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STAT3 IN THE REGULATION OF BROWN ADIPOCYTE DIFFERENTIATION 
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Philosophy at Virginia Commonwealth University 
 
Virginia Commonwealth University, 2018 
 
Advisor: Andrew C. Larner, M.D., Ph.D. 
Professor, Department of Biochemistry and Molecular Biology 
 
 
 Thermogenic fat is a promising target for new therapies in diabetes and obesity. 

Understanding how thermogenic fat develops is important to develop rational strategies to treat 

obesity. Previously, we have shown that Tyk2 and STAT3, part of the JAK-STAT pathway, are 

necessary for proper development of classical brown fat.  Using primary preadipocytes isolated 

from newborn mice we demonstrate that STAT3 is required for differentiation and robust 

expression of Uncoupling Protein 1. We also confirm that STAT3 is necessary during the early 

induction stage of differentiation and is dispensable during the later terminal differentiation 

stage. Without STAT3, the brown preadipocytes have increased apoptosis early in the terminal 

differentiation phase. We also show that the block in differentiation is caused by an inability of 

STAT3 knockouts to down regulate β-catenin by the end of the induction phase. Application of 

Wnt/β-catenin inhibitors or knockdown of β-catenin during the induction phase is sufficient to 

fully rescue differentiation of brown adipocytes from the Myf5+ lineage, including reduction in 



 2 

apoptosis, restoration of histone acetylation in the UCP1 promoter and enhancer regions, and full 

restoration of the expression of brown fat genes. Finally, we show that in the beige lineage, 

STAT3 is also necessary during the induction phase and can be rescued by Wnt/β-catenin 

inhibitors, although the rescue is not as robust as it is in the Myf5+ lineage. 
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Chapter 1: Introduction 
 
 
 

 Obesity is a medical condition that occurs when an individual has increased adipose 

tissue mass compared to amounts that are considered normal based on the individuals age, 

height, and gender. The prevalence of obesity has increased in the past forty years in the United 

States: fully one-third of the adult population is obese (1). The major impact of obesity is due to 

the comorbidities that develop in parallel; there are currently more than thirty medical conditions 

that are associated with obesity (2). Consequently, obesity is associated with an increase in 

overall mortality. Obesity together with its comorbidities are estimated to cost the US population 

190 billion dollars per year, or approximately two thousand dollars per year per person (3). Due 

to this burden on the American healthcare system as well as the increased morbidity and 

mortality associated with obesity, new therapies and treatments are needed to reverse the weight 

gain trends of the last forty years. 

One approach that has attracted much attention over the past few years has been to 

increase the mass of a specialized type of adipose tissue called Brown Adipose Tissue (BAT). 

BAT is a thermogenic tissue; its purpose is to generate heat through the metabolism of lipids in 

order to maintain optimal body temperature (4). There are ample amounts of this tissue present in 

animals such as rodents; however, it used to be thought that in humans BAT is only present in 

newborn infants and regressed to undetectable levels in adulthood. That understanding has been 

overturned in the last decade by findings that adults do in fact possess significant depots of BAT 

(5). The presence of BAT in adults has ignited interest in understanding the mechanisms of 
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development of this tissue in order to translate this knowledge into clinical applications towards 

obesity treatment.  

The purpose of this dissertation is to explore the role of a transcription factor called 

Signal Transducer and Activator of Transcription 3 (STAT3) in the regulation of the 

development of BAT. The following section gives an overview on the epidemiology, etiology, 

and associated comorbidities of obesity. Next, a review of BAT tissue function, how it may 

prevent or diminish obesity and related metabolic diseases gleaned from in-vivo studies in 

rodents, and the human relevance of this tissue. Afterwards, a brief background on the genes 

currently known to impact the development of adipose tissue, a process referred to as 

adipogenesis, will be given. The JAK/STAT pathway will be introduced afterwards, with 

emphasis on what is already known about this pathway’s role in regulating adipogenesis. Finally, 

the Wnt signaling pathway and its role in suppressing adipogenesis will be introduced—this 

dissertation presents evidence that this pathway is negatively regulated by STAT3 during brown 

adipocyte development.  
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1.1 Epidemiology, Etiology, and Associated Comorbidities of Obesity 

 Epidemiology of Obesity. Obesity in adults is defined by the World Health Organization 

and the National Institutes of Health as having a body mass index (BMI) greater than 30kg/m2 

(6, 7). Surveys of obesity have been conducted in the United States for years—the most 

prominent survey is the National Health and Nutrition Examination Survey (NHANES), 

conducted by the U.S. Centers for Disease Control and Prevention (CDC) (8). NHANES utilizes 

a mobile examination center where physical assessments can be made using standardized 

protocols, rather than relying on self-reported data (9). The data from NHANES has shown that 

since the 1980s, the rates of obesity have been increasing in both men and women. In 1980, the 

prevalence of obesity in the U.S. population was approximately 10% for men and 15% for 

women, but by 2014, the prevalence was 35% among men and 40% among women (9, 10). 

Geographically, the rates of obesity are not evenly distributed across the United States: southern 

states like Mississippi have a higher prevalence of obesity compared to west coast and 

northeastern states (11). Worldwide, while there is variation from country to country, there has 

been an increasing trend from 29/30% (men/women) in 1980 to 37/38% in 2013 (12).  

 For children, the prevalence of obesity has also been increasing over time, which is a 

particularly grave problem as risks of developing comorbidities and reduced life expectancy are 

increased the longer an individual is obese (2). Obesity is defined in children in the US as being 

above the 95th percentile in the CDC BMI-for-age growth charts; for adolescents the prevalence 

of obesity increased from 10% in 1994 to 20% in 2014 (13). Worldwide, the prevalence in 2013 

was 24% in developed countries and 13% in developing countries (12).  

Etiology of Obesity. Fundamentally, obesity is caused by a mismatch between caloric 

intake and total daily energy expenditure (TDEE). When the daily caloric content of food 
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exceeds the TDEE, the excess calories are stored as fat. The adipose tissue expands, both through 

hypertrophy and hyperplasia (14). However, while thermodynamics is the fundamental cause for 

increase adipose tissue mass, how this mismatch is established is more complex and involves 

interactions between genes and the environment.  

Genetic disorders that display a Mendelian pattern of inheritance are rare contributors to 

the etiology of obesity; however, they illuminate the control these genes have over regulation of 

appetite. These disorders can be classified as monogenic, where the primary finding is obesity, or 

syndromic, where obesity is one clinical finding among a constellation of findings (and generally 

includes some form of mental retardation) (2, 15). The most common monogenic disorders 

involve disturbances to the Leptin signaling pathway and the Melanocortin 4 receptor, while the 

most common syndromic disorder is Prader-Willi Syndrome (15).  

Leptin is a hormone that is produced in adipose tissue and produces satiety when it binds 

to its cognate receptor on the POMC and NPY/AGRP neurons in the arcuate nucleus of the 

hypothalamus (Figure 1.1) (16). Loss of either leptin or the leptin receptor results in hyperphagia 

and, subsequently, obesity (17). Individuals that are leptin deficient can receive subcutaneous 

injection of leptin that results in dramatic reduction in appetite and weight (18). Mouse models of 

leptin deficiency (ob/ob) and leptin receptor deficiency (db/db) exist and are popular for studies 

of obesity and Type II Diabetes (T2D) (19).  

Mutations in the Melanocortin 4 receptor (MCR4) are the most common form of 

monogenic obesity (20). MCR4 is involved in the same neural regulation of appetite pathway as 

leptin and leptin receptor (21). In fact, leptin signaling increases production of the pro-

opiomelanocortin (POMC) gene (22). POMC is a prohormone that is converted into multiple 

products, the most relevant product here being α-Melanocyte Stimulating Hormone (αMSH). 
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αMSH is released by the POMC neuron and binds to the MC4R on the melanin-concentrating 

hormone (MCH) neuron, where it acts to decrease firing of this neuron. Administration of MCR4 

agonists in rodents leads to a decrease in food intake (23). 

Overall, monogenic and syndromic causes of obesity make up a small percentage of the 

obese cohort, therefore most genetic contributors to obesity are polygenic in origin, i.e., Single 

Nucleotide Polymorphisms (SNPs) that an individual possesses each contribute and interact with 

each other to modify an individuals risk of developing obesity. Genome Wide Association 

Studies (GWAS) have been conducted in an attempt to identify common polymorphisms that 

increase and individual’s risk of developing obesity or associated comorbidities (i.e. T2D) (24). 

The most studied allele that increases risk of obesity and T2D is the fat mass and obesity 

associated gene (FTO) (25). Individuals who are homozygous for the most common obesity-

causing variant weigh 3kg more and had an elevated risk of developing obesity 1.67 fold above 

those not carrying the risk variant (26). In the last few years, the function of the FTO allele and 

how it may contribute to obesity has been discovered (see section I.II-Human Studies of BAT). 

Common environmental contributors to obesity include an increase in the sedentary 

lifestyle, reduced physical activity including exercise, and increased availability of low cost, high 

caloric density foods (27). Numerous studies in adults and children have documented the 

increase risk that a sedentary lifestyle paired with a diet that is considered unhealthy (e.g. high in 

processed sugars) is positively correlated with obesity (28-31). Lastly, another potentially major 

environmental contributor to obesity risk is currently under intense study: the gut microbiome. 

Analyzing the microbiome of the gut has begun to show associations with obesity and metabolic 

disorders, but causality has yet to be established (32-34).    
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Associated Comorbidities. Diabetes is a disease where the plasma levels of glucose are elevated 

(hyperglycemia). The major hormone that regulates plasma glucose levels is insulin. Insulin 

promotes the uptake of glucose into tissues such as adipose and skeletal muscle tissue. Chronic 

elevation of plasma glucose levels leads to pathologies in the kidneys, eyes, peripheral nervous 

system, and the cardiovascular system (35). There are two major types of Diabetes: Type I and 

Type II. Type I is defined by the lack of insulin production and is an autoimmune disorder 

against the cells of the endocrine pancreas that produce insulin (the pancreatic β cells) (36). Type 

II diabetes is defined by a systemic reduction in insulin responsiveness (insulin insensitivity); the 

pancreas is still able to produce insulin in Type II diabetes, at least in the initial stages of the 

disease (37). Adipose tissue contributes to the regulation of plasma glucose levels via release of 

hormones that regulates insulin sensitivity in other tissues, while also increasing the uptake of 

glucose with the insulin-regulated GLUT4 glucose transporter (38, 39). However, in obese 

individuals, the adipose tissue releases elevated levels of free fatty acids and pro-inflammatory 

cytokines like tumor necrosis factor alpha (TNFα), which act locally and systemically to reduce 

responsiveness to insulin (40-43). Therefore, obese individuals have a higher risk of developing 

diabetes than their lean counterparts. 

