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Abstract

HIGH-THROUGHPUT  PREDICTION AND ANALYSIS OF DRUG-PROTEIN
INTERACTIONS IN THE DRUGGABLE HUMAN PROTEOME

by Chen Wang, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy at the Virginia Commonwealth University.

Virginia Commonwealth University, 2018

Supervisor: Lukasz Kurgan
Ph.D., Qimonda Endowed Professor, Department of Computer Science

Drugs exert their (therapeutic) effects via molecular-level interactions with proteins and other
biomolecules. Computational prediction of drug-protein interactions plays a significant role in the
effort to improve our current and limited knowledge of these interactions. The use of the putative
drug-protein interactions could facilitate the discovery of novel applications of drugs, assist in
cataloging their targets, and help to explain the details of medicinal efficacy and side-effects of
drugs. We investigate current studies related to the computational prediction of drug-protein

interactions and categorize them into protein structure-based and similarity-based methods. We



evaluate three representative structure-based predictors and develop a Protein-Drug Interaction
Database (PDID) that includes the putative drug targets generated by these three methods for the
entire structural human proteome. To address the fact that only a limited set of proteins has known
structures, we study the similarity-based methods that do not require this information. We review
a comprehensive set of 35 high-impact similarity-based predictors and develop a novel, high-
quality benchmark database. We group these predictors based on three types of similarities and
their combinations that they use. We discuss and compare key architectural aspects of these
methods including their source databases, internal databases and predictive models. Using our
novel benchmark database, we perform comparative empirical analysis of predictive performance
of seven types of representative predictors that utilize each type of similarity individually or in all
possible combinations. We assess predictive quality at the database-wide drug-protein interaction
level and we are the first to also include evaluation across individual drugs. Our comprehensive
analysis shows that predictors that use more similarity types outperform methods that employ
fewer similarities, and that the model combining all three types of similarities secures AUC of
0.93. We offer a first-of-its-kind analysis of sensitivity of predictive performance to intrinsic and
extrinsic characteristics of the considered predictors. We find that predictive performance is
sensitive to low levels of similarities between sequences of the drug targets and several extrinsic

properties of the input drug structures, drug profiles and drug targets.



Chapter 1 Introduction

Proteins are fundamental components of all organisms. They are essential to virtually all
biological processes in cells. At the molecular level, proteins perform their functions by interacting
with a wide range of molecules including other proteins, DNA, RNAs, and a variety of other
smaller ligands.

Drug is a chemical substance that is used to prevent, treat, or cure a disease. Drugs work
through molecular interactions with biological macromolecules, such as proteins and nucleic acids,
which are typically referred to as drug targets. Approximately 90% of the existing drugs interact
with human genome-encoded proteins [1], and this is why we focus on the druggable human
proteome (collection of all the human proteins that are interacting with drugs). The molecular
interactions between proteins and drugs typically inhibit or stimulate the cellular functions of
proteins where such changes of functional states lead to the therapeutic effects or side effects [2].
Knowledge of the associations between drug compounds and their protein targets is essential for
a wide range of pharmaceutical and bioinformatics studies. These studies include screening drug
candidates that targets specific disease-associated genes/proteins [3-6], drug repurposing
(searching for targets associated with diseases that are not yet known to benefit from the existing
drugs) [7-11], discovery and characterization of side-effects that stem from the interactions with

non-therapeutic off-targets [12-16], and elucidation of the druggable human proteome, which is



defined as the complement of human proteins that interact with drugs [1, 17-20]. Many databases
house information on drug-protein interactions (DPIs) and capture knowledge on drugs and targets
to facilitate these studies [21, 22]. However, these databases are relatively incomplete. They cover
a small portion (~15%) of human proteins that are already known to be drug targets and for which
the three-dimensional (3D) structures are known [23]. The databases are complemented by
computational methods that generate putative drug-protein pairs on a large, up to the whole
proteome scale. These predictions can be used to facilitate discovery of new DPIs by constraining
the scope of expensive and time consuming in vitro and in vivo experiments that are employed to
discover and validate the putative DPIs [24-26]. They are also utilized to develop databases of pre-
computed putative DPIs [27-29] and were used to facilitate discovery of the therapeutic
mechanisms and side-effects of drugs [16, 30, 31].

Computational prediction of DPIs typically incorporates information about drugs and
structures or sequences of target proteins. Inspired by recent surveys [32-34], we define two
categories of computational methods for DPI predictions: 1) Protein structure-based methods and
2) similarity-based methods that do not use 3D structures of the target proteins. The first group
search for binding sites (the locations on the protein surface where binding occurs) from protein
3D structures. This group could be divided into two subgroups: molecular docking and structural
alignment. The molecular docking models the physical interactions, including geometric
complementarity, between a given drug and protein surface to detect potential binding sites. The
structural alignment finds binding sites that are similar to known binding sites based on protein
structure alignment. The second group of methods explores similarities between structures and
profiles of drugs and non-structural information about their target proteins with known DPIs to

predict novel DPIs. The protein structure-based methods use more information, and therefore the



predictive quality of their results is typically higher than the predictive quality of the second group
of methods. However, the protein structure-based methods are limited to the proteins that have
known 3D structures or for which structures can be accurately predicted. The similarity-based
methods rely on protein sequences, drug structures and profiles that are more widely accessible
than protein structures. For instance, in March 2017, 5870 protein structures are available in the
RCSB Protein Data Bank (PDB [35], a comprehensive repository for three-dimensional structures
of proteins and nucleic acids) for 19,077 human protein-coding genes [36], while there are 70,946
gene products (that include isoforms of proteins) in the Universal Protein Resource (UniProt [37]),
a comprehensive repository for protein sequences and annotations [38]. In contrast to the protein
structure-based methods, the similarity-based methods can be applied to predict potential protein
targets. Additionally, in general, the protein structure-based methods, in particular the molecular
docking approaches, are computationally more costly than the similarity-based methods.
Altogether, the similarity-based methods cover a larger population of target proteins and are less

computationally intensive compared to the structure-based methods.

1.1 Goals of the dissertation

The objectives of this dissertation are to review and characterize a comprehensive collection
of methods for the prediction of DPIs, assess their predictive performance, and provide access to
their predictions. These objectives are addressed with the following three goals:

1) Evaluation of protein structure-based predictions of DPIs and development and
deployment of DPI database. We empirically assess predictive performance of several

protein structure-based DPI predictors for selected representative drugs over the entire



structural human proteome. We develop and deploy a large-scale database of putative and
native DPIs for the entire structural human proteome.

2) Review of the similarity-based DPI predictors. We provide a comprehensive and in-depth
review of a comprehensive collection of high-impact similarity-based methods for DPI
predictions. This review substantially improves and expands over the existing reviews on this
topic.

3) Empirical assessment and comparative analysis of similarity-based DPI predictors and
their consensuses. We implement, empirically evaluate, and compare representative
similarity-based DPI predictors on a novel and high-quality benchmark database. We include
new ways to assess predictive performance, including analysis of the relation between the
predictive quality and characteristics of the predictors. We also deploy implementations of

the representative methods as a webserver.

In this dissertation, we first introduce background knowledge concerning the biological
foundations of drug-protein interactions and basic information about computational predictions in
Chapter 2. Then we report empirical findings and provide detailed discussions for each of the three
goals stated above in Chapters 3, 4, and 5, respectively. Finally, Chapter 6 presents summary,

conclusions, and possible directions for future works.



Chapter 2 Background on drug-protein interactions

In this Chapter we introduce the essential knowledge concerning protein sequences and
structures and their importance to characterize the molecular details of the DPIs. We discuss
significance of computational prediction of DPIs and briefly review the current structure-based

and similarity-based methods for the prediction of DPIs.
2.1 Protein sequence and structure

Proteins are involved in virtually all cellular processes and functions. Examples of these
functions include transcription, translation, gene regulation, cell metabolism, and molecular
transport. Proteins are built from a sequence of 20 different amino acids that are linearly ordered
in a polypeptide chain and connected by peptide bonds. These peptide bonds and a-carbon atoms
in the concatenated amino acids constitute of the protein backbone. The sequence of amino acids
determines the shape of the corresponding protein and is typically referred to as protein primary
structure.

The shape of a protein is formed to a large extent by interactions between amino acids. Protein
structure consists of a collection of the local structures (segments in the primary structure). These
segments of the local structures are called the protein secondary structures. Typical secondary

structures include o helices, B sheets, 8 strands, turns, coils, loops, etc. Formation of these



structures is mostly detemined by hydrogen bonds that connect the sequence of amino acids in the
protein backbone.

The set of secondary structures folds into a specific spatial arrangement, typically forming a
compact globular molecule. This arrangement defines the protein tertiary structure. The process of
folding the sequence into this three-dimensional molecule relies on hydrophobic interactions with
solvent and tertiary interactions between amino acids. An illustration of hierarchical protein
structures for an example protein (PDB ID: 4NKX [39]) is shown in Figure 1. The sequence
(Figure 1a) is collected from PDB [35]. The secondary structure (Figure 1b) is annotated by
Dictionary of Protein Secondary Structure (DSSP) [40, 41]. DSSP is a program that computes
secondary structure assignments for PDB entries, which are graphically illustrated in PDB [35].
We use Protein Workshop [42] to visualize the tertiary structure using a ribbon style format (Figure

1c) and with rendering of its molecular surface (Figure 1d).
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Figure 1. Protein sequence and structures of an example protein. This protein is collected from PDB ID: 4NKX [39].
(a) Sequence (primary structure) that is represented by single-letter codes for amino acids. (b) Secondary structure
that is generated by DSSP [40, 41] and visualized in PDB [35]. (c) Tertiary structure that is visualized by Protein
Workshop [42] and represented using ribbons-style format. (d) Molecular surface of the tertiary structure that is
rendered with Protein Workshop [42].

2.2 Drug and drug-protein interaction



Drugs are chemical substances that are used to prevent, treat, or cure diseases in human and
other living organisms. Drugs exert their therapeutic effects (desired) or side-effects (undesired)
through interactions with biological targets including proteins, DNA, RNA, and membrane
components such as lipid and carbohydrates [43]. There are significant challenges to accurately
and comprehensively define targets, consistently map these targets to specific proteins and genes,
and comprehensively compile and update repositories of targets [44]. We are very far from having
all-inclusive and consistent repositories that include all existing drug targets and that specify a
precise number for different categories of targets, especially for the nucleic acids and other non-
protein partners. However, ongoing attempts have provided a consensus on the overall landscape
of drug targets. An early and influential study in 2002 conceptualized the druggable genome for
the first time and showed that the majority of marketed drug targets are proteins, with DNAs and
other miscellaneous biomolecules accounting for only 3% of targets [18]. Recently, researchers
estimated that 44% of unique human targets associated with approved drugs were G-protein-
coupled receptors, nuclear receptors, protein kinases and ion channels, while 29% were enzymes
and 15% were transporter proteins [45]; all of these are proteins. Furthermore, as reflected in their
review [45] and a more recent update [1], these protein families make up between 93% and 95%
of drug-target interactions. Additionally, a recent comprehensive analysis provided a similar
perspective on the characteristics of current drug targets: 96% of 893 mechanistic drug targets
were mapped to proteins while the remaining 4% of targets are nucleic acids and other
biomolecules. Moreover, the protein targets are responsible for the clinical efficacy of 89% of
1578 FDA-approved drugs and involved in 93% of all identified drug-target interactions [44].
Considering that such predominant fraction of targets are proteins, we focus on the DPIs in this

dissertation.



Drug discovery and development requires a large amount of money and time to address
identification of the potential targets, to search for drug leads, to analyze massive quantities of data
to select promising leads, to validate leads in a wet-lab, and to perform clinical trials [46]. High-
quality identification and validation of DPIs is a vital prerequisite to investigate new drugs and
determine their targets. This is important since drugs may interact with undesired targets (off-
targets) that result in adverse events or side-effects, precluding further drug development and use.
The chemical screening with cell assays is used to measure drug-protein binding affinity (how
tightly a drug lead compound binds to a selected protein target). However, such experiments are
limited in scope as they screen against a relatively small panel of protein targets [47, 48]. For
instance, SafetyScreen44 panel screens against 44 targets recommended by four major
pharmaceutical companies including AstraZeneca, GlaxoSmithKline, Novartis, and Pfizer [49].
Moreover, Novartis screens against interactions with a panel of 24 targets associated with severe
side-effects and high hit rates [50], Pfizer screens against between 15 and 30 targets [51], and
Roche uses a panel of 48 targets [52]. Therefore, there is a need to develop high-throughput
computational methods for the prediction of DPIs. In particular, to develop methods that can screen
a given drug against a comprehensive set of thousands of protein targets that make up the human
proteome. The computational methods that identify putative DPIs by exploiting information about
both drugs and proteins can be used for that purpose. Depending on whether the three-dimensional
structure of a protein is used (known) or not, the prediction methods could be categorized into two
groups: protein structure-based methods and similarity-based methods that do not rely on protein

structures. Next, we define and discuss these two groups of methods.



2.3 Protein structure-based methods

A binding site is a location on the surface of a protein where the intermolecular interaction
occurs. The structure of binding site typically looks like an open pocket or cavity that provides
geometrical fit for the structure of the drug. The surface of the pocket not only offers geometric
complementarity between protein and drug structures but also has to provide favorable physical
characteristics like charge and hydrophobicity. Progesterone is an FDA-approved drug to support
and regulate embryo implantation, pregnancy maintenance, and the development of mammary
tissue for milk production [53]. Human cytochrome P450 17A1 and progesterone receptor are two
representative targets of progesterone that have structures in complex with this molecule. Figure
2a shows the 3D structure of the cytochrome P450 17A1 (PDB ID: 4NKX [39]) and Figure 2c
shows a binding site where this protein interacts with progesterone compound. The binding site is
a pocket with a specific shape and size that fit the progesterone molecule which is displayed with
red balls and sticks. Similar protein structures may have similar cavities/pockets that could interact
with the same drug. Figure 2b is the structure of human progesterone receptor (PDB ID: 1A28
[54]) and Figure 2d is its binding site for progesterone. These two protein structures are globally
dissimilar with noticeable differences (Root-mean-square deviation of atomic positions = 5.49 A),
which can be observed when comparing Figure 2a and Figure 2b. However, the binding sites, i.e.,
the pockets in Figure 2c and Figure 2d, are composed of similar spatial arrangement of secondary
structures that include three long helices. Significant structural similarity between these two

binding sites have been identified in Ref. [55].
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Figure 2. Two structurally dissimilar protein structures and their similar binding sites for progesterone. (a) The
structure of human epidermal growth factor receptor inactive tyrosine kinase domain complexed with progesterone
(PDB ID: 4NKX [39]). (b) The structure of human epidermal growth factor receptor tyrosine kinase domain
complexed with progesterone (PDB ID: 1A28 [54]). (c) Progesterone and its binding site on 4ANKX. (d) Progesterone
and its binding site on 1A28. Protein molecules are represented by green surfaces. Progesterone molecule is
represented by red balls and sticks. We use Protein Workshop [42] to visualize these structures.

The assertion that the same drug may bind to structurally similar proteins with similar binding
sites provides an opportunity for prediction of DPIs using proteins structures. Thus, the protein
structure-based prediction of DPIs for a given drug could be done by searching for sites that are
similar to the known binding sites of this drug.

There are three classes of structure-based prediction methods that implement different trade-

offs between accuracy and computational cost. These methods are based on searching for the
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similar sites using a reduced representation of protein structure or complete all-atom structure of
protein, and by docking the all-atom structure of ligand into the all-atom structure of the target
proteins.

The fastest class of methods utilizes the reduced representation, usually in the form of a
numeric vector that summarizes geometry and physicochemical properties of binding sites.
Representative examples of such methods that find similar binding sites are PatchSurfer [56, 57]
and method by Tomii’s group [58]. The latter algorithm was recently used to create the PoOSSuM
database [59, 60] that includes 49 million pairs of similar binding sites computed from the known
binding sites of 194 drug-like molecules over all protein structures from PDB. Given the large
number of these putative binding sites it is likely that many of them are false positives and would
have to be further screened via a more advanced method.

The second class of methods that is characterized by a lower throughput performs docking of
a given compound into protein structures to find which proteins harbor binding sites that are
complementary to the given ligand. Molecular docking predicts an optimized position and
orientation of a drug molecule relative to a target protein molecule so that the drug fits the binding
site and forms a stable interaction. Docking method relies on two steps. The first step is searching
all possible rotational and translational orientations of the poses of a drug-protein pair. The second
step is scoring and ranking the poses by a particular measurement that indicates the strength of
binding affinity for each possible pose. An example platform that utilizes such type of docking to
find targets of a given ligand, specifically focusing on screening a given drug against a large
collection of targets, is INVDOCK [61]. Given the relatively high computational cost of docking,
we highlight the availability of the BioDrugScreen database [28]. This database stores results of

docking with AutoDock and scores these putative interactions based on several scoring functions,
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such as AutoDock, GoldScore, X-Score, ChemScore, PMF, and DFIRE. This docking-based
database covers about 1600 drug-like molecules and 2000 cavities on the surfaces of close to 1600
human proteins. However, these results are limited to interactions that are localized in cavities on
the protein surface rather than exploring the whole surface. This limitation is motivated by a
prohibitively high computational costs of searching the entire surface. BioDrugScreen uses
Relibase+ algorithm [62] to identify pockets of interest, while INVDOCK uses an older algorithm
by Kuntz and colleagues [63].

The third class of methods is complementary to docking. These methods are not constrained
to surface pockets and produce accurate predictions of the drug-protein binding at the molecular
level. They implement inverse ligand binding where structure(s) of the known drug-protein
complex(es), called template(s), is used to predict other protein targets together with the
corresponding binding sites for the same drug. There are two ways to find potential binding sites
based on similarity to known binding sites, one based on the similarity of the corresponding protein
fold and another based on similarity of binding pockets. The first approach is implemented by the
FINDSITE [64, 65] and eFindSite [66, 67] methods and the other approach by the SMAP [68-70]
and IsoMIF [71, 72] algorithms. The eFindSite predictor is an improved version of the FINDSITE
method that uses meta-threading with the eThread [73, 74] and an advanced clustering algorithm
[75] to optimize the selection of the ligand-bound templates for a given query structure. The
eFindSite method was empirically shown to outperform FINDSITE and several geometrical
methods for detection of pockets [66]. SMAP is designed based on a sequence order-independent
profile-profile alignment (SOIPPA) which finds evolutionary and functional relationships across
the space of protein structures [68-70]. SMAP utilizes a shape descriptor to characterize the

structure of the protein template and the SOIPPA algorithm to detect and align similar pockets
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between the query and template proteins. A recent study shows that eFindSite/FINDSITE and
SMAP accurately predict targets even when the corresponding structure of the query protein and
the template(s) are substantially different, i.e., they are from different SCOP folds [76]. IsOMIF
applies GetCleft [77] algorithm to identify pockets on the surfaces of proteins, uses six chemical
probes to represent atoms of pockets, and employs subgraph-matching algorithm to compute
similarities of binding pockets so that putative binding sites could be predicted by comparison with
known binding pockets [71]. A recent large-scale analysis utilizes IsoMIF to identify opportunities
to repurpose drugs and to explain side-effects for ~400 drugs and ~8000 proteins and to validate
quality of these putative interactions by comparing them with docking simulations [78]. We

discuss details of the FINDSITE, eFindSite and SMAP methods in Chapter 3.

2.4 Similarity-based methods

The protein structure-based methods utilize the 3D structure of the target protein(s). However,
recent works estimate that only about 20% to 30% of the human proteins have 3D structures [79-
81], which means that the protein structure-based methods are limited to a relatively small fraction
of the human proteome. Moreover, they cannot be used for proteins with a substantial amount of
intrinsically disordered regions [20] while recent works show that as many as 44% of human
proteins contain at least one long (30 or more consecutive residues) disordered region [82-84].
Finally, the computational cost of the structure-based predictions for even this small set of proteins
is typically high, particularly for the docking [32]. At the same time, the entire human proteome
that has a full complement of ~70,000 sequences when including isoforms (source: UniProt
reference proteome ID UP000005640) that can be covered by the similarity-based predictions of

DPIs. The similarity-based methods are built based on two assertions: 1) similar drugs likely target
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the same proteins; and 2) that similar targets tend to interact with the same drugs [32, 85-87]. This
is motivated in part by a quote from James W. Black, winner of the 1988 Nobel Prize in Medicine:
“the most fruitful basis for the discovery of a new drug is to start with an old drug” [88].

The similarity-based methods for the prediction of DPIs rely on two components: an internal
database of known DPIs and a predictive model. They work in three steps. First, a user provides
inputs in the form of drug structure, drug profile and/or its target sequence(s), whatever is available.
In the second step, similarities between the input drug structure and/or profile and the structures
and/or profiles of the drugs in the internal database are computed. If the target(s) of the query drug
are known as input or can be retrieved from the internal database (the query drug is already
included in the database), then the similarities between the query target and all targets in the
database are also computed. In the third step, the predictive model combines the similarities to
produce a propensity score that quantifies a likelihood that the query drug interacts with relevant
protein targets that are included in the internal database, i.e., the propensity of putative DPI. Novel
putative interactions generated by these methods could suggest potential ways to repurpose the

existing drugs and also could explain molecular levels details behind side-effects.
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Table 1. List of surveys concerning similarity-based DPI predictors. These surveys were published in the past five
years. The bottom row corresponds to our review that is described in Chapter 4.

Number of recent predictors reviewed

Survey Year Number of predictors reviewed (published since 2013)
Ding et al. [32] 2013 10 2
Pahikkala et al. [89] 2014 2 1
Mousavian et al. [90] 2014 27 16
Chen et al. [21] 2015 17 10
Cichonska et al. [91] 2015 17 9
Lavecchia et al. [92] 2016 11 9
Hart et al. [93] 2016 8 6
Shahreza et al. [94] 2017 17 8
Fang et al. [95] 2017 10 5
Ezzat et al. [96] 2018 28 17
Hao et al. [97] 2018 12 9
Our review 2018 35 22

The similarity-based methods utilize different approaches to express and quantify the
similarities. The predictive quality of the similarity-based methods is critically dependent on how
the similarities are quantified and whether and how they are combined. Eleven survey articles that
were published in the last five years have summarized the development and frontiers of the
prediction of DPIs for the similarity-based methods [21, 32, 89-97]. Table 1 chronologically lists
these surveys and summarizes the number of prediction methods that are analyzed including the
number of recent methods which were published in the past five years. In this dissertation, we
present our own review (bottom row in Table 1) of 35 selected similarity-based methods including
22 recent studies that appeared in the past five years. Compared to the existing surveys, our
analysis is broader than most of the existing reviews (35 vs between 2 and 28 approaches in total)
and more current (22 vs between 1 and 17 recent approaches). Criteria of selection of these
approaches are described in Chapter 4. Besides the predictive models, some of these reviews also
summarize the databases of DPIs [21, 22, 32, 91, 92, 94, 95] and the assessment of predictive
results [32, 89, 96, 97] that are employed in prediction approaches. We present our review and

compare it at a greater depth with the other surveys in Chapter 4.
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Chapter 3 Evaluation of protein structure-based predictions
of drug-protein interactions and development and

deployment of protein-drug interaction database

In this chapter we assess the predictive quality of three representative protein structure-based
methods for the predictions of DPIs. Using results produced by these methods, we develop and
deploy a DPI database that covers interactions between 51 popular, FDA-approved drugs and the
proteins from the structural human proteome. This repository provides a query interface to search
a comprehensive set of putative DPIs that are generated by the predictors, as well as annotations

of native DPIs collected from relevant databases.
3.1 Motivation to develop a novel database

The significant majority of the molecular targets of drugs are proteins and there are several
databases of the already characterized DPIs. DrugBank [98-102] provides access to biochemical
and pharmacological information about a large set of 7759 drugs, including 1600 FDA-approved
compounds, and their known 4104 protein targets. Therapeutic Target Database [43, 103-107]
offers a comprehensive coverage of over 20,000 drugs, including close to 15,000 experimental

drugs, and their interactions with 2360 protein targets. This database also links targets and drugs
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to about 900 diseases. Other databases expand beyond the drug molecules to cover small drug-like
ligands. BindingDB [108-112] gives experimentally measured binding affinities between about
7000 known protein targets and a large set of almost half a million of small ligands. ChEMBL
[113-116] contains structures, physicochemical properties and bioactivity (e.g. binding constants,
pharmacology data) of drug-like small molecules. The current release of ChEMBL incorporates
1.7 million distinct compounds and 13.5 million bioactivity data points which are mapped to over
10 thousand protein targets, where the corresponding binding sites are defined at varying levels of
granularity (protein, protein domain, or residue-level). SuperTarget [117, 118] includes about 6200
protein targets from several dozens of species and close to 200,000 drug-like compounds. It
integrates drug-related information from BindingDB, DrugBank, and the SuperCyp database of
cytochrome-drug interactions [119], adverse drug effects from SIDER [120, 121], drug
metabolism, and pathways and Gene Ontology (GO) terms for the target proteins. The
PROMISCUQUS database [122] integrates data from DrugBank, SuperTarget, and SuperCyp and
covers about 6500 protein targets and over 25 thousands drug-like compounds that are annotated
with side-effects. This database also provides facilities that can be used to predict novel targets
based on the structural similarity between drugs and between side-effect profiles of drugs. STITCH
[123-127] combines information from many sources of experimentally and manually curated
interactions between small ligands and proteins including ChEMBL, PDB, DrugBank, Therapeutic
Target Database, text mining of articles from MEDLINE and PubMed, and several other resources.
It currently houses data on 390,000 chemicals and 3.6 million proteins. The recently released
IntSide database [128] links about 1000 drugs with their human protein targets collected from
DrugBank and STITCH, and with close to 1200 side-effects and other annotations of associated

diseases, pathways, and cellular functions. While most of these resources summarize the
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interactions at the protein or residue level, scPDB [129, 130] includes molecular-level (all-atom)
information for native binding sites in proteins structures collected from PDB [35] that are suitable
for docking of drug-like ligands. It includes molecular-level details of about 9200 binding sites
(all-atom annotation of binding sites and list of ligand-binding residues grouped by various types
of bonds) and binding modes (all-atom position of ligand inside the site) for 3600 proteins, and a
summary of physicochemical properties of approximately 5600 drug-like ligands.

However, many of the established drugs interact not only with the intended therapeutic target
protein(s) but also with other protein targets (off-targets). Individual compounds were shown to
on average target 6.3 proteins [10, 131]. Given a high degree of incompleteness of this information
[131, 132], the number of off-targets is likely substantially higher. To compare, DrugBank includes
15199 DPIs for 7759 drugs with the average number of targets per drug at 1.96, which further
substantiates the claim of the incompleteness of the currently available data. This
polypharmacology can be both beneficial, when a given drug can be repurposed for a different
disease, and harmful, leading to the side-effects [132]. A couple of high-profile examples include
imatinib that was repurposed for treatment of gastrointestinal stromal tumors [133] and sorafenib
for the kidney and liver cancers [134]. The incompleteness of the data combined with the
importance of polypharmacology motivates research towards the elucidation of novel and more
comprehensive set of DPIs.

Conventional (non-computational) methods for the identification of novel off-targets rely on
an in vitro counter-screen of a given drug against a small set of a few dozens of enzymes and
receptors [49-52, 135]. Compared to the experimental screens, computational methods that find
novel drug targets are more cost- and time-effective, allow screening of a larger number of targets

and provide insights into the molecular-level mechanisms of DPIs [136]. These in-silico methods
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are successful in the context of drug repositioning and identification of off-targets [137]. A couple
of databases that focus on the putative protein-drug and druggable protein-protein interactions

were recently released. BioDrugScreen [28] stores results of docking of about 1600 small drug-

like molecules against 1589 known proteins targets in human, which were annotated based on
DrugBank and HCPIN [138] databases. Docking was run for close to 2000 cavities on the surfaces
of these proteins, for the total of about 3 million receptor-ligand complexes. Druggable Protein-
protein Interaction Assessment System (Dr. PIAS) [139, 140] is a database of druggable protein-
protein interactions (PPIs) predicted by a machine learning method. This database lists druggable
interactions predicted from over 83 thousand PPIs in human, mouse, and rat, but they are not
associated with specific compounds.

We developed Protein-Drug Interaction Database (PDID) that complements existing
repositories and addresses the lack of access to a comprehensive set of putative DPIs [29]. This
database relies on predictions generated by three representative protein structure-based methods,
eFindSite [66, 67], SMAP [68-70], and ILbind [76]. These methods are complementary and
independent of docking that was used in the BioDrugScreen database. They were also shown
empirically to provide high-quality predictions of drug targets [76], and their results were already
successfully used to predict novel off-targets. Examples include applications to find new off-
targets of estrogen receptor modulators [141], cholesteryl ester transfer protein inhibitors [30],
comtan [142], inhibitors of Trypanosoma brucei RNA editing ligase 1 [143], nelfinavir [31],
raloxifene [144], and cyclosporine A [16]. We describe in detail and re-assess the selected three
representative methods to provide a more recent estimate and comparative analysis of their

predictive performance before we describe the PDID database.
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3.2 Considered protein structure-based predictors

The fundamental principle of protein structure-based predictors is to transfer the binding sites
from known drug-protein complexes to a protein that is structurally similar to these known drug-
complexed proteins. There are two ways to measure the similarity between the input protein
structure and the known drug-protein complexes: one applies the similarity of the corresponding
protein fold, such as FINDSITE [64, 65] and eFindSite [66, 67] algorithms, and the other that

exploits the similarity of binding sites, such as SMAP [68-70] and IsoMIF [71, 72] methods.
3.2.1 FINDSITE and eFindSite

FINDSITE predicts binding sites for an input protein using template protein(s) which have
the structure(s) in complex with a given input drug [64, 65]. These template proteins come from a
database of templates (a set of non-redundant high-quality structures of drug-protein complexes
curated from the PDB database) that is part of the FINDSITE algorithm. FINDSITE accepts either
an experimentally determined structure annotated in PDB or a putative structure modelled
computationally with TASSER [145-147], MODELLER [148, 149] or PROSPECTOR_3 [150],
three accurate protein structure modelling algorithms. We use experimentally determined
structures for the input proteins in our experiments. The protocol of FINDSITE is briefly described
as the following four steps:
1) A threading algorithm, PROSPECTOR_3 [150] is utilized to find template proteins for the

input protein from the template database. PROSPECTOR_3 threading recognizes template

proteins which likely have similar structural folds when compared to the input protein based

on sequence alignment and predicted secondary structure, given the sequence of the input
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2)

3)

4)

protein. The identified template proteins are supposed to be structurally similar to the input
protein, no matter whether or not they have high sequence similarity to the input protein.
The template proteins that are known to be in complex with the input drug are selected from
the template set which is obtained by the threading alignment. Then the template set is
expanded by including homologous proteins of the current templates. Consequently, we get
a set of template proteins that interact with the input drug, have known three-dimensional
structures of drug-protein complex, are likely structurally similar to the input protein, and are
possibly remotely homologous to the input protein.

A structural alignment algorithm, TM-align [151], is utilized to superimpose the structures of
template proteins (including their drug-complexes) into the structure of the input protein. A
set of superimposed atomic coordinates for each template protein is generated in this step.
The superimposed coordinates of the center of the input drug in each template structure are
clustered based on spatial distance with a threshold distance equal to 8A. The geometric
center of each cluster is a predicted position of the input drug into the input protein structure,
which represents a putative binding site for this input drug-protein pair. These predicted
binding sites could be ranked by the number of templates from the corresponding cluster

where each binding site (cluster center) comes from.

Besides a putative position of the center of the given drug, FINDSITE also outputs other

information that allows ranking predictions across different input proteins: (i) TM-score, a

structural alignment score generated by TM-align; (ii) root mean square deviation (RMSD) of the

Ca atoms in the aligned region between input protein and templates by TM-align; (iii) alignment

length which is number of residues aligned with the template protein structure by TM-align; (iv)

fraction of templates that share the predicted binding site (cluster center); (v) sequence identity
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calculated over the residues aligned by the TM-align; (vi) number of predicted binding sites; and
(vii) number of predicted binding residues.

As an improved version of FINDSITE, eFindSite combines multiple threading approaches by
machine learning models to select template proteins and employs an advanced clustering algorithm
to predict the putative binding sites [66, 67]. More specifically, eThread [73, 74], a meta-threading
approach that applies Naive Bayes classifier to build a consensus threading alignment from ten
individual threading algorithms, is utilized to identify template proteins; this concerns the steps 1)
and 2) of FINDSITE. Moreover, eFindSite also improves steps 3) and 4) of FINDSITE. This
concerns an approach to superimpose template structures to the input protein and to cluster binding
sites in the template structures. First, Affinity Propagation [75] is utilized to cluster the structures
of template drug-protein complexes based on structural similarities between templates computed
with fr-TM-align [152]. Second, the clustered template structures are superimposed into the
structure of input protein. Finally, the resulting superimposed locations of drug from each clustered
template constitute the predicted position of the input drug, which in turn can be used to annotate

putative binding sites in the structures of the input proteins.
3.2.2 SMAP

SMAP works by generating potential binding pockets in the input protein structure and next
finding whether these pockets are similar to the known binding pockets in the drug-binding
proteins [68-70]. It relies on a geometric representation of protein structure to characterize binding
sites [68] and a sequence profile alignment to compare binding sites [69]. The protocol of SMAP
algorithm is summarized in the following five steps:

1) SMAP reduces the representation of an input protein structure by using only the coordinates

of alpha carbon (Ca) atoms which are the first carbon atoms attached to the carboxyl group
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2)

3)

4)

of an amino acid. These Ca atoms are represented as vertices in a graph. A convex hull
algorithm, Delaunay tessellation, is applied to partition the Ca atoms into tetrahedra
(triangular pyramids) that are defined by the graph edges [68].

The Delaunay tessellation is constrained by removing tetrahedra that include edges (atomic
distances) longer than 30A because such distance implies a open binding pocket on the
molecular surface, not an enclosed sphere. The outside layer of the remained convex hull
defines a environmental boundary which surrounds the input protein and its binding pockets.
Next, the tetrahedra larger than 7.5A are removed. This cut-off length is related to the average
radius between two amino acids that are in contact with each other. The remaining tetrahedra
on the outside of the structure form a protein boundary. The removed tetrahedra which are
the tetrahedra located between the protein boundary and the environmental boundary, make
up the possible positions where drugs could be located.

The distance and orientation of each Ca atom to the protein boundary and environmental
boundary is computed. Based on these values, a geometric potential is computed using
specific formulas listed in Ref. [68] for each Ca atom. The geometric potential quantifies the
positions of a Ca atom and its neighbor atoms relative to the environmental boundary, and
the relative positions between this Ca atom and its neighbor Ca atoms.

The possible positions of drugs obtained in step 2) are clustered based on their overlap in
circumscribed spheres of the corresponding tetrahedron. The cluster centers represent the
predicted potential positions of the drugs that could bind to the given protein. If a Ca atom is
located within 10A from the predicted potential positions and the edge between these two

atoms are not cut by other circumscribed spheres, this Ca atom (that represents a drug-binding

24



amino acid) is predicted as a part of a binding site. This way the amino acids that make up
specific binding pockets are defined.

5) The predicted potential positions of drugs generated in step 4) represent a candidate drug-
binding position but without specifying for which specific drug. SMAP uses a sequence order
independent profile-profile alignment (SOIPPA) method to align the candidate drug-binding
sites (the corresponding amino acids) in the input protein to the known binding sites in the
template proteins which are found in complex with the input drug in PDB [69]. Next, a
candidate binding site is mapped to a known binding site of the specific input drug if the
SOIPPA alignment shows that these two sites are similar enough. SOIPPA algorithm is
designed to compare and align two subgraphs that are extracted from the geometric
representations of the input protein and the template protein. The computation of the
alignment uses the geometric potential scores computed in step 3). The binding sites from the
template protein are aligned and superimposed as the candidate sites in the input protein. A
alignment score is computed based on the position specific score matrix [153] to measure the

similarity of these binding sites.

