studies with amphetamines--relationship 
to neuropsychiatric disorders. 1 Pharmacokinet Biopharm 1973 ; 1 :48 1 -95 . 

94. Dring LG, Smith RL, Williams RT. The metabolic fate of amphetamine in man 
and other species. Biochem 1 1970; 1 1 6:425-35 . 

95 . Pfeiffer CC, Goldstein L, Munoz C, et al . Quantitative comparisons of the 
electroencephalographic stimulant effects of deanol , choline, and amphetamine. 
Clin Pharmacol Ther 1963;4:46 1 -6. 

96. Saletu B, Grunberger 1,  Anderer P, et al . Pharmacokinetic and pharmacodynamic 
studies with 2 isomers of fenfluramine utilizing EEG brain mapping, psychometric 
and psychophysiological methods. Presented at the Seventh Biennial Meeting of the 
International Pharmaco-EEG Group, Boca Raton FL, May 22-25 , 1992. 

97. Glaze DG. Drug Effects. In: Daly DO, Pedley TA. Current Practice of Clinical 
Electroencephalography, Second edition. New York: Raven Press, Ltd. 1990:489-
5 12.  

98.  Lukas SE, Mendelson IH, Amass L, et al. Behavioral and EEG studies of acute 
cocaine administration: comparisons with morphine, amphetamine, pentobarbital , 
nicotine, ethanol and marijuana. NIDA Res Monogr 1989;95 : 146-5 1 .  

99. Laakmann G ,  Hinz A, Voderholzer U, et al . The influence of psychotropic drugs 
and releasing hormones on anterior pituitary hormone secretion in healthy subjects 
and depressed patients. Pharmacopsychiat 1990;23: 1 8-26. 

100. lacobs 0, Silverstone T, Rees L. The neuroendocrine response to oral 
dextroamphetamine in normal subjects. Int Clin Psychopharmacol 1989;4: 1 35-47. 



230 

1 0 1 . Kuret JA, Murad F. Adenohypophyseal hormones and related substances. In: 
Goodman and Gilman's  The Pharmacological Basis of Therapeutics, 8th edition. 
New York: Pergamon Press, 1990: 1 334- 1 360. 

102 .  Dommisse CS, Schulz SC, Narasimhachari N, et al . The neuroendocrine and 
behavioral response to dextroamphetamine in normal individuals. Bioi Psychiat 
1984; 19:  1 305- 1 5 .  

103 .  Halbreich U,  Sachar £1, Asnis G M ,  e t  al . The prolactin response to intravenous 
dextroamphetamine in normal young men and postmenopausal women . Life Sci 
1981  ;28:2337-42 .  

104. Wells B, Silverstone T, Rees L .  The effect of  oral dextroamphetamine on prolactin 
secretion in man. Neuropharmacol 1978; 12 : 1060- 1061 

105 .  Silverstone T, Wells B. Clinical psychopharmacology of amphetamine and related 
compounds. In: Caldwell J (ed) . Amphetamines and Related Stimulants: Chemical, 
Biological , Clinical , and Sociological Aspects. Boca Raton , FL: CRC Press, Inc. 
1980: 147-59. 

1 06 .  Jaffe JH. Drug addiction and drug abuse. In: Gilman AG, Rall TW, Nies AS, et 
al . Goodman and Gilman's  The Pharmacological Basis of Therapeutics. New York: 
Pergamon Press 1990:522-73 . 

107 .  Bond A, Lader M.  The use of analogue scales in rating subjective feelings. Br J 
Med Psychol 1974;47:2 1 1 - 1 8 .  

108 .  Johanson CE, Uhlenhuth EH. Drug preference and mood i n  humans: d­
amphetamine. Psychopharmacol 1980;71  :275-9. 

109 .  Jain S, Kyriakides M, Silverstone T, et al. The effect of small and moderate doses 
of d-amphetamine on hunger, mood, and arousal in man . Psychopharmacol 
1980;70: 109- 1 1 .  

1 10. McNair Dm, Lorr M, Droppleman LF. Profile of Mood States. San Diego, CA: 
Educational and Industrial Testing Service, 197 1 .  

1 1 1 .  Hill HE, Haertzin CA, Wolbach A B  Jr, et al . The Addiction Research Center 
Inventory: appendix . Psychopharmacologia 1963;4 :  1 84-205 . 

1 12 .  Cull CA, Trimble MR. Automated testing and Psychopharmacology. In: 
Hindmarch I ,  Stonier PD (eds) . Human Psychopharmacology: Measures and 
Methods, Volume 1 .  New York: John Wiley & Sons, 1987: 1 1 3 - 153 .  

1 13 .  Rapoport JL, Buchsbaum MS , Weingartner H,  e t  a l .  Dextroamphetamine: Its 
cognitive and behavioral effects in normal and hyperactive boys and normal men. 
Arch Gen Psychiatry 1980;37:933-43. 



23 1 

1 14 .  Berchou R, Block RI. Use of computerized psychomotor testing in determining 
CNS effects of drugs. Percept Mot Skills 1983;57:69 1 -700. 

1 15 .  Gaut ZN, Pocelinko R, Abrams WB, et al . Effects of anorexiants on plasma lipid 
and other physiological parameters in man. J Clin Pharmacol 1969;30: 3 15-20. 

1 1 6. Simpson LL. Blood pressure and heart rate responses produced by d-amphetamine: 
correlation with blood levels of drug. J Clin Pharmacol Exp Ther 1978;205 :366-
73. 

1 1 7. Lee S, Buchsbaum MS. Topographic mapping of EEG artifacts. Clin Electroenceph 
1 987; 1 8 : 6 1 -7. 

1 1 8 .  Nuwer MR, Jordan SE. The centrifugal effect and other spatial artifacts of 
topographical EEG mapping. J Clin Neurophysiol 1987;4 :32 1-6. 

1 19 .  Central tendency and variability for an individual EEG. In : The NeuroScience 
Brain Imager Operators Manual, Version 7.0.  San Diego: NeuroScience, Inc. : 10. 1 
- to .2 .  

120. SAS/STAT User's Guide, Version 6 ,  4th Edition , Volume II .  Cary, NC : SAS 
Institute, Inc. 1990. 

12 1 .  Procedures for estimating reliability. In : Crocker L, Algina J. Introduction to 
Classical and Modern Test Theory. New York: CBS College Publishing 1986: 1 3 1 -
1 56. 

1 22 .  Experimental design in clinical trials. In : Bolton S .  Pharmaceutical Statistics. New 
York: Marcel Dekker, Inc. 1990:362-404. 

123.  Artifacts. In: Spehlmann R. EEG Primer. New York: Elsevier Biomedical Press. 
198 1 :  105- 1 1 8 .  

1 24 .  Burdick J .  Drug effect and possible time trends o f  the quantitative wakeful EEG. 
Acta Physiol Hung 1970;37: 1 33-9. 

1 25 .  Sebban C,  Le Roch K, Cacot P, et al. Reliability of EEG relative power and 
spatial power ratios in normal young subjects. In : Samson-Dollfus D (ed).  Statistics 
and Topography in Quantitative EEG. Paris: Elsevier 1988: 104-9. 

1 26. Bieck PR, Antonin KH. Oral tyramine pressor test and the safety of monoamine 
oxidase inhibitor drugs: comparison of brofaromine and tranylcypromine in healthy 
subjects. J Clin Psychopharmacol 1988;8 :237-45 . 

1 27.  Development and evaluation of an analytical method. In: Chamberlain J. Analysis 
of Drugs in Biological Fluids. Boca Raton: CRC Press, Inc. 1985: 147- 160. 



232 

128. Narasimhachari N,  Friedel RO. Quantitation of biologically important primary 
amines as their isothiocyanate derivatives by gas chromatography using nitrogen 
detector and validation by selected ion monitoring. Clin Chimica Acta 
198 1 ;  1 10:235-43. 

1 29.  Narasimhachari N, Friedel RO. Quantitation of amphetamine in plasma and 
cerebrospinal fluid by gas chromatography-mass spectrometry-selected ion 
monitoring, using l3-methylphenethylamine as an internal standard. J Chromatogr 
1979; 164:386-93. 

1 30. Narasimhachari N, Vouros P. Gas-liquid chromatography and mass spectrometry 
of biogenic amines and amphetamines as their isothiocyanate derivatives. Anal 
Biochem 1972; 45 : 154- 163 .  

1 3 1 .  Derivatization techniques for gas chromatography. I n :  Poole CF, Schuette SA. 
Contemporary Practice of Chromatography. New York: Elsevier 1984:485-5 1 1 . 

1 32 .  Knapp DR. Handbook of Analytical Derivatization Reactions.  New York: John 
Wiley & Sons, 1979. 

133 .  Poole CF, Poole SK. Derivatization as an approach to trace analysis by gas 
chromatography with electron-capture detection. J Chromatogr Sci 1987;25 :434-43. 

1 34 .  Meeker JE, Reynolds PC. Postmortem tissue methamphetamine concentrations 
following selegiline administration. J Anal Toxicol 1990, 14 : 330- l .  

135 .  DiMagno EP, Corle D, O'Brien IF, et al .  Effect of long-term freezer storage, 
thawing, and refreezing on selected constituents of serum. Mayo Clin Proc 1989; 
64: 1 226-34. 

1 36. Gibaldi M,  Perrier D. Pharmacokinetics, Second Edition . New York: Marcel 
Dekker, Inc. 1982. 

1 37 .  SAS Technical Report P-229: SAS/STAT Software Changes and Enhancements, 
Release 6 .07.  Cary, NC: SAS Institute, Inc, 1992. 

1 38 .  Abt K .  Descriptive data analysis: a concept between confirmatory and exploratory 
data analysis. Meth Inform Med 1987;26:77-88. 

1 39.  Abt K. Planning controlled clinical trials on the basis of descriptive data analysis. 
Stat Med 199 1 ; 10:777-795 . 

140. Neter J, Wasserman W, Kutner MH. Applied Linear Statistical Models, 3rd 
edition . Boston: Richard D. Irwin, Inc. 1990. 

1 4 1 .  Veng-Pedersen P.  Pharmacokinetics and bioavailability of cimetidine in humans. 
J Pharm Sci 1980;69:394-8. 



233 

142. Veng-Pedersen P. Pharmacokinetic analysis of linear system approach I :  Cimetidine 
bioavailability and second peak phenomenon. ] Pharm Sci 198 1 ;70:32-8. 

143. Wood ]H, Leonard TW. Kinetic implications of drug resorption from the bladder. 
Drug Met Rev 1983; 14 :407-23. 

144. Oberle RL, Amidon GL. The influence of variable gastric emptying and intestinal 
transit rates on the plasma level curve of cimetidine: An explanation for the double 
peak phenomenon. ] Pharmacokin Biopharm 1987; 15 : 529-45 . 

1 45 .  Oguma T, Shimamura K, Ushio Y, et al . Discontinuous absorption process of 
cefibuten in humans. Int ] Pharm 1990;63: 1 0 1 - 1 1 1 .  

1 46 .  Robertson RC, Renwick AG, Wood ND. The influence of levodopa on gastric 
emptying in man. Br ] Clin Pharmac 1990;29:47-53.  