 Increased adiposity is correlated with increased risk of 13 types of cancers (44). While 

casual mechanisms are still unclear, it is likely that the combination of increased hormones and 

inflammatory cytokines coupled with a conducive microenvironment increases risk of tumor 

initiation and progression (45, 46).   

 Obesity increased the risk of developing hypertension and increases risks of stroke, 

atherosclerosis, and myocardial infarction (47). In women, obesity can exacerbate Polycystic 
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Ovarian Syndrome, a disorder that involves increased androgen production and insulin 

insensitivity (48). Additionally, obese women have a higher risk of ovulatory infertility (49, 50). 
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Figure 1.1- Basic Neural Regulation of Appetite 

Leptin is a hormone produced by the adipose tissue and circulates to the arcuate nucleus of the 

hypothalamus where it binds to the leptin receptor on the POMC neuron, resulting in the 

increased probability of an action potential. The POMC neuron releases αMSH into the synaptic 

cleft between the POMC and MCH neuron. The MCH neuron contains the MC4R and binding of 

αMSH reduces the likelihood of the MCH firing an action potential. AGRP neuron produces the 

Agouti Related Protein, which is an antagonist of the MC4R. Adapted from (51), copyright 

license: 4282461312035.  
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1.2 BAT Function and Human Relevance 

  Comparison of BAT and WAT. There are two general types of adipose tissue present in 

humans: Brown Adipose Tissue and White Adipose Tissue (WAT). Each type of adipose tissue 

serves a specific purpose. BAT and WAT are so named because of the coloration of the tissue at 

the gross level. BAT is brown in coloration due to large amounts of mitochondria present in the 

adipocytes. The large numbers of mitochondria are necessary for BAT to serve its function (vide 

infra). In contrast, WAT contains relatively fewer mitochondria compared to BAT, and as a 

result is paler in color. Histologically, WAT and BAT can be easily discriminated based upon the 

lipid droplet morphology present in the cell (Figure 1.2). WAT contains a single large lipid 

droplet, while BAT contains multiple smaller lipid droplets (with the mitochondria interspersed 

between the smaller lipid droplets). Additionally, BAT is more highly innervated by the 

sympathetic nervous system and more vascularized than WAT. Table 1.1 summarizes the basic 

characteristics of these two adipose tissues. 

 The anatomic locations of the two adipose tissues are also different. WAT is generally 

distributed across the body with large depots in the hypodermis of the skin and within the 

abdominal cavity. In contrast, BAT is more restricted in its locations; BAT is present in the 

human in supraclavicular, perirenal, and paravertebral depots. In the rodent, BAT is also present 

in axillary and interscapular depots. 

WAT’s major role is to store energy in the form of triacylglycerides (TAG) and to 

distribute the energy to the rest of the organism during periods of negative caloric balance. When 

fasting, lower levels of blood glucose stimulate epinephrine release from the adrenal glands. The 

epinephrine signals onto beta-adrenergic receptors on the adipocyte that result in activation of a 

lipase called Hormone Sensitive Lipase (HSL). HSL liberates free fatty acids (FFA) and glycerol 
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from the TAGs and secrete the FFAs into the blood for distribution to other tissues (mainly the 

liver and skeletal muscle), and secretes the glycerol to serve as a gluconeogenic substrate in the 

liver. Activation of HSL is opposed by insulin, which levels rise in response to higher blood 

glucose levels. 

Additionally, WAT functions as an endocrine organ; the hormones they secrete are 

termed “adipokines”. Two major adipokines produced by WAT are Leptin and Adiponectin. 

Adiponectin serves to modulate glucose and fatty acid modulation; treatment with exogenous 

adiponectin has been found to reduce serum glucose levels and increase insulin sensitivity (52, 

53). The levels of leptin in the serum are positively correlated to the total amount of adipose 

tissue in the organism, therefore, leptin signals to the hypothalamus the status of the fat reserves 

(17). Interestingly, leptin signals through a Type I cytokine receptor, and the downstream STAT 

that mediates this signaling is STAT3 (54). Deletion of STAT3 using a Nestin Cre, which targets 

both neuronal and glial cells, resulted in mice that were hyperphagic, obese, and diabetic, which 

is phenotypically similar to the ob/ob and db/db mice (55). Additionally, the mice were unable to 

maintain their core body temperature upon cold challenge. Histology revealed disorganized BAT 

that the authors believed was due to the reduced sympathetic output to the BAT.  

In contrast, BAT does not store TAGs for distribution to other tissues during periods of 

starvation, rather, it is a thermoregulatory tissue; BAT metabolizes TAGs to produce heat in 

order to maintain optimal body temperature. BAT accomplishes its thermoregulatory function 

through an inner mitochondrial transmembrane protein called Uncoupling Protein 1 (UCP1). 
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Figure 1.2- Histology of BAT and WAT 

BAT and WAT can be discriminated by the lipid droplet morphology. BAT contains a 

centralized nucleus in addition to multiple small lipid droplets, which, when looked at through 

electron microscopy, are surrounded by large numbers of mitochondria (left). In contrast, WAT 

contains one single large lipid droplet with a nucleus relegated to the periphery of the cell (right). 

Additionally, the white adipocytes are larger in size compared to brown adipocytes. The brown 

coloration of the BAT is due to immunohistochemical staining for UCP1, the functional protein 

of BAT. Scale bar = 40 µm. Adapted from (56), copyright license: 4277360251493. 
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Characteristics WAT BAT 
Function Energy Storage, Lipolysis and 

Secretion of FFAs/glycerol, 
Secretion of hormones such as 
Leptin and Adiponectin 

Non-shivering Thermogenesis, 
Low Secretory Ability 

Macroscopic Features Locations: Subcutaneous, 
abdominal, retroperitoneal, 
perirenal, gonadal 
Color: White; yellow to off-
white hue 
Adequate Vascularization 
(++) 
Sympathetic (++) 

Interscapular (rodents), 
paravertebral, axillary, and 
periadrenal 
Color: Brown; light pink to 
dark red 
Highly Vascularized (++++) 
 
Sympathetic (++++) 

Microscopic Features Tissue Organization: Small 
lobules densely packed 
 
Cell Architecture: Unilocular 
lipid droplet occupying 90% 
of volume, variable size and 
shape (25-200µm) 
Nucleus: Peripherally located 
Mitochondria: Few 
High presence of other cell 
types (fibroblasts and immune 
cells) 

Tissue Organization: lobular 
organization with gland-like 
structure 
Cell Architecture: 
Multilocular lipid droplets, 
polygonal and small (15-
60µm) 
Nucleus: Centrally located 
Mitochondria: Abundant 
Low presence of other cell 
types 

Molecular Markers UCP1 (-), UCP2 (++) 
β3 adrenoreceptor (+) 
PGC1α (+) 
PRDM16 (-) 
CIDEA (-) 
Leptin (+++) 

UCP1 (++++) 
β3 adrenoreceptor (+++) 
PGC1α (+++) 
PRDM16 (+++) 
CIDEA (+++) 
Leptin (+) 

 

Table 1.1- Summary of WAT and BAT Characteristics 

Modified from (57); Copyright License: 4278460310955 
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The Mitochondria Structure and Function. The mitochondrion is a membrane-bound 

organelle that is important in regulating metabolism and generating adenosine triphosphate 

(ATP). The mitochondrion contains two membranes: an inner and outer membrane. These 

membranes separate the internal components of the mitochondrion into two compartments: the 

intermembrane space, located between the inner and outer membrane, and the matrix. The inner 

mitochondrial membrane is uniquely structured to be highly impermeant to many small 

molecules, and as a result, many different types of solute carriers are needed to transport 

molecules across this membrane. The impermeance of the membrane is necessary for its function 

in generating ATP. Complexes of proteins, collectively called the Electron Transport Chain 

(ETC), form a series of oxidation/reduction (redox) reactions that take electrons from the 

substrates Nicotinamide adenine dinucleotide (NADH) and Flavin Adenine Dinucleotide 

(FADH2), and ultimately pass the electrons to the terminal acceptor, molecular oxygen (Figure 

1.3). These complexes couple the energy released in the redox reactions to pump hydrogen ions 

from the matrix into the intermembrane space against an electrochemical gradient. This 

hydrogen ion gradient is a form of potential energy and generates a membrane potential across 

the inner mitochondrial membrane. ATP Synthase, another integral membrane protein of the 

inner membrane, utilizes the electrochemical gradient in order to produce ATP. The Hydrogen 

ions flow down the electrochemical gradient through a pore in the ATP Synthase, and the energy 

released by the ions moving down this gradient is coupled to the formation of a phosphodiester 

bond between adenosine diphosphate (ADP) and inorganic phosphate. 

The Uncoupling Protein 1. UCP1 is a member of the Uncoupling proteins family, which 

is a subfamily of the Solute Carrier family (SLC). There are five members of the Uncoupling 

protein family in mammals: UCP1, UCP2, UCP3, UCP4, and UCP5. Each member has a 



 16 

different tissue distribution: UCP1 is restricted solely to BAT; UCP2 is more widespread, but 

with abundant expression in skeletal muscle; UCP4 and UCP5 are expressed in the nervous 

system (58). 

