Virginia Commonwealth University VCU Scholars Compass

AN EASY ACCESS INTERACTIVE STATISTICAL SYSTEM FOR USE AND TRAINING IN BIOMETRY

Amos Addison Slaymaker Jr.

Follow this and additional works at: https://scholarscompass.vcu.edu/etd
Part of the Biometry Commons
© The Author

Downloaded from

https://scholarscompass.vcu.edu/etd/5523

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

AN EASY ACCESS INTERACTIVE STATISTICAL SYSTEM FOR USE AND TRAINING IN BIOMETRY

by

Amos Addison Slaymaker, Jr.
B.S., Lynchburg College, 1968

Thesis
submitted in partial fulfillment of the requirements for the
Degree of Master of Science in the Department of
Biometry at the Medical College of Virginia Richmond, Virginia

June, 1971

This thesis by Amos Addison Slaymaker, Jr. is accepted in its present form as satisfying the thesis requirement for the degree of Master of Science

Date:
Approved:
.0.fobur. 14 , 19.7.0... Advisor, Chairman of Graduate Committee . October 1.4, 1.97.0...

. Qectols .14, 1970..

Dean of the School of Graduate Studies

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. Walter H. Carter, Jr. for suggesting this research and for his guidance during the course of this investigation. The author also extends gratitude to Dr. Raymond H. Myers for his assistance and encouragement. Gratitude is also extended to Dr. S. James Rilpatrick, Chairman of the Biometry Department, for his support and encouragement.

The author is indebted to his wife, Mrs. Carroll Slaymaker, for her excellent work in typing this thesis.

This investigation was supported in part by Public Health Service Research Grant RR 0016-08, from the National Institutes of Health.

TABLE OF CONTENTS

PAGE
CHAPTER I
INTRODUCTION 1
CHAPTER II
SYSTEM DESCRIPTION 4
CHAPTER III
SYSTEM UTILIZATION 7
CHAPTFR IV
SYSTEM FNVIRONMENT 10
CHAPTER V
USER'S MANUAL 16
BIBLIOGRAPHY 62
APPENDIX 63

CRAPTER I

INTRODUCTION

One of the most important tools of the applied statistician is the digital computer. It is natural, therefore, for the instructor in applied statistics to want his students to become familiar with the use of conputers. If his students are going to get actual experience in using a computer for statistical analysis, he often has only two alternatives. The students can be required to write their own statistical programs or they can use programs already avallable through a computer facility. If the course is to be taught such that each student is responsible for his own programs, the instructor must either require that the students have previous programing experience or he must be prepared to spend a portion of his class time teaching a programing language. Neither of these seem to be satisfactory. First, to make knowledge of programing a prerequisite will of ten reduce the number of people interested in the course. Many students, who would otherwise enroll, might be completely unfaniliar with programing and have no real interest in becoming programers. To spend a portion of the class time in teaching a programing language and associated programming techniques would often mean that the emphasis of the class could easily shift from the statistical methods to computer programing. This would result in a significant reduction in the anount of material the class could cover.

The alternative to having each student write his own programs 18 to use prepared programs avallable through a computer facility. In most instances, this would mean that each time a student wished to use the computer for a statistical analysis he would have to prepare the data for
card input, send the cards to the computer facility, wait, and finally have his results returned. Again either the instructor would have to asaign a particular program and would lead the class through the data preparation or he would expect each student to be responsible for reading the program documentation and preparing the data for himself. In many statistical analyses the investigator might wish to run several different prograns. For each of these the student might have to review the relevant docunentation, punch a new set of data cards and wait. Unfortunately, rather than repeat this procedure several times a student may become satisfied with running only the primary analysis without spending time, for instance, verifying the underlying assumptions.

An example of the type of situation which might indicate several computer runs would be data on which an Analysis of Variance is to be performed. Consider the problem of a student who has data from patients being treated with several different drugs. He wishes to test the null hypothesis of no significant differences between the treatment means. He alght first wish to run a Bartlet's test for homogeneity of variances. If transforms are necessary on the data he will wish to try them. If he is satisfied that the variances are not significantly different, he will compute the Analysis of Variance possibly following that with Duncan's multiple range test. Since each method is probably done by a different progran, the data might have to be completely punched three or four different times. Rather than doing all the extra work the student might simply run the Analysis of Variance and be satisfied with a less than a complete data analysis.

The problems introduced here give the necessary background for the discussion of the APL Statistical System which follows. This discussion
is divided into three sections. The first section includes two chapters and discusses broadly the APL Statistical System characteristics which contribute to overcome some of the problems involved in utilizing a computer in statistical instruction. The second chapter describes two basic utilizations of the Statistical System.

The second section describes the computer hardware configuzation on which the system is currently being implemented. It also describes some Of the important characteristics of the prograning language used. A description of the actual statistical System with a list of the statistical methods which are available to the user is also included in the third chapter.

The third section is actually a user's manual giving the operating procedures for the systen, an explanation of the keyboard, data entry, and a few of the basic APL operators. To make it an independent part of the thesis 80 that it may be used alone as a manual, a more complete description of how to use each of the statistical methods is given. For each method an example is shown which can be verified in most cases by the reference source listed in the example. A complete program listing of all the prograns, or functions, used in this system can be found in the Appendix.

CRAPTER II

SYSTEM DESCRIPTION

Recall that in the introduction two alternative methods were discuased for introducing students to the use of computers in statistical analyses. Since major drawbacks existed in implementing either of these alternatives, it was felt that some type of compromise between the two might be found. If a realistic substitute were to be designed, two major conditions would have to be met. The first was that the system should allow the student imediate access to the computer. One way to satisfy this condition was to have a terainal connected directly to a computer.

The second condition is an extension of the first. Since having the student write his own programs is obviously unsatisfactory, it was felt that a library of methods would have to be available which would be easier to use and more meaningful than other prepared prograns. One possibility was that the programs be 80 written as to require student interaction during the actual execution of the function. The user would be required to converse with the computer through a terminal until the progran had the needed infornetion to finish its calculations.

The APL Statistical System was primarily designed to satisfy these two conditions. In considering the language in which the system of prograns would be written it was felt that APL (A Programing Language) was the logical choice. Many of the characteristics which the prograns have are directly related to this programing language and are discussed in Chapters III \& IV.

The APL Statistical System is a terminal oriented system of programs which allows the user to call on any (or all) of the system programs at
any time. The user enters his data into the computer through the teminal or by cards and is able to load and execute any program in the system 1 lb rary. As the output from one function is studied the user can be operating on the same set of data with another of the library functions.

The actual data entry is accomplished by entering the data an element at a tine, skipping a space between each data point. The form is always the same and each program is written such that the user is supplied with inquiries and a choice of possible responses as the program is executing. This means that there is a minimum of docunentation which the user must read before actually performing the statistical analysis. He, of course, also has no need for learning any programming language. With the short introduction to the system presented in the User's Manual, a student or any user familiar with the statistical methods, should be able to execute any of the library functions.

Since this statistical system eliminates the traditional problems of data preparation, the student can concentrate more on the types of information which result from the various statistical analyses. Without having to become familiar with any programing language or with the involved documentation accompanying "canned" programs, the student is able to transform data, execute functions, and even use the computer as a sophisticated calculator. In other words, all the power of the computer is given to the student without any of the problems associated with its use. As a result the student is able to learn the extremely important role the computer can play in data analysis.

Another important consideration of this interactive system is that a particular progran does not become a "black box", which the student must only assume is doing a particular method. At any time a listing
of the whole function can be obtained from the computer. This display lists each of the statements in the function in the order of execution. As a result of the characteristics of the language, APL, the function statements have a very close resemblance to the algebraic statements in the student's source material. Even the sumation of terms and the matrix and vector multiplications are written as one statement and are not lost within the program in complicated programing techniques. The student can, if he knows the basic symbols used in APL, see a one-to-one correspondence between what is happening within the displayed progran and what are in his course materials. This additional knowledge of APL is not necessary for the normal use of the system.

The system of programs developed in this thesis has the following characteristics:

1. No knowledge of programing required
2. One simple data input format
3. Avallability of all the programs
4. Allows for interactive mode in program execution Therefore, the APL Statistical System appears to provide the needed comprowise between student programing and the available "canned" programs.

CHAPTER III

SYSTEM UTILIZATION

The author visualizes two essentially different uses for the APL Statistical System: Academic and Consulting.

For the graduate student concentrating in statistics the system would be utilized with the course material. This would involve exercises and assignents from the instructor of the course. The system is designed only to do the heavy work for the student and not to give him all the final answers. For instance, the Analysis of Variance prograns only give the Sum of Squares partitioned for the different effects and the degrees of freedom associated with each. The student is still responsible for forming the appropriate Mean Squares and F-ratios. If he is not familiar with the concepts for forming Expected Mean Squares the user will usually obtain an incorrect result. Thus, this system places emphasis on the method used by the student in arriving at his conclusions, not on having arrived at the correct answer.

For the graduate student not majoring in statistics it is often necessary to take a separate course in the introduction to statistics. A good example is the Medical student. With his primary interest in medicine he is often neither equipped nor interested in delving into the sophisticated techniques of statistical analysis. Because of this lack of background and interest he is seldom introduced to anything that would give him a feeling for the power of statistics. Far too often the impression is fust the opposite, that statistics is an intuitively obvious discipline lacking in any imagination and sophistication. This is a result of the low level at which statistics is usually taught to such students.

A medical student is trained to diagnose a disease; similarly, he could be trained to "diagnose" a statistical analysis for a set of data. If the approach of the instructor was to give the student a check list of assumptions and conditions under which specific statistical methods could be used the student could, with the use of an interactive system, utilize many of the statistical techniques without ever having to become deeply involved with the calculations. The role of a graduate department is not to make theoretical statisticians of the students from outside the department. Its goal should be to introduce such a student to as many methods as possible, always insuring that the student is aware of the conditions which must be met before the analysis is run and the limits on the conclusions which can be reached afterwards. This approach would give the student an introduction to the scope of statistics and hopefully make him aware that there is still much he does not know. The student would realize that he should seek the advice of professional statisticians before, during, and after experiments in his own field. In that way statistics could be used more effectively in helping him arrive at his conclusions.

Prequently problems arise which require a statistical consultant. If the consultant, who is approached with the problem, is fortunate he will have a full computer facility available to him staffed by programers and technicians waiting to help him use the computer for his statistical analysis. Unfortunately this is of ten not the case and the consultant Is sometines forced to spend as much time as the student coding data for input and decoding output for each progran he wishes to use. Having the appropriate interactive system available to him means the consultant can do the analysis quickly and efficiently and feel confident that he has
satisfied all assumptions and run all the tests appropriate for the data analysis. He is no longer dependent on the computer staff, but rather has a tool available which he can freely use without the need for introducing the consulting problem to a programmer.

It is often the case that a somewhat unusual problem will need data analysis. Very of ten this means that an existing program cannot be used because of some special condition which the program cannot handle. With other computer languages modifying a program could be frustrating task because of the different programing techniques used by different programers. Often the original author of the program is not available to help with the modification. This system of programs, however, is designed such that a modification by someone familiar with the programming language would be easy and depending on the amount of modification involved would mean the loss of very little time. The point is that modifications can even be made by students who have become interested enough to learn the prograing language. In the process of doing exercises a student can modify an existing function and, although he can use it, he is unable to store the modified program into this system. This insures that the stored programs are protected and a student using the system after a user has made modifications for his own work will still be able to rely on the descriptions and instructions in the student manual.

The utilization of this interactive system is limited only by the size of the computer facility and the imagination of the user. The system is easy to use, data input is minimal, program listings show exactly what is happening in familiar notation, and the system can be modified and added to by any programmer famillar with the language.

SYSTEM ENVIRONMENT

The computer hardware configuration of the Biometry Department at Medical College of Virginia - Virginia Covmonwealth University on which the actual system programing was written includes the following [8]:

1. IBM 1130 CENTRAL PROCESSING UNIT(EPE). Model 2C [16R]

This model has a storage-access time of 3.6 microseconds. A single 16-bit word (two bytes) is accessed during each storageaccess cycle. This model also has a single disk-storage drive housed in the CPU.enclosure.
2. SINGLE DISR STORAGE - Model 2315

Single disk storage is an auxiliary storage device housed within the 1131 CPO enclosure. It consists of a single disk drive and a removable disk cartridge. Storage capacity of each cartridge is 512,000 sixteen-bit words. The data transfer rate of the disk storage is 720,000 bits per second.
3. IBA 1442 CARD READ PUNCH - Model 6

The Card Read Punch provides serial reading and punching of cards at the following rates: Read - 300 cards per minute Punch - 80 colume per second
4. IFA 1132 PRINTER*

The 1132 Printer prints alphanumeric data at the following rates:
*The line printer is not used by APL/1130. Output is generated on the Central Processing Unit typewriter console.

Alphameric data - 80 lines per minute
 Numeric data - 110 lines per minute

The computer language used in this project was APL/1130 which is a type III (contributed) program distributed, but not developed by International Business Machines Corporation. It is a disk oriented language and currently is designed to execute on any IBM 1130 machine with at least 8,000 words of core storage. The APL language is designed to give the user maximu flexibility in the execution of prograns and in the general use of the computer. It has the additional capability of executing interactive statements one at a fim, or it can be programed with functions which can be stored and executed at a later tine.

As soon as a user has signed onto the ARL/1130 system a block of the internal storage is put at his disposal. This block of storage is called a Workspace (WS). Within this workspace all his functions and variables will be stored. Thia includes any temporary internediate reaulta while the calculations are in process. These workspaces are in turn divided into two parts: an F space (roughly 8,000 words) which is disk resident and contains the source statements of all defined functions of the given workspace; and an M space (1,920 words) which contains the variables, execution stack and the significant pointers and is core resident. The disk organization ia such that 40 workspaces plus the APL Syaten can be resident on a single 2315 cartridge. This is done by allocating workspaces on a track basis.

It is possible for a single user to have several different workspaces within the computer. However, only one of these is ever available for calculation at any one time. The one workspace which is currently available is called the active workspace.

The APL/ll30 system has two modes of operation, called execution mode and definition mode. The computer is automatically in execution mode unless the user has specified differently. While in this mode the user enters a single line algebraic statement and the result is calculated imediately. The results will be printed and the computer will space dow one line, indent and the keyboard will unlock allowing another expression to be entered. When the computer is in definition mode, it does not execute the instruction that is entered, but stores it as part of the definition of the program. The instructions that make up the program are not executed until (at some later time, when the system has returned to erecution mode) a call is made for the execution of this program. It was the definition mode that was used in the acturl programing of the Statistical System.

The APL Statistical System is contained on one of the forty-workspace disk cartridges. It is divided into two areas: STATSYSTEM and STATLIBRARY. The STATSYSTEM consists of one eight thousand word workspace. This is the workspace which the student automatically clears and activates when he "signs on" according to the instructions in the User's Manual. Once the user has signed on he may enter his data and operate on it using any of the APL operators (those necessary for the operation of this system are discussed in the Manual). The student may also ue any of the statistical programs by copying the appropriate workspace from the STATLIBRARY.

The STATLIBRARY contains the workspaces in which are stored the necessary statistical methods associated with each particular workspace. In addition to the statistical method each workspace contains a SHOWME progran. When executed by typing the word "SHOWME", this program will
give a description of the primary functions stored there and an example showing how to enter the data and execute the function. The name of each workspace 18 associated with the statistical method it contains.

The following is a list and description of the workspaces stored in the STATLIBRARY. A more detailed explanation of each is to be found In the User's Manual under the SHOWME functions.

DESCRIPTION - contains a function which will give the mean, median, mode, variance, standard deviation, maximum, minimum and range of a sample of any size. In addition, if requested, the sample will be printed in ascending order.

PAIREDTTEST 2 EQUALVAR:TTEST and UNEQUALVAR:TTEST - These three workspaces each contain a function which will calculate the test statistic for one of the t-tests giving also the degrees of freedom associated with it. The EQUAL and UNEQUAL VAR1ance pertains to the assumptions of the t-test. For UNEQUALVAR the adjusted degrees of freedom assoclated with the statistic are given. The user also has the option of obtaining the confidence interval for the difference between the means.

MULTIRANGE - contains a function which calculates the test statistic for Duncan's Multiple Range test for equal or unequal sample sizes. The user must input the Mean Square Error and Least Significant Studentized Ranges.

BARTLETT - contains a function which computes Bartlett's test for homogeneity of variances. It will also perform three different transformations on the data: $\sqrt{X} ; \log _{e}(X+1) ;$ and ARCSIN X and again perform Bartlett's test.

POLMOMIAL - contains a function which will fit up to a fourth degree polynomial regression to a set of data. Output includes the vector of estimated regression coefficients and the total sum of squares partitioned into the sum of squares associated with each coefficient.

COVARIANCE - contains two functions. One function computes a one-way analysis of covariance with one covariate. The other, if requested by the user, calculates a Duncan's Multiple Range on the adjusted means. The sample sizes may be unequal.

MULTIREGR - contains a function which will fit a multiple regression. Output includes the calculations associated with the forward Doolittle method and the partitioned sum of squares.

ONLWAYCRISQ- contains a function which computes a X^{2} goodness of fit cest statistic where the probabllities for each cell are equal or unequal, but specified.

Twowarchisq 2_{2} TRREEWAYCHI - contain functions which computes the test statistics for two and three way contingency tables.

RBGRESSION - contains two functions. One fits a simple linear regression. The output includes the estimated regression equation; the correlation coefficient; a t-test for Beta equal to zero or some specified value; confidence limits for Beta, and a point on the true regression line. Prediction limits associated with the observed data point and predictions and residuals are also given. The second function automatically calculates the sum of squares associated with pure error and lack of fit if there are replicate observations.