147 .  Suverkrup R. Discontinuous absorption processes in pharmacokinetic models. ] 
Pharm Sci 1979;68: 1395- 1400. 

148 .  Funaki T, Furuta S ,  Kaneniwa N. Discontinuous absorption property of cimetidine. 
Int ] Pharm 1986;3 1 :  1 19- 123 .  

149. Plusquellec Y, Campistron G, Staveris S ,  et al . A double-peak phenomenon in  the 
pharmacokinetics of veralipride after oral administration : A double-site model for 
drug absorption . ] Pharmacokinet Biopharm 1987; 15 :529-45 . 

150. Suttle AB, Pollack GM, Brouwer KLR. Use of a pharmacokinetic model 
incorporating discontinuous gastrointestinal absorption to examine the occurrence 
of double peaks in oral concentration-time profiles. Pharm Res 1992 ;9: 350-6. 

1 5 1 .  Murata K, Noda K, Kohno K, et al . Pharmacokinetic analysis of concentration data 
of drugs with irregular absorption profiles using multi-fraction absorption models. 
] Pharm Sci 1987;76: 109- 13 .  

1 52 .  Hull KM, Maher TJ. L-tyrosine fails to potentiate several peripheral actions of  the 
sympathomimetics. Pharmacol Biochem Behav 199 1 ;39 :755-59. 

153 .  Mayersohn M. Drug absorption. ] Clin Pharmacol 1987;27:634-8. 

1 54 .  Couet WR, Reigner BG, Guedes ]P, Tozer TN. Theoretical model for both 
saturable rate and extent of absorption : simulations of cefatrizine data. ] 
Pharmacokinet Biopharm 199 1 ;  19 :27 1 -85 . 

155 .  Robertson RC, Renwick AG, Wood ND, et al. The influence of levodopa on 
gastric emptying in man . Br ] Clin Pharmac 1990;29:47-53 .  

1 56. Coupe AJ, Davis SS,  Wilding IR.  Variation in gastrointestinal transit of 
pharmaceutical dosage forms in healthy subjects. Pharm Res 199 1 ;8 : 360-364. 



234 

157.  Absorption kinetics and bioavailability. In: Gibaldi M, Donald Perrier (eds) . 
Pharmacokinetics. New York: Marcel Dekker, Inc. 1982: 145-98. 

158 .  Cutler D1. Linear systems analysis in pharmacokinetics. 1 Pharmacokinet Biopharm 
1 978;6:265-82. 

1 59.  Belyavin A, Wright NA. Changes in electrical activity of the brain with vigilance. 
Electroencephalogr Clin Neurophysiol 1987;66 :  1 37-44. 

160.  Pollock VE, Schneider LS , Lyness SA. EEG amplitudes in healthy, late-middle­
aged and elderly adults: normality of the distributions and correlations with age. 
Electroenceph Clin Neurophysiol 1990;75 :276-88. 

1 6 1 .  Francheteau P, Steimer 1L, Dubray C, Lavene D.  Mathematical model for in vivo 
pharmacodynamics integrating fluctuation of the response: application to the 
prolactin suppressant effect of the dopaminomimetic drug DCN 203-922. 1 
Pharmacokinet Biopharm 199 1 ;  19 :  287 -309. 

1 62 .  von Felsinger 1M, Lasagna L, Beecher HK. Drug-induced mood changes in man. 
II. Personality and reaction to drugs. 1 Am Med Assoc 1955; 157: 1 1 13-9 . 



APPENDIX A 



PROJECT #: 

TITLE: EVALUATION OF QUANTITATIVE 
ELECTROENCEPHALOGRAPHY (EEG) FOR ASSESSMENT OF 
CENTRAL NERVOUS SYSTEM (CNS) STIMULANT RESPONSE 

PART I .  REPRODUCmILITY OF CONTROL RESPONSES 

PART II. COMPARISON OF QUANTITATIVE EEG TO 

235 

BEHA VIORAL, PSYCHOLOGICAL AND 
NEUROENDOCRINE MEASURES OF RESPONSE TO 
DEXTROAMPHETAMINE 

INVESTIGATORS: 

Principal Investigator: 
Patricia W. Slattum, Pharm.D.lPh. D .  candidate 

Co-Investigators: 
William H. Barr, Pharm.D . ,  Ph.D.  
Jurgen Venitz, M.D. , Ph.D.  
Joseph A.  Sgro, M.D . ,  Ph.D. 
Ananda K.  Pandurangi, M.D.  (Medical Monitor) 

HYPOTHESIS AND SPECIFIC AIMS:  

Hypothesis 

The hypotheses guiding this research project are that 1 )  quantitative EEG is a more 
sensitive and reproducible measure of the central nervous system' s  response to 
sympathomimetic drugs than more widely used methods such as psychometric testing, 
subjective rating scales, or neuroendocrine tests and 2) changes in the EEG after 
sympathomimetic drug administration are related to the behavioral, psychological and 
neuroendocrine effects observed as well as the plasma concentration of the drug. 
Dextroamphetamine is a sympathomimetic amine with demonstrated effects on the 
CNS, and will be used as a model compound for studying quantitative EEG as a 
response measure. 

Specific Aims: 

The purpose of this study is to investigate the inter-and intra-individual 
variability associated with a series of potential CNS pharmacodynamic 
response measures under baseline (no drug) conditions. These measures 
include quantitative EEG, automated psychometric tests, and subjective self­
rating mood scales. Within day and between day reproducibility will be 



evaluated. Responses for each measure will be examined for evidence of 
circadian changes and learning effects. 
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The purpose of this study is to evaluate the usefulness of quantitative 
electroencephalography (EEG) as a measure of CNS response to stimulants. 
The study will examine the relationship between EEG changes after 
administration of dextroamphetamine and 1 )  performance on automated 
psychometric tests, 2) serum prolactin levels, 3) subjective response as 
assessed by self-rating mood scales, and 4) serum concentration of 
dextroamphetamine. The sensitivity of EEG parameters to dextroamphetamine 
concentration in serum will be compared with that of more subjective 
measures. 

BACKGROUND AND SIGNIFICANCE: 

Accurate and reproducible measures of drug effect on the central nervous 
system (CNS) are needed in order to study the pharmacodynamics of centrally­
acting drugs. ( 1 )  Understanding pharmacodynamics, or the relationship 
between drug concentration in the systemic circulation and effect, is important 
because it contributes to the interindividual variability observed in drug 
response. Determining the association between drug concentration and 
subsequent response is necessary for optimizing drug therapy. Studies of the 
pharmacodynamics of centrally-acting drugs have been limited primarily by the 
difficulty in obtaining quantitative measures of CNS response. (2) 

Ideally, the measures of drug effect used in pharmacodynamic studies should 
be quantitative, objective, and non-invasive. There should be a gradual, rather 
than an all-or-none, change in the response measure with changing drug 
concentration .  The measure should be sensitive to small differences in drug 
concentration. The pharmacodynamic measure should be reproducible both 
within and between individuals. It is important to be able to measure the 
response repeatedly in the same individual without changes occurring due to 
learning or tolerance. Lastly, the response measure should be meaningful; the 
measured response should relate to the therapeutic or toxic clinical effects of 
the drug. (2 ,3) 

Various psychometric tests, ranging from self-rating scales of psychologic state 
to computerized performance tasks, have been used to assess the 
pharmacodynamics of centrally-acting drugs. (2 ,4,5) Psychometric tests are 
noninvasive and the response can be quantitated. However, these tests are not 
ideal pharmacodynamic measures. Although some tests can measure certain 
aspects of behavior as a function of drug response, they are more or less 
subjective and may not be reproducible. Many psychometric tests are not 
suitable for repeated measures, since learning and motivational factors 
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influence the results of subsequent tests. These limitations may contribute to 
insensitivity of the measures to small changes in serum drug concentrations. 
The relationship of performance on psychometric tests to the "real life" 
behavioral and psychologic effects of drugs are also difficult to define. 
Therefore, psychometric tests are not entirely acceptable as eNS response 
measures. 

More recently, quantitative EEG has been employed to measure eNS 
pharmacodynamics (2 ,6) .  Many studies using EEG to profile or classify 
psychoactive drugs have been conducted, but few studies have attempted to 
correlate EEG parameters with concurrently measured drug concentrations 
and/or response to psychometric tests. Pharmacodynamic modelling of the 
EEG effects of anesthetic agents (7, 8 ,9, 10) and benzodiazepines ( 1 1 , 12) has 
been successfully performed. Quantitative EEG is objective, noninvasive, and 
derived parameters change gradually with changes in plasma drug 
concentration. Repeated or continuous measures of the EEG can be made, 
although a familiarization session before the study is advisable to avoid a first­
session effect due to anxiety. ( 13) Learning effects on the EEG have not been 
reported. (2) Recording of the EEG also requires less subject cooperation than 
completion of psychometric tests. The reproducibility and sensitivity of 
quantitative EEG parameters however, requires further evaluation. The 
behavioral or psychologic meaning of changes in EEG parameters is also 
unclear. If these issues can be addressed, quantitative EEG may become a 
preferred measure of eNS pharmacodynamic response. 

This study is designed to evaluate quantitative EEG as a pharmacodynamic 
tool. Dextroamphetamine was chosen as a model compound for this 
evaluation. Dextroamphetamine is a sympathomimetic amine known to have 
potent eNS stimulant effects. Single doses have been administered safely to 
normal volunteers. Its concentration in the systemic circulation can be 
measured adequately by gas chromatographic assay methods and it does not 
have clinically significant active metabolites. It appears to have dose­
proportional pharmacokinetics over the dosage range to be used in this study 
which can be adequately described by a one-compartment body model. ( 14) 
The renal excretion of dextroamphetamine is dependent on urinary pH and 
volume, so acidifying the urine will result in constantly enhanced excretion. 
With urine pH between 5 and 5 .5 ,  the elimination half-life of 
dextroamphetamine is approximately 7 hours. ( 15) Dextroamphetamine causes 
a decrease in delta activity and an increase in alpha and beta activity on the 
EEG. ( 1 6, 1 7) Mood changes after dextroamphetamine have been measured 
using a variety of rating scales. ( 1 8, 19,20,2 1 ,22) It also produces measurable 
effects on performance tasks. (23,24,25,26,27) The duration of the central 
effects of a single dose of amphetamine has been reported to be between 3 and 
24 hr. (28) For these reasons, dextroamphetamine will be used to test the 
sensitivity of quantitative EEG as a pharmacodynamic measure of central 
stimulation. 
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Dextroamphetamine affects the neurotransmitters dopamine, norepinephrine 
and serotonin. (29) The output of pituitary hormones and hypothalamic 
releasing factors have been used to examine the neurotransmitter pathways 
involved. (30,31) Following a 20-mg oral dose of dextroamphetamine in 
normal subjects, statistically significant rises in cortisol, prolactin, growth 
hormone, TSH, FSH, and LH were observed compared to placebo. (32) The 
prolactin release after dextroamphetamine administration will be used in this 
study as an additional pharmacodynamic response measure to aid in the 
physiologic interpretation of the EEG response. 

