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ABSTRACT 

A model to integrate Data Mining and On-line Analytical Processing: with application to 
Real Time Process Control 

By Rahul Singh 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University. Virginia Commonwealth 

University, 1999. 

Director(s): Dr. Richard T. Redmond, Associate Professor, Information Systems 
Dr. Youngohc Yoon, Associate Professor, Information Systems 

Since the widespread use of computers in business and industry, a lot of research has 

been done on the design of computer systems to support the decision making task. 

Decision support systems support decision makers in solving unstructured decision 

problems by providing tools to help understand and analyze decision problems to help 

make better decisions. Artificial intelligence is concerned with creating computer systems 

that perform tasks that would require intelligence if performed by humans. Much 

research has focused on using artificial intelligence to develop decision support systems 

to provide intelligent decision support. 

Knowledge discovery from databases, centers around data mining algorithms to discover 

novel and potentially useful information contained in the large volumes of data that is 

ubiquitous in contemporary business organizations. Data mining deals with large 



volumes of data and tries to develop multiple views that the decision maker can use to 

study this multi-dimensional data. On-line analytical processing (OLAP) provides a 

mechanism that supports multiple views of multi-dimensional data to facilitate efficient 

analysis. These two techniques together can provide a powerful mechanism for the 

analysis of large quantities of data to aid the task of making decisions. 

IX 

This research develops a model for the real time process control of a large manufacturing 

process using an integrated approach of data mining and on-line analytical processing. 

Data mining is used to develop models of the process based on the large volumes of the 

process data. The purpose is to provide prediction and explanatory capability based on 

the models of the data and to allow for efficient generation of multiple views of the data 

so as to support analysis on multiple levels. Artificial neural networks provide a 

mechanism for predicting the behavior of non-linear systems, while decision trees 

provide a mechanism for the explanation of states of systems given a set of inputs and 

outputs. OLAP is used to generate multidimensional views of the data and support 

analysis based on models developed by data mining. The architecture and implementation 

of the model for real-time process control based on the integration of data mining and 

OLAP is presented in detail. The model is validated by comparing results obtained from 

the integrated system, OLAP-only and expert opinion. The system is validated using 

actual process data and the results of this verification are presented. A discussion of the 

results of the validation of the integrated system and some limitations of this research 

with discussion on possible future research directions is provided. 



Chapter 1: Introduction 

1.1 Introduction 

Every modern organization uses business processes to provide goods or services to its 

customers. Depending on the nature of the market that the organization competes in, 

some processes have greater relevance to the final mix of goods and services that the 

organization delivers. Manufacturing processes are one of the most important processes 

for any finn involved in the manufacture of tangible goods and have a significant bearing 

on its competitive advantage. Quality of a product may be defined as "the total composite 

product and service characteristics of marketing, engineering, manufacture and 

maintenance through which the product and service in use will meet the expectation by 

the customer" (Feigenbaum, 1991). Considerable human and financial resources are 

involved in the control of the manufacturing process to ensure that its products are of 

"good" quality. Decision-making for quality control is a central activity in manufacturing 

organizations. 

Numerous data gathering devices collect and from all parts of the manufacturing process 

and store the data in centralized or distributed databases. Though manufacturing 
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processes are usually continuous processes, data is typically collected at discrete time 

intervals depending on the sampling frequency of the data collection instruments. In the 

case of modem manufacturing and highly automated organizations, data may be collected 

every minute for hundreds of variables throughout the production process. This data is 

available to all levels of personnel in the organization that need information about the 

manufacturing process. Production data may be used for multiple purposes within the 

organization such as scheduling, sales, and purchasing. Quality control is a central issue 

in the context of manufacturing organizations. The production data serves as vital input to 

decisions made about product quality. 

1.2 Decision-making and Decision Support 

Nature of Decision Problems 

Early applications of computers in business solved problems that were repetitive, 

requiring few simple arithmetic operations on large volumes of data and involved little 

algorithmic complexity. The entire process could be programmed for the computer to 

generate reports with no supervision or intervention required by humans. Most business 

decision problems are "ill-structured" which have no simple algorithmic solutions. These 

problems are interchangeably referred to in the literature as unprogrammed, semi

structured or ill-structured problems. Solution of ill-structured problems often requires 

the judgment of the decision maker as vital input into the decision-making process. The 

design of computer-based systems that support the decision maker in solving ill

structured problems is a challenging task. 
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Decision Support Systems and Expert Systems. 

Decision support systems and expert systems are commonly used to provide computer 

support for decision-making in the business environment. Decision support systems 

provide support in investigating alternatives and their relationships with the 

corresponding outcomes. Knowledge-based expert systems provide support in solving 

unstructured problems where the knowledge of a domain expert is beneficial to the 

solution. A primary difference between expert systems and decision support systems is in 

the role of the user. Expert systems are designed to make the decision for the decision 

maker while decision support systems support the decision-maker by guiding the analysis 

of the relationships between alternatives and their associated outcomes. A goal of 

artificial intelligence research is to design systems that can improve their performance 

with experience. Expert systems formalize the current knowledge of domain experts and 

make it available for non-expert decision makers. There is no learning involved in expert 

systems. 

Data Mining and On-line Analytical Processing 

An alternative to using the knowledge of a domain expert is to use the large volumes of 

data collected by organizations as the source of knowledge about the problem domain. 

Knowledge discovery from databases uses data mining to find hidden relationships in 

data that can provide useful information about decision problems. Data mining is a 

collection of algorithms derived from artificial intelligence, mathematics, pattern 

recognition and statistics. Data mining techniques can be applied to develop models to 
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help decision-makers' understanding of the problem domain and help inform the decision 

process. These algorithms provide a means for classification and categorization of the 

data to extract the nascent relationships within the data and build descriptive and 

prescriptive models of the processes from the data. Knowledge extracted by using data 

mining reflects the experiences of the organization and represents previously -unknown 

information. The size of the data repositories of any modem organization is constantly 

growing and the active mining of process data can provide a means of evolution to the 

knowledge extracted at earlier times. Data mining can be performed on virtually any kind 

of data storage format, from simple flat files to the most complex relational databases and 

data warehouses. Hence the process is quite versatile. 

Data stored in the repositories of any modem organization has mUltiple dimensions and 

any combination of these dimensions may be important to a decision maker faced with a 

given problem. In recent years, there has been rapid growth in the services required of 

organizational databases to support decision-making in the organization. Analyses of 

different problems require different views of the data and different levels of analytical 

support. The amount of data used to make decisions, the number of people responsible 

for making the decision, the extent of distribution of the data and the types of information 

that are available to make the decision are constantly increasing. The process of analysis 

can benefit from multi-dimensional databases that are organized in a manner that 

supports the analytical demands of the problem. On-line analytical processing (OLAP) 

provides fast and flexible access to large amounts of derived data whose inputs may be 

constantly changing (Thomsen, 1997). OLAP requires multidimensional database 



technology to support the analysis of large amounts of data with a view to making 

business decisions. 

Integration of Data Mining and On-line analytical processing for Intelligent 

Decision-making 

5 

Intelligent decision-making requires that the analysis of data be driven by knowledge of 

the business processes. The goal is a decision-making environment that provides accurate 

models of the decision problem and flexible mechanisms to examine the dimensions of 

the data. Data mining techniques provide accurate and sophisticated models of the 

process involved in the decision problem. These models are based on actual data from the 

business processes and reflect the nuances of the business process from which they are 

derived. Actively mining the data allows for dynamic models that capture emerging 

relationships in the data. Analysis based on these models is current in its depiction of the 

problem environment. OLAP methods allow the structuring of relevant data to facilitate 

analysis. It stands to reason that research in decision-making should investigate the 

integration of the two techniques to provide analytical views of the data based on 

intelligent models of the problem environment. Data mining algorithms can identify the 

data items that bear relevance to the goal of the decision problem and their relationships 

to characteristics of the problem domain. In developing models of the problem 

environment, these algorithms define a structure for the analysis of decision problems. 

OLAP techniques can take these structures and provide access to the data to facilitate 

analysis and decision-making in the domain. This research develops an integrated model 



of data mining and OLAP to support intelligent decision-making in the context of a real

time process control application. 

1.3 Process Control. 

Nature of Process Control Problems 

6 

Information systems help gather and store raw production data and allow access to this 

data in multiple formats. Quality control problems occur when the quality of the final 

product is not within the established acceptable parameters defined for normal operation. 

In these situations, decisions need to be made regarding the identification of the problem, 

identification of its causes and selection of a requisite course of action to solve the 

problem. Decision-making for process control involves the following activities: 

i) Accurate detection of errors in the production process 

ii) Identification of the possible causes of errors 

iii) Support for selecting a course of action to correct errors 

iv) Working within the temporal bounds of the problem context. 

If errors are identified in the manufacturing processes, they need to be corrected as soon 

as possible to avoid waste and consequent financial losses. There is a practical temporal 

bound to decision-making regarding course of action to take when errors occur in a 

production line. An ideal system would incorporate early warning mechanisms to warn 



operators of imminent failures in the system so that action could be taken to pre-empt 

such situations. 

Requirements of systems support to Process Control 

7 

Data from modem manufacturing environments has many complex relationships due to 

the many processes that raw materials are subjected to in creating the final product. This 

complexity is compounded by the fact that modem information systems allow multiple 

data points to be collected and stored at frequent intervals in manufacturing data 

repositories. To be effective, any set of models that improves the understanding of the 

decision problem must be sophisticated and realistic enough to take into account the 

complex relationships within the data. The models must provide accurate descriptions of 

the many aspects of the process that the decision maker is interested in. Manufacturing 

processes are dynamic processes affected by changes in environment, machinery 

components, raw materials and product characteristics. Models that attempt to explain the 

relationships in the process must be dynamic and adaptive. Information systems that 

incorporate these models must provide the user with analytical support to explore the 

alternatives and their respective outcomes. Systems that support decision-making for 

process control should have the following characteristics: 

i) Detect errors in the process. 

ii) Work within the temporal bounds of the problem. 

iii) Provide early warning of imminent failures. 



iv) Use sophisticated adaptive and dynamic models that can adjust the model 

parameters based on changes in the problem environment. 

v) Provide analytical support for decision makers. 

vi) Provide understandable presentation of results and outcomes. 

Many advances have been made in this direction spanning the range from statistical 

process control to the application of artificial intelligence techniques to manufacturing 

process control. The following section introduces approaches to process control 

problems. They are discussed in more detail in subsequent chapters. 

Process Control Techniques 

Statistical process control is one of the most commonly used approaches to process 

control. Statistical process control examines pre-established measures of quality in the 

product and their association with critical measures of performance of the manufacturing 

process. Statistical methods inform the user of the extent of conformity of the process 

with the established measures of stability by examining measures of central tendency and 

deviations. Quality control personnel decide how to make changes to the process so that 

the product can conform to quality requirements. Statistical process control techniques 

are not capable of explaining the cause of non-adherence of process measures to 

established parameters. Statistical process control offers no analytical support to help 

decision makers understand the process, examine alternatives and choose corrective 

actions. 

8 
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A commonly used improvement of statistical process control is multivariate statistical 

process control that takes into account the multidimensionality of the data. Multivariate 

approaches identify the major contributors to variations in the process. Using techniques 

such as factor analysis and principal component analysis, multivariate statistical process 

control allows for the reduction in the dimensionality of the process, and makes it easier 

to understand the variations in the data. Multivariate techniques do not offer any 

analytical support for decision-making and it is very difficult for users who are not 

trained in multivariate methods to understand the output of multivariate statistical process 

control. 

Object-oriented methods provide an effective approach to modeling the manufacturing 

process and incorporating the relationships between the entities of the system. Simulation 

methods recognize that process control systems are event-triggered systems that model 

and explain the relationships in the process and use these models to predict future 

behavior. Simulation models are typically theory-based and may not reflect real operating 

conditions. Thus, many critical nuances of the implementation of the manufacturing 

process may not be incorporated in the model (Bennett, 1995). Both object oriented and 

simulation methods have considerable limitations in analyzing the massive volume of 

complex data inherent in manufacturing process data (Grega, 1996; Ham et. aI., 1996). 

More effective methods are needed to analyze the large amounts of data from complex 

and continuous processes in order to determine the steps required to keep a process stable 

and to bring it back to stability when errors occur. 



Artificial Intelligence Techniques in Process Control 

Expert systems and neural networks are two techniques from the artificial intelligence 

arena that have been applied to provide support for process control. Expert systems can 

be used to build models of the system and provide excellent analytical support for the 

decision makers. Their strength lies in their ability to explain the alternatives and the 

decision choices to the user. Such models, however, are usually rule-based and do not 

capture all nuances of the system. Expert systems formalize the knowledge of domain 

experts and make this available to non-experts (Dhar, 1987). Expert Systems are not 

adaptive and changes in the problem environment render the system inaccurate. Expert 

systems, by themselves, do not make effective process control systems (Alexander, 

1987). 

10 

Neural networks are very effective in developing models for non-linear systems that 

require the ability to handle noisy data. They are useful for manufacturing process data 

since they typically contains noisy and missing data due to intermittent failures of data 

collection devices. Neural networks can be used to provide effective process control with 

on-line, real-time data. The prediction capabilities of neural networks can be used to 

provide early warning of failures in the outputs of the system. Neural networks can be 

trained to build accurate, sophisticated, and dynamic models of the system. They are 

commonly used as embedded intelligent components for control loops of individual 

pieces of machinery and are rarely used for modeling the entire manufacturing process 

(Calabrese, 1991). They can provide little support to help the user understand the process 



and fare poorly in providing analytical support and understandable representation of the 

system (Dagli, 1994). 

1.4 Summary of effectiveness of Process Control Techniques 

Table 1. 1 summarizes the effectiveness of the process control techniques discussed 

earlier with respect to the dimensions and requirements of the process control problem. 

None of these techniques address all aspects of the process control problem and more 

research is needed to provide a method to address the issues of the process control 

problem more effectively. 

1 1  



Statistical 
Process Control 

Multivariate 
Statistical 
Process Control 

Object Oriented 
Methods 

Simulation 
Methods 

Expert Systems 

Artificial 
Neural 
Networks 

Table 1. 1 
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Effective On-Line Early Accurate Adaptive Analytical Simple 
Process System Warning models models Support User 
Control Interface 

No Yes No No No None Yes 

Yes Possible No Yes No No No 

No No Yes No No No Yes 

No Possible No No No Yes No 

No No No Possible No Yes Yes 

Yes Yes Yes Yes Yes No No 

Comparison of Process Control Methods 
Columns represent dimensions of the process control problem 
and rows show current techniques. 
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1.5 Purpose of Research 

This research develops a model that integrates data mining and OLAP technologies to 

support intelligent decision-making for real-time process control. Data mining is used to 

discover knowledge from the large volumes of data, which can be used as information in 

making intelligent decisions about the environment. An evolutionary approach is 

suggested in which the models are constantly reviewed as new data is gathered. This data 

is organized and presented for decision-making using OLAP to allow multidimensional 

views of the data. This integrated approach can be used to analyze incoming real-time 

data to locate and explain possible error conditions. As an improvement on existing 

approaches, the integrated approach offers explanatory and predictive capabilities based 

on accurate and adaptive models of the process and provides early warning of irnminent 

failures. 

The proposed solution relies on the integration of data mining and OLAP to build 

accurate and dynamic models of the process and provide analytical views of the data that 

support decision-making in this environment. In manufacturing environments, data 

mining can unearth novel patterns useful to predict future trends and behaviors of 

systems and enable proactive and knowledge-driven decision-making. Data from 

production processes is multi-dimensional. This data is collected from the mUltiple 

processes of the system and has information about multiple aspects of the production 

system. The data has a temporal component since it is collected at regular time intervals. 
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A large continuous manufacturing process, which is typical of many chemical process 

industries and other heavily automated manufacturing environments, is considered as the 

problem context. Such environments usually have enormous operational data logs that 

contain data collected from various parts of the manufacturing process. This data is 

usually collected at regular and frequent time intervals and stored in the production data 

repository. Data about the everyday operations contains a wealth of information about the 

numerous processes of the production system. The raw data itself, however, does not 

generate any direct benefits. The data needs to be analyzed to develop descriptive models 

to understand, explain and predict imminent errors in the manufacturing process. Such 

models can provide insight and direction to decision-making activity in the problem 

context. 

1.6 Organization of Dissertation 

This chapter introduces the concepts from the literature that are relevant to this research. 

The real-time process control problem is introduced and a description of the problem 

environment and its requirements, including the methodologies currently used for this 

problem, are presented. The next two chapters serve as a review of the literature 

pertaining to decision-making in organizations and process control. Chapter two presents 

an evolutionary view of decision-making in organizations and describes the nature of the 

decision-making problem and the different ways in which computerized support has 

facilitated the decision-making task in business organizations. Chapter three addresses 

the decision-making requirements in the process control environment. 
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Chapters four and five present the integrated model and discuss the implementation of its 

prototype. Chapter four presents the design goals for the proposed system and introduces 

the model for real-time process control based on the integration of data mining and 

OLAP. Chapter five presents the components of the integrated system and discusses their 

implementation in the prototype of the integrated system. Chapter six describes the model 

validation approach. Chapter seven presents the results of the model validation. The 

system is validated using actual process data and the results of this verification are 

presented in chapter seven. Chapter eight concludes the dissertation with a discussion of 

the results of the verification of the integrated system and presents some limitations of 

this research with discussion on possible future research directions. 
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Chapter 2: Decision-making in Organizations 

2. 1 Decision-making 

Administration of an organization involves the detennination of appropriate courses of 

action to help the organization achieve its objectives (Simon, 1976). Decision-making is 

the act of selecting a requisite course of action among a number of alternatives so as to 

achieve certain objectives. Theories of organization provide mUltiple perspectives on 

what the task of decision-making in organizations entails. March and Simon (1958) 

compare the rationality of decision makers in organizations as embodied by the classical 

and statistical decision theories with the concept of "administrative man" or "rational 

man". They note that the traditional theories of organization, such as those postulated by 

Fredrick Taylor (Theory of Scientific Management) make certain assumptions about the 

problem domain, which may not hold true in the context of organizational decision

making. This scientific-management view of decision-making assumes that all possible 

alternatives are given, i.e., all possible courses of action are completely known at the time 

that the decision is made. The decision maker has a predefined utility function, or a 

system of preferences, that can be used to order the outcomes. Such problems typically 

confonn to an algorithmic solution and have known models for their analysis. 



Operational control functions, suggested by Anthony (1965), are often concerned with 

this category of problems. 

There are several limitations to this algorithmic model of solving business decision 

problems, as pointed out by Simon, Cyert and Trow (1956): 
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i) "It is questionable whether the problem is a given for the decision maker, whether 

all alternatives and their exact relationships with associated outcomes are known. 

ii) It is arguable that relationships between objectives and alternatives may change, 

and that all alternatives may not be available over time. 

iii) It is certainly debatable that there may be more than one objective to a decision 

and that the decision to satisfy one of the goals may adversely affect the outcome 

with respect to another objective." 

March and Simon (1958) postulate three sets of theories regarding alternatives available 

to a decision maker and their associated outcome: 

i) Certainty of outcomes, 

ii) Risk involved with obtaining outcomes, and 

iii) Uncertainty regarding outcomes. 

Certainty of outcomes implies that the decision maker has "complete and accurate" 

(March and Simon, 1958) information on the consequence of every alternative. Risk 
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implies that a probability distribution of the consequences associated with each outcome 

exists. In such circumstances, the decision maker would choose the alternative that 

minimizes expected risk and yet achieves the objectives of the decision-making process. 

Uncertainty theories assume that the consequences of each alternative belong to a subset 

of all the known consequences and that no information on how the consequences are 

associated with the outcomes is available. Critical to this concept is the lack of 

knowledge of the association between alternatives and outcomes. The latter two 

categories involve stochastic models or uncertainty and are referred to as unprogrammed 

decisions (Simon, 1957). There are no algorithmic solutions for these problems and their 

solution often involves judgement on the part of the decision maker (Scott Morton, 

1971). Scott Morton also categorizes business decision problems into unstructured, ill

structured and structured problems based on the extent to which these problems fit into 

known models of decision problems. 