EQUALLINES - contains a function which does the necessary calculations to test the following three hypothesis:

1. Equal intercepts
2. Equal slopes
3. 1 and 2 simultaneously

ONEWAYANOVA - contains a function which computes the necessary sums of squares and degrees of freedom for a one-way analysis of variance on equal or unequal sample sizes.

TWOWAYANOVA - contains a function which calculates a two-way analysis of variance with equal cell sizes.

UNEQUALSIZE:ANOVA2 - contains a function which calculates a two-way analysis of variance for unequal cell sizes.

INCOAPLETE:BLOCR - contains a function which calculates the appropriate sums of squares for a balanced incomplete block design.

GENERALREGR - contains a function which calculates the general regression signifiance test. Input includes an X matrix of full rank and a vector of observations.

Three additional workspaces are:
GENETHODS - this workspace contains four specialized functions used In other workspace as subroutines, but are also stored here to be used seperately:

MEAN - calculates the estimated mean of a sample VAR - calculates the estimated variance of a sample JINV - takes the inverse of a matrix DSORT - gives the subscripts of a sample which would reorder the sample in descending order.

DATAINPUT - contains a function which aids in inputing data into the active workspace.

LIBRARY - contains a SHOWME function which lists the names of the above workspaces and their associated statistical methods.

CHAPTER V

APL STATISTICAL SYSTEM USER'S MANUAL

INTRODUCTION

This manual is designed to give the limited instructions necessary to use the APL Statistical System. It introduces the basic system comands and operators used as they pertain to the Statistical System only. For a more detailed explanation of these operators the reader is referred to [2]. Specific examples are given throughout the manual with a broader exsaple of an actual statistical problem illustrated at the end of the text. The SHOWMR functions are displayed and following these is the appendix of program listings.

ORGANIZATION

The APL STATISTICAL SYSTEM is organized into two sections: the STATSYSTMM area which consists of one workspace and the STATLIBRARY wheh consists of a number of stored workspaces each containing a main function and needed subfunctions.

When a student "signs on" he activates the STATSYSTEM and is given a clear workspace. Into this active workspace he can copy workspaces from the STATLIBRARY. In each of these workspaces he will find a SHOHME function which when executed will display a description of the primary function in the workspace and an example. The student can then erase the SHOWME function providing more room in the active workspace for calculations and execute the program. He is also able to use any of the priaitive operators (described in a later section) while in this active workspace.

STARTING THE SYSTEM

1. Turn on 1130, load APL STATISTICAL SYSTEM disk, and mount APL typing element.
2. Place APLIPL card followed by a blank card in card reader. Press start on the card reader.
3. When FILE READY light comes on, press IMMEDIATE STOP, RESET, and PROGRAM LOAD.
4. When the R B SELECT light comes on the user is ready to sign on.

SHIFTING, SIGNING ON AND SIGNINC OFF
As the user sits at the 1130 keyboard he will notice in small white overlays the APL characters. On most keys he will see three characters per key. These are the lower, middle and upper shift characters.

1. Shifting

In the upper left hand corner of the keyboard the user will find two keys with two white arrows each. These are the shift keys. The one on the left shifts from the usual lower case to upper and from middle to lower. The one on the right shifts from upper to lower and lower to middle. Pressing the left key shifts to upper case. Pressing it again locks the keyboard in upper case. The analogous is true of the right shift key.
2. Signing on
a. Press the left shift key
b. Type a right parenthesis,), found on the rightmost key of the second row of keys.
c. Press the right shift key twice and type in the number 543
found across the second row of keys.
d. Press RETURN located fust above the U key.
e. The console will respond with

STATSYSTEM SIGNED ON

$$
\text { APL / } 1130
$$

3. Signing off
a. Type)OFF
b. The console will raspond with

SIGNED OFF

SYSTEM COMAANDS
For use with this system, the System Commands are divided into Workspace Control Comands and Inquiry Comands. The workspace control comsands affect the state of the active workspace. They will be used as follows:
) CLEAR
Erases every function and variable in the active workspace.
)COPY 1130 followed by the full name of a workspace in the STATLIBRARY
A copy of the whole workspace will be copied into the active workspace. This is the comand which is used to load into the active workspace one of the statistical methods from the program library.)ERASE followed by the name of functions or variables The named objects will be deleted.

The inquiry commands provide information without affecting the state of the syster. They are used as follows:
) FNS
The names of the functions located in the active workspace will be listed.

)VARS

The names of all variables located in the active workspace will be listed.
)LIB 1130

The names of all the stored workspaces in the STATLIBRARY will be listed. In some instances passwords have been added to the workspace name to make the name more complete, e.g. EQUALVAR:TTEST. TTEST in this case is a password and would not be listed by the LIB cormand. For a complete listing of workspace names the workspace named LIBRARY should be copied and the SHOWME function displayed (See PROGRAM EXECUTION).

ERRORS

The following is a list of possible error messages the user might encounter, their causes and corrective actions necessary:

1. CHARACTER - Character overstrike
2. ID - Variable name with more than $81 x$ characters.
3. LENGTH - Vectors not conformable for addition, subtraction, etc.
4. LINE TOO LONG - Data input line is longer than 160 characters. SOLUTION: Segment The Data (See Data Input)
5. RANK - Matrices are not conformable for addition, multiplication, etc.
6. SYNTAX - Invalid syntax, e.8., two variables fuxtaposed; function used without appropriate arguments as dictated by its header (See Program Execution): mismatched parentheses.
7. VALUE - Use of a name has not been assigned a value.

SOLUTION: Assign A Value To The Variable
8. WS FULL - Workspace is full SOLUTION: Erase Needless Objects

If during the execution of a program, the program halts, types the name of the function and an error nessage, IMAEDIATELY type $\rightarrow 0$. Check your data to see that it is in the exact form described for that function or use one of the corrections listed above. Always be sure to exit from the program, by typing $\rightarrow 0$, before trying to correct the error.

DATA INPUT

There are two ways in which data can be entered in the system:

1. Reyboard entry of Data

When a program is executed it is of ten the case that dumay arguments in the execution statement nust be replaced by actual data or the name of some data variable previously defined. If the argument is a data array (matrix) it is recomended that a data variable be defined.

To define a variable simply type the variable name, an arrow pointing toward that variable name, and the string of data, being sure to skip a space between each data point. If the data string is longer than the physical line across the page, strike the RETURN key. Continue by typing the variable name, an arrow pointing to $1 t$, the variable name again, a coma, and then the remainder of the data.

For example,
NAME+ $416.3^{-12} 111718441315.617 .4323542 \quad 215568$ NAME+ NAME, 2988843542 -86.2 934885

NOTE: The negative sign is different from the minus operator. The negative sign is found in the middle shift of the W key. After a data string is in the workspace it is often necessary to reshape the vector into a matrix. To accomplish this one uses
the reshape operator, ρ. The ρ operator works by reshaping the variable to the right of it into the dimensions specified by the numbers to the left. For example,

NAME -38 م NAME
NAME would now becone equal to the matrix

4	16.3	-12	11	7	18	44	13
15.6	17.432	35	42	21	55	68	29
88	84	35	42	-86.2	93	48	85

If a mistake is made during the actual typing of the input, it is possible to correct the data by backspacing to the error and striking the ATTN (Attention) key located on the console keyboard. This will place a caret v under the error and erase everthing in the line from that position on to the right. At this point the correct data point can be entered followed by the renaining elements.

If the data has already been entered a particular element can be replaced by using the subscript notation, []. For example,
$S+22 \rho 3456$
(S becomes 2×2 matrix)

S
(display S)
34

56
$S[2 ; 1] \leftarrow 7 \quad \begin{gathered}\text { (replace the } 2,1 \text { element of } \\ S \text { by } 7 \text {) }\end{gathered}$

S
(display S again)

34
(5 has been replaced by 7)
76

The data can also be entered from the keyboard by using a special progran called INPUT located in a workspace named DATAIAPUT. To use this function type in the following:
1.) COPI 1130 DATAINPUT
2. NAME + D1 INPUT D2
where NAMR is the variable name for the data
D1 is the number of rows of the matrix to be formed fron the data

D1 = 1 for a vector
D2 is the number of coluns in the matrix to be formed This program will then keep asking for data by typing \square : until enough elements have been entered to form the specified array. If one finds that there is not enough data to satisfy the dimensions he has specified, he nust continue inputing numbers until the program exits noreally and then start at step 2 again.
2. Card input of Data

To prepare data for card input punch on cards exactly what is shown for keyboard input with the following conditions:
a) Punch fron card column 1 through card column 71. Do not punch anything beyond column 71.
b) Substitute for \leftarrow; and @RHO for ρ on the IBM 029 keypunch machine.
c) When using card input for the INPUT program type in) CARD the first time D : appears. (See Example)
d) A card with) CARD END punched on it and a BLANK CARD must follow the card input for the keyboard to unlock for the next entry.

During the execution of many of the STATSYSTEM prograns, inquiries are ande by the program. Usually the responses are entered through the keyboard though cards with the appropriate responses punched on thea may be substituted. If such is the case, at the first inquify)CARD should be typed in. From then until either the ATTN key on the keyboard is pressed or a)CARD END card is encountered the aysten will expect card input every time it would have received keyboard input.

1. Console typewriter

Output fron each progran is illustrated in the examples of the SHOWME functions. In addition to the programed output, certain variables generated within each function can be displayed by entering the name of that variable. For instance, after execution of any of the t-test programs it is possible to type NUM or DEN and display the nuerator or denominator of the t-statistics. To determine other available program generated variables see the appropriate SHOWME output.

In general, if data or any operation is given a variable name, the results of that operator can be displayed by typing the name of that variable. For example, $X 43846 \quad(X$ becomes 38466$)$ X (display X) 3846

It should be noted that any time the computer returns any results it will start at the left hand margin. If the keyboard is unlocked for an entry the typing element will indent seven spaces.
2. Carde

To have output punched onto cards it is necessary first to give the data a variable name. Place blank cards in the card reader and press start. Type)PCH followed by the name or names of objects to be punched and a copy of all data defined by those names will be punched onto cards in free field format skipping a apace between each data point.

PRIMITIVE OPERATORS

Only four of the APL operators needed to somplete some of the programed calculations in the system are discussed. They are + \quad. + and are used to calculate, for example, the F-ratio after the Sur of Squarea are calculated in the Analysis of Variance programs.

Examples follow for each operator:
$2+3$ (2 plus 3)
5
(result)
18-6 (18 minus 6)
12
(result)
4×6 (4 times 6)
24
(result)
$(14+3)+(17+8) \quad$ (result of 14 divided by 3 divided by result of 17 divided by 8)
2.1957
(result)
(13 minus a negative 4)
(result)

- 1×16 (negative 1 times 16)
$\overline{16}$
(result)

PROGRAM EXECUT ION

To execute a program which is in the active workspace the user simply types in the program header. This program header consists of the program name and one or two dumy arguments which must be replaced by either actual data or a data variable name. If the header has one dura bariable it will appear to the right of the program name. If there are two dumary variables they will appear on each side of the program name. Each of these function headers is explained in detail in each SHOWN function (executed by typing SHOWE) associated with that particular workspace in which the progran is stored.

Many of these prograns will make inquiries for input during the execution of the program. Each inquiry should be self explanatory and the user will either respond with data, a data variable name, or a literal response. If the inquiry is for literal input the inquiry will include the choices of response in quotes. The user should choose one of these keywords as his response. For other than literal input the inquiry will end with \square : indicating data of a data variable name is required.

FUNCTION DISP LAY

After a function has been copied into the active workspace it is possible to display the complete program by typing $\nabla \mathrm{NAME}[\mathrm{O}] \nabla$ wihere NAME is the name of the function. When displaying a function it may be helpful to refer to page 197 of the APL Primer [2].

ERAMPIE

Consider a set of data in which each colum consists of the number
of flies, taken at a particular time of day, found on a fixed number of dairy cattle. It is important to know whether there is a significant difference among the numbers of flies found at specific times during the day.

These data will be analyzed by performing an Analysis of Variance. However, before such an analysis can be accomplished it is necessary to test for the equality of variances. If rejected then the data should be transformed and a Bartlett's test performed on the transformed data. Once we have equal variances the Analysis of Variance can be run. If significant then a Duncan's multiple range test should be performed.

The following pages are a reproduction of the actual entries and responses which would take place in performing the analysis on the APL Statistical System.

$$
A P L \backslash 1130
$$

)COPY 1130 DATAINPUT
PROB+12 INPUT 5
[]:
) CARD
[]:
$\begin{array}{lllllllllllllllll}18 & 13 & 18 & 42 & 17 & 5 & 7 & 25 & 17 & 75 & 5 & 5 & 9 & 32 & 23 & 5 & 17 \\ 8 & 24\end{array}$
]:
$\begin{array}{llllllllllllllllll}21 & 2 & 4 & 10 & 14 & 24 & 3 & 5 & 14 & 23 & 19 & 5 & 10 & 5 & 11 & 43 & 2 & 2\end{array} 20$
]:
$\begin{array}{llllllllllllllllll}30 & 25 & 4 & 9 & 11 & 9 & 35 & 5 & 16 & 7 & 11 & 34 & 2 & 3 & 10 & 16 & 17 & 4 \\ 5\end{array}$
U:
71127
)CARD END PROB

18	13	18	42	17
5	7	25	17	75
5	5	9	32	23
5	17	8	24	21
2	4	10	14	24
3	5	14	23	19
5	10	5	11	43
2	2	20	30	25
4	9	11	9	35
5	16	7	11	34
2	3	10	16	17
4	5	7	11	27
	COPY	1130	BARTLETT	
BARTLT				

ENTER NUMBER OF CELLS:
[:
5
ENTER DATA FROM CELL 1:
[:
PROB[:1]
ENTER DATA FROM CELL 2:
[:
PROB[;2]
ENTER DATA FROM CELL 3:
[]:
PROB[; 3]
ENTER DATA FROM CELL 4:
口:
PROB[;4]
ENTER DATA FROM CELL 5:
口:

PROB[;5]
BARTLETT'S STAIISTIC $=26.6119$ WITH 4 DEGREES OE FREEDOM.
DO YOU WISH TU I'RY SQUARE 'ROOT', 'LOG BASE E', 'ARCSIN' TRANSFORMATION OK 'NO' TRAINSFORMATION?
LOG BASE E
BARTLETT'S STATISTIC $=1.313$ WITH 4 DEGREES OF FREEDOM.
DO YOU WISH TO TRY SQUARE 'ROOT', 'LOG BASE E', 'ARCSIN' TRANSFORMATION OR 'NO' TRANSFORMATION?
NO
$P R O B+\odot R O B+1$
PROB

2.94444	2.63906	2.94444	3.7612	2.89037
1.79176	2.07944	3.2581	2.89037	4.33073
1.79176	1.79176	2.30259	3.49651	3.17805
1.79176	2.89037	2.19722	3.21888	3.09104
1.09861	1.60944	2.3979	2.70805	3.21888
1.38629	1.79176	2.70805	3.17805	2.99573
1.79176	2.3979	1.79176	2.48491	3.78419
1.09861	1.09861	3.04452	3.43399	3.2581
1.60944	2.30259	2.48491	2.30259	3.58352
1.79176	2.83321	2.07944	2.48491	3.55535
1.09861	1.38629	2.3979	2.83321	2.89037
1.60944	1.79176	2.07944	2.48491	3.3322
COPY 113OOWEWAYAINOVA				
5 ANOVA1 PROB				

ANOVA TABLE
JUM OF SQUARES TOTAL $=34.7608$ WITH 59 DEGREES OF FREEDOM.
SUM OF SQUARES TREATMENTS $=21.9221$ WITH 4 DEGREES OF FREEDOM.
SUM OF SQUARES ERROR = 12.8387 WITH 55 DEGREES OF FRE'EDOM.
DO YOU WISH TO KUN SINGLE DEGREE OF FREEDUiv 'CONTRASTS'
OR 'NO' CONTRASTS?
iv
$(21.9221 \div 4) \div(12.8387 \div 55)$
23.4781
)COPY 1130 GE゙NMETHODS MEAN VAR
MEAN PROB
$1.65035 \quad 2.05102 \quad 2.47386 \quad 2.9398 \quad 3.34238$
VAR PROB
$0.250997 \quad 0.326557 \quad 0.191899 \quad 0.223439 \quad 0.174269$
)COPY 1130 MULTIRANGE
1212121212 DUNCAN MEAN PROB
ENTER M.S. ERROR:
[:
$12.8387 \div 55$
ENTER APPROPRIATE VALUES FOR LEAST SIGNIFICANT STUDENTIZED RANGE: [:

MEANS:
3. 34238
5
2.9398

4
2.47386

3
2.05102

2
1.65035

1

SHOWME
The following pages are the displayed SHOWME's stored in each of the APL Statistical System workspaces.
) COPY 1130 LIBRARY SHOWME

WORKSPACE NAME:
DESCRIPTION
EQUALVAR:TTEST
UNEQUALVAR:TTEST
PAIREDTTEST
BARTLETT
MULTIRANGE
ONEWAYANOVA
TWOWA YANOVA
REGRESSION
MULTIREGR
POLYNOMIAL
EQUALLINES
ONEWAYCHISQ
TWOWA YCHISQ
THREEWAYCHI
COVARIANCE
UNEQUALSIZE:ANOVA 2
BALINCOMPLT:BLOCK
GENERALREGR
DATAINPUT
GENMETHODS
LIBRARY

ASSOCIATED METHOD:
DESCRIPTIVE STATISTICS
T-TEST (ASSUMING EQUAL VARIANCES)
T-TEST (ASSUMING UNEQUAL VARIANCES)
PAIRED T-TEST
BARTLETT'S TEST FOR EQUAL VARIANCES
duncan's multiple range test
ONE-WAY aNALYSIS OF VARIANCE
TWO-WAY aNALYSIS OF VARIANCE
SIMPLE LINEAR REGRESSION
MULTIPLE LINEAR REGRESSION
ORTHOGONAL POLYNOMIAL REGRESSION
TESTS EQUALITY OF SLOPES AND INTERCEPTS
ONE-WAY CHI-SQUARE
TWO-WAY CHI-SQUARE
THREE-WAY CHI-SQUARE
ANALYSIS OF COVARIANCE
TWO-WAY ANOVA (UNEQUAL SIZE CELLS)
ANOVA FOR BALANCED INCOMPLETE BLOCKS
general regression significiance test
data input routine
UTILITY FUIVCTIONS (NO SHOWME)
LIST OF WORKSPACES
)COPY 1130 DESCRIPTION SHO WME

```
FUNCTION: LOOK X
WORKSPACE: DESCRIPTION
``` \(X=D A T A\) VECTOR
this function calculates the mean, median, mode, variance, STANDARD DEVIATION, MAXIMUM, MINIMUM, AND RANGE OF ANY SIZE SAMPLE X.