The significance of this project is two-fold. First, the study will provide 
information about the usefulness of quantitative EEG as a pharmacodynamic 
response measure compared with more traditional measures of CNS activity 
such as psychometric tests. A more sensitive, reproducible measure of CNS 
response to sympathomimetic drugs is important to evaluate the CNS­
stimulating properties of other sympathomimetic drugs such as 
phenylpropanolamine where the degree of CNS stimulation and its potential 
clinical significance in man is controversial. (33) Second, an improved 
measure of CNS response is necessary for evaluating the effects of the aging 
process and various disease states on the pharmacodynamics of centrally-acting 
drugs. This study will evaluate quantitative EEG relative to the criteria for an 
ideal pharmacodynamic measure discussed above, to provide a better 
understanding of its sensitivity, reproducibility, and behavioral and 
psychological meaning. 

METHODS AND PROCEDURES: 

I. Subjects 

Eight healthy volunteers will participate in each study. Volunteers will be 
considered for inclusion if they conform to the following criteria: 

1 .  Dem0l:raphic: Subjects must be healthy male or nonpregnant female 
volunteers between the ages of 1 8  and 30 years and must not deviate 
more than 15  % above or below the range of desirable weights 
according to the 1979 Build Study, Society of Actuaries and 
Association of Life Insurance Medical Directors of America 
(Attachment I.) 

To participate in Part II, female subjects must meet the following 
criteria: 

As determined by thorough inquiry, women must be found to practice 
acceptable methods of birth control and have a negative serum beta­
hCG pregnancy test. Abstention, oral contraceptives, vaginal 
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contraceptives or use of contraceptives by the women's  partner, do not 
constitute acceptable birth control. Acceptable methods of birth control 
will be limited to intrauterine contraceptive devices or surgical sterility. 
The method of birth control must be recorded in the subject's medical 
history. A negative pregnancy test is required before enrolling in the 
study and before each dosing period. 

This restriction is mandatory because pregnancy is a contraindication to 
amphetamine use, especially during the first trimester. (28) The risks 
to the pregnancy clearly outweigh the benefits of participating in this 
study. 

2.  Medical Hist0O': Subjects must have no history of renal , hepatic , 
cardiovascular, gastrointestinal, neurological, pulmonary, or 
hematologic disease; have no history of drug addiction, alcohol abuse, 
psychologic dependence on drugs, or psychiatric illness. Subjects must 
have no first degree relatives (mother, father, or siblings) with a history 
of mental illness or alcohoUdrug abuse. Subjects participating in Part 
II must also have no history of glaucoma or hypersensitivity to 
tartrazine (FD&C Yellow dye No.5) or dextroamphetamine. Tartrazine 
hypersensitivity frequently occurs in those who have hypresensitivity 
reactions to aspirin. 

3 .  Physical: Subjects must successfully pass a physical examination, 
demonstrating no evidence of an active disease state or physical or 
psychologic impairment. 

4.  Laboratory screen : Subjects must have no clinically significant 
abnormal laboratory values on a laboratory screen consisting of I )  
SMAC-20, 2) CBC and 3) urinalysis. Subjects must have a negative 
urine drug screen and blood alcohol test. Females must have a 
negative serum beta hCG test. 

5 .  Electrocardio�ram: Subjects must have no clinically significant 
abnormalities on a 12-lead EKG including a 30 sec rhythm strip. 

6. Vital si�ns: Supine and standing systolic and diastolic blood pressure, 
heart rate, and oral body temperature must be within normal limits. 

7.  Other medications: Subjects must not be taking medications chronically 
and must not have taken any prescription medication or investigational 
drugs for at least 4 weeks before entering the study. Subjects must 
have a normal daily caffeine intake equivalent to or less than two cups 
of coffee. No medication (including OTC medications and vitamins) , 
caffeine or alcohol will be allowed in the 72-hr period before each 
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study day and on each study day. Subjects must be non-smokers, 
meaning that they have abstained from smoking for at least 1 2  months 
before the start of the study. 

8.  All subjects participating in  Part II will undergo an EEG and 
psychometric testing familiarization period before enrolling in the 
study. Subjects with a high number of artifacts on the EEG or who 
cannot tolerate wearing the electro-cap for extended periods of time 
will be excluded. 

Subjects participating in Part II will be instructed to maintain a low 
monoamine diet beginning 3 days prior to the start of the study and continuing 
through the duration .of the study. 

Within 1 week after study completion, the physical examination, laboratory 
tests , and electrocardiography will be repeated for subjects participating in Part 
ll. Possible clinically significant abnormalities will be followed up until return 
to pre-study baseline. 

Subje<;ts for this study will be recruited from within the hospital and schools at 
MCVIVCU. 

ll. INFORMED CONSENT 

Each subject will give written informed consent for study participation before 
the start of the study. The signed consent forms will be kept in the subjects' 
confidential medical record as a permanent document. 

lll . PROCEDURE 

A. EillJ 

During each of the three study periods, the following procedure will be 
followed: 

Subjects will enter the study facility at 7:00 a.m. on the study day and 
will be released after completion of the 1 2  hr test battery on the same 
day (approximately 8:00 p.m.) .  

Subjects will fast from midnight on the evening before the study day 
until after the 4 hr test battery. Lunch will be served after the 4 hr test 
battery and dinner at 10  hrs after the baseline test battery. The same 
menu will be served during each study period. Water will be permitted 
during the fasting period. Beverages not containing caffeine may be 
served with meals. 



24 1 

Electroence.phalo�raphy 
For each subject, five minute segments of 28 channel EEG will be 
recorded using a NeuroScience Brain Imager with eyes closed at the 
following times: 0, 1 ,  2, 3 ,  4 ,  6, 8, and 12 hrs. Subjects will be 
reclined in a reclining chair during the recordings. Subjects will be 
asked to count back from 500 by 3s to maintain vigilance. The 
electrodes will be placed using an Electro-cap according to the 10/20 
International System with 8 additional electrodes located 50 % between 
the standard 10/20 placement. Linked ears will be used as a reference. 
Four additional channels will be used to monitor for vertical and lateral 
eye movements and electro myographic activity. The electrode 
impedances will be checked before each recording. Impedances should 
be less than 4.0k ohms and similar between electrodes. Any 
disturbances in the room or subject movement during the EEG will be 
recorded by the BEG technician. The raw BEG will be stored on an 
optical disk. 

Psychometric tests 

1 .  A computerized visual continuous performance task (NeuroScan, 
Inc.) will be completed by each subject at the following times: 
0, 1 ,  2, 3, 4, 6, 8 and 12 hours. 

2 .  A computerized motor task, finger tapping (NeuroScan, Inc.) ,  
will be completed by each subject at the following times: 0,  1 ,  
2, 3,  4 ,  6, 8,  and 12 hours. 

3 .  Prior to the 0 hr testing, subjects will practice the computerized 
tasks two times. 

Rating Scales 
A self rating scale (Attachment II) based on the MBG (a measure of 
euphoria) and A (a measure of amphetamine effects) sub scales of the 
Addiction Research Center Inventory Scales described by Martin et al. 
( 18) will be completed by each subject at the following times: 0, 1 ,  2 ,  
3, 4 ,  6 ,  8 ,  and 12 hours. 

A 100 mm visual analog mood scale (Attachment III) will be completed 
by each subject at the following times: 0, 1 ,  2 ,  3 ,  4 ,  6, 8, and 1 2  
hours. 

The tests will be conducted in the following sequence: 1) EEG, 2) 
CPT, 3) rating scales, 4) finger tapping. A study flow sheet is 
presented in Attachment IV. 
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During each of the four study periods, the following procedure will be 
followed: 

Subjects will enter the study facility on the evening of the day 
preceding each day of dextroamphetamine or placebo dosing and will 
not be released until after the collection of the last blood sample of the 
study period. Subjects will fast from midnight on the evening before 
dextroamphetamine or placebo dosing until after the 4 hr blood sample 
is drawn. Water will be permitted during the fasting period. Subjects 
will begin a period of bed rest one hour before dextroamphetamine or 
placebo administration that will continue until after the 6 hr test 
battery. 

All subjects must have a negative urine drug screen and blood alcohol 
test each study period before receiving dextroamphetamine or placebo. 
Female subjects must have a negative pregnancy test (urine beta-hCG) 
each study period prior to receiving dextroamphetamine or placebo. 

All subjects will complete a verbal probe concerning recent medical 
history and medication use. 

Repeated 2 gram oral doses of ammonium chloride will be given to 
acidify the urine and enhance the excretion of dextroamphetamine at the 
following times: - 12 ,  -8, -2, 2 ,  6, 10,  14 ,  and 1 8  hr after 
dextroamphetamine or placebo dosing as described by Wan et al. ( 15) 

Subjects will receive one of the four treatments: dextroamphetamine 20 
mg, dextroamphetamine 10 mg, dextroamphetamine 5 mg, or placebo 
orally. Both the subjects and the investigator will be blinded to 
treatment. The time of dosing will be 8:00 a.m.  for the first of the two 
subjects and 8 :30 a. m. for the second. Capsules will be taken with 240 
mL of water. 

Tablets containing 5 mg dextroamphetamine sulfate will be used for 
dosing, with doses placed in opaque gelatin capsules to maintain 
blinding. Lactose will be added to prepare capsules with the same 
weight for all doses of amphetamine. Placebo capsules will contain 
lactose only. 

Blood samplin� 

Prior to dosing, a heparin containing catheter will be inserted into a 
forearm vein for access to blood sampling. 
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1 .  7-mL samples for determination of dextroamphetamine 
concentration will be collected in red-top tubes with no additives 
at the following times: pre-dose, 1 ,  1 .33, 2 ,  2.33, 3 ,  3 .33 , 4,  
6, 8,  12,  18 ,  and 24 hr after dextroamphetamine or placebo 
dosing. Blood samples will be allowed to clot, centrifuged 
(within 1 hour of venipuncture) for 10 minutes, serum 
harvested, and stored at -20 degrees Celsius until analysis by a 
sensitive, specific, and reproducible gas chromatographic 
method using isothiocyanate derivatization and a nitrogen 
detector, modified from the method described by 
Narasimhachari and Friedel. (34) 

2 .  5-mL samples for the determination of prolactin concentration 
will be collected in red-top tubes with no additives at the 
following times: pre-<iose, 1 ,  2 ,  3 ,  4 ,  5 and 6 hr after 
dextroamphetamine or placebo dosing. Blood samples will be 
allowed to clot, centrifuged (within 1 hour of venipuncture) for 
10 minutes, serum harvested, and stored at -20 degrees Celsius 
until analysis by a radioimmunoassay method described by Sinha 
et al. (35) 

The total volume of blood drawn for dextroamphetamine and prolactin 
determinations during the study will be 504 mL. 

Urine collection 

Subjects will void just before dextroamphetamine or placebo dosing and 
the urine pH will be determined immediately at room temperature after 
shaking using a pH meter. Two 25 mL aliquots of the urine will be 
retained and frozen until analysis. Urine will then be collected over the 
following intervals after dextroamphetamine or placebo dosing: 0-2 hr, 
2-4 hr, 4-8 hr, 8- 12 hr, 12- 1 8  hr, 1 8-24 hr. The pH of the urine 
voided at the end of each collection interval will be determined 
immediately at room temperature after shaking using a pH meter. The 
total volume of urine collected during the interval will be measured in a 
graduated cylinder and two 25 mL aliquots of the urine will be retained 
and frozen until analysis for dextroamphetamine concentration. 