All members of the family are localized to the inner mitochondrial membrane and 

function as a hydrogen ion transporter. In this regard they are similar to ATP synthase; however, 

the energy released by the flow of hydrogen ions down the electrochemical gradient is not 

coupled to ATP synthesis. As a result, the energy released is in the form of heat rather than 

chemical work. Therefore, the uncoupling proteins are so called because they “uncouple” 

respiration (the redox reactions of the ETC), from ATP synthesis. The increased permeability of 

the inner membrane to hydrogen ions results in the collapse of the mitochondrial membrane 

potential; this reduction in membrane potential can be utilized as a functional output of UCP1 

function.  

Under resting conditions, UCP1 has low conductance to hydrogen ions. Binding of long 

chain FFAs to UCP1 results in increased conductance (59). As a result, only when the cells are 

stimulated to increase lipolysis does UCP1 become maximally activated. This activation occurs 

when the organism senses its core body temperature decreasing; increased sympathetic output to 

BAT results in release of norepinephrine and subsequent binding to the β3-adrenergic receptor 

(60). The β3 adrenergic receptor is a G-protein coupled receptor (GPCR) that is associated with 

adenylyl cyclase, an enzyme that produces 3',5' cyclic adenosine monophosphate (cAMP). Upon 

stimulation of the β3-adrenergic receptor cAMP levels rise in the cell, which leads to activation 

of a protein kinase called Protein Kinase A (PKA). PKA subsequently phosphorylates HSL and 

this leads to liberation of FFAs for use in binding and activating UCP1 as well as serving as 
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substrates for β-oxidation to maintain ATP levels. This regulation assures that UCP1 is properly 

activated when environmental conditions require thermogenesis to hypothermia. 

While all members of the uncoupling family release the energy of the hydrogen ion 

gradient as heat, only UCP1 appears to function solely to generate heat for maintaining body 

temperature. While the primary function of the other UCPs are not as well characterized as 

UCP1, it appears they may primarily serve to reduce production of Reactive Oxygen Species 

(ROS) produced by the ETC, as well as play a role in regulating insulin secretion from the beta 

cells of the pancreas (58, 61, 62).  

The factors that directly regulate UCP1 will be discussed in detail in section III of this 

chapter. 
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Figure 1.3- The Electron Transport Chain 

NADH and FADH2 are products of glycolysis and the citric acid cycle. They are carriers of 

electrons and are oxidized by Complex I (NADH) and Complex II (FADH2). As the electrons 

are passed in a series of redox reactions to the terminal electron acceptor molecular oxygen, 

hydrogen ions are pumped from the matrix to the intermembrane space. This creates an 

electrochemical gradient that is harnessed to produce ATP by ATP Synthase. Adapted from (63), 

copyright license: 4277400364416. 
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BAT in the prevention of weight gain and Insulin Resistance. Whether the mass of BAT 

can actually affect whole-body energy balance and metabolic performance is an important 

question if this tissue should be realistically considered as part of future therapy in humans. 

Stanford et al. showed that increasing BAT in rodents through surgical transplantation can 

mitigate the effects of a western style high-fat diet (HFD) (64).  In this study, male mice were 

assigned to 100mg BAT transplant, 100mg WAT transplant, or sham treatment. The mice 

receiving the BAT transplant were highly resistant to weight gain on a HFD. Additionally, the 

BAT implanted mice had improved glucose tolerance up to twelve weeks post-implantation, as 

well as more rapid glucose clearing. Interestingly, this enhanced glucose clearing was due to 

increased glucose uptake in many endogenous tissues, including visceral WAT and heart. This 

increased glucose uptake was due to increased circulating levels of fibroblast growth factor 21 

(FGF21), and Interleukin-6 (IL-6) that was secreted by the transplanted tissue. FGF21 is a 

growth factor that has been shown to affect glucose levels and insulin sensitivity (65). IL-6 is 

important to mention here, as this cytokine signals through STAT3 (see section IV in this 

chapter). Indeed, if the transplanted BAT was IL6-/-, the levels of circulating FGF21 decreased, 

indicating that paracrine action of IL-6 in BAT drives FGF21 expression and secretion. Further 

studies in mice utilizing BAT transplantation have shown that increasing BAT mass can partially 

revert obesity in Leptin receptor mice (Ob/Ob strain), reduce PCOS signs in rats, reduce 

atherosclerosis in a high cholesterol diet mouse model, and improve glucose tolerance 

independent of insulin in a Type I diabetic model (66-69). 
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Human Studies of BAT. While studies in rodent models of BAT on obesity and metabolic 

performance are promising, the relevance of BAT on affecting those metabolic parameters in 

humans is of intense interest. Adult humans possess significant stores of BAT, which can be 

visualized using 18F-fluorodeoxyglucose positron-emission tomography (18F-FDG PET) and 

computed tomography (70). Under thermoneutral conditions (defined as an ambient temperature 

that can sustain core body temperature under basal metabolic conditions, 22°C for humans), PET 

activity of BAT was negligible, but when the volunteers were submitted to cold exposure (16°C), 

PET activity increased in the supraclavicular and paraspinal regions. Interestingly, there is a 

negative correlation of BAT activity with BMI and body fat percentage. The supraclavicular, 

paraspinal, and periadrenal regions that are PET active under cold exposure are true BAT; biopsy 

of these locations reveals fat cells that have the histological hallmark of multilocular lipid 

droplets and positive staining for UCP1 (Figure 1.4). Interestingly, one study identified that 

there may be a sex difference in brown adipose tissue mass, with women potentially possessing 

more BAT than men (5).  

The stores of BAT in humans may be of clinical consequence to obesity. Claussnitzer et 

al. reported a remarkable connection between obesity genetics and BAT development (5). They 

showed that the FTO allele, an allele that has been found to have a moderate association with 

adiposity and T2D, led to an increase in two developmental factors IRX3 and IRX5. These two 

factors repress the thermogenic program and promote differentiation into WAT instead. The 

authors knocked out IRX3 in adipose tissue in mice, which led to reduced body weight and 

increased energy expenditure that was not due to any increased physical activity. Knock out in 

human preadipocytes with the FTO allele restored the browning potential of the cells. Mutating 

the FTO allele to the non-risk variant also restored the ability of the preadipocytes to express the 
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thermogenic program. They further determined that the mutation in the FTO allele destroys a 

binding site for a repressor called ARID5B in an enhancer region for the IRX3 and IRX5 genes. 

This is some of the first evidence that altering the ability of preadipocytes to express the 

thermogenic program can have important consequences for the development of obesity and 

diabetes. 

Now that there is evidence that BAT is present in humans and that aberrant development 

of BAT can lead to increased risk of obesity and diabetes, the next step is to determine if it is 

possible to manipulate the amount of BAT tissue in humans; if this is possible then it is a proof-

of-principle that BAT can be a viable therapeutic target. Since BAT is a thermoregulatory tissue 

that is stimulated under conditions of suboptimal environmental temperature, the easiest- and 

safest- way to attempt to induce increases in BAT mass is to expose humans to mild cold stress 

environments. Lee et al. took five volunteers and subjected them to mild overnight cold stress 

(71). In this crossover study, the volunteers were housed overnight in a controlled environment 

where they were exposed to cyclical changes in temperature: either a mild cold stress of 19°C or 

warm conditions (27°C). They found that just sleeping in a cold environment for one month was 

enough to increase BAT mass by 42 percent. The participants were able to go about their lives 

normally during the day, but the time spent in the cold environment overnight was enough to 

induce the recruitment of additional BAT mass. Additionally, return to the warm environment 

for one month was enough to reduce the BAT mass that was accumulated prior. This was one of 

the first pieces of evidence that BAT mass is plastic in humans and that interventions can indeed 

alter the amount of tissue in a human. 

Altering the temperature can certainly increase BAT in man, but it is not a therapeutic 

option to house patients overnight in a climate-controlled chamber. Thus, pharmacological 
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methods are needed. As stated above, BAT and BAT precursors carry a unique isoform of a beta-

adrenergic receptor: the β3- adrenergic receptor. Specific β3 agonists exist, and treatment of cell 

cultures or administration to experimental animals in vivo can induce expression of the 

thermogenic program and UCP1 (72). Additionally, the β3 receptor is restricted to mostly 

adipose tissue and bladder wall muscle (73). In the bladder, β3 agonism results in relaxation of 

the bladder wall muscle (the detrusor muscle), and as a result, there is a β3 agonist that is 

currently FDA approved drug for treatment of overactive bladder (74). Because this drug is 

already approved, testing for a new application in increasing BAT mass would be easier. Cypess 

et al. recruited healthy volunteers to take this β3 agonist, trade name Mirabegron, to see if they 

could induce BAT mass/activity in a reversible manner (75). They observed that one 200mg dose 

was sufficient to increase BAT activity as measured by 18F-FDG PET, increased glucose uptake 

in the BAT, and led to an increase of the resting metabolic rate by 200 kcal. However, 

administration of this drug currently has some drawbacks. While Mirabegron is a specific β3 

agonist, the dose given to the participants led to considerable side effects of increased heart rate 

and blood pressure. More specific agonists that are less likely to affect the cardiovascular system 

are thus needed.    

 Two types of BAT: Myf5+ and Myf5-. In recent years the brown fat field has identified 

distinct developmental lineages of UCP1+ positive adipose tissue. Classically, studies in rodents 

have focused on the BAT found in the interscapular fat pad. This was termed “classical” brown 

fat. This lineage of BAT is termed Myf5+ brown fat, and these cells share an immediate 

precursor with skeletal muscle (76). However, in the rodent, another depot of UCP1+ brown 

adipocytes can be found in the subcutaneous fat pads in the inguinal region. These cells are not 

related to the Myf5 lineage and are thus called Myf5-/beige/brite cells (77). While both types of 
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cells express UCP1, each differ in molecular markers they express (78). Additionally, these two 

types of BAT have important functional differences. Myf5+ brown fat contains large amount of 

mitochondria and highly express UCP1 in the absence of stimulation, however, beige cells under 

resting conditions do not express the thermogenic program and have few mitochondria- only 

under sympathetic stimulation do the beige cells activate the thermogenic program and express 

UCP1 at similar levels to My5+ brown fat (77). This can be recapitulated in-vitro: Myf5+ 

preadipocytes will differentiate and express the thermogenic program after induction with no 

additional stimuli, while beige preadipocytes must be stimulated with either β-adrenergic 

agonists or PPARγ agonists (i.e. thiazolidinediones) after induction in order to express UCP1 

(79, 80). In humans, clonal analysis has identified that the majority of the deposits that contain 

UCP1 are from a beige origin (77, 81). Therefore, while understanding the development of BAT 

using Myf5+ precursors is a valuable tool and can provide key insights into beige development, 

studies in beige cell development are more likely to have human relevance. 
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Figure 1.4- Immunofluorescence staining of human fat tissue biopsies 

Human fat tissue was obtained at the supraclavicular (top row), periadrenal (middle row), or 

subcutaneous (bottom row) sites and were stained for UCP1 (green fluorescence, left column), 

and Cytochrome C Oxidase (marker of mitochondrial mass, red fluorescence, middle column). 