2.2 Characteristics of Business Decision Problems 

The American Heritage College Dictionary defines a model as: 

"A schematic description of a system, theory, or phenomenon that accounts for its 

properties and may be used for further study of its characteristics. Such a work or 

construction used in testing or perfecting a final product". 

In other words, a model is a concise representation of the problem domain and presents 

an organized view of the aspects of the problem that the problem solver is interested in. It 
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represents a simplification of the problem to the extent that it facilitates the understanding 

of the problem environment and its solution. The extent to which a problem can be 

reduced into known models is the extent to which their solution can be simplified. 

Structured problems are those for which there exist known, well-defined, models or 

algorithmic solutions. Ill-structured problems present a challenge in that there may not be 

a complete fit of the problem characteristics into known models of solution. Decision 

problems typically faced by managers are ill-structured since there are no known models 

for them and their solution often requires judgment on the part of the decision maker. 

2.3 Decision Support Systems. 

Decision-making is the primary function of administrators and managers in an 

organization. Decision support systems have been developed for this set of users to aid 

the decision-making process. Keen and Scott Morton ( 1978) define a decision support 

system as "a coherent system of computer based technology, including hardware, 

software, and supporting documentation, used by managers as an aid to their decision

making in semi-structured tasks". These systems help the decision maker examine more 

alternatives, evaluate the complex relationships between the alternatives and their 

associated outcomes while satisfying the objectives of the decision-making process. It is 

the goal of these systems to serve as a support system that helps the effectiveness of the 

decision-making process, and not to make the decisions for the decision maker. These 

systems are geared towards problems where there is a sufficient amount of structure for 

analytical aids to be helpful, but the nature of the problems makes the judgment of 

managers critical to the decision-making process (Keen and Scott Morton, 1978). 
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Typically decision support systems consist of a data management system, a model 

management system and a user interface (Olson and Courtney, 1992; Turban and 

Aronson, 1998). The data management system consists of the data that is required for 

analyzing the decision problem and some form of database management system that 

allows for easy storage and retrieval of the data. The content of the database varies based 

on the type of problem and may range from the entire corporate database to very domain

specific data. The model management system is responsible for analyzing data and the 

representation of the data in the context of the problem so that the problem can be easily 

understood and analyzed by the decision maker. Decision support systems are typically 

constructed with apriori knowledge of the decision problem. Hence, the models used in 

the model base are chosen based on the kind of analysis suitable for the decision problem 

for which the system is designed. For example, a multiple criteria decision support 

system may use the analytical hierarchy process as the model base and retrieve and store 

data to support this form of analysis. Such a system would not be suitable to perform any 

kind of analysis that does not conform to the analysis methodology of the analytical 

hierarchy process. Decision support systems provide interactive support to the decision 

maker through the user interface. 

2.4 Classification of Decision Support Systems 

Alter ( 1980) developed a taxonomy to classify decision support systems based on the 

degree to which the system's outputs can directly determine the appropriate decision for 

the problem under consideration. Decision support systems are used to retrieve 



infonnation, provide a mechanism for data analysis, estimate the consequences of 

proposed decisions (what-if or sensitivity analysis), propose solutions and even make 

decisions for the user. Based on the type of operation that they perfonn, Alter ( 1980) 

classifies decision support systems into seven "reasonably distinct" types: 

i) File Drawer Systems: Systems that provide data and infonnation retrieval. 

2 1  

ii) Data Analysis Systems: Systems that allow the manipulation of data in a manner 

that is either specific to the nature of the problem or based on general operators. 

iii) Analysis Information Systems: Systems that provide access to multiple 

databases and models, thereby facilitating analysis of information. 

iv) Accounting Models: Systems that provide what-if analyses by revealing the 

consequences of planned actions based on accounting definitions (cost-benefit, 

what-if analysis). 

v) Representation Models: Systems that estimate the consequences based on 

models that are partially definitional. The difference between this type of model 

and the accounting models is that these systems may evaluate the consequences of 

actions based on associations other than those defined by accounting models or by 

cost-benefit ratio analysis. 
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vi) Optimization Models: Systems that provide guidelines for action by generating 

the optimal solution consistent with a series of constraints. The nature of the 

problems that these systems solve requires that an optimization model can explain 

the problems and some form of associated cost is known for each alternative. 

These models are largely derived from management science and operations 

research literature. 

vii) Suggestion Models: Systems that provide the mechanical work that leads to a 

specific suggested decision for a fairly structured task. Again, the nature of the 

problem and its ability to be solved using a fairly structured task is critical for the 

success of this form of decision support systems. 

An analysis of the classification of decision support systems proposed by Alter reveals 

that the classifications differ along the dimension of model support required for the 

decision-making activity. For example, file drawer systems are data oriented systems that 

require very little analytical or model based support while representation model systems 

are model-oriented systems that rely heavily on the analytical support provided by the 

underlying analytical models in the system. Others have classified decision support 

systems based on different aspects. Scott Morton (1971) classifies decision support 

systems as structured, ill-structured and unstructured based on the problem type that they 

are intended to solve. Decision support systems have also been classified based on the 

level of the management control function that they are intended to support, such as 

strategic planning, management control, and operational or task control (Anthony, 1956; 



Anthony, Dearden, Bedford, 1984). In summary, there are many different dimensions 

along which decision support systems have been classified. For example: 

i) The degree of structure in the problems that the decision support system tries to 

solve (Scott Morton - structured, unstructured and ill-structured problems). 

ii) The extent to which the problems can be algorithmically reduced to simpler 

problems (Simon's programmable and non-programmable decisions). 
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iii) The level of organizational function that the decision problem is intended to 

support (Anthony' s  strategic planning, management control, and operational 

control). 

iv) The extent to which the decision-making task requires the support of data or 

models (Alter's data oriented and model oriented decision support systems). 

An additional dimension upon which decision support systems can be classified is the 

extent to which the decision-maker makes the decision. A distinguishing feature of 

suggestive systems (Alter, 1980), from the other types of systems discussed in Alter's 

classification scheme, is that here the decision is made by the system instead of by the 

decision maker. Suggestive systems represent a class of systems that can recognize the 

problem, obtain data required to analyze the problem, search for viable alternatives, 

analyze the appropriateness of the alternatives and select the most suitable alternative to 
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meet the objective of the decision problem. Alter's work is based on case studies of 

existing systems and the suggestive systems that he describes are used for very structured 

tasks that can be completely automated, a notion similar to that of Simon's 

"programmable decisions". Scott Morton (1971) speculates on the idea of using artificial 

intelligence to support human decision-making by the system taking an active role in the 

decision-making process as the expert, and offering meaningful suggestions about the 

alternatives and their associated outcomes to aid the decision maker. Computer systems 

can record and store the entire decision sequence taken by an expert. Over time, and with 

the experience gained over a number of cases, these records of the expert decision 

sequence can provide useful precedence and direction to the decision maker in the 

decision-making process. Expert systems are developed using this philosophy of 

capturing and formalizing the expertise of a domain expert and making it available to 

non-experts to solve specific problems that require the expertise of a domain expert. Such 

problems are typical and recurring in their nature so as to justify the expense of 

developing a system centered on the solution of particular decision problems. 

2.5 Artificial Intelligence 

Artificial intelligence (AI) is concerned with the study of machines that can perform tasks 

that are thought to require human intelligence. Earlier definitions of AI focused on its 

being a field concerned with creating systems that think like humans. Bellman (1978) 

defines AI as the automation of "activities that we associate with human thinking, 

activities such as decision-making, problem solving, learning . . .  ". Others focus on the 

aspect of AI concerned with creating systems that can think and act rationally. Winston 
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( 1992) defines AI as "the study of the computations that make it possible to perceive, 

reason and act". Schlakoff (1990) gives another definition of AI: "a field of study that 

seeks to explain and emulate intelligent behavior in terms of computational processes". 

Albus (Albus, 91) defines intelligence as "the ability of a system to act appropriately in 

an uncertain environment, where appropriate action is that which increases the 

probability of success, and success is the achievement of behavioral sub-goals that 

support the system's  ultimate goal." The goals and success that are key to this definition 

are defined outside of the system by the designers of the systems. 

Artificial intelligence inherits from a number of fields of study including philosophy, 

mathematics, psychology, computer engineering and linguistics. The first work in 

artificial intelligence was by McCulloch and Pitts in 1943, on modeling any 

computational activity as a network of neurons. They proposed a model of artificial 

neurons that could be either on or off, with a switch to on occurring as a response to 

stimulation by a sufficient number of neighboring neurons (Russell and Norvig, 1995). 

AI is concerned with symbolic representation and manipulation and theorem proving as 

demonstrated by Newell and Simon's research on the Logic Theorist and the General 

Problem Solver. Artificial intelligence has been used in a number of application areas 

such as robotics, intelligent manufacturing, marketing, banking and finance. Feigenbaum 

et. al. (Feigenbaum, McCorduck and Nii, 1988), list several applications of expert 

systems in such diverse areas as agriculture, communications, computers, construction, 

geology and medicine. 
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2.6 Using Artificial Intelligence for Decision Support 

2.6.1  Expert Systems 

Knowledge-based expert systems, or expert systems as they are commonly known, are 

computer systems that can perform the role of a domain expert in the area of a problem 

that is being investigated by the decision maker. One definition of an expert system is 

computer software that performs a highly specialized task that would normally require 

human expertise. The expertise of the human in terms of either knowledge of the task at 

hand or knowledge of the problem area is incorporated into the system (Murray and 

Tanniru, 1987). Expert systems provide a means of formalizing a lot of mostly 

experiential and subjective knowledge that may have been heretofore unexpressed and 

unrecorded (Dhar, 1987). This creates a formal body of knowledge that the organization 

can draw upon in solving problems. 

The concept of knowledge-assisted decision-making is not new. Scott Morton (Scott 

Morton, 1971) speculated about the use of artificial intelligence in designing computer 

systems that could become active participants in the decision-making process by making 

useful suggestions to the decision maker. Expert systems offer "the possibility of a major 

contribution" (Scott Morton, 1971) to the decision maker. Such systems could record the 

process that domain experts follow as they are solving problems in their area of expertise. 

This knowledge could grow, over time and over multiple instances of problems, into a 

systematic body of knowledge about the key decisions that an organization makes. A key 

feature of such systems is the institutionalization of this domain specific expertise so that 
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movements of people in the organization do not affect the knowledge. Newell and 

Simon's General-Purpose Problem Solver (Newell and Simon, 1 973) is another example 

of an early system that bears resemblance to the expert systems of today. A major 

contribution to the development of expert systems is the development of theories 

describing how to represent the knowledge of domain experts in a form that can be used 

by these systems. The fundamental problem that Artificial Intelligence tries to solve is 

how to represent large volumes of knowledge so that decision makers can efficiently use 

the knowledge in their decision-making tasks (Goldstein and Papert, 1 977). 

Generically, an expert system contains a knowledge acquisition system. This system 

incorporates the methods used to acquire knowledge from the domain expert and, with 

. the help of the knowledge engineer, formalize it into a knowledge base that can be used 

to store the knowledge. Knowledge typically consists of domain specific data and rules 

used to solve specific problem in the problem area. This domain specific knowledge is 

stored in the knowledge base in a format that can be drawn upon by the inference engine 

to help the manager solve business problems. The inference engine incorporates 

analytical models that are used to provide the decision maker with analytical support. It 

interacts with the knowledge base to provide the user with the information contained in 

the knowledge base. The inference engine can also utilize the explanation subsystem to 

call upon the knowledge base to explain the rationality behind the choices made by the 

system. The components of a model for a generic expert system are shown in Figure 2.1. 



Figure 2.1 
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The goal of an expert system is to capture the knowledge and expertise of a domain 

expert in solving highly domain specific problems. This expertise is incorporated into the 

expert system and can be used by non-experts to make decisions in similar problem 

domains within the organization. Expert Systems have limitations on the range of 

problems that they can solve. Problems usually involve ambiguous and incomplete data 

and an expert must be able to judge the reliability of the facts to clarify the problem and 

evaluate competing conceptualizations of a problem (Dhar, 1987). The scope of 

application of expert systems is limited to the specific problem domain for which they are 

developed. The methodology used by experts in solving the problem may be extended to 

similar problems with which organization is routinely faced. As the problem domain 

changes, attempts to add new knowledge to the system may affect the system in 

unforeseen ways. Traditionally, expert systems are developed to solve a very narrow 

range of well-structured problems that require the expertise of a domain expert. There is 

no learning involved in expert systems; if there are changes in the problem domain, then 

a new expert system needs to be built. This is a prominent drawback of expert systems. 

Researchers have speculated on the idea of using AI-based components in decision 

support systems and it is noted that many of the advancements in DSS design has come 

from the field of artificial intelligence (Goul, Henderson and Tonge, 1992). There is 

debate in the AI community on whether its purpose is to create machines that act 

rationally thereby replacing human actions, or to create machines that think rationally and 

can support human cognitive activity. These opposing points of view are reflected in the 
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debate on the role of AI in the DSS area. Expert systems represent one end of the 

spectrum of decision support systems that aim to replace the human decision maker with 

an artificial one - the system. Another role for AI is in contributions to the design of 

decision support systems that have intelligent components to support the decision maker, 

as in traditional decision support systems. Goul, Henderson and Tonge (1992) propose 

"Artificial Intelligence can broaden DSS research beyond its original focus on supporting 

rather than replacing human decision-making by selectively incorporating machine based 

expertise in order to deliver the potential of DSS in the knowledge era." This proposition 

calls for synergy between research in both fields to find aspects of artificial intelligence 

that can help decision support and conversely find areas of decision support systems that 

can benefit from machine intelligence. 

Earlier sections of this chapter have established the agreement in the decision support 

systems literature that decision support systems design can benefit from interaction with 

artificial intelligence research to provide knowledge based components for decision 

support systems. Traditionally, expert systems have provided the means of providing 

knowledge based support to the decision-making task. These systems serve the purpose 

of formalizing, documenting and institutionalizing the domain specific knowledge of an 

expert so that non-domain expert decision makers in the organization can utilize the 

domain specific knowledge in the decision-making task. It has also been pointed out that 

expert systems are very domain specific and it is not easy to expand their application 

scope. Such an endeavor invariably entails the development of a new system. This 

shortcoming of expert systems has received some attention in the literature and research 



has been done on designing systems that expand their application domain. The ideas of 

evolutionary systems and self-evolving systems, and research in these directions, bear 

evidence of this fact (Liang and Jones, 1987; Alavi and Henderson, 1981; Hurst, 1983). 

2.6.2 Data Mining and Knowledge Discovery in Databases 
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Another viable source of knowledge about the organization and its problem domain is the 

large volume of data that are typically stored in data repositories of organizations. 

Knowledge about the organization is contained in the many relationships hidden in 

organizational data, and that these patterns can provide useful insight into the 

functionality of the business. This approach is known as knowledge discovery from 

databases. The process of knowledge discovery from databases is defined as (Fayyad, 

1996): 

"the non-trivial process of identifying valid, novel, potentially useful and 

ultimately understandable patterns in data " 

Fayyad et. al. (1996), define the process of data mining in the context of the knowledge 

discovery process as: 

"the process by which patterns are extracted and enumerated from the data. " 

An analysis of these definitions shows that data mining is the central theme to the process 

of knowledge discovery in databases. These terms are often used interchangeably in the 
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literature. The key aspects of this definition are that the process discovers knowledge, in 

the form of patterns, from the existing data. These patterns should be understandable and 

potentially useful to the organization so that decision makers are able to understand the 

knowledge and use it for decision-making. Knowledge discovery from databases involves 

techniques for acquiring knowledge from organizational data that can eventually be used 

to support the decision-making activity in organizations. This is a departure from the 

technique used by expert systems that use the domain expert as the source of knowledge 

and attempt to capture and institutionalize this knowledge. Knowledge discovery from 

databases presents an alternative technique in that it uses corporate data as the source of 

knowledge and attempts to extract rules, patterns and associations that can be useful in 

making decisions in organizations. Contemporary organizations continuously collect data 

about their operations and various aspects of their business environment. This suggests 

that the nature of the knowledge gathered from data can be evolutionary, in that it can 

grow continuously to incorporate changes in the business and its environment. New 

knowledge can emerge and old knowledge can become redundant, or even irrelevant, as 

an organization progresses and reacts to changing situations. 

2.7 Data Mining 

Data mining is the technique by which new and meaningful patterns are discovered from 

data. Data mining uses models and algorithms from a number of related fields of study, 

such as statistics, machine learning and pattern recognition to: 

a) Achieve a better understanding of large volumes of data, 



b) Develop means of classifying the data, and 

c) Discover patterns and associations in the data. 

Fayyad et. aI., (1996) take a reductionist point of view in defining three major 

components which comprise most data mining algorithms: 
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a) Model: contains parameters that are to be determined from the data. The function 

of models and their representational forms are factors that need to be decided 

based on the application domain and the type of data, before the data is mined. 

b) Preference criteria: form the basis for preference of one model over another. 

c) Search algorithm: algorithm for finding particular models and parameters given 

the data, a family of models and preference criteria. 

The data mining algorithm is an instantiation of the model and the preference search 

algorithm components (Fayyad, et. aI., 1996). The literature classifies data mining into 

two major forms (Simoudis, 1996; Fayyad et. aI., 1996): 

i) Verification-driven data mining: This form of data mining presumes that users 

already have postulated a hypothesis that they want to verify from the data. The 



data mining algorithms are selected to verifY, or nullifY, the a priori hypothesis. 

Statistical techniques are often used for this form of data mining. 

ii) Discovery-driven data mining: New rules and associations are extracted from 

the data in this form of data mining in which hypotheses are not postulated a 

priori. Discovery-driven data mining relies heavily on artificial intelligence 

techniques such as symbolic processing, association discovery and supervised 

induction. 
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There are many attempts in the literature to classifY the operations performed by data 

mining algorithms to understand the functionality of the data mining task. Some 

researchers have developed classifications based on the most common data mining 

techniques, such as artificial neural networks, decision trees, genetic algorithms and rule 

induction methods. 

Some common data mining operation are listed below: 

I .  Classification: Classification refers to the rapid discovery of categories that 

observational data can be divided into. Classification looks at the difference 

between dimensions of an observation and categorizes the observation based on 

that dimension. Some common techniques used for classification of data include 

clustering analysis, nearest neighbor analysis and factorial analysis. 
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2. Link Analysis: Discovery of associations in data that may lead to the explanation 

of causality and reveal previously unknown associations between variables in a 

data set. It is common to find variables that co-vary, particularly in large data sets. 

Such associations may provide useful insight and provide a powerful tool for the 

reduction of the dimensionality in data. 

3. Regression Techniques: Regression attempts to establish relationships between 

variables in the data set so that associations between the rules can be inferred. 

This is a relatively simple, yet powerful, technique for the induction of rules and 

associations in the data set. 

4. Visualization Techniques: These techniques contend that people who are 

familiar with the application area can identifY patterns in the data if they have 

powerful tools available that allow them to view the data in mUltiple ways. This 

class of techniques provides a way to form hypotheses about relationships in the 

data that can be further verified. 

It seems intuitive that some techniques would be better suited for different objectives of 

the data mining task, and for data with different characteristics, than others. Evidence of 

such a mapping between data mining techniques and the objective of the data mining task 

is not found in the literature. Case studies in the literature report on the success or failure 

of the data mining undertaken at certain companies. Perhaps, as the field matures, and 

more case studies become available, this type of research could provide valuable 
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guidelines for practitioners and researchers who want to design the data mining process. 

This type of research could be in the flavor of Alter's study of companies that use 

decision support systems to aid the decision-making task in their organizations. 