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
LET OUR SAMPLE, X \(+25 \quad 42\) 33 16 11 \(\begin{array}{llllllll}19 & 42 & 13 & 6 & 5 & 12\end{array}\)
NOW TO EXECUTE THE PROGRAM WE TYPE:
LOOK X
MEAN \(=20.3636\)
MEDIAN \(=16\)
MODE \(=42\)
VARIANCE \(=179.254\)
STANDARD DEVIATION \(=13.3886\)
LARGEST VALUE \(=42\)
SMALLEST VALUE = 5
RANGE \(=37\)

IF YOU WISH TO SEE THE SAMPLE REORDERED IW ASCENDING ORDER SIMPLY TYPE ORD...

ORD
\(\begin{array}{lllllllllll}5 & 6 & 11 & 12 & 13 & 16 & 19 & 25 & 33 & 42 & 42\end{array}\)

\section*{)COPY 1130 EQUALVAR:TTEST SHOWME}
```

FUNCTION: X1 TTEST1 X2 WORKSPACE: EQUALVAR:TTEST
X1 = FIRST SAMPLE
X2 = SECOND SAMPLE

```
this function calculates student's t-statistic when varIANCES ARE UNKNOWN BU'T ASSUMED EQUAL. OPTIONAL OU'PU'I IS THE CONFIDENCE INTERVAL FOR MU[1]-MU[2].

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE? EXAMPLE

EXAMPLE FOR TTEST1
SOURCE: STEEL AND TORRIE, PRINCIPLES AND PROCEDURES OF STATISTICS, PAGE 74.

OUR FIRST SAMPLE:
\(A+57.8 \quad 56.2 \quad 61.9 \quad 54.4 \quad 53.6 \quad 56.4 \quad 53.2\)
OUR SECOND SAMPLE:
\(B+64.258 .7 \quad 63.1 \quad 62.5 \quad 59.8 \quad 59.2\)
If We wish to see the confidence interval for the differences of the means. We respond positively to the Iivquiry aind when ASKED TO TYPE IN THE APPROPRIATE T-VALUE, WE TYPE IN THE TABLE VALUE FOR the appropriate degrees of freedom. In our case the T-VALUE WOULD BE 2.201.
to execute the program we tipe:
A TTEST1 B
```

T=3.34416

```
\(D F=11\)

טo you want the Cunfidénce 'INTERVAL' FOR MU1-MU2 OR 'NO' INTERVAL? INTERVAL
ENTER T-VALUE:
—:
\[
2.201
\]
1.7214 <MU1-MU2< 8.35003

IF YOU WISH TO SEE THE NUMERATOR OR DE'NOMINATOR OF THE TEST STATISTIC, TYPE NUM OR DEN RESPECTIVELY...
NUM
5.03571

DEN
1.50582
```

)COPY 1130 UNEQUALVAR:TTEST
SHOWME'

```
```

FUNCTION: X1 TTEST2 X2 WORKSPACE: UNEQUALVAR:TTEST
X1 = FIRST SAMPLE
X2 = SECOND SAMPLE
this function Calculates the student's T-Statistic when
THE VARIANCES ARE UNKNOWN AND ASSUMED TO BE UNEQUAL. OUTPUT
INCLUDES THE ADJUS'TED DEGREES OF FREEDOiv. OPTIONAL OUT'FU'
IS THE CONFIDENCE INTERVAL FOR MU[1]-MU[2].
DO YOU WIS'H TU SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMMPLE
EXAMPLE FOR TTEST2
SOURCE: LI, INTRODUCTION TO EXPERIMENTAL STATISTICS,
PAGE 434.
OUR FIRST SAMPLE, A =

```

```

OUR SECOND SAMPLE, B =
26
to execute the program we type:
A tTEST2 B
T = 2.82494
THE APPROXImATE DEGREES OF FREEDOM EQUAL 14
dO yOU WANT THE CONFIDENCE 'INTERVAL' FOR MU1-MU2 OR
'NO' INTERVAL?
NO

```
) COPY 1130 PAIREDTTEST SHOWME
```

FUNCTION: X1 PTTEST X2 WORKSPACE: PAIREDTTEST
X1 = FIRST SAMPLE
X2 = SECOND SAMPLE

```
THIS FUNCTION CALCUALES PAIRED T-TEST STATISTIC. OPTIONAL
OUTPUT IS CONFIDENCE INTERVAL FOR MU[1]-MU[2]. SAMPLE SIZES
MUST BE EQUAL.
DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
EXAMPLE FOR PTTEST
SOURCE: STEEL AND TORRIE, PRINCIPLES AND PROCEDURES OF
 STATISTICS, PAGE 79.

OUR FIRST SAMPLE:
\(A+62.5 \quad 65.2 \quad 67.6 \quad 69.9 \quad 69.4 \quad 70.1 \quad 67.8 \quad 67 \quad 68.5 \quad 62.4\) OUR SECOND SAMPLE:
\(B+51.7 \quad 54.2 \quad 53.3 \quad 57 \quad 56.4 \quad 61.5 \quad 57.2 \quad 56.2 \quad 58.4 \quad 55.8\) IF WE WISH TO SEE THE CONFIDENCE INTERVAL FOR THE DIFFERENCES of the means. We respond positively to the inquiry and when ASKED TO TYPE IN THE APPROPRIATE T-VALUE, WE TYPE IN THE TABLE VALUE FOR THE APPROPRIATE DEGREES OF FREEDOV. IN OUR CASE THE T-VALUE WOULD BE 3.301.

NOW to execute the program we type:

\section*{A pttest B}
```

T = 15.4585
DF=9
DO YOU WANT THE CONFIDENCE 'INTERVAL' FOR MU1-MU2 OR 'NO' INTERVAL?
INTERVAL
ENTER T-VALUE:
\square:
3. 301
8.54882 <MU1-MU2< 13.1912

```

IF YOU WISH TO SEE THE NUMERATOR OR DENOMINATOR OF THE TEST STATISTIC, TYPE NUM OR DEN RESPECTIVELY...

NUM
10.87

DEN
0.703175
```

)COPY 1130 BARTLETT
SHOWME

```

FUNCTION:BARTLT
WORKSPACE: BARTLETT
this function calculates the test statistic for bartlett's TEST OF EQUALITY OF VARIANCES. THE USER HAS THE OPTION OF CALLING ANY (OR ALL) OF THE FOLLOWING THREE DA'I'A TRANSFORMATIOIS: SQUARE ROOT, NATURAL LOG (\(X+1\)), AND ARCSIN. THE SAMPLES MAY BE UNEQUAL.
AFter the appropriate transformation has been found the data MAY BE TRANSFORMED BY THE FOLLOWING:

FOR SQUARE ROOT: NAME \(\leftarrow I N A M E * .5\)
FOR NATURAL LOG \((X+1):\) NAME \(\leftarrow\) NAME +1
FOR ARCSIN: NAHE \(\leftarrow A R C S I\) iv NAME
Where name is the variable name for the data to be transFORMED.

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
```

    EXAMPLE FOR BARTLT
    SOURCE: LI, INTRODUCTION TO EXPERINENTAL STATISTICS,
        PAGE 439.
    ```
SAMPLE FOR GROUP 1, A +693
SAMPLE FOR GROUP 2, \(B \leftarrow 10 \quad 4 \quad 9 \quad 12811\)
SAMPLE FOR GROUP 3, \(C \leqslant 264\)
We will now execute the program. as inquiries are made
TYPE IN THE APPROPRIATE RESPONSE...
FOR INSTANCE, WHEN DATA FROM CELL 1 IS ASKED FOR TYPE:
693
OR SIMPLY TYPE IN THE APPROPRIATE VARIABLE NAME, A.
now to execute the program we type...

BARTLT
ENTER NUMBER OF CELLS:
ㅁ:
3
ENTER DATA FROM CELL 1:
—:
A
ENTER DATA FROM CELL 2:
[]:
B
enter data from cell 3:
\(\square:\)
C
BARTLETT'S STATISTIC \(=0.31116\) WITH 2 DEGREES OF FREEDOM.
```

DO YOU WISH TO TRY SQUARE 'ROOT', 'LOG BASE E', 'ARCSIN'
TRANSFORMATION OR 'NO' TRANSFORMA'TION?
LOG BASE E
BARTLETT'S STATISTIC = 0.260408 WITH 2 DEGREES OF FREEDOM.
DO YOU WISH TO TRY SQUARE 'ROOT', 'LOG BASE E', 'ARCSIN'
TRANSFORMATION OR 'NO' TRANSFORMATION?
NO
WE WILL NOW DO THE ACTUAL NATURAL LOG (X+1) TRANSFORMATION
ON THE DATA...
A+\bulletA+1
B+\odot B+1
C+}C+

```

\section*{A}
```

1.94591 2.30259 1.38629
B

```
```

2.3979 1.60944 2.30259 2.56495 2.19722 2.48491

```
2.3979 1.60944 2.30259 2.56495 2.19722 2.48491
C
C
1.09861 1.94591 1.60944
```

1.09861 1.94591 1.60944

```
)COPY 1130 MULTIRANGE
SHOWME'
```

FUNCTION: K DUNCAN MEANS WORKSPACE: MULTIRANGE
K = A VECTOR INDICATING THE SAMPLE SIZE FOR EACH MEAN.
K(1) WOULD BE THE SAMPLE SILE FOR THE FIRS'l' MEAN...
MEANS = VECTOR OF MEANS ON WHICH THE TESI' WILL BE
CALCULATED.

```
this function calculates duncan's multiple range test on ANY NUMBER OF MEANS WITH EQUAL OR UNEQUAL SAMPLE SIZES. this function should be executed after one of the analysis OF VARIANCE FUNCTIONS AS MEAN SQUARE (ERROR) IS NEEDED FOR 'DUNCAN'. THE USER MUS' ALSO ENTER THE APPROPRIATE VALUES FOR THE LEAST SIGNIFICANT STUDENTIZED RANGES FHOM OUE OF IHE' AVAILABLE TABLES.

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
EXAMPLE FOR DUNCAN
SOURCE: BIOMETRICS:12 PAGE 307
```

THE MEANS, X \& 521 528 564 498 630 458
THE SAMPLE SIZES,S \& 4 3 5 5 2 3
THE MEAN SQUARE ERROR, MSE * 2397
the StudENTIZED RANGE FOR 16 DEGREES OF FREEDCM,
SR + 3 3.149 3.23 3.3 3.34

```
NOW WE WILL EXECUTE THE PROGRAM. AS INQUIRIEŚ ARE MADE
TYPE IN THE VARIABLE NAME OF EACH RESPONSE...
FOR INSTANCE WHEN THE MEAN SQUARE ERROR IU ASKED FOR TYPE
IN MSE, THE NAME FOR THAT VARIABLE.
S DUNCAN X
ENTER M.S. ERROR:
[:
 MSE
enter appropriate valuei for least significant studentized range:
\(\square:\)
 SR
MEANS:
\begin{tabular}{rrrrrr}
630 & 564 & 528 & 521 & 498 & 458 \\
5 & 3 & 2 & 1 & 4 & 6
\end{tabular}
630 IS SIGNIFICANTLY DIFFERENT FROM 528521498458
564 IS SIGNIFICANTLY DIFFERENT FROM 458
) COPY 1130 OWEWAYATIOVA SHOWME
```

FUNCTION: K ANOVA1 X WORKSPACE: ONEWAYANOVA
K = NUMBER OF TREATMENT LEVELS
X = (M,K) DATA MATRIX
M = INUMBER OF OBSERVATIONS
IF X EQUALS ANY SCALAR THE DATA WILL BE ASKED FOR A
TREATMENT AT A TIME (USED FOR UNEQUAL SAMPLE SIZES)

```

THIS FUNCTION CALCULATES THE NECESSARY SUUS OF SQUARES FOR ONE WAY ANALYSIS OF VARIANCE WITH EQUAL OR UNEQUAL SAMPLE SIZE'S. USER HAS THE OPTION OF ENTERING CONTRAST COEFFICIENTS FOR SUA OF SQUARES CONTRAST.

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
```

    EXAMPLE FOR ANOVA1
    SOURCE: FRYER, CONCEPTS AND METHODS OF EXPERIMEMIAL
        STATISTICS, PAGE 272.
    DATA F'OR GROUP 1:
A \& 0.785 0.55 0.345 0.5 0.66 0.79 0.81
DATA FOR GROUP 2:

```

```

DATA FOR GROUP 3:
C\&0.61 0.775 0.895 0.75 0.82
DATA FOR GROUP 4:
D\leftarrow0.905 0.68 0.77 0.885 0.805 0.59

```
SINCE WE HAVE UNEQUAL REPLICATIONS WE SHOULD MAKE X A SCALAR
AND INPUT THE DATA A TREATMENT AT A TIME'.
TO EXECUTE THE PROGRAM WE TYPE:
4 ANOVA1 99
INPUT DATA FOR TREATMENT 1...
[]:
 A
INPUT DATA FOR TREATMENT 2...
[J:
 B
INPUT DATA FOR TREATMEN'T 3...
\(\square:\)
 C
I NPUT DATA FOR TREATMEWT 4...
[]:
 D

ANOVA TABLE
SUM OF SQUARES TOTAL \(=0.483063\) WITH 25 DEGREES OF FREEDOM. SUM OF SQUARES TREATMENTS \(=0.0983524 \mathrm{WITH} 3\) DEGREES OF FREEDOM. SUM OF SQUARES ERROR \(=0.38471\) WITH 22 DEGREES OF FREEDON. DO YOU WISH TO RUN SINGLE DEGREE OF FREEDOM 'CONTRASTS' OR 'NO' CONTRASTS?
CONTRASTS
ENTER NUMBER OF CONTRASTS:
口:
1
ENTER CONTRAST COEFFICIENT SET NUMBER 1...
口:
\(\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\)
SUM OF SQUARES FOR CONTRAS'I \(1=0.0290083\)
```

FUNCTION: ANOVA2 X
X = (M×N) DATA MATRIX
M = B TIMES R
B = LEVELS OF ROW TREATMENT
R = NUMBER OF REPLICATIONS IN EACH CELL
N = LEVELS OF columN treatment

```
this function calculates the sums of squares necessary for a TWO WAY ANALYSIS OF VARIANCE WITH EQUAL REPLICATIONS IN EACH CELL. THE USER HAS THE OPTION OF ENTERING CONTRAST COEFFICIENTS FOR SS(CONTRAST) FOR EITHER MAIN EFFECT OR FOR THE INTERACTIOli TERM.

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE? EXAMPLE

EXAMPLE FOR ANOVA2
CONSIDER THE FOLLOWING:
OUR DATA IS:
TREATMENT A

IN THIS EXAMPLE \(X=\)
\begin{tabular}{llr}
4 & 2 & 5 \\
7 & 3 & 6 \\
5 & 2 & 4 \\
9 & 8 & 10 \\
8 & 7 & 8 \\
8 & 5 & 7
\end{tabular}

TO EXECUTE WE TYPE:
ANOVA 2 X
enter number of replicatioins in each cell
[]:
3
ANOVA TABLE
SUM OF SQUARES TOTAL = 95.9994 WITH 17 DEGREES OF FREEDOM SUM OF SQUARES TREATMENT A \(=20.3328\) WITH 2 DEGREES OF FREEDOM SUM OF SQUARES TREATMENT \(B=56.8881\) WITH 1 DEGREES OF FREEDOM SUM OF SQUARES INTERACTION \(=1.44531\) WITH 2 DEGREES OF FREEDOM SUM OF SQUARES ERROR = 17.3३३3 WITH 12 DEGREES OF FREEDOM
```

OR 'NO' CONTRASTS?
COLUMNS
ENTER CONTRAST COEFFICIENTS FOR TREATMENT A
\square:
10-1
SUM OF SQUARES CONTRAST = 0.0833333
DO YOU WISH TO DO CONTRASTS ON 'COLUMNS'.'ROWS', 'INTERACTION'
OR 'NO' CONTRASTS?
ROWS
ENTER CONTRAST COEFFICIENTS FOR TREATMENT B
\square:
1 -1
SUM OF SQUARES CONTRAST = 56.8889
DO YOU WISH TO DO CONTRASTS ON 'COLUMNS'.'ROWS'. 'INTERACTION'
OR 'NO' CONTRASTS?
INTERACTION
ENTER CONTRAST COEFFICIENTS FOR 'PREATIENT A
\square:
1 0-1
ENTER CONTRAST COEFFICIENTS FOR 'PREATMENT B
\square:
1-1
SUM OF SQUARES CONTRAST = 0.08ззззз
DO YOU WISH TO DO CONTRASTS ON 'COLUM\S','ROWS', 'INTERACTION'
OR 'NO' CONTRASTS?
NO

```

\section*{)COPY 1130 REGRESSION}

SHOWME
```