SMAP outputs seven measurements that can be used to rank binding site similarity between
the input protein and the template protein: (i) local alignment (pairs of aligned residues) between
drug-binding sites in the input and template proteins; (ii) alignment score generated by SOIPPA;
(iii) p-value that estimates the statistical significance of the alignment score by considering a
random set of PDB chains; (iv) volume of overlapping binding pockets between the input protein
and the template protein computed in the structure of input protein; (v) the same volume computed
in the structure of template protein; (vi) Tanimoto coefficient between the two proteins; (vii) root

mean square deviation (RMSD) between the binding sites in the input and template proteins.
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3.2.3 ILbind

The inverse ligand binding (ILbind) predictor is an ensemble machine learning predictor of
drug-binding sites for a specific input drug. ILbind uses selected outputs (the outputs were chosen
based on an empirical feature selection process) generated by FINDSITE and SMAP [76] as its
inputs. This meta-approach exploits the fact that FINDSITE and SMAP use complementary
approaches for the prediction. FINDSITE’s prediction is based on similarity of protein structures
while SMAP’s prediction is based on similarity of binding pockets. ILbind was designed to provide
predictions for a wide range of drugs and nutraceuticals. First, a dataset of ~150 drugs was
clustered into three structurally similar clusters. These clusters were represented by three drugs
that correspondingly have diverse structures: N-Acetyl-D-glucosamine (NAG), Adenosine-5'-
Diphosphate (ADP), and Palmitic Acid (PLM) [76]. Structures of five randomly chosen complexes
of proteins with each of these three drugs were used to design ILbind, resulting in total of 15
configurations. Correspondingly, 15 Support Vector Machine (SVM) models were designed using
a training dataset. A total of 14 outputs (features) from FINDSITE and SMAP were ranked by
their average AUC values on the training set. Next, a wrapper-based best-first search to select
features was applied using cross-validation on the training dataset. The search started from
including only the top ranked feature, and added next feature from the ranked set of features to the
feature set if the inclusion of this feature increased AUC value when compared with the feature
set before including this feature. Between the 15 SVM models, the selected feature sets typically
contain two or more features which correspond to the outputs from both FINDSITE and SMAP.

Given an input drug and the structure of an input protein, ILbind works in two steps:

1) Compute predictions with the 15 SVM models using the selected outputs of FINDSITE and

SMAP as the inputs.
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2) Use the consensus (average) of the 15 SVM predictions as the predicted propensity for

binding to the input drug.

Since ILbind does not predict the putative position of the center of the input drug, these

positions are borrowed from the outputs of FINDSITE and SMAP.

3.3 Assessment of predictive quality

We assessed predictive performance of eFindSite, SMAP, and ILbind to demonstrate that
predictions from these methods have practical value. This assessment was performed on a set of
25 representative drugs that are currently included in PDID. These compounds were selected from
25 clusters of chemically similar drug structures (one compound from each cluster) that were
generated from the 355 drugs that could be found in complex with proteins in PDB at the time of
the experiment. The evaluation follows the protocol from [16]. Briefly, native targets of the 25
drugs were collected from PDB, BindingDB, and DrugBank and we compare predictions from the
three methods on the structural human proteome against these native drug targets. We clustered
proteins in the structural human proteome at 90% sequence identity using BLASTCLUST [153,
154] and evaluated the results on the corresponding clusters, i.e., a given cluster is considered to
be a native target of given drug (predicted to bind the drug) if at least one protein in this cluster
shares at least 90% identity with a native target of that drug (at least one protein in this cluster is
predicted to bind that drug). The clustering assures that the evaluation is not biased towards targets
that are overrepresented with many structures of similar folds.

Empirical results demonstrate that the three methods are characterized by practical levels of
predictive quality. The average AUCs over the 25 drugs of eFindSite, SMAP and ILbind equal

0.63,0.74 and 0.76, respectively (Figure 3a). Although ILbind outperforms the other two methods,
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which is expected given that it combines results of these methods and which is consistent with the
results in [76], different methods perform better for different drugs. More specifically, eFindSite
provides the highest AUC for 5 drugs, SMAP for 6 drugs, and ILbind for the remaining 14 drugs.
Figure 3b gives average true positive rates (fractions of correctly predicted native targets) in the
function of the fraction of predicted protein targets sorted in the descending order by the
propensities for the interaction generated by each of the three predictors. This figure shows that
40% of the native targets (true positive rate = 0.4) are found among the top 4% of predictions from
ILbind and SMAP and among the top 14% of predictions from eFindSite.
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Figure 3. Predictive quality of eFindSite, SMAP, and ILbind for the 25 representative drugs. Panel a shows the average
AUC computed over the 25 drugs; error bars give the corresponding standard deviations. Panel b shows average true
positive rate (fraction of correctly predicted native targets) computed over the 25 drugs in the function of the ranking
of predictions; the x-axis shows fraction of predicted protein targets sorted in the descending order by the predicted
propensities for the interaction.

We observe that predictive performance of these three methods varies between compounds
and depends on their size. Higher AUCs are characteristic for medium sized drugs (with a
molecular weight between 200 and 400 g/mol) and lower AUCs for either small (below 200 g/mol)
or large (over 400 g/mol) drugs. To compare, the average AUCs for the small/medium/large drugs
for eFindSite, SMAP and ILbind are 0.56/0.68/0.58, 0.7/0.83/0.58, and 0.7/0.86/0.59, respectively.
Example small and large compounds for which predictive quality is relatively low are salicylic

acid (138.1 g/mol; average AUC over the three methods of 0.50), isoflurane (184.5 g/mol; 0.60),

28



suramin (1297.3 g/mol; 0.55), and cyanocobalamin (1355.4 g/mol; 0.57). Example drugs for which
prediction are more accurate are naproxen (230.3 g/mol; 0.88), furosemide (330.7 g/mol; 0.94),

and prednisone (358.4 g/mol; 0.87).

3.4 Protein-drug interaction database

3.4.1 Contents and availability

We collected the structural human proteome from PDB by removing low-resolution structures
(> 3A) and following [16, 141] we kept proteins for which sequences were mapped to human
proteins in Ensembl [155]. More specifically, structures of chains with at least 90% sequence
identity quantified using BLAST [154, 156] with default parameters to any human protein from
68th release of Ensembl were selected. As a result, we include a total of 9652 human and human-
like high-resolution structures that correspond to 3746 unique human proteins. Protein chains that
correspond to these PDB structures were mapped to UniProt [157] to facilitate mapping of proteins
between PDID, PDB, DrugBank and BindingDB.

The PDID database includes drugs which were solved structurally in complex with at least
one protein; this is necessary to predict targets. There are 355 such drugs in PDB which we
extracted with PDBsum [158]. The current release 1.1 of PDID includes 51 drugs compared to the
release 1.0 that had 26 drugs, all of which were selected from the 355 drugs. We clustered
structures of the 355 drugs using their structural fingerprint expressed with Tanimoto coefficient
and sampled at least one drug from each of the resulting 25 clusters to select the 51 drugs. Thus,
the selected drugs comprehensively sample the structural drug space. These drugs are listed in

Table 2 and include popular antibiotics, anti-inflammatory, anti-viral and anti-cancers agents,
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immunosuppressants, and drugs for the treatment of osteoporosis, diabetes, heart attack,

hypertension, edema, angina, glaucoma and other diseases.

Table 2. Drugs included in the current release 1.1 of PDID.

Drug name Formula PDB ID  #complexes Primary use

acetazolamide C4H6N4O3S2 AZM 22 treatment of glaucoma, edema and epilepsy
acyclovir CsH11Ns03 AC2 5 anti-viral for herpes, chickenpox, and shingles
adenosine C10H13N504 ADN 107 treatment of cardiac arrhythmia
alendronate C4HoNO7P2 AHD 3 treatment of osteoporosis
ampicillin C16H19N304S AIC 8 antibiotic

bepridil C24H34N20 BEP 2 treatment of angina

caffeine CsH10N402 CFF 10 stimulant

captopril CoH15NO3S MCO 5 treatment of hypertension
cerulenin C12H19NOs3 CER 8 antibiotic

chloramphenicol C11H12CL2N20s CLM 16 antibiotic

chloroquine CisH26CLN3 0TX 1 treatment of malaria
clavulanate CsHoNOs Jo1 4 antibiotic

cyanocobalamin Ce3HssCON14014P1 CNC 10 vitamin B12 activity
cyclosporin A Ce2H111N11012 CSA 30 Immunosuppressant
didanosine C10H12N4O3 2DI 1 anti-viral for HIV

dopamine CsHuNO2 LDP 9 treatment of hypotension and cardiac arrest
efavirenz C14H9CLF3NO2 EFZ 6 anti-viral for HIV

erlotinib C22H23N304 AQ4 3 anti-cancer

ertapenem C22H27N307S 1RG 3 antibiotic

erythromycin Cs7He7NO13 ERY 9 antibiotic

estradiol Ci18H2402 EST 28 hormonal contraception
exemestane Ca0H2402 EXM 1 anti-cancer

furosemide C12H11CLN20sS FUN 3 treatment of hypertension and edema
gemcitabine CoH11F2N304 GEO 3 anti-cancer

ibuprofen C13H1302 IBP 9 anti-inflammatory

imipenem C12H19N304S IM2 12 antibiotic

indomethacin C19H16CLNO4 IMN 24 anti-inflammatory

isoflurane C3H2CLFsO ICF 2 anesthetic

kanamycin C18H3sN4O1n1 KAN 21 antibiotic

I-carnitine C7H16NOs1 152 8 treatment of heart attack and heart failure
mercaptopurine CsHaN4S PM6 2 immunosuppressant

naproxen C14H1403 NPS 4 anti-inflammatory

niflumic acid C13HgF3N202 NFL 2 anti-inflammatory

nitroxoline CoHsN203 HNQ 1 antibiotic

pentamidine Ci19H24N4O2 PNT 7 anti-microbial

pioglitazone C19H20N203S P1B 2 treatment of diabetes

ponatinib Ca9H27F3sNsO OLI 3 anti-cancer

prednisone C21H2605 PDN 8 immunosuppressant
progesterone C21H3002 STR 15 hormone replacement therapy
rifampin Ca3HsgN4O12 RFP 7 antibiotic

ritonavir C37H48N605S2 RIT 12 anti-viral for HIV

salicyclic acid C7Hs03 SAL 36 treatment of acne

saxagliptin C18H25N302 BIM 1 treatment of diabetes
streptomycin C21H39N7O12 SRY 14 antibiotic

sulindac C2oH17FO3S Suz 7 anti-inflammatory

suramin Cs1H40N6023S6 SVR 12 anti-microbial

tobramycin C18H37Ns09 TOY 6 antibiotic

tretinoin Ca0H2802 REA 30 treatment of acne

vidarabine C10H13Ns04 RAB 2 antibiotic

zidovudine C10H13Ns04 AZZ 4 anti-viral for HIV

zoledronate CsH10N207P2 Z0L 12 treatment of osteoporosis
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The PDID database provides access to pre-computed results of computationally expensive
all-atom predictions by eFindSite and SMAP. Their average runtime for a single protein structure
and a given drug is about 30 minutes on a single CPU; the runtime of ILbind is negligible since it
is based a consensus of results generated by the two predictors. This high computational cost makes
ad hoc predictions for a given user query (a given drug or a given protein) computationally
impractical.

The current version of PDID includes results of about 1.1 million predictions of targets over
the 10 thousand structures and 51 drugs, with the corresponding 5172, 7184, and 4444 putative
targets of these drugs generated by ILbind, SMAP, and eFindSite. It also includes 730 known
targets of the 51 drugs mapped from and linked to the corresponding records in DrugBank,
BindingDB, and PDB. Figure 4 shows the number of native and putative targets for each drug. The
median number of putative DPIs equals 23, 30, and 31 for SMAP, eFindSite, and ILbind,
respectively, compared to the median of 8 based on the known interactions collected from
DrugBank, BindingDB and PDB.

PDID is freely available at http://biomine.cs.vcu.edu/servers/PDID/. The backend of this

database is implemented with the MySQL relational database and query pages using PHP script.
Protein targets are linked to PDB, UniProt, BindingDB and DrugBank. Drugs are linked to the
corresponding records in PDB, BindingDB, and DrugBank. Protein and drugs are linked with each
other through their known and putative interactions. The interactions are defined at the molecular
level, i.e., coordinates of the location of the drug in the protein structure file are included. Besides
displaying this information in the browser window, PDID provides access to the source files with
the sequence and structure of the target proteins. We also offer download of the parsable raw

source datasets in text format under the “Datasets” section on the main page. They include the

31
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current version of the structural human proteome (IDs of all considered protein structures), a list
of drugs, and predicted targets for each drug together with scores from each of the three prediction

methods and the corresponding coordinates of the putative positions of the center of the drug.
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Figure 4. Number of native and putative targets for the considered 51 drugs. The native targets are based on the
combined annotations from PDB, DrugBank, and BindingDB. The predictions were generated by ILbind, SMAP and
eFindSite. The drugs, which are shown on the x-axis, are sorted by their corresponding number of targets in the
descending order and separately for each of the four annotations.

3.4.2 User interface

The main page of PDID includes an overview of the contents of the database, provides access
to three available search types (by drug name, by ID of the protein target, and by a sequence of the
protein target), lists links to the source datasets and related resources, and gives the release date. It
also includes link to the “About” page that explains contents of the database and introduces related
methods, and to the “Help & Tutorial” page that explains the interface of the main page and the

three types of output pages that correspond to the three search types (Figure 5).
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ProTEIN-DRuG INTERACTION DaTABASE (PDID) 1N STRUCTURAL HUMAN-LIKE PROTEOME

Asour | Hee & TuroriaL | Retease Notes | Stanistics | Darasase | Rererences | Materias | Disciamer | Biomine

Statistics 7/

Number of drugs 51
Statistics Number of proteins 3746
overall Number of protein structures 9652
Number of predictions of interactions 1088789

Number of known targets 730

Number of putative targets predicted by ILbind 5172

. .. Number of putative targets predicted by SMAP 7184
Statistics Number of putative targets predicted by eFindSite 4444
prgxe::in Median number of known targets per drug 8
Median number of putative targets predicted by ILbind per drug 31

Median number of putative targets predicted by SMAP per drug 23

Median number of putative targets predicted by eFindSite per drug 30

Search Drug/Protein/Sequence from Database 7

,  Search by Drug Name: | Acetazolamide (AZM) v | Search | '

Search by Protein Sequence

Enter Protein Sequence in FASTA rormat:

Minimal E-value: |1e-3 v
| Example || Reset sequence || Search |

HINT: The [2] symbols indicate availability of (additional) explanations. Clicking |2l opens a new window with help and hints
related to the selected section/task.

Materials

o Strucrurar Human ProTeome

o List oF Drues

o Enmire Darasase - The users could download the database file and make local query using MySQL

o Puranive Tarcers with Cooroinates of THE Preoictep Centers of Licanos | - - - - Select drug - - - - v || Download |

Figure 5. Main page of the PDID database. The main page includes statistics of drugs, proteins and interactions, three
types of queries in the database, download links of partial or entire database, and pointers to help and tutorial pages
that can be accessed by clicking on the “?” icon.

The search by drug name returns a table with details of known and putative targets including
links to the corresponding records in PDB, DrugBank and BindingDB, links to files with structure
and sequence of each target, and propensities for binding output by ILbind, SMAP, and eFindSite

(Figure 62). Targets are sorted by the number of methods that predict them as binding (propensities
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shown in green font indicate that binding is predicted) and by the scores generated by the most
accurate 1Lbind when the number is the same. A more detailed description of the formatting and
contents of this output page can be found at

http://biomine.cs.vcu.edu/servers/PDID/help.html#drug_page. Each target protein is available as

a link that leads to a web page with the summary of results for this protein.

The search by protein ID returns a web page that maps this ID into corresponding UniProt
protein (quality of mapping is annotated using sequence similarity), gives links to the sequence
and structure files, and provides customizable visualization of the structure together with the
localization of the putative (red dots) and known (blue sticks) ligands. The page also includes a
table that summarizes information about drugs that are known and predicted to bind this protein
(Figure 6b). This information includes color-coded scores generated by each method that produced
the predictions and the corresponding predicted location of the drug in the protein structure. We
use JSmol [159] to visualize structures and BLAST to compute sequence similarity. A more
detailed description of this web page is available at

http://biomine.cs.vcu.edu/servers/PDID/help.html#prot page.

The search based on protein sequence invokes BLAST that compares the input chain with the
target sequences included in the databases. The most similar target is selected given that its
similarity quantified with the e-value is better than a user-defined cutoff; default e-value cutoff
equals 0.001. The resulting web page displays the alignment of the query and target proteins and
the summary of results for the aligned target protein; the format of the summary is the same as for

the query based on the protein ID.
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PrROTEIN TARGETS FOR MERCAPTOPURINE(PM®G) 12/

More information about Mercaptopurine(PMg6) could be found at

PDB: HrTR: / /viti. RESB. oRG/ PDB/ LIGAD/ LIGDseuRY . 0P HETLD=PMG

DrugBank: HrTP:/ /Wi, DRUGBANK . CA/ DRues/DB@1033
The table lists all proteins from the structural human-like proteome that are sorted by the ILbind binding propensity.
For each protein target, the table includes annotations of known binding events from BindingDB, DrugBank, and PDB, and binding predicted by
Ilbind, SMAP, and eFindSite.
Click protein name to obtain results per selected protein target.[Zl

Sequence | Binding Prediction
Similarity| Score
by ol 3 . . 3 a . Sequence | Structure | Type of | Source to unlikely|Possibly|Likely to
rotein Name nom rganism 3 q 1 bind
=g E File File Annotation Database| Known
T ot Itbind sp | erindsite
arg; binding | raw |confidence
[ %] |propensity| score | score
CANTHINE DEHYDROGENASE/OXIDASE {XANTHINE DEHVDROGENASE; XD; te . — - B
2E10Q A0y TiinE GXIDRSE; K0 JANTHINE OXTDOREDUCTASE} HOMD SAPTENS |CLTCK TO OPEN|CLICK TO OPEN DrucB ansc 99.9 @.91 [123.33| @.28
to .
1Y G_A[XANTHINE DEHYDROGENASE/OXIDASE RATTUS NORVEGICUS |CLTCK TO OPEN|CLICK TO OPEN DrucB arac 98.3 6.91 |122.16| ©.28
to - .
2E3T_A[XANTHINE DEHYDROGENASE/CXIDASE RATTUS NORVEGTCLS |CLICK TO OPEN|CLICK TO OPEN | DrucB anc 98.5 8.91 |122.34| 8.29
CANTHINE DEHYDROGENASE/OXIDASE {XANTHINE DEHVDROGENASE; XD; K te . - . o
3AN1_A XANTHINE OKIDASE; X0; XANTHINE OXIDOREDUCTASE} RATTUS NORVEGTCUS |CLICK TO OPEN|CLICK To OPEN 5 DrucB anc 98.5 9.91 (115.7e| ©.28
2BZG_A|THIOPURTNE S-METHYLTRANSFERASE {THIOPURINE METHYLTRANSFERASE} HOMD SAPTENS CLICK TO OPEN CLICK To OPEN - L DrucB anc 100 e.87 8.41
Bind
\TP-DEPENDENT RMA HELICASE DOXSE {RIG-T; DEAD BOX FROTEIN 58; Predicted R
STHI_Al - runTe ACID-THDUCTBLE GEWE T PROTETN} HOMD SAPTENS CLICK To OPEN CLICK TO OFEN to Bind .77 47.58
FHOSPHATIDYLINOSITOL-4;5-BISPHOSPHATE 3-KINASE CATALYTIC Predicted
3HHM_A |SUBUNIT ALPHA ISOFORM {PI3-KINASE P118 SUBUNIT ALPHA; PTDINS- HOMD SAPIENS CLICK TO OPEN CLICK TO OPEN L 8.76 |45.65
3-KIMASE P118; PI3K} to Bind
RIBONUCLESIDE-DIFHOSPHATE REDUCTASE LARGE SUBUNIT Predicted
3HNC_A|{RTBONUCLEOSTDE-DIFHOSPHATE REDUCTASE SUBUNIT M1 HOMD SAPTENS CLICK TO OPEN CLICK To OPEN L 8.75 |42.31
RIBONUCLEOTIDE REDUCTASE LARGE SUBUNIT} to Bind
SARCOPLASMIC/ENDOPLASMIC RETICULUM CALCIUM ATPASE 1 {SERCAL; .
SR CA(2+)-ATPASE 13 CALCIUM PUMP 1; CALCIWM- TRANSPORTING Predicted R
T A e OpLASHTE RETECUL UM TYFE, FAST THITON SKELETAL 505 TR Gk To Opew CLiok To Gren | .75 [41.52
MUSCLE TSOFORM; ENDOPLASMIC RETICULUM CLASS 1/2 CA(2+) ATPASE}
Ho
THK3_A |SERUM ALEUMIN HOMD SAPIENS CLTew To OPEN CLTCK TO OPEN . 8.75 |45.26
(a) Interaction

ResuLTs FoR MINERALOCORTICOID RECEPTOR {MR} [

The structure of MINERALOCORTICOQID RECEPTOR {MR} is
identified as 20AX (chain A) in PDB.

20AX shares 99.6% similarity with BOZBF6 in UniProt.
The protein sequence file could be downloaded HERE.

The protein structure file could be downloaded HERE.

The panel on the right shows structure of the protein target)
{using gray trace of the backbone), position of ligands that
are in complex with this protein [using blue sticks; they are
included in the structure file), and the predicted center of the
drug melecule {using red balls) as summarized in the 'Binding
to drugs' table.

The structure is editable, it can be rotated and zoomed with a
mouse.

Binding to drugs |7/

Annotated as Known Target m;;‘;‘:?;:;l‘;]:lik:f;f:tm Predlcted:Foord1nates Binding Summary

Drug IDDrug Name Iibind o | FnSIte the E:I\ter‘ oo ;‘;:-t{thu:;

Type of interaction|source database bBinding | o o o m::::“ the Drug Molecule |target?| the protein

[x5¥32] as target
PDN PDB 8.49 -2@.745;59.983;4.164 | Yes 2
5TR PDB 8.4 -19.437;59.756,;3.6684 | Yes 2
EST BmomeDB 2.47 -18.988;59.988;5.387 | Yes 2
RIT BmomaDB -22.241;59.428;8.579 | Yes 1
IMN 2.82 73.84 8.81 -19.86;67.169;18.877 No 3
RFP 8.8 @.92 | -21.981;59.351;6.597 | No 3
(b) REA @.82 a. -17.837;61.883;3.98@ No 2

Figure 6. Results of queries against the PDID database. Panel a shows results for a query for mercaptopurine. Detailed
description of this webpage is given at http://biomine.cs.vcu.edu/servers/PDID/help.html#drug_page. Panel b gives
results form a query for mineralocorticoid receptor protein. Detailed explanations of this page are available at
http://biomine.cs.vcu.edu/servers/PDID/help.html#prot_page. The “?” icon opens the corresponding help page.
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3.5 Conclusions

PDID provides access to all putative targets (between 4444 and 7184, depending on the
prediction method used) of several dozens of popular drugs. These data are based on close to 1.1
million of all-atom predictions over the entire structural human proteome (10 thousand structures
for over 3700 proteins). Our database offers four unique features:

1) Itincorporates accurate predictions generated by three representative protein structure-based
methods.

2) Itprovides predictions for a comprehensively defined structural human proteome. We borrow
structures of similar proteins from other organisms and cluster similar proteins to reduce
redundancy.

3) Itincludes molecular level information on localization of the putative position of the center
of drugs in the structures of the corresponding protein targets.

4) Itincludes comprehensive annotations of known drug targets that are linked to their sources:

DrugBank, BindingDB, and PDB.

Numerous drugs are highly promiscuous and we do not know many of their targets. PDID
addresses this issue by providing access to a complete set of putative DPIs and a set of known
DPIs in the structural human proteome. Our database includes data that otherwise would be
accessible only to individuals and research groups with significant computational expertise and
resources. The putative interactions were generated by three accurate predictors that were shown
to produce results that have previously led to finding new drug targets [16, 30, 31, 141-144]. PDID
complements the existing BioDrugScreen database that relies on docking. The database integrates

annotations of known protein targets collected across DrugBank, BindingDB, and PDB. It also
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links proteins to the corresponding records in UniProt and provides coordinates of the location of

binding sites in the structures of the putative drug targets.

PDID can be used to systematically catalog DPIs and to facilitate various studies related to
polypharmacology of drugs [160], such as explaining side-effects caused by interactions with off-
targets and for the drug repurposing. Relevant recent examples include the use of predictions with
ILbind to find three novel off-targets of cyclosporine A that explain nephrotoxicity associated with
the use of this immunosuppressant [16]. Another example involves repurposing of raloxifene,
which is used for prevention and treatment of osteoporosis, as a potential compound to treat
Pseudomonas aeruginosa infections based on predictions with the SMAP method [144].

However, as discussed in section 2.4, the protein structure-based approaches cover only a
relatively small part the entire human proteome. This is due to the fact that most proteins do not
have structures. A perhaps extreme example of that are GPCRs, a big family of drug targets
composed of mostly membrane proteins, which almost entirely lack structures [161, 162]. This
motivates us to investigate the other category of methods for the prediction of DPIs —the similarity-

based predictions which do not rely on the knowledge of protein structures.
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Chapter 4 Review of the similarity-based predictions of

drug-protein interactions

In this chapter, we investigate the current similarity-based methods for the prediction of DPIs.
Starting from several recent reviews and a series of selected predictors, we distill the main types
of similarities that are used to predict DPIs and categorize the available predictors according to the
type(s) of similarities they use and whether they combine these similarities together. We
qualitatively compare these approaches in the context of their methodological underpinnings, data
that they cover, and how they were assessed. We also analyze their advantages and drawbacks and

make a note of missing aspects related to how they were evaluated in the past.
4.1 Overview of recent surveys

A total of 11 surveys that were written in the last five years have focused on the similarity-
based methods [21, 32, 89-97]. We also note two other articles that focus on related topics
including biological profiles [163] and machine learning tools [164] that are employed in DPI
predictions. The 11 surveys summarize relevant databases, review representative methods, and
discuss common criteria that are used to evaluate predictive performance. Table 3 assesses scope

of these articles with the number of methods they reviewed, coverage of recent predictors,
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inclusion of summary of databases used by the considered predictors, and presence of empirical
assessment and analysis of sensitivity of predictive quality. The two most comprehensive surveys
cover 28 [96] and 27 predictors [90] while the remaining nine articles discuss fewer than 20
methods. In most cases, over half of the methods that were reviewed was published in the past five
years. This reflects growing interest in the similarity-based predictors. However, at least eight
methods that were published in 2016 and 2017 [165-172] were not included in any of these articles.
While most of the surveys provide a brief discussion of the available DPI databases, these are not
necessarily the databases that are used by specific predictors to compute the similarity values. In
fact, only one article provides a more complete discussion that introduces specific databases which
are utilized by a small set of ten predictors that this survey covers [32]. A complete summary of
the DPI databases that covers modern methods is still missing, which is why we discuss this topic.
We survey 35 predictors and investigate two types of relevant databases: internal databases which
are intrinsic to the predictors and source databases that are used to derive the internal databases.
Moreover, only four surveys provide empirical assessment of predictive performance of similarity-
based DPI predictors [32, 89, 96, 97]. While they provide quantitative and comparative analysis,
they focus on a limited set of approaches. In particular, they only consider certain types and
combinations of similarities. They also do not perform sensitivity analysis, i.e., they do not analyze
whether and how predictive performance changes with intrinsic and extrinsic characteristics of the
considered predictors. To summarize, while the previous surveys offer useful insights they also
have several drawbacks. In particular, they miss several recent similarity-based DPI predictors,
provide shallow treatment of databases used by these predictors, offer incomplete empirical

analysis, and do not include sensitivity analysis.

39



Table 3. Overview of surveys of the similarity-based methods for the DPI prediction. The surveys are sorted
chronologically according to their publication year. The check symbol indicates that a given measure (column) is
included in a given survey (row) while a blank cell means absence of a given measure. The last row corresponds to
this review.

Summary of Comparative
Number of Nllr.llbel‘ of re.cent source and  Empirical z}nalysis of o
Survey Year predictors predlct?rs rev.lewed internal assessrpept pl:edlctors that use Sens1t1v.1ty
reviewed (published since databases  of predictive different numbers analysis
2013) that each  performance and types of
predictor uses similarities

Ding et al. [32] 2013 10 2 N
Pahikkala et al. [89] 2014 2 1 \
Mousavian et al. [90] 2014 27 16
Chen et al. [21] 2015 17 10
Cichonska et al. [91] 2015 17 9
Lavecchia et al. [92] 2016 11 9
Hart et al. [93] 2016 8 6
Shahreza et al. [94] 2017 17 8
Fang et al. [95] 2017 10 5
Ezzat et al. [96] 2018 28 17 v
Hao et al. [97] 2018 12 9 v
This dissertation 2018 35 22 N ~ ~ ~

In this dissertation, we focus on a comprehensive set of 35 similarity-based DPI predictors
that were published in the last decade, including the largest set of recent predictors when compared
to previous surveys. The considered predictors comprise of 22 recent tools that were published in
the last five years and eight latest methods that were published since 2016. This way our review
includes the latest advances in the DPI predictions. We define the three main types of similarities
that these 35 methods use to predict compound-protein interactions, describe key architectural
details of these tools and comment on their impact. We also offer in-depth summary of the internal
and source databases that these predictors use and discuss how these databases are linked.
Moreover, under the third goal we also combine multiple sources databases to build a novel
benchmark dataset that we use to perform comprehensive empirical evaluation. The empirical
evaluation that we perform as part of the third goal (details are given in Chapter 5) encompasses
representative approaches that rely on each of three main types of drug and protein similarities and

ensemble predictors that combine two and three types of similarities. Besides providing the overall

40



predictive performance of the considered predictors, we are the first to consider predictive quality
across individual drugs. Finally, our first-of-its-kind sensitivity analysis investigates whether and
how the predictive performance depends on several intrinsic and extrinsic factors, e.g., the number
of targets that are a priori known for a given drug.

The chapter starts with the selection of representative similarity-based predictors. We provide
discussion of their source databases to build up the background to survey the selected predictors.
These databases include native DPIs that are used to implement predictions by the similarity-based
predictors. We summarize their timeline, impact, data contents, and overlap. Next, we investigate
the timeline, impact, and availability of the 35 selected predictors. Moreover, we compare the
contents of their internal databases and review the types of similarities that they utilize. After that,
we provide a timeline that links the chronological record of source databases with the emergence
of the 35 predictors. We also analyze how different types of similarities were used and combined

over time to develop these methods.

4.2 Selection and overview of similarity-based DPI predictors

To cover a complete landscape of top-tier similarity-based predictors of DPIs, we collected
corresponding articles that were published in high-impact venues. We searched the PubMed
repository [173] in April 2018 for relevant articles using the following query: (predict*
[Title/Abstract] AND (“drug target interaction” [Title/Abstract] OR “drug protein interaction”
[Title/Abstract])). The query generated 170 possibly germane articles. We manually processed
these results to select articles that describe similarity-based predictors that were published in
reputable journals, i.e., journals with impact factor > 3.5. We collected the impact factors from the

latest Journal Citation Reports that was released by Clarivate Analytics (formerly Thomson
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Reuters) on June 14, 2017 [174]. This version of JCR is based on the citation data in 2016 and
reveals the scientific impact of a JCR-indexed journal by quantifying the ratio between the number
of 2016 citations to the articles published in this journal in 2014-2015 and the number of articles
published in this journal in 2014-2015. The resulting 35 similarity-based DPI predictors are
included in this review [165-172, 175-201]. This list is longer than the lists covered in the prior
surveys which also include methods published in conference proceedings, lower impact factor
journals as well as methods that target ligand/chemical-protein interactions besides DPIs.

The similarity-based predictors of DPIs are implemented based on the assertions that similar
drugs may share the same protein targets and that similar proteins may interact with the same drugs.
To identify putative interaction between a given drug and protein, a predictive model typically
searches its internal database for drugs that are similar to the given drug and their known targets
that are similar to the given target protein. Therefore, the core aspect that defines these predictions
is how to measure the drug-drug and protein-protein similarities. Analysis of the 35 similarity-
based DPI predictors reveals that the similarities are typically quantified using information about
the chemical structures of drugs, side-effect profiles of drugs, and sequences of their protein targets.
In other words, the predictors rely on three main types of similarities: chemical similarity of drugs
(DCS), drug profile similarity (DPS), and protein sequence similarity (PSS). Some predictors
employ one type of similarity to infer putative DPIs. Other methods combine multiple types of
similarities motivated by an assumption that this may improve predictive quality when compared
to using just a single type of similarity.

The similarity-based predictive methods are composed of two components: an internal
database of known DPIs and a predictive model. Prediction of DPIs is performed in three steps.

First, a user provides inputs in the form of drug structure, drug profile, and/or protein sequence(s)
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of known target(s) for an input drug, whatever is necessary for the selected similarity-based
approach. In the second step, similarities between the input drug structure (profile) and the
structures (profiles) of the drugs in the internal database are computed. If target(s) of the query
drug are known or can be collected from the internal database (the query drug is already included
in the database), then similarity between the known target of the query drug and all proteins targets
in the database is also quantified. In the third step, the predictive model combines the similarities
to produce a propensity which quantifies likelihood that the query drug interacts with relevant
protein targets which are included in the internal database.

The architectures of these predictive models are designed and tuned for their corresponding
internal databases. Thus, data quality of the internal database largely determines the predictive
performance of similarity-based DPI predictors. The internal databases typically consist of a set
of native DPIs that are aggregated and collated from multiple source databases which store curated
annotations of DPIs. Next, we review the source databases that are used to derive the internal

databases of the 35 selected methods.

4.3 Source databases

We investigate the 35 predictors to come up with a list of all source databases that they use
to derive the corresponding internal databases. In total, we found 12 publicly accessible source
databases that these methods utilize. They include, in chronological order of publication: PDSP Ki
[202], BRENDA [203-211], BindingDB [108-112], TTD [43, 103-107], KEGG BRITE [212-218],
DrugBank [98-102], GLIDA [219, 220], KEGG DRUG [212-218], SuperTarget [117, 118],
Matador [117], STITCH [123-127], and ChEMBL [113-116]. One of the selected predictors, SEA

(Similarity Ensemble Approach) [175, 221], utilizes a collection of drugs and associated targets
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from a commercial MDL Drug Data Report (MDDR) [222, 223]. This database is not available
publicly and thus it is excluded from our analysis. Next, we summarize the contents, timeline,

impact, and relationships between these 12 publicly available source databases.
4.3.1 Timeline and impact

Besides storing the data and providing facilities to conveniently query and access the data,
databases must be maintained and regularly updated. They also should be periodically
disseminated to inform the users about their contents and the available features. One way to
measure the impact of these databases is to tally the citation counts for the scientific articles that

introduce these databases and their updated versions.
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Table 4. Timeline and impact of the source databases of drug-protein interactions. The source databases were used to
derive the internal databases of the 35 selected similarity-based predictors. The timeline is a chronological summary
of publications and releases for these source databases. The impact measures citation counts for the publications of
databases. This table is sorted chronologically according to the date of the first publication. The data of this table was
collected on April 1, 2018.

Date of Date of Date of Date of Date of Al Annual

Source database the first the first the latest the latest the first .. .. " & . .
publication® release? publication® release*  predictor® citations™  citations

PDSP Ki [202] 8/1/2000 11/1/1999 N/A 4/1/2018  7/11/2008 231 13
BRENDA [203-211] 10/1/2000 10/1/2000 10/19/2016 1/1/2018 7/1/2008 2557 146
BindingDB [108-112] 12/1/2001 11/1/2000 10/19/2015 4/1/2018 3/4/2016 1398 86
TTD [43, 103-107] 1/1/2002 1/1/2002 11/13/2017 10/4/2017  3/25/2013 961 59
KEGG BRITE [212-218] 1/1/2006 4/1/2005 11/29/2016 4/1/2018 7/1/2008 13974 *1140
DrugBank [98-102] 1/1/2006 1/1/2006 11/8/2017 4/2/2018 7/1/2008 5822 475
GLIDA [219, 220] 1/1/2006 1/1/2006 11/5/2007 10/10/2010 3/1/2011 194 16
KEGG DRUG [212-218] 1/1/2006 7/1/2005 11/29/2016 3/29/2018 9/3/2012 13974 *1140
SuperTarget [117, 118] 10/16/2007 10/16/2007 11/8/2011 11/8/2011 7/1/2008 410 39
Matador [117] 10/16/2007 10/16/2007 N/A  10/16/2007  7/11/2008 316 30
STITCH [123-127] 12/15/2007 8/9/2007 11/20/2015 6/30/2016  6/10/2015 1068 104
ChEMBL [113-116] 9/23/2011 10/27/2009 11/28/2016 5/1/2017 7/8/2013 2434 373

1 The date when a given source database was originally published in a scientific article. It corresponds to the publication date of
early access, if available. Otherwise, the date of the journal issue where the first publication appeared is used.

2 The date when a given database was first made available, which typically is before the database was originally published. We
collect these dates from the release notes or time stamps recorded on the database websites, if available, and we use the date of the
first publication, otherwise.