The Institute of Electrical and Electronics Engineers (IEEE) devoted an entire issue of its 

journal that focuses on expert systems development, IEEE Expert, to data mining in 

October, 1996, as did the Association for Computing Machinery in its journal, 

Communications of the A CM, in November, 1996. This attests to the fact that data mining 

is an emerging research area that brings research in artificial intelligence and machine 

learning to business applications. 

2.8 On-line Analytical Processing 

On-line Analytical Processing (OLAP) is a class of technologies that provides 

multidimensional views of data and is supported by multidimensional database 

technology. These multidimensional views provide the technical basis for the calculations 

and analysis required by intelligent applications for providing fast, responsive analysis of 

data (Han 1997). OLAP provides powerful analytical processing for applications and is 

optimized for analysis of information. This technology is especially suitable for 

multidimensional data that includes a temporal component, as is the case in 

manufacturing process data (Simoudis, 1996). OLAP provides multi-dimensional 

structures and summarization techniques that enable fast and intuitive access for complex 

analytical queries (Thomsen, 1 997). 
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OLAP technologies are commonly used in the increasingly popular organizational data 

warehouses that many large organizations are investing in (Elkins, 1998). Organizations 

store data about their various business processes in data warehouses. Due to the large 

variety of the business processes, typical organizational databases contain vast amounts 

of data. This data is stored for the purpose of managerial decision-making. OLAP 

presents a multi-dimensional logical view of the data to facilitate analysis. OLAP 

operations are provided to allow users to interact with the data for multi-dimensional data 

analysis to facilitate decision-making. OLAP alone does not generate any models about 

the nature of the data and these are normally developed at the time of the development of 

the OLAP system. Hence, these models are developed prior to the analysis that the data is 

used for. OLAP systems interact with statistical analysis algorithms, such as trend 

analysis or linear modeling to allow for statistical analysis of the data. The models that 

the analysis is based on are a task for the designers of the OLAP system or for the 

analyst. Given models of the environment, OLAP technologies can provide an efficient 

method for easy and flexible access to data to facilitate analysis for decision-making 

purposes. 

2.9 Summary 

This chapter discussed different models of decision-making in organizations, from 

simple, structured models to complex, unstructured models. The ways in which 

computerized support can be provided to aid the decision-making process by using 

simple data processing systems, management information systems and decision support 

systems were examined. Expert systems were presented as a class of systems that 
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fonnalize the domain knowledge of an expert to allow non-experts to make decision for 

decision problems that require domain expertise. The primary limitation of expert 

systems is the lack of learning involved. If the problem envirorunent changes, then the 

expert system may no longer be useful to the problem domain. It become apparent that 

such a solution is not suitable for the dynamic envirorunents of typical business decisions 

problems. 

A suitable decision support solution needs to be adaptive to changes in the business 

envirorunent in which it operates. The concepts of evolutionary systems and adaptive 

systems were introduced in this context. It is clear that the ability of machines to perfonn 

complex analysis and provide support in tenns of the search for, and analysis of, the 

alternatives that are available to the decision maker is a desirable feature in any system 

designed to support decision-making in organizations. Another desirable quality is that 

these analyses and searches are knowledge-driven and that this knowledge is dynamically 

acquired to keep it synchronous with the changes in the business envirorunent. In other 

words, the systems that provide support for decision-making should be able to learn from 

the envirorunent and the decision-making task in order to improve. 
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Chapter 3: Decision-making for Process Control. 

3.1 Processes and Systems in Organizations 

This chapter presents the techniques commonly used for process control and the nature of 

decisions that have to be made in this context. Literature regarding statistical process 

control and other methods of controlling manufacturing processes and contributions of 

artificial intelligence to control manufacturing processes are reviewed. The shortcomings 

of statistical process control and some alternatives to overcome these limitations are 

presented. The concept of real-time process control as an improvement over process 

control, since it serves the problem environment better if the solution has a temporal 

requirement, is explored. 

The application of artificial intelligence to process control is investigated. In particular, 

machine learning, a field of study concerned with the use of artificial intelligence 

algorithms in computation so that machines can learn and exhibit "intelligent" behavior, 

is examined. Many machine learning approaches have been applied towards the design of 

embedded systems to intelligently control the behavior of sub-components of the 

manufacturing process. Most artificial intelligence-based techniques for process control 

approach intelligent manufacturing by developing machines that can exhibit intelligent 



40 

behavior and can be controlled based on conditions of the environment. This form of 

solution is usually applied to individual control loops or small pieces of machinery. A 

shortcoming of these current solutions is that they do not provide a mechanism to control 

the complete process. They are usually implemented with the intention of controlling the 

process with no human intervention and have no explanatory component as to the cause 

of the errors and its consequences to the entire production line. These approaches do not 

support intelligent managerial and engineering decision-making for the entire process. 

Every organization makes use of many processes to provide goods and services to its 

customers. Modem organizations have a variety of computerized systems that help 

administer and control the various business processes in which the organizations are 

involved. It is not uncommon for modem business organizations to have accounting 

systems and production systems as well as systems to support the marketing function. 

These systems gather a variety of organizational data to perform their function. Such data 

is available for other internal and external functions of the organization such as financial 

reporting and auditing. The data stored by these systems is also used by various decision 

support systems to support decision-making activities in the organization. Based on the 

nature of the market in which the organization competes, some of these processes have 

greater impact on the final mix of goods and services that it delivers than other processes. 

Consequently, the decision support systems and information systems that support these 

critical processes have a greater impact on the competitive advantage of the 

organizations. For example one of the most vital systems for a financial services firm is 

the one responsible for the gathering and analysis of financial data. The manufacturing 



process is one of the most important processes for an organization primarily involved 

with the production of tangible goods. 

4 1  

Significant resources are involved in the control o f  manufacturing processes to produce 

high quality products. Ensuring quality in the final product is an organization-wide effort 

that involves all levels of management of the organization. Quality control involves 

operational personnel, supervisors, engineers, multidisciplinary quality assurance teams, 

research and technology scientists and multiple levels of management. Clearly, systems 

support for this activity in manufacturing firms is very important. Modern manufacturing 

organizations spend a considerable amount of money on automatic data gathering devices 

to capture and process data from all parts of the manufacturing process. This data is 

typically stored in some form of data repository that may use database technology or log 

files to be used for analysis of historical trends and report on the overall performance of 

the production process. Production data is collected at discrete time intervals. The size of 

these time intervals depends on the response time and sampling frequency of data 

gathering equipment. The manufacturing process itself is a continuous process that 

performs a series of sequential transformations to the inputs to produce the final output. 

Outputs from one part of the production process become inputs to the next and at any 

intermediate stage of the process. The properties of the intermediate product are the net 

result of all the transformations that have been applied to it. This suggests that in such 

systems there will be a high level of interrelationships in the data as raw inputs are 

transformed into a final product. These relationships play an integral part in any decision

making activity to determine causes of errors and possible alternatives for the correction 
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of these errors. Statistical process control is one of the most commonly used approaches 

to quality control for manufacturing and industrial processes. 

3.2 Statistical Process Control. 

The application of statistical techniques for quality control and improvement of 

manufacturing processes can be traced to the work of Shewhart in the 1 920s, "The 

application of statistical methods in mass production makes possible the most efficient 

use of raw materials and manufacturing processes, effects economies in production, and 

makes possible the highest economic standards of quality for the manufactured goods" 

(Shewhart and Deming, 1 986). Statistical process control is an approach to ensure the 

control of quality in a product so that it meets the needs of the customer. Quality can be 

defined as "the total composite product and service characteristics of marketing, 

engineering, manufacture and maintenance through which the product and service in use 

will meet the expectation by the customer" (Feigenbaum, 1 991 ). Much of the early 

research in statistical process control examined the use of statistical methods in 

implementing the philosophy of total quality control that stems from Deming's work on 

total quality management (Deming, 1 986). Total quality management is a management 

philosophy whose purpose is to deliver quality to the customer by creating value in a 

product and making continuous incremental improvements to the product. The review of 

the literature on quality control presented here is concerned with the implementation of 

quality control in process industries by using statistical process control. 
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Statistical process control tries to achieve quality in the product by examining 

characteristics of the product and the association of these measures to the characteristics 

of the process. The intent is to identify and minimize the sources of variations in the 

process so that the final product conforms to established standards of quality. Emphasis is 

placed on constant monitoring and interpretation of process variables to identify cause of 

variations in the quality of the final product. Process data is monitored continuously for 

abnormal variations. If variations occur, adjustments are made to process characteristics 

to remove these abnormal variations and return the process to a state of normal operation. 

Statistical process control monitors process data through the use of control charts. These 

charts plot the progress of process variables as the process is running and allow operators 

and process engineers to visualize the process. Shewhart originally devised control charts 

as a means of viewing the state of a process in 1924. The original Shewhart chart 

measures the mean of a process variable and sets up an upper and lower control limit for 

the variable at mean ± three standard deviations. The process is said to be in statistical 

control if the value of the mean is within the control limits. The process is out of 

statistical control when the mean leaves the mean ± three standard limits. Other methods 

for developing process control charts, such as the cumulative sum chart and the 

exponentially weighed moving average chart, have been devised. A sample control chart 

based on the process mean and ± three standard deviations is shown in Figure 3. 1 .  
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Typically, modern manufacturing environments have a large number of process variables 

that are collected frequently by automated data gathering equipment. These variables are 

usually sampled from the entire production process and stored in a data repository. The 

large number of variables and the high frequency of data collection make it impossible to 

examine all process variables simultaneously. A common solution to this problem is that 

a smaller and more manageable subset of the process variables is chosen as the set of 

variables to be monitored. Operating characteristics that are known, or believed, to have a 

significant impact on the quality of the product are chosen from various stages of the 

manufacturing process. Statistical process control is employed to identify unusual 

variations in any of these critical characteristics. This allows for a manageable subset of 

the process data to be viewed in the form of control charts. This subset is selected as part 

of the design of the quality control policy using expert opinion of the process engineers 

and the research and technology groups in the organization (Oakland, 1996). Much of the 

current research in quality control and statistical process control is in the area of 

statistical methods for developing process control charts and their applicability to the 

nature of the process being controlled. 

There is widespread use of information technology in quality control primarily to deliver 

on-line measurements of numerous variables and provide the ability to store and retrieve 

these measurements for analysis. Information technology provides the means to perform 

large scale analysis of data in a short period of time, which is frequently required for 

analysis of the problem environment. The constant monitoring of critical measures of 
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product quality provides the detection of out-of control states of the manufacturing 

process. In addition, infonnation technology provides access to control charts that are 

updated in real-time as the data is gathered. The interface presented to the user is in the 

fonn of control charts; some fonn of audio/visual alann is sent if the process is out of 

statistical control. These interfaces provide the ability to retrieve historical infonnation 

and allow various fonns of analysis. The emphasis of infonnation technology is on 

supporting the accuracy of control charts and providing constant updates in real-time. 

These tools provide the control engineer with the ability to add and remove variables that 

make up the control charts. Infonnation technology can simultaneously monitor a large 

number of variables and notify the users of out-of-control conditions. 

As noted previously, there are some serious shortcomings in the statistical process control 

approach. One major limitation is the lack of support for analysis in these tools. For 

example, once an out-of-control process variable is discovered, the statistical process 

control tools do not provide methods to analyze the data to search for causes for this 

condition. The lack of ability to rapidly identify the source of variation in a product 

characteristic is a major drawback of statistical process control and the tools used to 

support it (Palm, Rodriguez, Spring and Wheeler, 1997). There is no support for 

providing infonnation on requisite courses of action that can be taken upon the detection 

of out-of-control conditions. Hence, the focus of these tools is on providing infonnation 

to the operators and engineers in a variety of fonnats, not on the analysis of the data or 

for the support of decision-making based on these data. Thus, statistical process control 

tools typically provide the means to monitor a process and its state. They do not provide a 
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means for analysis of the relationships in the process and do not support decision-making 

for the choice of requisite corrective actions. 

An underlying theme of statistical process control is the determination of causality in the 

relationship between the process variables and the product characteristics. It is assumed 

that abnormal variations in product quality are caused by variations in process 

characteristics. Adjustments made to the process will allow the product to conform to 

quality specifications. Desirable output from a complex manufacturing process is often 

the result of a combination of multiple simultaneous and sequential treatments on raw 

materials so that there is a great deal of interdependence throughout the process. In 

modern manufacturing environments, for example, data for hundreds of variables are 

collected and examined from all parts of the manufacturing process at frequent intervals. 

The use of statistical process control to examine the results of single measurements of 

process characteristics, while simple and easy to interpret, fails to capture the multivariate 

nature of complex processes. A linear relationship between process characteristics and 

product quality measures is assumed by statistical process control. Based on this 

relationship, any changes made to one process variable will cause a corresponding 

change in the product characteristics. Linearity may be an overly simplistic assumption 

for the relationships in the process and product quality measures. 

Another basic assumption of statistical process control is that the individual data points 

are independent of one another and that the data are distributed normally. However, for 

many technological reasons, there is a natural tendency for data that are collected from 
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physically close sources to be related to one another. This phenomenon is known as 

autocorrelation. Autocorrelation may exist in data that are collected from the same 

machine, from the same production shift or from the same batch of the product. The 

existence of autocorrelation in data violates the assumptions of linearity and 

independence of individual data made by statistical process control. If autocorrelation 

exists, then data on standard control charts may appear to be out of statistical control for 

the mean at times when the process may be running as a stable product and producing 

good quality product. This is due to the possibility of confounding effects of certain 

variables on others that cause the resultant process to be within statistical control. If any 

corrective action is taken on the process in response to these situations, the operator runs 

the risk of causing a stable process to become out-of-control. It is imperative to consider 

these sequential relationships within the process characteristics when considering their 

overall effect on product quality. 

In situations where there is significant autocorrelation between process variables the 

following situations are possible: 

i) Individual process variables are in statistical control, i.e.; they lie within the mean 

± 3 standard deviations range while the overall process is out of statistical control. 

ii) Individual variables appear to be out of statistical control on process control 

charts while the process is producing good quality product. 
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Such cases may occur if multiple variables are collected from the same part of the 

production process so that there is significant autocorrelation among the variables. This is 

a common situation in modem manufacturing environments where computerized data 

gathering instruments automatically collect data from multiple machines. In these cases it 

becomes clear that statistical process control may not be a suitable method for quality 

control. Hotelling ( 1947) first discussed a multivariate approach to statistical process 

control in such circumstances in 1947 applying multivariate methods to bombsight data 

during World War II. Hotelling developed the r statistic and proposed the use of r 

charts for multivariate quality control. Jackson ( 1956) and Jackson and Morris (1959) 

extended Hotelling's r procedure by using principal components. 

Multivariate statistical process control uses multivariate statistical analysis techniques to 

account for the existing relationships in the data. They provide a more suitable method to 

detect errors in the production process. Manufacturing environments that produce a lot of 

correlated data usually have some variables that display a trend, while others follow this 

trend due to the existing correlation. This data typically has a small number of 

dimensions and a lot of variables that co-vary with these dimensions. Multivariate 

approaches make use of techniques such as principal component analysis and 

contribution plots (Kourti and McGregor, 1996) to identify the direction in the process 

data while taking into account the existing autocorrelation. Contribution plots can be used 

to identify the variable(s) that contribute the most to an out-of-control process. This 

approach is particularly useful for large and ill-conditioned data sets due to the use of 

multivariate methods that take into account the various relationships in the data and 
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provide a more accurate technique for the identification of problems in the manufacturing 

process (Kourti and McGregor, 1996). One drawback of multivariate control charts is that 

they do not directly provide the information an operator needs, such as, the location of 

problems in the process and an explanation of its causes. 

An important contribution of information technology to statistical process control is the 

rapid delivery of on-line measurements of process data. This is achieved through a 

combination of multiple data collecting instruments and computer networks that collect 

and deliver information to sites that can assimilate all the data and update the control 

charts. Such an approach, combining the techniques of statistical process control and 

engineering process control, can provide an important tool for quality improvement 

(Montgomery, Keats, Runger and Messina, 1994). Information technology can help 

achieve the rapid identification of the sources of an out-of-control condition through 

database access and query techniques. Such techniques, however, often involve a time 

delay in which relevant data is retrieved from the database and analyzed and processed so 

it can be displayed. Depending on the size of the database and methods of access, this 

time delay may be too large to serve the purpose of real-time analysis and display. This 

delay is further compounded when multiple sets of control limits must be maintained and 

mUltiple charts must be updated simultaneously. The inability to manage large amounts 

of data is often an obstacle to the maintenance and real-time update of mUltiple control 

charts. More informative and intuitive graphical interfaces are needed to make the 

information presented by the control charts understandable for all operators and 

engineers. 
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Recently, object-oriented techniques (Ham, Jeong, and Kim 1996) and simulation 

methods (Grega, 1996) have been proposed as possible solutions for process control. 

Object-oriented methods provide an effective way to model the manufacturing process 

and incorporating the relationships between the entities of the system but they have no 

predictive or explanatory capability (Ham, Jeong, and Kim 1996). Simulation methods 

recognize that process control systems are event-triggered systems and attempt to explain 

the relationships of the system and predict its future behavior. They provide a powerful 

method for the analysis of the process data and provide a mechanism to support decision

making for process control (Grega, 1996). The goal of simulation-based methods is to 

provide techniques for the analyst to understand the current environment and predict 

future states. Model-based approaches provide a deep understanding of the process and 

facilitate decision-making within the process control environment. Depending on the 

level of accuracy and sophistication of the simulation model, simulation driven 

techniques can assist decision-making for linear and non-linear models of the process. 

However, simulation models are typically theory-based and may not reflect real operating 

conditions (Grega, 1996) and the nuances of the actual implementation may not be 

incorporated in the model. More effective methods are needed to analyze a large amount 

of complex process control data in order to unearth knowledge useful for controlling 

large, data intensive, manufacturing process in real-time. 
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3.3 Real-time Requirement of the Process Control Problem 

An important and practical element of the design of systems to support decision-making 

for manufacturing processes is the temporal constraint of the problem domain. With the 

advance of manufacturing technology, more sophisticated methods produce more product 

in smaller amounts of time. When the process is producing a product of inferior quality, it 

will continue to do so, leading to more waste and consequently larger losses for the 

organization. This makes the task of detection and correction of errors more demanding 

in modem manufacturing environments. It seems reasonable for any system that is 

designed for the monitoring of such processes to function within a temporal bound to 

provide critical information on the status of the product in real-time. This is an important 

consideration in the design of such systems in order to minimize the waste and provide 

warnings to operators as early as possible so that measures can be taken to try to correct 

the problem. 

Real-time processing is an interesting area of research that has not received much 

attention in the literature. A real-time system is defined as a system that can perform state 

transitions bounded in the temporal dimensions of the problem domain (Kratzer, 1992). 

All systems are required to enact changes of state in the current environment; hence the 

additional requirement placed on a real-time system is the temporal bound. A real-time 

system can be thought of as a conventional system with temporal bounds. The violation 

of such bounds may invalidate the operational consistency requirements of the problem 

domain. Real-time algorithms can then be defined as those that can be guaranteed to 

execute within a specified response-time window. Real-time systems have greater 
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requirement in terms of speed, interrupt scheduling and prioritization as compared to 

conventional process (Kratzer, 1 992). This research uses a loose definition of the 

temporal bound to define the real-time requirement of the system. A stricter definition 

would require virtually instantaneous response times that may not be a requirement of the 

system as defined by the problem environment. This definition of the temporal bound is 

used to define the real-time requirement of the process control problem. This requirement 

is a pragmatic one in the context of continuous manufacturing environments where a 

faster response time can directly translate in to a decrease in the number of out-of

specification products produced and a consequent decrease in waste of resources. 