FUNCTION: X REGR Y WORKSPACE: REGRESSIOH
X = VECTOR OF INDEPENDENT OBSERVATIONS
Y = VECTOR OF DEPENDENI' OBSERVATIONS
thIS FUNCTION COMPUTES THE PRODUCT mOMENT CORRELATION COEFFI-
CIENT AND THE REGRESSION EQUATION. AS OPTIONAL OUTPUT THE FOL-
LOWING WILL BE GIVEN:
T-TESt FOR BETA EQUAL TO zERO OR SOME SPECIFIED VALUE
CONFIDENCE INTERVAL FOR BETA
CONFIDENCE INTERVAL ON A SPECIFIED POINT ON THE REGHESSIOiv
LINE
PREDICTION LIMITS FOR A FUTURE OBSERVATION AT ANY X VALUE
PREDICTED VALUES AND RESIDUALS
IN ADDITION, WHENEVEK REPEATED MEASURES ARE ENCOUNTERED IN A
SET OF DATA. SS(PURE ERROR) AND SS(LACK OF FIT) ARE COMPUTED.
DO YOU WISH TO SEE AN 'EXAMPLE' OK 'INO' E\&AMPLE?
EXAMPLE
CONSIDER THE FOLLOWING DATA
X 4 4 4 6 6 6
Y}47%\mp@code{3
WE SHOULD TEST BETA EQUAL TO ZERO.
WE WILL ALSO WANT TO LOOK AT THE CONFIDENCE INTERVALG WITH
T = 2.776 AND X = 2.
to execute the program we type:
X REGR Y
REGRESSION EQUATION: Y=3.5+-}1(X-4.5
CORRELATION COEFFICIENT:-0.910927
DO YOU WISH TO TEST BETA EQUAL TO 'BETA NOUGHT' OF 'ZERO' OR
'NO' TEST?
2ERO
T-VALUE = - 4.41588 WITH 4 DEGREES OF FREEDOM.
SUM OF SQUARES FOR PURE ERROR = 4 WITH 3 DEGREES OF FREEDOM.
SUM OF SQUARES LACK OF FIT = O WITH 1 DEGREES OF FREEDOM:
DO YOU WISH CONFIDE'NCE 'LIMITS' OR 'NO' LIMITS'?
LIMITS
INPUT T-VALUE AND VALUE FOR X:
U:
2.776 2
CONFIDENCE INTERVALS
1- ON BETA
U.L. = -0.37136
L.L. = -1.62864

```
```

2- ON A POINT ON REGRESSION LINE ( }X=2
U.L. = 7.9376
L.L. = 4.0624
3- PREDICTION LIMITS ( }X=2
U.L. = 8.03703
L.L. = 3.96297

```

DO YOU WISH TO HAVE PREDICTIONS AND 'RESIDUALS' PRINTED OR 'NOT'? RESIDUALS

X, Y, Y-PREDICTED, AND RESIDUALS:
\begin{tabular}{lllr}
1 & 7 & 7 & 0 \\
4 & 5 & 4 & -1 \\
4 & 3 & 4 & 1 \\
6 & 3 & 2 & 1 \\
6 & 2 & 2 & -0 \\
6 & 1 & 2 & -1
\end{tabular}
```

FUNCTION: X MREG Y WORKSPACE: MULTIREGR
X = (P\timesN) MATRIX WHERE P = WUMBER OF INDEPENDENT VARIABLES
N = NUMBER OF OBSERVATIONS
Y = VECTOR OF OBSERVATIONS

```
rhis function calculates a multiple regression using the dOOLI'tTLE METHOD. OUTPUT INCLUDES THE RESULTS OF THE FORWARD DOOLITTLE METHOD, SUM OF SQUARES TOTAL PARTITIONED INTO ONE degree of freedom sum of squares attributed to each coefficient adJusted for the preceding variable.

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE? EXAMPLE

EXAMPLE FOR MREG
SOURCE: STEEL AND TORRIE, PRINCIPLES AND PROCEDURES OF STATISTICS, PAGES 282-296.

THE DATA FOR THIS EXAMPLE IS FOUND ON PAGE 282 OF STEEL AND TORRIE AND WILL NOT BE LISTED HERE BECAUSE OF LACK OF SPACE. THE X MATRIX HAS BEEN CORRECTED FOR THE MEAN AND HAN DIMENSIONS EQUAL TO \(30 \times 3\), HAVING 30 OBSERVATIONS FOR EACH OF THREE VARIABLES.
the dependent variable, Y, IS a vector of length 30.
to execute the program we type:
\(X\) MREG Y
(FORWARD DOOLITTLE METHOD)
\begin{tabular}{lllll}
9.84555 & 2.14131 & 1.67054 & -5.82475 & 7.83264 \\
2.14131 & 10.6209 & 7.63666 & -4.21148 & 16.1874 \\
1.67054 & 7.63666 & 33.0829 & 2.66835 & 45.0585 \\
& & & & \\
9.84555 & 2.14131 & 1.67054 & -5.82475 & 7.83264 \\
1 & 0.21749 & 0.169675 & -0.591613 & 0.795552 \\
0 & 10.1552 & 7.27333 & -2.94465 & 14.4839 \\
0 & 1 & 0.716216 & -0.289964 & 1.42625 \\
0 & 0 & 27.5902 & 5.76568 & 33.3558 \\
0 & 0 & 1 & 0.208976 & 1.20898
\end{tabular}

\section*{ANOVA TABLE}

SUM OF SQUARES REGRESSION \(=5.50473\) WITH 3 DEGREES OF FREEDOM. SUM OF SQUARES X[1] = 3.446 WITH 1 DEGREE OF FREEDOM. SUM OF SQUARES X[2]|X[1] = 0.853843 WITH 1 DEGREE OF FREEDOM. SUM OF SQUARES X[3]|X[1 2] = 1.20489 WITH 1 DEGREE OF FREEDOM. SUM OF SQUARES RESIDUAL \(=1.18479\) WITH 26 DEGREES OF FREEDOM. SUM OF SQUARES TOTAL = 6.68952 WITH 29 DEGREES OF FREEDOM.

BETA VECTOR EQUALS: 0.686 -0.531455 -0.439636 0.208976

\section*{)COPY 1130 POLYNOMIAL}

SHOWME
```

FUNCTION: N POLYR DATA WORKSPACE: POLYNONIAL
N = DEGREE OF POLYNOMIAL DESIRED INS4
DATA = DATA MATRIX (M,2) WHERE M EQUALS NUMBER OF OBSERVA-
TIONS (FIRST COLUMN IS INDEPENDENT VARIABLE AND
SECOND COLUMN IS DEPENDENT VARIABLE)

```
this function calculates an n degree orthogonal polynomial
REGRESSION. OUTPUT INCLUDES BETA VECTOR AND PARTITIONING OF
the total sum of squares into single degree of freedom sums
of SQuares assuciated with each coefficient.
DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
EXAMPLE FOR POLYR
SOURCE: KENDALL AND STUART, THE ADVANCED THEORY OF STATISTICS,
 VOL. 2, PAGE 360
\begin{tabular}{rl}
LET X EQUAL & \\
1820 & 10.16 \\
1830 & 12 \\
1840 & 13.9 \\
1850 & 15.91 \\
1860 & 17.93 \\
1870 & 20.07 \\
1880 & 22.71 \\
1890 & 25.97 \\
1900 & 29 \\
1910 & 32.53 \\
1920 & 36.07 \\
1930 & 37.89 \\
1940 & 39.9
\end{tabular}

WE WOULD LIKE A FOURTi DEGREE POLYNOMIAL FIT...
TO EXECUTE WE WILL TYPE:
4 POLYR X
```

THE BETA VECTOR EQUALS:
24.1569 2.60698 0.060984 -0.0116348 -0.00325013

```
ANOVA TABLE
SUM OF SQUARES BETA[1] = 1236.93 WITH 1 DEGREE OF FREEDON.
SUM OF SQUARES BETA[2] \(=7.44554\) WITH 1 DEGREE OF FREEDOM.
SUM OF SQUARES BETA[3] \(=2.78751\) WITH 1 DEGREE OF FREEDOM.
SUM OF SQUARES BETA[4] = 2.11306 WITH 1 DEGREE OF FREEDOM.
SUM OF SQUARES RESIDUAL \(=0.427002\) WITH 8 DEGREES OF FREEDOM.
SUM OF SQUARES TOTAL = 1249.71 WITH 12 DEGREES OF FREEDOM.
)COPY 1130 EQUALLINES
SHOWME
FUNCTION: LINES M WORKSPACE: EQUALLINES \(M=\) NUMBER OF LINES
this function performs the necessary calculatioiis to test the FOLLOWIIG THREE HYPOTHESES:
1) \(\operatorname{BETA}[1]=B E T A[2]=000=B E T A\)
2) \(A L P H A[1]=A L P H A[2]=000=A L P H A\)
3) HYPOTHESES 1 AND 2 SIUULTANEOUSLY
output INCLUDES the bita[I'S], the COMiOO beta, the alpea[I'S], AND THE COMNON ALPHA.

DU YOU WISH TO SEEE AN 'EXAMPLE' OR 'NO' EKAMPLE? EXAMPLE

OUR DATA S IS:
S1 EQUALS:
\begin{tabular}{rrrrrrr}
3.5 & 4.1 & 4.4 & 5 & 5.5 & 6.1 & 6.6 \\
24 & 32 & 37 & 40 & 43 & 51 & 62
\end{tabular}

S 2 EQUALS:
3.23 .9

2233
4.9

39
6.1

44

43
51

62

S3 EQUALS:
\begin{tabular}{rrrrrrrr}
3 & 4 & 5 & 6 & 6.5 & 7 & 7.3 & 7.4 \\
32 & 36 & 47 & 49 & 55 & 59 & 64 & 64
\end{tabular}

WHERE S1, S2, S3 CORRESPOND TO THE INDEPENDEITT AND DEPENDEHT DATA FOR LINE 1, 2, AIND 3 RESPEC"'IVELY

WE WILL NOW EXECUTE THE PROGEXAM. AS INGUIRIES ARE MADE TYPE
IN THE APPROPRIATE RESUPONSE...
FOR INSTANCE, WHEN DATA SET 1 IA AU゙KED FOR SIMPLY TYPE IN THE
APPROPRIATE VARIABLE NAILE, S1.
nuw to execute the prograia we type:
LINES 3
ENTER DATA SET NUIGBER 1...
\(\sqcup\) :
S1
EMTER DATA SET NUABER 2...
[]:
S 2
ENTER DATA SET NUMBER 3...
[:
33
AlUOVA TABLE
SULA OF SQUARES COKMOI SLOPE \(=2598.65\) WITI 1 DEGREE OF FREEDOA. \(\because \cup M G\) OF SQUARES EQUAL SLOPEU゙ HYPOTUEUIS = 96.9385

WI'SH 2 DEGREES OF FRLEDUM.
SUM OF SQUARES EQUAL INTERCEPTA'A HYPOZUESS \(=441.516\) WITH 2 DEGREEN OF FREEDOM.

UUM OF SQUARES EGUAL SLOPES AND INTERCEPTO HYPOTHESIO \(=291.937\) WITH 4 DEGGEES OF FREEDOM.
JUM OF SQUARES ERRUR = 96.6E41 WITH 15 DEGRERS UF FREEDOM. SUM OF SQUARES TOTAL \(=45579\)

BETA[I'S] EQUAL: 10.96856 .773527 .33442
COMMON BETA EQUALS: 7.89619
ALPHA[I'S] EQUAL: \({ }^{-13.8701} 3.85318\) 8.39375
COMMON ALPHA EQUALS: 1.81413
```

)COPY 1130 ONEWAYCHISQ
SHOWME'

```
```

FUNCTION: P CHISQ1 X WORKSPACE: ONEWAYCHISQ
P = VECTOR OF CELL PROBABILIIIES (IF P IS ANY SCALAR THE
TEST ASSUMES EQUAL CELL PROBABILITIES)
X = VECTOR OF CELL FREQUENCIES

```
THE FUNCTION COMPUTES A CHI-SQUARE GOODNESS-OF-FIT STATISTIC.
DO YOU WISH TU SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
 EXAMPLE FOR CHISQ1
SOURCE: STEEL AND TORRIE, PRINCIPLES ANU PROCEDURE'S OF
 STATISTICS, PAGE 365.
THE CELL OBSERVATIONS:
\(0 \leftarrow 1178 \quad 291 \quad 273156\)
THE CELL PROBABILITIES:
\(P \leftarrow 0.56250 .18750 .18750 .0625\)
to execute the program we type:
P CHISQ1 O
CHI SQUARE EQUALS 54.3129 WITH 3 DEGREES OF FREEDOM.
If YOU WISH TO SE'E THE EXPECTED CELL FREQUENCIĖ TYPE:
\(E\)
\(1067.63 \quad 355.875 \quad 355.875 \quad 118.625\)
)COPY 1130 I'WOWAYCHISQ
SHOWME
```

FUNCTION: CHISQ2 X WORKSPACE: TWOWAYCHISQ
X = (M,N) OBSERVATION MATRIX
M = NUMBER OF GROUPS IN FIRST CLASSIFICATION
N = NUMBER OF GROUPS IN CROSS CLASSIFICA'IION
this function computes a chi-square statistic to test for ASSOCIATION BETWEEN THE TWO CLASSIFICATIONS.

```
```

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?

```
DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
 EXAMPLE FOR CHISQ2
 SOURCE: ANDERSON AND BANCROFT', STATISTICAL THEORY Iiv
 RESEARCH, PAGE 138.
OBSERVATION MATRIX, X, EQUALS:
 1178 273
 291 156
TO execute the program WE type:
CHISQ2 X
CHI SQUARE EQUALS 50.5381 WI'H 1 DEGREES OF FREEDOM.
IF YOU WISH TO SEE THE EXPECTED CELL FREQUENCIES TYPE:
E
1123.03 327.966
345.966 101.034
```

)COPY 1130 THREEWAYCHI SHOWME

```
FUNCTION: K CHISQ3 X WORKSPACE: THREEWAYCHI
 K = NUMBER OF GROUPS IN THIRD CLASSIFICATION (LAYERS)
 X = (M,N) OBSERVATION MATRIX
 M = K TIMES R
 R = NUMBER OF GROUPS IN SECOND CLASSIFICATION(ROWS)
 N = NUMBER OF GROUPS IN FIRST CLASSIFICATION(COLUMNS)
thIS FUNCTION DOES THE NECESSARY CALCULATIONS FOR TESTING FOR
ASSOCIATION BETWEEN THE TWO WAY CLASSIFICATIONS AND ASSOCIATION
BETWEEN THE THREE WAY CLASSIFICATIONS.
DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EKAMPLE?
EXAMPLE
 EXAMPLE FOR CHISQ3
SOURCE: KENDALL AND STUART, THE ADVANCED THEORY OF STATISTICS
 VOL. 2. PAGE 581.
THE OBSERVATION MATRIX, X, FOR THE 2×2×2 CONTINGENCY TABLE
EQUALS:
 427 509
 494 462
 460 440
 475467
to execute the program we type:
 2 CHISQ3 X
CHI SQUARE TABLE
R\timesC = 1.61742 WITH 1 DEGREES OF FREEDOM
R\timesL = 0.139649 WITH 1 DEGREES OF FREEDOM
C\timesL = 2.80715 WITH 1 DEGREES OF FREEDOM
R\timesC\timesL = 4.23963 WITH 1 DEGREES OF FREEDOM
```

```
FUNCTION: ANACOV K WORKSPACE: COVARIANCE
 K = NUMBER OF TREATMENT LEVELS
```

FUNCTION: DUNCOV
WORKSPACE: COVARIANCE

```
'ANACOV' DOES THE NECESSARY CALCULATIONS FOR AN ANALYSIS OF
COVARIANCE WITH SINGLE COVARIATE AND SINGLE CLASSIFICATION.
THE DATA IS ENTERED TWO ROWS AT A TIME WHERE THE FIRST ROW
IS ALWAYS THE INDEPENDENT OBSERVATIONS AND THE SECOND ROW IS
THE DEPENDENT. THERE ARE K OF THESE DATA SETS WHICH ARE ENTERED.
THE SAMPLE SIZES NEED NOT BE EQUAL.
'DUNCOV' IS USED AS AN OPTION BY 'ANACOV' TO COMPUTE A
DUNCAN'S MULTIPLE RANGE TEST ON THE ADJUS'TED MEANS. THE USER
MUST INPUT THE LEAST SIGNIFICANT STUDENTIZED RANGE FROM THE
AVAILABLE TABLES.
```

```
DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
```

```
EXAMPLE FOR ANACOV AND DUNCOV
SOURCE: FRYER, CONCEPTS AND METHODS OF EXPERIMENTAL STATIS-
 TICS, PAGE 402.
```

OUR DATA, S IS:

| 70 | 72 | 75 | 76 | 80 | 81 | 85 | 88 | 91 | 92 | 98 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 72 | 76 | 72 | 76 | 82 | 76 | 80 | 78 | 86 | 86 | 86 |
| 90 | 93 | 95 | 96 | 97 | 102 | 105 | 108 | 110 | 115 | 117 |
| 70 | 73 | 68 | 76 | 78 | 72 | 76 | 86 | 80 | 82 | 85 |
| 115 | 110 | 118 | 122 | 125 | 125 | 130 | 133 | 135 | 119 | 140 |
| 76 | 73 | 72 | 82 | 78 | 87 | 85 | 88 | 82 | 81 | 88 |
| 70 | 92 |  |  |  |  |  |  |  |  |  |

THE MATRIX, S, HAS AS ITS FIRST TWO ROWS THE INDEPENDENT AND DEPENDENT DATA FOR TREATMENT LEVEL 1.ROWS 3, 4 AND 5,6 ARE SET UP THE SAME WAY FOR LEVELS 2 AND 3.
WHEN THE PROGRAM ASKS FOR DATA SET 1, ALL THAT IS NECESSARY TO
ENTER IS THE VARIABLE NAME FOR THOSE TWO ROWS, S[1 2; ]. FOR
DATA SET 2, ENTER S[3 4; ], ETC.
IF THE DATA SETS WERE OF UNEQUAL SIZE A DIFFERENT VARIABLE
NAME WOULD HAVE TO BE GIVEN TO EACH TWO ROW DATA SET MATRIX.
WE WILL USE THE OPTION OF DOING THE DUIVCAN'S MULTIPLE
RANGE TEST AND WILL ENTER 2.893 .043 .12 FOR THE LEAST
SIGNIFICANT STUDENTIZED RANGE.