3 The date of the most recent republished article that introduced an updated version of a given database after the database was
originally published.

4The date of the most recent release of a given database, which typically is after the latest republishing.

5The date when a given source database was first to be utilized to derive the internal database of a predictor.

6The “All citations” column is the total number of citations that include citations to the first publication and all republished articles
for a given source database. The citation counts were collected from Google Scholar.

" The “Annual citations” column is the average citation counts per one calendar year (365 days) over the period from the first
publication date until April 1, 2018, rounded to the nearest integer.

* KEGG BRITE and KEGG DRUG are a part of the Kyoto Encyclopedia of Genes and Genomes (KEGG) project. They were
published together with the KEGG database and all of its affiliated databases. The citation data for these two databases include the
citations to the entire KEGG database, and they cannot be distributed to each affiliated database of KEGG. These counts are
relatively high because they reflect the citations to all 23 databases affiliated with KEGG by now.

Table 4 provides a summary of the 12 source databases. It includes information about
publications that introduce the original and the updated versions of these databases as well as the
corresponding citation data. The source databases are sorted chronologically according to the date
of their first publication. Specifically, we use the date of the early access online publication when
it was available. Otherwise, we use the date of the journal issue in which the first publication has
appeared. Apart from the date of the first publication, we also list the date when the database was
first made available, which typically is before the database was published. We collect these first

release dates from the release notes or time stamps recorded on the database websites, if available,
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and we use the first publication date otherwise. In this chronological order, the four earliest source
databases debuted between August 2000 and January 2002. The next seven databases were
published several years later, between 2006 and 2007. The last source database was published in
2011. Eleven out of the twelve sources were published within about one year after their first public
release. The one exception, the ChEMBL database was first published two years after its initial
release. ChEMBL was originally a commercial database called StARlite that was launched before
2005, acquired by EMBL-EBI in 2008, released to the public in 2009, and finally published in
2011 [224-226]. Given that all these databases were originally released by 2007 or built based on
an earlier database, the data stored in these 12 source databases are being accumulated for at least
ten years.

Most of the source databases have been regularly updated and republished. Besides just the
addition of new data, these updates typically include new features and improved user interface.
We list the publication date of the latest republished article and the most recent release date for
each source database as of April 1, 2018. These two dates together with the first release and the
first publication dates provide interesting insights into the progress of the database development.
Considering the latest republishing and release dates, GLIDA, SuperTarget, and Matador have not
been republished or updated in the last six years. This suggests that they are no longer actively
maintained. The PDSP Ki database is actively and frequently updated, but it has never been
republished since it was originally published 17 years ago. Meanwhile, the other eight source
databases are being updated and republished regularly. Frequent dissemination informs the users
about new contents and features and also may help to attract additional users. In general, these
frequently updated sources are relatively more mature since they gradually accumulate DPIs,

include more recent data, and typically offer a more refined interface and a longer list of features.
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Another relevant aspect is to mark when the source databases were de facto used to build the
similarity-based predictors of DPIs. Thus, Table 4 shows the date when the earliest predictor has
utilized a given source database to derive its internal database of known DPIs. The list of the source
databases that were first used to develop the predictors includes PDSP Ki, BRENDA, KEGG
BRITE, DrugBank, SuperTarget, and Matador. The earlier adoption of these source databases
reflects to a certain degree their popularity and impact. Moreover, these source databases were also
used for other purposes including protein structure-based prediction of DPIs [78, 227, 228] and
development of various cheminformatics and bioinformatics methods and datasets [229-233].

Table 4 summarizes citations for the 12 source databases. The citations are one way to
quantify the impact of these resources. The citation counts were collected from Google Scholar

(http://scholar.google.com/) on April 1, 2018. We list the total number of citations that include

citations to the first publication and all subsequent publications of a given database. Every source
database has received at least about two hundred citations. BRENDA, BindingDB, DrugBank,
ChEMBL, KEGG BRITE, KEGG DRUG, and STITCH have accumulated over one thousand
citations. A notable exception is the KEGG BRITE and KEGG DRUG databases, which are part
of the Kyoto Encyclopedia of Genes and Genomes (KEGG) project since 2005. They were
published together with the KEGG database and all of its other affiliated databases in 2006 [212].
Currently, KEGG includes 23 individual databases including, for example, KEGG PATHWAY
that provides pathway maps of molecular interaction, reaction and relation networks. The citation
data for KEGG BRITE and KEGG DRUG includes the citations to the entire KEGG database;
these citations cannot be attributed to individual KEGG resources. The citation counts to KEGG
BRITE and KEGG DRUG are so high because they reflect the citations to all 23 databases

affiliated with KEGG.
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An arguably more robust measure to quantify impact are the annual citation counts. The
annual counts are defined as the average citation frequency per one calendar year (365 days)
computed over the period from the date of the first publication until the date when we acquired the
citation data (April 1, 2018). These counts accommodate for the differences in the age of the source
databases. PDSP Ki, GLIDA, SuperTarget, and Matador received moderate (<50) numbers of
annual citations. These relatively low citation counts could be a result of a lack of effort to update
GLIDA, SuperTarget, and Matador which were last updated in 2011 or earlier. PDSP Ki is
frequently updated but it was last published in 2000. On the other hand, BRENDA, BindingDB,
TTD, and STITCH have received relatively high (50-150) annual citations. This is likely because
these are mature resources that have ten years of history of regular republishing and updates.
Noticeably, DrugBank and ChEMBL attract over 300 citations per year. They were also regularly
updated and republished. Their success can be attributed to the high-quality of their data contents,
a broad range of functional features, and a user-friendly web interface. Next, we review the data

contents for the 12 source databases.
4.3.2 Data contents

Typically, multiple source databases are used to derive an internal database of a given
predictor. They are used as a source for information about drugs, their protein targets, and native
DPIs. Table 5 summarizes information about the number of relevant drugs or drug-like compounds
that are known to interact with protein targets, the number of these targets, and the number of
annotated drug- and compound-protein interactions for the 12 source databases. These data were
collected from the latest release of each database on April 1, 2018. We captured the numbers from

the release notes or statistics page if they were available. Otherwise, we tallied the numbers from
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the data dumps. BRENDA, a database dedicated to enzyme functions, does not provide specific

statistics and data downloads. Thus, we could not calculate the quantities for this database.

Table 5. Data contents of the source databases of drug-protein interactions. These source databases were used to derive
the internal databases of the 35 selected similarity-based predictors. The data of this table correspond to the latest
release of each database as of April 2018. The numerical data were captured from the release notes or statistics page
if they were available. Otherwise, we counted the numbers from the data dumps of each database.

Type Database Abbr.! Drugs’  Proteins’ DPIs* DPIs/drug® URL
Matador MA 801 2,901 15,843 19.8 http://matador.embl.de
KEGG BRITE KB 5,045 1,061 14,222 2.8 http://www.genome.jp/kegg/brite.html
Drug KEGG DRUG KD 5,045 1,061 14,222 2.8 http://www.genome.jp/kegg/drug/
DrugBank DR 10,562 5,020 23,380 2.2 http://www.drugbank.ca
PDSP Ki PK 11,569 1,673 63,619 5.5 http://kidbdev.med.unc.edu/databases/kidb.php
TTD TT 23,486 3,036 33,467 1.4 http://bidd.nus.edu.sg/BIDD-Databases/TTD/TTD.asp
GLIDA GL 23,214 410 30,410 1.3 http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/
STITCH ST 156,686 3,908,233 *148,826,348 "949.8 http://stitch.embl.de
Bioactive SuperTarget SU 195,770 6,219 332,828 1.7 http:/bioinformatics.charite.de/supertarget/
compound BindingDB BI 644,978 7,042 1,439,799 2.2 http://www.bindingdb.org/bind/index.jsp
ChEMBL CH 2,101,843 11,538 14,675,320 7.0 http://www.ebi.ac.uk/chembl/
BRENDA BR Unavailable Unavailable Unavailable Unavailable http://www.brenda-enzymes.org/index.php

1 Abbreviated name of a given source database. The abbreviations are used to denote the source databases of predictors in Table 8.
2The number of drugs and drug-like compounds that are known to interact with protein targets in a given source database.

3 The number of proteins that are targeted by drugs and drug-like compounds in a given source database.

4The “DPIs” column is the number of known DPIs that are stored in a given database.

5 The “DPIs/drug” column is the average number of DPIs per drug, which is calculated by dividing the “DPIs” column to the
“Drugs” column for a given database. Unavailable means that these numbers are missing because BRENDA does not provide
specific statistics and downloads for the entire collection of DPIs that it store.

* The numerical data for the STITCH database includes both direct and indirect DPIs, while data for other databases include only
the direct interactions. The indirect interactions are based on effects of signaling pathways where effects of drugs are propagated
onto proteins that interact with other proteins that directly interact with these drugs. The indirect interactions in this database cannot
be separated from the direct interactions, and thus the corresponding numbers are higher than expected.

Table 5 categorizes the source databases into two types depending on if they are dedicated to
drugs or a more generic set of bioactive compounds. The first type of six databases including PDSP
Ki, TTD, DrugBank, Matador, KEGG BRITE, and KEGG DRUG focus on approved, under a
clinical trial, and experimental drugs. The other six source databases include both drugs and other
bioactive compounds that typically are small molecules with drug-like properties. Consequently,
the first type of databases has fewer compounds, between 8 hundred and 23 thousand, compared
to the second group that includes between 23 thousand and over 2 million compounds. Table 5 is
sorted by the number of compounds within each of the two categories. Except for BRENDA for

which data are not available and GLIDA that is dedicated solely to the G protein-coupled receptors
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(GPCR), the bioactive compound-centric databases have more DPIs and protein targets than the
drug-centric databases. Specifically, the six smaller databases include between 15 and 60 thousand
interactions, compared to the group of larger sources that features up to 148 million interactions.
The largest compound repository, ChEMBL, stores a comprehensive set of two million bioactive
compounds. This number is 90 times higher than the total number of the drugs in the largest
repository that focuses exclusively on drugs, TTD. Unsurprisingly, the number of compound-
protein interactions in ChEMBL is 440 times larger than the number of DPIs in TTD.

The main focus of these databases is typically on the human protein targets. The druggable
human proteome, which is defined as all human proteins that interact with current drugs, is
estimated to comprise of between 1000 and 3000 proteins [1, 18-20]. The numbers of protein
targets in the source databases typically vary between about 1000 and 12,000, with a median value
of 3036. Half of these databases are larger than the druggable proteome because they cover proteins
from other organisms. For example, BindingDB contains targets from over 400 organisms. There
are two exceptions that include GLIDA and STITCH. The GLIDA database focuses on the GPCRs,
and thus, it is limited to the corresponding 410 GPCR proteins. STITCH covers over nine million
proteins from 2031 organisms, which include a substantial number of putative and low-quality
annotations of targets. We excluded these predicted and low-confidence interactions (using their
confidence score < 0.7) when calculating the numbers for Table 5. This resulted in a set of about
4 million targets and 149 million interactions. The reason why this database is so large is that
STITCH includes both direct and indirect DPIs, while data in the other databases include only the
direct interactions. The indirect interactions are derived based on signaling pathways where effects

of drugs are propagated onto downstream proteins.
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In each of the 12 source databases, the number of DPIs is greater than the number of drugs.
This is a result of promiscuity of drugs that typically interact with multiple targets. The field of
polypharmacology [234-236] and efforts in drug repurposing [7, 8, 10] depend on this promiscuity.
However, drug promiscuity may also lead to undesired side-effects and unintended toxicities [12,
15, 16]. We measure the drug promiscuity in these source databases by calculating the average
number of DPIs per drug (see DPIs/drug in Table 5). The median degrees of drug promiscuity for
the 12 source databases is 2.8, which is close to the promiscuity measured using assays that ranges
between 2.6 and 3.4 [237]. Ten databases have between 1.3 and 19.8 DPIs per drug. The STITCH
database is again an exception. It includes a relatively dense mapping between proteins and drugs
due to the inclusion of a considerable number of indirect interactions. The drug promiscuity has
inspired the development of the similarity-based predictive models, where the similarity between
targets is used to predict DPIs. It also provides an opportunity to use the currently known targets
of a given drug to build models that predict other targets of the same drug.

Besides the interactions, these source databases also encompass rich annotations of the
structures, functions, and properties of the drugs and targets, together with the corresponding
references. For example, DrugBank provides over 200 such annotations. The native DPIs and the
additional knowledge are accessible through the web interfaces of these sources. The

corresponding URLSs for the 12 source databases are listed in Table 5.
4.3.3 Relationships between source databases

Each of the 12 source databases includes a different collection of DPIs. However, these source
databases also overlap with each other. This is because different source databases collect the
interactions from some of the same sources, and because some of them also directly import

annotations from the other source database. Table 6 summarizes inputs that are used to derive data
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stored in a given source database. The inputs include data coming from the 12 source databases,
directly from literature, and from other resources. The first 12 inputs in the table indicate whether
a given source database directly imports DPIs from another source databases. Seven source
databases draw DPIs from between one and nine (for STITCH) other source databases. Moreover,
some of the inputs are more popular than the others. Six of the nine input databases provide data
for at least three source databases. For example, TTD is used as an input to four source databases
including DrugBank, SuperTarget, Matador, and STITCH, compared to BRENDA, SuperTarget,
and STITCH that are never used as inputs. The direct inclusion of source databases as inputs results
in a substantial overlap between databases. For example, Matador shares a substantial overlap with
SuperTarget since they both draw data from the same four source databases while SuperTarget
also imports data from one more source. Interestingly, ChEMBL and BindingDB exchange data
reciprocally. BindingDB obtains data on compound-protein binding affinities from ChEMBL and
exports binding data that were extracted from patents to ChEMBL. Noticeably, STITCH includes
the interactions taken from nine other source databases, which explains why Table 5 shows that it
hosts the largest collection of interactions. Only the BRENDA database neither imports

interactions directly from other source databases nor is used as an input.
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Table 6. Relationships between source databases. Each row lists a source database, and each column specifies an input
where the data of a given source database come from. The inputs include data coming from other source databases,
literature, and other types of inputs. The “Literature” column denotes that the data are manually curated from scientific
articles, patents, and annual reports of pharmaceutical companies. The “Other inputs” column includes predictions,

experimental data, and other databases that are not named in the table. “x” indicates that a given source database draws
data from a given input.
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PDSP Ki X X
BRENDA X X
BindingDB X X X X
TTD X X
KEGG BRITE X X
DrugBank X X X
GLIDA X X X X
KEGG DRUG X X
SuperTarget X X X
Matador X X X
STITCH X X X X X X X X X X X
ChEMBL X X X

Moreover, we list two additional types of inputs: literature and other inputs. The literature
includes scientific articles, patents, and annual reports of pharmaceutical companies. The other
inputs incorporate predictions, experimental data, and other input databases that exclude the 12
source databases. Table 6 shows that all 12 source databases include data coming directly from the
literature. This is yet another factor that contributes to the overlap in the contents of the 12 source
databases. The data coming from the literature typically includes information about experiments
and assays that were used to validate bioactivity and measure affinities of interactions. This
information provides context for the interactions. Every source database also acquires data from
other inputs that include predictions, other databases such as the Comparative Toxicogenomics
Database [238] and PubChem BioAssay [239], and experimental data that were not stored in a

dedicated database, such as the data from Refs. [240, 241].
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Our analysis reveals that each of the 12 source databases overlaps with at least one other
source database. Table 6 qualitatively summarizes this overlap. A quantitative estimate would be
extremely challenging. This is because these databases lack a uniform definition of drugs and
targets and a consistent way to name and identify compounds and biomolecules. Even if the same
literature is used to extract DPIs the resulting data could be different. For example, when the
interaction is annotated at the gene level, the same gene could be mapped to different proteins and
different types of protein identifiers, depending on which software and databases were used to
perform the mapping. The assignments of information from literature to a precisely and uniquely
defined set of drugs and protein targets is still an open challenge [44]. The bottom line that that
different databases adopt different nomenclatures and identifiers to represent the drugs and
proteins, which makes it virtually impossible to quantify the degree of overlap between the 12
databases. A few works have analyzed the overlap of drugs and targets for a small subset of these
source databases [23, 177]. A study over a set of 502 approved drugs shows that 49% and 20% of
the DPIs in DrugBank were included in Matador and PDSP Ki, respectively [177]. The data that
are unique to DrugBank account for only 46% of its DPIs. Moreover, PDSP Ki shares 42% of its
known interactions with Matador. As concluded by another investigation, DrugBank had 52% and
21% of drugs in common with ChEMBL and TTD, respectively [23]. The 74% and 55% of the
protein targets stored in DrugBank were also included in ChEMBL and TTD, respectively.
Moreover, ChEMBL covered 91% and 55% of the drugs and targets that were housed in TTD,
respectively. These numeric analyses support our observation about the relatively large extend of
overlap and also reflect the fact that source databases have their unique data.

We show that the 12 source databases were developed using some of the same data sources

and some of them even swap the data with each other. These relationships lead to a certain amount
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of overlap of information that they store. However, each source database also houses its own
unique data, and therefore, they should be combined together to collect the most complete set of
known DPIs. This is in fact the case for 22 out of the 35 methods that we survey. They use at least
two source databases to develop their internal databases. Moreover, 17 methods, including KRM
[176], BLM [179], Yamanishi et al. [180], GIP [182], NBI [183], KBMF2K [184], Cao et al. [186],
BLM-NII [187], DT-Hybrid [189], DINIES [191], Shi et al. [192], RLS-KF [196], NRLMF [197],
DASPfind [199], PUDTI [168], DVM [169], and iDTI-ESBoost [172] have utilized at least four

source databases to create their internal DPI databases.
4.3.4 Other drug-target interaction databases

Besides the 12 source databases, we discuss another 19 databases that have not been adopted
to develop the selected similarity-based predictors. These databases house the drug-target
interactions accompanied by other information, such as details of mechanisms of DPIs [242],
unstudied/dark targets [243], interactions at the gene level [244-250], structures of protein targets
[29, 35, 251, 252], information about protein-protein and drug-drug interactions [253-261], side-
effects of drugs [128], and information focused on specific diseases, such as cancer [262-266].
Some databases are constrained to a particular group of drugs [267] or a specific family of proteins
[268]. Next, we discuss these 19 databases in greater depth.

DrugCentral (http://drugcentral.org) is a comprehensive knowledgebase that integrates

information about drug actions and pharmacological indications, which can be used to elucidate

therapeutic mechanisms mediated through DPIs [242]. The Pharos database (http://pharos.nih.gov)

incorporates drug action data taken from DrugCentral to define druggable levels of protein targets
and define unstudied/dark protein targets. These dark targets are not yet known to be involved in

small molecule activities, but they are potentially druggable [243].
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Some resources aggregate biological annotations and disease-related knowledge for the
druggable genome, which is defined as a collection of genes that encode druggable proteins. These

resources include the PharmGKB database (http://www.pharmgkb.org) [244], DGldb

(http://dgidb.genome.wustl.edu) [245, 246], the Drug2Gene database (http://www.drug2gene.com)

[247], IUPHAR/BPS GtPdb (http://www.guidetopharmacology.org) [248, 249], and Open Targets

(http://www.targetvalidation.org) [250].

The next three databases rely on the 3D structures of protein targets. The PDB database

(http://www.rcsb.org) provides access to an extensive collection of 3D structures of drug-protein

complexes [35, 251]. The BioLip database (http://zhanglab.ccmb.med.umich.edu/BioLiP)

provides access to residue-level annotations of ligand-binding sites, binding affinity data, and
biological functions for a comprehensive collection of proteins that have 3D structures [252]. The

PDID (http://biomine.cs.vcu.edu/servers/PDID) is a structural human genome-wide repository of

putative and native DPIs that are mapped into the 3D structures of protein targets [29]. It currently
stores data about over one million interactions for 51 drugs.

A typical database focuses on DPIs. However, some drugs target protein-protein interactions
and targets that are relevant to the same disease or condition can be modulated by multiple drugs.
Several databases address these aspects. For example, three databases that focus on the
druggability of protein-protein interactions include TIMBAL

(http://mordred.bioc.cam.ac.uk/timbal) [253, 254], 2P2ldb (http://2p2idb.cnrs-mrs.fr) [255-257],

and iPPI-DB (http://www.ippidb.cdithem.fr) [258, 259]. On the other hand, DCDB

(http://www.cls.zju.edu.cn/dcdb) is a resource that centers on the therapeutic effects of multi drug

combinations [260, 261].
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The IntSide database (http:/intside.irbbarcelona.org) focuses on drug side-effects. This

database includes data about both therapeutic and off-targets, relevant pathways, biological
functions, and chemical traits of drugs [128]. This information is particularly useful to explain and
understand undesired responses to drug treatments.

The CancerResource (http://data-analysis.charite.de/care) [262, 263] and canSAR

(http://cansar.icr.ac.uk) [264-266] databases aim to bridge cancer research with drug discovery.

These two resources provide underlying information about drug-target interactions that are
relevant to cancer treatment, such as data of gene expression, mutations in cancer-related genes,
drug sensitivity in cancer cell lines, and pathways of drug targets.

Finally, some resources are dedicated to a particular collection of drugs or a specific family
of protein targets. For example, the WITHDRAWN database

(http://cheminfo.charite.de/withdrawn) includes data on targets and pathways of drugs that were

recalled from the market due to toxicity or inefficacy [267]. The GLASS database

(http://zhanglab.ccmb.med.umich.edu/GLASS) is exclusively focused on the ligand-protein

interactions for the G protein-coupled receptors [268]. About 33% of currently used drugs target
this family of proteins [44].

The additional information that can be extracted from these databases complements the
information about drug-target interactions that can be obtained from the 12 source databases. We
suppose that it would be beneficial for the future similarity-based predictors of DPIs to include

these databases as sources.
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4.4 Similarity-based predictors

We review several key aspects of the 35 selected high-impact similarity-based DPI predictors.
We classify these methods into different categories according to the types and numbers of
similarities that they use. We summarize the timeline, impact, and availability of these predictors.
We link their internal databases to the specific source databases that we discussed in section 4.3.
We also discuss architectural details of these methods. Finally, we comment on the assessment of

predictive performance that was adopted by the previous approaches.
4.4.1 Categorization of predictors

The three types of similarities can be combined to formulate an ensemble predictor with the
underlining goal to improve predictive quality when compared to using single similarity. Many of
the predictors proposed in recent years rely on the ensembles that include two or three similarity
types. Consequently, we categorize the 35 considered predictors into three groups: the methods
that apply one type of similarity (1S), ensemble models that combine two types of similarities (25),
and ensembles of all three similarities (3S); see “Type of predictor” column in Table 8 and Table

9.
4.4.2 Timeline, impact, and availability

The 35 similarity-based predictors were developed in the past decade. Table 7 lists these
predictors in chronological order by their first publication dates. The first five predictors were
published between 2007 and 2009. We note a steady pace of the development of methods between
2010 and 2015. Specifically, eight methods were released between 2010 and 2012, and another

eight between 2013 and 2015. The pace has picked up recently and already 14 methods were
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published between 2016 and the first quarter of 2018. These data reveal an increasing interest in

the development of the similarity-based approaches.

Table 7. Timeline, impact, and availability of the 35 selected similarity-based DPI predictors. This table is sorted
chronologically according to the date of publication. The data of this table was collected on April 1, 2018.

Predictor* Date? JIF® Citations® .An_nuatls Availability® URL
citations
SEA [175, 221] 2/7/2007 41.7 922 83 WS http://sea.bkslab.org
KRM [176] 7/1/2008 7.3 446 46 None N/A
Campillos et al. [177]  7/11/2008 37.2 892 92 None N/A
COPICAT [178,269]  6/5/2009 4.5 41 5 WS http://copicat.dna.bio.keio.ac.jp
BLM [179] 7/15/2009 7.3 265 30 SS http://members.cbio.mines-paristech.fr/~yyamanishi/bipartitelocal/
Yamanishi et al. [180]  6/1/2010 7.3 249 32 None N/A
Yabuuchi et al. [181] 3/1/2011 9.8 102 14 None N/A
GIP [182] 9/4/2011 7.3 195 30 SS http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/
NBI [183] 5/10/2012 4.5 339 57 None N/A
KBMF2K [184] 6/23/2012 7.3 125 22 SS http://github.com/mehmetgonen/kbmf/
PKR [185] 9/3/2012 7.3 71 13 None N/A
Cao et al. [186] 9/24/2012 5.0 33 6 None N/A
BLM-NII [187] 11/17/2012 7.3 109 20 None N/A
Cheng et al. [188] 3/25/2013 3.8 49 10 None N/A
DT-Hybrid [189] 5/29/2013 7.3 73 15 WS &SS http://alpha.dmi.unict.it/dtweb/index.php
PRW & NB [190] 7/8/2013 3.8 69 15 SS http://pubs.acs.org/doi/suppl/10.1021/ci300435)
DINIES [191] 5/16/2014 10.2 44 11 WS http://genome.jp/tools/dinies/
Shi etal. [192] 5/6/2015 3.8 24 8 SS http://web.hku.hk/~liym1018/projects/drug/drug.html
Liu et al. [193] 6/10/2015 7.3 24 9 None N/A
RWR [194] 8/19/2015 4.2 11 4 None N/A
SLP & RLS [195] 9/9/2015 4.3 6 2 SS http://pan.baidu.com/s/1dDgDLuD
RLS-KF [196] 1/14/2016 5.0 7 3 SS http://github.com/minghao2016/RLS-KF/
DrugMiner [165] 1/25/2016 6.4 14 6 WS http://www.drugminer.org
NRLMF [197] 2/12/2016 4.5 34 16 SS http://github.com/stephenliu0423/PyDTI/
SDTNBI [198] 3/4/2016 5.1 20 10 SS http://lmmd.ecust.edu.cn/methods/sdtnbi/
DASPfind [199] 3/16/2016 4.2 14 7 WS http://cbrc.kaust.edu.sa/daspfind/
DrugE-Rank [200] 6/11/2016 7.3 23 13 WS http://datamining-iip.fudan.edu.cn/service/DrugE-Rank/
DBN [166] 3/6/2017 4.3 10 9 SS http://github.com/Bjoux2/DeepDTIs_DBN/
EnsemDT/KRR [201] 5/24/2017 3.8 4 5 None N/A
Pedn et al [167] 6/19/2017 4.3 3 4 None N/A
PUDTI [168] 8/14/2017 4.3 0 0 None N/A
DVM [169] 9/11/2017 4.3 1 2 None N/A
DTINet [170] 9/18/2017 12.1 4 7 SS http://github.com/luoyunan/DTINet/
bSDTNBI [171,270] 9/28/2017 3.8 2 4 SS http://Immd.ecust.edu.cn/methods/bsdtnbi/
iDTI-ESBoost [172]  12/18/2017 4.3 1 4 WS &SS http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/

1 The name of each predictor is either provided in relevant publications or otherwise, named using the last name of its first author.
2The date of early access online publication or the date of journal issue where a given predictor was originally published.

3 The “JIF” column is the journal impact factor of the journal where a given predictor appeared. The data were collected from the
2017 Journal Citation Reports that was released by Clarivate Analytics (formerly Thomson Reuters) on June 14, 2017.

4 The “Citations” column is the number of citations to the article(s) of a predictor, which were collected from Google Scholar.
5The “Annual citations” column is the average citation counts per one calendar year (365 days) over the period from the publication
date until April 1, 2018, rounded to the nearest integer.

6 The type of publicly availability of implementations, where WS stands for webserver and SS for standalone software including
either compiled or source code. None means the implementation is not offered and thus the corresponding URL is not applicable
(N/A).
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One way to measure the impact is to consider the impact factors of venues where these
methods were published. The 35 predictors were published in high-impact venues with impact
factors > 3.5. Table 7 lists the impact factors for these reputable journals, which are based on the
2017 Journal Citation Reports [174]. The impact factor values for a significant majority of these
methods, 33 out of 35, range between 3.8 and 12.1. Two pioneering predictors were published in
2007 and 2008 in journals with the impact factors around 40 [175, 177]. Another way to measure
the scientific impact of these methods is based on the citation counts for the articles that introduce
these methods. Table 7 lists the corresponding total citation counts, which were collected from the
Google Scholar on April 1, 2018. The median total of citations over the 35 methods equals 33.
Noticeably, the three earliest predictors [175-177] have accumulated over 400 citations each over
the last decade. Their combined number of citations (2260) is greater than the combined count of
citations of the remaining 32 methods (1966). These three highly cited predictors have defined and
used for the first time the three types of similarities. The SEA method is based on DCS [175]. The
chronologically second method, KRM, was the first to use PSS, which was combined with DCS
[176]. The third method by Campillos et al. has introduced DPS and used it together with DCS to
make predictions [177]. There are also three other method that secured at least 200 citations. They
include BLM [179], the predictor by Yamanishi et al. [180], and NBI [183]. The low citation
counts for the recent methods that were published since 2016 should be dismissed because there
was not enough time yet to accumulate citations. We also analyze a more robust number of annual
citations. This number is defined as the total number of citations divided by the number of years
(365-day periods), measured between the date of publication and April 1, 2018. The median annual
citation number equals ten. The three highest cited predictors attract over 40 citations per year.

Moreover, most of the 35 considered methods enjoy high levels of annual citations (median = 10),
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in many cases exceeding the corresponding journal impact factors (median = 5). This result
suggests that the similarity-based DPI predictors elicit strong interest of the scientific community.

Table 7 also summarizes availability of implementations for these predictors. The authors of
eight methods [165, 172, 175, 178, 189, 191, 199, 200] have developed webservers that are geared
towards less computer savvy users. The webservers are convenient to use because calculations are
done on the server side and consequently the end users only need an internet connection and a web
browser to process predictions. Fourteen predictors [166, 170-172, 179, 182, 184, 189, 190, 192,
195-198] are available as standalone software. In this case, the end users must install and use them
on their own hardware. This requires more skill and effort but it also facilitates inclusion of these
methods in other computational pipelines. Two methods [172, 189] are available as both
standalone software and webserver. The URLSs of these 20 publicly available approaches are listed

in Table 7. The other 15 methods are not available publicly.
4.4.3 Internal databases

Every similarity-based predictor is implemented based an internal database that includes
known DPIs and relevant information about these drugs and proteins. The contents of internal
databases are derived from the data that were collected from one or more of the 12 source databases
that we reviewed in section 4.3. Table 8 lists the source databases that are used to generate the
internal database of each predictor. Individual predictors utilize between one and six source
databases, with a median of three. Specifically, 13 predictors collect data from a single source
database, five from two or three sources, 16 from four sources, and one from six sources. The
authors of KRM predictor [176] have released their internal database. This database combines
DPIs collected from BRENDA (BR), KEGG BRITE (KB), DrugBank (DR), and SuperTarget (SU).

This internal database was later reused by another 15 predictors that we review [168, 169, 172,
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179, 180, 182-184, 186, 187, 189, 192, 196, 197, 199]. It was also used by a different set of 18
methods which we did not include in our analysis because of the relatively low impact factor of
the venues where they were published [271-288]. The frequent reuse of this database explains to
some extent why this predictor enjoys high citation counts in Table 7.

We observe that only up to 6 out of 12 source databases are used to develop an internal
database. This is in spite of the fact that each of the 12 source databases includes data that are
unique to that source, and that many other source databases are available, including the databases
listed in section 4.3.4. We recommend that future predictors should rely on more comprehensive
internal databases that integrate more source databases. However, this would require a significant
effort to map and curate data across the sources that utilize different ways to define, name, and
identify the drugs and protein targets.

Except for the 15 methods that reuse the internal database of KRM [176], the other predictors
employ unique internal databases by combining data coming from different sets of source
databases. Some predictors, such as NBI [183], SDTNBI [198], and DASPfind [199], use more
than one internal database. In our analysis, we combine the contents of these internal databases for
these three methods. Table 8 summarizes the main characteristics of the internal databases
including the numbers of drugs, protein targets, DPIs, and average number of DPIs per drug. Table
8 shows that most of the internal databases cover between 276 and 7,739 drugs. Some of the
internal databases also include other drug-like molecules, and correspondingly their sizes are larger
and they span between 22,839 and 105,946 bioactive molecules. The number of protein targets in
the internal databases ranges between 246 and 6,662. These are typically human proteins, except
for nine methods that do not explicitly specify organism information of the proteins that they use

(see “Focus on human proteins” column in Table 8). These numbers are comparable to an expected
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scale of druggable human proteome, which is estimated to include between 1,000 and 3,000
proteins [1, 18-20]. Another important measure that quantifies coverage of the internal databases
is the number of DPIs. This number varies between 1,731 and 155,208. While some databases
include a large number of drugs or targets (e.g., databases for SEA, SDTNBI and EnsemDT/KRR
predictors), they cover a relatively low number of DPIs per drug. The density of DPIs, which is
calculated as the average number of DPIs per drug, varies widely between 1.1 and 11.5 (see
“DPIs/drug” column in Table 8). Databases with low densities might be missing a substantial
number of DPIs and consequently the corresponding predictors might provide inaccurate values
of similarities. Moreover, higher density of interactions is likely associated with a more complete
coverage of interactions for individual drugs. The corresponding internal databases can be used to
provide a more reliable estimation of predictive quality at the drug level.

The medians of the main four characteristics of the internal databases over the 35 predictors
are 932 drugs, 989 proteins, 5127 DPIs, and 5.1 DPIs per drug. The first three medians correspond
to the frequently reused internal database of KRM predictor [176]. The corresponding medians for
the latest releases of the 12 source databases in Table 5 are 23124 drugs, 3036 proteins, 33467
DPIs, and 2.8 DPIs per drug. Interestingly, the first three numbers are much higher while the last
number is lower when compared to the sizes of the internal databases. This is in spite of the fact
that individual predictors combine multiple source databases to derive their internal databases.
One of the reasons why internal databases are relatively small is that they focus on particular
collections of drugs and proteins. For example, the internal database of COPICAT [178, 269]
includes only the 964 FDA-approved drugs, while its source database, DrugBank, also stores five
thousand experimental drugs. The method developed by Liu et al. [193] focuses on H. sapiens and

C. elegans, while its source databases also cover other organisms such as mouse and E. coli.
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Another reason is that the internal databases are not being updated in contrast to the source
databases that are frequently updated and grow in size [23]. In other words, some internal databases
are based on outdated version(s) of the source database(s). For example, 16 predictors [168, 169,
172, 176, 179, 180, 182-184, 186, 187, 189, 192, 196, 197, 199], including some recent methods
that were developed in 2017, utilize the same internal database [176] which has not been updated
since it was published in 2008.

Although the internal databases include fewer drugs, proteins, and DPIs than the source
databases, their median drug promiscuity at 5.1 DPIs per drug is 80% larger than the median
promiscuity of the source databases, which equals 2.8. This increase is due to the aggregation of
different DPIs for the same drugs that are coming from different source databases. The higher
promiscuity suggests that the information about the interactions in the internal databases is more
complete when compared to the individual source databases. This may benefit the similarity-based
predictive models. For example, knowledge of a larger number of native targets would likely result
in a larger set of candidate protein targets that could be explored to predict novel targets for a given
drug. Also, a higher promiscuity increases the chances to identify proteins that are targeted by

different drugs.
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Table 8. Overview of the source and internal databases of the 35 similarity-based DPI predictors that were published
in high impact venues. We group these methods into three categories: predictors using single type of similarity (1S),
ensemble predictors employing two types of similarities (2S) and ensembles of three types of similarities (3S). We
summarize the source databases that these predictors use to derive their internal databases. We provide information
about the internal databases including number of drugs, proteins and DPIs, number of DPIs per drug, and number of
data sources contained in the internal databases. We denote whether or not these methods focus on human proteins
only. We also indicate whether a given predictor includes only interacting drug-protein pairs or both interacting and
non-interacting pairs to evaluate predictive performance.