The rightmost column is a superimposed image. Both the supraclavicular and periadrenal sites 

contain UCP1+ fat tissue, while subcutaneous tissue is negative for UCP1 expression. Adapted 

from (82), copyright license: 4278520154370. 
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1.3 Genes Involved in Adipogenesis and Browning 

 Studies using cell lines of preadipocytes and transgenic animals have determined 

much of the core program of adipogenesis that is shared by all types of adipose tissue. 

Additionally, factors that specifically regulate the thermogenic program and UCP1 expression 

have been identified. Review of the identity and function of these genes as well as the temporal 

order in which these genes operate is provided here. A general schematic of the genetic program 

of brown adipogenesis is presented in Figure 1.5. 

The CCAAT/Enhancer Binding Proteins (CEBP). The CEBP transcription factor family 

contains six members: CEBPα, CEBPβ, CEBPδ, CEBPε, and CEBPζ. They are members of the 

basic-leucine zipper (bZIP) transcription factor family (83). Of the six members, CEBPα, 

CEBPβ, and CEBPδ are important for adipogenesis in-vitro and in-vivo, and CEBPσ is directly 

regulated by STAT3 (84, 85). When the preadipocytes are stimulated to differentiate in culture, 

CEBPβ and CEBPδ are one of the first genes to be induced; they reach peak expression within 4 

hours of stimulation (86). In-vitro, CEBPβ is sufficient for differentiation, while CEBPδ is 

dispensable (87). However, in-vivo loss of CEBPβ or CEBPδ alone does not lead to a significant 

reduction in adipose mass, but the CEBPβ/CEBPδ double knockout does result in significant loss 

of adipose mass, suggesting that in-vivo these two transcription factors are redundant (88). 

CEBPβ and CEBPδ’s major targets are the next two transcription factors necessary for 

differentiation, CEBPα and Peroxisome Proliferator Activated Receptor Gamma (PPARγ) (89, 

90). CEBPβ also cooperatively binds to PPARγ to regulate genes involved in the terminal 

differentiation program. During the first 48 hours of differentiation in-vitro, the cells re-enter the 

cell cycle and proliferate during the phase called the “Mitotic Clonal Expansion” (MCE) (91). 

CEBPα is anti-proliferative and ends the MCE by increasing expression and stability of the cell 
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cycle inhibitor, p21 (92). Additionally, CEBPα regulates some of the common terminal markers 

of mature adipocytes like leptin, fatty acid binding protein 4 (FABP4/aP2), and GLUT4 (93, 94). 

In-vivo, CEBPα is absolutely necessary; knockout animals have reduced lipid droplet size and 

BAT has reduced UCP1 expression (95).  

Peroxisome Proliferator Activated Receptor Gamma (PPARγ). The PPAR family is a 

member of the nuclear receptor superfamily, and they function by heterodimerizing with the 

retinoid X receptor (RXR) and binding to peroxisome proliferator response elements (PPREs) in 

the promoters of target genes (96). PPARγ is considered the “master regulator” of adipogenesis, 

because no other factor has been identified that can compensate for loss of PPARγ (97). There 

are two isoforms of PPARγ: PPARγ1 and PPARγ2 (98). PPARγ1 is more widely distributed 

across different tissues, but PPARγ2 is restricted to adipose tissue. PPARγ2 levels begin to 

increase around day 4 after stimulation to differentiate, and is regulated by CEBPα, while 

PPARγ1 is constitutively expressed throughout the entire differentiation time course (99). 

PPARγ works cooperatively with CEBPα and CEBPβ to regulate the genes expressed during the 

terminal differentiation phase of adipocytes (100). PPARγ, along with its co-factor Peroxisome 

Proliferator Activated Receptor Gamma Co-Activator 1 Alpha (PGC1α), directly regulate 

transcription of the UCP1 gene (101). Both PPARγ1 and PPARγ2 can induce the adipocyte 

program, however, PPARγ2 can induce adipogenesis under reduced ligand concentrations 

compared to PPARγ1 (102).  In-vitro, PPARy2 is sufficient to induce differentiation of 

fibroblasts into adipocytes, indicating that PPARγ may also have a role in determining cell fate 

(103).  The thiazolidinediones, a class of anti-diabetic drugs, are agonists for PPARγ, and can be 

used in cell culture to increase expression of UCP1, especially in beige cells (77, 80).  
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Peroxisome Proliferator Activated Receptor Gamma Co-Activator 1 Alpha (PGC1α). 

PGC1α regulates mitochondrial biogenesis and increases the cells ability to generate energy 

(104). PGC1α accomplishes these by co-activating Nuclear Respiratory Factors 1 and 2 (NRF1 

and NRF2), two transcriptions factors that regulate nuclear-encoded components of the ETC and 

mitochondrial transcription factor A (Tfam), which regulates mitochondrial DNA transcription 

and replication (105). It is expressed in tissues that have high rates of oxidative phosphorylation 

such as cardiac muscle, Type I (oxidative, slow-twitch) skeletal muscle, and BAT (106). PGC1α 

increases UCP1 expression by augmenting the transcriptional abilities of PPARγ and thyroid 

hormone receptor (104). PGC1α also regulates the expression of cell death-inducing DFFA-like 

effector (CIDEA), a negative regulator of UCP1 function (106, 107).  

PR Domain Containing 16 (PRDM16). PRDM16 was the first transcription factor 

identified that specifically controls the determination of BAT; when expressed in WAT 

progenitors, it is able to induce the thermogenic program, in part by upregulating PGC1α (108, 

109). Conversely, deleting PRDM16 in adipose tissue using and adiponectin promoter driven Cre 

leads to an inability of subcutaneous fat to beige and insulin resistance (110). In Myf5+ 

progenitor cells, expression of PRDM16 promotes the differentiation into BAT, while ablation of 

PRDM16 promotes differentiation into skeletal muscle (111). PRDM16 interacts with Med1, 

part of the mediator complex, and recruits the complex to enhancer regions of thermogenic genes 

(112, 113). Interestingly, BAT specific knockout of PRDM16 does not affect the embryonic 

development of BAT tissue, however, it is required for maintenance of the BAT phenotype as 

the mice age (114).   

Early B-cell Factor 2 (EBF2). PPARγ is present in both WAT and BAT and directly 

regulates UCP1 expression, yet in WAT UCP1 is undetectable. Therefore, it was postulated that 
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a factor exists in classical BAT and beige cells that allows selective recruitment of PPARγ to 

thermogenic genes. The EBF binding motif was found near PPARγ binding sites in BAT specific 

genes and subsequent ChIPseq experiments revealed that EBF2 binds to these motifs and recruits 

PPARγ to these sites in part by interacting with the BAF chromatin remodeling complex to 

control access to the promoters (115, 116). Knockout of EBF2 either in-vitro or in-vivo resulted 

in loss of the thermogenic program with no effects on the general adipocyte program. 
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Figure 1.5- Schematic representation of the major genes involved in general- and brown- 

adipogenesis 

Left Column: Myf5- adipocyte lineage (which includes beige cells). Right Column: Myf5+ 

lineage containing the classical brown fat cell. Adapted from (57), copyright license 

4301971047874. 
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1.4 The JAK/STAT Pathway and its Known Roles in Adipogenesis 

 Introduction of the JAK/STAT Pathway. The Janus Kinase (JAK)-Signal Transducer and 

Activator of Transcription (STAT) pathway was initially identified in the 1990s as the mediator 

of interferon signaling (117). Subsequently, this pathway has been implicated in a variety of 

other processes such as development (especially in the hematopoietic system), cell growth, 

immune responses, and cancer (118).  

 The JAKs are a family of tyrosine kinases consisting of four members: JAK1, JAK2, 

JAK3, and Tyrosine Kinase 2 (Tyk2). These kinases have a FERM domain that is necessary for 

interaction with their cognate cytokine receptors and two tyrosine kinase domains, JH1 and JH2; 

however, JH2 is a pseudo kinase domain that lacks an ATP binding site, yet is necessary for full 

functionality of JAKs (Figure 1.6) (119). JAK1, JAK2, and Tyk2 are widely distributed across 

different tissues, whereas JAK3 is mostly restricted to the hematopoietic lineage (120).  

 There are seven known STATs in mammals: STAT1, STAT2, STAT3, STAT4, 

STAT5A, STAT5B, and STAT6 (121). The structures of the different STATs are mostly 

conserved, with some important differences that will not be addressed here. For STAT3, the 

structural schematic is found in Figure 1.7. STAT3 contains an N-terminal domain, which is 

used to form STAT3 tetramers, following by a coiled-coiled domain which is involved in 

protein-protein interactions with other transcription factors and regulators (122). The DNA 

binding domain contains residues that recognize specific DNA sequences found in the promoters 

of STAT3 regulated genes. The SH2 domain is involved in recognizing phosphotyrosine residues 

and is used to dock to the cytoplasmic tails of cytokine receptors, as well as dimerize with other 

STATs. C-terminal to the SH2 domain is a tyrosine residue that is phosphorylated by the JAKs 

(Y705). In STAT3, there exists two forms owing to differential splicing: STAT3α and STAT3β. 
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These isoforms differ in the possession of a C-terminal Transactivation Domain (TAD), which is 

present in the alpha form, but is absent in the beta form. The TAD contains a serine site that is 

phosphorylated by members of the MAPK and mTOR families (123, 124). The TAD enhances 

the transcriptional regulatory ability of STAT3 through its protein-protein interactions with other 

members of the transcriptional machinery such as CBP/p300 (125).  