Subjects will drink 120 mL of water every hour beginning one hour 
before dextroamphetamine dosing and continuing through the four 
hours after dosing. Water will then be available to the subjects as 
desired. 

Electroenc;e.phalo�raphy 
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Five minute segments of 28 channel EEG using a NeuroScience Brain 
Imager will be recorded for each subject with eyes closed at the 
following times: pre-dose, 1 ,  2 ,  3 ,  4 ,  6, 8 ,  and 12  hours after 
dextroamphetamine or placebo dosing. Subjects will be asked to count 
back from 500 by 3s to maintain vigilance during the recordings. The 
electrodes will be placed using an Electro-cap according to the 10/20 
International System with 8 additional electrodes located 50% between 
the standard 10/20 placement. Linked ears will be used as a reference. 
Four additional channels will be used to monitor for vertical and lateral 
eye movements and electromyographic activity. The electrode 
impedances will be checked before each recording. Impedances should 
be less than 4 .0k ohms and similar between electrodes. Any 
disturbances in the room or subject movement during the EEG will be 
recorded by the EEG technician. The raw EEG will be stored on an 
optical disk. 

Psychometric tests 

I .  A computerized visual continuous performance task (CPT) will 
be completed by each subject at the following times: predose, 
1 ,  2, 3, 4, 6, 8, and 12 hours after dextroamphetamine or 
placebo dosing. 

2 .  A computerized motor performance task, finger tapping, will be 
completed by each subject at the following times: predose, 1 ,  
2 ,  3 ,  4 ,  6, 8, and 1 2  hours after dextroamphetamine or placebo 
dosing. 

3 .  On  the evening before dosing for each period, subjects will 
practice the computerized tasks several times. The exact 
number of times will be determined based on the results of Part 
I of this study. 

Rating Scales 

A self-rating scale (Attachment II) based on the Addiction Research 
Center Inventory Scales, the MBG scale (a measure of euphoria) and 
the A scale (a measure of amphetamine effects) described by Martin et 
al. ( 1 8) will be completed by each subject at the following times: 
predose, 1 ,  2, 3, 4, 6, 8, and 12 hours after dextroamphetamine or 
placebo dosing. 

A 100 mm visual analog mood scale (Attachment III) will be completed 
by each subject at the following times: predose, 1 ,  2 ,  3 ,  4 ,  6, 8 ,  and 
1 2  hours after dextroamphetamine or placebo dosing. 



245 

vital shms 
Blood pressure (sitting) and heart rate will be measured at the following 
times: predose and 1 ,  2 ,  3 ,  4, 6, 8, 1 2 ,  and 24 hr after 
dextroamphetamine or placebo dosing. 

When above measurements are scheduled at the same time, they will be 
conducted in the following sequence: 1 )  urine collection, 2) blood 
samples, 3) EEG, 4) CPT, 5) rating scales, 6) finger tapping and 7) 
vital signs with the blood sample being collected at exactly the 
scheduled time. A study flow sheet is presented in Attachment V. 

On the evening prior to dosing, subjects will receive a light snack prior 
to the - 1 2  and -8 hr ammonium chloride dosing. 

No food or beverages, other than water, will be permitted from 8 hr 
before dosing until after the 4-hr blood sample has been drawn . Lunch 
will be served after the 4-hr blood sample and dinner at 1 0  hours after 
dosing. A snack will be served in the evening before the 14  hr 
ammonium chloride dose. All meals and snacks will be low in 
tyramine content. Large amounts of foods potentially promoting 
alkalinization of the urine (such as milk and milk products, nuts, 
vegetables and fruits) will be avoided. Beverages not containing 
caffeine may be served with meals.  The same menu will be served on 
corresponding days of each study period. 

Adverse Effects 
All subjects will be observed for symptoms and signs of clinical 
intolerance to the drugs or procedures and asked to report any adverse 
effects. These will be evaluated by the physician monitor for their 
clinical significance and potential need for treatment. For subjects who 
develop significant nausea, vomiting, or diarrhea, ammonium chloride 
will be discontinued. 

BIOSTATISTICAL DESIGN AND ANALYSIS : 

Design: During this open-labeled pilot study, healthy volunteers will undergo 
a series of tests (electroencephalography, automated psychometric tests, and 



subjective rating scales) on 3 occasions one week apart. On each of the 3 
study days, the series of tests will be repeated 8 times over a 1 2  hr period. 
Subjects will undertake the study in groups of two. 

Data analysis 

A. Electroencephalography 
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Each of the five-minute recordings will be reviewed by a board certified 
electroencephalographer and edited to remove each 2.5  second epoch that is 
contaminated with artifacts (eye movement, muscle movement, electrode 
artifacts, or disturbances noted during the recording) . The remaining 2.5  
second epochs or artifact-free frames will be averaged to form an average 
topographical map for each 5 minute recording. The amplitude, power, and 
relative power of the EEG signal in the 5 classical frequency bands (delta: 
0.39 - 3 .9  Hz; Theta: 4.3  - 7.8 Hz; Alpha: 8.2 - 1 1 .7 Hz; Beta I: 12. 1 - 16.0 
Hz; and Beta ll: 16.4 - 30.0 Hz) at each electrode will be calculated for each 
average topographical map. The total amplitude and power for each average 
map will be calculated. The ratio of total alpha plus beta power to total delta 
plus th.eta power will also be calculated. 

B. Psychometric tests 

1 .  Visual Continuous Performance Task 

Latency of response will be determined for each trial. The 
average latency of response and the percent of correct responses 
for each set of testing will be calculated. 

2. Finger Tapping Task 

The average rate (taps/sec) of finger tapping for each hand will 
be determined based on three trials at each time point. 

C. Rating Scales 

A total score on the self-rating scale will be determined at each time 
point by adding the scores obtained for each item. 

A score between 0 and 100 will be obtained for the visual analog scale 
at each time point by measuring the number of millimeters between the 
left end of the scale and the mark placed by the subject. 

D. Statistical Analysis 

The results from each of these tests for each day of testing will be 
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compared using a multivariate repeated measures analysis of variance 
with day, time and subject as factors and all responses as dependent 
variables. Within-day and between-day variance will be determined for 
each response variable. 

Desi�n: This study will be a randomized, double-blind, placebo-controlled 
four-period crossover study in healthy volunteers. Subjects will undertake the 
study in groups of two. The start of each study period will be separated by at 
least 1 week washout period. Subjects will receive one of four treatments 
during each study period: dextroamphetamine 20 mg, dextroamphetamine 10 
mg, dextroamphetamine 5 mg or placebo as a single oral dose. Each subject 
will receive each treatment exactly once. 

Data analysis 

A. Pharmacokinetic analysis 

1 .  Dextroamphetamine serum concentration data 

The serum concentrations of dextroamphetamine obtained during 
the study will be presented in tabular and graphic form for each 
subject and treatment. Pertinent pharmacokinetic parameters for 
dextroamphetamine, including elimination rate constant (ke) , 
volume of distribution, apparent total body clearance, mean 
residence time, maximum concentration (Cmax) and time to 
maximum concentration (tmax) will be estimated for each 
treatment for each subject. Descriptive statistics will be 
calculated for each parameter. 

2. Dextroamphetamine urine concentration data 

Dextroamphetamine excretion rates during each collection 
interval will be used to determine the elimination rate constant 
(ke) and the renal clearance of dextroamphetamine for each 
treatment. Data will be presented in tabular and graphic form. 
Descriptive statistics will be calculated for each parameter. 

3 .  Prolactin plasma concentration data 

The prolactin plasma concentrations obtained after each 
treatment will be presented in tabular and graphic form. 
Secondary parameters such as Cmax, tmax, and area under the 
effect-time proftle (AUE) will be calculated and tabulated . 
Descriptive statistics will be calculated for each parameter. 
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Each of the 5-minute recordings will be reviewed by a board certified 
electroencephalographer and edited to remove each 2.5 second epoch 
that is contaminated with artifacts (eye movement, muscle movement, 
electrode artifacts, or disturbances noted during the recording) . The 
remaining 2.5 second epochs or artifact-free frames will be averaged to 
form an average topographical map for each 5-minute recording. The 
amplitude, power, and relative power of the EEG signal in the 5 
classical frequency bands (delta: 0.39 - 3 .0 Hz; theta: 4.3 - 7 . 8  Hz; 
alpha: 8.2 - 1 1 .7 Hz; Beta I: 12. 1 - 16.0 Hz; and Beta II: 16.4 - 30.0 
Hz) at each electrode will be determined for each average topographical 
map. The total amplitude and power for each average map will be 
calculated. The ratio of total alpha plus beta power to total delta plus 
theta power will also be calculated. Differences from placebo for each 
of these parameters will be calculated. 

C.  Psychometric tests 

1 .  Visual Continuous Performance Task 

Latency of response will be determined for each trial. The 
average latency of response and the percent of correct responses 
for each set of testing will be calculated. 

2.  Finger Tapping Task 

The average rate (taps/sec) of finger tapping for each hand will 
be determined based on three trials at each time point. 

D. Rating Scales 

A total score on the self-rating scale will be determined at each time 
point by adding the scores obtained for each item. 

A score between 0 and 100 will be obtained for the visual analog scale 
at each time point by measuring the number of millimeters between the 
left end of the scale and the mark placed by the subject. 

E. Pharmacodynamic analysis 

Response-time profIles for each subject during each period will be 
tabulated and plotted for each response measure. If appropriate, 
secondary parameters such as baseline responses, maximum response 
(Emax), time to reach maximum response, and area under the effect-
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time profile (AUE) for each treatment will be listed and descriptive 
statistics will be calculated. Pharmacokinetic/dynamic modelling will 
be performed if appropriate. 

F.  Statistical analysis 

Results of the abOve response measures for each treatment will be 
compared using statistical techniques appropriate for a 4-way crossover 
study design with repeated measures. Residuals will be tested for 
normality. If normally distributed, a repeated measures analysis of 
variance with subject, dose, period and time as factors will be 
performed. If not normally distributed, either the data will be 
transformed or appropriate non-parametric tests will be used. Analysis 
of variance will be used to examine the dose-dependency of calculated 
pharmacokinetic and pharmacodynamic parameters. 

HUMAN SUBJECT CONCERNS : 

The first part of this study involves undergoing a test battery consisting of 
EEG, computerized psychometric tests, and self-rating mood scales 8 times on 
3 separate occasions for a total of 24 times. Subjects will remain in the study 
unit for the duration of each day's tests (approximately 1 3  hours) . There risks 
associated with these tests are minimal. Subjects will be expected to wear the 
electro-caps throughout the day, which may result in some minor discomfort. 
No drugs will be administered and no blood samples will be drawn during this 
part of the study. Subjects may experience smoe discomfort during the pre­
study physical exam, EKG and laboratory tests. Subjects will receive no 
personal benefits to their health from participating in the study, but the 
procedures will be conducted at no cost to them and they will receive an 
honorarium for their participation. Any information obtained about subjects 
from this research will be kept strictly confidential. Subjects will give written 
informed consent and have the right to withdraw from the study at any time. 