Modern manufacturing environments can be characterized as continuous, data-intensive 

and very dynamic problem environments. Suitable modeling techniques for these 

environments must be dynamic in that it must be able to detect changes of state and make 

the required adjustments to incorporate these changes. Computations performed must be 

completed within the temporal bounds defined for the system in order to ensure 

effectiveness. Many current real-time systems in manufacturing process control use a 

real-time implementation of statistical process control (Badavas, 1 993). Data from all 

parts of the manufacturing process is collected in a data repository. This is achieved 

through the use of data communication software that updates this repository of 

production and other data. The software responsible for the updating control charts 

accesses the real-time database for the most current information. Users may be allowed to 

add or remove the charted elements based on variables that are of particular interest at the 

time. A schematic for a typical real-time statistical process control system is provided in 
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Figure 3.2. Such systems are on-line versions of statistical process control systems and 

other than satisfying the temporal requirements, do not provide any additional analytical 

or modeling benefit over traditional statistical process control systems. 
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3.4 Artificial Intelligence in Process Control 

In recent years, there has been much interest in the application of artificial intelligence to 

provide techniques for process control in the engineering and manufacturing literature. 

The ability of artificial intelligence techniques to learn the state of the system from 

process data, to explain and model the system and be able to handle imprecise or fuzzy 

and complex information is seen to have potential for the highly demanding process 

control problem domain (Pham and Oztemel, 1996). Neural networks and expert systems 

are prominent technologies developed by the artificial intelligence community that have 

been applied to develop intelligent applications for control of manufacturing processes. 

Machine learning algorithms deal with the development of machines that can improve 

with experience and increase their efficiency in the domain of application. Many of the 

algorithms that are used for machine learning are similar to the algorithms in data mining. 

The following sections discuss the use of expert systems in process control, machine 

learning and neural networks. 

3.4.1 Expert systems in Process Control 

As stated earlier, expert systems have had demonstrable benefits in aiding non-expert 

decision makers in making decisions in problem domains that require the expertise of 

domain expert. Expert systems have been applied to the problem of process control 

primarily to provide off-line analysis of error situations in the manufacturing process. 

Typically, expert systems have been applied elsewhere in manufacturing industries to 

difficult and unstructured problems such as planning and scheduling (Alexander, 1987). 

The primary difference between statistical process control and expert system applications 
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is the level of support for analysis of states of the process. Historically the analysis of 

error conditions has been left to research and technology scientists, quality experts, or 

very experienced operators who are perceived to be experts in the process (Oakland, 

1 996). Expert systems have typically been applied to formalize the domain-specific 

knowledge of such experts so that it can be used by the system to offer analytical support 

to explain error conditions (Affisco and Chandra, 1990). These systems have typically 

been implemented as off-line systems that analyze the data and provide analysis. 

Many systems have been designed to support quality control using expert systems 

technology and have focused on the methodologies for knowledge engineering and the 

design of explanation systems. Few of these systems, however, are reported to be 

performing satisfactorily (Pham and Oztemel, 1996). Much of the focus of the application 

of expert systems in manufacturing control is in the selection of the appropriate control 

charts to be used for the analysis (Dagli and Stacey, 1988). The application of expert 

systems to process control suffers from the same problems that expert systems 

applications in decision-making for other organizational activities suffer from. Their lack 

of learning and hence the lack of growth in their applicable problem domain is a 

significant. This drawback is especially significant for production systems, which are 

very dynamic in nature due to rapid changes in production and information technology. 

Little support is offered by expert systems based approaches to provide effective means 

for analyzing the underlying causality in the relationships of process variables or for the 

automatic interpretation of out-of-control conditions (Pham and Oztemel, 1996). There is 

some evidence in the literature of attempts to combine machine learning algorithms, 
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including neural networks and decision trees, and expert systems (Calabrese, et. aI., 1 99 1 ;  

Smith and Yazici, 1 992). Pham and Oztemel ( 1996) observe that more research is needed 

in this integration. The goal of these attempts is to design a system with the learning 

capabilities of neural networks and the explanatory strengths of expert systems. 

3.4.2 Machine Learning 

A simple definition of machine learning is given by Mitchell (Mitchell, 1997) as an area 

concerned with the construction of computer programs that automatically improve with 

experience. This embodies a definition of learning as the ability to improve with 

experience. It simply states that the field of machine learning is the construction of 

machines, computers or computer programs that can learn. This definition of machine 

learning defines learning as the ability to improve, with experience, in the task that they 

are assigned. Simon (Simon in Michalski, 1 983) provides a more formal definition of 

learning: 

"Learning denotes changes in the system that are adaptive in the sense that they 

enable the system to do the same task or tasks drawn from the same population 

more effiCiently and more effectively the next time. " 

Machine learning draws from a number of parent fields including artificial intelligence, 

statistics, control theory, information theory and cognitive science. Machine learning 

involves the search of very large spaces of possible hypotheses for one that best fits the 
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are dealt with by statistical or by artificial intelligence algorithms. 
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This discussion of machine learning is limited to machine learning algorithms since they 

have a strong bearing on some very important data mining algorithms. Carbonell, et. aI., 

present a taxonomy of machine learning research to classify artificial intelligence based 

machine learning research (Carbonell et. aI., in Michalski et. aI., 1983). They classify 

machine learning systems along three dimensions: 

i) Underlying learning strategies used: This dimension considers the amount of 

inductive inference that the algorithm is able to develop. Learning can come from 

a number of different methods such as rote learning, learning from instruction, 

learning from examples, learning by analogy, and learning from observation and 

discovery. Learning from examples can be classified based on whether the 

learning comes from looking at positive examples or from negative examples, or a 

combination of both. 

ii) Representation of knowledge: The knowledge that is learned may be 

represented in the multiple forms depending on the functional model of the task 

used. Some forms include: 
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a) Parameters to algebraic expressions: as in regression analysis. 

b) Decision trees: Knowledge is represented as the various branches that a decision 

process may take. 

c) Production rules: These represent a mapping of the conditions under which 

certain actions are taken. 

d) Graphs and networks: The learning from the application of methods such as 

neural networks usually generate knowledge representations as graphs and 

networks. 

iii) Application Domain: The domains in which machine learning systems have been 

applied offers a dimension along which machine learning algorithms can be 

classified. There are a number of such problem domains including voice and 

image recognition, medical diagnosis, chemistry, natural language processing and 

robotics. 

Some major classes of machine learning algorithms that are pertinent to this research are 

neural networks, decision trees, and statistical algorithms that implement methods of 

clustering, regression analysis and principal component analysis. 



61 

3.4.3 Neural Networks 

The study of artificial neural networks has been partly inspired by the branch of artificial 

intelligence that seeks to develop machines that can act like human beings. Attempts to 

model computing activity on knowledge of the working of the brain have been the major 

inspiration of the development of artificial neural networks. Warren McCulloch and 

Walter Pitts developed the concept of neural networks in their work entitled "A Logical 

Calculus of the Ideas Irnrninent in Nervous Activity" (McCulloch and Pitts, 1943). This 

work combined ideas about finite state machines, linear thresholds and decision elements 

and logical representations of various forms of behavior and memory (Minsky and 

Papert, 1988). Limitations in single-layered networks were discovered when Minsky and 

Papert proved that these networks could not represent simple functions such as the 

Boolean XOR function (Minsky and Papert, 1969). Work on neural networks saw 

resurgence in the 1980s with the advent of the back propagation algorithm (Rumelhart 

and McClelland, 1986) and work done on parallel processing and multi -layer networks 

(Mitchell, 1997). 

Mitchell (Mitchell, 1997) observes that there have been two directions of research in 

artificial neural networks: the first direction looks at attempts to model the working of the 

human brain, while the other has been motivated by the attempts to obtain highly 

effective machine learning algorithms. This discussion of neural networks is limited to 

machine learning algorithms that can be applied to decision-making situations. 
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The back propagation algorithm is very commonly used for training neural networks. The 

model of a neural network used by the back propagation algorithm is a multi-layered 

network that consists of a number of nodes that are connected to other nodes by edges as 

shown in Figure 3.3. The neural network consists of input layers which represent the 

input to the system; output layers, which represent outputs of the system; and one or more 

hidden layer that are between the input and output layers and are responsible for 

intermediate processing. The number of input layer nodes is the number of inputs to the 

system and the number of output layer nodes is the number of outputs of the system. The 

number of hidden layers is decided either by some heuristic based on apriori knowledge 

of the relationship between the input and output nodes. A trial and error approach that 

minimizes error rates, number of iterations and prediction errors is often used to 

determine the number of hidden layers. The literature also does not offer any rules on the 

number of nodes in the hidden layer(s). Each layer in a neural network consists of a 

number of nodes. Each node in a layer is connected to every node in the layer above and 

below by an edge. 
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Figure 3.3 A Multi-Layered Neural Network 
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The back propagation algorithm initially assigns random weights to each edge and 

searches the space of possible hypotheses by an iterative process, reducing the overall 

error in the model to fit the training data. The algorithm learns the weights for a multi

layer network by minimizing the squared error between the network output values and 

the target values for these outputs. Many attribute-value pairs represent instances of the 

target function that is to be learned. The target function output can be singular or a vector 

of several real or discrete values. The training examples may contain noise, errors, or a 

combination of these. This feature adds robustness to the algorithm. Mitchell (Mitchell, 

1 997) offers some characteristics of problems for which this technology is well suited. 

The terminating condition for learning in the back propagation algorithm is usually 

implemented as the point when the overall training error, measured by the difference 

between the outputs and the targets, falls below an acceptable level. 

The back propagation algorithm iteratively reduces the difference between the observed 

value and the computed result of inputs by adjusting the weights of its edges between 

each pair of nodes in the neural network. This difference between the observed output 

values and the output values generated by the neural network is known as the training 

error. For a neural network using the back propagation algorithm, the training error 

typically has an exponentially decaying pattern that assumes an asymptotic form after 

achieving a certain error rate. The neural network is trained to the region just before it 

achieves this asymptotic value. Stopping the training process well before this value is 
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achieved decreases the accuracy of the neural network, while training beyond this region 

reduces the generalizability of the neural network. 

The learning rate represents the aggressiveness with which the neural network achieves 

the trained weights for the nodes. A higher learning rate in a neural network will achieve 

lower error rates in a fewer number of iterations but may fail to capture the nuances in the 

variations of the data. Lower learning rates may over-involve the neural network in 

capturing random variations in the data without significant gain in the training, and 

thereby significantly increase training times without corresponding gains in accuracy. 

Learning rates typically range between five percent and ten percent depending on the 

nature of the data and the extent of random variations within them. There is a trade-off 

between over-fitting the model and the ability to generalize the model that must be 

considered here. As the model iteratively reduces the error rate, it has a tendency to over

fit the training data. This tendency may result in a loss of the ability to generalize the 

network to other problems. There is little in the literature in terms of offering guidelines 

on how to deal with this trade-off and a combination of judgment, heuristics and standard 

values are commonly used. Neural networks have been very successfully applied in a 

large number of application such as control systems, robotics, automation of 

manufacturing, control of self-driving vehicles and aircraft, voice recognition, image 

recognition, economic prediction modeling and many more engineering and business 

applications (Mitchell, 1 997). 
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Neural networks have been successfully applied to solve many manufacturing problems. 

They have been used for their ability to capture complex, non-linear relationships in 

scheduling, computer integrated intelligent manufacturing and process control (Dagli, 

1 994). The design of hybrid intelligent systems that use a combination of neural networks 

and rule-based expert systems have also been suggested in the literature to utilize the 

strengths of each technique for providing explanatory and predictive capabilities to the 

process control system (Madey, Weinroth, and Shah, 1 994). Intelligent systems need to 

learn autonomously and adapt in uncertain or partially known situations in order to 

progress to full engineering implementation (Stacey, 1 994). They need to be able to 

predict future states of the system and be able to offer plausible explanations to users as 

to why the states were predicted. Process control systems ultimately will be used as 

decision support systems to help users make decisions about the manufacturing process. 

Such a use of process control systems would benefit from modeling support to help users 

better understand the manufacturing systems. 
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Chapter 4: An Integrated Model 

4.1 Design of the integrated model 

This research proposes a model for the integration of data mining and on-line analytical 

processing to provide intelligent decision-making capabilities. The problem context of 

monitoring and controlling a large automated continuous manufacturing process is used 

as the basis to develop this design. The environment is sufficiently mature in terms of the 

volume of data available, which makes it an ideal candidate for data mining. Typically, a 

large number of variables are involved and there are many complex relationships in the 

data that have bearing on decisions to be made in this environment. 

Design is the use of scientific principles, technical information and imagination in the 

definition of a system to perform pre-specified functions with the maximum efficiency 

(Fielden, 1975). The design of information systems is a goal-oriented activity. Some 

design goals for this system are: 

i} The system must be based on accurate models of the process and use these models 

to support analysis of the process. 
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ii) The system must be able to take a proactive role in the identification of imminent 

errors in the process and detect the possibility of their occurrence. 

iii) The system should use the knowledge from the process models to answer 

questions about the process, provide information about normal operations and 

probable causes of error. 

iv) The system should be able to react to anomalies in the process in a responsive 

manner and suggest possible causes. 

v) Models of the process must constantly adapt to changes in the process. 

These characteristics imply that the system can quickly and intelligently process huge 

amounts of data and react to subtle changes in process characteristics, evaluate their 

threat and offer adaptations to deal with these threats. 

Based on the above goals of the system, the following components of the proposed 

system are developed. 

i) A set of Accurate Models derived from the data, which can be used to explain 

the relationships that exist in the data. 



ii) A Model Updating component to allow for evaluation and re-generation of the 

process models so that they reflect the current states of the process. 

iii) A Proactive Analysis Component that can analyze current data as the system 

acquires them and check for the extent of conformity of the current data with 

known models of the system. If the current data falls into any known patterns of 

failure, the system can serve as an early warning system so that potential failure 

can be avoided. 

iv) A Query Response Component that can answer questions from users about the 

current state of the process based on the models of the system and current and 

historical data. 
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A number of methodologies can be used to create sophisticated models depending on the 

data mining technique employed and the nature of the data used to create these models. 

For example, the use of artificial neural networks will create a complex model that is very 

accurate in terms of predictions and learning the nature of the data sets. Models created 

using neural networks are not very easy for humans to understand and effort effort is 

required to explain the results generated by neural network models. On the other hand, 

decision trees offer a mechanism of creating models of the data that is easy to understand. 

However, the level of accuracy and extent of conformity with actual data using this 

approach is not as high as that obtained by using neural networks. 
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The data used to develop the models may be known as "good" process data so that the 

system learns descriptions of a good process and recognizes the normal state of operation 

of the process. An equally valid approach is to train the system with "bad" process data 

so that the system is focused towards recognizing out-of-control states of the process and 

can quickly recognize such states from the current process data. There is also the 

possibility of creating a system that combines mUltiple data mining models and the types 

of data used for training. This approach seems to hold more promise for creating a set of 

sophisticated models; however, it has high processing and analytical requirements. 

Data from dynamic processes is inherently dynamic. This implies that the relationships in 

the data are subject to change. Therefore, any system that supports decision-making 

based on these models should dynamically update the models to reflect current states of 

the process in light of changes in the operating environment. Otherwise, users run the risk 

of making decisions on information that does not hold true in the current environment. In 

the proposed system, the data mining component responsible for the maintenance of the 

explanatory models of the system must constantly evaluate these models based on new 

data. This process would keep the models up-to-date with the current data from the 

production process. This must be done in parallel to, and separate from, the active, on

line components of the system. 

OLAP allows for the analysis of large quantities of multi-dimensional data by giving the 

user multiple views of the data. OLAP stores these multiple views of data and stores 

aggregates with the data so that these views can be made available to the users in a much 
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more responsive manner. These views of the system data are defined based on the models 

of the process created by the data mining component, so that the system can explain and 

provide suggestions on queries regarding the states of the process. For example, suppose 

that for a set of variables, the values for of means and standard deviations are seen to be 

critical to the identification of out-of control states. Data cubes can be constructed with 

these dimensions and made available to the OLAP components so that it can be available 

for on-line analysis of the system. 

The above sections have described the design goals of the system in general to provide an 

explanation of the rationale behind these choices. The following sections describe the 

model for the system to integrate the technologies of data mining and OLAP to provide 

real-time process monitoring and control that will satisfy the above design goals. 

Descriptions of each component's implementation to achieve the design goals are 

provided. 

4.2 Components of the Model 

The proposed model of the integrated system consists of the following five components, 

as shown in Figure 4. 1: 

1. Manufacturing Process. 

2. Data Repository. 

3. OLAP Component. 

4. Data Mining Component. 

5. User Interface. 
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4.2.1 Manufacturing Process 

The application domain is a large, fully automated, continuous manufacturing unit, such 

as, an assembly line environment, where data collecting equipment periodically collects 

various established performance measures. These data points are typically established 

before the design of the process control system. Data collection instruments, with the 

help of data storage systems, deposit this data in a data repository. Production monitoring 

systems use this data to monitor the state of the system and establish whether the system 

is running within established parameters. An important feature of the production process 

data is that it is multi-dimensional, i.e., it is derived from the many processes of the 

production system and has information about multiple aspects of it. 

Process control systems are event driven systems. In current process control systems, if 

critical variables are out of their established ranges they are "flagged" and manual 

intervention is required to investigate and solve the problem. To achieve this, certain data 

items are identified as being critical measures of process performance. The process is 

assumed to be running in a normal state of operation when these variables are within the 

established parameters. When these variables are outside of the established range, a 

"triggering" event is said to occur. Such events identify critical error conditions that 

signal a disruption of the steady state of the process. In current systems, the 

characteristics of such events are typically identified by expert opinion. 
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In the proposed model, the event triggers are identified by a combination of expert 

opinion and applying data mining techniques to the manufacturing data repository for a 

set of variables that can be used as predictors for the state of the system, with acceptable 

levels of accuracy. A possible criterion would be to identify variables that have a high 

correlation with the likelihood of system failure. This set of variables would be constantly 

under review by the data-mining component of the system, which identifies the best 

performance predictors and their relationships with quality measures. These variables 

would be made available directly to the OLAP sub-component from the data collection 

instruments of the manufacturing process. This allows the system to quickly identify and 

react to emerging trends in the current process and keep the response time for the system 

to a minimum. The raw system performance data is also passed to the data repository for 

permanent storage and future processing purposes. Logic can easily be incorporated into 

the OLAP SUb-component to sieve out these variables based on information obtained 

from the data mining sub component. It is recognized that this introduces a level of data 

redundancy in the system; however, this choice is made in the interest of response time. 

4.2.2 Manufacturing Data Repository. 

The manufacturing data repository stores multitudes of data from all parts of the process. 

The different data collection units from the entire process automatically store this data in 

the data repository. For most firms, this data is critical process data that is collected to 

monitor and control the manufacturing process. Scientific data collection instruments can 

collect millions of bytes of information in very short periods of time. The data is typically 

time-indexed to facilitate easy retrieval and processing. As discussed earlier, most of this 
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data is usually not used by process control systems that use statistical process control 

(SPC), or similar technologies. The ailment that these systems suffer from is not lack of 

data but rather too much data and not enough information, which creates a high rate of 

under-utilization of data. 

Techniques such as data mining, machine learning and neural networks rely heavily on 

the availability of sufficient volumes of "good" data to develop models of processes in 

sufficient detail to explain and predict the performance of the system. In environments 

where multiple systems are collecting data and feeding it into a common data repository, 

it is quite common that some data points will be lost. This could happen for a variety of 

reasons such as a malfunctioning data collection device or data loss in transmission. Such 

phenomena are causes of missing data. It is critical to have a data-cleaning step to 

examine and process such conditions and guarantees an acceptable "quality" of the data. 