 The JAKs associate with cytokine receptors, which are single transmembrane proteins 

with an extracellular ligand binding domain and an intracellular cytoplasmic tail that serves as a 

docking site for JAKs and STATs (126). Different cytokine receptors recruit different JAKs and 

STATs, allowing for increased complexity with a small set of components (127). Cytokine 

receptors are not active on their own, however, cytokines bind two cytokine receptors and bring 

them in close apposition. The JAKs associated with each cytokine receptor phosphorylate 

themselves, leading to maximal kinase activation, as well as phosphorylating the cytoplasmic tail 

of the receptor. These phosphotyrosine resides in the cytoplasmic tail serve as docking sites for 

the STATs. The STATs dock at the cytokine receptor through their SH2 domain, where they are 

subsequently tyrosine phosphorylated by the JAKs. The STATs dissociate from the receptor and 

then either homo- or hetero-dimerize through binding of the phosphotyrosine residue present in 

the other STAT through their SH2 domains. Once the STATs dimerize, they are able to transport 

to the nucleus and bind to conserved DNA binding sequences where they can exert their gene 

regulatory effects (128). A schematic of this classical pathway is shown in Figure 1.8.  
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Figure 1.6- Schematic of the JAK family of tyrosine kinases  

Adapted from (129), copyright license 4301961262534. 
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Figure 1.7- Schematic of STAT3 

N= N-terminal Domain, CC= Coiled-Coiled Domain, DNA = DNA binding Domain, LK= 

Linker Domain, SH2= SH2 Domain, Y= JAK phosphorylated tyrosine residue, TA = 

Transactivation Domain. Adapted from (122), copyright license 4301951395247. 
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Figure 1.8- Schematic of the canonical JAK/STAT pathway 

Cytokine binding to cytokine receptors activate the associated JAKs, which tyrosine 

phosphorylate the cytoplasmic tail of the receptor, creating a docking site for STATs. STATs 

dock at the receptor and are phosphorylated by the JAKs. The STATs dimerize and translocate to 

the nucleus where they bind to DNA and affect transcription. The pathway is tightly regulated 

through the actions of other proteins, such as Suppressor of Cytokine Signaling (SOCS), protein 

tyrosine phosphatases (PTP) and Protein Inhibitor of Activated STAT (PIAS). Adapted from 

(130). Copyright license: 4318860682296. 
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STAT3 in Adipogenesis. The majority of studies to date looking into the role of STAT3 in 

adipogenesis have utilized the 3T3-L1 cell line, an immortalized mouse cell line that is 

committed to differentiating into white adipose cells. The earliest studies indicated that STAT3 

was necessary for proliferation of the preadipocytes to confluence and possibly needed for the 

proliferation of the preadipocytes during the MCE phase of differentiation (131). The authors 

noted that during induction STAT3 remained tyrosine phosphorylated for up to 3 days, which 

coincides with the MCE and early terminal differentiation phase. Using EMSA assays, STAT3 

was bound to the DNA during the proliferation to confluence and to a minor extent during the 

MCE, but no binding was evident during the terminal differentiation phase. Thus, the authors 

concluded that STAT3 was only required for the proliferation of cells to confluence and possibly 

during the MCE, but is likely not required in the terminal differentiation phase. 

Additional evidence of the importance of STAT3 for adipogenesis comes from a study of 

Protein Inhibitor of Activated STAT3 (PIAS3), a protein that binds to STAT3’s DNA binding 

domain, which blocks STAT3s transcriptional activity. Overexpression of PIAS3 in 

preadipocytes led to reduced mRNA expression of PPARγ and CEBPα, as well as the terminal 

markers aP2 and Adiponectin (132). Additionally, the authors found that ob/ob mice had natural 

overexpression of PIAS3 in WAT. 

After establishing STAT3’s importance in adipogenesis, other groups set out to determine 

what STAT3 was regulating during adipogenesis and what signaling molecules drive STAT3 

activity. Leptin and LIF are two cytokines that bind to receptors that recruit STAT3. Leptin 

treatment in rat preadipocytes enhanced adipogenesis, while LIF had no major effect on 

adipogenesis per se, but did reduce the level of lipid accumulation in the mature adipocytes (133, 

134). Midkine, also known as neurite growth-promoting factor 2 (NEGF2), was identified as an 
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autocrine/paracrine factor that is released upon induction of differentiation in 3T3-L1 cells and is 

the factor responsible for STAT3’s tyrosine phosphorylation during the induction phase of 

adipogenesis; blocking antibodies to midkine reduced STAT3 phosphorylation, reduced the 

MCE, and reduced adipogenesis (135). How midkine signaling leads to tyrosine phosphorylation 

is unknown, as the receptor for midkine is considered to be a tyrosine phosphatase (136). 

 The mechanism of STAT3 in the regulation of adipogenesis is not well characterized. 

STAT3 was shown to transcriptionally regulate CEBPβ, one of the first genes induced in 

adipogenesis (137). The authors also showed that STAT3 binds to the distal region of the 

promoter for CEBPβ. Additional research indicated that STAT3 acts upstream of PPARγ; 

chemical inhibition of STAT3 or knockdown using siRNA reduced adipogenesis, but could be 

rescued by using a PPARγ agonist (138).  

 In immortalized brown adipocytes, we previously published that STAT3 was downstream 

of Tyk2 and interacts and stabilizes PRDM16 (139). Moreover, expression of a constitutively 

activated STAT3 (STAT3C) in Tyk2-/- was sufficient to rescue brown adipogenesis. Finally, 

STAT3C expression in the BAT of Tyk2-/- animals can restore the expression of brown fat 

markers such as UCP1 and CIDEA. 

 In-vivo studies of STAT3 in the regulation of adipogenesis are lacking. Total STAT3 

knockout causes embryonic lethality in mice, so tissue specific knockouts are required. An aP2 

promoter driven Cre mouse was used to generate adipose tissue that lacks STAT3. The mice 

have increased weight and increased fat mass due to hypertrophy of the WAT- the hypertrophy 

was likely due to impaired lipolysis in response to leptin (140). However, aP2 is not specific to 

adipose tissue and is expressed relatively late in the development of adipose tissue and therefore 
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this mouse model may not capture the effects of STAT3 on differentiation of adipose tissue, but 

rather is a model of STAT3’s role in the function of mature adipocytes (141).  

  



 38 

1.5 The Wnt Pathway and its Role in Suppressing Adipogenesis  

 The Canonical Wnt/β-Catenin Signaling Pathway. The Wnt pathway is important for 

normal development of all metazoans; this pathway is responsible for diverse functions such as 

establishment of cell polarity in epithelium, cell fate, and maintenance of pluripotency of stem 

cells (142, 143).  

 The Wnt pathway contains 19 different secreted Wnt ligands (144). These are 

glycoproteins that all share conserved serine residues, which are acylated by the endoplasmic 

reticulum enzyme Porcupine (PORCN) (145). This acylation is necessary for secretion of Wnt 

ligands and for optimal binding of the ligands to their receptors (146). Once the Wnt ligands 

have been acylated, they are recognized by the carrier protein Wntless, which ferries the ligands 

through the Golgi and to the extracellular surface of the plasma membrane (147). Once released 

to the extracellular environment, they bind to their receptors, which is composed of two proteins 

called Frizzled (of which there are a number of different members) and Lipoprotein Receptor-

Related Protein 5 and 6 (LRP5/6) (148). While there are a number of downstream effectors in the 

Wnt pathway, the most common is the canonical pathway involving β-catenin. 

 β-Catenin is a multifunctional protein. It is both a transcription factor and a component of 

cadherin junctions (149). Figure 1.9 details how β-Catenin is regulated as a transcription factor. 

In the absence of Wnt ligand, β-catenin is marked for proteasomal degradation. A priming 

phosphorylation at serine 45 by Casein Kinase 1α allows β-catenin to be recognized by a 

destruction complex composed of the scaffold protein Axin2, Adenomatous Polyposis Coli 

(APC), and Glycogen Synthase Kinase 3β (GSK3β) (150). GSK3β phosphorylates β-catenin at 

serines 33 and 37; these serine sites serve as recognition sequences for an E3 Ubiquitin Ligase 

called βTrcp. Once ubiquitinated, β-catenin is rapidly degraded by the proteasome. However, if 
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Wnt ligand is present, it signals through the Frizzled/LRP receptor, which allows recruitment of 

Axin to bind to LRP (151). The binding of the destruction complex to the receptor inactivates the 

destruction complex, allowing β-catenin to accumulate. Accumulating free cytosolic β-catenin is 

then available for transport to the nucleus, where it can bind to many partners to affect its nuclear 

function, but its most well defined partner is TCF (152). Additionally, β-Catenin turnover can be 

fined tuned by regulating different components of the destruction complex. For example, Axin2 

stability can be altered by tankyrases 1 and 2 (153). Tankyrases are poly-ADP-Ribosylating 

enzymes; when Axin2 is ADP-Ribosylated it is marked for proteasomal degradation. 

 The Wnt Pathway in the Suppression of Adipogenesis. The Wnt pathway is well studied 

in the context of adipogenesis, and it is firmly established to be a negative regulator of 

adipogenesis. Treatment with Wnt1 or introduction of a stabilized form of beta-catenin is 

sufficient to suppress adipogenesis in 3T3-L1 cells (154). Specifically, this was due to a decrease 

in expression of PPARγ and CEBPα, and adipogenesis could be rescued if either of these 

transcription factors were overexpressed. While Wnt1 can suppress adipogenesis, it is likely that 

Wnt10b is responsible for this repression as it is highly expressed in preadipocytes and as the 

cells differentiate levels of this ligand diminish (155). In brown fat, Wnt signaling reduces 

PGC1α during differentiation, which is an important co-factor involved in the expression of 

UCP1 (156). Additionally, mature adipocytes treated with Wnt10a have suppressed UCP1 

protein levels and in-vivo can convert brown adipocytes to a more white-like phenotype (157). 