In the second part of this study, subjects will receive oral dextroamphetamine 
(a controlled substance) and ammonium chloride, have blood samples drawn 
for dextroamphetamine and prolactin determination, and undergo a series of 
tests including EEG, automated psychometric tests, and rating scales, 
repeatedly over a 36 hour period on 4 occasions. Subjects will remain in the 
study unit for the duration of the testing (approximately 38 hours for each 
period) . 
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Subjects will receive single doses of dextroamphetamine sulfate (5 , 10, 
and 20 mg) and placebo orally in a crossover fashion. 
Dextroamphetamine is indicated for the treatment of narcolepsy, 
attention deficit disorder, and obesity. The usual adult dosage of 
dextroamphetanline sulfate is 5 - 60 mg/day in 2 or 3 divided doses. 
The dosages administered in this study are within this dosage range. 
Adverse effects associated with single doses of dextroamphetamine may 
include: nervousness, insomnia, irritability, talkativeness, increased 
libido, dizziness, headaches, increased motor activity chilliness, pallor 
or flushing, blurred vision, mydriasis, hyperexcitability, hypertension 
or hypotension, tachycardia, palpitations, nausea, vomiting, abdominal 
cramps, diarrhea, constipation, dryness of the mouth, and metallic 
taste. (28) 

Subjects will also receive a total of 16 grams of oral ammonium 
chloride over a period of 36 hours during each study period to acidify 
the urine. The normal adult oral dose of ammonium chloride is 4 - 12 
grams daily given in divided doses every 4 - 6 hours. The dosage in 

. this study falls within this range. Adverse effects associated with oral 
ammonium chloride include: gastric distress, anorexia, nausea, 
vomiting, thirst, rash, and headache. Symptoms of ammonium toxicity 
associated with very high doses include pallor, sweating, irregular 
breathing, vomiting, bradycardia, cardiac arrhythmias, local or 
generalized twitching, asterixis, tonic seizures, and coma. (36) 

Subjects will be monitored for the development of adverse effects to 
either dextroamphetamine or ammonium chloride by nurses in the 
CRC. Blood pressure and pulse rate will be determined periodically 
throughout the study. If subjects develop significant nausea, vomiting 
or diarrhea, ammonium chloride will be discontinued. Headache may 
be treated with acetaminophen if necessary. If systolic BP rises above 
1 80 mmHg or greater than 30 mmHg above baseline, the subject will 
be given 10 mg of nifedipine sublingually.  Other adverse effects will 
be managed as deemed necessary by the medical monitor. 

B. Blood sampling 

Subjects will have thirteen 7-mL blood samples and 7 5-mL blood 
samples drawn during each period. A total of 504 mL of blood will be 
drawn during the study. 

C. Test battery 

The risks associated with these tests are minimal. Subjects will be 
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expected to wear the electro-caps throughout the day, which may result 
in some minor discomfort. 

D .  Pre- and post-study physical exam and laboratory tests 

Some discomfort may be associated with the physical exam, EKG and 
laboratory tests to be perfromed during screening and at the conclusion 
of the study. 

Subjects will receive no personal benefits to their health from participating in 
the study, but the procedures will be conducted at no cost to them and they 
will receive an honorarium for their participation. Any information obtained 
about subjects from this research will be kept strictly confidential. Subjects 
will give written informed consent and have the right to withdraw from the 
study at any time. 

Female subjects must be using an acceptable method of birth control 
(intrauterine contraceptive devices or surgical sterility) . They must also have a 
negative pregnancy test (serum beta-hCG) as a criteria for enrolling in the 
study and during each period before receiving study drugs. Amphetamine use 
is contraindicated during pregnancy, especially during the first trimester (28), 
and teratogenicity studies in animals have not been performed with ammonium 
chloride, so the risks are unknown. (36) For participation in this study, risks 
to pregnant females clearly outweigh the benefits. 

NEED FOR CRC: 

The CRC is needed for the conduct of this study because: 

1) A number of specialized tests such as BEG and automated psychometric 
tests will be performed, requiring a controlled environment. 

2) The extensive blood sampling and urine collection schedule in Part II 
require trained personnel sensitive to the strict timing requirements 
necessary for pharmacokinetic and pharmacodynamic research. 

3) A special diet is necessary during Part II of the study, requiring the 
services of a dietician for planning and preparing meals. 

4) Subjects must be housed overnight due to the blood and urine sampling 
schedule during Part II. 

5) Plasma prolactin determinations are necessary, requiring a laboratory 
equipped to perform radioimmunoassays. 



6) Trained nurses are available throughout the study to handle study­
related adverse events. 

GRANT SUPPORT: 

Sources of funding for this study include: 
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1 .  Departmental funds (approximately $ 1 ,(00) will be used to cover the 
costs of analysis of samples for dextroamphetamine concentration. 

2 .  A portion of  a grant from NeuroScience (approximately $9,(00) will be 
used to cover the costs of subject honoraria, EEG supplies, and 
screening laboratory tests. 

3 .  The remainder of the study costs are unfunded. 
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AMPHETAMINE RATING SCALE 

Subject Initials: Date: 

Subject Number: Time: 

Please respond to the statements below, indicating how you feel at this time. 

disagree disagree neutral agree agree 
strongly somewhat somewhat strongly 

1 .  Today I say things in 

the easiest possible 
way. 

2. Things around me seem 

more pleasing than 
usual .  

3 .  I have a pleasant feeling 
in my stomach. 

4 .  I feel I will lose the 

contentment that I have 

now. 

5 .  I feel in complete 
harmony with the world 

and those around me. 

6.  I can completely 

appreciate what others 

are saying when I am in 

this mood. 

7 .  I would be happy a l l  o f  

the time i f  I felt as I 

feel now. 

8 .  I feel so good that I 
know other people can 

tell i t .  

9. I feel as if something 

pleasant had just 
happened to me. 

10 .  I would be happy all 

the time i f  I felt as I do 

now. 

1 1 . I feel more clear-headed 

than dreamy. 
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1 2 .  I feel as if I would be 
more popular with 

people today. 

1 3 .  I feel a very pleasant 

emptiness. 

14.  My thoughts come 

more easily than usual. 

1 5 .  I feel less discouraged 
than usual. 

16 .  I a m  in  the mood to 

talk about the feelings I 
have. 

17 .  I feel more excited than 
dreamy. 

1 8 .  Answering these 

questions was very easy 
today. 

1 9 .  My memory seems 

sharper to me than 

usual. 

20. I feel as if  I could write 

for hours. 

2 1 .  I feel very patient. 

22. Some parts of my body 

are tingling. 

23. I have a weird feeling. 



AMPHETAMINE SCALE 

Subj ect i n it i a l s : Date : 

Subj ect number : Time : 

P lease mark on the l ine be low how you feel r ight now . 

1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  1 
1 1 

The worst you 
have ever felt 

The best you 
have ever felt 

259 
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A TTACHMENT I V  

STUDY DAY FLOW SHEET -- PART I .  
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CONSENT FORM 

Eva luat ion of quant i tative e lectroencepha lography ( EEG ) for 
assessment of centra l nervous system ( CNS ) stimu l ant response 

Part I .  Reproduc ibi l ity o f  control responses 

I nvestigators 

Patr i c i a  W .  S l attum , Pharm . D . / Ph . D .  candidate 
W i l l iam H .  Barr , Pharm . D . , Ph . D .  
Jurgen Ven i t z , M . D . , Ph . D .  
Joseph A .  Sgro , M . D . , Ph . D .  
Ananda K .  Pandurangi ,  M . D .  ( Medica l director ) 

I ntroduction 

You are be ing asked to part ic ipate i n  this study because you 
are hea lthy and not tak ing st imu l ant drugs or other 
med i cat i ons on a chronic bas is . Thi s  study i s  des igned to 
he lp us learn how peop le not tak ing med ication perform on 
var ious ment a l  tests , and whether performance on the tests 
changes dur ing the day . We a l so w i l l  study your bra i n  waves 
( EEG ) at var ious t imes dur ing the day . The data col lected 

wi l l  enable us to better plan future stud ies l ook ing at the 
e f fects of medications on the tests . Eight subj ects l ike 
yourse l f  w i l l  be selected to part icipate in the present study . 

I f  you agree to part ic ipate , you w i l l  be expected to provide 
informat ion about your medi c a l  h i story , have laboratory work 
done ( including blood and urine tests ) , have a physical 
examinat ion , and an EKG ( e l ectr ical trac i ng of the heart ) to 
determine whether you have any medical cond ition that wou ld 
prevent you from partic ipat ing in the study . Your urine w i l l  
be tested for drugs of abuse . You w i l l  not be permitted to 
take any over the counter med ications ( such as antacid , 
asp i r in , vitamins or cold preparations ) or any beverages 
conta i n ing caf fe ine or a l coho l for the 7 2  hours before each 
study day and on each study day . 

You w i l l  be expected to report to the study unit one day each 
week for three consecut ive weeks . On each day of the study , 
you wi l l  come to the unit at 7 : 0 0 a . m .  a fter an overnight fast 
( start ing at midnight ) . You may have water , but no other 
beverage or food . Lunch w i l l  be provided 4 hours a fter the 
testing has started ( approximately 1 2 : 0 0 noon ) and d i nner at 
10 hours ( approximately 6 :  0 0  p .  m . ) after the testing has 
started . After 1 2  hours of test ing , you may go home 
( approximate ly 9 : 0 0 p . m . ) . 

I n i t i ta l s  
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The tests that you w i l l  be taki ng repeatedly throughout the 
day inc lude : two computer i zed tests , answering 2 
questionna ires about you mood , and record ing your bra i n  waves 
( EEG ) . To have your EEG recorded , you must wear a bathi ng 
cap- l ike apparatus with 2 8  d i sks / e l ectrodes . Through a hole i n  
each e l ectrode , your sca lp wi l l  be c leaned and a sma l l  amount 
of j e l ly - l ike substance w i l l  be app l ied to your sca lp to make 
the contact . In addition , s i x  sma l l ,  round e lectrodes w i l l  be 
attached to your earlobes and taped on your face above and 
below your eyes . The cap wi l l  rema i n  on your head for most of 
the day . Each of the individua l tests ( includ i ng EEG ) takes 
l ess than 5 minutes to comp l ete . These tests w i l l  be repeated 
8 t imes dur ing each study day . 

Bene f its 

You are be ing asked to part ic ipate in th i s  study as a 
vo lunteer . The study i s  of no direct med i c a l  bene f i t  to you . 
There wi l l  be no charge to you for the screen ing examination 
and the results wi l l  be made ava i lable to you i f  you want 
them . 

You wi l l  be paid $ 1 5 0 . 0 0 for the completion of this study . I f  
you e lect t o  withdraw before the end o f  the study , you w i l l  be 
paid on a prorated bas i s  as descr ibed under W ithdrawa l .  

Alternative Therapy 

There i s  no therapeut ic benef i t  to you for part ic ipating in 
this study . Your part ic ipat ion is ent irely voluntary ; the 
a l ternat ive is not to part ic ipate in the study . 