These data points may be replaced by nominal data, or some other technique may be 

applied to account for such conditions. It is very likely that raw data would be collected 

in a number of different scales. An additional pre-processing step is to normalize all raw 

data to a common scale through mean centering and variance scaling, to allow for further 

processing. The manufacturing data repository provides the data input interface for two 

critical components of the system, the OLAP component and the data mining component. 
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4.2.3 Data Mining Component 

In the context of a real-time process control system, data mining can be used to extract 

meaningful relationships between the various data items in the production data. The data

mining component of this system is divided into two parts: 

a) Creation of the Model Base - responsible for creation and maintenance of the 

models associated with the process. 

b) Interaction with the OLAP component - responsible for interaction with the 

OLAP component and passing the correct model parameters of the system to use 

for analysis. 

a) Creation of the Model Base 

The result of data mining is a set of models that describe the operation of the process in 

normal operation and model the conditions under which failure may occur. Also the 

models should be able to predict future states of the system, given information on the 

current state. The objective of the data mining process is to create a "model base" which 

describes the correct and incorrect operation of the production process in terms of process 

variables. Upon creation and validation, these models can be used by the OLAP 

component to evaluate the process at any instant in time with respect to its stability and 

likelihood of failure. 
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For this research, the data mining task involves searching for patterns or trends in data 

elements that frequently occur preceding the occurrence of an error condition. These may 

involve establishment of acceptable parameters for data elements, composite or 

otherwise, that lead to an error condition. Initially, the models are created from the 

complete data repository of the system in an off-line mode separated from the on-line 

component of the process control system with the help of expert opinion. They are tested 

and validated on historical data before being deployed in the system. The model base is 

updated on a regular basis, especially if known changes are made to the process 

parameters. The two primary functions that the models developed using data mining must 

serve are: 

1. Predict failures of the manufacturing process. 

11. Provide models for the analysis of the process. 

i. Models to predict failure of process. 

A primary requirement of models needed to support process control is that they must be 

able to identify imminent failures of the system and provide early warning. The system 

needs to learn the historical patterns that have historically led to failure by using data 

mining techniques. Before a model can be used to predict a state of any system, the 

characteristics of the state to be predicted must be operationalized. In other words, there 

must be a set of defined inputs and outputs that can be used to describe the states of the 

system. A set of variables that are perceived to be critical to the steady operation of the 

system was gathered from expert opinion. When anomalous deviations in these variables 
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occur, the process is out-of-control. A snapshot of the entire set of process variables will 

be used as the input to this model to develop predicted values of the critical variables. 

An artificial neural network based on the back propagation algorithm is developed and 

trained on the actual data from the manufacturing process. This neural network is used to 

examine data from the system and predict whether the critical variables are within their 

established ranges. Information regarding the predicted values of these variables, 

obtained from the neural network, will be used to predict failure in the manufacturing 

process. This is different from other methods of error detection in that the prediction is 

obtained from non-linear models of the system that consider the inter-relationships 

among process variables. 

ii. Models for analysis of the process 

Data mining can construct models from the process data but does not provide any 

guarantees on the effectiveness of the models. The criteria for which the search was 

carried out and the types of models, patterns and associations that were being mined for 

determine the effectiveness of these models. The models that are generated must be 

interpreted, evaluated, validated and tested on the real system. These models may be 

examined by a variety of techniques including expert opinion and testing. The predictions 

of the developed models can be tested on historical data sets where there is a known 

occurrence of failure to see if, and when, the system predicts the failure. The output of 

these steps is a set of descriptive and predictive models that explain when and why error 

conditions occur in terms of the target data set. 
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b) Interaction with the OLAP component 

The data mining component identifies the views that the OLAP component needs to 

support to the efficient analysis of the data. For effective analysis, the OLAP component 

requires views of the process based on the model that is currently being used to analyze 

the data. The neural network is trained for steady state operation of the process and made 

available to the OLAP component to analyze the current snapshots of the process. A 

snapshot of the process is defined as a vector of all the inputs to the neural network. 

The OLAP component must also provide means for the analysis of the variables 

responsible for error conditions as they are detected. The data mining component will 

react to requests by the OLAP component and provide models required for analysis based 

on the current error condition being analyzed. The application of the data mining 

techniques gives the system a "model base" to describe causes of possible error 

conditions in the data. A model of the system would identify a set of trends in the process 

that should continuously be checked. A model would define a "time-window" that 

corresponds to the number of data points required to make valid and accurate predictions 

of imminent failures from the incoming, real-time process data. It also would define a set 

of parameters that identify and describe a set of key variables that can be used as event 

triggers to identify possible error conditions in the process. The interaction of the models 

of the systems as defined by the data mining components is passed to the OLAP 

component for constant analysis of the system. On identification of non-conformity to the 

process model, the OLAP component queries the data-mining component for either a 
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changed model or an error condition. This information is passed back to the OLAP 

component. If there is no conformance to any model present in the data mining 

component's model base, then an error condition is said to occur and this information is 

passed to the OLAP component. Otherwise, a different set of trends and parameters are 

passed to the OLAP component and a process model changeover occurs. New data may 

be obtained from the data repository and the process starts to be monitored. 

4.2.4 OLAP Sub-Component 

OLAP is a class of technologies that provides multidimensional views of data supported 

by multidimensional database technology. This technology is suitable for 

multidimensional data that includes a temporal component, as is the case in 

manufacturing process data. The OLAP component accepts event trigger data from the 

multiple data collecting devices of the process and analyzes them to see if sufficient 

evidence can be found for the likelihood of an error condition. This process follows the 

simplistic view of process control where certain variables or clusters are checked for 

conformity to known models of a normal state of operations. These models are derived 

from data mining algorithms that consider the normal operation of the process. For this 

research, this would be the trained neural network that analyzes process data to see if the 

process is in or out control as defined by abnormal variations in these critical variables. 

When the critical variables are within appropriate ranges, the OLAP component does not 

have to do anything. The actual results as obtained by the process would serve as a 

confirmation of the fact that the process is not going out-of-control. When an event 

trigger detected by the OLAP component identifies an imminent problem in the process, 
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action is required. The first course of action is to flag the process to be leaving the nonnal 

operating range and hence infonn the user of an imminent problem in the process. This 

can be done by a simple comparison of the predictions from the neural net and nonnal 

operating range means of the critical variables of the process. This is further reinforced 

by comparison with the actual values from the process. 

When the process is leaving nonnal operating range, two questions need to be answered 

by analysis of the variable(s) that identify the process to be out-of-control. The process 

control system needs to identify causes of these abnonnal variations in the critical 

variable from abnonnal variations in variables that occur before the critical variable, and 

it needs to identify what the nonnal values of these variables are so as to provide some 

indication of corrective action required. The data mining component develops decision 

tree models for relationships between the critical variables and all variables that occur 

downstream. Once an unsteady variation is identified, the model(s) pertaining to the out

of-control variables is requested by the OLAP component from the data mining 

component. In such situations, the OLAP component requests a snapshot of the current 

state of the system from the production data repository. This snapshot would consist of a 

time window of process data. For example, the OLAP module may require all process 

data from the last hour of operation, or it may require data from a defined cluster of 

variables for a certain period of time. The content of this data cube would be defined by 

the model of the effect of the critical variable that is out-of-control and the set of process 

characteristics that it is known to affect. The fact that these models are predictive and 



descriptive in nature allows for the forecasting of results from the out-of-control 

condition. 
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If sufficient evidence of process error is not discernible from the event triggers, then it 

must be the case that models for the current condition do not exist. The OLAP component 

passes the variables under consideration to the data mining component and new 

associations must be derived for those data items as relationships develop between the 

critical variables and the process variables under consideration. Depending on the 

observed data and the extent of system information, the OLAP component may query the 

data mining component for its data for error conditions that may possibly be developing. 

If this query returns a positive result, then the results will be passed to the user interface 

along with explanations of the possible errors that may be developing, a prognosis and 

possible remedies. In either case, a set of output and input variables are passed to the data 

mining component for it to search for associations. 

4.2.5 User Interface. 

The user interface interacts with the OLAP component to display information on the 

status of the process. If an error condition occurs the user interface uses audio alarms and 

graphical displays to alert the user. By interacting with the data-mining component, the 

OLAP component obtains information on possible causes and remedies for the occurring 

errors. This information can be passed to the user using drill-down features. Depending 

on the complexity and sophistication of the model base, it may be possible to provide 

decision support features such as queries on deciding possible remedies and their efficacy 
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in the given situation. Under normal operating conditions, the OLAP component has a 

complete set of information on the operating conditions of the process and can provide 

information on the various parameters and components of the production system. This 

research is concerned with the implementation of the model to study the interaction of the 

data mining and OLAP components to provide a real-time process control system that 

supports intelligent decision-making. The interface component is not of primary concern 

in this research. 

4.3 Summary 

Production environments collect large amounts of data from all parts of the production 

process at frequent intervals. Over time, this results in enormous repositories of data that 

are not being used. This multidimensional data contains vital information about the 

production system and the relationships of the components of the system. Current 

techniques in process control do not offer explanatory and predictive capabilities required 

to make sense of the complex relationships and interactions in the process data. Systems 

must be able to use these large volumes of complex data effectively. This research 

proposes a model for a real-time process control system that integrates the data mining 

and OLAP technologies to take advantage of the wealth of information contained in these 

data repositories. The resulting system can predict and explain the occurrence of error 

conditions in the system and adapt itself to changes in the operating environment. The 

model in this research was presented with reference to its application in a large automated 

manufacturing environment, a problem domain that featured continuously generated data 

and required fast responsive and intelligent processing. 
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Chapter 5: Prototype of the Integrated Model 

5.1 Introduction 

This chapter describes the details of a prototype of the integrated system that was 

developed to test the model. The inputs and outputs of the system and their association 

with the manufacturing process that the system models are described. The 

implementation details of applying an OLAP-only apprach and the implementation of a 

solution using an integration of OLAP and data mining components are also described in 

detail . 

5.2 System Inputs and Outputs 

The inputs to the system are a set of forty-one process variables from a critical sub-part of 

the complete manufacturing process called the extrusion process. This sub-process is 

responsible for the final processing of the melted raw materials for conversion to the final 

product and represents a critical stage in the manufacturing process. This sub-process is 

identified by the process experts to be an error-prone component of the manufacturing 

process and is a suitable target application area. A set of observations that represent the 

normal operation of the manufacturing process with nominal errors in the final output 

was used to create a training set for the data mining components of the integrated system. 
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Another set of observations that produced known errors in the output is used as the 

verification set to test the effectiveness of the system. For the prototype, the training set 

contained 10,000 observations of all input and output variables, while the test data set 

contains 1500 observations, including a known number of errors in the final output. The 

following sections describe the implementation of the integrated system and the OLAP 

subsystem. 

5.3 Integrated System Implementation 

The integrated system was implemented as an object-oriented system using the e++ 

programming language. It consists of three major classes that represent the major 

components that are incorporated into the system: 

i) An artificial neural network based on the back propagation algorithm, 

ii) Decision trees for each output based on the ID3 algorithm (Quinlan), and 

ii i) A data class that represents the multi-dimensional data component and contains 

methods for creating multiple views of the data, and stores the actual data with 

statistical information about the data. 

The artificial neural network and decision tree are parts of the data mining component of 

the integrated system, while the data objects comprise the OLAP component. These 

components work together to develop knowledge about the manufacturing process and 

provide access to the data to provide a medium for intelligent decision-making. Figure 
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5.1 shows an expanded version of the model presented in chapter four and forms the 

schematic for implementation and serves as a reference for the subsequent discussion in 

this chapter. 
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Using the training data set, the neural network was trained with the set of inputs of the 

process using the back propagation algorithm. The training data was also given to the ID3 

algorithm to develop decision trees for each of the output variables. The trained neural 

network and the decision trees were developed, tested and stored. This process represents 

the training of the integrated system. The result of the training process was an artificial 

neural network that was trained for the detection of whether an output variable is within 

acceptable limits of operation. Another output of the training process is one decision tree 

for each output variable. A set of rules can be developed from each decision tree that 

identify the different variables that are causes for the errors in the output, as identified by 

the decision tree algorithm. 

After the rules for each of the outputs of the system have been developed and the neural 

network has been trained using the data mining components of the integrated system, 

these components are loaded into memory. The OLAP component of the system initially 

loads the test data as a matrix of the variables of the system across the number of 

observations that are available. Each observation in the test data represents samples taken 

at one-minute intervals. This data is normalized with means and standard deviations that 

are created from the training data that represents the normal operation of the 

manufacturing process. The normalized data is then passed to the trained neural network 

and output values from the neural network are calculated. These outputs are then 

compared with the acceptable limits for the process outputs and are also verified against 

the actual outputs at the time so that the level of accuracy of the neural network can be 

constantly evaluated. 
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If an actual output does not conform to the acceptable limits the system recognizes that 

there is an error in the process. The output detected as out-of-specification is then 

provided as an input to the decision tree component of the integrated system. The 

integrated system stores the rules that were learned as part of the training procedure as an 

array of decision tree objects. These objects take the normalized value of the inputs and 

outputs at that time and trace a path on the decision tree to generate a rule that represents 

the decision tree's estimate of a cause for the error. Rules are represented by a set of 

value for a set of input variables that explain the reason why the output is out of 

specification. In the training and verification stage, the values for the inputs that are 

generated by the rule sets are compared to the actual values for the inputs to verify the 

rules created by the decision trees. 

The result of following a path along the decision tree is a set of variables that lie along 

this path. This set of variables is the integrated system's best estimate of causes for the 

error under consideration. Once the variables that are believed to be the causes of the 

error are known, the set of variables is then passed to the OLAP system as the dimensions 

along which the trends in the process are to be viewed for the error under consideration. 

The OLAP component of the integrated system maintains additional information for each 

variable in the system, including both inputs and outputs for the system. This information 

includes means and standard deviations for each of the variables. This information is 

incorporated into the views of the system developed for the user that is analyzing the 

process. The user can analyze trends in the key variables that are causes of error across 
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time. For instance the user may view the standard deviations that are outside of 

acceptable control limits, note deviations of the key variables from their means and create 

additional customized views on other dimensions. These dimensions may include 

variables organized by physical proximity in the manufacturing process, historically 

error-prone parts of the process and additional dimensions. Many of these dimensions are 

available in the prototype that was created as an illustration of the model. The prototype 

does not include a graphical interface; however, data for these dimensions are available in 

memory as data objects and procedures exist for the creation of views based on these 

dimensions. 

The following sections describe each of the components of the integrated system: the 

neural network component, the decision tree component and the OLAP component, in 

more detail. 

5.4 Neural Network Component 

The Neural Network class is implemented as an array of layers of nodes, with an input 

layer, a hidden layer and an output layer. The number of nodes in the input layer is equal 

to the total number of input variables with which the system is initialized. The number of 

outputs for the neural network is the number of outputs for the system. The number of 

nodes in the hidden layer is calculated by the integer result of the division of the number 

of input and output layer nodes. In the case of the prototype system, the number of hidden 

layer nodes is approximately fifteen. The two outputs represent the variables that have 

been identified by process experts to be critical measures of process stability. The neural 



9 1  

network was trained on data that has been normalized using the model means and 

standard deviations for the production process. A standard learning rate of 5 percent was 

used to train the network. The neural network is trained to within acceptable range of 

error equal to 1 0% by using the training data that represents the normal operation of the 

manufacturing process. 

After one instance of the neural network is created, the training behavior of the neural 

network object requires references to data objects that represent the process inputs and 

outputs. These data objects contain the data in normalized form and the model means and 

standard deviations for the process as data members. The neural network object slices 

row vectors of these data members and feeds them into the input layer and moves them 

through the neural network layers according to the back propagation algorithm. Errors in 

the output layer are calculated according to the standard back propagation algorithm. The 

entire training set is treated as the input and output matrix for the training of the neural 

network and the neural network is trained on this training set until the network achieves 

an error rate of 1 0  percent. The edge weights of the neural network and all other 

parameters of the neural network are stored in file so that the network can be reloaded 

from file without having to re-train the network. 

5.5 Decision Tree Component. 

The decision tree component of the integrated system is implemented as an array of 

pointers to decision tree objects with one tree for each output. The decision trees are 

trained with the same data as the neural network. The purpose of the decision tree 
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creation is to create decision paths for each output of manufacturing process in terms of 

the inputs of the process. 

The inputs are categorized based on the standard deviations of the variables. For 

example, input variables that have a normalized value of one are placed in a different 

category than variables that have a normalized value of two. The entire training set is 

used to create the decision trees. The root node of each of the decision trees is the input 

variable that has the largest discriminating power to discriminate between the states of 

the process. Each subsequent node of the decision tree is an input variable of the 

manufacturing process. The number of children for each node of the decision tree is 

based on the number of categories that the variable exhibits in the training data set. 

The output variables are categorized based on the acceptable control limits as set by the 

manufacturing process experts, which is ± 3 standard deviations. The classification of the 

output variable is a Boolean classification, where a 0 represents an output variable that is 

within acceptable limits while a 1 represents an output variable that lies outside of the 

control limits. Once the training set is adapted into categorized values the decision tree 

algorithm uses these categorized values to create the decision tree that creates branches at 

each node based on these values. Every leaf node of the decision tree contains a 0 or 1 

that represents whether the path from the root to this particular leaf node results in an 

acceptable or unacceptable value of the output. 



93 

Each possible path of the decision tree contains a set of input variables, their respective 

value ranges and a state of the system represented by the value of the output. This can 

easily be formatted into an if-then rule that lays out a condition for the output of the 

system to be within, or outside of acceptable limits. For example, assume that Figure 5 .2 

represents a decision tree with three input variables. Each of these input variables has two 

categories and the output variables have two categories, 0 and I ,  that represent the output 

being within or outside control limits. 
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category 1 

category 1 category 2 category 1 category 2 

Figure 5 .2 Example Decision Tree 
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The decision tree of figure 5.2 can be interpreted into rules based on the values shown. 

For example, the left-most path of the decision tree of figure 5 .2 generates the following 

rule: 

If Input 1 is in category 1 and Input 2 is in its category 1, 

Then the output is out of specifications. 

Rules are created for each possible path of the decision tree, from the root to every leaf 

node. All such rules can easily be created and stored in the system by the above path 

traversal procedure once the decision tree is loaded into memory. They can be retrieved 

to support the user by analyzing the process for error conditions that have occurred in 

certain output variables. Once the decision tree has been created, it is saved by the system 

so that it can be easily reloaded. 

These data mining components model the existing relationships in the training data set 

and store it in formats that can be later used for predictive and interpretive functions. It is 

important to note that the knowledge gathered by these components is from only the 

information that is contained in the training data set. The trained system represents the 

environment to the extent that the training data set is representative of the environmental 

conditions. Also, this modeling is accurate with respect to the conditions that were placed 

on the data mining algorithms and the assumptions made about the process 

characteristics. These include parameters for acceptable control limits for output 
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variables and the relative magnitude of each category of the input variables. For this 

reason, if any of these environmental conditions or the system parameters were to 

change, the system must be retrained on data that represents the changed environmental 

conditions. Since training the data mining components is a computing-intensive process, 

it must be done off-line. During the time that the data mining components are being re

trained, the on-line system works with the models that are available until the system can 

be re-trained and the new models made available to the system. 

5.6 Data processing component 

The OLAP component of the integrated system is responsible for managing the data that 

is used by the data mining component. The available data consists of raw data from the 

manufacturing process collected at a continuous interval of time from the same part of the 

process. The data represents regions of relatively stable operation of the manufacturing 

process as well as data that has a comparatively greater number of errors in the 

manufacturing process. This data was collected over a period of time during which three 

different types of product were being produced. The process means and standard 

deviations for the stable manufacturing process that are used to create the normalized 

values for the raw data are also available. 

The data component of the integrated system is implemented as a set of data objects that 

contain a collection of multi-dimensional arrays that include the raw process data, the 

normalized data and the names of all the variables. The data objects are instantiated from 

multiple files that contain the raw data collected from the manufacturing process and files 
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that contain the names of all variables. The files are loaded as part of the instantiation of 

the data objects and nonnalized data matrices are created from the raw data. Once the 

data objects are instantiated, they can interact with the data mining components. They 

provide nonnalized data, raw data and variable names used by the data mining 

components to develop and train models of the relationships in the manufacturing 

process. The data component of the integrated system contains behaviors that extract 

infonnation from its components to provide mUltiple views of the data to the user. 