NOW TO EXECUTE THE PROGRAM WE TYPE:

ANACOV 3
ENTER X-Y DATA SET FOR TREATMENT 1
[]:

$$
S\left[\begin{array}{ll}
1 & 2 ;
\end{array}\right]
$$

```
ENTER X-Y DATA SET FOR TREATMENT }
\:
 S[3 4;]
ENTER X-Y DATA SET FOR TREATMENT 3
[]:
 S[5 6;]
ANALYSIS OF COVARIANCE
SOURCE
 TREATMENT SUM OF SQUARES -- D.F. = 2
 FOR X : 10591.3
 FOR XY : 528
 FOR Y : }9
 ERROR SUM OF SQUARES -- D.F. = зз
 FOR X : 3252.25
 FOR XY : 1822
 FOR Y : 1341.94
 DEVIATION FROM REGRESSION 321.202 D.F. = 32
 TOTAL SUM OF SQUARES -- D.F. = 35
 FOR X : 13843.6
 FOR XY : 2350
 FOR Y : 1437.94
 DEVIATION FROM REGRESSIOB 1039.02 D.F. = 34
 ADJUSTED TREATMENT MEAN SQUARE 358.907 D.F. = 2
F(2.32) = 35.7563
DO YOU wISH tO COMPUTE DUNCAN'S mULTIPLE RANGE 'TEST' ON ADJUSTED MEANS OR 'NO' TEST?
TEST
enter appropriate values for least significant studentized range:
[]:
\[
2.89 \quad 3.04 \quad 3.12
\]
ADJUSTED MEANS:
\begin{tabular}{lll}
91.578 & 78.3735 & 70.0485 \\
1 & 2 & 3
\end{tabular}
91.578 IS SIGNIFICANTLY DIFFERENT FROM 78.3735 70.0485
78.3735 IS SIGNIFICANTLY DIFFERENT FROM 70.0485
```

)COPY 1130 UNEQUALSIZE:ANOVA2
SHOWME
FUNCTION:M UNNOVA IN
WORKSPACE: UNEQUALSIZE:ANOVA 2
M = NUMBER OF ROW TREATMENT LEVELS
$N=$ NUMBER OF COLUMi treatment levels
the function does the necessary calculations for a two-way ANALYSIS OF VARIANCE WHEN THERE ARE UNEQUAL CELL SIZES.
THE DATA FROM EACH CELL WILL BE ASKED FOR ACCORDIIG TO THE SUBSCRIPT OF THAT CELL.

DO YOU WISH TO SEE AN 'EXAMPLE' OR 'NO' EXAMPLE?
EXAMPLE

## EXAMPLE FOR UNNOVA

SOURCE: BANCROFT, TOPICS IN INTERMEDIATE STA'IISTICAL METHODS, VOL. 1, PAGE 20 AND 24.

OUR DATA IS: COLUMNS

|  |  | $A$ | $B_{1,40,18}$ |
| :--- | :--- | :--- | :--- |
|  | $A$ | 22,25 | R $_{1}, 40,18$ |
| $B$ | 41,41 | 23,13 |  |
| ROWS | $C$ | $29,20,37$ | $\ldots$ |
|  | $D$ | 49,50 | 61 |
|  | $E$ | 55 | $\ldots$ |

THE DATA WILL BE ENTERED INTO THE PROGRAG BY CELL心'. FOR mHE 3:1 CELL, FOR INSTANCE, ENTER 292037 . FOR THE EMPTY CELLS ENTER THE WORD SPACE.

NOW to execute the program we type:
5 UNNOVA 2
EWTER DATA FROM CELL[1;1]...
—:
2225
ENTER DATA FROM CELL[1;2]...
—:
-1 4018
ENTER DATA FROM CELL[2;1]...
—:
4141
ENTER DATA FROM CELL[2;2]...
—:
2313
ENTER DATA FROM CELL[3;1]...
—:
292037
ENTER DATA FROM CELL[3;2]...
口:
SPACE
ENTER DATA FROM CELL[4;1]...
ㅁ:

4950
ENTER DATA FROA CELL[4;2]... ]:

61
ENTER DATA FROM CELL[5;1]... $\square$ :

55
ENTER DATA FROM CELL[5;2]...
口:
SPACE
anova table
SUM OF SQUARES ROWS (ADJUSTED FOR COLUMNS) $=2249.05$ WITH 4 DEGREES OF FREEDOM.
SUM OF SQUARES COLUMNS (ADJUSTED FOR ROWS) = 149.957 WITH 1 DEGREES OF FREEDOM.
SUM OF SQUARES INTERACTION $=493.5$ WITH 2 DEGREES OF FREEDOM.
SUM OF SQUARES ERROR = 1039.66 WITH 4 DEGREES OF FREEDOM.
SUA OF SQUARES TOTAL $=4255.43$ WITH 15 DEGREES OF FREEDOM.
)COPY 1130 BALINCOMPLT:BLOCK
SHOWME

```
FUNCTION: CODE BIB DATA WORKSPACE: INCOMPLETE:BLOCK
 CODE = A SCALAR WHICH WILL BE USED IN THE DATA MATRIX TO
 INDICATE A MISSING ELEMENT IN THE INCOMPLETE DESIGN
 DATA = (B\timesT) DATA MATRIX
 B = NUMBER OF BLOCKS
 T = NUMBER OF TREATMENT LEVELS
 THIS FUNCTION DOES THE NECESSARY CALCULATIONS FOR AN ANALYSIS
OF VARIANCE WHEN THE BALANCED INCOMPLETE BLOCKS DESIGN IS
USED TO COMPARE T TREATMENTS.
DO YOU WISH TO SEE AIV 'EXAMPLE' OR 'NO' EXAMPLE'?
EXAMPLE
 EXAMPLE FOR BIB
 SOURCE: HICKS, FUNDAMENTAL CONCEPTS IN THE DESIGN OF
 EXPERIMENTS, PAGE 57.
OUR DATA IS:
\begin{tabular}{crrrr}
\(B L O C K S\) & \(A\) & \(B\) & \(C\) & \(D\) \\
1 & 2 & - & 20 & 7 \\
2 & - & 32 & 14 & 3 \\
3 & 4 & 13 & 31 & - \\
4 & 0 & 23 & - & 11
\end{tabular}
SINCE 99 IS NOT A LEGITIMATE OBSERVATION LET'S USE IT TO INDICATE THE MISSING VALUES. THE DATA MATRIX, M, NOW EQUALS
\begin{tabular}{rrrr}
2 & 99 & 20 & 7 \\
99 & 32 & 14 & 3 \\
4 & 13 & 31 & 99 \\
0 & 23 & 99 & 11
\end{tabular}
IN OUR CASE:
NUMBER OF TREATMENT LEVELS IS 4
NUMBER OF BLOCKS IS 4
BLOCK SIZE IS 3
NUMBER OF TIMES EACH TREATME'NT APPEARS IS 3
TO EXECUTE THE PROGRAM WE TYPE:
99 BIB M
e nter number of treatment levels:
—:
4
ENTER NUMBER OF BLOCKS:
—:
4
ENTER BLOCK SIZE:
ㅁ:
```

enter number of tiges each treatment appears:
■:
3
ANOVA TABLE
SUM OF SQUARES BLOCKS $=100.665$ WITH 3 DEGREES OF FREEDOM.
SUM OF SQUARES TREATMENTS (ADJUSTED) = 880.8зз WI'H 3 DEGREES OF FREEDOM.
SUM OF SQUARES ERROR $=363.166$ WITH 5 DEGREES OF FREEDOM. SUM OF SQUARES TOTAL $=1344.66$ WITH 11 DEGREES OF FREEDOM.
)COPY 1130 GENERALREGR SHOWME

FUNCTION: X GRST Y WORKSPACE: GENERALREGR
$X=$ MATRIX OF THE LE'VELS OF THE INDEPENDENT VARIABLES $Y=$ OBSERVATION VECTOR
this function computes rite beta vector, hyportesis sum of SQUARES, AND TOTAL UNCORRECTED (Y'Y) SUM OF SQUARES.

DO YOU WISH TO SEE AN 'EKAMPLE' OR 'NO' EXAMPLE?
EXAMPLE
LET US CONSIDER TWO EXAMPLES. THE FIRST IS FROM THE TWO-WAY
ANALYSIS OF VARIANCE 'SHOWME'. THE SECOND IS FROM THE MULTIPLE REGRESSION 'SHOWME'. WE WILL OB'IAIN SIMILAR results using the general regressiol significance test.
an orthogunal x hatrix for the two-way anova, s, equals:

| 1 | 0.5 | 0.5 | 0.333333 |
| :--- | ---: | ---: | ---: |
| 1 | 0.5 | 0.5 | 0.333333 |
| 1 | 0.5 | 0.5 | -0.333333 |
| 1 | 0.5 | 0 | -0.666667 |
| 1 | 0.5 | -0 | -0.666667 |
| 1 | 0.5 | -0.5 | 0.333333 |
| 1 | 0.5 | -0.5 | 0.333333 |
| 1 | 0.5 | 0.5 | 0.333333 |
| 1 | -0.5 | 0.5 | 0.333333 |
| 1 | -0.5 | 0.5 | 0.33333 |
| 1 | -0.5 | 0.5 | -0.333333 |
| 1 | -0.5 | 0 | -0.666667 |
| 1 | -0.5 | -0 | -0.666667 |
| 1 | -0.5 | -0.5 | 0.333333 |
| 1 | -0.5 | -0.5 | 0.333333 |
| 1 | -0.5 | 0.5 | 0.333333 |

The observation Vector, y, equals:
$\begin{array}{llllllllllllllllll}4 & 7 & 5 & 2 & 3 & 2 & 5 & 6 & 4 & 9 & 8 & 8 & 8 & 7 & 5 & 10 & 8 & 7\end{array}$
It IS helpful in the forming of the reduced i matrix TO KNOW OF THE REDUCTION SYMBOL./ . THIS OPERATOR IS USE'D TO ELIMINATE SPECIFIED COLUMNS OF A MATRIX. TO ELIMINATE THE FIRST COLUMN OF A FOUR COLUMN MATRIX, M, WE TYPE: $0111 / m$. to eliminate the last two Columns we type: $1100 / M$. IN EACH CASE A NEW LATRIX IS FORMED FROM M DELETING THE SPECIFIE'D COLUMNS AND KEEPING THE REST.

AS you can see from the design matrix we are assuming no INTERACTION.
WE execute 'grst' in the following ways:
$S$ GRST $Y$

BETA: $6{ }^{-}{ }^{-} 3.555560 .166667 \quad 2.25$
HYPOTHESIS SUM OF SQUARES: 725.222
TOTAL SUM OF SQUARES: 744
(1 0 0 0/S) GRST Y
BETA: 6
HYPOTHESIS SUM OF SQUARES: 648
TOTAL SUM OF SQUARES: 744
( $01000 / S$ ) GRST $Y$
BETA : - 3.55556
HYPOTHESIS SUM OF SQUARES: 56.8889
TOTAL SUM OF SQUARES: 744
( $00110 / S$ ) GRST Y
BETA: 0.166667
HYPOTHESIS SUM OF SQUARES: 0.08३з३३з
TOTAL SUM OF SQUARES: 744
( 0 0 0 1/S) GRST Y
BETA: 2.24999
HYPOTHESIS SUM OF SQUARES: 20.2498
TOTAL SUM OF SQUARES: 744

THUS THE NECESSARY INFORMATION IS AVAILABLE AND IT IS LEFT to the user to calculate the final answers.
THE $X$ GATRIX FOR THE GULTIPLE REGRESSION, D, HAS BEEN CORRECTED FOR THE MEAN AND EQUALS:

| -0.228666 | 0.642333 | 1.01633 |
| :--- | :---: | :---: |
| 0.941333 | -0.542334 | -0.206334 |
| 0.0613337 | -0.547666 | -0.463666 |
| 0.491334 | -0.577666 | -0.233666 |
| 0.241334 | -0.292334 | -1.48367 |
| 0.261334 | 0.0476664 | -0.89367 |
| 0.461334 | -0.782334 | -0.843666 |
| 0.501334 | -0.417666 | 1.42367 |
| -0.358666 | -0.417666 | 0.786334 |
| -0.178666 | 0.167666 | 1.50633 |
| -0.418666 | -0.0123335 | -0.826334 |
| -0.498666 | 0.167666 | -0.0336657 |
| -1.05867 | 0.0423335 | 0.163666 |
| -0.608666 | 0.0923336 | 0.936334 |
| -0.158666 | 0.112334 | 1.20633 |
| -0.248666 | -0.162334 | 1.94633 |
| -0.828666 | -0.627667 | -0.143666 |
| 0.841334 | -0.187667 | 0.656334 |
| 1.33133 | -0.297666 | -0.506334 |
| 0.661334 | 0.357666 | 0.203666 |
| 0.841334 | -0.982334 | -1.51633 |
| -0.348666 | -0.557666 | -1.27367 |
| -0.618666 | -0.497666 | -1.14367 |
| -0.108666 | -0.607666 | -1.57367 |
| -0.488666 | 0.567666 | 0.673666 |


| 1 | -0.668666 | -0.607666 | -1.01367 |
| :---: | ---: | :---: | :---: |
| 1 | -0.461334 | 1.46233 | -1.84633 |
| 1 | -0.148666 | 0.672333 | 0.373666 |
| 1 | -0.211334 | -0.557666 | 0.0563335 |
| 1 | 0.338666 | 1.41233 | -0.0736656 |
| I＇HE OBSERVATION VECTOR | O，EQUALS： |  |  |


| 0.34 | 0.11 | 0.38 | 0.68 | 0.18 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0.08 | 0.11 | 1.53 | 0.77 |
| 1.17 | 1.01 | 0.89 | 1.4 | 1.05 |
| 1.15 | 1.49 | 0.51 | 0.18 | 0.34 |
| 0.36 | 0.89 | 0.91 | 0.92 | 1.35 |
| 1.33 | 0.23 | 0.26 | 0.73 | 0.23 |

TO TEST THE SAME HYPOTHESES WE DID IN THE＇MULTIREGR＇＇SHOWME＇ WE EXECUTE＇GRST＇IN THE FOLLOWING WAYS：

D GRST Y
BETA：0．686－ $0.531455{ }^{-} 0.439636 \quad 0.208975$
HYPOTHESIS SUM OF SQUARES： 19.6226
TOTAL SUM OF SQUARES： 20.8074
（1 0 0 0／D）GRST Y
BETA： 0.686
HYPOTHESIS S゙UM OF SQUARES： 14.1179
TOTAL SUM OF SQUARES： 20.8074
（ 0 1 $1 \_1 / D$ ）GRST $\underline{Y}$
BETA：－ $0.531455 \quad$－ $0.439635 \quad 0.208974$
HYPOTHESIS SUM OF ડ゙甘UARES：5．50471
TOTAL SUM OF SQUAKES： 20.8074
（ 0 1 1 ＿0／D） $\operatorname{GRS} S^{\prime} \underline{Y}$
BETA：－${ }^{-0.528549 ~-0.289964 ~}$
HYPO＇THESIS SUM OF SQUARES： 4.29984
TOTAL SUM OF SQUARES： 20.8074
（ $0100 / D$（ 1 ORST $Y$
BETA：－ 0.591613
HYPOTHESIS SUM OF SQUARES： 3.446
TOTAL SUM OF SQUARES： 20.8074

ALL THE INFORMAIION IS NOW AVAILABLE AND AGAIW IT IS LEF＇T TO THE USER TO OBTAIN THE FINAL ANSWERS．
)COPY 1130 DATAINPUT SHOWME

FUNCTION:D1 INPUT D2 WORKSPACE:DATAIIPUT
D1 = NUMBER OF ROWS
D2 = NUMBER OF COLUMNS
THIS FUNCTION AIDS IN INPUTING DATA FOR LATER CALCULATIONS. the function will continue asking for data uiril the array DEFINED BY D1 AND D2 IS SATISFIED.
for an example consuli the user's manual under 'data input'.