Number Focus
Type.of Predictor Year Sources databases! of Drugs Proteins DPIs DPIs/' on Scope ° f
predictor drug human evaluation
sources .
proteins
SEA [175] 2007 MD 1 65,241 246 71,094 1.1 complete
PRW & NB [190] 2013 CH 1 105,946 894 155208 1.5 V  interacting
1S DrugMiner [165] 2016 DR 1 1,396 1,224 4,729 34 v complete
SDTNBI [198] 2016 BIDR CH 3 22,839 1,541 57,726 25 complete
Peon et al. [167] 2017 CH 1 745 1,427 8,535 11.5 complete
bSDTNBI [171] 2017 BI CH 2 276 453 1,79 65 complete
KRM [176] 2008 BR KB DR SU 4 932 989 5,127 55 complete
Campillos et al. [177] 2008 PK DR MA 3 502 NA 4857 97 A interacting
COPICAT [178] 2009 DR 1 964 456 1,731 1.8 complete
BLM [179] 2009 BR KB DR SU 4 932 989 5,127 55 A complete
Yabuuchi et al. [181] 2011 GL 1 866 317 5207 6.0 complete
GIP [182] 2011 BR KB DR SU 4 932 989 5,127 55 A complete
NBI [183] 2012 BR KB DR SU 4 5330 4,785 17,610 33 complete
KBMF2K [184] 2012 BR KB DR SU 4 932 989 5,127 55 A complete
Cao et al. [186] 2012 BR KB DR SU 4 932 989 5127 55 A complete
BLM-NII [187] 2012 BR KB DR SU 4 932 989 5,127 55 A complete
Cheng et al. [188] 2013 TT DR 2 621 893 3,195 5.1 complete
28 DT-Hybrid [189] 2013 BR KB DR SU 4 5330 4,773 17,573 33 complete
RWR [194] 2015 DR 1 684 627 2,557 3.7 complete
SLP & RLS [195] 2015 DR 1 786 809 3,681 4.7 complete
RLS-KF [196] 2016 BR KB DR SU 4 932 989 5127 55 A complete
NRLMF [197] 2016 BR KB DR SU 4 932 989 5127 55 A complete
DASPfind [199] 2016 BR KB DR SU 4 3,897 6,662 12919 33 A complete
DrugE-Rank [200] 2016 DR 1 1,242 1,324 5,701 46 complete
DBN [166] 2017 DR 1 1,412 1,520 6,262 44 complete
EnsemDT/KRR [201] 2017 DR 1 7,739 4,902 17,483 2.3 complete
PUDTI [168] 2017 BR KB DR SU 4 932 989 5127 55 A complete
DVM [169] 2017 BR KB DR SU 4 932 989 5127 55 A complete
iDTI-ESBoost [172] 2017 BR KB DR SU 4 932 989 5,127 55 A complete
Yamanishi et al. [180] 2010 BR KB DR SU 4 443 989 2,649 60 complete
PKR [185] 2012 KD 1 2,423 436 6,769 28 complete
DINIES [191] 2014 PK TT DR KD MA CH 6 678 277 1,804 27 A complete
3S Shi et al. [192] 2015 BR KB DR SU 4 932 989 5127 55 A complete
Liu et al. [193] 2015 DR MA ST 3 2,486 3356 7369 3.0 complete
DTINet [170] 2017 DR 1 708 1,512 1,923 27 A complete
This article 2018 PKTTDRCH+ 15 19 449 1,469 34456 767 complete

IThe source databases include MDDR (MD), PDSP Ki (PK), BRENDA (BR), BindingDB (BI), TTD (TT), KEGG BRITE (KB),
DrugBank (DR), GLIDA (GL), KEGG DRUG (KD), SuperTarget (SU), Matador (MA), STITCH (ST), and ChEMBL (CH). This
review relies primarily on the Drug2Gene resource where the data are derived from 19 source databases: PK TT DR CH + 15 other
databases: CGDCP, ChEBI, CTD, HGNC, IUPHAR, Ligand Expo, MICAD, NCBI Gene, Pathway Commons DB, PDBsum,
PharmGKB, PubChem Bioassay, PubChem Compound, PubChem Substance, and UniProt.
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4.4.4 Predictive models

The considered 35 predictors rely on three main types of similarities: chemical similarity
(DCS), drug profile similarity (DPS), and protein sequence similarity (PSS). The three types of
similarities can be combined to formulate an ensemble predictor with the underlining goal to
improve predictive quality when compared to using a single similarity. Many of the predictors
proposed in recent years rely on the ensembles that include two or three similarity types.
Consequently, we categorize the 35 considered predictors into three groups: the methods that apply
one type of similarity (1S), ensemble models that combine two types of similarities (2S), and
ensembles of all three similarities (3S).

Table 9 includes six 1S predictors. Four methods [167, 171, 190, 198] measure DCS based
on Tanimoto coefficient [289] that quantifies similarity between drug structures which are
represented using molecular fingerprints [290, 291]. One predictor applies a statistical test over a
set of DCSs based on Tanimoto coefficients between an input drug and a group of drugs in its
internal database which are known to bind the input protein target [175]. The other method,
DrugMiner, converts protein sequences into numeric feature vectors that represent
physicochemical properties and amino acid compositions. Subsequently, it quantifies PSS for these
feature vectors using machine learning algorithms and estimates druggability of a given protein
based on its PSS to the known drug targets [165].

There are twenty three 2S models that utilize two types of similarities. Besides listing the
similarity types we also define how they are combined together to generate predictions. Almost all
of the 2S methods (21 out of 23) integrate DCS and PSS. Eleven predictors [176, 179, 182-184,
187, 189, 195-197, 199] quantify DCS using the SIMCOP algorithm [292, 293] while two other

predictors [194, 200] utilize Tanimoto coefficient; these 13 methods rely on sequence alignment
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algorithms such as BLAST [153] and Smith-Waterman [294] to measure PSS. A set of eight other
methods represents drug structures and protein sequences using feature vectors that quantify DCS
and PSS and they apply machine learning algorithms to generate predictions. These algorithms
include kernel functions [168, 169, 178, 181, 186, 201], neural networks [166], and decision trees
[172]. DPS is adopted rarely. Only two 2S predictors combine DPS with DCS [177, 188]. They
define drug side-effect profile as a vector of binary values that indicate the presence or absence of
specific side-effect terms. They quantify DPS based on weighted Tanimoto coefficients that
measure similarities between side-effect profiles. The predictive models applied in these methods
reveal that DPS could be used to infer DPIs in a similar way to DCS. This approach assumes that
drugs that have similar side-effects are likely to target the same proteins. The drug profiles that
were used in Ref. [177] have motivated the development of the SIDER database which stores drug
side-effect information [120, 121]. This resource was later used in other works that we review
including another 2S model [188] and three 3S methods [170, 185, 193]. However, SIDER focuses
on marketed drugs and so the information about drug side-effects it provides is narrower when
compared to drug structures that encompass a wider spectrum of drugs and protein sequences that
span the entire human proteome. This is likely the reason why DPS is less frequently employed.
Moreover, none of the 23 2S methods combines DPS with PSS. There are two ways in which the
predictors combine two similarities. Five predictors apply a simple summation and weighted
summation of two similarities [177, 187-189, 200]. The other predictors employ a more complex
approach that typically involves operations such as maximum, multiplication, and geometric mean
of multiple similarities.

There are six 3S methods that combine all three similarities. They utilize the same approaches

to quantify DCS and PSS as the 1S and 2S models. Three of the six methods compute DPS based
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on the cosine correlation coefficients between side-effect profiles [180, 185, 191] while two other
models use Tanimoto coefficients [170, 193]. The sixth predictor [295] defines drug profiles using
the ATC codes, which represent hierarchical classification of drugs and measure semantic
similarity between ATC codes [192]. Like for the 2S methods, the 3S models utilize either a simple

summation [191, 193] or a more complex approach to combine similarities [170, 180, 185, 192].
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Table 9. Comparison of similarity-based DPI predictors. We review 35 methods that were published in high impact
venues. We group these predictors into three categories (separated by horizontal line): predictors using one similarity
(1S), predictors combining two types of similarities (2S), and predictors integrating three type of similarities (3S).
Methods are sorted chronologically within each group. We summarize approaches that are used to quantify similarities
and to compute ensembles of similarities for each predictor. We also summarize availability of empirical evaluation.
This denotes inclusion of assessment of predictive quality, assessment of benefits of use of ensembles, assessment at
per DPI and per drug levels, and analysis of sensitivity of predictive performance to intrinsic characteristics (similarity
of inputs to the database) and extrinsic characteristics (information about the inputs) of predictors. The check symbol
\ means a given assessment is included in a given method (row) while a blank cell means it is not included. DCS:
chemical similarity; DPS: drug profile similarity; PSS: protein sequence similarity; SE: SEA algorithm that measures
DCS [175]; SI: SIMCOMP tool that quantifies DCS [292, 293]; TC: Tanimoto coefficient or other similarity score
which measures similarity between binary or numeric vectors [289]; KF: kernel function that measures similarity
between feature vectors used by machine learning algorithms; NN: neural networks; CO: correlation; SS: semantic
similarity of drug profiles represented by the ATC codes [192]; AL: sequence alignment using PSI-BLAST [153] or
Smith-Waterman algorithms [294]; and ML: machine learning tools that measure similarity between feature vectors.

Similarities and their ensembles Predictive  Benefit of Sensitivity analysis

:Z:);i:tfor Predictor Year p((le;"lah;zr :I:;em;’(::
DCS DPS PSS Ensemble DPI drug DPI drug Intrinsic Extrinsic
SEA[175] 2007 SE N/A N N/A N/A
PRW & NB [190] 2013 TC N/A \ N/A N/A
1S DrugMiner [165] 2016 ML N/A S N/A N/A
SDTNBI [198] 2016 TC N/A S N/A N/A
Pebn et al. [167] 2017 TC N/A \ N/A N/A
bSDTNBI [171] 2017 TC N/A \ N/A N/A
KRM [176] 2008  SI AL C N
Campillos et al. [177] 2008 TC  TC S S v
COPICAT [178] 2009 KF KF C S
BLM [179] 2009  SI AL C \ \
Yabuuchi etal. [181] 2011 KF KF C S v
GIP [182] 2011 ST AL C S
NBI [183] 2012 SI AL C S \/
KBMF2K [184] 2012 SI AL C \
Cao et al. [186] 2012 KF KF C S
BLM-NII [187] 2012 SI AL S S
Cheng et al. [188] 2013 TC TC S&C S V
28 DT-Hybrid [189] 2013 SI AL S \
RWR [194] 2015 TC AL C S
SLP & RLS [195] 2015 SI AL C S
RLS-KF [196] 2016  SI AL C \
NRLMF [197] 2016  SI AL C \
DASPfind [199] 2016  SI AL C \/
DrugE-Rank [200] 2016 TC AL S S \
DBN [166] 2017 NN NN C v
EnsemDT/KRR [201] 2017 KF KF C \
PUDTI [168] 2017 KF KF C S
DVM [169] 2017 KF KF C v
iDTI-ESBoost [172] 2017 ML ML C \
Yamanishi et al. [180] 2010 SI  CO AL C N N
PKR [185] 2012 KF CO KF C v \
DINIES [191] 2014 SI  CO AL S v \
3S Shi et al. [192] 2015 TC SS AL C \
Liu et al. [193] 2015 TC TC AL S S
DTINet [170] 2017 TC TC AL C v
This dissertation NA TC TC AL S N Y N \ \
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4.45 Timeline of the use of similarities and their ensembles

There are seven potential types of predictive models including three 1S, three 2S, and one 3S
models. Figure 7 provides a timeline of the use of these seven types of predictive models for the
35 considered methods. In general, the ensemble-based models are much more widely utilized than
the single similarity-based methods. The most frequently developed ensemble includes DCS and
PSS. At least one of these methods was published every year except only for 2007, 2010, and 2014.
The second most commonly used type of methods combines the three types of similarities. These
methods were shown to outperform ensembles that are based on specific pairs of similarities, such
as ensemble of DCS and PSS and ensemble of DPS and PSS [185]. However, a significant majority
of current predictors combines only two similarities: DCS and PSS, without DPS. This is likely
because the information on side-effects is not available in most of the source databases and this
information used to be difficult to collect, especially before databases such as SIDER [120, 121]
and MetaADEDB [296] were developed. Also, the mapping of drugs from the side-effect databases
into the drugs in the internal databases is non-trivial. Another reason why DPS is not an attractive
option is the fact that the side-effect information is limited to the marketed drugs. Consequently,
this limits the internal databases to this group of drugs. Unlike the two broadly adopted types of
models mentioned above, the other types of models are published less frequently. These models
rely on DCS, PSS, and the ensemble of DCS and DPS. Some designs, such as methods that use
DPS and the ensemble of DPS and PSS, have not been employed among the 35 considered methods.
In summary, the most popular configuration is the ensemble that combines DCS with another

type(s) of similarity.
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Figure 7. Timeline of similarity-based predictors of drug-protein interactions. The x-axis (width) denotes when the
similarity-based predictors were published. The y-axis (depth) denotes the type of predictors. The z-axis (height)
shows the number of a given predictors that were published in a given year. Green, blue, and red cubes represent drug
chemical similarity (DCS), drug profile similarity (DPS), and protein sequence similarity-based predictors (PSS),
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Figure 8. Use of individual similarities in predictors of drug-protein interactions. The x-axis denotes the year. The y-
axis shows the fractions of cumulated numbers of uses of drug structure (green bars), drug profile (blue), and protein
sequence (red) similarities up to a given year. Numbers inside the bars indicate the cumulative count of uses of each
similarity. The similarity is counted when it is used individually by a single similarity-based predictor, and in tandem
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Figure 8 shows how often an individual type of similarity was used over the last decade. We
include their use individually and also as part of ensembles. Each bar in Figure 8 shows a

cumulative number of times these similarities were used up to a given year. The colors inside the
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bars reflect relative fraction of use of specific types of similarities. The first bar reveals that the
first predictor that was published in 2007 was based on DCS [175]. The relative rate of use of DCS
has gradually decreased between 2008 and 2010 when compared to the other two types of
similarities. After 2010, the relative rate of use of the three types of similarities has stabilized; this
is reflected by similar proportions of the three colors. The last bar reveals that in total the
similarities were used 70 times by the considered set of 35 methods, which correspond to two
similarities per method on average. DCS was used 49% of the time, while PSS and DPS were used
40% and 11% of the time, respectively. These fractions are consistent with the observation that
the ensemble of DCS and PSS is the most frequently utilized type of predictive model. The
relatively infrequent use of DPS is likely due to low drug coverage and difficulty to collect the
information on drug side-effects. We believe that with the release and improvements to the
databases that provide access to drug profiles, including SIDER and MetaADEDB, this type of

similarity will play a more prominent role in the development of future predictors.
4.4.6 Critique of the current assessments of predictive performance

Another important aspect of the considered DPI predictors is the assessment of their
predictive performance. The predictions are provided at an interaction level, which means that the
predictive models identify whether a given drug-protein pair interacts. Two early predictors were
assessed solely using the interacting drug-protein pairs (see “Scope of evaluation” column in Table
8) [177, 190]. While such assessment evaluates true positive rate (TPR), which is defined as
fraction of interactions that are correctly identified, it lacks the ability to assess specificity, which
measures the fraction of correctly predicted non-interactions. The other 33 methods provide
assessment for both interacting and non-interacting drug-protein pairs. This type of assessment is

more complete as it measures not only TPR but also the capability to correctly identify the non-
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interacting pairs that constitute majority of all possible drug-protein pairs. Moreover, the
considered 35 predictors report their predictive performance over all drug-protein pairs that span
multiple drugs. This means that they did not assess and compare predictive quality for individual
drugs (see “Predictive quality” column in Table 9). However, drugs differ in their structures,
profiles, and the number and type of protein partners that they bind to, and these factors likely
impact the predictive performance.

Besides quantifying predictive performance, it is also essential to justify the use of ensembles.
Since the ensembles require more computations and are more complex to implement than the 1S
models, they must offer some benefits to balance these drawbacks. In particular, these benefits
typically boil down to higher predictive performance when compared to the 1S methods. Only six
out of 23 2S methods compare 2S model with 1S to quantify the corresponding improvement in
the predictive quality evaluated per interaction (see “Benefit of ensemble” column in Table 9) [177,
179, 181, 183, 188, 200]. Additionally, three 3S methods provide empirical evidence that the
ensemble of three similarities boosts the predictive quality at interaction level when compared to
the 2S ensembles [180, 185, 191]. While this suggests that ensemble models may provide more
accurate results than the 1S models, follow up studies are needed to explore the benefits of
ensembles using both per interaction and per drug evaluation. Moreover, none of these methods
has comprehensively compared all three 1S, three 2S, and one 3S models. Such analysis would
provide important insights on the use of the similarity-based predictors.

Another interesting aspect is sensitivity of predictive performance to certain characteristics
of predictors. For example, in a scenario where the query drug is dissimilar to the drugs in the
internal database of a given predictor, DCS and DPS are likely to be ineffective. On the other hand,

if the query drug has sufficient levels of similarity to some of the drugs in the internal database
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then we can use these similar drugs to likely accurately predict the protein targets. Similarity
between the user-provided inputs and the contents of the internal database of a given predictor
relies on an intrinsic property of this predictor (i.e., its database). On the other hand, predictive
performance could be also affected by extrinsic to the predictor and known a priori properties of
the query drug and targets, such as the drug promiscuity. For instance, it might be easier to identify
DPIs for a drug that target numerous proteins because this increases a chance to find many other
similar targets in the internal database. Analysis of sensitivity of performance to these
characteristics would help to calibrate the expectations of predictive quality and optimize the
design of predictors for specific use cases. However, this type of sensitivity analysis was never
addressed in the past studies (see “Sensitivity analysis” column in Table 9).

Besides quantifying predictive performance in silico, some of these predictive tools were also
assessed experimentally. In that case, the correctness of the putative DPIs that they generate was
additionally verified by in vitro binding assays and cell assays. This type of validation was done
for the earliest predictor [175], the method that first defined DPS [177], and in one recent study

[170].

4.5 Conclusions

We have discussed the timeline, impact, availability, contents, and architectures for the 35
high-impact similarity-based DPI predictors and the related 12 source databases.

The source databases store curated annotations of DPIs that are used to derive the internal
databases of the predictors. Their contents were obtained from relevant literature, experiments,
and other data repositories. Most of the 12 source databases also directly import the annotations

of DPIs from the other source databases. Consequently, each source database stores its unique data
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and also a certain amount of data that overlap with the other source databases. Moreover, some
source databases focus on the interaction data for the approved and experimental drug compounds,
while the others include the protein targets for a more generic collection of bioactive compounds
that includes drugs and drug-like molecules. This contributes to the diversity of contents of the
source databases, in terms of the number and type of compounds, protein targets, and DPIs. Drugs
that are included in the source databases typically target multiple proteins. This drug promiscuity
defines the field of polypharmacology and benefits the development of the similarity-based
predictors. The source databases have accumulated data for over ten years and have been
frequently used by the scientific community. This is reflected by the fact that they were cited at
least 190 times each. Most of the databases are continually updated and periodical republished.
Our analysis shows that the source databases that are more frequently updated and republished are
also more often cited.

The similarity-based predictors have been developed at a steady pace over the past decade.
These methods rely on the internal databases that typically include data derived from multiple
source databases. We found that recent methods have used a larger number of source databases
than the older methods, although this number is still relatively low compared to the number of
available source databases. The internal databases generally include lower numbers of drugs,
proteins, and interactions but higher degrees of drug promiscuity when contrasted with the
corresponding source databases. A higher drug promiscuity allows the similarity-based predictors
to screen a more complete set of candidate protein targets and increases likelihood of identifying
targets shared by multiple drugs. Given these advantages, the future predictive models should
exploit an even more comprehensive set of DPIs that would be collected from a larger number of

source databases.
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Most of the predictors have received a relatively high annual citation counts when compared
to the corresponding impact factors of the journals where they were published. This points to the
substantial impact of the similarity-based methods. These methods incorporate predictive models
that quantify similarities between the input drugs and proteins and the drugs and their known
targets in the internal databases. We show that they rely on a variety of approaches to quantify
DCS, DPS, and PSS. Most of these predictors utilize ensembles that combine two or three types
of similarities, were published in high impact venues and are highly cited. The three earliest
predictors are the most cited. They were the first to use DCS and the ensemble of DCS and
PSS/DPS. These pioneering works resulted in the DCS-centric trend for the development of the
similarity-based models. The vast majority of the 35 methods applies DCS or ensemble models
that combine DCS with DPS and/or PSS. The ensemble of DCS and PSS is the most commonly
utilized type of predictive model. Our analysis of the frequencies of use of similarities has found
that DCS and PSS have been utilized about 90% of the time, while DPS is relatively underutilized.
The infrequent use of DPS likely results from the incompleteness and difficulty to use and collect
the drug profiles. This motivates the need to further develop the drug side-effect profile databases,
thereby facilitating a new generation of methods that would more heavily rely on DPS.

These studies assess predictive performance at the interaction level and some of them have
demonstrated that the use of certain ensembles leads to improved predictive performance when
compared to the use of a single similarity. However, a comprehensive empirical comparison of all
types of similarities and their ensembles is missing. Although the current works perform empirical
assessments over a large number of drug-protein pairs, primarily in the druggable human proteome,
the density of DPIs in the databases that were utilized in these assessments is rather low. Moreover,

per drug assessment of the predictive quality was not yet performed. Similarly, sensitivity of
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predictive performance to characteristics of predictors was not yet studied. To this end, we provide
comprehensive and in-depth empirical comparative analysis for a representative set of similarity-
based predictors. First, we build a novel database that includes drugs characterized by high density
of DPIs. Next, we comprehensively evaluate a representative set of predictors that are based on
each of the three main types of similarities and the corresponding four possible ensembles. Besides
evaluating predictive performance at the interaction level, we are the first to perform the drug level
assessment and to analyze sensitivity of predictive quality to the intrinsic and extrinsic

characteristics of predictors. This work is described in Chapter 5.
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Chapter 5 Empirical assessment and comparative analysis of
similarity-based methods for prediction of drug-protein

interactions

We empirically evaluate seven representative similarity-based DPI predictors. These seven
predictors rely on each of the three individually used similarities (DCS, DPS, and PSS) plus four
ensembles that combine each pair and all three similarities. We delineate the setup for the
assessment by describing the seven predictors and defining measures and a novel high-quality
benchmark database of DPIs that we use to assess the predictive performance. Like in the previous
studies, we analyze predictive performance at the interaction level. Moreover, we are the first to
compare all seven representative methods, to measure and compare predictive performance at the
drug level, and to analyze sensitivity of predictive performance to characteristics of input drugs
and proteins. We also release a webserver that provides access to the server-size implementations

of the seven predictors.

78



5.1 Experimental setup

5.1.1 Computation of similarities

The key underpinning concepts that define similarity-based predictors of DPIs is how they
quantify and combine the three similarities. We selected one representative approach drawn from
previous works to measure each type of similarity. The Tanimoto similarity of chemical structures
has been widely applied to quantify DCS [289]. Recent comparative studies have demonstrated
that the Tanimoto similarity is one of the best DCS measures [291, 297, 298]. Eleven selected
predictors have used the Tanimoto coefficient to quantify DCS [167, 170, 171, 177, 188, 190, 192-
194, 198, 200]. The above reasons motivate our choice of this measure to quantify DCS. Tanimoto
coefficient is computed based on molecular fingerprint that converts a chemical structure of a
given drug into a bit vector of fixed size. For a given compound, the fingerprint represents presence
of certain substructures with a bit value of 1 and their absence with a bit value of 0. Similarity of
two drug fingerprints is represented by the similarity between their corresponding bit vectors A
and B:

DCS (A, B) = aib1 / (a1 + b1 — a1bs)
where aib: is a count of corresponding positions where both vectors A and B have values 1, and
a1 and by are the counts of positions with value 1 in vectors A and B, respectively. Higher value of
the Tanimoto similarity means the two molecules are more structurally similar since they have a
higher fraction of similar substructures in common. We use the Chemistry Development Kit
software [299-302] to generate 1024-bit molecular fingerprints of drug structures and to compute
the Tanimoto similarity between drugs.

We quantify DPS based on a drug side-effect profile similarity introduced in one of the

pioneering predictors that utilized this type of similarity for the first time [177]. A given drug is
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represented by a profile vector that denotes presence/absence of certain side-effect term with a bit
value of 1/0. The profile similarity is computed using the weighted Tanimoto coefficient between
the side-effect profiles of a given pair of drugs. Each side-effect term has its own weight. The
weight is derived based on an abundance of the corresponding term in a large collection of drugs
(all drugs included in the internal database) and a correlation of this term with the other terms.
Higher weights are associated with terms that are less frequent (specific to a small number of drugs)
and that are dissimilar to other terms (they are infrequently used together with other terms for the
same drugs). Consequently, higher value of DPS means that a given pair of drugs share a high
fraction of side-effect terms with high values of weights. This approach to quantify DPS is
arguably more accurate than the approaches taken by some other methods that use a simpler
definition of weights [193] or unweighted Tanimoto coefficients [188].

We use sequence alignment to estimate PSS. This is the most popular approach that was
adopted by 18 predictors [170, 176, 179, 180, 182-184, 187, 189, 191-197, 199, 200]. First, we
run BLAST [154, 156] with default parameters to perform sequence alignment between a sequence
of a protein target of the input drug provided by user and each protein target in the database of
known DPIs. BLAST finds the closest protein from the database based on a distance defined as
the fraction of identical and similar residues in the pairwise alignment. Therefore, proteins from
the database that have high value of sequence similarity are arguably likely to also interact with
the input drug by the virtue of being similar to the known target of this drug.

We create the four ensemble models using a linear combination of multiple types of
similarities. This approach is in line with a number of published ensemble methods [177, 187-189,
200]. We consider the 3S model that combines the three types of similarities and three 2S

ensembles that combine each pair of the three similarities, which we denote as DCS+DPS,
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DCS+PSS, and DPS+PSS. Some of the past methods combine similarities using more sophisticates
approaches, such as machine learning models and drug-protein networks. A typical machine
learning-based predictor uses an algorithm such as SVM to combine multiple kernel
functions/matrices derived from two or three similarities [191]. However, SVM requires
computationally costly parameterization and this is a black-box method, which means that the
model is so complex that is impossible to understand how predictions are performed. Network-
based predictors rely on a linear combination of similarities to quantify weights associated with
edges in the network [187]. These predictors require knowledge of drug-drug or drug-target
connections (network edges) for an input drug. Consequently, they cannot be utilized to predict
DPIs for drugs that are not already integrated in the network [32]. We opt to use the linear
combination of similarities which is computationally efficient, white-box (linear function

explicitly defines how similarities are combined), and works with novel drugs.
5.1.2 Prediction of drug-protein interactions

To perform the prediction, we screen the query drug against all candidate proteins from the
internal database of known DPIs to evaluate how likely they may interact with this drug. Given
the three types of similarities, the input information for the query drug may include drug structure,
drug profile and/or protein sequences of its known targets. The procedure to perform predictions
depends on which inputs are available. If the drug structure is available then for every candidate
protein in the database we compute DCS between the query drug and every single drug that is
known to bind to that candidate protein (excluding the query structure itself if the candidate protein
is already known as a binding partner of this drug). The maximal value among these DCS values
is used as the propensity of DPI between the query drug and the candidate protein. A higher

propensity indicates that the candidate protein is more likely to bind to the query drug because this
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protein is known to be a target of a drug which is structurally similar to the query drug. This is
consistent with an observation that similar drug structures share the same protein target [32, 85-
87]. A similar procedure is used when the drug profile is available. The propensity of DPI for the
input drug and a given candidate protein is computed as the maximal DPS between this drug and
all drugs that are known to bind to this candidate protein in the database of known DPIs. Such
prediction relies on the assertion that drugs with similar side-effect profiles likely target the same
protein [177]. If the protein targets of the input drug are known and their sequences are available
then we compute pairwise PSS between each candidate protein and all known targets of this drug
(excluding the candidate protein itself if this protein is already known to interact with the query
drug in the database). The maximal PSS among all known targets is used as the propensity of DPI
for the query drug and the candidate protein. The sequence similarity-based prediction is motivated
by an observation that similar proteins tend to interact with the same drug [32, 85-87]. If multiple
inputs are available then they are combined together. We assess whether such ensembles of two or
three similarities would provide improved quality of predictions when compared to using these

similarities individually.
5.1.3 Benchmark database of drug-protein interactions

The DPI predictors rely on the internal database that contains native DPIs. We develop a
novel benchmark database that we use as the internal database to evaluate these predictors. The
benchmark database integrate three resources: Drug2Gene [247], Therapeutic Target Database
(TTD) [43, 103-107], and IUPHAR/BPS Guide to Pharmacology database (GtP) [248, 249, 303-
306]. Our database is primarily derived from Drug2Gene that integrates 19 source databases. These
sources include four databases, PDSP Ki [202], TTD [43, 103-107], DrugBank [98-102], and

ChEMBL [113-116], which are used by the 35 considered predictors to derive their internal
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databases. However, we also include 15 other sources: CGDCP [307], ChEBI [308], CTD [238],
HGNC [309], GtP [248, 249, 303-306], Ligand Expo [310], MICAD [311], NCBI Gene [312],
Pathway Commons DB [313], PDBsum [314], PharmGKB [315], Pubchem Bioassay [239],
PubChem Compound [316], PubChem Substance [316], and UniProt [37]. Considering that the 35
predictors adopt no more than six source databases, Drug2Gene provides us with a more complete
information about DPIs. Another survey also highlights Drug2Gene as the most comprehensive
DPI database [22]. In particular, use of Drug2Gene helps us to acquire high density of DPIs in the
benchmark database. However, Drug2Gene (version 5) incorporates older versions of the TTD
database (release 2011) and GtP database (release 2012) when compared its other sources. Thus,
we combined Drug2Gene with newer versions of TTD (release 2015) and GtP (release 2015).
These three resources altogether cover 10,515 compounds, 16,880 proteins, and 161,736
interactions. The density of DPIs for this database is 15 DPIs/drug, before removal of duplicates
across these sources (see first row in Table 10).

The seven predictors that we assess rely on quantification of the three types of similarities.
Thus, drug structures, drug profiles, and protein sequences are required for every drug/protein
entry in the benchmark database. Drug fingerprints were collected from PubChem [316] by
querying their compound identifiers (CIDs) that are available in three sources databases. Drug
profiles were obtained from SIDER 2 [120, 121], a database of drug side-effects for marketed
drugs, by matching PubChem CIDs. Protein sequences were retrieved from UniProt [37] using
their UniProt accession numbers (UniProt IDs) which are available in TTD and GtP, and with the
Entrez Gene [312] identifiers which are available in Drug2Gene. Consequently, drugs and proteins
are respectively indexed by PubChem CIDs and UniProt IDs along with drug structures from

PubChem, drug profiles from SIDER, and protein sequences from UniProt in the benchmark
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database. We found redundant drug/protein entries because older versions of TTD and GtP have
already been imported into Drug2Gene. We removed the duplicate drugs and proteins by
comparing PubChem CID and UniProt ID, respectively. SIDER 2 provides side-effects for 996
drugs, which limits the number of drugs in our benchmark database. After collecting information
for computing similarities and cleaning the duplicates, the resulting benchmark database contains
965 drugs, 7,565 proteins, 93,015 interactions, and 96 DPIs/drug (see second row in Table 10).
Like most of studies in this area [165, 168-172, 176, 177, 179, 180, 182-187, 189-193, 196-200],
we focus on the human protein targets. Thus, we eliminated non-human proteins based on their
taxonomic identifiers from UniProt. Consequently, 563 drugs, 1,537 proteins, 35,352 interactions,
and 63 DPIs/drug are left in the benchmark database (see third row in Table 10). Next, to ensure
that sufficient amount of information about drug structure and protein sequence similarities is
available to perform empirical assessment and sensitivity analysis, we removed small compounds
that have fewer than 10 atoms and drugs that have fewer than five known protein targets,
respectively. The final version of the benchmark database is composed of 449 drugs, 1,469 proteins,
34,456 interactions, and includes 76 DPIs/drug (see the last row in Table 10). When compared to
the internal databases of the considered 35 predictors, this benchmark database is among the top
11% with respect to the number of DPIs shown in Table 8. Moreover, an arguably key indicator
of a high-quality benchmark DPI database is the density of DPIs. High density of interactions
facilitates reliable estimates for per-drug assessment of predictive performance. The benchmark
database has the highest value of average per-drug density of DPIs at 76 DPIs/drug (median density
= 95 DPIs/drug). Moreover, the median per-target density of DPIs is 4 DPIs/protein. This is a
direct result of merging the largest number of sources of the DPI data and the fact that we only

consider drugs that have at least five protein targets. Figure 9 shows the per-drug and per-target
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density of DPIs for the drugs and proteins in the benchmark database, respectively. The top ten
drugs that have the highest number of known targets include Imatinib (PubChem: 5291, 485 DPIs),
Sorafenib (PubChem: 216239, 388 DPIs), Erlotinib (PubChem: 176870, 385 DPIs), Nilotinib
(PubChem: 644241, 385 DPIs), Dasatinib (PubChem: 3062316, 384 DPIs), Gefitinib (PubChem:
123631, 343 DPIs), Chlorpromazine (PubChem: 2726, 168 DPIs), Mitoxantrone (PubChem: 4212,
166 DPIs), Nifedipine (PubChem: 4485, 162 DPIs), and Verapamil (PubChem: 2520, 158 DPIs).
The top ten proteins that interact with the largest number of drugs include Cytochrome P450 3A4
(UniProt: P08684, 350 DPIs), Cytochrome P450 2D6 (UniProt: C11D52, 329 DPIs), Cytochrome
P450 2C9 (UniProt: P11712, 307 DPIs), Potassium voltage-gated channel, subfamily H (UniProt:
AOAO090N7W1, 298 DPIs), Cytochrome P450 1A2 (UniProt: P05177, 296 DPIs), Mitogen-
activated protein kinase 1 (UniProt: P28482, 288 DPIs), Dopamine receptor D2, isoform CRA_c
(UniProt: AOA024R3C5, 283 DPIs), Muscarinic acetylcholine receptor (UniProt: AOA024R3S2,
280 DPIs), Muscarinic acetylcholine receptor M1 (UniProt: P11229, 280 DPIs), and Muscarinic
acetylcholine receptor (UniProt: A4D1QO0, 279 DPIs). The list of drugs, protein targets, and DPIs

of the benchmark database are shown in the Appendixes 1, 2 and 3, respectively.

Table 10. Summary of the benchmark DPI database. The numbers were counted after each major step of the procedure
that that lead to the completion of the benchmark database. The density of DPIs (DPIs/drug) is calculated by the
average number of DPIs per drug.

Procedure of data processing Drugs Proteins DPIs DPIs/drug
Total counts in original sources databases 10,515 16,880 161,736 15
Filtered by availability of necessary information to compute similarities 965 7,565 93,015 96
Filtered by to include human proteins 563 1,537 35,352 63
Filtered by drug size (> 10 atoms) and number of known targets per drug (> 5 DPIs/drug) 449 1,469 34,456 76
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Figure 9. Density of DPIs for the drugs and protein targets in the benchmark database. Panel A shows the numbers of
DPIs per drug and sorts the drugs in the decending order by these numbers. Panel B shows the numbers of DPIs per
protein and sorts the proteins in the decending order by these numbers.

The source DPI databases include annotations of native interacting drug-protein pairs but they
lack the annotations of non-interacting pairs. In the past, these databases were used to assess
predictors of DPIs in several ways. A few early studies have assessed predictive performance using
only the native interacting pairs [177, 190]. These assessments are incomplete since they measured
only the rate of correctly predicted native DPIs while they did not evaluate the predictive
performance for the non-interacting pairs, i.e., they did not evaluate the number of false positives.
More recent works have assessed predictions using both interacting and non-interacting drug-
protein pairs. Most of these studies assume that the drug-protein pairs that are not annotated as
interacting are non-interacting. This assumption may result in mislabeling some of the native
interacting pairs as non-interacting; in particular, those that were not yet discovered. This
commonly applied approach to annotate the non-interacting pairs relies on an assertion that the

number of such mislabeled pairs is much smaller than the number of correctly assumed non-
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interacting pairs. We are the first to study this assumption empirically. We annotate weak binders
among the native drug-protein binding pairs and we compare similarity between the assumed non-
interacting drug-protein pairs and the similarity among the weakly binding pairs. We hypothesize
that the assumed non-interacting drug-protein pairs can be used to represent the native non-
interacting pairs if the difference between similarity of the non-interacting drug-protein pairs and
similarity among the native interacting pairs is significantly higher than the difference between
similarity of weak interactors and the similarity of the native interacting pairs.