5.7 On-line Analytical Processing 

The OLAP-only approach can easily be implemented by extracting the set of variables 

that are outside of their specified control lirnits at the same time that any of the output 

variables are out of their specified control limits. This set of variables is extracted from 

comparing the nonnalized values of all inputs to the control limits. If a variable has a 

nonnalized value magnitude greater than its control limit then it is flagged as being out

of-control. This is achieved with a single pass through all input variables and all variables 

flagged as out-of-control can be presented to the user for analysis in the same way as 

described above for the integrated system. The presentation of summary infonnation for 

analysis done by the integrated system is similar to that for the OLAP-only approach with 

the exception that the variables that are analyzed are different. We will describe the 

presentation of summary infonnation by the OLAP-only system in the description of the 

OLAP component of the integrated system. Therefore, the primary difference between 

the two approaches is in the set of variables that are exposed for analysis. 
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This difference leads to the development of the validation procedure for the model. The 

model is validated by comparing the set of variables identified as causes of errors by each 

approach and their extent of conformity with what are believed to be the "true" causes of 

the errors, as identified by process experts. The next chapter explains the approaches to 

validation of the model in detail .  

5.8 Summary 

The components of the integrated system are implemented with interaction between the 

artificial intelligence components that comprise the data mining part of the integrated 

system and the data components which make up the OLAP components. The system is 

implemented using object-oriented methods with objects for the data mining and OLAP 

components. The purpose of the system is to model the relationships that exist in the data 

and extract. These relationships are then used by the OLAP component of the integrated 

system to provide support for analysis used for decision-making regarding the 

manufacturing process. 
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Chapter 6: Model Validation Approach 

6.1 Introduction and Model Validation Approach 

This chapter presents the validation of the integrated model by comparing the integrated 

approach, using a combination of data mining and OLAP, with an approach that uses 

OLAP-only to solve a process control problem. The results obtained by these approaches 

are compared with the results provided by experts of the manufacturing process under 

consideration. The model is validated by comparing the causes of errors identified by the 

integrated approach with those identified by using OLAP-only and those identified by 

experts in the manufacturing process. 

The approach to validating the model is a three-step process: 

i) Comparing the integrated approach and the OLAP-only approach, 

ii) Presenting arguments as to why the integrated approach is more suitable to the 

problem, and 

iii) A formal presentation of results that support the findings. 

First, key dimensions of the process control problem that are important to gauge the 

effectiveness of any solution to the problem are extracted. The integrated system 
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approach and the OLAP-only approach are then compared based on their effectiveness to 

solve the process control problem. Their respective strengths and weaknesses on some 

key dimensions of the process control problem and on the overall system effectiveness 

are evaluated. 

Secondly, arguments discussing why the integrated system is expected to perform better 

than the OLAP-only approach are presented. These arguments are grounded in the 

benefits of the two approaches as they apply to the process control problem under 

consideration. OLAP is not a standard approach to the solution of process control 

problems. It involves the automatic generation of queries to display data when certain 

variables are outside established parameters. The results of such queries on critical 

variables provide trends of the behavior of these variables to the users to support 

decision-making. Hence, the OLAP-only approach captures the essential functionality of 

the statistical process control approach. There is an underlying assumption that these 

critical variables are effective measures of process stability and that any unexplained 

variance in any one of these variables that is outside the pre-specified control limits is an 

indication of instability in the manufacturing process. 

As a third step, some hypotheses that compare the results obtained by the integrated 

system, the OLAP-only approach and the view of the experts on the specific errors, are 

presented. These steps evaluate effectiveness of the integrated system and the OLAP-only 

approach in identifying the causes of errors in the process and providing explanations for 



the causes of these errors. Figure 6. 1 illustrates and summarizes the model validation 

approach. 
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1 .  Comparison: 

2. Argument: 

Present a comparison of the integrated and 

OLAP-only methods by evaluating their 

respective strengths and weaknesses in the 

application domain of process control. 

Present arguments as to why the integrated 

approach is expected to perform better for the 

given problem domain. 

3. Formal Results: Present formal non-parameterized results to 

compare the performance of the approaches. 

Figure 6. 1 Model Validation Approach 
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6.2 Bases for Comparison of Integrated Approach vs. OLAP-only 

The comparison between the two approaches is made on dimensions that are relevant in 

the assessment of the extent to which these approaches provide a viable and useful 

solution for the process control problem. These dimensions are: 

i) The ability to detect and explain errors in the process, 

ii) The flexibility and adaptivity of the approach with respect to changes in the 

product type and changes in standards for individual products and environmental 

conditions, 

iii) Access to summary information about the product and process characteristics, 

iv) The ability to predict errors in the outputs from examination of system inputs. 

The following sections describe each of the above dimensions and their applicability to 

this comparison. 

6.2.1 Detection and explanation of errors 

A primary functional requirement of an effective approach to process control is that it 

should be able to detect errors in the process by examining the process data. This is 

operationalized by identifying critical process variables that are key indicators of process 

stability. These are based on the criterion that if these variables are outside of normal 

parameters, then the stability of the process is questionable, at best. These process experts 

identified two variables that satisfy this criterion for the data under consideration. For this 
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discussion, a process error is defined as a condition where one or both of these variables 

are outside their parameters of normal operation. 

As previously stated, the purpose of the system is to identify error conditions as well as 

existing approaches and to provide causes for this error to provide better input to the 

decision-making process. The proposed system offers explanations of the causes of the 

error so the decision maker can decide on a requisite course of action to correct the error. 

These explanations are the primary contribution of the integrated approach to the existing 

state of the art in process control. 

6.2.2 Flexibility and Adaptivity 

The process control approach should be flexible enough to incorporate changes in the 

manufacturing environment. Changes in product types and their corresponding changes 

in process specifications are frequent occurrences in modem manufacturing processes 

given the prevalence of high levels of automation and flexible manufacturing 

environments. Industrial processes typically produce many types of products that are 

similar. Production of these products place different standards for production on the 

manufacturing process. The design of process control systems must take into 

consideration the changes in standards as production shifts from one product type to 

another. Process control systems should be flexible enough to accommodate changes in 

the values of the control limits as required by production changes from one type of 

product to another. 
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The stability of a process is measured by the degree of conformance of process 

characteristics to established standards. These standards are routinely revised due to 

changes in manufacturing technology or product characteristics. Changes in standards for 

process cause a change in the acceptable control limits of the process control system. A 

process control system must be able to adapt to changes in the operating environment. 

Artificial intelligence-based systems adapt to their operating environment through 

training. This time-consuming and critical task needs to be done carefully so that the 

system parameters reflect the conditions of the environment. Training a system requires 

the selection of a set of model training data that contains both good and bad examples so 

that the system can learn the intricacies of each. A trained system can identify the 

different states of the environment that it models. Care needs to be taken not to over-train 

the system so that the generated model is extendable to other data sets. However, the 

training should be complete enough that a comprehensive set of relationships in the data 

is incorporated in the system, making it effective in identifying and explaining good and 

bad cases. 

The effective modeling of environments whose characteristics change is a very 

challenging task. For an artificial intelligence-based system to be adaptive to changes in 

conditions of the environment, the system needs to be retrained. This includes changes 

due to change in the product type and change due to revisions of the established standards 

for production. Retraining of the system is done off-line whenever external changes to the 
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operating conditions of the environment occur. New models, which reflect the changes in 

the environment, are generated and the system adapts. 

6.2.3 Access to summary information 

At any point in time the system should be able to provide the user with summary 

information regarding the various process and product characteristics to support decision

making regarding the process. The system should be able to respond to queries for 

summary information as well as provide some process critical information on a regular 

basis as an indication of process stability at any given point in time. The presentation and 

content of this information should be done to facilitate making decisions regarding the 

process. 

6.2.4 Prediction Capability 

The ability of a system to accurately predict the conformance of the quality of the product 

to standards by examination of the process characteristics is a desirable feature of a 

process control system. Most current process control methods do not have the capability 

of predicting future product quality by examining current process characteristics. This 

prediction capability is different from looking at current process characteristics to 

indicate current product quality, which is the principle of statistical process control 

methods. Hence, this capability adds to the functionality of existing methods. 
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6.3 Comparison of Integrated Approach vs. OLAP-only 

6.3.1 Detection and Explanation of errors: 

OLAP-only: 

Using an OLAF-only approach, the system will always offer an 

explanation for errors in the output. As stated earlier, an error is a set of 

observations in which at least one of the critical process variables is outside its 

acceptable range of operation. The OLAF-only approach can easily identify all 

the variables that are out of range while the output is out of range. Hence, the 

explanation that the OLAF-only approach offers is a set of input variables that are 

outside their range of specification while the output is out of its specified limits. 

At best, this approach offers information on out-of-range co-variance ofthe input 

variables with the output variables. This output is limited to the pre-specified 

limits on the input and output variables of the system. It is clear that the results 

provided by the OLAF-only approach suffer from the same limitations as those 

offered by traditional statistical process control. As with traditional statistical 

process control, there is no information on the causes of these errors or the 

relationships between the erring input and output variables. 

Integrated Approach: 

The ability of the integrated approach to detect and explain errors comes 

from the combination of the data mining and OLAF components in the integrated 

system. Recall that the OLAF component detects a process error by detecting a 
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condition where an output variable is outside its established range. The out-of

control output variable is used to traverse a decision tree to determine the 

variables that may explain the causes for the error. These variables are then used 

to retrieve summary information via the OLAP component to inform the user of 

the causes and their behaviors leading up to the detected error in the process. 

Hence, the integrated system detects the errors in the process, offers causes for 

these errors, and provides information related to these causes to allow the user to 

make an informed decision regarding the cause and subsequent correction of the 

error. 

This approach relies on the availability of a path on the decision tree, 

which was created by sufficient training examples so that the tree is trained in this 

type of error. For this reason, the integrated approach may not be able to explain 

all instances of process errors without retraining the data mining based 

components of the integrated system. Specifically, the integrated approach will 

not be able to offer explanations for errors that are novel because they were not 

part of the training set and are new to the learning-based components of the 

integrated approach. 

6.3.2 Flexibility and Adaptivity 

OLAP-only: 

Process control systems should be flexible enough to handle changes in 

the product type and be able to adapt to changes in the standards for any given 
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product. Flexibility and adaptivity in process control address the ease with which 

the underlying assumptions of the system can be modified so the system works 

with a new set of descriptions about the environment. In the OLAP-only approach 

these assumptions represent the control limits of both the input and output 

parameters. In order to change these assumptions, the system has to update these 

parameters. This process can be as easy as loading these parameters from a file. 

Therefore, using the OLAP-only approach, it is relatively easy to modify the 

underlying assumptions of the system. 

For example, assume that ± one standard deviation in the output 

variable(s) is taken to denote a process that is in control. Upon revaluation of the 

process conditions, suppose that it is felt this should be changed to two standard 

deviations. When using OLAP-only, such a change would merely require a 

change in one of the parameters to a query. The same concept can be easily 

extrapolated to incorporate changes in the acceptable control limits for each 

variable in the system, including inputs and outputs of the system. Similar 

changes would be required for changes due to a change in product type in which 

the standards files for each product type are loaded by the system based on the 

product type being manufactured. Hence, changing the operating parameters of a 

system using OLAP-only is relatively easy, showing that the system is rather 

flexible. 

Integrated Approach: 
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Changes in the environment imply that the inherent relationships in the 

environment have also changed. The data mining component of the integrated 

approach models these relationships in the environment. Therefore, if there are 

any changes in the environmental conditions, the data mining components need to 

be trained to incorporate the new relationships in the environment. If any of the 

underlying assumptions are altered, the system needs to be retrained. Changes in 

these assumptions may be due to a change in the product type or revisions in the 

standards for the product. In each case the models that are used by the data mining 

component of the integrated system will have to change. 

To handle changes in the product type, the integrated system stores the 

trained model parameters for each type of product and loads the correct model 

based on knowledge of the current product type. For revisions of the standards for 

any given product, the data mining components of the integrated system must be 

retrained. For example, if the control limits are altered for a given product, then 

the system will need to be retrained so that these changes in the operating 

environment can be incorporated into the models maintained by the system. 

The integrated system is flexible in that it can easily incorporate changes 

in the product type by loading the correct model from storage. The integrated 

system is comparatively less adaptive since the data mining components must be 

retrained in order for it to incorporate the changes in the environmental 

conditions. Training data must be identified and the data mining components of 
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the system must be trained off-line before the system can adapt to changes in the 

operating environment. 

6.3.3 Access to Summary Information 

OLAP-only: 

Flexible and efficient access to summary information about mUltiple 

aspects of the environment is a major strength of the OLAP-only approach. This 

information is based on dimensions that must be supplied to the OLAP-only 

approach by the user. Given the dimensions along which the data is to be 

analyzed, the OLAP-only approach provides efficient access to historical and 

summary information. 

Integrated Approach: 

The Integrated approach incorporates all the benefits of the OLAP-only 

approach through the OLAP component of the integrated system. The primary 

difference between the two approaches is that the integrated approach generates 

the summary information based on the dimensions that are identified by the 

artificial intelligence-based components of the integrated approach. Hence, the 

integrated approach can provide efficient access to summary information on the 

dimensions that are identified by the data mining components of the integrated 

system, in addition to those identified by users' queries. 
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6.3.4 Prediction Capability: 

OLAP-only: 

The OLAP-only approach does not offer any predictive capabilities. There 

is no information with respect to what may happen to the outputs in the future 

based on the current values of the inputs of the system. Poor quality of the product 

is detected by the errors in the critical variables that are constantly monitored. If 

there is an error in these critical variables, then there is an error in the process, and 

hence, the product at that time. 

Integrated Approach: 

The artificial neural network component of the integrated approach has 

predictive capabilities to determine future values of outputs based on the current 

values of the inputs. The neural network can be trained on inputs in the present to 

predict outputs at a later point in time. 

Summary 

Table 6. 1 summarizes the comparisons between the OLAP-only and the integrated 

approach. 



Detection and 

Explanation of 

Errors. 

Flexibility and 

Adaptivity of 

Approach 

Access to 

Summary 

Information 

Prediction of 

errors 

Table 6. 1 

1 1 3 

OLAP-only Integrated System 

Detects and provides Can detect errors in the system. 

information on causes of errors Decision tree component 

based on SPC model provides explanation capability 

Flexible and adaptive approach Training is critical. 

to process control problem Retraining is required when 

environmental conditions change 

Provides quick and efficient Provides summary information 

summary information on on multiple dimensions based on 

multiple dimensions of the rules in the decision tree. 

environment. 

No prediction capability. Neural network component 

provides prediction capability. 

Comparison of features of OLAP-only and the 
Integrated System 



6.4 Arguments for Integrated Approach vs. OLAP-only 

Both the OLAP-only and the integrated approaches offer desirable capabilities for 

process control problems. OLAP offers efficient and flexible access to summary 

information about the system. It also offers flexibility in making modifications to the 

underlying assumption of the system. Some typical queries for an OLAP-based system 

include: 

i) The retrieval and display of data for a variable over a particular time period, 

ii) The retrieval and display of data for any set of variables over any time period, 

iii) The retrieval and display of data over time periods where certain variables are 

outside oftheir control specifications, 
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iv) The retrieval and display of data for variables that are out of specifications at any 

given instance oftime, and 

v) Re-evaluating the overall state of the system when the underlying assumptions 

that decide when a variable is in or out-of-control are modified. 

A primary strength of the OLAP-only approach is the efficiency with which it provides 

the user with effective access to summary information. Since there is no knowledge

based component in an OLAP-only approach, the content of this summary information 

has to be decided upon by the users. In other words, the user must decide on the queries 

to make to the OLAP system. Hence, the nature of the analysis has to be a predefined 

input to the analysis process. 
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A major drawback of using OLAP-only is that any explanation offered by the system is 

based on pre-specified assumptions of simultaneous independent variations in process 

variables. The explanations that such an approach offers are based on the whether a 

certain variable was within its pre-specified acceptable range of variation. Hence, at best, 

OLAP-only provides a list of variables that are outside their acceptable range at the same 

time that the output is out of range. Since there is no process knowledge involved in this 

approach, OLAP-only approach does not offer any indication of causality of the 

variations in the output due to the set of input variables that are outside specifications. It 

can only identify the co-variants of the output from the set of inputs at any instant of 

time. In highly auto-correlated processes, as the most continuous manufacturing 

processes are, it is common for numerous variables to be outside specifications 

simultaneously. Hence, the outputs of the OLAP query provide a large number of 

variables that are simultaneously outside normal parameters, as are the outputs. This 

provides little utility to the user searching for the cause of variations in processes' 

numerous variables. 

OLAP is very efficient in extracting known information from the large volumes of data 

and providing summary information with multiple views of the information. Once the 

relationships in the data are known, using OLAP can significantly enhance analysis of the 

data based on these known relationships. The goal of the integrated approach is to 

augment this capability ofOLAP with the knowledge that can be gained from mining 

existing data. Thus, this approach integrates the capabilities ofOLAP with the knowledge 



gained from mining the data to enable the knowledge-driven analysis of 

multidimensional data. 

6.5 Formal Comparison of Results 
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Errors identified by process experts to be representative of common errors that occur 

frequently in the manufacturing process were used. The experts described the measures 

that were taken to correct these errors. Through these successful corrective measures, it is 

possible to identify the variations in the input variables that would explain why these 

errors took place, according to the experts. The data from the manufacturing process 

containing these errors was analyzed with both the OLAP-only approach and the 

integrated approach. The set of variables identified by each of these systems to be the 

cause of the errors was recorded for each error under consideration. The sets of variables 

identified by using OLAP-only as the causes of error will be compared with the set of 

variables identified by the integrated system. In both cases, the sets of variables identified 

by process experts form the basis of comparison. The schematic of figure 6.2 represents 

the comparisons to be made. 



Variables Identified 
by OLAP-only 

V (OLAP) 

Variables Identified by 
Integrated System 

V (IS) 

Variables Identified 
by Experts 

V (E) 

Figure 6.2 Comparisons of Results from the Three Possible 
Approaches 
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When an error occurs, three sets of variables can be identified: 

v (E): The set of variables identified by the experts to be the 

cause of error; 

v (OLAP): The set of variables identified by the OLAP-only 

approach to be the cause of error; and 

V (IS): The set of variables identified by the integrated 

approach to be the cause of error. 
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For these comparisons, the set difference operation is used to compare the difference 

between the set of variables identified by the approaches. The set difference between two 

sets, x and y, is a set of variables that exist in x but not in y. For the comparisons, the set 

difference operator is defined as: 

Let x = {A, B, C, D, E} and y =  {C, E, F, H} ; 

then x - y = {A, B, D} and y - x = {F, H } .  

Given the sets o f  variables defined above, the following comparisons can b e  made: 

V (E) - V (OLAP): Denotes the variables that experts have identified as contributing 

to the errors, but the OLAP-only approach does not. This result 

represents missing information since these are variables that are 



v (E) - V (IS): 

V (IS) - V (E): 

1 1 9 

actual causes of error, as identified by the experts, but were missed 

by the OLAP-only system. 

Denotes the variables that experts have identified as contributing 

to the errors, but the Integrated System does not. This result 

represents missing information since these are variables that are 

actual causes of error, as identified by the experts, but were missed 

by the integrated approach. 

Denotes the variables that the Integrated System has identified as 

contributing to the errors, but the experts do not. This result 

represents misleading information provided by the integrated 

system. 

V (OLAP) - V (E): Denotes the variables that the OLAP-only approach has 

identified as contributing to the errors, but the experts do not. 

This result represents misleading information identified by the 

OLAP-only system. 

These comparisons show that two types of misinformation may occur as a result of the 

differences between the three sources of information about the causes of error in the 
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output. The result may contain missing information or contain misleading information. 

Table 6.2 summarizes these comparisons. 



Misleading 

Information 

Missing 

Information 

Table 6.2 

OLAP-on1y vs. Integrated System vs. 