## BIBLIOGRAPHY

[1] Bancroft, T.A. (1968) Topics in Intermediate Statistical Methods, Volume One, The Iowa State University Press, Ames, Iowa.
[2] Berry, P. (1969) Student Text APL/1130 Primer, International Business Machines Corporation, New York.
[3] Draper, N.R. and Smith, H. (1968) Applied Regression Analysis, John Wiley and Sons, Inc., New York.
[4] Fryer, H.C. (1966) Concepts and Methods of Experimental Statistics, Allyn and Bacon, Inc., Boston, Massachusetts.
[5] Kendall, M.G. and Stuart, A. (1961) The Advanced Theory of Statistics, Volume 2, Hafner Publishing Company, New York.
[6] Graybill, F.A. (1961) An Introduction to Linear Statistical Models, Volume I, McGraw-Hill Book Company, Inc., New York.
[7] Hicks, C.R. (1964) Fundamental Concepts in the Design of Experiments, Holt, Rinehart and Winston, New York.
[8] International Business Machines Corporation. IBM 1130 Operating Procedures, Form A26-5717-0, 1968
[9] Kramer, C.Y. (1956) "Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications", Biometrics, Volume 12, pp. 307-310.
[10] Li, C.C. (1964) Introduction to Experimental Statistics, McGraw-Hill Book Company, New York.
[11] Sanders, D.T. (Editor) (1970) "The Story of APL", Computing Report in Science and Engineering, Volume VI, No. 2, pp. 14-18.
[12] Steel R.G. and Torrie, J.H. (1960) Principles and Procedures of Statistics, McGraw-Hill Book Company, Inc., New York.

APPENDIX

```
)COPY 1130 DESCRIPTION
 \nablaLOOK[口]|
 \nablaLOOK X;M;V;RANGE;T;MEDIAN;H;SD;LARGE;SMALL;MM
[1] D
[2] }M\leftarrow(+/X)\div\rho
[3] V\leftarrow(+/(X-M)*2)\div(\rhoX)-1
[4] RANGE\leftarrow(「/X)-L/X
[5] ORD\leftarrowФX[DSORT X]
[6] }->(0=T\leftarrow2|\rhoX)/TES'
[7] MEDIAN\leftarrowORD[0.5+H\leftarrow0.5\times\rhoORD]
[8] }->\mathrm{ SDD
[9] TESI:MEDIAN\leftarrow(ORD[H+1]+ORD[H\leftarrow0.5\times\rhoORD])\div2
[10] SDD:SD\leftarrowV*0.5
[11] LARGE\leftarrow「/X
[112] SMALL\leftarrowL/X
[13] 'MEAN = ';M
[14] 'MEDIAN = ';MEDIAN
[15] M\leftarrow+/X\circ. = X\leftarrowORD
[16] }->((\Gamma/M)\leq1)/\sumU
[17] 'MODE=';((\rho(MM/X))\rho(((Г/M)-1)\rho0),1)/((MM&(\Gamma/M)=M)/X)
[18] PUT:'VARIANCE= ';V
[19] 'STANDARD DEVIATION = ';SD
[20] 'LARGEST VALUE = ';LARGE
[21] 'SMALLEST VALUE = ';SMALL
[22] 'RAWGE = ';}RANG
[23] SPACE
[24] SPACE
```

```
)COPY 1130 EQUALVAR:TTEST
```

        จTTEST1[口]ס
    ```
 \nabla X1 TTEST1 X2;XBAR;SPACE;T;SP;ANS
[1] NUM+(「/XBAR)-L/XBAR+2\rho(IGEAN X1),MEAN X2
[2] SP+((((\rhoX1)-1)\timesVAR X1)+(((\rhoX2)-1)\timesVAR X2))\div((\rhoX1)+(\rhoX
2)-2)
[3] DEN+(SP*0.5)*((1\div\rhoX1)+(1\div\rhoX2))*0.5
[4] []+ŚPACE*iO
[5] 'T = ';NUM+DEN
[6] 'DF = ';((\rhoX1)+(\rhoX2)-2)
[7] SPACE
[8] 'DO YOU WANT THE CONFIDENCE ''INTERVAL'' FOR MU1-MU2
OR ''NO'' INTERVAL?'
[9] ANS*\square
[10] }->((2=\rhoANS)\vee3=\rhoANS)/OU
[11] 'ENTER T-VALUE:'
[12] T+[]
[13] NUM-DEN\timesT;' <MU1-HU2< ';NUM +DEN\timesT
[14] OU'T:SPACE
[15] SPACE
 \nabla
```

)COPY 1130 UNEQUALVAR:TNEST'
จTITEST2[0]
$\nabla$ X1 TTEST2 X2;XBAR;M;N;SPACE;ANS; T
[1] $N U M+(\Gamma / X B A R)-L / X B A R+2 \rho(M E A N \quad X 1), M E A N \quad X 2$
[2] $D E N+((M \leftarrow(V A R \quad X 1) \div \rho X 1)+(N \leftarrow(V A R \quad X 2) \div \rho X 2)) * 0.5$
[3] $\square+S P A C E+10$
[4] $T T=1 ; N U M \div D E N$
[5] 'I'HE APPROXIMATE DE'GREES OF FREEDOM EQUAL '; 「( $(M+N) * 2$
$) \div((M * 2) \div(\rho \times 1)-1)+((I) * 2)) \div(\rho X 2)-1$
[6] SPACE
[7] 'DO YOU WAN'T THE CONFIDENCE 'IINTERVAL'' FOR MU1-MU2 OR ''NO'' INTERVAL?'
[8] $A N S+\square$
[9] $\rightarrow((2=\rho A N S) \vee 3=\rho A N S) / U \cup T$
[10] 'ENTER T-VALUE:'
[11] $T \leqslant \square$
[12] NUM-T×DEN:' <MU1-MU2< '; NUM+'T×DEN
[13] OU'T:SPACE
[14] SPACE
$\nabla$
)COPY 1130 PAIREDTTEST
จPTTEST[D]
$\nabla \times 1$ PTTEST X2;D;SPACE;ANS;T
[1] $\rightarrow(0 x(\rho X 1)-\rho X 2) / T E S T 2$
[2] $N U M+M E A N \quad D+X 1-X 2$
[3] $D E N+\left(\left(\begin{array}{ll}V A R & D\end{array}\right) \div \rho X 1\right) \star 0.5$
[4] $]+S P A C E+10$
[5] $T T=1 ; N U M \div D E N$
[6] $\quad D F=1 ;(\rho X 1)-1$
[7] SPACE
[8] 'DO YOU WANT THE CONFIDENCE 'IITERVAL'' FOR MU1-WU2
OR ''NO'' INTERVAL?'
[9] $A N S \leftarrow+\square$
[10] $\rightarrow((2=\rho A N S) v 3=\rho A N S) / O U T$
[11] 'ENTER T-VALUE:'
[12] $T+[$ ]
[13] $N U M-T \times D E N ; '<M U 1-M U 2<' ; N U M+T \times D E N$
[14] SPACE
[15] SPACE
[16] $\rightarrow 0$
[17] TEST2:'ERROR....W[1] $\neq N[2] '$
[18] OUT:SPACE
[19] SPACE
)COPY 1130 BARTLETT
จBARTLT[日]
$\nabla$ BARTLT;INDEX;V;INPUT;HOLD
[1] [] $+S P A C E \leftarrow 10$
[2] 'ENTER NUMBER OF CELLS:'
[3] $D A T A \leftarrow I N D E X \leftarrow V \leftarrow 10$
[4] INDEX 40
[5] $K+[]+P \leftarrow 0 \times I \leftarrow 1$
[6] AGAIN: $\rightarrow(P=1) / N O D A T$
[7] $I \leftarrow I+1$
[8] 'ENTER DATA FROM CELL ';I-1;':'
[9] INPUT+[]
[10] HOLD $\leftarrow$ DATA $\leftarrow$ DATA,INPUT
[11] INDEX - INDEX,คINPUT
[12] $\rightarrow$ PASS
[13] NODAT: $I+I+1$
[14] PASS:V $+V, V A R ~ D A T A[(+/ I N D E X[1 I-1])+ı I N D E X[I]]$
[15] $\rightarrow(I \neq K+1) / A G A I i j$
[16] $L N V \leftarrow Q$
[17] $D F+I N D E X[1+1(\rho I N D E X)-1]-1$
[18] $L N P L \leftarrow P L \leftarrow(+/ D F \times V) \div T D F \leftarrow+/ D F$
[19] $B \leftarrow((T D F \times L N P L)-(+/ D F \times L N V)) \div 1+((+/ \div D F)-\div T D F) \div 3 \times(K-1)$
[20] SPACE
[21] 'bartlett''S Statis'tic = ';B;' WITH ';K-1;' degrees o F FREEDOM.'
[22] SPACE
[23] 'DO YOU WISH TO TRY SQUARE ''ROOT'', ' LOG BASE E'', ''ARCSIN'' '
[24] 'TRANSFORMATION OR ''NO'' TRANSFORMATION?'
[25] ANS $+\square$
[26] $\rightarrow((4=\rho A N S) \vee 5=\rho A N S) / R O O T$
[27] $\rightarrow((6=\rho A N S) \vee 7=\rho A N S) / A R C$
[28] $\rightarrow((2=\rho A N S) \vee 3=\rho A N S) / O U T$
[29] DATA $\leftarrow H O L D+1$
[30] $\rightarrow$ SET
[31] ROOT:DATA $\leftarrow H O L D * 0.5$
[32] $\rightarrow$ SET
[33] ARC: $\rightarrow((+/((\rho H O L D) \rho 1) \leq \mid H O L D)=0) / 35$
[34] 'FOR ARCSIN $X$-- X MUST BE WITHIN RANGE ${ }^{-1<\chi<1 . . . ' ~}$
[35] $\rightarrow 22$
[36] DATA 4 ARCSIN HOLD
[37] $\rightarrow$ SET
[38] SET:INDEX[1] $\leftarrow 0 \times P \leftarrow I \leftarrow 1$
[39] $V+10$
[40] $\rightarrow$ AGAIN
[41] OUZ:SPACE
）COPY 1130 MULTIRANGE DDUNCAN［口］ס
$\nabla$ K DUNCAN MEANS；MSE；RP；RRP；NTU；NPN；TEST；UPACE；DIFVEC；R HO；SIGDIF；I
［1］ 10
［2］＇ENTER M．S．ERROR：＇
［3］MSE $4 \square$
［4］＇ENTER APPROPRIATE VALUES FOR LEAST SIGNIFICAWT S＇TUDE＇ NTIZED RANGE：＇
［5］$R P \leftarrow \square$
［6］$R R P \leftarrow R P \times M S E * 0.5$
［7］$N T N \leftarrow K \circ . \times K \leftarrow K[D S O R T$ MEANS］
［8］$N P N \leftarrow K \circ .+K$
［9］TESTヶ｜MEANS゚。－MEANS $\leftarrow M E A N S[K \leftarrow D S O R T$ MEANS］
［10］TESTヶTEST× $(2 \times N T N \div N P N) * 0.5$
［11］$[1 \leftarrow S P A C E \leftarrow D I F V E C \leftarrow 10$
［12］ $\mathrm{RHO} \leftarrow \mathrm{I} \leftarrow 0$
［13］$T \leftarrow(\rho T E S T)[1] \rho 1$
［14］UP：$\rightarrow\left(\left(\left(M+\left(\rho T E S I^{\prime}\right)[1]\right)+1\right)=I+I+1\right) / O N$
［15］$T[I] \leftarrow 0$
［16］DIFVEC $\leftarrow I F V E C, S I G D I F \leftarrow(T E S T[I ; I+1 M-I]>R R P[ו M-I]) /(T / M E$
ANS ）
［17］$\rightarrow(0=\rho S I G D I F) / O N$
［18］RHO $\leftarrow R H O, \rho S I G D I F$
［19］$\rightarrow U P$
［20］$O N: I \leftarrow 0$
［21］＇MEANS：＇；（2，M）pMEANS，K
［22］SPACE
［23］$\rightarrow((+/ R H O)=0) / N O D I F$
［24］OUT：$\rightarrow((\rho R H O)=I \leftarrow I+1) / 0$
［25］MEANS［I］；＇IS SIGNIFICANTLY DIFFERENT FROM＇；DIFVEC［（ $+/ R H O[1 I])+1 R H O[I+1]]$
［26］$\rightarrow$ OUT
［27］NODIF：＇NO SIGNIFICANTLY DIFFERENT MEANS．．．＇
［28］SPACE
［29］SPACE
)COPY 1130 UIVEWAYANOVA
จANOVA1[口] $\nabla$
$\nabla$ K ANOVA1 X;SLSIOT;SSTR;RHO;I;INPUT;N;ERROR;NUM;CC;SCC;TT
; AA
[1] $\rightarrow((\rho \rho X)>1) / D A T A I N$
[2] SSTO'I $\leftarrow S$ STR $\leftarrow R H O \leftarrow T T \leftarrow 10 \times I \leftarrow 0$
[3] PUT:'INPU' DATA FOR TREATIENT '; I↔I+1;'...'
[4] INPU2' 4
[5] SSTOT*SSTOT, + / IMPUT*2
[6] SSTR*SSTR, ( + +/INPUT $) \star 2)$
[7] $\mathrm{RHO} \leftarrow \mathrm{KHO}, \mathrm{DINPUT}$
[8] TT\&TT,+/IVPUT
[9] $\rightarrow(I<K) / P U I^{\prime}$
[10] $N \leftarrow+/ R H O$
[11] $A A \leftarrow(+/ T T) \star 2$
[12] SSTOT $\leftarrow+$ + SSTOT $)-A A \div N$
[13] SSTR↔(+/SSTR $\div R H O)-A A \div N$
[14] ERROR↔SSTOT-SSTR
[15] $\rightarrow$ ANOVA
[16] DATAIN:SSTOT $\leftarrow(+/(, X) * 2)-A \leftarrow((+/(, X)) \star 2) \div N \leftarrow K \times(\rho \AA)[1]$
[17] $\operatorname{SSTR} \leftarrow(+/(T T \leftarrow+\not+X) * 2) \div(\rho X)[1])-A$
[18] ERROR 18 SSTOT-SSTR
[19] $R H O \leftarrow K \rho(\rho K)[1]$
[20] ANOVA: 'ANOVA TABLE'
[21] 'SUM OF SQUARE'S TOTAL = ';SSTOT'' WIIH ';N-1;' DEGREES OF FREEDOM.'
[22] 'SUM OF SQUARES TREATMENTS $=$ ';SSTR;' WITH ' $; K-1 ; '$ DËGR EES OF FREEDOM.'
[23] 'SUM OF SQUARES ERROR = ' F ERROR;' WI'H ' $\quad \mathrm{N}-K$; ' DEGREES' OF FREEDOM.'
[24] 'DO YOU WISH TO RUN SINGLE DEGREE OF FREEDOM 'CONTRAS' S'' OR ''IVO'' CONTRASTS?'

[26] $\rightarrow((2=\rho A N S) \vee 3=\rho A N S) / 0$
[27] 'ENTER NUMBER OF CONTRASTS:'
[28] $I \leftarrow 0 \times N U M \leftarrow \square$
[29] $B A C K: I \leftarrow I+1$
[30] 'ENTER CUNTRAST COEFFICIENT SET NUMBER '; $1 ;$ '...'
[31] $C C \leftarrow \square$
[32] $S C C \leftarrow((+/ C C \times T T) * 2) \div+/ R H O \times C C * 2$
[33] 'SUM OF SQUARES FOR CONI'RAST '; $I ;^{\prime}=1 ; S C C$
[34] $\rightarrow(I \neq N U M) / B A C K$
$\nabla$
$\nabla$ ANOVA 2 X;SPACE;N; $\quad$; $I ; S U M S ; D A T A ; S S A ; G ; S S B ; S S C ; S S A B ; S S T O T$ ; ANS;C1; C2;CC;TT;KK
[1] U 4 SPACE $\leftarrow 10$
[2] 'ENTER WUMBER OF REPLICATIONS IN EACH CELL'
[3] $N \leftarrow$ [
[4] $J \leftarrow((\rho X)[1]) \div V$
[5] $I \leftarrow(\rho X)[2]$
[6] $S U M S \leftarrow Q(I, J) \rho+/(2 \rho(I \times J), N) \rho Q X$
[7] DATA $7, \Phi X$
[8] $S$ SA $\leftarrow((+/(+\not \subset$ SUMS $) * 2) \div(J \times N))-G \leftarrow((+/, S U M S) * 2) \div N \times I \times J$
[9] $S S B \leftarrow((+/(+/ S U N S) * 2) \div(I \times N))-G$
[10] $S S C \leftarrow(+/(, S U M S * 2) \div V)-G$
[11] $S S A B \leftarrow S S C-S S A+S S B$
[12] SSTOT $\leftarrow(+/(D A T A * 2))-G$
[13] SPACE
[14] 'ANOVA TABLE'
[15] 'SUM OF SQUARES TOTAL = ';SSZOT'; WITH '; $(I \times J \times N)-1 ; '$ DE
GREES OF FREEDUM'
[16] 'SUM OF SQUARES TREATIENT A $=$ '; SSA;' WI'H '; I-1;' DEGR EES OF FREEDOM'
[17] 'SUM OF SQUAKES TREATMENT B $=1 ; \operatorname{SSB} ;^{\prime}$ WITH ' ; J-1;' DEGK EES OF FREEDOM'
[18] 'SUM OF SQUARE'S' IWTERACYION = ';SSAB;'WITH '; (I-1)×(J-
1):' DEGREES OF FREEDOM'
[19] 'SUM OF SQUARES ERROR = ';SSTOT-SSC;' WITH '; $(I \times J) \times(N-1$ );' DEGREES OF FREEDOM'
[20] CONT:SPACE
[21] 'DO YOU WISH TO DO CONTRASTS ON ' 'COLUMNS'',' 'ROWS'', ' 'INTERACTION'' '
[22] 'OR ' 'NO'' CONTRASTS?'
[23] ANS $\leftarrow \square$
[24] $\rightarrow((7=\rho A N S) \vee 8=\rho A N S) / C O L U M N$
[25] $\rightarrow((2=\rho A N S) \vee 3=\rho A N S) / 0$
[26] $\rightarrow((4=\rho A N S) \vee 5=\rho A N S) / R O W$
[27] 'ENTER CONTRAST COEFFICIENTS FOR TREATMENT A'
[28] C1 4
[29] 'ENTER COWTRASI' COEFFICIENTS FOR TREATMEWT B'
[30] C24 [
[31] $C C \leftarrow, Q C 1 \circ . \times C 2$
[32] $T T \leftarrow(, S U M S)+0 \times K \tilde{K} \leftarrow V$
[33] $\rightarrow$ OUTPUT

[35] $C C \leftarrow[$
[36] TNヶ+tSUMS
[37] $K K \leftarrow J \times N$
[38] $\rightarrow$ OU'PUT
[39] ROW: 'EWTER CONTRAST COEFFICIEITS FOR TREATMENT B'