 Non-canonical Wnt pathways can also modulate adipogenesis. Wnt5b antagonizes the 

canonical pathway through increased GSK3β-mediated degradation activity and can partially 

restore adipogenesis with cells that are co-treated with Wnt3a (158). Wnts 2 and 11, part of the 
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Calcium/Calmodulin/Calcineurin non-canonical Wnt pathway, decrease adipogenesis in the 3T3-

L1 cell line (159). 

 Normally, Wnt signaling is reduced during differentiation through silencing of Wnt 

ligand genes through the actions of the metyltransferase EZH2 tri-methylating Histone H3 K27 

in the Wnt ligand promoters (160). The silencing of Wnt ligands should have the effect of 

reducing β-catenin, since without that signaling, the GSK3β destruction complex will 

phosphorylate β-catenin to tag it for destruction by the proteasome. Further regulation of β-

catenin comes through cross-talk with PPARγ (161). Activation of PPARγ with exogenous 

ligands leads to reduced β-catenin stability, possibly through a direct interaction between PPARγ 

and β-catenin (162). 
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Figure 1.9- The canonical Wnt/β-catenin pathway 

Left Panel: When Wnt ligand is absent, the Axin2/APC/GSK3β destruction complex is able to 

bind and phosphorylate β-catenin, which is a recognition mark for the E3 Ubiquitin Ligase 

βTRCP. β-Catenin is degraded by the proteasome and as a result does not transit to the nucleus. 

TCF1 interacts with Groucho (GRG), which represses Wnt regulated genes. Right Panel: When 

Wnt ligand is present, the Axin2/APC/GSK3β destruction complex is inhibited and β-Catenin is 

left unphosphorylated, causing its levels to build up and eventually translocate to the nucleus. β-

Catenin displaces Groucho and binds with TCF1, leading to upregulation of Wnt driven genes. 

Adapted from (163), Copyright license 4302051187472. 
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1.6 Dissertation Rationale and Objectives 

 Previously, we observed that Tyk2 KO brown adipocytes do not differentiate and can be 

rescued with constitutively active STAT3 (139). How STAT3 was able to rescue the Tyk2 KO 

was not investigated, and the mechanism of STAT3 in adipogenesis has been poorly defined. 

This objective of this dissertation is to answer three questions, with each building upon the 

previous: 1) Is STAT3 needed for differentiation of primary brown adipocytes? 2) When is 

STAT3 required for differentiation- is it always required to maintain a brown adipocyte or is 

there a distinct period in development where STAT3 acts and then is no longer necessary? 3) 

What is STAT3 regulating during differentiation- does it regulate another known pathway that 

either positively or negatively regulates adipogenesis?  

 This dissertation provides evidence to all three questions posed. We show that STAT3 is 

indeed necessary for primary brown fat differentiation, that is only required during the induction 

phase, and that it functions to suppress Wnt/β-catenin signaling during the induction phase, 

likely through suppression of Wnt ligand expression. 
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Chapter 2: Materials and Methods 
 

2.1 Generation of Mice 

All mice were bred and maintained in the animal facility at MCV/VCU in accordance with the 

Institutional Animal Care and Use Committee (IACUC). Mice containing STAT3 with flanking 

Lox-P sites (Flox) were obtained from Jackson Laboratory- strain #016923. These mice were 

crossed with mice containing a ubiquitously expressed Tamoxifen induced Cre Recombinase in 

the ROSA locus (Jackson Laboratory)-strain #008463. The offspring were bred until they were 

homozygous for both the floxed STAT3 allele and Tamoxifen-inducible Cre Recombinase allele; 

these mice served as founders for the colony. Floxed Tyk2 mice were a gift from Brigit Strobel. 

These mice were crossed with the Tamoxifen-Inducible Cre Recombinase mice until mice that 

were homozygous for floxed Tyk2 and Tamoxifen Cre Recombinase.  All mice were genotyped 

to confirm possession of the desired alleles. 

2.2 Mouse Genotyping 

The mice were genotyped using a modified HotSHOT genomic DNA isolation protocol. A 1-

3mm tail snip was incubated with 75µL alkaline lysis buffer (25mM NaOH, 0.2mM EDTA, pH 

12.0) at 95°C for 1 hour. After allowing the sample to cool to room temperature, 75µL of 

neutralization buffer (40mM Tris-HCl, pH 4.0) was added and the samples were briefly 

vortexed. The PCR reaction contained the following: 5µL of Genomic DNA sample, 12.5µL of 

2x GoTaq Hot Start Green Master Mix (Promega), 2.5µL of a mixture containing the primers 

each at a concentration of 2.5µM, 0.625µL of 20mg/mL Bovine Serum Albumin (Sigma-
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Aldrich), and 4.38µL of dH2O. The following PCR conditions were used: 1) 95°C for 5 minutes, 

2) 95°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds, repeated for 30 cycles, 3) 

72°C for 10 minutes. The PCR products were run on a 1% Agarose (Fisher)/TBE (National 

Diagnostics) gel with 0.5µg/mL Ethidium Bromide (Fisher) at 100V for 1 hour. The sequences 

for the genotyping primers can be found in table 2.1.  

2.3 Isolation of Primary Brown Preadipocytes 

For Myf5+ Preadipocytes, one to three day-old pups were used to isolate primary preadipocytes. 

The pups were sacrificed by decapitation and the interscapular fat pad was harvested. Fat pads 

from different mice were pooled together during isolation; each pool is considered a biological 

replicate. Each pool contained a variable number of mice, but the minimum was three. The fat 

pads were minced and placed in isolation buffer (123mM NaCl, 5mM KCl, 1.3mM CaCl2, 5mM 

Glucose, 100mM HEPES, 4g/100mL Bovine Serum Albumin, Antibiotics/Antimycotics) 

containing 1.5mg/mL of Collagenase A (Roche) and incubated for 40 minutes at 37°C with 

rocking. After the incubation period, the digestion was passed through a sterile 70µm nylon filter 

(Fisher) and the resulting filtrate was centrifuged at 500g for 5 minutes at room temperature. The 

supernatant was removed and the cell pellet (containing a mixture of preadipocytes and blood 

cells) was resuspended in 1mL of PBS for every fat pad in the pool (e.g. 5 fat pads processed- 

5mL of PBS resuspension). The cells were plated onto dishes such that the starting density would 

allow the cells to reach confluence between Day 5 and 7 after isolation; the volumes of the cell 

resuspension plated for each type of dish were determined empirically and are found in table 2.2. 

The cells were plated into DMEM (GIBCO) growth media containing 4.5g/L Glucose, 5nM 

Insulin (Sigma-Aldrich), Antibiotics/Antimycotics (GIBCO), and 20% FBS (Foundation Brand, 

Gemini Bio Products). Additionally, the media either contained 1µM of 4-OH Tamoxifen 
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(Sigma-Aldrich) to delete STAT3 or the ethanol vehicle. The cells were incubated with either 

Tamoxifen or vehicle for two days after isolation, and then were washed in PBS and fresh 

growth media was added. The media was changed every two days until confluence. Once the cell 

cultures reached confluence, the cells were induced to differentiate. 

For Myf5- (beige) preadipocytes, one-month-old mice were sacrificed and the inguinal fat pads 

were harvested and processed as above. 

2.4 Induction of Differentiation 

Once the cells reached confluence, they were induced to differentiate. The growth media was 

replaced with DMEM (GIBCO) differentiation media containing 4.5g/L Glucose, 20nM Insulin, 

1nM T3, 10% FBS, and Antibiotics/Antimycotics. Additionally, the media contained a cocktail 

of 500µM IBMX, 125µM Indomethacin, 2mg/mL Dexamethasone, and 1µM Rosiglitazone 

(Sigma-Aldrich). The cells were incubated with the cocktail for 48 hours, and then aspirated and 

replaced with the base differentiation media lacking the cocktail. The cells were allowed to 

differentiate for five days after removal of the cocktail, with the media being replaced every two 

days. For Myf5- preadipocytes, 1µM Rosiglitazone was kept in the media for the full seven days 

of differentiation. Figure 2.1 is an illustration of the in-vitro time course that contains the date 

labeling used throughout the rest of the dissertation. 

2.5 Temporal Knockout Studies 

1µM 4-OH Tamoxifen was added for 48 hours on either Day 2 or Day 5 post-addition of 

induction cocktail. The media was removed and the cells were washed with PBS and replaced 

with fresh differentiation media. 
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2.6 In-Vitro Treatments 

Unless otherwise stated, all treatments are applied for the full seven days of differentiation 

starting from the addition of the induction cocktail. Fresh inhibitor was added with each media 

change. Appropriate vehicles were used as controls. The following chemicals were used: IWP2 

(Porcupine Inhibitor, 1µM, Selleckchem), C59-Wnt (Porcupine Inhibitor, 1µM, ApexBio), 

IWR1-endo (β-Catenin Inhibitor, 5µM, Selleckchem), FK506 (Calcineurin Inhibitor, 10ng/mL, 

Cayman Chemical), XAV939 (Tankyarase Inhibitor, 1µM, Cayman Chemical), CHIR99021 

(GSK3β Inhibitor, 10µM, Cayman Chemical), PD0325901 (MEK Inhibitor, 10µM, Sigma-

Aldrich), Isoproterenol (β-adrenoreceptor agonist, 10uM, Sigma-Aldrich), FCCP (chemical 

uncoupler, 10µM, Cayman Chemical), SAG (Smoothened Agonist/Hedgehog activator, 100nM, 

Calbiochem), DAPT (γ-Secretase Inhibitor/Notch Inhibitor, 5µM, Tocris), MG-132 (proteasome 

inhibitor, 10µM, Sigma-Aldrich), Cryptotanshinone (STAT3 inhibitor, 10µM, Selleckchem), 

Ruxolitinib (pan-JAK inhibitor, 2µM, Selleckchem), H2O2 (to induce apoptosis, 500µM, Sigma-

Aldrich). 

2.7 siRNA Transfection 

siGenome SMARTpool control #1 and mouse specific β-catenin were purchased from 

Dharmacon and resuspended in siRNA buffer to 5µM. Primary cells were grown in 6 well plates. 