Expert Opinion Expert Opinion 

V (OLAP) - V (E) V (IS) - V (E) 

If this is non-null, it implies that If this is non-null, it implies that 

OLAP-only provides IS provides misleading 

misleading information. information 

V (E) - V (OLAP) V (E) - V (IS) 

If this is non-null, it implies that If this is non-null, it implies that 

Experts provide information Experts provide information 

that is missed by the that is missed by the Integrated 

OLAP-only approach approach 

Comparisons of the Three Approaches and their 
Implications 

1 2 1  
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The following hypotheses can be made to assert that the integrated system is more 

effective compared to the OLAP-only approach and is closer to expert opinion than the 

OLAP-only approach. This assertion is made on the assumption that expert opinion 

represents the true causes of errors in the outputs and provides the baseline. 

Hypotheses: 

HI: {V (OLAP) - V (E)} = cp 

This hypothesis states that the set difference between the set of variables 

identified by the OLAP-only approach and the set of variables identified by the 

manufacturing process experts is the null set. This implies that OLAP-only also 

identifies the variables that are identified by manufacturing process experts to be 

the cause of errors. The set difference between the set of variables identified by 

the OLAP-only approach and the set of variables identified by the manufacturing 

process experts represents misleading information provided by the OLAP-only 

approach. If this hypothesis is true, then the OLAP-only approach does not offer 

any misleading information about the errors that occur in the manufacturing 

process. 



H2: {V (IS) - V (E)} = cp 
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This hypothesis states that the set difference between the set of variables 

identified by the integrated system and the set of variables identified by the 

manufacturing process experts is the null set. This implies that the integrated 

system also identifies the variables that are identified by manufacturing process 

experts to be the cause of errors. The set difference between the set of variables 

identified by the integrated system and the set of variables identified by the 

manufacturing process experts represents misleading information provided by the 

integrated system. If this hypothesis is true, then this difference must be a null set, 

which implies that the integrated system does not offer any misleading 

information about the errors that occur in the manufacturing process. 

H3: {V (E) - V (OLAP)} = cp 

This hypothesis states that the set difference between the set of variables 

identified by the manufacturing process experts and the set of variables identified 

by OLAP-only is the null set. This implies that the manufacturing process experts 

also identify the variables that are identified by the OLAP-only approach to be the 

cause of errors in the manufacturing process. The set difference between the set of 

variables identified by the manufacturing process experts and the set of variables 
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identified by the OLAP-only approach represents missing information not 

identified by the OLAP-only approach. If this hypothesis is true, then this 

difference must be a null set, which implies that the manufacturing process 

experts do not offer any information that is missing from the explanations offered 

by the OLAP-only approach about the errors that occur in the manufacturing 

process. 

H4: {V (E) - V (IS)} = cP 

This hypothesis states that the set difference between the set of variables 

identified by the manufacturing process experts and the set of variables identified 

by integrated system approaches a null set. This implies that the manufacturing 

process experts also identify the variables that are identified by the integrated 

system approach to be the cause of errors in the manufacturing process. The set 

difference between the set of variables identified by the manufacturing process 

experts and the set of variables identified by the integrated system represents 

information about causes of error missing from the explanations offered by the 

integrated system. If this hypothesis is true, then this set must be a null set, which 

implies that manufacturing process experts do not offer any information that is 

missing from the explanations offered by the integrated system approach about 

the errors that occur in the manufacturing process. 
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6.6 Summary 

A set of comparisons between the OLAP-only and the integrated system approach to the 

process control problem were presented. A set of arguments why we believe that the 

integrated approach of combining data mining and OLAP would be a more effective 

approach to the problem than the application of an OLAP-only approach are discussed. 

The procedure for a formal presentation of results from the comparison of the results 

obtained by the integrated system, the OLAP-only approach and by experts of the 

manufacturing process was outlined. Some hypotheses to test the effectiveness of the 

integrated approach to the real time process control problem were presented. The above 

hypotheses are tested on known cases of output errors for which expert opinion has been 

obtained. The next chapter presents these results and the tests of these hypotheses. 
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Chapter 7: Model Validation Results 

7. 1 Introduction 

The data sets used for the validation of the model are described, and the characteristics of 

the data used for the training and verification of the models of the manufacturing process 

as part of the model validation procedure are discussed in this chapter. The training data 

sets are used by the data mining components of the integrated system to develop the 

models of the process that can predict and explain errors in the process. The verification 

data sets are used to verify the models that were developed. The results obtained for 

training the models on manufacturing process data are presented. The implications of 

these training results with respect to their usability and effectiveness are presented. 

Trained models of the manufacturing process are then exposed to the verification data 

sets to predict and explain the errors in the verification data. The results obtained from 

the exposing of the models to the verification data sets are presented and discussed. 

These results are then summarized and used to test the hypotheses developed in the last 

chapter. The results of testing the hypotheses are then summarized. 
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7.2 Description of Data Sets 

The complete data set consists of ten thousand observations. Each observation is 

comprised of forty-two input variables and two output variables that represent the 

complete set of data collected from one part of a continuous manufacturing process. 

Output variables are identified by process experts to be critical measures of the stability 

of the part of the manufacturing process under consideration. The input variables are all 

variables that are collected from the part of the manufacturing process under 

consideration. 

On examination of the output values, it is observed that the entire data set is divided into 

three distinct regions that significantly differ in their characteristics. The manufacturing 

process experts confirmed this fact. They explained that three different products were 

being manufactured in the time period. This fact is also reflected in distinct classifications 

in the input variables that also change at the same periods of time. Therefore, the 

complete data set is divided into three sets of observations. Figure 7. 1 shows one output 

variable and its distinct beak-down into the three output regions. This output is divided 

into 3 separate regions which is shown in figures 7.2 (a), (b) and (c). 
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This division of the data into three regions provides three sets of data for analysis. Each 

output region contains three thousand observations of the forty-two input variables and 

the two output variables. Some values were removed since they did not contribute in 

terms of normal operation or error conditions as noted by the process experts. The 

manufacturing process under consideration has automatic data collection equipment that 

takes measurements of various characteristics of the process at predefined regular 

intervals. These observations are taken once every minute and time stamped. The data is 

ordered sequentially by time stamp so that observation number 1 99 was taken exactly one 

minute before observation number two hundred. Each of the output regions has data that 

are collected in a continuous period of time. Each of these regions is further subdivided 

sequentially into a training data set that contains 2500 observations and a verification 

data set of five hundred observations. 

For each output region, the data mining components of the integrated system are trained 

on the training set data. The result of this training procedure is a set of models that 

explain the behavior of the system for the type of data that it is supplied with. The trained 

models are then subj ected to the verification data for that region, and results are 

generated for predictions and explanations generated by the integrated system. This 

analysis procedure is repeated for each of the three output regions. The ability to perform 

these repetitions of analysis provides a level of generalizability to the validation 

procedure across different product characteristics. 
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7.3 Procedure 

For each of the three output regions described above, the data mining components of the 

integrated system are trained on the training set for that output region and the models for 

that region are obtained in the form of a trained neural network and decision trees for 

each output variable. The trained models are then applied to the verification data for that 

output region and the variables that are outside pre-specified control limits are identified. 

This set of variables is compared with the set of outputs obtained by application of the 

OLAP-only approach and the set of output variables identified by the manufacturing 

process experts. The entire set of results is then summarized. Figure 7.3 summarizes the 

steps for training and verification of the integrated system. 



1 .  For each output region: 

1 . 1 .  Train the data mining components o f  the integrated system 

on the training data for that region; 

1 .2 .  Verify by applying data mining models to the verification 

data to identify erroneous observations; 

1 .3 .  Generate explanations from the data mining and OLAP-only 

components; 

1 .4. Compare explanations generated from each approach and 

with those provided by manufacturing process experts; 

2. Repeat for each output region. 

Figure 7 .3 Steps Involved in Procedure for Obtaining Results 
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7.4 Training 

The system is trained on the training data set for each output region to capture the 

nuances of the manufacturing process data and develop models that capture the 

relationships in the data. The data mining component of the integrated system consists of 

a neural network and a decision tree component. Training involves the training of the 

neural network component of the integrated system using the back propagation algorithm 

until an adequate training error rate is achieved. The neural network is trained for each of 

the output regions identified above with the training data set for that region. For the 

decision tree component of the integrated system, training involves the development of 

the decision trees using the ID3 algorithm. Decision trees are also developed for each of 

the output regions with the training data set for that region. Each of these components is 

later verified using the trained data mining components for that region. 

The neural network component of the integrated system is trained using the standard back 

propagation algorithm. The neural network is trained to the region just before it achieves 

this asymptotic value of training error. Stopping the training process well before this 

value is achieved decreases the accuracy of the neural network, while training beyond 

this region reduces the generalizability of the neural network. Learning rates typically 

range between five percent and ten percent depending on the nature of the data and the 

extent of random variations within them. The implementations of the neural network in 

the integrated system are trained using the back propagation algorithm with a learning 

rate of five percent until an acceptable level of error is achieved. The total sum of errors 
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that the neural network is  trained to is  ten percent. In other words, as soon as the error 

rate drops below ten percent the training is stopped, and the parameters of the neural 

network is saved for use in the verification phase of the experiment. The neural network 

typically achieves a satisfactory error rate in approximately 35,000 to 50,000 iterations 

after which the error rate takes an asymptotic value. Table 7 . 1 lists the parameters that 

were used for the training of the neural network component of the integrated system for 

each of the three output regions. 
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Neural Network Parameters Values 

Number of Levels 3 

Number of Output Nodes 2 

Number of Hidden Layer Nodes 1 5  

Number o f  Input Nodes 42 

Acceptable Error rate 1 0 % 

Learning Rate 5 %  

Table 7 . 1  Training Parameters for Neural Network 
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The decision tree component of the integrated system is trained for each output region 

based on the standard deviations of the training data. Training a decision tree involves the 

generation of "if-then" rules to classify each output value of the system based on the 

observed ranges of input values. The modified ID3 algorithm develops categories for 

each of the input and output variables and classifies output observations based on the 

observed categories of the input variables. Standard deviations are used to generate 

categories for the input variables. Using standard deviations to generate categories makes 

implementation efficient since the algorithm is applied to normalized data whose 

magnitude represents their standard deviations from the mean for that variable. A 

difference of three standard deviation units are used to classify the input variables, which 

is consistent with standard practice followed in manufacturing process control. Using this 

method, a variable with a value of three standard deviations or below will be classified 

into one category, while another with a value between four and six will be classified into 

another category. A stricter bound is used for the output variables where any magnitude 

less than two standard deviations is classified to be within specifications, while anything 

higher is considered an error condition. 

These categories are used to create the branches of the decision tree. Every path of the 

decision tree represents a sequence of categories of input variables that lead to a 

classification of the output as being within or outside of acceptable limits. In addition to 

path information, each node of the decision tree also stores the number of examples in the 

training data that follow each of the possible branches disseminating from a node. The 
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number of examples along a path provides a measure of the strength of the path by 

counting the number of examples in the training data set that confonn to the path of the 

decision tree. 

The result of training the decision tree component of the integrated system is a set of 

trained decision trees from which a set of "if-then" rules for each output variable can be 

extracted. Decision trees categorize input variables into ranges of values. Each branch of 

a decision node is created based on the ranges of values, which are incorporated in the 

explanations offered by the integrated system. For example, an explanation by the 

decision tree component of the integrated system would be in the fonn: 

Output A is out of range because 

Input X is in the range xl: x2, and Input Y is less than yl. 

Hence, the explanations offered by the integrated system offer richer content towards the 

support of making decisions than those offered by using the OLAP-only approach. The 

result of training the neural network is a trained neural network that can be used for 

prediction of output values from input values of the manufacturing process. These trained 

components are stored for verification on verification data for each of the output regions. 

The trained neural network and the trained decision tree with satisfactory training results 

are the output of the training process. 



1 40 

7.5 Results 

After the system was trained satisfactorily, the trained system was exposed to the 

verification data set for each output region. Recall that the verification data set for each 

region consists of five hundred observations. Each observation was given to the trained 

neural network, which predicts output values for the given set of inputs based on the 

given set of inputs. Each error in the output was identified by the neural network 

component of the integrated system and was verified by the actual outputs for that 

observation in the verification set of output variables. The difference in the predicted 

value and actual values was calculated to measure the accuracy of prediction obtained by 

the neural network components of the integrated system. Table 7.2 presents the average, 

maximum and minimum prediction errors by the neural network component for the 

verification data set in each output region, expressed as absolute percentage values. 



Region 1 

Region 2 

Region 3 

Table 7.2 

Number of Incorrectly Hit Rate 

Predicted Observations 

1 7  96.6 % 

41 9 1 .8 % 

29 94.2 % 

Verification Results for Neural Network Component 
Expressed as Percentage Difference Between Predicted and 
Observed Values. 
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Each identified error observation was given to the decision tree and the OLAP 

components of the integrated system. For each output variable, the decision tree 

component of the integrated system followed the appropriate decision path in the trained 

decision tree and returned the set of variables along the path as the cause of the error. In 

addition to the set of variables, the decision tree also generated a range of values for each 

variable on its path. This set of variables and their respective value ranges were then 

formatted to generate natural language explanations for the cause. These natural language 

explanations formed the explanations generated by the integrated system. 

The OLAP component of the integrated system was also exposed to the same set of error 

observations. Each observation was examined for conformance to specifications. If the 

outputs were out of specifications, then that observation was an error and the set of inputs 

for that observation were examined for errors. This procedure generated explanation for 

the error by the OLAP component based on the knowledge available to it. This 

knowledge was represented by predefined rules that identify an error condition as the 

condition when variable values are outside their specified limits. The OLAP component 

examined the observation and identifies the set of input variables that were outside of 

their specified limits for that observation. The result of this procedure was a set of 

variables for each error condition that was outside the pre-specified control limits defined 

by the mean ± 3 standard deviations. These variables were the explanations generated by 

the OLAP-only approach. 
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In summary, the integrated system and the OLAP-only approach were independently 

given the same verification data set for each of the output regions. The results obtained 

from these procedures are in the form of identified observations that are believed to be 

errors and a corresponding set of variables that explain the error identified by each 

approach. The verification data was also made available to the process experts, and their 

explanations for the same sets of errors are obtained. Hence, there are three independent 

sets of explanations for the errors in the manufacturing process to make comparisons 

with. The set of explanations identified by the manufacturing process experts was used as 

the basis for comparisons made between the explanations offered by the OLAP-only 

approach and those offered by the integrated system. 

Errors in a manufacturing process usually exist for a few minutes. During this time the 

process stabilizes and the process parameters return to the normal conditions of operation 

due to corrective action taken by operators. Occasionally, the process re-establishes 

without any corrective action. In the data that used for this research, this time period for 

error typically spans multiple observations. In fact, typical errors span multiple 

observations, while single observation errors are usually incorrect readings or "spikes" 

that are essentially outliers that have a negligible effect on the quality of the product. 

Hence groups of error observations that occur in continuous blocks of time are of greater 

concern than individual errors that are occur in single observations. 
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Region One 

Figure 7.4 shows one output variable used for verification for the first output region. It is 

clear from the figure that this is a relatively stable output variable in the verification data 

since it varies relatively close to the mean parameter of 53 1 .7 units. The errors identified 

by the integrated system and the OLAP-only approaches for this region are shown in 

Table 7.3 .  
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Observation 

Number 

23 

46 

55 

82 

1 76 

335 - 337 

Table 7.3 
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Variables identified Variables identified as causes by OLAP-only 

as causes by the 

Integrated approach 

6, 41  4, 6, 7, 9, 1 1 , 1 2, 1 3, 1 8, 1 9, 24, 27, 30, 35, 37, 

39 

6, 4 1  6, 7, 9, 1 1 , 1 2, 1 3 , 1 8, 1 9, 24, 26, 27, 30, 35,  

37, 39 

6, 41  3, 4, 6, 7, 8 ,  9, 1 0, 1 1 , 1 2, 1 3, 1 8, 1 9, 20, 22, 

24, 26, 27, 30, 35 , 37, 39 

6 3, 4, 6, 7, 8, 9, 1 0, 1 1 , 1 2, 1 3 , 14, 1 6, 1 8, 1 9, 

24, 26, 27, 30, 35, 37, 39 

6, 4 1  1 , 3 , 4, 6, 7, 8, 1 1 , 1 3, 14, 1 9, 24, 27, 35, 37 

6 1 , 4, 6, 7, 1 2, 1 3 , 1 8, 1 9, 30, 35 

Verification Results for Integrated System and OLAP
only for First Region 
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The numbers listed in the first column of Table 7.3 are observation numbers, numbered 

from 1 to 499, that represent the time period at which the data was collected. The second 

and third columns represent the indices of the variables that are identified by the 

integrated system and by the OLAP-only as the causes of the errors in the observation 

numbers listed in the first column. Some observations that occur as errors in a group and 

have the same set of variables identified as causes by both the integrated system and the 

OLAP-only approach are grouped together as a set of errors as is true in the last row of 

the table above. As mentioned above, errors in manufacturing processes occur in a group; 

hence, this set is the primary error in this first output region. The previous errors that are 

identified earlier, observations 23, 46, 55, 82, 1 76, also have similar explanations offered 

by both systems with one exception, observation number 1 76. The error in observations 

23 is referred to as error set one; the error in observation 46 is error set # two; the error in 

observations in 5 5  is error set # three; and the error in observation 82 is error set # four; 

observation # 1 76 is error set # five while errors in the observations 335 through 337 are 

grouped as error set # six. It is noteworthy that none of the error causes identified by the 

OLAP-only approach list variable 4 1 .  However, this variable is identified as a cause in 

multiple instances by the integrated approach. 

Region Two 

Figure 7.5 shows both the verification output values for region two. This region has the 

largest number of errors in all the verification data sets. It is clear from the figures below 

that that there are two distinct error regions in this set of output values. The errors in this 

region of verification outputs can easily be grouped together into the two sets that are the 



two primary occurrences of errors in this region. Table 7.4 displays the set of variables 

that are identified by the integrated system and the OLAP-only approach. 
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Observation 

Number 

253 - 301 

35 1 - 500 

Table 7.3 

1 5 1  

Causes identified by Causes identified by OLAP-only 

Integrated approach 

3, 4, 6  1 , 4, 6, 8, 9, 1 1 , 1 2, 1 4, 1 5 , 1 8, 20, 30, 

32, 35, 37, 39 

6, 41  1 , 3 , 4, 6, 7, 8, 9, 1 1 , 1 2, 1 4, 1 5 ,  1 8, 30, 

35, 37, 39 

Verification Results for Integrated System and OLAP
only for Second Region 
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The integrated approach identifies input variables 3, 4 and 6 as the causes of the errors 

for the first group of errors and variables 6 and 4 1  as the set of causes for the second set 

of errors. Input variable 6 is common across all variables identified as a cause of the 

error. As in the first output region, the OLAP-only approach identifies a much larger set 

of variables as the causes of error in each of the set of errors. Input variable 4 1  is not 

indicated as a cause of error by the OLAP-only approach. 

Region Three 

Figures 7.6 (a) and (b) show the verification outputs in the third output region. This 

region is more stable than the second output region. Table 7.4 presents the errors that are 

observed in the third output region and the causes identified by the integrated system and 

the OLAP-only approach. These error observations are divided into three groups based 

on the causes identified by the two different approaches. 
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Observation Number Causes identified by Causes identified by OLAP-only 

Integrated approach 

30, 8 1 , 1 03, 1 1 7, 1 75 ,  6 ,  14  3, 6, 1 1  

1 90, 200, 202, 269, 

289, 3 1 1 , 

370, 374, 378 

42 1 , 427, 479, 489, 

497 

Table 7 .4 

6, 1 4  3, 6, 8, 1 0, 1 4, 24 

6, 1 4  3, 6, 9  

Verification Results for Integrated System and OLAP
only for Third Region 



1 56 

As shown in figure 7. 1 1 ,  the integrated approach offers variables 6 and 1 4  as the cause of 

the errors in this set of outputs. Again, the OLAP-only approach identified a larger 

number of variables as the causes for the errors. In addition, as in the above two output 

regions, variable 6 is a common cause of error that is identified by the two approaches. 