```
[40] CC+[]
[41] TT++/SUMS
[42] KK<I\timesN
[43] OU'TPU'T:'SUM OF SQUARE'S CONTRAST = ';((+/CC\timesTT)*2)*(KK\times+
/CC*2)
[44] }\mp@subsup{|}{\nabla}{->CONT
```


## )COPY 1130 REGRESSION $\nabla R E G R[[]] \nabla$

$\nabla$ Х REGR $Y ; S X X ; S Y Y ; S X Y ; I N T ; B E \Gamma A ; A N S ; T ; B E \Gamma ; M S E ; P Y ; R E S ; A C$ HE; O'n ${ }_{4}^{\prime} \Gamma$
[1] $S X X \leftarrow+/(X-M E A N \quad X) * 2$
[2] $S Y Y \leftarrow+/(Y-M E A N \quad Y) * 2$
[3] $S X Y \leftarrow+/(X-M E A N \quad X) \times(Y-M E A N \quad Y)$
[4] INI $\quad$ MEAN $Y$
[5] $B E T A \leftarrow S K Y \div S X X$
[6] 10
[7] 'REGRESSIOIV EQUATIOW: $\quad Y={ }^{\prime} ; I N T ;^{\prime}+{ }^{\prime} ; B E T A ;{ }^{\prime}(X-1 ; M E A N \quad X$;
[8] 'CORREXLATION COEFFICIENT: '; BETA× (SAK $\because S Y Y) * 0.5$
[9] 10
[10] 'DO YOU WISH TO TEST BE'TA EQUAL TO ' 'BETA NOUGH'T' OR ''LERO'' OR ''NO'' TEST?'
[11] $A N S \leftarrow$
[12] $\rightarrow((11=\rho A N S) \vee 12=\rho A N O) / B E I^{\prime} A O$
$[13] \rightarrow((2=\rho A N S) \vee 2=\rho A N S) / 0$
[14] $\quad \Gamma \leftarrow B E T A \div((M S E \leftarrow(((S Y Y-B E T A \times S X Y) \div(\rho Y)-2))) \div S X X) \star 0.5$
[15] $\rightarrow$ OUTPUT
[16] BETAO: 'ENTER VALUE OF BE'TA NOUGHT':
[17] $B E T \leftarrow \square$
[18] $\quad \Gamma \leftarrow(B E \Gamma A-B E T) \div((M S E \leftarrow(((S Y Y-B E T A \times S X Y) \div(\rho Y)-2))) \div S X X) \star 0$.
5
[19] UUIPUT:'I-VALUE = '; I' ' WITH'; ( 1 'X)-2;' DEGREES OF FR
EEDOM .'
[20] $\rightarrow(0 z=/ X) / 22$
[21] X ERRFI' Y
[212] 10
[23] 'DO YOU WISH COIVIDENCE ''LIMI'S'' OR ''NO'' LIMIIS?'
[24] ANS $\leftarrow \square$
[25] $\rightarrow((2=\rho A N S) \vee 3=\rho A N S) / N E X T$
[26] 'IAPU' $\Gamma$-VALUE AND VALUE FOR X:'
[27] $T \leftarrow L$
[28] 10
[29] 'COWFIDENCE INI'ERVALS'
[30] '1-ON BE'SA'
[31] $\quad$ U.L. $=' ; B E T A+T[1] \times(M S E \div S X X) \star 0.5$
[32] $\quad L . L .={ }^{\prime} ; B E T A-\Gamma[1] \times(M S E \div S X X) \star 0.5$
[33] $\rightarrow(\Gamma[2]=0) / N E X T$
[34] '2-ON A POINT UN REGRESSION LINE ( $\left.x=1 ; \prime^{\prime}[2\rfloor ; '\right)$ '
[35] $P Y \leftarrow I N I+B E^{\prime} \Gamma A \times(N[2]-M E A N X)$
[36] , U.L. $=\quad$ ';PY+T[1]×ACHE\& ( $M S E \div(\rho X))+(M S E \div Ј X X) \times(T[$
2]-MEAN X)*2)*0.5
[37], $L . L .=1 ; P Y-T[1] \times A C H E$
[38] '3- PREDIC'ION LIMITS ( $X=$ '; T[2];')'
$[39], \quad$ U.L. $={ }^{\prime} ; P Y+T[1] \times A C H E \leftarrow((M S E \div(\rho X))+(M S E \div S X X) \times((T$
[2]-MEAN X)*2j+MSE)*0. 5
[40] $\quad$ L.L. $=' ; P Y-\Gamma[1] \times A C H E$
[41] 10
[42] NEXI:'DO YOU WISH TO HAVE PREDICTIONS AND ' 'RESIDUALS '' PRINTED OR ''NOT''?'
[43] ANS $+\square$
[44] $\rightarrow((3=\rho A N S) \vee 4=\rho A N S) / 0$
[45] RES $\leftarrow Y-P Y \leftarrow I N T+B E T A \times(X-M E A N \quad X)$
[46] OTPT+(4,( OX$)) \rho X, Y, P Y, R E S$
[47] 10
[48] 'X,Y, Y-PREDICTED, AND RESIDUALS:'
[49] QOTPT
$\nabla \underset{K}{ } \quad$ MREG $Y ; K ; N ; G ; A ; I ; J ; B ; C ; S S R ; D D ; L$
[1]
$K \leftarrow(\rho X)[2]+0 \times N \leftarrow(\rho X)[1]$
[2] $B E T A \leftarrow(J I N V((Q D D)+. \times D D))+. \times(Q D D \leftarrow X-(N, K) \rho(+\not \subset X) \div N)+. \times Y$
[3] $G \leftarrow(Q D D)+. \times Y$
[4] $A \leftarrow((K),(K+2)) \rho 0+I \leftarrow J \leftarrow 0$
[5] UP1: $I \leftarrow I+1$
[6] $J \leftarrow 0 \times L \leftarrow 2$
[7] $\rightarrow(I>K) / O N$
[8] UP2: $J \leftarrow J+1$
[9] $\rightarrow(I>J) / U P 2$
$[10] \rightarrow(J>K) / U P 1$
[11] $A[J ; I] \leftarrow A[I ; J] \leftarrow+/(X[; I]-M E A N \quad X[; I]) \times(X[; J]-M E A N \quad X[; J\rfloor)$
[12] $\rightarrow U P 2$
[13] $O N: A[; K+1] \leftarrow G$
[14] $A[; K+2] \leftarrow+/ A$
[15] '(FORWARD DOOLITTLE METHOD)';A
[16] $B \leftarrow(\rho A) \rho 0 \times I \leftarrow 1$
[17] $C \leftarrow((2 \times K),(K+2)) \rho 0$
[18] $C[1 ;] \leftarrow A[1 ;] \leftarrow A[1 ;]$
$[19] \quad C[2 ;] \leftarrow B[1 ;] \leftarrow A[1 ;] \div A[1 ; 1]$
[20] $O U T: I \leftarrow I+1$
[21] $\rightarrow(I>K) / F I N I$
[22] $J \leftarrow 0$
[23] $I N: J \leftarrow J+1$
[24] $\rightarrow(J>K) / O U^{\prime} 2$
[25] $A[I ;] \leftarrow A[I ;]-A[J ; I] \times \dot{B}[J ;]$
[26] $\rightarrow I N$
[27] OU' 2 : $C[L \leftarrow L+1 ;] \leftarrow A[I ;]$
[28] $C[L \leftarrow L+1 ;] \leftarrow B[I ;] \leftarrow A[I ;] \div A[I ; I]$
[29] $\rightarrow O U T$
[30] FINI:ı0
[31] $C$
[32] 10
[33] 'ANOVA TABLE'
[34] 'SUM OF SQUARES REGRESSION = ';SSRヶ+/BETA×G;'WITH'; K;' DEGREES OF FREEDOM.'
[35] $I \nleftarrow 1$
[36] ' SUM OF SQUARES $\left.X\left[{ }^{\prime} ; I ;{ }^{\prime}\right]={ }^{\prime}\right] ; A[I ; K+1] \times B[I ; K+1] ;{ }^{\prime} \quad W$
ITH 1 DEGREE OF FREEDOM.'
[37] OUTCT: $I \leftarrow I+1$
[38] 1 SUM OF SQUARES $\left.X\left[{ }^{\prime} ; I ;{ }^{\prime}\right] \mid X\left[{ }^{\prime} ; \imath I-1 ;^{\prime}\right]={ }^{\prime}\right] ; A[I ; K+1] \times$
$B[I ; K+1]:^{\prime}$ WITH 1 DEGREE OF FREEDOIA.'
[39] $\rightarrow(I<K) / O U T C ' T$
[40] 'SUM OF SQUARES RESIDUAL $=1 ;(+/(Y-M E A N \quad Y) * 2)-S S R ; ' W$ ITH '; $N-K+1$;' DEGREES OF FREEDOM.'
[41] 'SUM OF SQUARES TOTAL = '; +/(Y-MEAN Y)*2;'WITH ';N-1 ;' DEGREES OF FREEDOM.'
[42] 10
$\nabla$
)COPY 1130 POLYNOMIAL
$\nabla P O L Y R[$ U] $\nabla$
$\nabla$ N POLYR DATA; Y;X;LIST;X1;D;X2;X3;X4;GAMMA;BETA;SUM;YB $A R ; S S ; S P A C E ; K$
[1] $X \leftarrow(D A T A[; 1])[D S O R T \quad \operatorname{DATA}[; 1]]+0 \times Y+(D A T A[; 2])[D S O R T$ DAT $A[; 1]]$
[2] LIST $\leftarrow X 1 \leftarrow(X+X-M E A N \quad X) \div D \leftarrow X[1]-X[2]$
[3] $\rightarrow(1=N) / O U I^{\prime}$
[4] LIST*LIST, X2ヶ(X1*2)-((( $\rho X) * 2)-1) \div 12)$
[5] $\rightarrow(2=N) / O U T$
[6] LIST $\leftarrow I S T, X 3 \leftarrow(X 1 * 3)-X 1 \times((3 \times(\rho X) \star 2)-7) \div 20$
[7] $\rightarrow(0=N) / O U T$
[8] LIST $\leftarrow$ LIST, X $4 \leftarrow((X 1 * 4)-((((3 \times(\rho X) * 2)-13) \div 14) \times X 1 * 2))+(3 \div$
$560) \times(((\rho X) * 2)-1) \times((\rho X) * 2)-9$
[9] OUT:LIST $+\Phi(N,(\rho X)) \rho L I S T$
[10] GAMMA $+(Q L I S T)+. \times Y+((\rho X), 1) \rho Y+(Y-Y B A R+M E A N Y)$
[11] BETA $G A M M A * S U M+(\rho G A M M A) \rho++L I S T * 2$
[12] SS $\leftarrow, B E T A \times G A M M A$
[13] [ + SPACE +10
[14] SPACE
[15] 'the beta vector equals: '
[16] (1+,$~ B E T A) \rho(Y B A R),, B E^{\prime} A$
[17] $K+0$
[18] SPACE
[19] 'ANOVA TABLE'
[20] BACK:K+K+1
[21] 'SUM OF SQUARES BETA[';K;'] = ';SS[K];' WITH 1 DEGREE OF FREEDOM.'
[22] $\rightarrow(K<N) / B A C K$
[23] 'SUM OF SQUARES RESIDUAL = '; $(+/((, Y)-M E A N, Y) \star 2)-+/ S S$ ;' WITH '; $(\rho, Y)-K+1 ; '$ DEGREES OF FREEDOM.'
[24] 'SUM OF SQUARES TOTAL = '; $(+/((, Y)-M E A N, Y) \star 2))^{\prime}$ WITH '; ( $\rho, Y)-1$;' DEGREES OF FREEDOM.'
）CUPY 1130 E゙GUALLINES VLINESLUJV

 $E_{\sim}^{\prime n} A$


［3］SET＊［」
［4j $\quad X X \leftarrow S^{\prime} E T[1 ;]$
［5］$Y Y \leftarrow \dot{S} \notin T[2 ;]$
［6］ $\operatorname{L} X X \leftarrow S X X,+/(X X-H E A \| X X) * 2$
［7］$\because \cup Y Y \leftarrow S Y,+/(Y Y-$ UEA iV $Y Y) * 2$
［8］$₫ X X \leftarrow S X Y,+/(X X-i E A$ iV $X X) \times(Y Y-M E A N Y)$

［10］MEANYヶMEAWY，ルEAA YY
［11］$-\mathscr{A} A \| X \leftarrow H E A H X, H E A H X$
［12］$X X X \leftarrow X X X, X X$
【13」 $Y Y Y \leftarrow Y Y Y, Y Y$
［14］RIiU↔RHU，مYY
$[15] \rightarrow(I \neq 1) / I W P U I^{\prime}$

［17］${ }_{1}$
［18］SSSX

［20］BBE＇SA
［21］ 10
［22］＇AWOVA TABLE＇
 XX；＇WI＇AI＇； 1 ；＇DEGREE UE FREEDOR．＇
 $E T A \times S K Y)-T H I S$

 $\leftarrow(+/(S \cup M Y * 2) \div R H O)-((+/ S U H Y) * 2) \div+/ R H O$
［27］＇WIRH＇；K－1；＇DEGGEES OF FREEDOV，＇


【23」＇WI＇H＇；2×1－1；＇DEGREEN OE＇FREEDOル。＇



［312］ 10

【34」＇COIMMON BE＇TA EGUALS：＇；BBET＇A
［35］＇ALYHA［I＇＇今］EGUAL：＇；MEAMY－BETA×MEANX
 $\nabla$
)COPY 1130 ONEWAYCHISQ -CHISQ1[口]
$\nabla$ CHISQ1 X
[1] $\rightarrow((\rho P)>1) / O N$
[2] E+( $\rho X) \rho M E A N X$
[3] $\rightarrow O V E R$
[4] $O N: E+P x+/ X$
[5] OVER:CHI $++/((X-E) * 2) \div E$
[6] 'CHI SUUARE EQUALS ';CHI;' WITH ';×/( OX$)-1 ;$ ' DEGREES OF FREEDOM.' $\nabla$
)COPY 1130 TWOWAYCHISQ $\nabla$ CHISQ2[口] $\nabla$
$\nabla$ CHISQ $2 X$
[1] $E \leftarrow((+/ X) \circ . x(+f X)) \div+/, X$
[2] $C H I \leftarrow+/,((X-E) * 2) \div E$
[3] 'CHI SQUARE EQUALS ';CHI;' WITH '; $\times /(\rho X)-1 ;$ ' DEGREES of FREEDOM.' $\nabla$