Ri sks . I nconveniences. Di scomforts 

None of the tests in th is study are harmfu l . There may be 
some discomfort associated with the physical exam , EKG , and 
laboratory tests , and with the EEG when apply ing the cap and 
wear ing it throughout the day . Although the tape and gel used 
for the EEG are hypoa l l ergen i c , they may rarely cause skin 
irritat ion . After the cap i s  removed , you wi l l  be able to 
wash and dry your hair . 

Costs of Part i c ipat i on 

There w i l l  be no charge to you for any laboratory tests or 
physical examination related to the conduct of th i s  study . 
Th i s  is a t ime consuming study that may interfere with your 
emp l oyment or other activities . You w i l l  be con f ined to the 
study unit for the ent ire day on each study day . You must 
provide your own transportation to and from the study s ite . 

I n i t i a l s  
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Pregnancy 

Pregnant f ema les are not exc luded from this study . 

Research Re lated I njury 

Every e f fort w i l l  be made to prevent any i n j ury that cou ld 
result from your part ic ipation in this study . In the event of 
any physical and or mental inj ury resulting from your 
partic ipat ion i n  th is research proj ect , Virg i n i a  Commonwea lth 
Univers ity/Medical Co l lege of Virg in i a  w i l l  not offer 
compensat ion . I f  i n j ury occurs , medical treatment w i l l  be 
ava i lable at MCV Hosp ita l s . Fees for such treatment w i l l  be 
b i l l ed to you or appropriate third party insurance . 

Con f ident i a l ity of Records 

The invest igators wi l l  treat your identity with professional 
standards of conf ident i a l ity . Information obt a i ned i n  th is 
study may be pub l i shed , but your ident ity w i l l  not be 
revea led . 

withdrawa l 

Your part ic ipat i on in this study is voluntary . I f  you decide 
to part ic ipate , you may withdraw at any t ime . Neither refusa l 
to part ic ipate nor withdrawa l w i l l  resu l t  in any penalty or 
loss of benefits to which you are otherwise entit led . I f  you 
do not comp lete the study because of premature withdrawa l ,  the 
honorar ium w i l l  be prorated based on the amount of usable 
i nformat ion wh ich has been col lected . 

I f  you have any quest ions at any t ime concern ing the study 
procedures , you may contact the study i nvest igators at : 

Patr i c i a  W .  S l attum 
Wi l l i am H .  Barr 
Jurgen Venitz 
Joseph A.  Sgro 

Off ice Home 

Dr . Pandurangi i s  the medical director for th i s  study . He can 
be reached dur ing off ice hours at  and other t imes at 

. I f  Dr . Pandurang i is unava i labl e ,  you may ca l l  Dr . 
Anthony Pe l onero at the same numbers . 

You w i l l  receive a copy of th i s  consent form . 

I n i t i a l s  
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I have read the above informat ion , and I have had an 
opportun ity to ask quest ions to help me understand what my 
part i c ipat ion w i l l  i nvolve . I free ly g ive my consent to 
partic ipate i n  this study . 

S igned Date 
( volunteer ) 

S i gned 
(witness ) 

Date 

S i gned 
( investigator ) 

Date 
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CONSENT FORM 

Eva luat ion of quanti tative electroencepha lography ( EEG ) for 
assessment of central nervous system ( CNS ) st imu l ant response 

Part I I . Compari son of quantitative EEG to behaviora l ,  
psychol ogical and neuroendocrine measures of 
response to dextroamphetamine 

I nvestigators 

Patri c i a  W .  S lattum , Pharm . D . / Ph . D .  candidate 
W i l l i am H .  Barr , Pharm . D . , Ph . D .  
Jurgen Ven i tz ,  M . D . , Ph . D .  
Joseph A .  Sgro , M . D . , Ph . D .  
Ananda K .  Pandurang i ,  M . D .  (Medical director ) 

Introduct ion 

You are being asked to part ic ipate i n  th i s  study because you 
are hea l thy and not taking st imu lant drugs or other 
med i cations on a chronic bas i s .  Th is study is designed to 
study the relationship between changes in your bra i n  waves 
( EEG ) and other menta l tests after tak ing dextroamphetamine . 
Dextroamphetamine is a centra l nervous system st imulant drug . 
E ight subj ects l ike yourse l f  w i l l  be sel ected to part ic ipate 
i n  the present study . 

I f  you agree to part i c ipate , you w i l l  be expected to provide 
i n format i on about your med ica l h i story , have laboratory work 
done ( includ i ng blood and urine tests ) , have a physical 
examinat ion , and an EKG ( e lectr ical tracing of the heart ) to 
determine whether you have any medical condi t ion that wou ld 
prevent you from part ic ipat i ng in the study . Your ur ine w i l l  
be tested for drugs of abuse . You wi l l  not be permitted to 
take any prescript i on med ications for four weeks before the 
start of the study or during the study . You w i l l  not be 
permitted to take any over the counter medi cat ions ( such as 
antacid , aspirin , vitamins or cold preparat i ons ) or any 
beverages conta i n ing caf fe ine or a lcoho l for the 7 2  hours 
before each study day and on each study day . You must 
mainta i n  a d iet l ow in monoamines for three days before the 
study accord ing to the i nstruct ions the i nvest igators g ive 
you . Prior to the start of the study you must undergo a 
practice sess ion with the EEG (measur ing your bra in wave s )  and 
other tests that w i l l  be used dur ing the study . 

I n i t i a l s  
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You w i l l  be expected to report to the study unit for a tot a l  
o f  4 study per i ods o n  4 consecutive weeks . Dur i ng each 
peri od , you w i l l  come to the unit at 7 : 0 0 p . m .  on the evening 
before dextroamphetamine dos ing and w i l l  not be released unt i l  
9 : 0 0 a . m .  o n  the day a fter dextroamphetamine dos ing . 

You w i l l  rece ive e ight , 2 gram oral doses ( one every 4 hour s )  
of ammonium chloride tablets t o  acidify your urine dur ing each 
study per i od . On the morn ing of dos ing , you w i l l  begi n  a 7 
hour per i od of bedrest . A catheter w i l l  be inserted i nto your 
ve i n  and two blood samples ( about 12 ml or 2 . 5 teaspoonsful ) 
w i l l  be drawn . You w i l l  then rece ive a s ingl e  oral dose of 
dextroamphetamine ( 5 ,  1 0 ,  or 20 mg ) or a p lacebo capsu le (a 
capsu le with no act ive agent ) with 8 oz . water dur ing each 
per i od . You w i l l  rece ive a l l  four treatments by the end of 
the study . You w i l l  not be told which dose you are rece iving 
dur ing a g iven per i od . 

After dos i ng , 1 8  addition a l  blood samples w i l l  be col lected 
through the catheter dur ing each per i od . A tota l of 5 0 4  ml 
( about one pint)  of bl ood w i l l  be col l ected dur ing the ent ire 
study . I f  the catheter f a i l s  to work , a new catheter wi l l  be 
i nserted or it may be necessary to obta i n  blood samples by 
stick ing a need le direct ly into the ve i n . A l l  of your urine 
w i l l  a l so be col lected for 2 4  hours a fter tak i ng the 
dextroamphetamine or placebo . 

Begi nn i ng j ust prior to dos ing , you wi l l  be taki ng a series of 
tests repeated ly throughout the day . These tests inc lude : 
two compute r i z ed tests , answer ing 2 questionnaires about you 
mood , and record i ng your bra in waves ( EEG ) . To have your EEG 
recorded , you must wear a bathing cap- l ike apparatus with 2 8  
d i sks / e lectrodes . Through a hole i n  each e l ectrode , your 
sca lp w i l l  be c leaned and a sma l l  amount of j e l ly - l ike 
substance w i l l  be appl i ed to the sca lp to make a good contact . 
I n  add i t ion , s ix sma l l , round e lectrodes w i l l  be attached to 
your ear lobes and taped on your face above and be l ow your 
eyes . The cap w i l l  rema i n  on your head for most of the day . 
Each of the individua l tests ( including EEG ) takes l ess than 
5 minutes to comp lete . These tests w i l l  be repeated 8 t imes 
duri ng each study per i od . Your heart rate and blood pressure 
wi l l  be mon itored per i odica l ly throughout the day . 

The pre study physical examinat ion and laboratory tests wi l l  be 
repeated at the end of the study . 

Benefits 

You are be i ng asked to part ic ipate i n  th i s  study as a 
volunteer . The study is of no d i rect medical benef i t  to you . 

I n i t i a l s  
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There w i l l  be no charge to you for the screening examinat ion 
and the results w i l l  be made ava i lable to you if you want 
them . 

You w i l l  be paid $ 6 0 0 . 0 0 for the completion o f  this study . I f  
you w ithdraw early o r  are withdrawn by the med ical monitor , 
the fee w i l l  be prorated ( See Withdrawa l )  . 

A lternat ive Therapy 

There is no therapeut ic benef i t  to you for part i c ipating in 
this study . Your part ic ipation is ent ire ly voluntary . The 
a l ternative is not to parti cipate in the study . 

Risks. I nconven iences. D i scomforts 

A tot a l  of 8 0  blood samples wi l l  be drawn dur ing the study . 
The tot a l  amount of blood wi l l  be 5 0 4  m l  or about one pint 
over the four weeks of the study , wh i ch i s  about the same as 
the amount of blood donated at a s ingle donor sess ion . To 
obt a i n  the blood samples a sma l l  catheter w i l l  be inserted 
into a ve i n  in your arm . Th is procedure may cause some 
d i scomfort , pa i n , or s l ight bru is ing around the s ite of the 
needl e  st i ck . I f  the catheter f a i l s  to work , a new catheter 
w i l l  be inserted or blood samp les w i l l  be co l l ected d i rectly 
through a need le inserted i nto the ve in . A l l  of your ur ine 
produced dur i ng the 24 hours a fter dos ing must be col lected . 
You must rema i n  at bedrest ( except for ur i ne col lection ) for 
7 hours dur ing each study per i od . Wh i l e  on the study unit you 
w i l l  eat only the mea ls provided by the i nvestigators at t imes 
prescribed by the investigators . You wi l l  requ ired to rema in 
on the unit for 37 hours dur ing each per iod . You may rece ive 
phone ca l l s  dur ing the study , but no v i s i tors w i l l  be a l lowed . 

Dextroamphetamine i s  a st imU lant which may cause s ide e f fects : 
nervousness , d i z z iness , headache , irr itab i l ity ,  d i f f i culty 
s l eeping , rapid heart rate , changes i n  blood pressure , l oss of 
appet ite , dry mouth , nausea , changes i n  sexua l desire or f a l se 
sense of wel l-be ing . Ammonium ch lor ide , used to a c i d i fy the 
urine , may cause upset stomach , loss of appetite , nausea , 
thirst , rash , or headache . 

I f  any undesirable e f fects occur , you shou ld report them 
d irectly to the i nvest igators .  Dr . Pandurang i i s  the medical 
d irector for this study and i s  the person you can contact i n  
the c a s e  of a med ica l emergency . I f  you can not reach Dr . 
Pandurang i ,  you may contact Dr . Anthony Pelonero or proceed to 
the emergency room for med ica l  treatment . 