We map the drug-protein pairs from the benchmark database into the PDSP Ki database that
provides binding affinities [202]. A high binding affinity (affinity constant Ki < 10 uM) is typically
considered to indicate an interacting drug-protein pair [177, 234]. Consequently, we divide the
mapped drug-protein pairs into three subsets: the native interacting pairs with Ki < 10 pM, weak
native interacting pairs with Ki > 10 puM, and the non-interacting pairs that include all pairs that
are not annotated as DPIs. We compute DCS, DPS, and PSS for the drug-protein pairs in each
subset. Figure 10 compares distributions of the values of three similarities for the native interacting
pairs, weak native interacting pairs (borderline pairs), and non-interacting pairs. The distributions
are represented by the 5th, 20th, 50th (median), 80th, and 95th percentiles. The results are
consistent across the three similarities. The similarity values for the non-interacting drug-protein
pairs are significantly lower when compared to the similarities for the weak native interactors (p-
value < 0.01). They are also significantly lower when compared to the similarities for the native
interacting pairs (p-value < 0.01). In other words, Figure 10 reveals that only a small portion of
the non-interacting pairs has DCS, DPS and PSS values that are comparable to the DCS values of
the native DPIs. We also observe that the distributions for DPS and PSS for the weak native

interactors are similar to the distributions for the native interactors (p-value = 0.11 and 0.65,
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respectively). While the difference between weak native interactors and native interactors for DCS
is significant, the median DCS are 0.65, 0.41, and 0.28 for the native interacting pairs, weak native
interacting pairs and non-interacting pairs, respectively. Over 95% / 80% of the native interacting
pairs have higher DCS values than at least 50% / 80% of the non-interacting pairs. In agreement
with previous studies, these results suggest that the assumed non-interacting pairs can be used to
represent non-interacting pairs since their similarity is significantly lower than the similarity of the
weak native interactors and the native interactors, while the differences between the latter two sets
of drug-protein pairs are substantially smaller. We also observe that the number of non-interacting
pairs that have relatively high PSS is greater than those that have relatively high DCS and PSS.
This implies that predictions using PSS might be less accurate than the predictions with DCS or

DPS.
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Figure 10. Distributions of values of the three types of similarities for native interacting drug-protein pairs (Ki < 10
KUM; dark green), weak native interactors (Ki > 10 uM; borderline pairs in light green), and non-interacting drug-
protein pairs (in red). Boxes and whiskers represent the 5th, 20th, 50th, 80th, and 95th percentiles of the similarity
values. Marker x represents average similarity value for a given set of drug-protein pairs. We assess significance of
differences between the similarity values for each pair of drug-protein pair sets using the Wilcoxon rank sum test
[317]; we use the non-parametric test since these data are not normal according to the Anderson-Darling test at 0.01
significance. * indicates that the difference is statistically significant (p-value < 0.01); otherwise the actual p-value is
shown.

5.1.4 Assessment of predictive performance

Using the benchmark database, we empirically test predictions for each of the 449 drugs by
comparing the putative targets generated by a given method with the known native interactors for
this drug. When testing predictions for a given drug, we remove information about its known
targets from the database. We analyze the results across all drugs and separately for each drug.
Like virtually all considered in this review methods we use the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUC) to assess quality of DPI predictions [165,
166, 168-172, 175, 176, 178-189, 191-201]. ROC curve is a plot of True Positive Rates (TPRs)

against False Positive Rates (FPRs): TPR =TP /(TP + FN) and FPR = FP / (FP + TN), where the
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TP (True Positive) and the TN (True Negative) are the numbers of native interacting pairs and
native non-interacting pairs that are predicted correctly, respectively; the FN (False Negative) is
the number of native interacting pairs predicted as non-interacting; and the FP (False Positive)
corresponds to the number of native non-interacting pairs predicted as interacting. The predicted
propensities are transformed into binary predictions (positive vs. negative) using threshold values,
which are next used to compute the TPR and FPR. Drug-protein pairs with propensity above the
threshold are assumed to bind (positive), otherwise they are assumed to be non-binding (negative).
The thresholds are set to be equal to all unique values of the predicted propensities of DPIs in order
to derive the most accurate ROC curve. Higher AUC values denote better predictive performance,
i.e., they correspond to predictions that offer higher TPRs (more correct predictions of DPIs) for
lower FPRs (fewer incorrect predictions of non-interactions as DPIs).

The fraction of the native interacting drug-protein pairs among all drug-protein pairs in the
benchmark database is at about 5%. Thus, for example, if FPR = 10% then the number of predicted
putative DPIs is about twice the number of actual native interacting pairs. This corresponds to a
substantial over-prediction of putative DPIs. Moreover, the AUC values are determined primarily
by the part of the curve where FPR is high, focusing on the over-prediction, i.e., area under the
curve for the low FPR values is much smaller than for high FPR values. Thus, motivated by recent
works [318-321] we focus the lower part of ROC with FPR less than 5% (ROCiow) Where the
number of incorrectly predicted DPIs is not larger than the number of native DPIs. Accordingly,
we calculate the corresponding area under ROCiw curve (AUCiow). Moreover, to ease
interpretation of this index, we report Ratioauciow = AUCiow / AUCiow-random, Where AUC ow-random
is AUCow for a random predictor. A random predictor generates TPRs that are equal to FPRs,

resulting in a diagonal line in the TPR-FPR space. Ratioauciow measures to what degree a given
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predictor is better than a random predictor. Ratioauciow > 1 means the method is better than random.
An alternative to measuring the ROC for dataset with low numbers of positive samples is to use
Precision-Recall curves. However, we opt to use ROCow because this is the most frequently used

measure in this area [165, 166, 168-172, 175, 176, 178-189, 191-201].

5.2 Empirical analysis of predictive performance

We perform evaluation of the predictive quality of the three 1S predictors as well as their 2S
and 3S ensembles. We assess predictive performance for each drug by removing it from the
benchmark database, predicting its interactions with each proteins target in that database, and
evaluating these predictions against the removed native interactions of this drug. We aggregate
these results over all the drugs and 659,581 drug-protein pairs. A query drug might be dissimilar
to the drugs in the benchmark database in terms of its structure and side-effect profile. To simulate
a practical scenario, we limit the similarity between the query drug and the drugs in database.
Specifically, given a query drug, we not only remove this drug but we also remove the drugs with
above median DCS and DPS from the benchmark database when performing the evaluations. Use
of the median represents an average case. Note that the protein sequences are easy to collect and
all of them are available for every prediction. The complete set of sequences for human proteins
can be obtained from UniProt. Thus, the predictions for a given query drug are generated based on

the drugs with the below-median DCS and DPS, and the complete set of protein sequences.
5.2.1 Assessment of predictive performance at the drug-protein interaction level

Figure 11 shows the ROCs and ROCsjow that measure the predictive quality at the interaction
level over all drug-protein pairs in the benchmark database for the three 1S, three 2S, and one 3S

predictors. The 3S model has the highest AUC, AUCiow and Ratioauciow Values, which are given
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in the legend for Figure 11. The 1S models register a modest drop in predictive quality when
compared to the 2S models. Specifically, the relative difference in AUC (in AUC)ow) between 3S
and the best 2S model equals [0.926-0.913]/0.913 = 1.4% ([0.0285-0.0274]/0.0274 = 4.0%)
(Figure 11A). The corresponding relative difference when comparing 3S and 1S models are at
least [0.926-0.883]/0.883 = 4.9% for AUC and [0.0285-0.0231]/0.0231 = 23.4% for AUCiow.
These results consistently demonstrate that the use of ensembles results in improvement in
predictive quality. Moreover, our results show that adoption of the 3S, the three 2S, and DCS and
DPS models provides high-quality predictions. The only relatively low results for PSS could be
perhaps explained by the larger overlap of similarities between the native DPIs and non-DPIs
observed in Figure 10. Although DCS provides more accurate predictions in terms of AUC when
compared to DPS and PSS, the ensemble of DPS+PSS outperforms the two 2S predictors that rely
on DCS. Combing DPS and PSS provides the largest improvement over these similarities used
individually. Specifically, the relative difference in AUC (in AUCow) is 4.8% (13.7%) and 20.4%
(130%) when comparing DPS+PSS with DPS and PSS, respectively. The corresponding
improvements for the other two 2S models are more modest. DCS+PSS provides a relative increase
in AUC (in AUCjow) when compared to DCS and PSS by 2.6% (9.5%) and 19.5% (143%),
respectively. Similarly, the value of AUC (AUC,ow) for DCS+DPS is better by 1.9% (18.6%) and
3.3% (29.9%) than the values for DCS and DPS, respectively. One possible explanation for these
differences is that each of the three similarities offers good predictive performance while DPS and
PSS are lack any correlation (Spearman correlation coefficient [SCC] = 0.05), DCS and PSS are
weakly correlated (SCC = 0.14), and DCS and DPS are modestly correlated (SCC = 0.30).
Therefore, PSS and DPS complement each other the most which results in the largest improvement

in the quality of predictions.
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Figure 11. Comparison of predictive performance for the 1S, 2S, and 3S DPI predictors measured at the interaction
level. Panel A shows ROC curves and panel B shows ROCow for which FPRs < 0.05. Diagonal dotted line denotes
the ROC curve for a random predictor for which TPR = FPR. Values of AUC, AUCiqw and Ratioauciow are shown in
the legend for panel A.

When FPR is greater than 0.05, the number of native non-DPIs that are incorrectly predicted
as DPIs is larger than the total number of native DPIs. In other words, we over-predict DPIs.
Therefore, we utilize AUCjow that considers the ROC curve for FPR < 0.05. The advantages of
using multiple similarities, i.e., 3S vs 2S and 2S vs 1S, are maintained for AUC,ow (Figure 11B).
The Ratioauciow reveals that 3S model is about 23 times more accurate than random predictions
while 2S and 1S models are up to 22 and 19 times more accurate when compared to the random
predictions. In particular, 3S predictor identifies 70% and the best 2S model finds 67% of native

DPIs while they incorrectly recognize 5% of non-DPIs as DPIs (FPR = 0.05). Almost all predictors
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successfully detect over 63% of native DPIs (TPR > 0.6) at 5% level of FPR, except PSS which
finds 33% of native DPIs. Similar to the evaluations based on the overall AUC, predictor based on
DCS is the most accurate 1S model in terms of AUCiow. Therefore, DCS drives the predictive
quality of the ensembles. Moreover, PSS has the lowest performance of the three similarities,
which is still eight times better than the random predictions. Moreover, PSS is helpful for the
ensemble models given its lack of correlation with the other two similarities. The AUCow for the
2S ensembles that include PSS register relative improvement by 9.5% and 13.7% when contrasted
with DCS and DPS, respectively.

We also evaluate statistical significance of the differences in predictive quality between the
3S model, the three 2S models, and the three 1S models. To do that, we evaluate the differences
over a diverse collection of 100 datasets drawn from the benchmark database. Each dataset
includes 10% of randomly selected (without replacement) drugs from the benchmark database.
Therefore, overlap between these datasets is minimal resulting in a large and diverse sampling of
subsets of the benchmark datasets. We measure the AUC, AUC\ow, and Ratioauciow for each dataset.
The corresponding averages and standard deviations quantified over the 100 datasets are given in
Table 11. These averages are consistent with the results on the entire benchmark database that we
give in Figure 11A. The p-values that measure significance of differences between all pairs of the
considered seven methods are below 0.01, which mean that the differences in the predictive quality
are statistically significant. This reveals that the benefits brought by the use of multiple similarities
and the higher predictive performance of DCS compared to other 1S models are consistent over a
diverse sampling of datasets. Overall, we show that 3S is the most accurate and significantly more

accurate than the 2S predictors, while the 2S predictors are significantly better than the 1S models.
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DCS is significantly more accurate when compared to DPS and PSS. These observations provide

useful hints for future users and designers of the DPI predictors.

Table 11. Significance of differences in the predictive performance of DPI predictors measured at interaction level.
The distribution of AUC, AUCow, and Ratioauciow Values quantified over 100 different datasets (randomly selected
10% of drugs from the benchmark database) are represented by average + standard deviation. The italic and underlined
fonts represent results of tests of significance of difference in AUC and in AUCow, respectively, for each pair of
predictors. We quentify the corresponding p-values by running t-test (for measurement with normal distribution) or
Wilcoxon signed-rank test (for non-normal data) between each pair of predictors. We test the normality with the
Anderson-Darling test at 0.01 significance.

Predictive quality Statistical significance (p-value) of the differences
Method (average * standard deviation) between all pairs of predictors
AUC AUC oy Ratiouciow 3S DPS+PSS DCS+PSS DCS+DPS  DCS DPS PSS

3S 0.925+0.005 0.0284+0.0005  22.7+0.4 5.4E-26 4.0E-77 23E-46 3.7E-59 16E-54 8.5E-104
DPS+PSS  0.912+0.004 0.0240+0.0005 19.2+0.4 1.0E-69 3.3E-10 19E-12 10E-30 5.5E-51 5.8E-105
DCS+PSS  0.905+0.005 0.0252+0.0005  20.2+0.4 47E-64 3.9E-14 74E-07 4.1E-37 58E-34 4.8E-98
DCS+DPS 0.899+0.006 0.0273+0.0007  21.9+0.6 1.3E-08 1.3E-30 1.7E-18 8.2E-45 8.4E-32 55E-81
DCS 0.882+0.006 0.0230+0.0006 18.4+0.5 2.0E-56 3.0E-05 3.2E-22 5.2E-58 3.3E-08 5.1E-74
DPS 0.869+0.008 0.0210+0.0007 16.8+0.6 2.9E-69 3.7E-34 7.9E-39 5.7E-78 8.2E-23 1.5E-66

PSS 0.759+0.012 0.0100+0.0029 8.0+2.3 3.2E-92 9.2E-87 2.0E-88 2.1E-72 1.6E-65 1.2E-57

We study relationship between the predictive performance and similarity values by
comparing predictions between the 3S and 1S models to understand how the predictive
performance benefits from combining multiple similarities. We divide values of DCS, DPS, and
PSS into 20 equally sized intervals and utilize these intervals to partition the benchmark database
into subsets in which the drug-protein pairs have comparable similarity values. Figure 12
deconstructs the 3S model into two dimensional plots of two similarities, each divided into 20
intervals for the total of 400 data points. This figure compares the predictive quality of the 3S
model (shown inside of the first quadrant) with the three 1S models (left most vertical set of points
and bottom most horizontal set of points, which are outside of the quadrant). The predictive quality
is measured with accuracy defined as a fraction of correctly identified DPIs and non-DPIs to total
number of drug-protein pairs in a given data point; we denote that by the bubble size in Figure 12.
We could not use AUC because some of these data points may not have either native DPIs or

native non-DPIs. We use colors to denote relative enrichment of native DPIs and non-DPIs for
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each data point where dark red denotes enrichment in non-DPIs and dark green is for enrichment
in DPIs. The enrichment is defined as the difference between the fractions of DPIs and non-DPIs,
which are computed by dividing the number of native DPIs (non-DPIs) in a given data point by
the total number of DPIs (non-DPIs) in the benchmark database. For instance, a light red point for
DCS €[0.25, 0.3] and PSS € [0, 0.05] in Figure 12B. shows that a modest majority of drug-protein
pairs with these values of the two similarities are non-DPIs (which is denoted by the light red color)
and accuracy of the 3S model for this data point is 100% (which is denoted by the large size of the
bubble).

Figure 12A shows that the predictive accuracy for 3S model is separated into two distinct
regions. The first region includes red data points for DCS € [0.05, 0.45] and DPS € [0, 0.15]. This
region is enriched in native non-DPIs (red color) and has high predictive accuracy (large bubble).
The second region includes green data points for DCS € [0.45, 1] and DPS € [0.1, 0.3]. This region
is enriched in native DPIs (green color) and has lower predictive accuracy (smaller bubble) when
compared to the red region. As expected, the colors reveal that the native non-DPIs are
concentrated in the drug-protein pairs with low values of DCS and DPS while the native DPIs are
more enriched in the drug-protein pairs with high similarities. This demonstrates that similarities
could be used to discriminate DPIs from non-DPIs. The bubble sizes reveal that it is easier to
provide high predictive performance for non-DPIs because they contain many drug-protein pairs
and most of them include drugs which are very dissimilar to drugs which are known to bind the
same protein. Such dissimilar drugs are easy to be correctly predicted as the non-interacting pairs.
On the other hand, the predictions are less accurate for the green bubbles. This is because they
cover drug-protein pairs for which drug structures are similar to the drugs that interact with the

same proteins. Moreover, some of the pairs in these bubbles are still non-DPIs and they are difficult
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to differentiate from the native DPIs. Most importantly, Figure 12A explains why 3S model is
better than the corresponding two 1S models that rely on DCS and DPS. DCS values can be used
to reliably separate non-DPIs (dark red bubbles in the bottom horizontal line where DCS <0.4)
from DPIs (dark green bubbles where DCS > 0.5). However, drug-protein pairs for DCS between
0.4 and 0.5 cannot be easily separated. The separation of these drug-protein pairs into DPIs and
non-DPIs can be improved by adding the values of DPS. Specifically, drug-protein pairs with DCS
€ [0.4, 0.5] and DPS € [0, 0.1] are mostly non-DPIs (red bubbles) while the drug-protein pairs
with DCS € [0.4, 0.5] and DPS > 0.1 are mostly DPIs (green bubbles). Moreover, the bubble sizes
also suggest that the accuracy of the 3S model is better than DCS model. The bubble for DCS €
[0.45, 0. 5] has moderate accuracy = 78%. The corresponding column for the 3S model at DCS €
[0.45, 0.5] has includes much larger bubbles that correspond to higher accuracies. The accuracy
for the 3S model is high (between 89% and 98%) when DPS < 0.2 and DCS € [0.45, 0.5]. On
average, accuracy of the 3S model for DCS € [0.45, 0.5] equals 84% when compared to 78% when
DCS is employed alone. Similar observations can be made for Figure 12B. Overall, the 3S model

improves over the 1S models in the interface between the red and green regions.
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Figure 12. Comparison of predictive performance between 3S and 1S models in the function of values of the three
similarities. The values of the three similarities are divided into 20 equally sized intervals. The comparison of the 3S
vs the three 1S models is divided into two panels that compare the 3S model vs. two sets of 1S models each. Panel A
shows the comparison of 3S vs. DCS and DPS. Panel B shows the comparison of 3S vs. DCS and PSS. Accuracy for
the 3S model is shown inside the first quadrant while 1S models are given as a horizontal line below x-axis and a
vertical line to left from the y-axis. Each bubble represents the drug-protein pairs in a given interval. Bubble sizes
denote accuracy, which is defined as the fraction of correctly identified DPIs and non-DPIs to total number of drug-
protein pairs in that bubble. Color denotes enrichment in native DPIs/non-DPIs, which is defined as the difference
between the fractions of native DPIs and non-DPIs. These are computed by dividing the number of DPIs (non-DPIs)
in a given bubble by the total number of DPIs (non-DPIs) in the benchmark database. We discretize the enrichment
into five levels: dark green (dark red) bubble denotes significant enrichment in DPIs (non-DPIs) if the difference >1%;
light green (light red) bubble indicates moderate enrichment in DPIs (non-DPIs) if the difference >0.5%; and white
hollow bubble means no enrichment for which the difference <0.5%. White space in the figure denotes bubbles that
we removed because they contain fewer than 100 drug-protein pairs; this is to ensure that statistics are robust.

5.2.2 Assessment of predictive performance at drug level

All previous studies evaluate predictive performance at the interaction level, which measures
accuracy of the DPI predictions over drug-protein pairs that span across multiple drugs.
Considering the fact that different drugs may share different levels of similarity to the benchmark
database, it would be useful to evaluate these drugs individually. We provide first-of-its-kind
assessment of predictive performance for DPI predictions at the drug level. The drug-level
assessment provides further insight into complementarity and differences between various 1S, 2S,
and 3S predictors. We measure the AUC over the DPI predictions for each individual drug
(AUCuryg), which evaluates the quality of associations that are predicted between a given drug and
all of the 1469 druggable proteins. We ensure that each drug in the benchmark database has at least

five protein targets, which allows us to provide relatively robust estimates of the AUCgryg values.
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Figure 13. Comparison of predictive performance for the considered DPI predictors at the drug level. Black and gray
lines at the top of the figure show the AUC measured per drug (AUCqrg) for each of the three 1S models. Drugs are
sorted by their AUC produced by the most accurate DCS model. The four sets of bar charts at the bottom of the figure
show the difference in drug-level AUC between each ensemble model and DCS. Green bar (red bar) means
improvement (decline) in the AUCgng values.

The upper half of Figure 13 shows the AUCqrg for the three 1S predictors over each of the
449 drugs. The drugs are sorted by the corresponding AUCgryg Values of DCS, which is the most
accurate 1S model when measured at the interaction level (Figure 11). We divide the drugs into
three groups. The first group of 150 drugs has AUCgryg for DCS > 0.96. The AUCqrg for DPS and
PSS is virtually always lower than AUCqryg for DCS for this group. The second group of 195 drugs
has AUCgryg for DCS between 0.96 and 0.86. The values of AUCgryg for PSS are almost always
lower than DCS while AUCqrg for DPS and DCS are similar for these 195 drugs. The third group
of the remaining 104 drugs has AUCqrg Values for DCS that are on average lower than DPS and

PSS. Although DCS and DPS are much better than PSS for the first two drug groups, the AUCgryg
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for PSS (0.752) for the third group of drugs is on average higher than the AUCgrg for DCS and
DPS (0.674 and 0.709). This reveals that although overall PSS provides lower predictive
performance, it outperforms the other two measures of similarity for 60/449 = 13% of drugs. The
lists of drugs for each of the three groups are shown as three separate columns in the Appendix 1.

The interaction-level AUC of DCS across the 449 drugs is 0.883 (Figure 11). DCS achieves
AUCryg > 0.883 for 324/449 = 72% of drugs. Moreover, AUCagryg for either DPS or PSS > AUCryg
for DCS for 100 out of the 125 drugs for which AUCqrg for DCS < 0.883. These drugs should be
of particular focus for the designers of future DPI predictors since they should be predicted with
the help of the DPS and PSS rather than the most accurate at the interaction level DCS. This reflects
trade-offs between the three measures of similarity and motivates the development of predictors
that use consensus of multiple similarities.

We also compare the drug-level performance for the three 2S and the one 3S predictor with
the most accurate 1S predictor, DCS. The lower half of Figure 13 shows the difference in AUCaryg
between DCS and each of the four ensemble predictors. Overall, the ensemble models are more
accurate than DCS for most of the drugs (green bars in Figure 13). Specifically, DCS is
outperformed by DCS+DPS, DCS+PSS, DPS+PSS, and 3S model for 370, 222, 244, and 349 drugs,
respectively. We measure relative difference in AUCarig, Which is defined as the absolute
difference in AUCqrgdivided by the AUCqryg for DCS. The average relative differences in AUCqrug
over the 449 drugs between DCS and the four ensembles are 2% (when compared to DCS+DPS),
5% (DCS+PSS), 7% (DPS+PSS), and 8% (3S). Thus, as expected based on the interaction-level
results, the 3S model is also the most accurate predictor at the drug level. The drug-level results
for the 2S models are also consistent with the evaluations at the interaction level. DPS+PSS is the

most accurate 2S predictor that secures 7% improvement over the DCS model. In particular, it
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benefits from PSS for the drugs in the third drug group. AUCgryg for DCS and DPS are correlated
for the third drug group (SCC = 0.58). On the other hand, AUCagryg for PSS is not correlated with
either DCS or DPS (SCC = 0.07 and 0.05) and it secures relatively high AUCgryg values. This
implies that PSS is a strong predictive input that compliments the other two similarities, which
explains why the ensemble predictors outperform DCS for the third group of drugs.

Our novel drug-level assessment of predictive performance shows that no single similarity
could provide accurate DPI predictions across all drugs. DCS is the most accurate 1S model and
the primary driver of the ensemble-based predictors for the first two group of drugs. For 23% of
drugs (the third drug group) for which DCS does not provide higher predictive quality, the use of
the other two similarities substantially increases the predictive performance. The 1S models are
strongly dependent on the assumption that similar drugs share the same targets and similar proteins
tend to interact with the same drug. The complementarity between PSS and DCS/DPS allows us
to accurately cover a wider range of drugs for which only some of these similarities work

individually.

5.3 Sensitivity of predictive performance to characteristics of predictors

The predictive performance can be influenced by two factors: 1) intrinsic characteristics of
the similarity-based predictors of DPIs, which are defined based on similarity of the query drug or
its known targets to the benchmark database; and 2) extrinsic characteristics that are defined solely
based on properties of the query drug and its known targets. For instance, if the query drug is
similar to many of the drugs from the benchmark database then we anticipate it might be more
likely to accurately find its protein targets when compared to a drug that is dissimilar to the drugs

in the database. Also, a query drug that has a large number of known targets might be easier to
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predict, irrespective of the predictive system used. This is because its targets can be exploited to
find more potential new targets from the database when compared to a query drug with no or few
known targets. We are the first to assess the sensitivity of predictive quality to a set of practical

intrinsic and extrinsic characteristics of predictors.
5.3.1 Sensitivity to intrinsic characteristics

Similarity-based DPI predictors rely on finding drugs that are similar to a query drug and
proteins that are similar to the known targets of the query drug. The quality of DPI predictions
depends on the values of the similarities between query drug/protein and the benchmark database,
which in turn are dependent on the size and coverage of the database. In principle, the benchmark
database is incomplete as it only covers the currently known drug structures, drug profiles, and
druggable human sequences. In a typical practical scenario, a query drug might be dissimilar to all
the drugs in the benchmark database. This reduces the chance that a DCS- or DPS-based predictor
successfully identifies potential DPIs for the query drug, even if the query drug actually shares
targets with the drugs in the benchmark database. We simulate such scenarios by excluding drugs
(proteins) that share certain levels of similarity to the query drug (target) from the benchmark
database when making predictions for the query drug (target). We partition the drugs and proteins
from the benchmark databases into clusters using average-linkage hierarchical clustering [322].
As a result, the average similarity of drugs or proteins between any two clusters is lower than a
predefined similarity threshold used for the clustering. In other words, the drugs (proteins) from
one cluster are dissimilar to drugs (proteins) from another cluster. Subsequently, given a query
drug (protein), we exclude the drugs (proteins) that belong to its cluster and use the only remaining
drugs (proteins) to compute DCS/DPS/PSS for prediction. Thus, the predictions are based on drugs

and proteins that are dissimilar to the inputs. Specifically, we use the 80™", 50" (median), and 20"
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percentile of similarity values over all the drug-protein pairs in the benchmark database as the

clustering thresholds. We also consider a scenario where all drugs and proteins are utilized for the

predictions except for the query drug or protein itself. This scenario is equivalent to the clustering

using the 100" (maximal) percentile of similarity values. Additionally, random predictions that

correspond to the 0™ percentile are also considered. We use these five scenarios to study the

sensitivity of the predictive performance to the similarities between the query drug (protein) and

the benchmark database. The predictive performance is quantified with the interaction-level AUCs.
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Figure 15. Sensitivity of predictive performance to the intrinsic characteristics of predictors. The box-plots denotes
the AUC values for the scenarios where drugs (proteins) similar to the query drug (protein) are excluded from
predictions based on clustering using the 100", 80%", 50", and 20" percentile of the similarities. The bottom bar denotes
random predictions that corresponds to the 0™ percentile (AUC = 0.5).

Figure 14 shows the ROC curves for the five scenarios and the three 1S, three 2S, and one 3S
model. Figure 15 summarizes the corresponding AUC values. In general, all but one model are not
sensitive to the three intrinsic characteristics. The range of AUC values between 100" and 20™"
percentiles of similarities for the 3S, the three 2S, DCS, and DPS models is narrow. This means
that predictive quality drops by only between 0.04 (DCS+DPS and DCS) and 0.07 (DCS+PSS and
DPS+PSS) with the decrease in similarities by 80%. Consequently, the six models offer high
predictive quality even when dealing with the input drugs that have low similarity to the
benchmark database. The one exception is the PSS model for which the predictive performance is
sensitive to the degree of similarity to the targets in the database. Its AUC value substantially drops
from 0.76 (100" percentile; clustering threshold for PSS = 0.4 which corresponds to 40% pairwise
sequence similarity) to 0.56 (50" percentile; threshold = 19% pairwise sequence similarity). The
results for the 20™ percentile of PSS (threshold = 10% pairwise sequence similarity) are equivalent
to random predictions. This is consistent with previous studies which unveiled that protein
sequences with identity < 0.25 are likely to have different functions and structures [323, 324]. This

is also related to our observations in the Figure 10 where the distributions of the PSS values overlap
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between interacting and non-interacting drug-protein pairs, in particular when compared to DCS
and DPS.

This analysis also confirms that use of a larger set of similarities in general results in an
improved predictive performance. In particular, for the 100" percentile scenario, the AUC of the
best 1S model is 0.91, the best 2S model is 0.93, and the 3S model is 0.94. Because the adoption
of low PSS similarities results in lower predictive performance, combining it with DCS or DPS
into a 2S model does not enhance predictive performance (compare DCS+PSS vs DCS, and
DPS+PSS vs DPS plots in Figure 15).

The results of analysis of sensitivity to the intrinsic characteristics of predictors reveal that
the predictive performance is not sensitive to the values of DCS and DPS, while it is sensitive to
the values of PSS. Moreover, combining PSS with DCS and/or DPS makes the predictors robust
to the low values of PSS. We conclude that use of PSS only model is risky when the known targets

of query drug are dissimilar to the targets in the benchmark database.
5.3.2 Sensitivity to extrinsic characteristics

Predictive performance could also be sensitive to extrinsic characteristics that describe known
a priori input drug structure, drug profile, and protein target. We are the first to investigate several
extrinsic characteristics for each of the three types of similarities. They include surface area, charge,
shape, weight, size, lipophilicity, number of similar drugs, number of similar drugs sharing targets,
and similarity to the most similar drugs which are computed from the drug structure. We also
considered three markers of drug profiles: number of side-effects, similarity of the profile to the
most similar profile, and number of similar profiles. Finally, we investigated three markers of the
input drug targets: number of known targets, number of known targets that interact with similar

drugs, and known targets that interact with the most similar drug. We discuss one “best” marker
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for each type of similarity, which we selected based on the fact that it significantly affects the
predictive performance and is easy to quantify. These markers include the number of similar drug
structures that share targets with the input drug, the number of side-effects, and the number of
known targets.

We study sensitivity of predictive quality to these extrinsic markers by partitioning the
considered drugs into two groups for which we observe large differences in predictive performance.
For the best DCS marker, we compare 177 drugs that share targets with < 50 similar drugs (which
corresponds to the median level of DCS) vs the remaining drugs that share targets with a larger
number of similar drugs. Similarly, for the best DPS characteristic, we contrast 55 drugs that have
relatively small side-effects profile (<40) vs the remaining drugs that have a larger profile. Finally,
for the best PSS marker, we compare 128 drugs with < 20 native targets vs the remaining more
promiscuous drugs. Figure 16 compares distributions of AUCqng values between these groups of

drugs when considering the corresponding 1S models and the 3S model.

107



X X X

X X
1 - . .
0.9 ? T ?
_o08 #
£o07
S o6
20
0.5
0.4
03 m3S ®DCS ®DPS mPSS

<=20 <=20 >20 > 20
number of known targets

<=50 <=50 > 50 > 50 <=40 <=40 > 40 > 40

number of similar drugs number of drug side effects
sharing targets

Group of drugs

Figure 16. Sensitivity of predictive quality to extrinsic characteristics of predictors. The boxplots denote the 5th, 20th,
50th, 80th, and 95th percentiles of AUCung values for the 1S and 3S model over the corresponding two groups of
drugs separated with help of a given marker that characterizes the input drug/targets. The asterisk indicates that the
difference in the AUCqnq is significant (p-value < 0.05) between drug groups. We assess significance of differences
between the corresponding two groups of drugs using the Wilcoxon rank sum test [317]; we use the non-parametric
test since these data are not normal according to the Anderson-Darling test at 0.01 significance.

Figure 16 shows that the AUCqryg for DCS varies substantially between 0.38 and 0.96 with a
median = 0.85 for the drugs that share targets with fewer similar drugs. For the remaining drugs
that share targets with the larger number of similar drugs, the AUCqrg for DCS is always > 0.86
with a median = 0.96. These drugs have lower variation and significantly higher values for AUCryg
(p-value < 0.05) when compared to the drug that share targets with fewer similar drugs. Similarly,
the 3S model also has significantly higher AUCqrg Values with narrower spread for the drugs with
larger number of similar drugs sharing targets. These observations reveal that the predictive quality
is significantly higher when working with drugs that share targets with a larger number of similar
drugs in the benchmark database. Based on the assertion that similar drugs tend to target the same
proteins, that makes it easier to accurately identify targets for such drugs when using DCS. In
contrast, the drugs that share targets with a low number of similar drugs are harder to accurately

predict.
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The AUCryg for DPS is lower for the drugs that have a smaller profile (median AUCgrug =
0.92) than for the drugs that have larger profile (median AUCaryg = 0.94), but this difference is not
statistically significant (p-value = 0.17). The corresponding difference for the 3S model is slightly
higher and statistically significant (p-value < 0.05): median AUCgruig = 0.93 vs 0.96, respectively.
The sensitivity to the size of the drug profile is expected since a larger profile offers more
information that in turn result in a more accurate quantification of DPS.

The differences in AUCqrg between the less vs more promiscuous drugs are significant for
the PSS and 3S models (p-value < 0.05). The median AUCqgrg for the 3S model is 0.91 for the less
promiscuous drugs while it equals 0.96 for the more promiscuous drugs. Similarly, for the 1S
model that relies on PSS the median AUCqrig = 0.75 vs 0.77. This trend could be explained by an
observation that the drugs which interact with many targets are more likely to have targets that are
highly similar to the proteins in the benchmark database. This is supported by the assertion that
similar proteins tend to interact with the same drugs.

The results of the analysis of sensitivity to the extrinsic characteristics reveal that the
predictive performance is sensitive to several easy to estimate characteristics of the input drug
structures, drug profiles, and drug targets. As expected, we find that it is more likely to secure
higher predictive quality when a more comprehensive information is available for the input drugs,
such as a larger number of similar drugs sharing targets, a larger drug profile, and a higher number

of known targets.

5.4 CONNECTOR webserver

CONNECTOR (prediCtOr of compouNd-proteiN intEraCTiOn based on ensemble of

similaRities) is a webserver that implements the seven predictors that we evaluate in this review.
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The  webserver and the benchmark  database are  freely available at

http://biomine.cs.vcu.edu/serverssf CONNECTOR/. Figure 17 shows the interface of the webserver.

CONNECTOR - prediCtOr of compouNd-proteiN intEraCTiOn based on ensemble of similaRities

Materials | References | Acknowledgments | Disclaimer | Biomine

CONNECTOR webserver

CONNECTOR is a webserver that predicts propensity of putative drug-protein interactions based on similarity between the input drug structure, drug
profile, and/or protein sequence and the experimental drug-protein interactions that are included in the internal database. This webserver facilitates
prediction for any combination of inputs including any individual input (drug structure, drug profile, and protein sequence), any pair of inputs, and all
three inputs.

The internal database of CONNECTOR integrates drug-protein interactions that were collected from Therapeutic Target Database, IUPHAR/BPS Guide
to Pharmacology database and Drug2Gene that combines data from CGDCP, ChEBI, ChEMBL, CTD, DrugBank, HGNC, Ligand Expo, MICAD, NCBI Gene,
Pathway Commons DB, PDBsum, PDSP Ki, PharmGKB, Pubchem Bioassay, PubChem Compound, PubChem Substance, and UniProt.

The current version of the internal database includes 449 drugs, 1469 protein targets, and 34456 drug-protein interactions
Please follow the three steps below to make predictions.

Step 1. Provide at least one of the three inputs listed below

Enter structure of a query drug in the List side-effects of the query drug in the Enter amino acids sequence of a known
SMILES format. CSV format. The side-effect terms must protein target in one line.
come from this fixed list of terms.
C(CC(=0)0)CN anaphylaxis,urticaria,angioedema,tender MSHHWGYGKHNGPEHWHKDFPIAKGE *
ness,pain RQSPVDIDTHTAKYDPSLKPLSVSYDQA

TSLRILNNGHAFNVEFDDSQDKAVLKGG
PLDGTYRLIQFHFHWGSLDGQGSEHTV
DKKKYAAELHLVHWNTKYGDFGKAVQQ -

Example | Clear input Example | Clear input Example | Clear input
Step 2. Provide your email address (optional)

Please enter your email address in the following text area. A link to prediction results will be sent to your email address once they are ready.

Step 3. Click button to launch prediction

Run CONNECTOR

Materials
The benchmark database

o Internal database of CONNECTOR

The db.zip file includes four files:
o drug_structures.tsv - tab-separated list of PubChem identifiers and structures of the 449 drugs in the SMILES format.

o drug_profiles.tsv - tab-separated list of PubChem identifiers and profiles of the 449 drugs. The profiles are based on the list of terms that are
available from here.

o protein_sequences.fasta - the FASTA formatted list of UniProt accession numbers and sequences for the 1469 drug targets.

o drug_protein_interactions.tsv - tab-separated list of 34456 drug-protein interactions where drugs are identified using PubChem identifiers and drug
targets are identified using UniProt accession numbers.