```
)COPY 1130 THKEEWWAYCHI
 \nabla\nablaCHISQ3[L]]
 \nabla K CHISQ3 X;N;M;CELLS;ROWS;COLS;LAYERS;E3;CHI3;E21;CHI
21;CHI22;CHI23;E22;E23;ACROW
[1] }
[2] CELLS\leftarrow((iV,M)\rho(K\rho1),(M\rho0))+. ×X
[3] ROWS++/CELLS
[4] COLS+++CELLS
[5] LAYERS ++fXR\leftarrow(K,(\rhoX)[2]) \rho+/X
[6] E3\leftarrow((,ROWS\circ.\timesLAYERS) ○. ×COLS) \div(+/,X)*2
[7] CHI3&+/,((X-E3)*2) \divE3
[8] E21\leftarrow(ROWS\circ.×COLS)\divT\leftarrow+/,X
[9] CHI21\leftarrow+/,((CELLS-E21)*2)\divE21
[10] E22\leftarrow(ROWS`. .LAYERS)\divT
[11] CHI22\leftarrow+/,((XR-E22)*2)\divE22
[12] E23ヶ&(COLS॰. ×LAYERS)\divT
[13] ACROW+X[וK;]+X[K+1K;]
[14] CHI23ヶ+/,((ACROW-E23)*2)\divE23
[15] 10
[16] 'CHI SQUARE TABLE'
[17] 'R\timesC = ';CHI21;' WITH ';((\rhoX)[2]-1)\times(N-1);' DEGREES O
F FREEDOM'
[18] 'R\timesL = ';CHI22;' WITH ';(K-1)\timesN-1;' DEGREES OF FREEDO
M'
[19] 'C\timesL = ';CHI23;' WITH ';((\rhoX)[2]-1)\times(K-1);' DEGREES O
F FREEDOM'
[20] 'R\timesC\timesL=';CHI3-CHI21+CHI22+CHI23;' WITH ';((\rhoX)[2]-1
) }\times(K-1)\timesN-1;' DEGREES OF FREEDOM'
[21] 10
 \nabla
```


## )COPY 1130 COVARIANCE <br> จANACOV[ப]D

$\nabla$ ANACOV $K ; X ; Y ; R H O ; T X X ; S X X ; T X ; X M E A N S ; Y M E A N S ; T Y Y ; S Y Y ; T Y ;$ $T X Y ; S X Y ; I ; D A T A ; T H I S ; E X X ; E Y Y ; E K Y ; S S E ; R H O T O T$
[1] $R H O \leftarrow T X X \leftarrow S X X \leftarrow T X \leftarrow X M E A N S \leftarrow Y M E A N S \leftarrow T Y Y \leftarrow S Y Y \leftarrow T Y \leftarrow T X Y \leftarrow S X Y \leftarrow \_0 \times I \leftarrow$ 0
[2] MORE: 'ENTER X-Y DATA SET FOR TREATMENT' ' $; I+I+1$
[3] $X \leftarrow D A T A[1 ;]+0 \times Y \leftarrow(D A T A \leftarrow \square)[2 ;]$
[4] $\mathrm{RHO} \leftarrow \mathrm{RHO}, \mathrm{THIS} \leftarrow(\rho D A T A)[2]$
[5] $T X X \leftarrow T X X,((+/ X) * 2) \div T H I S$
[6] $S X X \leftarrow S X X,+1 X * 2$
[7] $T X+T X,+/ X$
[8] XMEANS 8 XMEANS, $(+/ X) \div T H I S$
[9] YMEANS 4 YEANS, $(+/ Y) \div T H I S$
[10] $T Y Y \leftarrow T Y Y,((+/ Y) \star 2) \div T H I S$
[11] $S Y Y \leftarrow S Y Y,+/ Y * 2$
[12] $T Y \leftarrow T Y,+/ Y$
[13] $T X Y \leftarrow T X Y,(+/ X) \times(+/ Y) \div T H I S$
[14] $S X Y+S X Y,+/ X \times Y$
[15] $\rightarrow(I \neq K) / M O R E$
[16] $T X \leftarrow+/ T X+0 \times T Y \leftarrow+/ T Y$
[17] $T X X \leftarrow(+/ T X X)-(T X * 2) \div R H O T O T \leftarrow+/ R H O$
[18] $S X X+(+/ S X X)-(T X * 2) \div R H O T O T$
[19] $E X X \leftarrow(+/ \Phi X X)-(+/ T X X)$
[20] TYY $\quad$ ( + / TYY) $-(T Y * 2) \div$ RHOTOT
[21] $S Y Y \leftarrow(+/ S Y Y)-(T Y * 2) \div R H O T O T$
[22] $E Y Y \leftarrow(+/ S Y Y)-(+/ T Y Y)$
[23] $T X Y \leftarrow(+/ T X Y)-(T X \times T Y) \div R H O T O T$
[24] $S X Y+(+/ S X Y)-(T X \times T Y) \div R H O T O T$
[25] EXY $2+(+/ S X Y)-(+/ T X Y)$
[26] [] $\leftarrow S P A C E \leftarrow 10$
[27] 'ANALYSIS OF COVARIANCE'
[28] 'SOURCE'
[29] ' TREATMENT SUM OF SQUARES $-D . F .=1 ; K-1$
[30] 1 FOR X : ' $T X X$
[31] $\quad$ FOR XY: ';TXY
[32] 1 FOR $Y$ : ';TYY
[33] 1 ERROR SUM OF SQUARES -- D.F. $=1 ; R H O T O T-K$
[34] 1 FOR X : ' $E X X$
[35] $\quad$ FOR XY : ';EXY
[36] $\quad$ FOR $Y$ : ' $E Y Y$
[37] , DEVIATION FROM REGRESSION ';SSE↔EYY-(EXY*2) $\div E X$ X;' D.F. = ';RHOTOT-K+1
[38] $\quad$ TOTAL SUM OF SQUARES -- D.F. $=1 ;$ RHOTOT-1
[39] 1 FOR X : ':SXX
[40] 1 FOR XY: ':SXY
[41] 1 FOR $Y$ : 'SSYY
[42] 1 DEVIATION FROM REGRESSION ';SSTE↔SYY-(SXY*2) $\div S$
$X X ;{ }^{\prime} D . F==' ; K H O T O T-2$
[43] ' ADJUSTED TREATMENT MEAN SQUARE '; (SSTE-SSE) $\div K-1 ; '$

$$
D \cdot F .=1 ; K-1
$$

[44] 'F(';K-1;',';KHOTOT-K+1;') ${ }^{\prime}{ }^{\prime} \quad ;((S S T E-S S E) \div K-1) \div(S S E \div$ RHOTOT $-K+1$ )

```
[45] SPACE
[46] SPACE
[47] 'DO YOU WISH TO COMPUTE UUNCAN''S MULTIPLE RANGE''TE
ST'' ON ADJUSTED
[48] 'MEANS OR ''NO'' TEST?'
[49] }->((2=\rhoANS)^3=\rhoANS+\eta)/
[50] DUNCOV
 \nabla
```

```
)COPY 1130 COVARIANCE
 \nablaDUNCOV[U]\nabla
 \nabla DUNCOV;RP;RRP;MSE;NTN;NPN;MEANS;L;IEST;XMX;NN;DIFVEC;
SPACE;T;H;SIGDIF
[1] SPACE
[2] 'ENTER APPROPRIATE VALUES FOR LEAST SIGNIFICANT STUDE
NTIZED RANGE:'
[3] RP+[j
[4] RRP\leftarrowRP\times(MSE\leftarrowSSE:RHOTOT -K+1)*0.5
[5] NTN+RHO。. ×RHO
[6] NPN+RHO..+RHO
[7] MEANS+YMEANS-(EXY\divEXX)\times(XMEANS-TX\divRHOTOT)
[8] TEST+IMEANS\circ.-MEANS&MEANS[L&DSORT MEANS]
[9] XMX+(XMEANS\circ.-XMEANS+XMEANS[L])*2
[10] NN+NPN\divNTN
[11] TEST+TEST*(2*NN+XMX\divEXX)*0.5
[12] D }+DIFVEC+SPAC
[13] RHO +I +O
[14] T&(\rhoTEST)[1]\rho1
[15] UP:->(((M+(\rhoTEST)[1])+1)=I+I+1)/OW
[16] T[I]+0
[17] DIFVEC+DIFVEC,SIGDIF+(TEST[I;I+וM-I]>RRP[1M-I])/(T/ME
ANS)
[18] }->(0=\rhoSIGDIF)/O
[19] RHO&RHO.\rhoSIGDIF
[20] }->U
[21] ON:I+0
[22] 'ADJUSTED MEANS:';(2,M)\rhoMEANS,L
[23] SPACE
[24] }->((+/RHO)=0)/WODI
[25] OUT:->((\rhoRHO)=I+I+1)/0
[26] MEANS[I];' IS SIGNIFICANTLY DIFFERENT FROM ';DIFVE'C[(
+/RHO[!I])+iRHO[I+1]]
[27] ->OUT
[28] NODIF:'NO SIGNIFICANTLY DIFFERENT MEANS...'
[29] SPACE
[30] SPACE
```

```
)COPY 1130 UNEQUALSIZE:ANOVA2
\nablaUNNOVA[口]\nabla
```

$\nabla$ M UNNOVA $N ; C E L L ; C E L L 2 ; W N ; I ; J ; I N P U T ; D A T A ; N 1 ; N 2 ; A ; B ; D 1 ;$
D2;INVD1;INVD2;C; Q;TAU;SSRA;SSC;SUBTOT;SSINIE;ERR
[1] $\square \leftarrow S P A C E \leftarrow 10$
[2] $C E L L \leftarrow C E L L 2 \leftarrow N N \leftarrow(M, W) \rho 0$
[3] $I \leftarrow 0$
[4] $A D D I: I \leftarrow I+1$
[5] $J \leftarrow 0$
[6] ADDJ: $J \leftarrow J+1$
[7] 'ENTER DATA FKOM CELL[';I;';';J;']...'
[8] INPUT $\leftarrow$
[9] CELL[I;J]ヶ+/INPUT
[10] CELL2[I;J] + /INPUT*2
[11] $\rightarrow(0 \neq \rho \rho I N P U T) / O N$
[12] $N N[I ; J] \leftarrow 1$
[13] $\rightarrow O V E R$
[14] ON:NN[I;J]↔مINPUT
[15] OVER: $\rightarrow(J \neq N) / A D D J$
[16] $\rightarrow(I \neq 1 / 2) / A D D I$
[17] $D A T A \leftarrow C E L L$
[18] $N 1 \leftarrow+/ N N$
[19] $N 2 \leftarrow++N N$
[20] $A \leftarrow+/ D A T A$
[21] $B \leftarrow++D A T A$
[22] $I N V D 1 \leftarrow D 1 \leftarrow(2 \rho J) \rho 1,(J \leftarrow \rho N 1) \rho 0$
[23] INVD $2 \leftarrow D 2 \leftarrow(2 \rho J) \rho 1,(J \leftarrow \rho N 2) \rho 0$
[24] $I \leftarrow 0$
[25] BACK1:INVD1[I;] $\leftarrow 1[I \leftarrow I+1 ;] \times N 1$
[26] $D 1[I ;] \leftarrow D 1[I ;] \times N 1$
[27] $\rightarrow(I \neq \rho N 1) / B A C K 1$
[28] $I \leftarrow 0$
[29] BACK2:INVD2[I;] D2[I↔I+1;]×:N2
[30] $\rightarrow(I \neq \rho / V 2) / B A C K 2$
[31] $C \leftarrow D 1-N N+. \times(I N V D 2)+. \times Q N W$
[31 2 ] $Q \leftarrow A-N N+. \times(I N V D 2)+. \times B$
[33] $C \leftarrow(L \leftarrow((((\rho C)[1]-1) \rho 1), 0)) \notin C$
[34] $C \leftarrow L / C$
[35] $Q \leftarrow L / Q$
[36] TAU $4(J I N V C)+. \times Q$
[37] $S S R A \leftarrow(Q T A U)+. \times Q$
[38] $S S C \leftarrow(+/(B \star 2) \div N 2)-((+/, D A T A) * 2) \div+/ N 1$
[39] SUBTOヶヶ(+/, (DATA*2) $\div N N)-((+/, D A T A) * 2) \div+/ N 1$
[40] SSINTE 4 SUBTOT-S゙SC +SSRA
[41] ERR $\leftarrow(+/, C E L L 2)-((+/, D A T A) \star 2) \div+/ N 1)-S U B T O T$
[42] $\operatorname{TOT} \leftarrow(+/, C E L L 2)-((+/, D A T A) * 2) \div+/ N 1$
[43] $S S C A \leftarrow S S C+S S R A-(+/(A * 2) \div N 1)-((+/, D A T A) \star 2) \div+/ N 2$
[44] 'ANOVA TABLE'
[45] 'SUM OF SQUARES ROWS (ADJUSTED FOR COLUMNS) = ' SSRA ;
WITH ';M-1;' DEGREESS OF FREEDOM.'
[46] 'SUM OF SQUARES COLUMNS (ADJUSTED FOR ROWS) = ':SSCA;
' WITH ';N-1;' DEGREES OF FREEDOM.'
[47] $J J++/,(0=N N)$
[48] 'SUM OF SQUARES INTERACTION = ':SSINTE;' WITH ';((M-1 ) $\times(N-1))-J J ; '$ DEGREES OF FREEDOM.'
[49] 'SUM OF SQUARES ERROR = ';ERR;' WITH '; (+/,NN-1)-JJ;' DEGREES OF FREEDOM.'
[50] 'SUM OF SQUARES TOTAL = ';TOT;' WITH '; (+/,NN)-1;' DE GREES OF FREEDOM.'
)COPY 1130 BALINCOMPLT:BLOCK
$\nabla B I B[1] \nabla$
$\nabla$ CODE BIB DATA;T;B;K;R;INDEX;DATA1;TOT;SSTOT;SSBLK;I'B;I;
P;COLS: LAMBDA;SSTR;SPACE;ANS
[1] 'ENTER NUMBER OF TREATIAENT LEVELS:'
[2] $I T \leftarrow$ !
[3] 'ENTER NUMBER OF BLOCKS:'
[4] $B \leftarrow \square$
[5] 'ENTER BLOCK SIZE:'
[6] $K+[$
[7] 'ENTER NUMBER OF TIMES EACH TREATLEWT APPEARS:'
[8] $R+[$
[9] INDEX $\leftarrow \sim C O D E=D A T A$
[10] DARTA1 +INDEX $\times D A T A$
[11] SSTOT* (+/,DATA1*2)-TOT $+((+/, D A T A 1) \star 2) \div B \times K$
[12] $\operatorname{SSBLK}+(+/((+/ D A T A 1) * 2) \div K)-$ TOT
[13] $T \prime B+10$
[14] $I \leftarrow 0$
[15] BACK: $P \leftarrow(T, T) \rho 1$
[16] $P[; I \leftarrow I+1] \leftarrow T \rho 0$
[17] COLS $++f$ DA'T'A
[18] $T B \leftarrow T B, \operatorname{COLS}[I]-(\div K) \times+/((\sim \times / P=I N D E X) /+/ D A T A 1)$
[19] $\rightarrow\left(I \neq I^{\prime}\right) / B A C K$
[20] LAMBDA $+(R \times(K-1)) \div T-1$
[21] $S S T R+(K \div L A M B D A \times T) \times+T B * 2$
[22] U\&SPACE +10
[23] 'ANOVA TABLE'
[24] 'sUM OF SQUARES BLOCKS = ';SSBLK;' WI'H ';B-1;' DEGREES OF FREEDOM.'
[25] 'SUM OF SQUARE'S TREATMENTS (ADJUSTED) = ';STSTR;' WI'H ' ;T-1;' DEGREES OF FREEDOM.'
[26] 'SUM OF SQUARES ERROR = ';SSTOT-SSBLK+NS''R;' WITH 'i(+/ , INDEX)+1-B+T;' DEGREES OF F'REEDOH.'
[27] 'SUM OF SQUARES TOTAL = ';SSTOT;' WITH '; (+/.INDEX)-1;' DEGREES OF FREEDOM.'
) COPY 1130 GENERALREGR
$\nabla G R S T[$ [] $\nabla$
$\nabla$ X GRST Y
[1] 'BETA: ';BETA $(J \operatorname{INV}(Q X)+. \times X)+. \times(Q X)+. \times Y$
[2] 'HYPOTHESIS SUM OF SQUARES: ';BE'TA+. $\times(\Phi X)+. \times Y$
[3] 'TOTAL SUM OF SQUARES': '; Y+.×Y
[4] 10
$\nabla$
)COPY 1130 DA'TAINPU'T
VINPUT[[]]
$\nabla$ 2 + D1 INPUT D2
[1] $2+10$
[2] $B A C K: 2+2, \square$
[3] $\rightarrow((\rho Z)<D 1 \times D 2) / B A C K$
[4] $\rightarrow(D 1=1) / V E C T O R$
[5] $Z+(D 1, D 2) \rho Z$
[6] $\rightarrow 0$
[7] VECTOR: $2+(D 2) \rho 2$ $\nabla$
)COPY 1130 GENMETHODS
จJINV[U]จ
$\nabla R \leftarrow J I N V M ; N ; I ; K ; P ; K K ; P 1 ; P 2 ; P 3 ; L$
[1]
$N \leftarrow(\rho M)[1]$
[2] $R \leftarrow((i v \rho 1), 0) \backslash M$
[3] $I \leftarrow 1$
[4] $R[; N+1]+I=1 N$
[5] $\quad P \leftarrow R[; 1\rfloor \circ . \times R[I ;]$
[6] $K \leftarrow i N$
[7] $K K \leftarrow K \circ . \neq(N+1) \rho I$
[8] $P 1 \leftarrow P \times K K$
[9] $P 2 \leftarrow R \times K K$
[10] $P 3 \leftarrow R \times \sim K K$
[11] $L \leftarrow R[I ; 1]$
[12] $R[; 1 N]+(P 2-((P 1-P 3) \div L))[; 1+1 N]$
[13] $\rightarrow(N \geq I \leftarrow I+1) / 4$
[14] $R+((N \rho 1), 0) / K$
$\nabla$
$\nabla D S O R T[\mathrm{~L}] \nabla$
$\nabla$ ORD - DSORT X;INDEX;UNS;WHICH
[1] $O R D \leftarrow 0 \rho I N D E X \leftarrow 1 \rho U N S \leftarrow X$
[2] $\rightarrow(0 \geq \rho U N S) / 0$
[3] WHICH $-U N S=「 / U I S$
[4] ORD 4 ORD,WHICH/INDEX
[5] UVS $\leftarrow(\sim W H I C H) / U N S$
[6] INDEX $4(\sim W H I C H) / I N D E X$
[7] $\rightarrow 2$
$\nabla$

$\nabla T \rightarrow M E A N X$
[1] $\rightarrow(1<\rho \rho X) / C O L$
[2] $T \leftarrow(+/ X) \div \rho X$
[3] $\rightarrow 0$
[4] $\operatorname{COL}: T+(+f X) \div((\rho X)[1])$
$\nabla$
$\nabla V A R[\square] \nabla$
$\nabla R+V A R X$
[1] $\rightarrow(1<\rho \rho X) / C O L$
[2] $R+(+/(X-M E A N \quad X) * 2) \div(\rho X)-1$
[3] $\rightarrow 0$
[4] COL: $R \leftarrow(+f(X-(\rho K) \rho M E A N X) * 2) \div((\rho A)[1 j-1)$