I n i t i a l s  
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None of the tests in this study are harmfu l . There may be 
some d i scomfort associated with the EEG when apply i ng the cap 
and wearing it throughout the day . Although the tape and gel 
used for the EEG are hypoa l lergen i c , they may rarely cause 
skin irr itation . After the cap i s  removed , you w i l l  be able 
to wash and dry your hair . 

There may be some d iscomfort associated with the phys ica l 
exam , EKG , and l aboratory work conducted before and a fter the 
study . 

Costs of Part i c ipat ion 

There wi l l  be no charge to you for any laboratory tests , 
phys i c a l  examinat ion , hosp ita l care , or other tests related to 
the conduct of th i s  study . Thi s  i s  a t ime consuming study 
that may interfere with your employment or other act ivities . 
You wi l l  be conf ined to the study unit overni ght and for an 
entire day at each of 4 study per i ods . You must provide your 
own transportation to and from the study s ite . 

Pregnancy 

For fema le sUbj ects : You must be using an i ntrauter ine 
contracept ive device ( IUD ) or be surg ica l ly ster i le i n  order 
to part i c ipate in th is study . You w i l l  be tested for 
pregnancy pr i or to the start of the study and before each 
dextroamphetamine dose . You w i l l  be dropped from the study i f  
you are pregnant . 

Research Rel ated I njury 

Every e ffort wi l l  be made to prevent any i n j ury that could 
result from your part ic ipat ion in th i s  study . I n  the event of 
any phys ical and or mental inj ury resu lting from your 
parti c ipat ion in this research proj ect , Virg i n i a  Commonwea lth 
Un ivers ity /Med ical Col lege of Virg i n i a  wi l l  not provide 
compensat i on . I f  inj ury occurs , med ical treatment w i l l  be 
ava i lable at Mev Hosp ita l s . Fees for such treatment w i l l  be 
b i l l ed to you or appropr iate third party insurance . 

Con f ident i a l ity of Records 

The i nvestigators w i l l  treat your identity with profess iona l 
standards of conf ident i a l ity . I t  i s  important for the united 
states Food and Drug Administration to be able to i nspect the 
results of th i s  study . By s igning th is consent form , you 
authori z e  release of the port i on of your medical records 
dea l ing with this study to the FDA . I nformation obta ined in 
this study may be pub l i shed , but your identity w i l l  not be 
revea led . 

I n i t i a l s  
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w i thdrawa l 

Your part icipation in th i s  study is voluntary . I f  you decide 
to part ic ipate , you may w ithdraw at any t ime . Neither refusal 
to part ic ipate nor w ithdrawal w i l l  result i n  any penalty or 
l oss of benef its to wh ich you are otherwise entit led . I f  you 
have any quest ions at any t ime concerning the study 
procedures , you may contact the study i nvest igators :  

Patr i c i a  W .  S lattum 
W i l l i am H .  Barr 
Jurgen Ven itz 
Joseph A.  Sgro 

O f f ice Home 

Dr . Pandurang i i s  the medical d i rector for this study . He can 
be rea ched dur ing off ice hours at  and other t imes at 

. Th i s  i s  the Mev telepage . They can d irectly 
contact e ither Dr . Pandurangi or Pe lonero at home . I f  Dr . 
Pandurangi is unava i lable , you may ca l l  Dr . Anthony Pelonero 
at the same numbers . 

I f  you do not complete the study because of premature 
w ithdrawa l , the honorar ium w i l l  be prorated based on the 
amount of usable i nformation wh ich has been col l ected . I f  the 
med i ca l  mon itor terminates your part ic ipat ion in the study you 
w i l l  rece ive the ent ire amount . 

You w i l l  rece ive a copy of this consent form . 

I have read the above informat i on , and I have had an 
opportun ity to ask quest ions to help me understand what my 
part ic ipat ion w i l l  involve . I freely g ive my consent to 
part ic ipate in th is study . 

S i gned Date 
( vo lunteer)  

S i gned Date 
(w itnes s )  

S i gned Date 
( invest igator ) 
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AMPHET AMINE RATING SCALE 

Subject Initials: Date: 

Subject Number: Time: 

Please respond to the statements below, indicating how you feel at this time. 

disagree disagree neutral agree agree 
strongly somewhat somewhat strongly 

1 .  Today I say things in 
the easiest possible 
way. 

2 .  Things around me seem 
more pleasing than 
usual . 

3 .  I have a pleasant feeling 
in my stomach. 

4 .  I feel I will lose the 
contentment that I have 
now. 

5 .  I feel i n  complete 
harmony with the world 
and those around me. 

6.  I can completely 
appreciate what others 
are saying when I am in 
this mood . 

7 .  I would be happy all of 
the time if I felt as I 
feel now. 

8 .  I feel so good that I 
know other people can 
tell it. 

9. I feel as if something 
pleasant had just 
happened to me. 

10.  I would be happy all 
the time if l felt as I do 
now. 

1 1 .  I feel more clear-headed 
than dreamy. 
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1 2 .  I feel as if I would be 
more popular with 
people today. 

1 3 .  I feel a very pleasant 
emptiness. 

1 4 .  My thoughts come 
more easily than usual . 

1 5 .  I feel less discouraged 
than usual . 

1 6 .  I a m  i n  the mood to 
talk about the feelings I 
have. 

1 7 .  I feel more excited than 
dreamy. 

1 8 .  Answering these 
questions was very easy 
today . 

19.  My memory seems 
sharper to me than 
usual . 

20. I feel as if I could write 
for hours. 

2 1 .  I feel very patient. 

22. Some parts of my body 
are tingling. 

23 .  I have a weird feeling. 
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AMPHETAMINE SCALE 

Subj ect init i a l s : Date : 

Subj ect number : T ime : 

P l ease mark on the l ine be low how you feel r ight now . 

: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - : 
The worst you 
have ever felt 

The best you 
have ever felt 
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Figure D. l Learning curve for continuous performance task (percent correct) for 
Subject 1 
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Figure D.3  Learning curve for continuous performance task (percent correct) for 
Subject 3 
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Figure D.5  Learning curve for continuous performance task (percent correct) for 
Subject 6 
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Figure D . 7  Learning curve for continuous performance task (percent correct) for 
Subject 8 
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Figure D. 8 Learning curve for continuous performance task (percent correct) for 
Subject 9 
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Learning curve for continuous performance task (average latency) for 
Subject 1 
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Figure D . lO Learning curve for continuous performance task (average latency) for 
Subject 2 
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Figure D. I I  Learning curve for continuous performance task (average latency) for 
Subject 3 
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Figure D. 12  Learning curve for continuous performance task (average latency) for 
Subject 5 
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Figure D. 13  Learning curve for continuous performance task (average latency) for 
Subject 6 
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Figure D.IS Learning curve for continuous performance task (average latency) for 
Subject 8 
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Table E. l Randomization Schedule 

SUBJECT PERIOD 1 PERIOD 2 PERIOD 3 PERIOD 4 
NUMBER 

1 A B C D 

2 B D A C 

3 D C B A 

4 C A D B 

5 A B C D 

6 B D A C 

7 D C B A 

8 C A D B 

9 A B C D 

10  B D A C 

A = 5 MG DOSE ( 1  X 5 MG CAPSULE + 1 X PLACEBO CAPSULE) 
B = PLACEBO (2 X PLACEBO CAPSULES) 
C = 20 MG DOSE (2 X 10 MG CAPSULES) 
D = 10 MG DOSE ( l  X 10 MG CAPSULE + 1 X PLACEBO CAPSULE) 
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Figure H.4  Log serum amphetamine concentration versus time profile for Subject 2 



32 1 

100 

90 

� 80 � 
� 70 z 
Q .... � 60 
.... 
Z w 
U 
z 50 
0 
u 
w 40 
z � .: 30 tl; :x: ... 
� .: 20 

1 0  

0 
0 5 10 15  20 25 

TIME (HR) 

-B- 10 MG -*- 20 MG 

Figure H .5  Serum amphetamine concentration versus time profile for Subject 3 

100 

� � 
� 
z 
0 
;::: � .... 
z w 
U 10  
Z 
0 
U 
w 
Z � .: 
tl; :x: ... 
� .: 

1 
0 5 1 0  1 5 20 25 

TIME (HR) 

-B- 10 MG __ 20 MG - REGRESSION LINES 

Figure H .6  Log serum amphetamine concentration versus time profile for Subject 3 



100 

90 

::r 80 � 
" 
� 70 Z 
0 
;:::: � 60 
� Z w 
f..) 50 z 
0 
f..) 
w 40 
Z 
:iE � 30 
x ... 
� 
-< 20 

1 0  

0 
0 

»i " \ ';/( .. ! � : io< ! ' .. I .
........ )0( •••••••• ..". 

liE --...... ....... " --...... 

�.-.--.. ----
.
........... --.-..

.. -.-.. -.-.
..

. -., 

5 10 1 5  20 
TIME (HR) 

___ 5 MG -&- 10 MG -liE-- 20 MG 

25 

Figure H .7  Serum amphetamine concentration versus time profile for Subject 4 

100 

::r 
� 
" 
� 
z 
0 
;:::: � � 
z w 
f..) 10 
Z 
0 
f..) 
w 
Z � 
« 
t x ... 
� 
« 

1 
0 5 10 15  20 25 

TIME (HR) 

___ 5 MG -&- 10 MG ...... 20 MG - REGRESSION LINES 

322 

Figure H . 8  Log serum amphetamine concentration versus time profile for Subject 4 
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Figure H. I4  Log serum amphetamine concentration versus time profile for Subject 7 
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Figure H. t 8  Log serum amphetamine concentration versus time profile for Subject 9 
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Figure H.20 Log serum amphetamine concentration versus time profile for Subject 10  
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Figure J .2 Log urinary excretion rate of amphetamine versus time plot for Subject 1 
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Figure 1 .4  Log urinary excretion rate of amphetamine versus time plot for Subject 2 
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Figure J .  6 Log urinary excretion rate of amphetamine versus time plot for Subject 4 
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Figure J .  7 Urinary excretion rate of amphetamine versus time plot for Subject 6 
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Figure J. 8 Log urinary excretion rate of amphetamine versus time plot for Subject 6 
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Figure J .9 Urinary excretion rate of amphetamine versus time plot for Subject 8 
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Figure J . 1 0 Log urinary excretion rate of amphetamine versus time plot for Subject 8 
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Figure J . 1 1  Urinary excretion rate of amphetamine versus time plot for Subject 9 
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Figure J . 1 2 Log urinary excretion rate of amphetamine versus time plot for Subject 9 
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Figure J . 1 3  Urinary excretion rate of amphetamine versus time plot for Subject 10 
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Figure J . 14 Log urinary excretion rate of amphetamine versus time plot for Subject 10 
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Figure K .6  Renal clearance plot for Subject 4 (5 mg dose) 

1000 
900 
800 

� :I: 700 0-() 600 � 
w .... 1E 500 
z 
0 
i= 400 
w 
II: () � 300 

200 
100 

t 1/ f / / / --L 1 
o 

o 10 � � � 00 � ro M 90 100 
SERUM CONC @ MIDPT OF COllECTION(NG/Ml) 