48 hours before induction, the cells were washed three times with PBS and replaced with 1.6mL 

of antibiotic free primary media. The transfection cocktail was created as follows: for every well 

transfected, solution A contained 10µL of the siRNA and 190µL serum free media and solution 

B contained 4µL of Dharmafect Solution #1 and 196µL serum free media. After incubation for 5 

minutes, solutions A and B were combined and incubated an additional 20 minutes at room 

temperature. 400µL of the transfection cocktail was added to each well and was left on the cells 
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for 48 hours. After the transfection, the cells were washed with PBS and then were directly 

induced to differentiate, or harvested in Trizol for mRNA analysis of the knockdown efficiency. 

2.8 SDS-PAGE and Immunoblotting 

Cells were washed in PBS and lysed on ice with 1x RIPA buffer containing protease and 

phosphatase inhibitors. The samples were incubated on ice for 30 minutes and then centrifuged 

for 10 minutes at 10,000g at 4°C. The supernatant was removed in such as way to minimize 

carry over of lipids from the differentiated cells. Protein concentration was measured using the 

BCA assay (Pierce). The lysates were combined with 4x Laemmli sample buffer (Bio-Rad) 

containing 1mM β-Mercaptoethanol. The samples were incubated at 65°C for 10 minutes and 

separated using SDS-PAGE electrophoresis using Tris-Glycine gels. Gels were transferred to 

PVDF membranes (Millipore) using a semi-dry transfer system (Bio-Rad). The membranes were 

blocked with either 5% milk or 5% BSA in 1x TBS + 0.05% Tween 20 (TBST) for 1 hour at 

room temperature. The membranes were incubated with primary antibodies in either milk or 

BSA TBST overnight at 4°C with gentle rocking. The membranes were washed and incubated 

with 1:5000 of anti-rabbit or anti-mouse HRP secondary antibody (GE Healthcare, #NA934 and 

#NA931) for 1 hour at room temperature with rocking. After washing, the membranes were 

incubated with either Amersham ECL (GE Healthcare), or ECL2 Reagent (ThermoFisher) and 

developed using CL-X Exposure Film (ThermoFisher). Films were scanned using an Epson 

Expression 1680 scanner in transmitted light mode at 16-bit greyscale with 300dpi resolution. 

Densitometry was performed using ImageJ software (National Institutes of Health). TATA 

Binding Protein (TBP) was used as the loading control. The primary antibodies used can be 

found in table 2.3. 
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2.9 RNA Extraction and Real-Time PCR 

RNA was obtained using the Trizol method (Invitrogen). The RNA pellet was dissolved in 

DEPC-treated water (Sigma-Aldrich) and quantitated using absorbance at 260nm on a Nanodrop 

200 (Thermo Fisher). 2µg of RNA was used in the first strand synthesis reaction. The High 

Capacity RNA-to-cDNA Kit (Applied Biosystems) was used according to manufacturer 

recommendations. The 20µL reaction volume was diluted with 380µL of dH2O. 5µL of the 

cDNAs were combined with SYBR Green (SensiMix SYBR & Fluorescein Kit, Bioline), and 

with 250nM each of forward and reverse primers (table 2.4). The real-time PCRs were run on a 

CFX96 Real-Time PCR Detection System (Bio-Rad) using the following thermocycling 

conditions: 1) 95°C 10 minutes, 1x 2) 95°C 15 seconds, 57°C 15 seconds, 72°C 15 seconds, 40x. 

A melt curve analysis was included at the end of each run. No-transcript controls (NTC) were 

used to assess for genomic DNA contamination; the sample was considered pure if the NTCs 

amplified above 35 cycles or more than 6 cycles above the sample target (~100 fold less 

expression). The data was analyzed using the ΔΔCt method.  

2.10 Oil-Red O Staining 

Fully differentiated Brown Adipocytes (Day 7 after induction) were fixed in 10% formaldehyde 

for 1 hour at room temperature. The fixed cells were washed with PBS and then incubated with 

60% isopropanol for 5 minutes. Stock Oil Red O stain (3mg/mL, 100% isopropanol) was diluted 

using 3 parts of the stock stain to 2 parts dH2O and filtered through a Whatman paper filter. The 

filtered stain was applied to the cells for 1 hour at room temperature. The stain was removed and 

the plate was washed several times with water. The plates were imaged using an AxioObserver 

A1 microscope with a 10x/0.12 Ph1 lens and AxioCam MRc5 camera (Zeiss). Plates were 

quantitated for the area of the plate occupied by the stain by the threshold/analyze particles 
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function in Image J (version 1.49, NIH). At least three random fields were imaged per sample. 

Whole plates were scanned with an Epson Expression 1680 scanner in reflective mode in 24 bit 

color at 300dpi resolution.  

2.11 Proliferation Studies 

For analysis of proliferation prior to confluence, cells were labeled on the day of isolation using 

the Tag-IT Violet™ Cell Proliferation Dye (Biolegend). Briefly, the primary cell pellet was 

resuspended in PBS containing 5µM of the dye and incubated for 20 minutes at 37°C with 

shaking. The cells were plated except for a sample that was retained for initial fluorescent 

measurement. Cells were fixed using 4% Formaldehyde for 10 minutes at room temperature and 

analyzed on the BD LSRFortessa-X20 system using the following laser and filter configuration: 

405nm with BP 450/50. The data was analyzed using FCSExpress software. For proliferation 

during and after induction, confluent cells were washed with PBS and were incubated with 5µM 

of Tag-IT in HBSS with Calcium and Magnesium for 20 minutes at 37°C. The HBSS was 

replaced with media and control WT and KO cells were harvested and fixed as above to establish 

Day 0 fluorescence, while the rest of the cells were induced to differentiate. 

2.12 Chromatin Immunoprecipation Assays 

Two confluent ten-centimeter dishes were used per sample. Cells were fixed for 10 minutes at 

room temperature with 1% formaldehyde, then 5 minutes of 150 mM glycine, and washed with 

PBS. The cells were incubated in Farnham lysis buffer (85mM KCl, 0.5% NP-40, 5mM PIPES 

pH 8.0) for 15 minutes on ice and spun down at 500g for 10 minutes to collect nuclei. The nuclei 

were lysed in sonication buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS) and 

sonicated using a bioruptorpico sonicator (Diagenode) for 5 cycles of 30sec ON/30sec OFF. The 

sonicated lysate was diluted 1:10 in dilution buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 
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mM EDTA, 0.1% SDS, 1.0% Triton X-100) and manufacturer recommended amounts of 

antibodies were added and incubated overnight at 4 degrees. Non-specific matched species IgG 

was used as a control. 30 µL of 1% BSA blocked magnetic Protein A/G beads (Thermo-

scientific) were added for 2 hours at 4 degrees then precipitated using a magnet and washed 

twice with dilution buffer and once with high salt wash (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 

2 mM EDTA, 0.1% SDS, 1.0% Triton X-100). The DNA was eluted using 1% SDS/ 0.1M 

Sodium Bicarbonate Buffer and de-crosslinked by heating overnight at 65 degrees. RNase A 

(ThermoScientific) and Proteinase K (New England Biolabs) were added, respectfully, for 1 hour 

each and the DNA was isolated using Qiaquick PCR Purification Kit (Qiagen). The real-time 

quantitative polymerase chain reaction (qPCR) reaction was performed on the CFX96 Real-Time 

PCR Detection System (Bio-Rad, Hercules, CA, USA), using the manufacturer 

recommendations from the SensiMix SYBR and Fluorescein Kit (Bioline). 5% of the input was 

saved for the calculations. The sequences for the ChIP primers can be found in Table 2.5.  

2.13 Mitochondrial Isolation 

Two 15cm dishes of cells were used per sample. Adherent cells were washed with PBS, 

trypsinized, and collected in ice-cold media containing serum. Cells were spun down at 500g for 

5 minutes at 4°C and the pellets were washed 1x with PBS. Cells were spun down again at 500g 

and the supernatant was aspirated. The cells were resuspended in 1mL of sucrose buffer (10mM 

HEPES, pH 7.4, 250mM sucrose, 1mM EDTA, protease and phosphatase inhibitors) and 

incubated in ice for 10 minutes. Cells were then added to a metal douncer and cells were 

homogenized by hand on ice until approximately 90% of cells were broken (verified by trypan 

blue). The homogenate was spun down for 5 minutes at 800g at 4°C to pellet nuclei and intact 

cells. The supernatant was collected and spun down for 10 minutes at 8800g at 4°C to pellet 
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crude mitochondria. The supernatant was collected and labeled as the cytosolic fraction and spun 

an additional 10 minutes at 10,000g to remove any remaining organelle components. The 

supernatant was collected and frozen at -80°C for further analysis. The crude mitochondrial 

pellet was resuspended in 490µL sucrose buffer and 10µL of a 5mg/mL solution of trypsin was 

added to the sample. Samples for rotated for 10 minutes at 4°C after which 500µL of a 5% BSA 

solution was added to stop the trypsinization. Samples were rotated for an additional minute and 

then spun down at 10000g for 10 minutes at 4°C. The supernatant was aspirated (including the 

digested material around the mitochondria) and the pellet was washed 2x with 500µL of the 

sucrose buffer. After the final wash, the pellets were resuspended in an appropriate volume of 

sucrose buffer and stored at -80°C for further analysis. 

2.14 Apoptosis Assays 

Cells were incubated with AlexaFluor 488 annexin V/Propidium Iodidie Kit (ThermoFisher) 

according to manufacturer protocols. The BD FACSCanto II analyzer was used for data 

acquisition. The following lasers and filter configurations were used: 488nm with BP 530/30 and 

BP 610/20. The data was analyzed using FCSExpress software. Cells incubated with 500µM 

H2O2 for 5 hours at 37°C was used as a positive control 

2.15 In-vivo Beiging Studies 

8 week old- Floxed STAT3-Tamoxifen Inducible Cre animals were orally gavaged once per day 

for 5 days with 5mg/20g body weight Tamoxifen (Cayman Chemicals). The mice were allowed 

to rest for 1 month. Afterwards, the mice were injected intraperitoneally (I.P.) once a day for 

seven days with either CL316,243 (Sigma-Aldrich) at a dose of 1mg/kg or an equivalent volume 

of PBS. The mice were then sacrificed and the inguinal fat pads were harvested and lysed in 
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RIPA buffer containing protease and phosphatase inhibitors. The lysates were stored at -80°C for 

further analysis. 