These groups of errors are labeled error sets 7, 8 and 9 in the summary presented later. 

Expert Opinion 

The experts in the manufacturing process have suggested that variable 6 is a major cause 

of error. This variable was collected from a piece of machinery that is regularly serviced 

as part of scheduled maintenance. As this machine component starts to perform 

inconsistently, there are some characteristic spikes that occur due to non-uniform 

temperature differences in the materials passing through it. It was learned that some of 

the machinery was serviced in the time period when the data from which variable 6 was 

collected. Variable 4 1  is the last piece of data collected for the part of the manufacturing 

process under consideration in this research. It is the experts' opinion that any disparities 

in the region of the manufacturing process from which variable 6 is collected, should also 

appear in one or more of the variables 35, 37, 39 or 4 1 .  Experts did not identify variable 

1 4  as a cause of errors in the output in either output region. 

7.6 Summary of Results 

In the first output region, the integrated system identified variables 6 and 41 as the causes 

of error with variable 6 occurring as the cause of error in all cases of identified errors. 
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Input variable 6 is also identified as a cause of error for each error identified by the 

OLAP-only approach. It is clear from the above results that the set of variables identified 

by the OLAP-only approach for each error occurrence is much larger than the set that is 

identified by the integrated system. Based on the experts' analysis, this disparity in the 

size of the two sets implies misleading information was given by the OLAP-only 

approach. 

Table 7.5 summarizes the errors identified by the integrated system and the explanations 

for these errors that were offered by the integrated system, the OLAP-only approach, and 

the manufacturing process experts. The errors are grouped by occurrence as explained in 

previous sections. This figure groups the errors together and enumerating the 

explanations that were offered by the process experts for the time periods represented by 

the verification data set. 
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Error Variables Identified Variables Identified by Variables 

Observation by Integrated OLAP-only: V(OLAP) identified by 

Sets System: V(lS) Experts: V(E) 

Error Set 1 6, 41  4, 6, 7, 9 ,  1 1 , 1 2, 1 3 ,  1 8, 

1 9, 24, 27, 30, 35, 37, 39 

Error Set 2 6, 4 1  3, 4, 6, 7, 8, 9, 1 0, 1 1 , 

1 2, 1 3, 1 8, 1 9, 20, 22, 

24, 26, 27, 30, 35, 37, 39 6, 35, 37, 39, 4 1  

Error Set 3 6, 4 1  1 , 3 , 4, 6, 7, 8, 1 1 , 1 3, 

1 4, 1 9, 24, 27, 35 , 37 

Error Set 4 6 1 , 4, 6, 7, 1 2, 1 3, 1 8, 1 9, 

30, 35 

Error Set 5 3, 4, 6 1 , 4, 6, 8, 9, 1 1 , 1 2, 1 4, 

1 5 , 1 8, 20, 30, 32, 35,  

37, 39 6, 35, 37, 39, 4 1  

Error Set 6 6, 4 1  1 , 3 , 4, 6, 7, 8, 9, 1 1 , 1 2, 

14, 1 5, 1 8, 3� 35, 37, 39 

Error Set 7 6, 1 4  3, 6, 1 1  

Error Set 8 6, 1 4  3, 6, 8, 1 0, 1 4, 24 6, 35, 37, 39, 4 1  

Error Set 9 6, 1 4  3 , 6, 9  

Table 7.5 Summary of Verification Output Values 
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7.7 Hypotheses Testing 

The last chapter presented hypotheses about the efficacy of the integrated system vis-a

vis the OLAP-only approach and the opinions of the process experts. The following 

sections describe the validity of these hypotheses to the data and discuss the implications 

of rej ecting or failing to rej ect these hypotheses. 

Hl: {V (OLAPJ - V (EJ) = tP 

Reject this hypothesis. 

This hypothesis states that the set difference between the set of variables 

identified by the OLAP-only approach and the set of variables identified by the 

manufacturing process experts is the null set. Failure to reject this hypothesis 

would imply that the OLAP-only approach also identifies the set of variables 

identified by manufacturing process experts to be the cause of errors and does not 

offer any misleading information in the verification data about the errors that 

occur in the manufacturing process. 

This hypothesis must be rejected based on the data presented above. For each 

output region and for all identified sets of error, the number of variables identified 

by the OLAP-only approach is greater than those identified by the manufacturing 

process experts. From figure 7. 12, it is clear that this hypothesis was false across 

all sets of observations in the verification data sets. The OLAP-only approach 



1 60 

identifies more variables as causes of errors than the manufacturing process 

experts do. Rejecting this hypothesis implies that for the data under consideration, 

the OLAP-only approach offers misleading information compared to the 

manufacturing process experts. 

H2: {V (IS) - V (E)} = cp 

Fail to reject this hypothesis. 

This hypothesis states that the set difference between the set of variables 

identified by the integrated system and the set of variables identified by the 

manufacturing process experts is the null set. Failure to rej ect this hypothesis 

would imply that the integrated system also identifies the set of variables 

identified by manufacturing process experts to be the cause of errors and does not 

offer misleading information in the verification data about the errors in the 

manufacturing process. 

This hypothesis cannot be rejected based on the results in the table above. The set 

of variables identified by the integrated system to be the causes of error in the 

data sets considered include the variables that are identified by the manufacturing 

process experts. From the results presented in figure 7. 12, it is clear that this 

hypothesis cannot be rejected for the results from the verification procedure. 

There is not sufficient evidence in the data to rej ect this hypothesis. The 

integrated system also identifies those variables as causes of errors that the 
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manufacturing process experts do. Failure to reject this hypothesis implies that for 

the data under consideration, the integrated system does not offer misleading 

explanations in the verification data about errors in the manufacturing process. 

H3: {V (E) - V (OLAP)} = (,f) 

Reject this hypothesis. 

This hypothesis states that the set difference between the set of variables 

identified by the manufacturing process experts and the set of variables identified 

by OLAP-only is the null set. Failure to reject this hypothesis would imply that 

the manufacturing process experts also identify the variables that are identified by 

OLAP-only approach to be the cause of errors in the manufacturing process. 

Failure to reject this hypothesis would imply that the manufacturing process 

experts do not offer any information that is missing from the explanations offered 

by the OLAP-only approach about the errors in the verification data about the 

manufacturing process. 

This hypothesis must be rejected based on the data presented above. In each 

output region for all identified sets of error, the number of variables identified by 

the OLAP-only approach is greater than those identified by the manufacturing 

process experts. Also, all the variables identified by the manufacturing process 

experts are not also identified by the OLAP-only approach. The OLAP-only 

approach provides explanations that are consistently missing some variables 
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identified by the manufacturing process experts to be the causes of error. From the 

results presented in Figure 7. 12, it is clear that this hypothesis is false across all 

sets of observations in the verification data sets. There is sufficient evidence in the 

data to reject this hypothesis, therefore this hypothesis is rejected. The OLAP

only approach identifies more variables as causes of errors than the manufacturing 

process experts do. Rejecting this hypothesis implies that for the data under 

consideration, the OLAP-only approach offers information that is missing 

variables that have been identified by the manufacturing process experts as causes 

of errors in the verification data. 

H4: {V (E) - V (IS)} = l1> 

Reject this hypothesis. 

This hypothesis states that the set difference between the set of variables 

identified by the manufacturing process experts and the set of variables identified 

by integrated system approaches a null set. Failure to reject this hypothesis would 

imply that the manufacturing process experts also identifY the variables that are 

identified by the integrated system approach to be the cause of errors in the 

manufacturing process. Accepting this hypothesis would imply that the 

manufacturing process experts do not offer any information that is missing from 

the explanations already offered by the integrated system about the errors in the 

manufacturing process that occur in the verification data. 
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This hypothesis must be rejected based on the results presented in figure 7. 1 2. In 

each output region, for all identified sets of error, the set of variables identified by 

the integrated system approach is consistently different from those identified by 

the manufacturing process experts. The variables identified by the manufacturing 

process experts are not also identified by the integrated system. The integrated 

system approach provides explanations that are consistently missing some of the 

variables identified by the manufacturing process experts to be the causes of error. 

From the summary table presented in figure 7 . 12, it is clear that this hypothesis is 

false across all sets of observations in the verification data sets. There is sufficient 

evidence in the data to reject this hypothesis. The integrated system approach fails 

to identify all the variables that are identified by the manufacturing process 

experts as causes of errors in the verification data. Rejecting this hypothesis 

implies that for the data under consideration, the integrated system approach 

offers information that is missing variables that have been identified by the 

manufacturing process experts as causes of the errors in the in the verification 

data. 

7.8 Summary 

In summary, hypotheses H I ,  H3, and H4 are not supported by the data and must be 

rejected while hypothesis H2 cannot be rejected based on the results obtained. Table 7.6 

summarizes the results of the hypothesis testing and its implications. 
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Hypotheses Result Implication 

HI : {V (OLAP) - V (E)} = cp Reject OLAP-only approach offers misleading 

information. 

H2: {V (IS) - V (E)} = cp Fail to Integrated system does not offer 

reject misleading information. 

H3: {V (E) - V (OLAP)} = cp Reject OLAP-only approach misses 

Information provided information 

provided by experts 

H4: {V (E) - V (IS)} = cp Reject Integrated System misses information 

provided by experts 

Table 7.6 Summary of Hypotheses Testing Results 
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Rejecting hypothesis HI implies that for the data under consideration, the OLAP-only 

approach offers misleading information as compared to the manufacturing process 

experts. Failure to reject hypothesis H2 implies that for the data under consideration, the 

integrated system does not offer any misleading explanations about the errors in the 

manufacturing process. Rejecting hypothesis H3 implies that for the data under 

consideration, the OLAP-only approach offers information that is missing variables that 

have been identified by the manufacturing process experts as causes of the errors in 

manufacturing process. Rejecting hypothesis H4 implies that for the data under 

consideration, the integrated system approach offers information that is missing variables 

that have been identified by the manufacturing process experts as causes of the errors in 

manufacturing process. 

From these results, it can be inferred that the OLAP-only approach provides information 

that is misleading by identifying variables as causes of errors that are not verified by the 

process experts. The integrated system does not offer any misleading information as it 

identifies variables that manufacturing process experts believe to be the causes of errors 

in the manufacturing process for the verification data set. The OLAP-only approach and 

the integrated system offer information that is missing some of the variables that have 

been identified by the manufacturing process experts to be causes of errors in the 

verification data. 
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Chapter 8: Conclusions 

8.1 Conclusions 

An integrated system consisting of data mining and OLAP components to support 

intelligent decision-making was presented in the context of a real time process control 

problem. The proposed integrated system uses data mining to discover the complex 

relationships hidden in large volumes of manufacturing process data to classify error 

conditions in the manufacturing process. These relationships are discovered from real 

manufacturing process data using an artificial neural network component for prediction 

of future states of the environment and a decision tree component to offer explanations 

for states of the environment. The knowledge in these models can be used for making 

process control decisions for the manufacturing process. This data is organized and 

presented for the decision maker using OLAP to support multidimensional views of the 

data. These multidimensional views are created by the results from the models discovered 

by mining the data from the manufacturing process under consideration. An evolutionary 

approach is suggested in which these models can be constantly updated whenever there 

are any changes in the environment that may cause changes in the relationships modeled 

by the system. 
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The integrated approach can be used to analyze incoming real-time data to predict, 

identify, and explain possible error conditions in the process. As an improvement on 

existing approaches, this approach offers explanatory and predictive capabilities based on 

accurate and adaptive models of the process and offers early warning of imminent 

failures. Once an error occurs, the system identifies this by comparing the incoming data 

with the models of the process. If the error is confirmed, then the current parameters of 

the process are used to generate explanations for why the error has occurred. These 

explanations are provided to the user in the form of easy to understand if-then rules with 

information on current values of the system parameters. The system identifies the process 

variables and reports values that are causes of error. This information is intended to be a 

set of alternatives with which the user can investigate in the physical process in order to 

solve problems with the current manufacturing process. 

The proposed solution relies on the integration of data mining and OLAP to build 

accurate and dynamic models of the process and to provide analytical views of the data 

that support decision-making in this environment. The solution is tested by comparing the 

results obtained by the proposed system with those obtained from using an OLAP-only 

approach. Both these results are validated using opinions given by manufacturing process 

experts as the basis of comparison. Results show that the integrated approach is able to 

identify and explain errors in the process data. It also offers explanations that provide 

information for decision-making about the environment. The integrated approach offers 

content rich explanations about the nature of the errors and their causes. The integrated 

approach also provides additional information about these causes of error using decision 
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tree models that supply infonnation about the output variable in question and the input 

values associated with the output. These explanations take the fonn of natural language 

explanations of the output variables' states due to values of the inputs. These 

explanations can also take the fonn of queries used to materialize multi-dimensional 

views of the data from actual operation of the system. This infonnation is knowledge 

based, multi-dimensional and concerns the operations of the system under consideration. 

Therefore the integrate system can provide valuable infonnation to support the decision

making process. 

Comparing the explanations of errors offered by the integrated system, the OLAP-only 

approach, and opinions of manufacturing process experts, validates the system. Each 

approach is exposed to the same set of data, and the explanations offered by each 

approach are compared. These explanations are offered in the fonn of variables that are 

identified by the integrated system as the causes for error. The data reveals that the 

OLAP-only approach offers explanations that are misleading since they contain variables 

that are not identified by the experts as causes of the errors. It is also found that the 

explanations offered by the OLAP-only approach misses some of the variables identified 

by the process experts as causes of error. The integrated system approach does not 

identify any misleading infonnation about the errors in the manufacturing process data. 

However, the integrated system approach also misses some of the infonnation that is 

identified by the process experts as causes of error in the process data. Though neither 

system identically matches the variables identified by the process experts to the causes of 
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the errors under consideration, the explanations offered by the integrated system are more 

concise and consistently match more closely with those offered by the process experts. 

Results from the integrated system also differ from those of the OLAP-only approach 

since they provide information about the ranges of values for the variables that form the 

explanations for each identified error. Hence, the information provided by the integrated 

system is richer in content, as it does more than merely identify variables that are 

believed to be the cause of the error. Decision trees categorize input variables into ranges 

of values. Each branch of a decision node is created based on the values, of these ranges 

of values and these are incorporated in the explanations offered by the integrated system. 

The explanations offered by the integrated system offer richer content towards the 

support of making decisions than those offered by using the OLAP-only approach. These 

explanations can be automatically structured by the integrated system to generate 

analytical views of the data that can support analysis of the errors. The explanations from 

the integrated system are generated based on sophisticated models of the environment 

and can support intelligent decision-making about the environment for which they are 

trained. 

8.2 Limitations 

The information from the integrated system is a set of variables and their values that 

identify the cause of errors in the manufacturing process. The result of this system is not 

a set of actions that the user needs to perform in order to correct any problems that are 

identified by the system. The system provides causes for the errors and explains these 



1 70 

causes and the circumstances under which they occur. It does not suggest any remedial 

action to correct these errors. Hence, users need a level of sophistication to take the 

information supplied by this system and translate it into components of the physical 

system that need to be investigated or adjusted. With the recent advances in 

knowledge-engineering and multimedia databases, it is easily conceivable that modules 

can be added to translate variables into physical components of machinery and 

characteristics of the physical system. These modules can be presented to the user as 

creative graphical user interfaces to give the typical users of process control systems, 

such as production line operators that are not trained in process control techniques, the 

ability to visualize errors in the manufacturing process and use sophisticated techniques 

to troubleshoot problems. Such research would greatly enhance the usability of systems 

built on the principles developed in this research and advance the state of the art in real 

time process control systems. 

Some variables that are part of the set of inputs to the system directly translate in to a 

piece of machinery that can be investigated for malfunction. In many cases however 

single pieces of machinery provide multiple input variables that often co-vary. The 

selection of the individual input and output variables existed prior to this research and 

were taken as a given for the creation of the models by data mining techniques. It is not 

possible to determine from this research whether the selection of alternative variables as 

inputs or outputs to the system would improve the efficacy of the models and, hence, the 

system. 
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This research treats the set of output variables identified by the process experts as a direct 

measure of process stability and, hence, measures of the quality of the overall production 

process. These variables are critical measures of the stability of the part of the 

manufacturing process under consideration; however, they are not measures of the quality 

of the final product. The variables treated as outputs in this research are provided by the 

experts as variables that are believed to be critical to the stability of the manufacturing 

process. Specifically, these variables were identified by process experts to be critical 

measures of the stability of the sub-process that is considered in this research. These 

associations were established in internal research done by the manufacturing process 

experts and are treated as valid associations for this research. Any changes in the validity 

of these associations will require retraining of the system developed in this research to 

accommodate for these changes. Future research may look at developing models for the 

overall process where measures of overall product quality are used as outputs. Research 

on the development of comprehensive process models can be done in addition to 

developing models for critical components of the process, as done in this research. 

8.3 Future Research 

To provide a real world problem context, this research considers a large continuous 

manufacturing process typical of many chemical process industries and other heavily 

automated manufacturing environments. Such environments typically have enormous 

operational data repositories that contain data collected from various parts of the 

manufacturing process at regular time intervals. Data collected from everyday operations 

of the production system contains a wealth of information about the processes of the 
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system. However, the raw data itself does not generate any direct benefits. The raw data 

needs to be analyzed to develop descriptive models that can be used to understand, 

explain, and predict imminent failures and errors in the manufacturing process. Models 

are required to provide answers when errors occur in the manufacturing process to 

provide insight into the causes of errors and provide direction and understanding to 

decision-making requirements for the problem context. Data mining extracts novel and 

ultimately comprehensible knowledge useful for making crucial business decisions and 

has been successfully applied in a large number of systems and in many diverse 

application areas. In manufacturing environments, data mining can unearth novel patterns 

useful to predict future trends and behaviors of systems and, in turn, enables proactive 

and knowledge-driven decision-making. This research provides an approach to model the 

dynamic relationships in the data so that they can be used to make decisions about 

correcting errors that have occurred or are about to occur in the process. More research 

into generating the appropriate type of models and their applicability to the problem 

domain will enhance the current state of the art in making decisions about process control 

and quality control problems in manufacturing processes. 

The manufacturing environment can be characterized as a dynamic process that is rich in 

terms of the volume of data available and often requires making decisions for standard, 

repetitive, and novel, problems that arise in the environment. This research concentrates 

on one type of manufacturing process. More research in the applicability of these models 

to other types of manufacturing processes will enhance the generalizability of this model 

to industrial processes. 
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The model for integration of data mining and OLAP to support intelligent decision

making developed by this research can help the decision-making process by providing a 

set of models to explain the different states of the system. The proposed model provides a 

means for knowledge driven analysis of large volumes of data by combining methods to 

develop analytical models of data with means for analysis of large volumes of multi

dimensional data at multiple levels of abstraction as the decision problem requires. This 

approach needs to be tested on other environments and problem contexts in order to 

address the issue of generalizability of the approach. Sufficient data needs to exist for the 

data mining models to be developed to make this approach applicable to a problem 

domain. This requirement is necessary for the opportunity to discover complex and 

heretofore unknown relationships in the data that may be potentially useful for making 

decisions in the problem domain. Many business environments, such as financial 

markets, credit analysis, marketing analysis, and banking share these characteristics. 

Research has been done on the applicability of data mining and OLAP in these areas with 

reasonable amounts of success. This research focuses on off-line data mining of the 

environment to develop explanatory and predictive models of the environment to provide 

appropriate multidimensional views of the data. Little has been done to develop methods 

to integrate data mining and OLAP to provide a systematic method for decision-making 

that allows users to examine multiple views of the data that are generated using 

knowledge about the environment and the decision problem. Further research in the 

applicability of systems that focus on technologies to support intelligent decision-making 

can advance the state of the art in the areas of data mining, OLAP research and intelligent 

decision-making. 
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