I-+- 10 MG I 
Figure K .7  Renal clearance plot for Subject 4 ( 1 0  mg dose) 



345 

1000 

900 

aoo 

e- 700 
a 
u 600 � 
W 
I-� 500 

z 
0 

E 400 

a: 

/ // -.L /  
U 

/;S 300 

200 

100 

F --

/ /' 
o 

o 10 � � � � 00 ro 00 90 100 
SERUM CONC @ MIOPT OF COLLECTION(NG/ML) 

1 ___ � MG I 
Figure K .8  Renal clearance plot for Subject 4 (20 mg dose) 



346 

1000 

900 

800 

IE' 700 � 
Cl 
U 600 !. 
w ..... � 500 
Z 
0 t 400 
a: 
U 
1:5 300 

200 

100 

/\ t � 1/ o 
o 10 � � � � 00 ro � 90 100 

SERUM CONC @ MIOPT OF COLLECTION(NG/ML) 

1 __ 
5 MG I 

Figure K .9  Renal clearance plot for Subject 6 (5 mg dose) 
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Figure K . 14  Renal clearance plot for Subject 8 (20 mg dose) 
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Figure K . 1 5  Renal clearance plot for Subject 9 (5 mg dose) 
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Figure L 1 Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 1 
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Figure L2 Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 2 
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Figure L.3 Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 4 

40 

30 

N 20 
( > 
.5- ., 
a: -g w il! 10 3: " 0 0 '"- � 

...J t:.. 
;! 
0 0 � 

-10 

-20 
0 2 4 6 

TIME (HR) 

1---- 5 MG -+- 10 MG --- 20 MG 

8 10 1 2  

Figure L.4 Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 6 
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Figure L.5 Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 7 
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Figure L.6 Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 8 
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Figure L .  7 Baseline and placebo corrected total EEG power across all frequency 
bands versus time profile for Subject 10  
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Figure L. 8 Baseline and placebo corrected total EEG power in the delta frequency 
band versus time profile for Subject 1 
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Figure L 12 Baseline and placebo corrected total EEG power in the delta frequency 
band versus time profile for Subject 7 
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Figure L 1 3  Baseline and placebo corrected total EEG power in the delta frequency 
band versus time profile for Subject 8 
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Figure L. 14  Baseline and placebo corrected total EEG power in the delta frequency 
band versus time profile for Subject 10  
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Figure L. 15  Baseline and placebo corrected total EEG power in the theta frequency 
band versus time profile for Subject I 
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Figure L. 1 6  Baseline and placebo corrected total EEG power in the theta frequency 
band versus time profile for Subject 2 
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Figure L. I 7  Baseline and placebo corrected total EEG power in the theta frequency 
band versus time profile for Subject 4 
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Figure L. I 8  Baseline and placebo corrected total EEG power in the theta frequency 
band versus time profile for Subject 6 
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Figure L. 19  Baseline and placebo corrected total EEG power in the theta frequency 
band versus time profile for Subject 7 
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Figure L.20 Baseline and placebo corrected total EEG power in the theta frequency 
band versus time profile for Subject 8 
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Figure L.2 l  Baseline and placebo corrected total EEG power in the theta frequency 
band versus time profile for Subject lO  
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Figure L.22 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 1 
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Figure L.23 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 2 
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Figure L.24 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 4 
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Figure L.25 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 6 
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Figure L26 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 7 
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Figure L27 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 8 
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Figure L.28 Baseline and placebo corrected total EEG power in the alpha frequency 
band versus time profile for Subject 10  
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Figure L.29 Baseline and placebo corrected total EEG power in the beta I frequency 
band versus time profile for Subject 1 
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Figure L.30 Baseline and placebo corrected total EEG power in the beta I frequency 
band versus time profile for Subject 2 
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Figure L.3 1  Baseline and placebo corrected total EEG power i n  the beta I frequency 
band versus time profile for Subject 4 
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Figure L.32 Baseline and placebo corrected total EEG power in the beta I frequency 
band versus time profile for Subject 6 
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Figure L. 33 Baseline and placebo corrected total EEG power in the beta I frequency 
band versus time profile for Subject 7 
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Figure L .34 Baseline and placebo corrected total EEG power in the beta I frequency 
band versus time profile for Subject 8 



N ( 
> 
.E. -� <tl 
I 

a:: w � 
0 '"-
-' 
« 
>-
0 
>-

600 

400 

'" 200 

0 ��� �� 
-200 

-400 

-600 

-800 
o 

---

2 

� 

6 
TIME (HR) 

1 ___ 5 MG -+- 10 MG -- 20 MG 

8 

373 

10 12  

Figure L. 35 Baseline and placebo corrected total EEG power in the beta I frequency 
band versus time profile for Subject 10  
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Figure L.36 Baseline and placebo corrected total EEG power in the beta n frequency 
band versus time profile for Subject 1 
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Figure L.37 Baseline and placebo corrected total EEG power in the beta II frequency 
band versus time profile for Subject 2 
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Figure L. 38 Baseline and placebo corrected total EEG power in the beta II frequency 
band versus time profile for Subject 4 
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Figure L. 39 Baseline and placebo corrected total EEG power in the beta II frequency 
band versus time profile for Subject 6 
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Figure LAO Baseline and placebo corrected total EEG power in the beta n frequency 
band versus time profile for Subject 7 
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Figure L41 Baseline and placebo corrected total EEG power in the beta n frequency 
band versus time profile for Subject 8 
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Figure L.42 Baseline and placebo corrected total EEG power in the beta II frequency 
band versus time profile for Subject 10  
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plot for Subject 2 
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Figure M.3  Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 4 
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Figure M.4  Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 5 
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Figure M.5  Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 6 
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Figure M . 6  Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 7 
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Figure M _ 7  Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 8 
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Figure M_8  Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 9 
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Figure M_9  Baseline and placebo corrected serum prolactin concentration versus time 
plot for Subject 10 
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Baseline and placebo corrected self-rated mood scale score versus time 
plot for Subject 2 
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Figure NA Baseline and placebo corrected visual analog mood scale score versus 
time plot for Subject 2 
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Figure N. 6 Baseline and placebo corrected visual analog mood scale score versus 
time plot for Subject 4 
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Figure N. 7 Baseline and placebo corrected self-rated mood scale score versus time 
plot for Subject 5 
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Figure N.  8 Baseline and placebo corrected visual analog mood scale score versus 
time plot for Subject 5 
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Figure N. 9 Baseline and placebo corrected self-rated mood scale score versus time 
plot for Subject 6 
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Figure N. 1O  Baseline and placebo corrected visual analog mood scale score versus 
time plot for Subject 6 
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plot for Subject 7 
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Figure N. I 2  Baseline and placebo corrected visual analog m ood  scale score versus 
time plot for Subject 7 
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Figure N.  1 3  Baseline and placebo corrected self-rated mood scale score versus time 
plot for Subject 8 

w a: 
0 
U en 
w 
....I 
« 
u en 
c 8 
� 
Cl 
0 
....I 
« z 
« 
....I 
« :::> en :; 

50 

40 

30 

20 

1 0  / �  0 

-10 � \ -------
-20 

-30 

-40 
o 2 

� 
4 

- � 

/" � 
6 

TIME (HR) 
8 

1 ___ 5 MG -+- 10 MG ---- 20 MG 

10 12 

Figure N. 14 Baseline and placebo corrected visual analog mood scale score versus 
time plot for Subject 8 
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Figure N. 1 5  Baseline and placebo corrected self-rated m ood  scale score versus time 
plot for Subject 9 
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Figure N. 1 6  Baseline and placebo corrected visual analog m ood  scale score versus 
time plot for Subject 9 
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Figure N. 17  Baseline and placebo corrected self-rated mood scale score versus time 
plot for Subject 10  
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Figure N. 1 8  Baseline and placebo corrected visual analog mood scale score versus 
time plot for Subject 10  
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performance task for Subject 4 
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performance task for Subject 5 
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performance task for Subject 7 
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Subject 4 
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Subject 5 
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Subject 5 
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Figure 0.27 Baseline and placebo corrected finger tapping rate with the right hand for 
Subject 6 
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Subject 6 



406 

3 

2.5 
() w 2 � 
-< 1 .5 t-O z � 
!i: 0 0.5 a: 
0 0 Z c.: ... � -<1.5 
a: w 
0 -1 Z � 

- 1 .5 
·2 0 2 6 8 10 12 

TIME (HR) 

1 ___ 5 MG -+- 10 MG --- 20 MG 

Figure 0.29 Baseline and placebo corrected finger tapping rate with the right hand for 
Subject 7 

2�--------------------------------------------------' 

() 1.5+-----------------------------------------------------1 w 
� � 
o 
z � 
S 0.5+---___ ---,f---+---I-�,._----------------------------""7"''''-t -' 
C!) z c.: � O����--���------��--------------����----� 
a: w o z 
� -<I.5i+---------------------------------------------------� 

_1+--------.-------.-------.--------r-------�----__1 6 
TIME (HAl 

8 10 12 o 2 4 

1 ___ 5 MG -+- 10 MG --- 20 MG 

Figure 0.30 Baseline and placebo corrected finger tapping rate with the left hand for 
Subject 7 



407 

3 

2.5 

6 w 2 � � 1 . 5  
0 
z � 
tr S! 0.5 a: 
" 0 Z 
Ci: 0.. 
c( .{l.5 .... a: w 
" -1  z 
..: 

-1 .5 

-2 
0 2 4 6 8 10 12 

TIME (HR) 

1 ___ 5 MG -+- 10 MG --- 20 MG 

Figure 0 _ 3 1  Baseline and placebo corrected finger tapping rate with the right hand for 
Subject 8 

2�----------------------------------------------� 

6 1 .5,+----------------------------j w 

� � 
o 
z � 
S 0.5+--I+�_c::::=-��:::::".,-�;.....,,=�ot:""'===------.:�.......::�----__j -' 
o 
z 
Ci: 0.. ;5 
a: w 

O.-----------------------------------��--���� 
" 
z 
..: .{l.5i+--------------------------� 

-1+-----,.----,.-----,------,----,------1 
6 

TIME (HR) 
8 10 12 o 2 4 

1 ___ 5 MG -+- 10 MG --- 20 MG 

Figure 0.32 Baseline and placebo corrected finger tapping rate with the left hand for 
Subject 8 



3 

2.5 

6 w 2 � � 1 .5 
c 
z � 
� 0 0.5 If 
0 0 z 

.-
iL ... 
-< -<1.5 .... 
a: w 0 -1  Z 
LL 

-1 .5 

-2 
o 

� 

2 

............ 

4 

........ 

6 
TIME (HR) 

........... 

1 ___ 5 MG -+- 10 MG -- 20 MG 

408 

-� 

8 10 12 

Figure 0.33 Baseline and placebo corrected finger tapping rate with the right hand for 
Subject 9 
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Figure Q.5 Baseline and placebo corrected heart rate versus time plot for Subject 6 
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Figure Q.6  Baseline and placebo corrected heart rate versus time plot for Subject 7 
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Figure Q .8  Baseline and placebo corrected heart rate versus time plot for Subject 9 
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Figure Q_9 Baseline and placebo corrected heart rate versus time plot for Subject 10 
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