Figure 17. The interface of the CONNECTOR webserver.
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CONNECTOR facilitates prediction for any combination of the three inputs including any
individual input (drug structure, drug profile, and protein sequence), any pair of inputs, and all
three inputs. CONNECTOR uses the benchmark dataset as its internal database. The computations
are performed on the server side and thus the end user only needs to access the webserver page via
any major web browser and provide the inputs. The prediction is performed in three steps: 1)
provide any combination of the three inputs including drug structure in the SMILES format,
comma separated list of side effects (drug profile), and/or protein sequences in the FASTA format;
2) provide email address where a unique link to the results will be sent once the predictions are
ready; and 3) click “Run CONNECTOR” (see Figure 17). Each submitted job is entered into a
FIFO queue of jobs on the server. User is notified via the browser window about the current
placement in the queue and when the job reaches the front of the queue. The results are displayed
in the browser window and the unique link to the page with the results is sent to the user-identified
email address. We provide four views of the results:

e All DPIs, which shows all putative drug-protein pairs that include query drug and target(s)
and similar compounds and proteins.

e DPIs that include the query drug structure, which cover interactions between the query drug
structure and its putative protein targets (if drug structure was provided as one of the inputs)

e DPIs that include the query drug profile, which include interactions between the query drug
represented by its profile and its putative protein targets (if drug profile was provided as one
of the inputs)

e DPIs that include the query protein sequence, which gives interactions between the query
target sequence and the drugs that are predicted to interact with this target (if target sequence

was provided as one of the inputs)
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Each putative interaction is coupled with the corresponding value of similarity. Drugs are
linked to their entries in the PubChem databases and target sequences are linked to their UniProt
entries. For user’s convenience, similarities between query drug/target and the drug/target used to
make prediction and the propensities of putative drug-protein interactions are color-coded. Dark
green/green/light green/pale green/red denotes that the corresponding drug-protein pair is very
likely/likely/moderately likely/unlikely/very unlikely to interact. We annotate these five colors
based on the values of the similarity that belong to the top 20%, 20 to 40%, 40 to 60%, 60 to 80%,
and the bottom 20% of the distribution of these values. We also provide a text-based version of

the results for download. We will store the page with the results for at least three months.

5.5 Conclusions

We have developed a novel benchmark database that includes drugs characterized by high
density of interactions and we use it to evaluate a representative set of 1S, 2S, and 3S predictors.
This database integrates data coming from three resources (19 source databases) and includes 449
drugs, 1469 druggable human proteins, and 34456 native DPIs, resulting in high density of native
DPIs per drug that equals 76. We observe that most of the surveyed methods have evaluated
predictive performance on both DPIs and non-DPIs, which allowed for computation of TPR, FPR,
and the resulting AUC values. However, these methods accessed predictive performance only at
the interaction level that spans multiple drugs which may differ in structure, profile, and the
number and type of protein partners that they bind to. We are the first to perform both interaction-
and drug-level assessments and to comprehensively and side-by-side compare all 1S, 2S, and 3S

models.
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At the interaction level, we reveal that the use of ensembles results in improved predictive
quality. Specifically, the 3S model significantly outperforms the 1S and 2S models, while the 2S
models are significantly more accurate than the 1S models. We empirically analyze reasons for
these improvements and we show that they stem from an improved handling of interactions
characterized by modest levels of similarities. Among the three 1S models, DCS and DPS are more
accurate than PSS. We also find a modest level of correlation between DCS and DPS while
correlations between PSS and DCS as well as PSS and DPS are low. The modest or low levels of
correlations further explain why the ensembles benefit from the integration of multiple similarities
and why the majority of current predictors are ensembles.

At the drug level, we demonstrate that the predictive quality varies widely between drugs and
these differences depend on the type of similarity used. We show that no single 1S model could
provide accurate DPI predictions across all the drugs. Moreover, we demonstrate that ensembles
improve over the 1S models. The average relative improvements in AUCqrg OVer the 449 drugs
between the best 1S model, DCS, and the four ensembles are: 2% (compared to DCS+DPS), 5%
(DCS+PSS), 7% (DPS+PSS), and 8% (3S). We divide drugs into three groups: group one includes
150 drugs with high AUCqrg for DCS; group two includes 195 drugs with moderate AUCqrug for
DCS; and group three with 104 drugs for which AUCqrg for DCS is on average lower than DPS
and PSS. We found that the use of 3S ensemble provides particularly large improvements by on
average 29% in AUCqryg over the use of DCS for the 23% of drugs which constitute the third group.
Our empirical analysis also reveals that although per-interaction PSS provides the lowest
predictive performance, it outperforms the other two 1S models for 13% of drugs when assessed
at the drug level. These drugs should be of particular focus for the development of future DPI

predictors because more accurate predictions could be obtained with the help of the DPS and PSS
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rather than with the overall most accurate at the interaction-level DCS that dominates the current
methods.

DPI prediction relies on accurate values of similarities between the query drug (its known
target) and the drugs (proteins) in the benchmark database. The quality of these values is likely
affected by the intrinsic characteristics of predictors, such as the similarity between inputs and the
benchmark database. We provide the first-of-its-kind sensitivity analysis of predictive quality for
each of the three similarities. We find that the predictive quality is not sensitive to the values of
DCS and DPS, which means that the predictive performance of the methods that utilize DCS/DPS
does not substantially change when the input drug structures or profiles are dissimilar to the
structures and profiles in the internal database. In contrast, the predictive quality for PSS drops
significantly when the input protein sequences are dissimilar to the sequences in the database.
However, such sensitivity to low values of PSS is mitigated when using methods that combine
PSS with other similarities. These observations demonstrate that the ensembles are not only
accurate at the interaction and drug levels but they are also robust to low values of similarities.

We are also the first to investigate sensitivity of predictive quality to extrinsic characteristics
of the predictive models. These extrinsic characteristics are intrinsic to the inputs and include
information extracted directly from drug structures, drug profiles, and drug targets. We find that
the 3S model and the corresponding three 1S models are more likely to provide accurate
predictions when the input drugs share targets with a larger number of similar drugs in the
benchmark database, when the input drugs have larger side-effect profiles, and when the input
drugs are more promiscuous. This suggest that a larger amount of available data (humber of known
targets and/or side-effects) leads to calculations of higher quality and higher values of similarities,

which in turn results in higher predictive performance.
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Chapter 6 Summary and conclusions

This dissertation has three goals that focus on the prediction and analysis of the DPIs in the
druggable human proteome. In Chapter 2 we provide a brief introduction to the related background
to explain and motivate our goals. This chapter includes information about protein and drug-
protein complex structures that define molecular-level details of the therapeutic and off-target
effects of drugs, as well as a summary and classification of current publications related to the
computational predictions of DPIs. This is followed by the subsequent three chapters which detail
methods and results for each of the three goals. My original contributions in this dissertation that
are organized under each of the three goals include:

Goal 1: Evaluation of protein structure-based DPI predictors and development of DPI

database.

e  We provide empirical comparative analysis of the protein structure-based DPI predictors:

eFindSite, SMAP and ILbind.

e  We develop and deploy the PDID database that stores 1.1 million predictions and 17

thousand high-confidence putative DPIs for the entire structure human proteome and
provides interface for drug-based, protein-based, and target sequence-based data queries.

Goal 2: Review of the similarity-based DPI predictors.
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We review a comprehensive set of 35 high-impact similarity-based DPI predictors
spanning from the three pioneering methods in this area which were published a decade
ago to eight most recent approaches which have never been covered by other surveys.
We define the categorization of similarity-based DPI predictors based on the types and
numbers of similarities that they use.

We review the 12 source databases that are used to derive the internal databases of
predictors and we comprehensively explain connections between the internal and source
databases.

We investigate impact and describe internal databases of the 35 considered methods
including the recent approaches.

We analyze the use of similarities and ensembles in the considered set of 35 predictors.

We critically analyze drawbacks of current reviews and methods in this area.

Goal 3: Empirical assessment and comparative analysis of similarity-based DPI

predictors.

We develop and release a novel benchmark database that covers large-scale drug-protein
data and high-density DPIs. This database is particularly suitable for comparative
empirical assessment of DPI predictors.

We are the first to compare all seven representative predictors including three individual
predictors that rely on each of the three main types of similarities and four ensemble
predictors that combine two or three similarities.

We are the first to assess predictive quality at the drug level. This novel drug-level

assessment of predictive performance provides additional insights.
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e We provide a first-of-its-kind sensitivity analysis of predictive performance to the
intrinsic characteristics of DPI predictors which describe the similarities between the
inputs and the benchmark database.

e  We are also the first to analyze the sensitivity of predictive performance to the extrinsic
characteristics that are the priori known properties of the input drug structures, drug
profiles, and protein targets.

e We develop and release at http://biomine.cs.vcu.edu/serverssfCONNECTOR/ the
CONNECTOR webserver that implements seven similarity-based DPI predictors that

we assessed.

Following, we summarize the work done and list major conclusions for each of the three goals.
In the context of the first goal, we empirically assess the predictive quality of three representative
protein structure-based approaches for the prediction of the DPIs. This is done for dozens of
representative drugs over the structural human proteome. Out tests show that these three methods
provide relatively accurate predictions. Relying on the putative DPIs that were accurately predicted
by these approaches and the native DPIs collected from PDB, DrugBank and BindingDB, we
develop and deploy a large-scale database of putative and native DPIs. This PDID database stores
1.1 million predictions that cover 51 popular and representative drugs and the entire structural
human proteome, which includes 9652 protein structures. PDID maps the drugs to their target
proteins, where these interactions may correspond to therapeutic effects and/or adverse events.
The database helps to comprehensively catalogs drug targets, facilitates repurposing and
repositioning of existing drugs, and unveils an opportunity to systematically analyze molecular-

level DPIs at a proteome scale. The research related to this goal was published in Ref. [29].
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For the second goal, we completed a comprehensive review for 35 selected high-impact
similarity-based DPI predictors. These similarity-based methods offer the opportunity to perform
prediction when protein structures are unavailable, complementing the protein-structure based
methods that are studied in our first goal. We systematically summarize the key aspects of these
similarity-based predictors including their methodological underpinnings, volume and coverage of
their internal databases, information about source databases, inclusion of empirical analysis,
timeline of development, and their impact. Majority of them were published in high-impact
journals and are highly cited, suggesting that they are of substantial value to the community. Our
review shows that combining more source databases would likely further increase the
completeness of information about drug promiscuity in the internal databases. This would benefit
predictive quality of the similarity-based predictors and would also enable the development of
higher-quality benchmark databases. Additionally, we note that regular update and dissemination
would help to increase the effectiveness, completeness, and impact of the source databases.
Periodic publications and peer review will also boost quality of underlying data and features. Given
the fact that three main types of similarities are used by these methods, we categorize the 35 tools
based on the number of similarities that they apply and combine together. We find that most of
these methods ensemble two or three similarities. Recently, DCS and PSS are frequently employed
and combined to constitute ensemble predictors while DPS is infrequently utilized due to the
incompleteness and difficulty in acquiring side-effect profiles of drugs. Moreover, we unveil
drawbacks of current reviews and methods: lack of a systematic empirical analysis of predictive
quality for individual drugs; lack of an in-depth analysis of sensitivity of predictive performance

to intrinsic and extrinsic characteristics of predictors is missing; and lack of a comprehensive
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comparative analysis that includes the three single-similarity-based predictors and the four

ensembles.

The third goal was motivated by the drawbacks of the current reviews and similarity-based
methods which we uncovered in our second goal. To overcome these drawbacks, we implement,
empirically evaluate, and compare all seven representative similarity-based DPI predictors. We
develop a novel benchmark database that stores a comprehensive collection of high-quality DPIs
which we harvested from 19 data sources. The benchmark database also encompasses essential
information for the development of similarity-based methods, including chemical structures and
side-effect profiles of drugs and protein sequences of drug targets. Like in the previous studies we
assess the predictive performance of the seven representative predictors at the interaction level.
We also provide the first-of-its-kind assessment of predictive quality at the drug level. This drug-
level analysis shows that different combination of similarities should be used for different drugs
to obtain more accurate predictions. Moreover, we reveal that ensembles of multiple similarities
offer higher predictive quality than models that rely on single or fewer similarities. This result is
consistent for evaluations at both interaction and drug levels. We are the first to analyze the
sensitivity of predictive quality to the intrinsic and extrinsic characteristics of predictors. Our
analysis reveals sensitivity to lower values of PSS while the predictive quality is not sensitive to
values of DCS and DPS. This suggests that the approach using PSS only would not provide
accurate predictions when the input proteins are dissimilar to the proteins in the internal database.
However, ensemble models are robust to low values of similarities. The sensitivity analysis also
demonstrates that the predictive quality could benefit from a larger amount of information for the

inputs, including a larger a larger number of similar drugs sharing targets in the internal database,
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a larger side-effect profile, and a larger number of known targets. These conclusions arguably offer
a useful guidance for the selection of similarity-based predictors for specific drugs and protein

targets.

The studies and conclusions summarized above inspire several possible directions for future
works. Combining a larger and more diverse set of source databases would likely further improve
quality of the internal databases, which in turn would further boosts the predictive quality. Authors
of future predictors should consider to integrate recent and comprehensive resources, such as the
DGIdb database [245, 246] and Pharos database [243], to expand our benchmark database and/or
the internal databases of their algorithms. Additionally, since the size of the benchmark database
is primarily limited by the availability of drug profiles in the SIDER database, we recommend that
future works should also consider combining related information about drug side-effects from the
MetaADEDB [296] and IntSide database [128]. Moreover, most of the current development efforts
focuses on protein targets that are structured [20]. However, about 30% of eukaryotic proteins are
either fully disordered or have long regions of intrinsic disorder [83, 325]. These disordered
proteins are implicated in a wide range of diseases [326-333]. Moreover, certain protein families
are enriched in the intrinsic disorder, such as nuclear receptors, kinases, and various enzymes [20,
83, 84, 334-336]. These protein families include important therapeutic drug targets and druggable
proteins [1, 2, 18, 19, 44]. This prompts our recommendation that future works should invest into
the development of disorder-specific DPI databases and methods, which by definition cannot rely

on the protein structure-based computations.
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Appendix 1 List of drugs included in the benchmark

database for Goal 3

The list of PubChem CIDs and names for the 449 drugs that are included in the benchmark

database from Chapter 5.

Drug group 1 Drug group 2 Drug group 3

CID Drug name CID Drug name CID Drug name

3366 5-fluorocytosine 5419 Tetrahydrozoline 3080 2,3-dimercaptopropanol
3385 5-fluorouracil 3406 4-methylpyrazole 4075 5-aminosalicylic acid
4114 8-methoxypsoralen 667490 6-mercaptopurine 71158 Acamprosate
1978 Acebutolol 2723601 6-thioguanine 60164 Adapalene

71771  Aceclofenac 1983 Acetaminophen 5493444 Aliskiren

2094 Allopurinol 1986 Acetazolamide 3007 Amphetamine
2099 Alosetron 2022 Acyclovir 2179 Amsacrine

3125 Alpha-methyl-p-tyrosine 2082 Albendazole 2182 Anagrelide

2118 Alprazolam 2088 Alendronate 166548 Anidulafungin
2130 Amantadine 51263 Alfentanil 60795 Aripiprazole
2145 Aminoglutethimide 2092 Alfuzosin 2266 Azelaic acid
2170 Amoxapine 123606 Almotriptan 82146 Bexarotene

3698 Amrinone 2141 Amifostine 104865 Bosentan

2187 Anastrozole 2160 Amitriptyline 2441 Bromazepam
2249 Atenolol 2162 Amlodipine 2471 Bumetanide

2284 Baclofen 2216 Apraclonidine 60953 Capecitabine
2337 Benzocaine 2244 Aspirin 2551 Carbachol

2366 Betahistine 148192 Atazanavir 2678 Cetirizine
2375 Bicalutamide 2265 Azathioprine 2713 Chlorhexidine
2391 Bisacodyl 2267 Azelastine 8612 Chloroprocaine
444 Bupropion 2578 BCNU 2719 Chloroquine
2477 Buspirone 7699 Benzonatate 2789 Clobazam

2478 Busulfan 12555 Benzydamine 25419 Clodronate

2484 Butenafine 2369 Betaxolol 119182 Clofarabine
2541 Candesartan 2370 Bethanechol 151171 Conivaptan

2708 Chlorambucil 39042 Bezafibrate 5625 Delavirdine
2725 Chlorpheniramine 2381 Biperiden 137 Delta-aminolevulinic acid
2749 Ciclopirox 2405 Bisoprolol 2973 Desferrioxamine
2764 Ciprofloxacin 2435 Brimonidine 42113 Desflurane

2802 Clonazepam 68844 Brinzolamide 125017 Desvenlafaxine
2907 Cyclophosphamide 60726 Bromfenac 3009 DEFMO

2913 Cyproheptadine 6834 Brompheniramine 3117 Disulfiram
2972 Deferiprone 2474 Bupivacaine 71329 Dofetilide
124087 Desloratadine 2519 Caffeine 681 Dopamine

2140 Diatrizoate 2554 Carbamazepine 4510 DWP-401

3042 Dicyclomine 2576 Carisoprodol 60877 Emtricitabine
3059 Diflunisal 2583 Carteolol 3226 Enflurane

3100 Diphenhydramine 2585 Carvedilol 176870 Erlotinib

36811 Dobutamine 2662 Celecoxib 60198 Exemestane

3151 Domperidone 2726 Chlorpromazine 150311 Ezetimibe

3158 Doxepin 2727 Chlorpropamide 3331 Felbamate

3168 Droperidol 2732 Chlorthalidone 3345 Fentanyl

3198 Econazole 2733 Chlorzoxazone 119 Gamma-aminobutyric acid
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3241
564
59768
3261
3291
3305
3308
3324
3325
3339
3342
6918558
3354
3365
3373
3372
3393
3410
3446
3478
3510
3516
2123
3637
3652
3690
5291
57469
3767
3825
3826
3869
3883
3914
3948
3950
3957
3961
453
4053
8271
4062
598
1349907
4107
4171
4173
4174
4197
5746
4211
4236
7638
4409
4456
644241
4539
4543
4595
4601
4614
4634
4678
4723
4725
4748
4763
4828
4891
4906
4909
4915
4917
4927
4932
4935
657298
1046
5002
5029
5039

Epinastine
Aminocaproic acid
Esmolol
Estazolam
Ethosuximide
Etidronate
Etodolac
Famciclovir
Famotidine
Fenofibrate
Fenoprofen
Fesoterodine
Flavoxate
Fluconazole
Flumazenil
Fluphenazine
Flurazepam
Formoterol
Gabapentin
Glipizide
Granisetron
Guaifenesin
Hexamethylmelamine
Hydralazine
Hydroxychloroquine
Ifosfamide
Imatinib
Imigquimod
Isoniazid
Ketoprofen
Ketorolac
Labetalol
Lansoprazole
Levobunolol
Lomefloxacin
Lomustine
Loratadine
Losartan
Mannitol
Melphalan
Mephobarbital
Mepivacaine
Mesna
Methimazole
Methocarbamol
Metoprolol
Metronidazole
Metyrapone
Milrinone
Mitomycin C
Mitotane
Modafinil
Monobenzone
Nabumetone
Neostigmine
Nilotinib
Norfloxacin
Nortriptyline
Ondansetron
Orphenadrine
Oxaprozin
Oxybutynin
Panthenol
Pemoline
Penciclovir
Perphenazine
Phenobarbital
Pindolol
Praziquantel
Prilocaine
Primidone
Procarbazine
Prochlorperazine
Promethazine
Propafenone
Proparacaine
Propylthiouracil
Pyrazinamide
Quetiapine
Rabeprazole
Ranitidine

2756
2762
2771
2801
2803
2812
2895
2955
3062316
2995
30623
3016
3019
679
3105
3108
3114
3152
3156
3157
3182
77993
838
3278
2761171
3292
6049
3333
3348
3386
3394
3397
3440
3454
5379
3463
3488
3475
3494
3519
3559
3598
3639
785
3658
3672
3696
3702
3715
3739
3749
3759
3779
3783
3821
3827
3878
3899
3902
59708
3676
3958
3964
3998
4032
4044
4046
4054
4060
4078
4086
4091
4095
4158
4168
4170
4178
4192
4195
4205
4212

Cimetidine
Cinoxacin
Citalopram
Clomipramine
Clonidine
Clotrimazole
Cyclobenzaprine
Dapsone
Dasatinib
Desipramine
Dexrazoxane
Diazepam
Diazoxide
Dimethyl sulphoxide
Dipivefrin
Dipyridamole
Disopyramide
Donepezil
Doxapram
Doxazosin
Dyphylline
Eletriptan
Epinephrine
Ethacrynic acid
Ethionamide
Ethotoin
Edetic Acid
Felodipine
Fexofenadine
Fluoxetine
Flurbiprofen
Flutamide
Furosemide
Ganciclovir
Gatifloxacin
Gemfibrozil
Glibenclamide
Gliclazide
Glycopyrrolate
Guanfacine
Haloperidol
Hexachlorophene
Hydrochlorothiazide
Hydroquinone
Hydroxyzine
Ibuprofen
Imipramine
Indapamide
Indomethacin
Iodipamide
Irbesartan
Isocarboxazid
Isoproterenol
Isoxsuprine
Ketamine
Ketotifen
Lamotrigine
Leflunomide
Letrozole
Levetiracetam
Lidocaine
Lorazepam
Loxapine
Mafenide acetate
Mecamylamine
Mefenamic acid
Mefloquine
Memantine
Mephenytoin
Mesoridazine
Metaproterenol
Metformin
Methadone
Methylphenidate
Metoclopramide
Metolazone
Mexiletine
Midazolam
Midodrine
Mirtazapine
Mitoxantrone
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10413
123631
774
3647
60852
60753
104741
5311181
3763
27661
219078
612
216326
3915
4004
4057
4058
4064
6476
4139
4189
51634
47641
4421
4436
50294
4493
4499
41684
4616
60843
4768
750
4993
104758
56959
449193
446157
129228
5206
5312125
4369359
216239
5314
41693
110635
5381
5391
6018
1130
2720
853
216237
110634
170361
2520
5665
1054
68740
5734
5735

Gamma-hydroxybutyrate

Gefitinib
Histamine
Hydroflumethiazide
Ibandronate
Ibutilide

ICI 182,780
Iloprost
Isoflurane

Isosorbide-5-mononitrate

Lacosamide
Lactate
Lenalidomide
Levocabastine
Malathion

Mepenzolate methylbromide

Meperidine
Meprobamate
Methsuximide

Methylene blue solution

Miconazole
Miglustat
Naftifine
Nalidixic acid
Naphazoline
Nedocromil sodium
Nilutamide
Nisoldipine
Nitazoxanide
Oxazepam
Pemetrexed
Phenoxybenzamine
Polyglycine
Pyrimethamine
Raltitrexed
Ranolazine
Roflumilast
Rosuvastatin
Rufinamide
Sevoflurane
Silodosin
Sitagliptin
Sorafenib
Succinylcholine
Sufentanil
Tadalafil
Tazarotene
Temazepam
Tetrabenazine
Thiamine
Thiazide
Thyroxine
Tolvaptan
Vardenafil
Varenicline
Verapamil
Vigabatrin
Vitamin B6
Zoledronic acid
Zonisamide
Zopiclone



5071
5245
2083
5152
5161
5193
5210
5253
5318
5215
5344
5401
5403
5426
5430
5452
5479
41781
5523
5533
5556
5572
5593
119607
5656
5719

Rimantadine
Risedronate
Salbutamol
Salmeterol
Salsalate
Secobarbital
Sibutramine
Sotalol
Sulconazole
Sulfadiazine
Sulfisoxazole
Terazosin
Terbutaline
Thalidomide
Thiabendazole
Thioridazine
Tinidazole
Torasemide
Tramadol
Trazodone
Triazolam
Trihexyphenidyl
Tropicamide
Valdecoxib
Venlafaxine
Zaleplon

23897
4034
4440
4449
4463
4485
4497
4506
4033
4583
130881
4594
34312
115237
4679
4680
4649
4737
4740
3675
4771
5775
1775
16362
4829
27400
4893
4908
4911
4913
4914
4934
4943
10100
4946
4976
4991
5035
5070
5073
5078
5090
5095
77999
338
65863
5212
54454
5320
5358
5359
1935
65999
5411
2153
5453
5472
5487
5503
5546
5566
6256
861
5578
6503
5591
3121
5978
71616
5717
5732

Molindone
Monamine
Naratriptan
Nefazodone
Nevirapine
Nifedipine
Nimodipine
Nitrazepam
Nitrogen mustard
Ofloxacin
Olmesartan medoxomil
Omeprazole
Oxcarbazepine
Paliperidone
Pantoprazole
Papaverine
Para-aminosalicylic acid
Pentobarbital
Pentoxifylline
Phenelzine
Phentermine
Phentolamine
Phenytoin
Pimozide
Pioglitazone
Pizotifen
Prazosin
Primaquine
Probenecid
Procainamide
Procaine
Propantheline
Propofol
Propoxyphene
Propranolol
Protriptyline
Pyridostigmine
Raloxifene
Riluzole
Risperidone
Rizatriptan
Rofecoxib
Ropinirole
Rosiglitazone
Salicylic acid
Sertaconazole
Sildenafil
Simvastatin
Sulfacetamide
Sumatriptan
Suprofen
Tacrine
Telmisartan
Tetracaine
Theophylline
Thiotepa
Ticlopidine
Tizanidine
Tolazamide
Triamterene
Trifluoperazine
Trifluorothymidine
Triiodothyronine
Trimethoprim
Tris-HC1l
Troglitazone
Valproic acid
Vincristine
Voriconazole
Zafirlukast
Zolpidem
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Appendix 2 Druggable human proteome included in the

benchmark database for Goal 3

The list of UniProt accession numbers for the 1469 druggable human proteins that are included in

the benchmark database from Chapter 5.

AONOQ1
A3QNQO
AG6PW57
ABK379
ABKT7I0
ABMWW6
B2CQT6
B2RDS2
B3KRV2
B4DERY
B4DLR2
B4DTW8
B4EORL
B721G6
B77Z5K4
C9J1J0
DIYZUS5
F1D8N5
F5GWI4
H7BYT1
L7RXH5
014649
015296
043526
060674
075604
088871
095382
P00492
P01584
P04040
P05362
P07204
P08235
P08912
P10276
P11474
P13500
P14679
P16234
P18507
P20648
P21731
P22462
P23469

AONOX8
A4DOVI
ATE2EQ
ABK3B6
ABKTNS
A9ZM15
B2KJ49
B2RUU2
B3KRZ3
B4DEW2
B4DM55
B4DUB1
B4EORS
B7Z1L9
B72735
C9J5X1
ESKQFS
F1D8N7
F5H1T4
HONILS8
L8B082
014684
015303
043570
060760
075751
094759
095467
P00519
P02144
P04054
P05369
P07327
P08236
P08913
P10696
P11509
P13569
P14780
P16388
P18545
P20813
P21817
P22557
P23921

AOPJAG6
A4DOX1
ATE2ES
ABK3H3
ABKTT1
BOAZMS
B2R7Y7
B2RXH2
B3KS07
B4DF27
B4DM56
B4DUC2
B4EOX2
B7Z1W5
B7Z9H7
C9JE82
ES5KS60
F1D8P4
F5H2BS
HONIML
MOROW6
014727
015374
043704
060840
075762
094768
095665
P00533
P02545
P04083
P05412
P07339
P08246
P08922
P10721
P11511
P13612
P14842
P16435
P18825
P20839
P21860
P22607
P23944

AOPJF5
A4D1DO
ATLFK2
ABK3J4
AB8K840
BOFWH2
B2R807
B2ZGL7
B3KS12
B4DF30
B4DMJ5
B4DUHS8
B4EOYS
B7Z226
B7ZKJ3
C9JEV6
E7DBMS8
F1D8P6
F6U4U2
I6LY9H2
MOR1I2
014746
015375
043741
060885
075795
094782
095835
P00734
P02585
P04629
P05543
P07437
P08254
P09172
P10826
P11712
P13631
P14867
P16591
P19020
P21266
P21912
P22748
P23975

AQPJFS8
A4D1D2
AB8K1lel
ABK3M3
ABK858
BOLPES
B2R812
B3KN77
B3KS39
B4DG22
B4DN15
B4DV95
B4E1ES
B77242
B7ZKN7
C9JXA2
E7ERK3
F1D8P8
F7vJQl
J3KMW1
000167
014788
015379
043781
060909
075874
094804
095907
P00747
P02593
P04775
P06133
P07451
P08311
P09211
P10827
p11884
P13674
P14902
P16662
P19099
P21397
P21917
pP22888
P23977

AQZTO98
A4D1QO0
A8K177
ABK496
AB8KS8D3
BOYIY3
B2RON9
B3KNJ3
B3KT70
B4DG79
B4DN83
B4DVP5
B4E292
B72274
B7ZLY6
DOVY79
E7ESA6
F1D8P9
F8VBW7
J3KNBS
000325
014842
015399
043849
060939
075899
094806
096017
P00750
P02708
P04818
P06213
P07550
pP08482
P09619
P10980
P11926
P13716
P15056
P16860
P19224
P21439
P21918
P22894
P24046

A1A4V4
A4D2J9
ABK1F6
ABK4G3
AB8K987
BOYJ76
B2RA41
B3KP53
B3KTT5
B4DHI4
B4DNF7
B4DW50
B4E295
B7722G8
B7zM24
D2CGD1
E7ETZ0
F1D8Q5
F8VvVQz7
J3KNES
000408
014920
015438
054898
070507
075936
094925
P00156
P00797
P02741
P05023
P06239
P07607
P08483
P09769
P11021
P12004
P13726
P15291
P17252
P19320
P21451
P21964
pP23141
P24298

A1A5A9
A4D2N2
ABK1US
ABK4H7
ABK996
BOYJ89
B2RAH7
B3KP78
B3KU60
B4DII1
B4DNQ5
B4DWC1
B4E398
B77Z285
B7ZM71
D2KUAG6
E7EVN3
F1D8S4
F8WoL1
J3KNN3
000444
014936
015440
060240
075116
076039
094956
P00325
P00813
P02751
P05091
P06241
P07741
P08588
P09871
P11142
P12104
P13945
P15388
P17302
P19327
P21452
P22002
P23219
P24530

142

AlE5M1
A4D2PO0
ABK228
ABK4S9
A8KIL2
BOYJ93
B2RAPY
B3KPX6
B3KUB4
B4DIW2
B4DPF4
B4DX41
B4E3ES
B72325
B7ZW53
D3DNN4
E9KL36
F1D8S6
F8WBA3
J3KRN4
000459
014939
015460
060331
075164
076068
095069
P00326
P00915
P02763
P05093
P06276
P07947
P08684
P09917
P11177
P12235
P14091
P15389
P17405
P19525
P21462
P22102
P23378
P24666

A1L4K2
A4QPA9
AB8K249
ABK5M4
ABKAE3
BOZBD3
B2RAZ5
B3KQH9
B3KVM3
B4DK59
B4DR80
B4DXF8
B5BNW5
B7Z3P6
B7ZW66
D3DPA4
EO9KL48
F1DAL4
F8WCM8
J30s8s1
000519
014965
015554
060341
075311
076074
095255
P00352
P00918
P02768
P05108
P06280
P07949
P08697
POC1s8
P11229
P12236
P14207
P15390
P17516
P19652
P21549
P22303
P23415
P24723

A2A3U5
A5X2V1
AB8K2J1
ABK5P7
ABKAE4
BOZBEO
B2RBL3
B3KQV3
B3KWC4
B4DK78
B4DS37
B4DXM8
B6D4Y2
B7Z3P7
B8K2Q5
D3DX95
E9PER6
F1T0G6
G3V5Q5
K9J958
000763
015111
043283
060391
075385
076082
095259
P00374
P01258
P02788
P05141
P06401
P08104
P08729
P0C264
P11362
P12268
P14324
P15428
P17948
P19784
P21554
P22309
P23416
P25021

A2RUF7
A6NGA6
AB8K2Q2
ABK5W4
ABKAF4
BOZBE2
B2RC52
B3KRIS8
B3KXJ4
B4DKCO
B4DT73
B4DZW8
B6ZGS9
B7Z3V5
ClID52
D3YTBS5
E9PG18
F2722J1
G5E9C5
K9JA46
008562
015118
043318
060568
075460
076083
095263
P00390
P01275
P03372
P05164
P06858
P08172
P08842
P10109
P11387
P12657
P14416
P15538
P18054
P19793
P21589
P22310
P23434
P25024

A2RUSO
A6NMQ1
ABK2S54
ABK57Z0
ABKAGS
BOZBF6
B2RCU6
B3KRP1
B4DDG2
B4DKH4
B4DTF4
B4E00O
B7Z1F5
B7Z3W8
C4IXs7
D4Q8HO
E9PJX5
F272Y4
H6UYS5
L7RSL3
014521
015244
043353
060656
075469
088703
095264
P00403
P01375
P03886
P05177
P07101
P08173
P08908
P10253
P11388
P12931
P14550
P16050
P18089
P20309
P21709
P22413
P23443
P25025

A2VDG3
AG6NNF7
AB8K341
ABK602
A8MPY1
B1ALM3
B2RCW8
B3KRT8
B4DER4
B4DLF9
B4DTP4
B4E058
B7Z1F9
B7Z5E9
C8C060
D6RFW5
F1D8N3
F5CTF3
H6VQ59
L7RTIS
014578
015245
043497
060658
075582
088704
095342
P00491
P01579
P04035
P05181
P07202
P08185
P08909
P10275
P11413
P13196
Pl4616
P16066
P18505
P20594
P21728
P22460
P23458
P25099



P25100
p27487
P28845
P30556
P31645
P33032
P35219
P35916
P39900
P42681
P45984
P48542
P50052
P51681
P54219
P57789
P78348
Q00975
Q02641
005940
Q09428
Q13255
Q13705
Q14534
Q15759
016558
Q32MKO
Q5DSz7
062968
Q7Z2wW7
Q8IZS8
QO8NFD2
092630
Q96L34
Q99571
Q9BXAS5
Q9H1DO
QO9HAB3
QI9NQAS
Q9NYB5
Q9UEES
Q9ULX7
Q9Y2H9
097236

AOA024Q730
AOA024QZY5
AOAQ024R0J1
AOAQ24R1I3
AOA024R2N2
AQOAQ24R3C5
AOAQ24R3W4
AOA024R4X8
AQOAQ24R5P0
AQOAQ24R6L5
AQOA024R728
AOAQ24R8E2
AQOAQ024R928
AOA024R905
AOAQ024RAGO
AOAQ24RAV2
AOA024RBG4
AQAQ24RC53
AOAQ024RD18
AQAO24RDAS
AOAQ75B7B4
AQOAO8TWW79
AQAO087X0I6
AOAQ90N8BYO
AOAOAOMRL7
AOAQAOMTJO

P25101
P27695
P29274
P30560
P31652
P33151
P35228
P36021
P40763
P42684
P45985
P48544
P50225
P51692
P54284
P58406
P78356
Q01098
Q02763
Q06187
Q09470
Q13258
Q13873
014643
Q15822
Q016566
Q32pP28
Q5DT02
Q64737
Q86TI2
Q8N1C3
Q8TCT1
092731
Q96LB2
099643
Q9BXCO
Q9HIR3
Q9HAZ1
Q9NRI6
QIONYG8
Q9UEWS8
Q9UMO7
Q9Y2T1
VIGXZ4

P25102
P27732
P29275
P30613
P31930
P33402
P35318
P36507
P41143
P42685
P46098
P48545
P50281
P51787
P54646
P61088
P78368
Q01453
Q02769
Q06203
Q0IJ49
Q13332
013882
Q14654
Q15825
Q16568
Q38Q88
Q5JXL9
Q68DU8
Q86TPL
Q8N1Q1
Q8TCUS
092736
Q96NT5
099683
Q9BY41
Q9H221
Q9HB55
QI9NR97
Q9NYK1
Q9UHC3
Q9UN88
Q9Y468

P25103
P27815
P29276
P30711
P31939
P33527
P35346
P36537
P41145
P42858
P46734
P48637
P50406
P51788
P54753
P61168
P78508
001538
Q02779
Q06278
Q12791
Q13370
Q13936
Q14749
Q15831
Q16659
Q3v008
Q5KU17
Q6DT37
086UX6
Q8N4C8
Q8TDO08
092769
Q96NX5
Q99700
09BY49
Q9H222
Q9HBH1
Q9NRP7
Q9NYX4
Q9UHCY
Q9UNA4
Q9Y5K3

AQOAO024QYTS

AOA024QZ770
AQA024Q7ZY7
AOAO024ROL5
AOAO024R1VO
AQOA024R2Q0
AOAO024R3C7
AOAO024R37Z2
AQA024R4Z5
AOAO024R5S8
AOAO024R6N2
AQA024R730
AOAO024R8J3
AOAO024R964
AQOA024RI9X6
AOAO024RAHO
AOAO24RAV7
AQOA024RBG6
AOAO24RC61
AOAO024RD21
AQA024RDD4
AOAO87WSY1
AOAO87WWVO
AQA087X0W8
AOAO90ON8Z1
AOAOAOMRV2
AQAOAONOL2

AOAQ024QZA8
AOA024R040
AOA024R0Q9
AQOAQ24R222
AOAO024R2W7
AOAQ024R3D5
AOAQ024R426
AOAO024R567
AOAQ24R5W3
AOAQ024R6Q6
AOAO024R7CO
AOAQ024R8K3
AOA024R980
AOAO024R9X9
AOAQ24RAH7
AOAQ24RAYS
AOAO024RBHO
AOAQ24RC92
AOAQ24RD25
AOAQ024RDH4
AQOAQ8TWT22
AQOAQ087WXV4
AOA087X1B1
AOAOAOMQRS
AOAQAQOMS52

P25122
P27986
P29322
P30729
P31947
P33535
P35348
P36544
P41250
P42898
P47712
P49019
P50440
P51813
P54760
P61169
P78527
001650
Q02790
Q06418
Q12809
Q13393
Q13946
014894
Q15835
Q16696
Q3Vv050
Q50D15
Q6IB77
Q86V86
Q8N568
Q8TD43
092830
096040
099714
Q9BYG64
Q9H244
Q9HC16
QINS40
Q9NZK7
Q9UHD2
Q9UPEL
Q9Y5N1

AOAQ024QYW7
AOA024QZM9
AQA024R049
AOAQ024R125
AOAQ024R230
AQAO024R2Y6
AOAQ24R3G7
AOAQ024R440
AQAO024R5B6
AOAQ24R5X5
AOAQ24R6R2
AQAO24R7E4
AOAQ024R8S3
AOAQ24R9A7
AQAO024R9YO
AOAQ24RAP2
AOAQ024RB10
AQAO024RBL3
AQOAQ24RCE9
AOAQ024RD33
AOAQ024RDJ4
AOAO8TWT64
AQAO087WYJO
AQAO88AWNO
AOAOAOMOX8
AOAOAOMSE3

AQAOAGYYAS

P25929
p28221
P29323
P30872
P32238
P33765
P35354
P36888
P41440
P43088
P47869
P49137
P50613
P51857
P54762
P63142
P80365
001668
Q02880
Q06432
012866
Q13464
Q013956
Q14973
Q15842
016739
Q4LE27
055007
Q6P3R8
Q86VL8
Q8N5S9
Q8TDC3
092887
Q96QE3
099808
Q9BYC2
Q9H2G2
Q9HC97
QI9NS75
QONZQ8
Q9UHL4
Q9UPY5
Q9Y5Y4

P25962
p28222
P29350
P30874
P32239
P33981
P35367
P36894
P41595
P43116
P47870
P49146
P51160
P51956
P54802
P63316
P80404
Q01717
Q03164
006643
012879
Q13470
Q13976
014994
Q15858
Q16790
Q4U2R8
Q5S8UJ9
Q6PKF2
Q86W47
Q8N695
Q8TDR2
092918
Q96RJO
099816
Q9BYV1
Q9H2K8
Q9HCF6
QINS85
Q9P0X4
Q9UI33
Q9UQBY
Q9Y5Y9

AOA024QYXO0
AOA024Q7S4
AQA024R0CO
AOAO024R136
AOAO024R244
AQAO024R324
AOAO024R3H7
AOAO024R452
AQA024R5C5
AOAO24R57Z3
AOAO24R6R4
AQA024R7J0
AOAO024R8U1
AOAO024ROC1
AQA024R9Z8
AOAO24RAP4
AOAO24RB43
AQOA024RBN1
AOAO024RCJO
AOAO024RD58
AQA024RDK3
AOAOB87WTS4
AOAOB87WYZ4
AOA088QCU6
AOAOAOMR48
AOAOAOMSK3

P25963
P28223
P29401
P30939
P32245
P34896
P35368
P36896
P41743
P43119
P47898
P49327
P51164
P51957
P55011
P68366
P83916
Q01815
Q04759
Q07343
Q12882
Q13526
Q14032
Q15303
Q016236
Q016832
Q4VAMS
Q5T6X5
Q6RIB6
Q86YV6
Q8N752
Q8TDS4
Q92952
Q96RP8
099928
Q9BZL6
Q9H2S1
Q9HCG7
Q9NSAO
Q9P0Z9
Q9UIF8
Q9UQDO
Q9Y616
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P26255
P28335
P30049
P30966
P32297
P34903
P35372
P36897
P41968
P43140
P47901
P49336
P51168
P52209
P55017
P68371
P97288
Q01959
Q04760
Q07699
Q13043
Q13547
Q14191
Q15375
016288
Q16850
Q4VBY6
Q5TAT6
Q6XUX3
Q8IUX4
Q8N8N7
Q8TE04
092959
Q965SB4
QO9BPWY
Q9C007
Q9H2X6
Q9HCRS
Q9NSY1
Q9P289
Q9UIGS8
Q9UQL6
Q9Y666

AOA024Q712

P26447 P26599
P28476 P28482
P30291 P30411
P31213 P31350
P32298 P32304
P34913 P34949
P35462 P35498
P37023 P37088
P42261 P42262
P43166 P43220
P47989 P48039
P49419 P49585
P51170 P51570
P52895 P53350
P55072 P55926
P68400 P70604
P97717 P97794
Q02108 Q02127
Q04828 Q05329
Q07869 Q08209
Q13126 Q13131
Q13563 Q13621
014289 Q14376
015413 Q15418
Q16322 Q16348
016853 Q17RV3
Q52WX2 Q53EW6
Q5VT25 Q5XXA6
Q6ZN16 Q6ZQON7
Q8IVL5 Q8IVL6
Q8NDX3 Q8NE62
Q8WTQ7 Q8WUI4
Q96BDO0 Q96CX2
099246 099250
Q09BRO1 Q9BRL5S
Q9DEN1 QI9EQ60
Q9H2X9 Q9H3NS8
Q9JIS7 QINP56
QO9NTFO QOS9NTN3
Q9P2K8 Q9QYNS8
Q9UK23 Q9UK32
Q9WUD2 Q9Y233
Q9Y694 Q9Y6L6

AOA024Qz15 A0A024Q7Z20
AOA024QzU0 AOA024QzU1
AQOA024R0C6 AOA024ROH1L
AOAO24R151 AOAO024R157
AOAO24R276 AOAO024R2B3
AQA024R325 AOA024R328
AOAO24R3K6 AOA024R3S2
AOAO24R4B2 AOAO024R4E2
AQOA024R5E6 AOA024R5H1
AOAO24R57Z6 AOAO024R5Z9
AOAO24R6T9 AOA024R704
AQA024R7M7 AOA024R7T2
AOAO024R8U8 AOA024R906
AOAO24R9H3 AOAO024R9I2
AQOA024RA31 AOA024RA66
AOAO24RAP7 AOAO24RATS
AOAO24RB59 AOAO024RB99
AQOA024RBP6 AOA024RBUS
AOAO24RCN9 AOAO024RCW6
AOAO024RD59 AOAO024RD62
AQA024RDL4 AOA024RDM3
AOAO87WU84 AOAO087WV24
AOAO87WZ06 AOAO87WZ88
AQAO90N7W1 AOAO90NTW4
AOAOAOMR60 AOAOAOMRG7
AOAOAOMSKS8 AOAOAOMSSS

P26684
P28566
P30518
P31388
P32305
P34969
P35499
P37231
P42336
P43403
P48167
P49759
P51606
P53582
P56373
P70605
P98073
Q02153
Q05513
Q08289
Q13183
Q13627
014432
Q15569
Q16445
Q17ST2
0Q53GD3
Q60614
Q6ZWB6
Q8IW41
Q8NE63
Q917Y1
Q96FI4
099418
Q9BRS2
QO9ERZ4
Q9H3Y6
QO9NPAL
Q9NVHG6
Q9UBC3
Q9UKES
Q9Y251
Q9Y6M4

AOAQ024QzV1
AOAO024ROH9
AOAQ024R183
AOAQ24R2HS8
AOAO24R374
AQOAQ024R3S3
AOAQ024R4HO
AOAQ24R5T4
AQOAQ024R603
AQOAQ24R718
AOAQ024R880
AOAQ024R909
AOAQ024RI9I5
AOAO024RA96
AOAO024RAU7
AOAQ024RBB2
AOAQ024RBV5S
AOAQ024RD04
AOAQ024RD88
AOAQ024REOS
AOAO087WVC4
AOAO87WZLS8
AOAQ90NTX8
AOAOAOMRGO
AOAOAOMT22

P27037
P28647
P30542
P31391
P32320
P34995
P35610
P37288
P42345
P43681
P48169
P49841
P51639
P53597
P56524
P70673
Q00526
Q02156
Q05586
Q08499
Q13224
Q13639
Q14500
Q15722
Q16512
Q2M218
Q56UN5S
Q61743
Q71U36
Q8IYT8
Q8NER1
Q0917Y2
Q96FL8
Q99527
Q9BVS4
Q9GZV3
Q9H4B4
QONPA2
QONY47
Q9UBF8
Q9UL54
Q9Y271
Q9z0U4

P27338
P28702
P30543
P31644
P32745
P35218
P35790
P39748
P42574
P45954
P48443
P49895
P51649
P53667
P57058
P78334
Q00788
Q02485
Q05932
008881
013233
Q13698
Q14524
Q15746
Q16513
Q32MC3
Q5DSZ6
Q62897
Q7RTTY
Q8IZFO
Q8NEV4
0923Y7
Q96GD4
099549
Q9BX84
Q9HO015
Q9H598
Q9NPD5
QONY57
Q9UBS5
Q9UL62
Q9Y2H1
Q9z0V1

AQOAQ024Q726
AOA024QZWO
AOAO024ROIO
AOAO24R1H6
AOAO024R2M7
AOAO024R397
AOAO24R3T2
AOAO24R4X4
AOAO024R5K6
AOAO24R638
AOAQ024R720
AOAO24R8A6
AOAO024R913
AOAO024R9Q4
AOAO24RAES8
AOAO024RAVO
AOAO24RBB6
AOAO24RBWY
AOAO24RD15
AOAO024RDAO
AOAO068F658
AOAO87WW63
AOA087X090
AOAO90N8BQ6
AOAOAOMRG2
AOAOAOMTAG6



Appendix 3 Benchmark database of drug-protein

interactions for Goal 3

The list of 34456 drug-protein interactions that are included in the benchmark database from
Chapter 5. We provide PubChem CIDs and names for drugs (highlighted in gray color) and

UniProt accession numbers for protein targets for each drug.

CID 119: gamma-aminobutyric acid

AOA024QZY7 AOA024R4E2 AOA024R909 AOA024R9X6 AOA024RCN9 AOA090N8Z1 AOAOAOMTJO AOAOAG6YYA8 AB8K177 B4DN83 B4E398 B7ZKN7 F1D8N7 075899
088871 P02545 P13612 P21728 P23415 P24046 P31644 P34903 P50440 Q03164 Q16445 Q68DU8 Q6ZWB6 092830 Q96CX2 Q960QE3 QIUBSS5 QOUIF8 Q9Z0U4
CID 137: delta-aminolevulinic acid

AOA024QZzY7 B2CQT6 P02545 P13716 P24046 Q16348 Q9UIFS8

CID 338: salicylic acid

AQ0A024QzY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOAO024R5I4 AOA024R6R4 AOA024R6TY9 AOA024R9I2 AOA024RAP2 AOAO024RBW9 AOAO024RD15
AQA087WU84 AOAO9ON7W1l AOAO90ON7X8 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3US5 A2RUSO A4D1D2 A4D1Q0 A8K1IF6 A8K249 A8K3J4
ABKTN8 AB8KAF4 ABKAG8 BOZBEO B2R7Y7 B2R807 B2RXH2 B3KUB4 B4DN15 B4DUH8 B7Z1L9 B8K2Q5 C1ID52 ES5KQF5 F1D8N3 F5H1T4 G5ESCS5 H6VQ59 K9J958
L7RSL3 L7RXH5 060656 P00352 P00533 P00915 P00918 P02768 P05177 P05181 P06133 P06239 P06241 P07451 P07550 P08173 P08236 P08246 P08254
P08311 P08588 P08684 P08913 P09917 P11229 P11509 P11712 P14780 P14902 P15428 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303
P22748 P22894 P23219 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P30872 P30874 P31391 P32238 P32245 P32745 P33032
P35218 P35346 P35354 P35367 P36537 P37288 P41143 P41595 P41968 P43166 P49146 P50052 P50406 P51681 Q01959 Q04828 Q08209 Q16790 Q38088
Q4U2R8 092830 QI9NSAO QOUHC3

CID 444: bupropion

AQ0A024QzY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOAO024R5I4 AOA(024R6TY9 AOA024R9I2 AOA024RAP2 AOA024RAU7 AOA024RCN9 AOAO024RD15
AQA087WU84 AQOAQO90ON7W1l AOAOAOMQX8 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 AB8K1F6 A8K249 ABKSW4
ABKTN8 AB8KAF4 A8KAGS8 B0ZBD3 BOZBEO B2R7Y7 B3KP78 B4DN15 B7Z1L9 B7Z242 B7ZKN7 B8K2Q5 C1ID52 ES5KQF5 F1D8N3 F5H1T4 G5EO9CS5 H6VQ59 K9J958
L7RSL3 L7RXH5 094782 P00352 P00533 P00918 P05177 P05181 P06239 P06241 PO7550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509
P11712 P14780 P17252 P17405 P18825 P20813 P21397 P21452 P21554 P21728 P21917 P22303 P23975 P25021 P25024 P25025 P25101 P25103 P25929
P28223 P28482 P30411 P32238 P32245 P32297 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681 P83916 Q01959
Q08209 038088 Q92830 092887 Q9UIF8

CID 453: mannitol

AQOA024QzY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOAO24R4E2 AOA024R6TY9 AOA024R9I2 AOA024RAP2 AOA024RD15 AOA087WU84 AOAO9ONTWL
AQOAQOAOMRGO AOAOAOMSK3 AOAOAOMTZ22 AON0Ql AlA4V4 A2A3U5 A2RUSO A4D1D2 A4D1Q0 A8K1F6 A8K249 A8KTN8 A8KAF4 A8KAGS8 BOZBE(O B2R7Y7 B4DN15
B7Z1L9 B7Z242 B8K2Q5 C1ID52 ESKQF5 F1D8N3 F5HIT4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 015245 P00533 P00918 P02545 P05177 P05181 P06239
P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917
P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P39748 P41143 P41595
P41968 P49146 P50052 P50406 P51681 P83916 Q01959 Q08209 Q16236 038088 Q92830 Q9Y468

CID 564: epsilon-aminocaproic acid

AQOA024QzY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOAO024R6T9 AOA024R909 AOA024R9I2 AOA024RAP2 AOA024RAV2 AOA024RCN9 AOAO024RD15
AQA087WU84 AOAO90ON7W1l AOAOAOMRGO AQOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 A8KIF6 A8K249 A8KTN8 A8SKAF4 AB8KAG8 BOZBEO
B2R7Y7 B4DN15 B7Z1L9 B8K2Q5 C1ID52 ES5KQF5 F1D8N3 F1D8N7 F5H1T4 GS5EOSC5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00352 P00533 P00747 P0O0750 P00918
P02545 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P16050 P17252 P18825
P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354
P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681 P83916 Q01959 008209 Q13526 038088 Q92830 Q96QE3

CID 598: mesna

AQOAO24R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOA024R9Y0 AOAO024RAP2 AOAO024RD15 AOA087WU84 AOAO09ONT7W1 AOAOAOMRGO
AQOAOAOMSK3 AOAOAOMT22 AON0Ql Al1A4V4 A2A3U5 A2RUSO A4D1Q0 A8K1lF6 A8K249 ABKT7N8 A8KAF4 ABKAG8 BOZBEO B2R7Y7 B2RXH2 B4DN15 B7Z1L9
B8K2Q5 C1ID52 E5KQFS5 F1D8N3 F5H1IT4 GS5E9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P05177 P05181 P06239 P06241 P07550 P08173 P08246
P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P16050 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024
P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406
P51681 001959 008209 038088

CID 612: lactate

AQOAO24ROH1 AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R352 AOA024R5C5 AOA024R5I4 AOA024R5Z9 AOAO024R6T9 AOA024R8J3 AOA024R8U1 AOA024R9I2
AQOAO24R9I5 AOA024RAP2 AOA024RBB2 AQA024RD15 AOAO087WT22 AOA087WU84 AQOAQ090ON7Wl AOAOAOMRGO AOAOAOMSK3 AOAQOAOMT22 AONOQl AlA4V4 A2A3US
A2RUSO A4D1Q0 ABK1F6 AB8K249 ABKTN8 A8KAF4 AB8KAG8 BOZBEO B2R7Y7 B3KU60 B4DF30 B4DN15 B4DPF4 B7Z1L9 B7ZM24 B8K2Q5 C1ID52 ES5KQF5 F1D8N3
F5H1T4 G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 015374 015375 095907 P00533 P00915 P00918 P05177 P05181 P06239 P06241 P07550 P08173 P08246
P08311 P08588 P08684 P08913 P11177 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P22748 P25021
P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P30613 P32238 P32245 P33032 P35218 P35354 P35367 P36021 P37288 P41143 P41595
P41968 P49146 P50052 P50406 P51681 P80404 Q01959 Q08209 Q16790 038088 Q92959 Q9BYV1 Q9H2X9 Q9Y666

CID 679: dimethyl sulphoxide

AOAO024QYT5 AOA024Q7S4 AOAO24R2N2 AQOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOAO024RAP2 AOAO024RD15 AOA087WU84 AQOAQ9ONT7WIL
AQOAOAOMRGO AOAOAOMSK3 AOAOAOMSS8 AOAOAOMT22 AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 ABK1F6 A8K249 ABKT7N8 ABKAF4 ABKAG8 BOYJ76 BOZBEO
B2R7Y7 B4DN15 B7Z1L9 B8K2Q5 C1ID52 ES5KQF5 E9KL36 F1D8N3 F1D8Q5 F5H1T4 G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 060885 P00533 P00918 P05177
P05181 P06239 P06241 P0O7550 P08173 P08185 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452
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P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288
P41143 P41595 P41968 P47712 P49146 P50052 P50406 P51681 Q01959 Q02790 Q08209 038088

CID 681: dopamine

AOA024QZY7 AOA024R276 AOA024R3C5 AOA024R6L5 AOA024R6T9 AOA024R9Y0 AOAO24RAP4 AOA024RAV2 AOA024RBWS AOAO024RCN9 AOA087WT22 AlA4V4
ABK3J4 AB8KSW4 B2R7Y7 B2RXH2 B3KUB4 B4DUH8 B4E398 B7Z242 B7ZKN7 B7ZW53 C1IDS52 DOVY79 F8W6L1 L8B082 015244 015245 043704 075164 094925
P00352 P00915 P00918 P02545 P07451 P07550 P08588 P09172 P10253 P16050 P16662 P21397 P21728 P21917 P21918 P21964 P22309 P22310 P22748
P27695 P28482 P30729 P35218 P35462 P39748 P42345 P43166 P43220 P50225 P61169 P83916 Q01453 Q01959 016790 Q16853 Q5DSZ7 Q5DT02 Q99549
099700 Q99714 Q9UIF8 QIUNA4

CID 750: polyglycine

AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R4Z5 AOA024R6T9 AOA024R9I2 AOA024RAP2 AQOA024RB99 AOA024RD15 AQOA087WU84 AOAO9ONTWIL
AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOA6YYA8 AONOQl AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABKIF6 A8K228 ABK249 ABKT7N8 ABKAF4 ABKAG8 A9ZM15
BOZBEO B2CQT6 B2R7Y7 B4DN15 B4E398 B7Z1L9 B7Z3W8 B8K2QS5 C1ID52 ES5KQF5 F1D8N3 F5H1T4 GS5E9CS5 H6VQ59 HINIM1 K9J958 L7RSL3 L7RXH5 015399
060391 075311 P00533 P00918 P05177 PO5181 P06239 P06241 P07550 P07741 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712
P13196 P14780 P17252 P18825 P21397 P21452 P21549 P21554 P21728 P21917 P22303 P22309 P22557 P23378 P23415 P23416 P23434 P25021 P25024
P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P34896 P35354 P35367 P37288 P41143 P41250 P41595 P41968 P48167
P48637 P49146 P50052 P50406 P50440 P51681 Q01098 Q01959 Q05586 Q08209 Q12879 Q13126 Q13224 Q14032 Q14749 Q38088 Q4VAMS Q5T6X5 Q6IB77
Q9BY49 Q9BYV1 Q9H598 Q9P0Z9

CID 774: histamine

AOA024QZY7 AOA024R909 AQA024RBWY9 AOA024RCN9 AOAOAOMR48 AOAOAOMTJO AB8K3J4 B2KJ49 B3KUB4 B4DUH8 B4DWC1 B4E398 B7ZKN7 015244 015245
075751 094782 P00915 P00918 P02545 P07451 P22748 P25021 P25102 P27695 P28223 P34969 P35218 P35367 P43166 P58406 Q16790 Q91zY1 Q917Y2
Q9H3N8 Q9QYN8 QIUIF8 QI9UNA4 QIY5N1

CID 785: hydroquinone

AOA024QZY7 AOA024R909 AOA024R9Y0 AOA024R9Z8 AOA024RAV2 AOA024RBVS5 AOA024RBWY9 AOA024RCN9 AOA024RCW6 AOA024RDAS5 AOA024RDJ4 A8K3J4
ABKAF4 B2RXH2 B3KUB4 B4DUH8 B6ZGS9 B7ZKN7 DOVY79 D9YZUS5 ESKQFS F1D8N5 F1D8N7 F1D8P6 F1D8Q5 F8W6L1 015118 094925 P00352 P00915 P00918
P02545 P07451 P08684 P15428 P16050 P22748 P35218 P39748 P42345 P43166 P83916 Q01453 Q13526 Q16790 Q5DSZ7 Q5DT02 Q96QE3 099549 Q99700
099714

CID 838: epinephrine

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOAO024R3CS5 AOA024R3S2 AOA024R6L5 AOA024R6T9 AOA024R9I2 AOA024R9Y0 AOA024RAP2 AOAO24RAP4 AOAO24RAV2
AOA024RBG4 AOA024RBWY9 AOA024RCN9 AOA024RD15 AOA087WU84 AOAO9ON7W1 AOAO90N8Z1 AOAOAOMRGO AOAOAOMSK3 AOAQOAOMT22 AOAOAOMTJO0 AONOQIL
AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABK1F6 A8K249 A8K3J4 A8KT7N8 ABKAF4 ABKAG8 B0ZBD3 BOZBE(O B2R7Y7 B2RXH2 B3KUB4 B4DN15 B4DUH8 B7Z1L9 B7ZKN7
B8K2Q5 C1ID52 DOVY79 ES5KQFS5 E9PG18 F1D8N3 F1D8P4 F1D8P8 F5H1T4 GS5E9C5 H6VQS59 K9J958 L7RSL3 L7RXH5 015245 015296 075164 094782 P00352
P00533 P00915 P00918 P05177 P05181 P06239 P06241 P07451 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P13945
P14780 P17252 P18054 P18089 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P22748 P25021 P25024 P25025 P25101 P25103 P25929 P25962
P26255 P27695 P28223 P28482 P30411 P32238 P32245 P33032 P34969 P35218 P35354 P35367 P35368 P37288 P39748 P41143 P41595 P41968 P42345
P43166 P43220 P49146 P50052 P50406 P51681 Q01453 Q01959 003164 Q08209 Q13526 015858 Q16790 Q038088 099549 Q99700 Q099714 Q9Y5Y9

CID 853: thyroxine

AOA024R5I4 AQOA024R9X6 AOA024R9Y0 AOA024R9Z8 AOA024RAP4 AOA024RATS AOA024RAU7 AOA024RCN9 AQA024RCW6 AOA024RD62 A4D1D2 A8K177 ABKLF6
B3KP78 B6ZGS9 B7z1L9 B7ZW53 D2KUA6 E9KL36 F1D8N7 F1D8P8 F1D8P9 H6VQ59 015245 043704 060656 075604 094782 P00352 P02545 P02768 P05543
P07202 P08684 P10827 P11712 P12004 P16050 P19224 P22309 P22310 P29275 P31644 P34903 Q01650 Q13526 Q14894 Q16445 Q6ZQN7 092830 Q96BDO
Q99714 Q9BRO1 QINYBS

CID 861: triiodothyronine

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R6T9 AOA024R9I2 AOA024R9Y0 AOA024R9Z8 AOA024RAP2 AOAO024RAP4 AOAO24RATS
AOA024RAU7 AOA024RCN9 AOA024RD15 AOA024RD62 AOA068F658 AOAO87WT64 AOA087WU84 AOAOION7W1 AOAO90N8Z1 AOAOAOMQOX8 AOAOAOMRGO AOAQAOMSK3
AOAQOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US5 A2RUSO A4D1D2 A4D1Q0 A8K1F6 A8K249 ABKTN8 A8KAF4 ABKAG8 BOZBEO B2R7Y7 B3KP78 B4DN15
B62GS9 B7Z1L9 B7Z1WS B7ZKN7 B7zZW53 B8K2Q5 C1lID52 DOVY79 ES5KQFS5 E9KL36 F1D8N3 F1D8NS5 F1D8N7 F1D8P8 F5HIT4 GS5EI9CS5 H6VQ59 K9J958 L7RSL3
L7RXH5 043704 060656 075164 075604 075874 094782 094925 P00352 P00533 P00918 P02545 P02768 P05177 P05181 P05543 P06239 P06241 P07550
P08173 P08246 P08311 P08588 P08684 P08913 P10827 P11229 P11509 P11712 P12004 P14780 P15428 P17252 P18054 P18825 P19224 P21397 P21452
P21554 P21728 P21917 P22303 P22309 P22310 P25021 P25024 P25025 P25101 P25103 P25929 P27695 P28223 P28482 P30411 P32238 P32245 P33032
P35354 P35367 P37288 P39748 P41143 P41595 P41968 P43220 P49146 P50052 P50225 P50406 P51681 P83916 Q01650 Q01959 Q08209 013526 Q14191
016236 Q038088 Q6ZON7 Q92830 Q96BD0 099714 Q9BRO1 QINYB5 QOUIF8 QOUNA4 Q9Y468

CID 1046: pyrazinamide

AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOA024RAP2 AOA024RCN9 AQOA024RCW6 AOA024RD15 AOA087WU84 AOAO9ONTWIL
AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABK1F6 AB8K249 ABKTN8 A8KAF4 ABKAG8 BOZBEO B2R7Y7
B4DN15 B7Z1L9 B8K2QS5 C1ID52 ES5KQF5 F1D8N3 F1D8N7 F1D8P8 F5H1T4 GS5E9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 094782 P00533 P00918 P05177 P05181
P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728
P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P27695 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143
P41595 P41968 P47989 P49146 P49327 P50052 P50406 P51681 P83916 001959 Q08209 038088 Q96QE3

CID 1054: vitamin B6

AQOA024QzY7 AOAO24R1I3 AOAO024R222 AOA087WT22 B2RXH2 F1D8N5 F272Y4 P00352 P02768 P15428 P42898 P49419 Q99714 QONTFO QO9UNA4

CID 1130: thiamine

AQA024Q7Y7 AOAO024R4E2 AOA024R928 AOAO9ONB8YO G3V5Q05 K9JA46 015244 015245 094782 P29401 P83916 Q92830

CID 1775: phenytoin

AQOA024QzY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOAO024R5I4 AOAO024R6TY9 AOA024R909 AOA024R9I2 AOA024R9X6 AOA024R9Y0 AOAO24RAHT
AQAQ024RAP2 AQOAQ024RAU7 AOAO024RCN9 AOAO024RD15 AOA087WU84 AOAO90ON7W1l AOAOAOMRGO AOAOAOMSK3 AOAQOAOMT22 AONO0Ql AlA4V4 A2A3U5 A2RUSO
A4D1D2 A4D1Q0 A8K177 AB8K1F6 A8K249 A8KT7N8 ABKAF4 A8BKAGS8 BOZBEO B2R7Y7 B3KP78 B4DKH4 B4DN15 B4DN83 B7Z1F5 B7z1L9 B7Z3P6 B7ZKN7 B8K2Q5
C1ID52 ES5KQF5 E9PG18 F1D8N3 F1D8N7 F1DAL4 F5H1T4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 000519 015245 P00352 P00533 P00918 P02545 P02768
P04775 P05177 P05181 P06239 P06241 P06280 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825
P20813 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P29275 P30411 P31644 P32238
P32245 P33032 P34903 P35354 P35367 P35498 P37288 P39748 P41143 P41595 P41968 P42898 P49146 P50052 P50406 P51681 P83916 Q01453 Q01959
Q03164 008209 Q15858 016236 Q16445 038088 092830 092887 Q99250

CID 1935: tacrine

AQA024QzY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3D5 AOA024R3S2 AOA024R4E2 AOA024R6T9 AOA024R909 AOA024R9I2 AOAO024RAH7 AOAO24RAP2
AQOAQ024RCNY9 AOA024RD15 AOAQ024RDA5 AOA024RDJ4 AOA087WU84 AOAO9ON7W1l AOAOAOMR48 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQL
AlA4V4 A2A3U5 A2RUSO A4D1D2 A4D1QO0 A8K1F6 AB8K249 ABKT7N8 A8KAF4 ABKAG8 BOZBEO B2R7Y7 B2RXH2 B4DN15 B7Z1L9 B7z242 B8K2Q5 C1lID52 D3DNN4
ESKQF5 F1D8N3 F1D8N5 F1D8N7 F1D8Q5 F5H1IT4 G5E9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 015244 015245 015296 P00352 P00533 P00918 P02545 P05177
P05181 P06239 P06241 P06276 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P12657 P14780 P16050 P17252 P18825
P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P27695 P28223 P28482 P30411 P32238 P32245 P33032
P35354 P35367 P37288 P39748 P41143 P41595 P41968 P49146 P50052 P50406 P51681 Q01959 Q08209 Q13526 Q13627 Q16236 Q38088 Q86VL8 Q92630
Q96FL8 Q96QE3 Q99700 Q099714 Q9ERZ4 QOSUNA4

CID 1978: acebutolol

AQA024QzY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOAO024R6T9 AOA024R9I2 AOA024RAP2 AOA024RCNY9 AOA024RD15 AOA087WU84 AOAO9ONTWL
AQOAOAOMRGO AOQAOAOMSK3 AOAOAOMTZ22 AON0Ql AlA4V4 A2A3U5 A2RUSO A4D1D2 A4D1Q0 A8K1F6 A8K249 A8KTNS A8KAF4 A8KAGS8 BOZBE(O B2R7Y7 B2RXH2
B4DN15 B7Z1L9 B8K2Q5 C1ID52 DOVY79 ESKQF5 F1D8N3 F5HIT4 GS5EOCS5 H6VQ59 K9J958 L7RSL3 L7RXH5 015245 P00533 P00918 P02545 P05177 P05181
P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728
P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595
P41968 P49146 P50052 P50406 P51681 Q01959 Q08209 Q38088

CID 1983: acetaminophen

AQOAO24R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOA024R57Z3 AOA024R6T9 AOA024R9I2 AOA024R9Y0 AOAO24RAH7 AOA024RAP2 AOA024RBWY9 AOA024RD15
AQAO087WU84 AOAO90N7W1l AOAOAOMRGO AOAOAOMSK3 AOAOAOMSS8 AOAOAOMT22 AOAOAOMTJO AONOQl AONOX8 AlA4V4 A2A3U5 A2RUSO A4D1D2 A4D1Q0 ABK177
ABK1F6 A8K249 A8K3J4 ABKT7N8 ABKAF4 A8KAGS8 BOZBEO B2R7Y7 B2ZGL7 B3KUB4 B4DN15 B4DUH8 B7Z1L9 B7ZW53 B8K2Q5 C1ID52 ESKQF5 F1D8N3 F1D8P6
F5H1T4 G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 015245 060656 094925 P00352 P00533 P00915 P00918 P02144 P05177 P05181 P06133 P06239 P06241
P07451 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P16662 P17252 P18825 P19224 P20813 P21397 P21452
P21554 P21728 P21917 P22303 P22309 P22310 P22748 P23219 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245
P33032 P35218 P35354 P35367 P36537 P37288 P41143 P41595 P41968 P43166 P49146 P50052 P50225 P50406 P51681 P83916 Q01959 Q08209 Q16790
038088 05DSZ6 Q5DSZ7 Q5DT02 Q96QE3

CID 1986: acetazolamide

AQA024QZY7 AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R352 AOA024R6L5 AOA024R6R4 AOA024R6T9 AOA024R9I2 AOA024RA31 AOA024RAP2 AOA024RBWY
AOQOAO24RCN9 AOAO024RD15 AOA087WU84 AOAO9ON7W1l AOAOAOMQX8 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AONOQl AOPJA6 AlA4V4 A2A3U5 A2RUSO A4D1QO0
ABK1F6 A8K249 A8K3J4 ABKT7N8 ABKAF4 A8KAGS8 BOZBEO B2R7Y7 B3KUB4 B4DN15 B4DUH8 B7Z1L9 B7Z242 B7ZKN7 B8K2Q5 C1lID52 ESKQF5 F1D8N3 F1D8N7
F5H1T4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 043570 P00533 P00915 P05177 P05181 P06239 P06241 P07451 P07550 P08173 P08246 P08311 P08588
P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P22748 P25021 P25024 P25025 P25101
P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35218 P35354 P35367 P37288 P39900 P41143 P41595 P41968 P43166 P49146 P50052
P50406 P51681 001959 Q08209 016790 Q38088 QO8N1Ql Q92769 Q9D6N1 QOULX7

CID 2022: acyclovir

AOAO24R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOA024R5I4 AOA024R5Z3 AOA024R6T9 AOA024R9I2 AOAO24RAP2 AOA024RAU7 AOA024RAV2 AOA024RCNY
AQOAO24RD15 AOAO087WU84 AOAO90ON7W1l AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 ABK1F6 ABK249 ABKTNS8
ABKAF4 ABKAG8 BOZBEO B2R7Y7 B2R807 B3KP78 B4DN15 B7Z1L9 B7ZKN7 B8K2Q5 C1ID52 D9YZUS5 ES5KQF5 F1D8N3 F5H1T4 G5E9C5 H6VQ59 K9J958 L7RSL3
L7RXHS5 015245 075604 P00491 P00533 P00918 P02545 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229

145



P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482
P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681 001959 008209 Q038088 Q4U2R8 Q99714
CID 2082: albendazole

AO0A024QZY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOA024RAP2 AQOA024RCN9 AOA024RD15 AQOAQ87WT22 AOAO087WU84
AOAQO90ON7W1 AOAO90N8Z1 AOAOAOMQXS OAOAOMRGO 0AOQOAOMSK3 OAOAOMT22 AONOQ1l AlA4V4 A2A3U5 A2RUSO A4D1D2 A4D1Q0 AB8K1F6 A8K249 ABKTNS
ABKAF4 ABKAG8 BOZBEO B2R7Y7 B4DN15 B4DN83 B7Z1L9 B8K2Q5 C1lID52 ES5KQF5 F1D8N3 FS5H1T4 F8VQZ7 GSE9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 075874
P00533 P00918 P02545 P05177 P05181 P06239 P06241 P07437 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780
P15428 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238
P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P43220 P49146 P50052 P50406 P51681 P53582 P68371 P83916 Q01959 Q08209 Q16236
038088 Q71U36 Q96QE3 Q9HC16

CID 2083: salbutamol

AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6L5 AOA024R6T9 AOA024R909 AOA024R9I2 AQOAO24RAP2 AOA024RCNY9 AOA024RD15 AOAO24RDAS
AOA024RDJ4 AOA087WU84 AOAQO9ON7W1 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US5 A2RUSO A4D1QO0 A8K1F6 ABK249 ABKTNS
ABKAF4 ABKAG8 BOZBEO B2R7Y7 B4DN1S5 B7Z1L9 B8K2Q5 C1ID52 DOVY79 ES5KQF5 F1D8N3 F5H1IT4 GS5E9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 015244 015245
094925 P00533 P00918 P01375 P01584 P02768 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509
P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P27695 P28223 P28482
P30411 P32238 P32245 P33032 P35354 P35367 P37288 P39748 P41143 P41595 P41968 P49146 P50052 P50406 P51681 Q01959 Q08209 038088

CID 2088: alendronate

AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R3W4 AOA024R6T9 AOA024R9I2 AOAO024RAE8 AQOA024RAP2 AOA024RD15 AQOA087WU84 AOA087X090
AOAQO90N7W1l AOAQOAOMR60 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABK1F6 A8K249 A8K3M3 A8KT7N8 A8BKAF4 A8KAGS
BOZBEO B2R7Y7 B4DN15 B7Z1L9 B8K2Q5 C1ID52 ES5KQF5 F1D8N3 F5HIT4 G5E9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P05177 P05181 P06239
P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14324 P14780 P17252 P18825 P21397 P21452 P21554 P21728
P21917 P22303 P23469 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143
P41595 P41968 P49146 P50052 P50406 P51681 Q01959 Q08209 013332 Q38088

CID 2092: alfuzosin

AOAO024RCN9 AOAO068F658 AOAO090N7W1 BOZBD3 BOZBEO B2RXH2 094782 P00352 P02545 P06280 P08684 P10253 P15428 P25100 P35348 P35368 P39748
099714

CID 2094: allopurinol

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S52 AOA024R4E2 AOA024R5I4 AOA024R6T9 AOA024R9I2 AOA024RAP2 AOA024RAU7 AOAO24RBVS
AOA024RCN9 AQOA024RD15 AOAO024RDAS5 AOAQ087WT22 AOA087WU84 AOAO090N7Wl AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US
A2RUSO A4D1QO0 ABK1F6 A8K249 ABKT7N8 ABKAF4 A8KAG8 BOZBE(O B2R7Y7 B3KP78 B4DN15 B4DN83 B7Z1L9 B7ZKN7 B8K2Q5 ClID52 ESKQF5 F1D8N3 F5H1T4
GSE9C5 H6VQ59 K9J958 L7RSL3 L7RXHS 015245 075874 P00492 P00533 P00918 P02545 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311
P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101
P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P47989 P49146 P50052 P50406 P51681
001959 Q08209 016236 Q38088

CID 2099: alosetron

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R6T9 AOA024R9I2 AOA024RAP2 AOA024RD15 AOA087WU84 AOAO90N7W1 AOAOAOMRGO
AOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABK1F6 A8K249 ABKTN8 A8K8D3 A8BKAF4 ABKAG8 BOZBEO B2R7Y7 B4DN15 B4DN83
B4E398 B7Z1L9 B8K2QS5 C1ID52 ES5KQF5 F1D8N3 F5H1T4 G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P05177 P05181 P06239 P06241 P07550
P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P20813 P21397 P21452 P21554 P21728 P21917 P22303
P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P39748 P41143 P41595 P41968
P46098 P49146 P50052 P50406 P51681 Q01959 008209 Q38088 Q9GZV3

CID 2118: alprazolam

AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOA024R9X6 AOA024RAP2 AOA024RD15 AOA087WU84 AOAO9ON7W1 AOAOAOMRGO
AOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABK177 A8K1F6 A8K249 A8K496 ABKTN8 ABKAF4 A8KAG8 BOZBEO B2R7Y7 B2RCWS8
B4DN15 B4DTP4 B7Z1L9 BBK2Q5 C1ID52 ES5KQF5 F1D8N3 F5H1T4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXHS5 076068 P00533 P00918 P02545 P05177 P05181
P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P14867 P15428 P17252 P18505 P18507 P18825
P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P31644 P32238 P32245 P33032
P34903 P35354 P37288 P41143 P41595 P41968 P47869 P47870 P48169 P49146 P50052 P50406 P51681 P78334 Q01959 008209 Q16445 038088 Q8N1C3
099928 Q9UN8S8

CID 2123: hexamethylmelamine

AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6T9 AOA024R909 AOA024R9I2 AOA024RAP2 AOA024RCN9 AOA024RD15 AOA087WU84 AOAO9ONTWIL
AOAOAOMRGO AQOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 AB8K1F6 A8K249 ABKTN8 ABKAF4 ABKAG8 BOZBEO B2R7Y7 B4DN15 B7Z1L9
B7ZKN7 B8K2QS5 C1ID52 ES5KQFS5 F1D8N3 F1D8N7 F5H1T4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P02545 P05177 P05181 P06239 P06241
P06280 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917
P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968
P49146 P50052 P50406 P51681 Q01959 008209 038088 092830 099714

CID 2130: amantadine

AQOA024QzY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOAO024R5I4 AOAO024R6TY9 AOA024R909 AOA024R9I2 AOA024RAP2 AOA024RAU7 AOAO024RCN9
AQOA024RD15 AQOA024RDJ4 AOA087WU84 AOA087WV24 AOAO9ON7W1l AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlR4V4 A2A3US A2RUSO
A4D1D2 A4D1Q0 AB8K1F6 A8K249 A8K4S9 AB8KT7N8 ABKAF4 ABKAGS8 BOZBEO B2R7Y7 B3KP78 B4DN15 B4DN83 B7Z1L9 B7Z1W5 B7z242 B7ZKN7 B8K2Q5 ClID52
ESKQF5 F1D8N3 F1D8N7 F5H1T4 GS5EOCS5 H6VQ59 K9J958 L7RSL3 LT7RXH5 015244 015245 015399 P00533 P00918 P02545 P05177 P05181 P06239 P06241
P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303
P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146
P50052 P50406 P51681 P83916 001098 Q01453 Q001959 Q08209 Q12879 Q13224 Q16236 Q38088 Q8TCUS5 092830 Q92887 Q96FLS

CID 2140: diatrizoate

AQOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOAO024R6T9 AOA024R9I2 AOAO24RAP2 AOA024RCN9 AOA024RD15 AQOA087WU84 AOAO90N7W1l AOAOAOMRGO
AQAQOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 ABK1F6 A8K249 ABKTN8 A8KAF4 ABKAG8 BOZBEO B2R7Y7 B4DN15 B7Z1L9 B8K2Q5
C1ID52 ES5KQF5 F1D8N3 F5H1IT4 G5ES9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P02545 P05177 P05181 P06239 P06241 P0O7550 P08173 P08246
P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025
P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681
Q01959 008209 Q38088

CID 2141: amifostine

AQAQ024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOAO024R6T9 AOAO024R909 AOA024R9I2 AOA024RAGO AOA024RAP2 AOA024RCN9 AOA024RD15 AOAO87WU84
AQAQ090N7W1l AOAOAOMRGO AOAOAOMSK3 AOAQOAQOMT22 AON0Ql AlA4V4 A2A3U5 A2RUSO A4D1Q0 A8KI1F6 A8K249 ABKTN8 ASBKAF4 ABKAG8 BOZBEO B2R7Y7
B4DN15 B7Z1L9 B7ZKN7 B8K2Q5 C1ID52 ES5KQF5 F1D8N3 F5H1T4 GS5EOCS5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P05177 P05181 P06239 P06241
P07550 P08173 P08246 P08311 P08588 P08684 P08913 P10696 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917
P22303 P22413 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595
P41968 P49146 P50052 P50406 P51681 Q01959 Q08209 Q38088

CID 2145: aminoglutethimide

AQOA024QzY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOAO024R5S8 AOA024R6T9 AOA024R9I2 AOA024RAP2 AOA024RD15 AOA024RDJ4 AOAO87WU84
AQAQO90N7W1l AOAOAOMRGO AOAOAOMSK3 AOAQOAQOMT22 AON0Ql AlA4V4 A2A3U5 A2RUSO A4D1Q0 A8KIF6 A8K249 ABKTNS8 ASBKAF4 ABKAG8 BOZBEO B2R7Y7
B4DN15 B4DN83 B7Z1L9 B8K2Q5 C1ID52 ESKQF5 F1D8N3 F5H1IT4 GS5EOCS5 H6VQ59 K9J958 L7RSL3 L7RXH5 075874 P00533 P00918 P05108 P0O5177 P05181
P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11511 P11712 P14780 P17252 P18825 P21397 P21452 P21554
P21728 P21917 P22303 P23141 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288
P41143 P41595 P41968 P49146 P50052 P50406 P51681 Q01453 Q01959 Q08209 Q13526 038088

CID 2153: theophylline

AQA024QZY7 AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R352 AOA024R4E2 AOA024R5I4 AOAO024R6T9 AOA024R9I2 AOA024RAP2 AOA024RAU7 AOA024RCNY
AQOAO24RD15 AOA087WU84 AOAO90ON7W1 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 ABK1F6 AB8K249 ABKTN8 A8KAF4
ABKAG8 BOZBEO B2R7Y7 B3KP78 B4DN15 B4DN83 B7Z1L9 B8K2Q5 C1ID52 C9J1J0 DOVY79 ES5KQF5 F1D8N3 F1D8P6 F5GWI4 F5H1T4 GS5E9C5 H6VQ59 K9J958
L7RSL3 L7RXH5 015245 075874 094782 095467 P00533 P00918 P05177 P05181 P06239 P06241 P0O7550 P08173 P08246 P08311 P08588 P08684 P08913
P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25099 P25101 P25103 P25929
P27815 P28223 P28482 P28647 P29274 P29275 P30411 P30542 P30543 P32238 P32245 P33032 P33765 P35354 P35367 P37288 P41143 P41595 P41968
P49146 P50052 P50406 P51681 001959 Q07343 Q08209 Q14432 Q038088 Q60614 Q092769 Q9UIF8 Q9Y694

CID 2160: amitriptyline

AQA024QZY7 AOA024R0OC6 AOA024R230 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3C7 AOA024R3S2 AOA024R5I4 AOA024R5Z3 AOA024R6T9 AQOAQ024R9I2
AQOAO024R9Y0 AOAO024RAP2 AOAO024RAU7 AOA024RCNY9 AOA024RCW6 AOA024RD15 AOA024RDJ4 AOAO87WT22 AOA087WU84 AOAO9ON7W1l AOAOAOMOX8 AOAOAOMR48
AQOAOAOMRGO AOAOAOMSK3 AOAQOAOMT22 AONOQ1l AlA4V4 A2A3U5 A2RUSO A4DOVY A4D1D2 A4D1Q0 A8K1F6 A8K249 ABKS5W4 ABKTN8 ABKAF4 ABKAG8 BOZBD3
BOZBEO B2KJ49 B2R7Y7 B2RXH2 B3KP78 B4DN15 B6ZGS9 B7Z1L9 B8K2Q5 C1ID52 D2KUA6 ES5KQF5 E9PG18 F1D8N3 F1D8N7 F1D8P6 F1D8Q5 F5H1T4 G5E9CS
H6VQ59 K9J958 L7RSL3 L7RXH5 015245 015296 043526 060656 075874 094782 095467 P00352 P00533 P00918 P02545 P04629 P05177 P05181 P06239
P06241 P07550 P08172 P08173 P08246 P08311 P08588 P08684 P08909 P08912 P08913 P11229 P11509 P11712 P14780 P14842 P17252 P17405 P18825
P19224 P20309 P21397 P21452 P21554 P21728 P21917 P21918 P22303 P22309 P22310 P23975 P25021 P25024 P25025 P25101 P25103 P25929 P28223
P28482 P30411 P31388 P31645 P32238 P32245 P32304 P32305 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P42345 P43220 P48542 P48545
P49146 P50052 P50406 P51681 P83916 001453 001959 Q08209 Q09470 Q15858 038088 Q5DSZ7 Q5DT02 Q8NER1 092887 Q99250 Q99549 Q99700 099714
CID 2162: amlodipine

AQOAO24R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOA024R57Z3 AOA024R6T9 AOA024R9I2 AOAO024RAP2 AOAO024RD15 AOA087WU84 AOAO90ONT7W1 AOAOAOMRET
AQOAOAOMRGO AOAOAOMSK3 AOAQOAOMT22 AONOQ1l AlA4V4 A2A3US5 A2RUSO A4D1D2 A4D1Q0 A8K1F6 A8K249 ABKTN8 A8KAF4 ASKAGS8 BOZBEO B1ALM3 B2R7Y7
B4DN15 B7Z1L9 B8K2Q5 C1ID52 ES5KQF5 E7ERK3 F1D8N3 F5H1T4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 095069 P00533 P00915 P00918 P0O5177 P05181
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P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P17405 P18825 P21397 P21452 P21554
P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143
P41595 P41968 P49146 P50052 P50406 P51681 Q00975 Q01668 Q01959 Q06432 Q08209 008289 Q38088 Q8IZS8 092830

CID 2170: amoxapine

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R4E2 AOA024R6L5 AOA024R6T9 AOA024R9I2 AOA024R9X6 AOAO24RAP2 AOA024RCN9
AOA024RD15 AQOA024RDJ4 AOAO087WT22 AOA087WU84 AOAO90ON7W1l AOAO090N8Z1 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US
A2RUSO A4D1QO0 A8K177 ABK1F6 AB8K249 ABK496 AB8KS5W4 A8KT7N8 ABKAF4 ABKAG8 B0ZBD3 BOZBE(O B2KJ49 B2R7Y7 B2RCW8 B2RXH2 B4DN15 B4DTP4 B4E398
B7z1L9 B8K2Q5 C1ID52 DOVY79 ES5KQFS5 F1D8N3 F1D8N7 F1D8P8 F5HIT4 F8W6L1 GS5E9CS5 H6VQS59 K9J958 L7RSL3 L7RXHS5 015296 075604 075874 094782
P00352 P00533 P00918 P02545 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08909 P08913 P11229 P11509 P11712
P14780 P14842 P17252 P18505 P18507 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P23975 P25021 P25024 P25025 P25101 P25103 P25929
P28222 P28223 P28482 P30411 P31388 P31644 P31645 P32238 P32245 P32305 P33032 P34903 P34969 P35354 P35367 P35368 P37288 P41143 P41595
P41968 P42345 P47870 P48169 P49146 P50052 P50406 P51681 P78334 P83916 Q01453 Q01959 Q08209 Q16236 Q16445 Q38088 Q8N1IC3 Q8NERL Q92830
Q99549 099700 Q099928 Q9UNSS

CID 2179: amsacrine

AO0A024QZY7 AOAO24R4E2 AOA024R5Z3 AOA024R9Y0 AOA024RAV2 AOA024RCNY9 AQOA024RD62 AOAO68F658 AQOA087WT22 AOAOSON7W1l AOAO90N8Z1 AOAOAOMOXS
AOAOAOMRL7 AOAOAOMTJO0 A4D1D2 A8K249 AB8K4S9 AB8K987 A8K996 B2RXH2 B4DN83 B7z1F9 B7Z2G8 B7ZKN7 C1lID52 DOVY79 F1D8P8 F8W6L1 015245
075164 075874 094782 094925 095467 P00352 P02545 P05177 P06280 P08684 P11387 P11388 P11712 P15428 P17405 P27695 P39748 P43220 Q01453
002880 Q03164 006278 Q16236 Q960QE3 099549 Q99700 Q99714 QOUIF8 QOUNA4

CID 2182: anagrelide

AOA024QZY7 AOA024RCN9 075164 P05177 P27695 Q14432

CID 2187: anastrozole

AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R558 AOA024R6T9 AOA024R913 AOA024R9I2 AQOA024RAP2 AOA024RD15 AQOA087WU84 AOAO9ONTWIL
AOAOAOMRGO AQOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3U5 A2RUSO A4D1Q0 A8K1F6 A8K249 ABKTN8 A8KAF4 ABKAG8 BOZBEO B2R7Y7 B4DN15 B7zZ1L9
BB8K2Q5 C1ID52 ESKQFS5 F1D8N3 F5HIT4 GSE9CS H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P05177 P05181 P06239 P06241 P07550 P08173 P08246
P08311 P08588 P08684 P08842 P08913 P11229 P11509 P11511 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021
P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052
P50406 P51681 Q01959 008209 Q38088

CID 2216: apraclonidine

AOA024R909 AOA024RCN9 AOA024RDJ4 AOAO068F658 AOAO09ON7W1 AOAOAOMTJIO BOZBD3 B7ZKN7 094925 P08913 P18825 099714

CID 2244: aspirin

AOA024R125 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R352 AOA024R426 AOA024R6L5 AOA024R6T9 AOA024R9I2 AOAO024RAH7 AOAO24RAP2 AOAO24RAP4
AOAO24RBN1 AOA024RCNS9 AOA024RD15 AOAO024RDAS AOA068F658 AOA087WU84 AOAO09ON7W1 AOAO90ON7X8 AOA090N8Q6 AOAOAOMRGO AOAOAOMSK3 AOAOAOMSSS
AOAQOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US5 A2RUSO A4D1D2 A4D1Q0 A4D2N2 AB8K1F6 A8K249 A8KS5W4 ABKT7N8 A8KAF4 ABKAG8 B0ZBD3 BOZBEO
B2R7Y7 B2RXH2 B4DN15 B4E398 B7Z1L9 B7ZKN7 B8K2Q5 C1ID52 D2KUA6 D3DNN4 ESKQF5 F1D8N3 F1D8NS5 F1D8P6 FS5HIT4 GS5E9CS5 H6VQ59 K9J958 L7RSL3
L7RXH5 015245 043741 060656 075874 P00352 P00533 P00915 P00918 P04035 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588
P08684 P11229 P11509 P11712 P14780 P15428 P17252 P19224 P21397 P21452 P21554 P22303 P22309 P23219 P25024 P25025 P25101 P25103 P25929
P25963 P28482 P30411 P32238 P32245 P33032 P35354 P37288 P41143 P41968 P49146 P50052 P51681 Q01959 Q04828 Q08209 Q38088 Q4U2R8 Q99714
QOUHC3 Q9UNA4

CID 2249: atenolol

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R4E2 AOA024R5I4 AOA024R6LS5 AOA024R6T9 AOA024R909 AOA024R9I2 AOAO24RAP2
AOA024RAU7 AOA024RCN9 AOA024RD15 AOA024RDJ4 AOA087WU84 AOAO090N7W1l AOAOAOMRGO AOAOAOMSK3 AQOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US
A2RUSO A4D1D2 A4D1Q0 ABK1F6 ABK249 ABKTN8 A8KAF4 A8KAG8 BOZBEO B2R7Y7 B2RXH2 B3KP78 B4DN15 B7Z1L9 B7ZKN7 B8K2Q5 C1lID52 ESKQFS5 F1D8N3
FS5H1T4 F8W6L1 G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXHS5 015245 094782 P00533 P00918 P02545 P02788 P05177 P05181 P06239 P06241 P06280 P07550
P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021
P25024 P25025 P25101 P25103 P25929 P27695 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P39748 P41143 P41595 P41968 P43220
P49146 P50052 P50406 P51681 P83916 Q01453 001959 Q08209 038088 QINZK7 QOUNA4

CID 2265: azathioprine

AO0A024QZY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R6L5 AOA024R6T9 AOA024R9I2 AOA024R9Y0 AOA024RAP2 AOA024RCN9 AOA024RCW6
AOA024RD15 AOA024RDAS5 AOA087WT22 AOA087WU84 AOAO090N7W1l AOAOAOMQX8 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AONOQl AlA4V4 A2A3US A2RUSO
A4D1QO0 ABK1F6 A8K249 ABKT7N8 ABKAF4 ABKAG8 BOZBEO B2R7Y7 B4DN1S5 B7Z1L9 B7ZKN7 B8K2Q5 C1lID52 DI9YZUS5 ESKQF5 F1D8N3 F1D8N5 F1D8P6 FS5H1T4
GSE9C5 H6VQ59 K9J958 L7RSL3 L7RXHS 015245 075874 P00492 P00533 P00918 P02545 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311
P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P20839 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025
P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681
P56373 Q01453 Q01959 006203 Q08209 Q32MC3 038088 Q96QE3 099549 Q99700 Q9UNA4

CID 2266: azelaic acid

AO0A0240ZY7 AOAO024R4E2 AOA024RCN9 AOA024RDJ4 AOAOAOMOX8 AOAOAOMTJIO L8B082 P02545 P27695 P31213 P51857 Q01453 QOUIFS

CID 2267: azelastine

AOAO90N7W1 AOAOAOMR48 A4D1D2 BOZBD3 B4DN83 C1ID52 H6UYSS5 015296 075874 P02545 P05177 P08684 P35367 P35368 P43220 Q99700 QOSUNA4

CID 2284: baclofen

AQOAQ024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOAO024R6T9 AOA024R909 AOA024R9I2 AOA024RAP2 AOA024RCNY9 AOA024RD15 AOA024RDJ4 AOAO87WU84
AQOAQO90N7W1l AOAOAOMRGO AOAOAOMSK3 AQOAQOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABKIF6 AB8K249 A8KTN8 A8SKAF4 AB8KAG8 BOZBEO
B2R7Y7 B4DN15 B7Z1L9 B7ZKN7 B8K2Q5 ClID52 ES5KQF5 F1D8N3 F1D8N7 F5H1T4 G5E9CS5 H6VQ59 HONIL8 K9J958 L7RSL3 L7RXHS5 015245 075899 094782
095467 P00533 P00918 P02545 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780
P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245
P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681 Q01959 Q08209 Q16236 Q38088 Q5SUJ9 Q68DU8 Q6ZWB6 Q92830
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P83916 Q01959 003164 Q08209 038088 Q86VL8 Q96FL8 Q960E3 Q99700 QOUIFS8

CID 2662: celecoxib

AQA024Q7ZY7 AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R352 AOA024R5I4 AOA024R5Z3 AOA024R6T9 AOAO024R9I2 AOA024RAH7 AOA024RAP2 AOA024RAU7T
AOAO24RBWY9 AOA024RCW6 AOA024RD15 AOA087WU84 AOA090ON7Wl AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AON0Ql AlA4V4 A2A3U5 A2RUSO
A4D1Q0 ABK1F6 A8K249 ABK2Q2 AB8K3J4 A8K5W4 ABKT7N8 ASKAF4 A8KAG8 BOZBD3 BOZBEO B2R7Y7 B3KP78 B3KUB4 B4DN15 B4DUH8 B4E398 B7Z1L9 B8K2Q5
C1lID52 D2KUA6 ES5KQF5 E9PER6 F1D8N3 F1D8N5 F1D8N7 F1D8P6 F1D8Q5 F5H1T4 G5E9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 014684 015245 043570 075874
094782 P00403 P00533 P00915 P00918 P02545 P05177 P05181 P06239 P06241 P07451 P07550 P08173 P08246 P08311 P08588 P08684 P09917 P11229
P11509 P11712 P14780 P16050 P17252 P18054 P21397 P21452 P21554 P22303 P22748 P25024 P25025 P25101 P25103 P25929 P28482 P30411 P32238
P32245 P33032 P34913 P35218 P35354 P37288 P40763 P41143 P41968 P43166 P43220 P49146 P50052 P51681 Q01959 Q08209 Q16236 Q16790 Q38088
Q8N1Q1 Q92887

CID 2678: cetirizine
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AOA024QZY7 AOA024R5I4 AQA024R6L5 AOA024RAU7 AOA024RCN9 AOAO9ONT7W1l B3KP78 B4DN83 B7z242 015244 015245 075164 075604 095467 P07550
P08684 P09917 P20813 P21397 P35367 Q02763 Q96FL8 QO9HB55 QIUIF8 QOUNA4

CID 2708: chlorambucil

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R6T9 AOA024R9I2 AOA024R9Y0 AOAO24RAP2 AOA024RCNY9 AOA024RCW6 AOA024RD1S
AOA024RDA5 AQOA024RDJ4 AOAO087WT22 AOA087WU84 AOAO9ON7W1l AOAOAOMQX8 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US
A2RUSO A4D1QO0 ABK1F6 A8K249 ABKT7N8 AB8K987 A8KAF4 A8KAG8 BOZBEO B2R7Y7 B4DN15 B7Z1F9 B7Z1L9 B7ZKN7 B8K2Q5 ClID52 DOVY79 ES5KQFS5 F1D8N3
F1D8N5 F1D8P6 F1D8P8 F5HIT4 F8W6L1 GS5EI9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 094925 P00352 P00533 P00918 P02545 P05177 P05181 P06239 P06241
P07550 P08173 P08246 P08311 P08588 P08684 P08913 P09211 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917
P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968
P49146 P50052 P50406 P51681 P83916 Q01453 Q01959 Q08209 038088 QOUIF8

CID 2713: chlorhexidine

AOA024QZY7 AOAO24R136 AOA024R4E2 AOA024R5B6 AOA024R5Z3 AOA024R6R4 AOA024R9Y0 AOA024RAP4 AOA024RCN9 AOAO024RCW6 AOA024RDAS AOA024RDJ4
AOA068F658 AOAQ87WT22 AOA087WXV4 AOAO9ON7W1l AOAOAOMTJO ABKAF4 B3KT70 B4DN83 B6ZGS9 B7Z2G8 B7ZKN7 ClID52 DOVY79 ES5KQF5 F1D8N5 F1D8N7
F1D8P6 F1D8P8 F1D8Q5 H6UYS5 000167 015244 015245 015296 060240 075164 075604 075751 075874 094782 094925 P00390 P02545 P08684 P11021
P11712 P14780 P15428 P16050 P17405 P25101 P25929 P28482 P32245 P39748 P42858 P43220 P61088 Q03164 014191 Q86VL8 Q96FL8 Q96QE3 Q99700
CID 2719: chloroquine

AOA024R5I4 AQOAQ024R6L5 AOA024RAU7 AOA024RCN9 AOAO9ON7W1 A4D1D2 AB8K987 B2RONS B3KP78 B3KPX6 C1ID52 K9J958 015245 094782 P01375 P02768
P05177 P07339 P08684 P11712 P20813 P39748 092887 Q96LB2 099700 Q9NRS6

CID 2720: thiazide

AOAO024RDJ4 AOA087WZL8 AOAOAOMTJO B4DN83 B7ZKN7 J30SS1 P00915 P00918 P02545 P02768 P08684 P22748 P55017

CID 2725: chlorpheniramine

AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOA024RAP2 AOA024RAP4 AQA024RD15 AOA024RDJ4 AQOAQ087WU84 AOAO9ONTWIL
AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US5 A2RUSO A4D1D2 A4D1Q0 AB8K1F6 AB8K249 A8KT7N8 ABKAF4 ABKAG8 BOZBEO
B2KJ49 B2R7Y7 B4DN15 B7Z1L9 B8K2Q5 C1IDS52 ES5KQF5 F1D8N3 F5HIT4 F8W6L1 GS5E9CS5 H6VQS59 K9J958 L7RSL3 L7RXHS5 060656 P00533 P00918 P02768
P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P19224 P21397
P21452 P21554 P21728 P21917 P22303 P22310 P25021 P25024 P25025 P25101 P25103 P25929 P27695 P28482 P30411 P32238 P32245 P33032 P35354
P35367 P37288 P39748 P41143 P41595 P41968 P49146 P50052 P50406 P51681 001959 008209 038088 099700

CID 2726: chlorpromazine

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S52 AOA024R4E2 AOA024R5I4 AOA024R5z3 AOA024R6L5 AOA024R6T9 AOA024R9I2 AOA024R9Y0
AOA024RAP2 AOAO24RAP4 AOA024RAU7 AOA024RBVS5 AOA024RCN9 AOA024RD15 AOA024RD62 AOA024RDJ4 AOA068F658 AOA087WT22 AOA087WU84 AOAO9ONTWL
AOAQO90N8Z1 AOAOAOMR48 AOAOAOMRGO AOAOAOMSK3 AOAOAQOMT22 AONOQl AOPJFS5 AlA4V4 A2A3U5 A2RUSO A4D1D2 A4D1Q0 A4D2N2 A6NGA6 A8K1F6 A8K249
ABK5W4 ABK7N8 A8BKAF4 A8KAG8 B0ZBD3 BOZBEO B2KJ49 B2R7Y7 B2RXH2 B3KP78 B4DN15 B4E398 B6ZGS9 B7Z1L9 B7Z1W5 B7Z2G8 BB8K2Q5 C1ID52 D3DNN4
ES5KQF5 E7ETZ0 F1D8N3 F1D8P8 F1DAL4 F5H1T4 F8W6L1 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 000325 015245 015296 075164 075874 094782 094925
095342 P00533 P00918 P02545 P02763 P02768 P05177 P05181 P06239 P06241 P08173 P08246 P08311 P08684 P08908 P08913 P10253 P11229 P11509
P11712 P14416 P14780 P14842 P17252 P17405 P18089 P18825 P19020 P19652 P21397 P21452 P21554 P21728 P21917 P21918 P22303 P22310 P25021
P25024 P25025 P25101 P25103 P25929 P28221 P28222 P28223 P28335 P28482 P28566 P30411 P30939 P31388 P32238 P32245 P32297 P32304 P32305
P33032 P34969 P35354 P35367 P35368 P35462 P37288 P39748 P41143 P41595 P41968 P42345 P43220 P49146 P50052 P50406 P51681 P61169 P83916
Q01453 006278 Q08209 Q13526 015822 Q38088 092830 092887 Q960E3 099549 Q99700 Q9BRL5 Q9UIF8 QI9UL62

CID 2727: chlorpropamide

AOAO024R2N2 AOA024R2Q0 AOA024R3C5 AOAO024R3K6 AOA024R352 AOA024R6T9 AOA024R9I2 AOA024RAP2 AOA024RCN9 AOA024RD15 AOA024RDJ4 AOA087WU84
AOAQO90ON7W1 AOAO90N8Z1 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AlA4V4 A2A3US5 A2RUSO A4D1D2 A4D1Q0 ABK1F6 A8K249 ABKTNS8
ABKAF4 ABKAG8 BOZBEO B2R7Y7 B2RA41 B4DN15 B4DN83 B7Z1L9 B8K2QS5 C1ID52 ESKQF5 F1D8N3 F1D8N7 FS5H1T4 G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXHS
P00352 P00533 P00918 P02545 P02768 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712
P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238
P32245 P33032 P35354 P35367 P37288 P39748 P41143 P41595 P41968 P49146 P50052 P50406 P51681 P78508 P83916 Q01959 Q08209 Q09428 Q16850
038088

CID 2732: chlorthalidone

AOA024QZY7 AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R5Z3 AOA024R6T9 AOA024R9I2 AOA024R9Y0 AOA024RAP2 AOA024RBWY9 AOAO024RD15S
AOA087WU84 AOAQ90ON7W1l AOAOAOMRGO AOAOAOMSK3 AOAOAQOMT22 AONOQl AlA4V4 A2A3US5 A2RUSO A4D1Q0 ABK1F6 A8K249 A8K3J4 ABKTN8 ABKAF4 A8KAGS
BOZBEO B2R7Y7 B3KUB4 B4DN15 B4DPF4 B4DUH8 B7Z1L9 B8K2QS5 C1ID52 ES5KQF5 F1D8N3 F5H1T4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXHS5 043570 P00533
P00915 P00918 P05177 P05181 P06239 P06241 P07451 P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252
P18825 P21397 P21452 P21554 P21728 P21917 P22303 P22748 P25021 P25024 P25025 P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245
P33032 P35218 P35354 P35367 P37288 P41143 P41595 P41968 P43166 P49146 P50052 P50406 P51681 Q01959 008209 013621 016790 038Q88 Q9ULX7
CID 2733: chlorzoxazone

AOA024QZY7 AOAO24R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S52 AOA024R5I4 AOA024R6T9 AOA024R9I2 AOAO24RAP2 AOA024RAU7 AOA024RCN9 AOAQ024RD15
AOA087WU84 AQOA087WZL8 AOAO9ON7W1l AOAO90N8Z1 AOAOAOMQOX8 AOAOAOMRGO AOAOAOMSK3 AOAOAOMT22 AOAOAOMTJO AONOQl AONOX8 AlA4V4 A2A3US5
A2RUSO A4D1D2 A4D1Q0 ABK1F6 AB8K249 ABKTN8 A8KAF4 A8KAG8 BOZBEO B2R7Y7 B3KP78 B4DN15 B7Z1L9 B7ZKN7 B8K2Q5 ClID52 ESKQF5 F1D8N3 FS5H1T4
F8W6L1 G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 000519 015245 015554 P00533 P00918 P02545 P05177 P05181 P06239 P06241 P07550 P08173 P08246
P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025
P25101 P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681
P70604 P83916 001959 Q08209 Q012791 Q38088 (092830 Q92887 QSUIF8

CID 2749: ciclopirox

AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOAO024RAP2 AOA024RD15 AOA087WU84 AOAO90N7W1l AOAOAOMRGO AOAOAOMSK3
AQAQOAQOMT22 AON0Q1 AlA4V4 A2A3US A2RUSO A4D1QO0 ABK1F6 A8K249 ABKTN8 A8KAF4 AB8KAG8 BOZBEO B2R7Y7 B4DN15 B7Z1L9 B8K2Q5 C1lID52 ES5KQFS5
F1D8N3 F5H1T4 GS5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00533 P00918 P05023 P05177 P05181 P06239 P06241 P07550 P08173 P08246 P08311 P08588
P08684 P08913 P11229 P11509 P11712 P14780 P16050 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303 P25021 P25024 P25025 P25101
P25103 P25929 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P37288 P41143 P41595 P41968 P49146 P50052 P50406 P51681 Q01959
Q08209 Q38088 Q96FL8

CID 2756: cimetidine

AQOA024QzY7 AOA024R2N2 AOA024R2Q0 AOAO024R3C5 AOA024R3S2 AOAO024R5I4 AOAQ024R6TY9 AOA024R9I2 AOA024RAP2 AOA024RAP4 AOA024RAU7 AOAO024RCN9
AQOA024RD15 AQOAQ024RDA5 AQOA087WU84 AOAO9ON7W1l AOAOAOMR48 AOAOAOMRGO AOAOAOMSK3 AOAOAQOMT22 AOAOAOMTJO AONOQl AlR4V4 A2A3US A2RUSO
A4D1D2 A4D1Q0 A8K1F6 A8K249 A8KTN8 A8KAF4 ABKAG8 BOZBEO B2KJ49 B2R7Y7 B2R807 B3KP78 B4DN15 B7Z1L9 B8K2Q5 ClID52 ES5KQF5 F1D8N3 F5H1T4
G5E9CS5 H6VQ59 K9J958 L7RSL3 L7RXH5 015244 015245 075751 076082 095342 P00533 P00918 P02545 P05108 P05177 P05181 P06239 P06241 P06280
P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11509 P11712 P14780 P17252 P18825 P21397 P21452 P21554 P21728 P21917 P22303
P25021 P25024 P25025 P25101 P25102 P25103 P25929 P27695 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P37288 P41143 P41595 P41968
P49146 P50052 P50406 P51681 001959 Q06278 Q08209 Q16236 038088 Q4U2R8 QTRTTY Q86VLS Q92887 Q96FL8 Q99549 Q9HO15 QINSAO Q9UMO7

CID 2762: cinoxacin

AQOA024RCNY AOAOAOMQOX8 AOAOAOMTJO0 B2RXH2 B7ZKN7 000519 075164 P00352 P02545 P43220 001453 Q02880 Q9UNA4

CID 2764: ciprofloxacin

AOA024R2N2 AOA024R2Q0 AOA024R3C5 AOA024R3S2 AOA024R6T9 AOA024R9I2 AOAO024RAP2 AOA024RD15 AOA087WU84 AOAO90N7W1l AOAOAOMRGO AOAOAOMSK3
AQAQOAQOMT22 AON0Q1l AlA4V4 A2A3US A2RUSO A4D1D2 A4D1Q0 A8KIF6 A8K249 ABKTN8 AB8KAF4 ABKAG8 BO0ZBD3 BOZBEO B2R7Y7 B2RXH2 B4DN15 B7Z1L9
B8K2Q5 C1ID52 ES5KQFS5 F1D8N3 F5H1IT4 GS5E9C5 H6VQ59 K9J958 L7RSL3 L7RXH5 P00352 P00533 P00918 P02545 P02768 P05177 P05181 P06239 P06241
P07550 P08173 P08246 P08311 P08588 P08684 P08913 P11229 P11388 P11509 P11712 P14780 P15428 P17252 P18825 P21397 P21452 P21554 P21728
P21917 P22303 P25021 P25024 P25025 P25101 P25103 P25929 P27695 P28223 P28482 P30411 P32238 P32245 P33032 P35354 P35367 P35368 P37288
P41143 P41595 P41968 P49146 P50052 P50406 P51681 Q01959 Q02880 Q08209 Q038088 Q4U2R8 Q99714

CID 2771: cita