2.16 Statistical Analysis 

Data is presented as mean ± SEM, except for qPCR data which is expressed as mean ± SD. 

Statistical Analysis was performed using Prism 7 (GraphPad) using the statistical tests indicated 

in figure legends. A p-value <0.05 was considered significant. N=3 unless otherwise indicated. 
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Figure 2.1- In-Vitro time course 

Growth/Proliferation Phase is from isolation of the primary cells to confluence, which generally 

takes 7 days. When the cells reach confluence they are induced to differentiate, which lasts for 

48 hours (D0-D2); the induction phase is also called the MCE. D2-D7 is the Terminal 

Differentiation Phase. 
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Gene Primer Sequences Notes 

Flox STAT3 

Forward: 

TTGACCTGTGCTCCTACAAAAA 

Reverse: 

CCCTAGATTAGGCCAGCACA 

Floxed Allele: 600bp 

WT Allele: 400bp 

Tamoxifen Cre 

Forward: 

AAAGTCGCTCTGAGTTGTTAT 

Reverse: 

GGAGCGGGAGAAATGGATATG 

Mutant Reverse: 

CCTGATCCTGGCAATTTCG 

Cre Allele: 825bp 

WT Allele: 603bp 

 
Table 2.1- Genotyping Primers 
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Plate Volume (µL) 

35mm 150 

60mm 350 

10cm 750 

24 well 75 

12 well 150 

6 well 250 

 
Table 2.2- Plating Volumes for Primary Cells 
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Target Company, catalog #, lot # Species 

UCP1 R&D Biosystems, MAB6158, 
CCNV0116081 Mouse 

TBP Cell Signaling Technology, 
3544, 1 Rabbit 

STAT3 Cell Signaling Technology, 
9139, 8 Mouse 

pSTAT3 Y705 Cell Signaling Technology, 
9145, 31 Rabbit 

pSTAT3 S727 Cell Signaling Technology, 
9134, 21 Rabbit 

β-Catenin Cell Signaling Technology, 
8480, 5 Rabbit 

PPARγ Cell Signaling Technology, 
2443, 3 Rabbit 

FABP4 (aP2) Cell Signaling Technology, 
3544, 2 Rabbit 

CEBPα Cell Signaling Technology, 
8178, 3 Rabbit 

STAT1 BD Biosciences  
NDUFA9 Santa Cruz Biotechnology  

Tubulin Sigma-Aldrich, 
T8328 Mouse 

GAPDH Cell Signaling Technology, 
5174 Rabbit 

 
Table 2.3- Antibodies for Immunoblotting 
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Target Sequence 
18S F: CCATCCAATCGGTAGTAGCG 

R: GTAACCCGTTGAACCCCATT 
Adiponectin F: TGACGACACCAAAAGGGCTC 

R: CACAAGTTCCCTTGGGTGGA 
aP2 F: TGAAATCACCGCAGACGACA 

R: ACACATTCCACCACCAGCTT 
Axin2 F: CAGCCCAAGAACCGGGAAAT 

R: AGCCTCCTCTCTTTTACAGCA 
CEBPα F: AATGGCAGTGTGCACGTCTA 

R: CCCCAGCCGTTAGTGAAGAG 
CIDEA F: GGCCGTGTTAAGGAATCTGC 

R: GTATGTGCCCGCATAGACCA 
Dkk1 F: ACACCAAAGGACAAGAAGGCT 

R: CTTGGTGCACACCTGACCTT 
EBF2 F: GCTGCGGGAACCGGAACGAGA 

R: ACACGACCTGGAACCGCCTCA 
PGC1α F: TGAAAAAGCTTGACTGGCGTC 

R: AGCAGCACACTCTATGTCACTC 
PPARα F: TGTGAACTGACGTTTGTGGC 

R: CCACAGAGCGCTAAGCTGT 
PPARγ F: CTGTGAGACCAACAGCCTGAC 

R: TGGTTCACCGCTTCTTTCAA 
PRDM16 F: CAGCACGGTGAAGCCATTC 

R: GCGTGCATCCGCTTGTG 
Tbp F: AGTGCCCAGCATCACTATTTCA 

R: GTGGAAGGCTGTTGTTCTGG 
UCP1 F: CACGGGGACCTACAATGCTT 

R: TAGGGGTCGTCCCTTTCCAA 
Wnt1 F: GATGGTGGGGCATCGTGAAC 

R: GTTCTGTCGGATCAGTCGCC 
Wnt10b F: TGTGGATCCTGCACCTGAAC 

R: TAGAGCCCGACTGAACAAAGC 
Wnt3a F: GGGTGTCAAAGCGGGCATCCA 

R: CCCGGGTGGCTTTGTCCAGAA 
β-Catenin F: CCATTGTACGCACCATGCAG 

R: CCACTGGTGACCCAAGCATT 
 
Table 2.4- Primers for Real-Time qPCR 
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Target Sequence 
Actin Promoter F: AAATGCTGCACTGTGCGGCG 

R: AGGCAACTTTCGGAACGGCG 
PRDM16 Promoter F: GAGGGAATCTATAGGGAGGACTCTCT 

R: AATCCGGTTAAAACAGCAATCC 
UCP1 Enhancer F: CTCCTCTACAGCGTCACAGAGG 

R: AGTCTGAGGAAAGGGTTGA 
UCP1 Proximal Promoter F: CCCACTAGCAGCTCTTTGGA 

R: CTGTGGAGCAGCTCAAAGGT 
 
Table 2.5- Primers for Chromatin Immunoprecipitation 
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Chapter 3: Results 
 
The data presented are in Myf5+ cells isolated from the interscapular region, unless otherwise 

indicated. 

3.1 STAT3 is Phosphorylated During the Induction Period  

To begin our study of STAT3 in brown adipose tissue development, we wanted to 

determine when STAT3 functions during differentiation. We took wild type primary cells, 

induced them to differentiate, and collected samples at different time points for analysis of total 

STAT3 and phosphorylated forms of STAT3. As seen in Figure 3.1, STAT3 is basally 

phosphorylated before addition of the induction cocktail, is rapidly dephosphorylated upon 

addition of the cocktail, then returns to basal levels for 24 hours, and still is detectable by 48 

hours. Additionally, STAT3 serine phosphorylation rapidly increases upon addition of the 

induction cocktail and is elevated for 24 hours. This time course is in agreement with previous 

studies of STAT3 in the 3T3-L1 cell line (135, 164). Interestingly, total STAT3 amounts 

decrease after the induction period is complete and remain low throughout the rest of the 

terminal differentiation phase. These findings suggests that STAT3 is likely required during the 

induction phase (D0-D2) only. 
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Figure 3.1- STAT3 levels during in-vitro differentiation 

A representative immunoblot of whole cell extracts from wild type interscapular SVF. Time 0 

are cells before induction, all time points are measured post-addition of induction cocktail. 

Tubulin is used as a loading control. N=3. 
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3.2 Inhibition of STAT3 Blocks Differentiation of Brown Adipocytes  

 To continue analysis of the role of STAT3 in the development of brown adipocytes, 

STAT3 was inhibited throughout the entire differentiation time course from addition of induction 

cocktail. We choose cryptotanshinone, a natural product inhibitor of STAT3 that prevents 

dimerization by binding the SH2 domain, as it was well tolerated by the cells for the entire time 

course. We treated the cells with 10µM cryptotanshinone and after 6 days, samples were 

collected samples for RT-qPCR. As shown in Figure 3.2, treatment with the STAT3 inhibitor 

reduces expression of both brown fat specific and general fat markers.  
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Figure 3.2- Inhibition of STAT3 suppresses expression of terminal adipogenic markers 

Expression of brown fat specific and general adipocyte markers measured by RT-qPCR. N=2, 

data are expressed as mean ± SD. Tbp was used as a loading control. 
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3.3 Inhibition of STAT3 During the Induction Period Only Blocks Differentiation 

 Since STAT3 is phosphorylated only during the induction period, we hypothesized that 

STAT3 is only required for differentiation during this period and that inhibition during the 

terminal differentiation phase (D2-D7) would have no effect. We used cryptotanshinone, a 

natural product inhibitor of STAT3 that prevents dimerization by binding to the SH2 domain, to 

investigate the temporal requirement for STAT3 (165). In Figure 3.3, 10µM of cryptotanshinone 

was added in 24-hour windows during the differentiation time course. To control for media 

changes, every sample was given fresh media every 24 hours and either the inhibitor or the 

DMSO vehicle. As expected, treatment with cryptotanshinone during the 24-hour windows that 

correspond to the induction period suppressed expression of UCP1, especially during the first 24 

hours, but treatment during any 24-hour window after induction had no effect on UCP1. This is 

further evidence that STAT3 is only required during the differentiation period. However, 

cryptotanshinone is an SH2 domain inhibitor, and it likely has off-target effects, such as 

inhibition of STAT5, which is also important for adipogenesis (166).  
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Figure 3.3- Inhibition of STAT3 during the induction phase reduces UCP1 expression 

Representative immunoblot from Day 7 whole cell extracts of cells treated with the STAT3 

inhibitor for the 24-hour window indicated above each lane. N=3. Tbp was used as a loading 

control. 
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3.4 Generation of a Floxed-STAT3, Tamoxifen Inducible Cre Leads to Efficient Total 

Knockout 

 The analysis thus of STAT3 in brown adipogenesis have utilized wild type brown 

preadipocytes and chemical inhibition of STAT3. However, in order to determine the mechanism 

of STAT3, a reproducible STAT3 Knockout (KO) primary cell system was needed. Therefore, 

mice that are homozygous for floxed STAT3 and a Tamoxifen- Inducible Cre Recombinase were 

generated for the study. The mice were viable and no defects were observed throughout the 

mouse lifespan. In Figure 3.4, harvested cells that were exposed to 1µM of 4-OH Tamoxifen for 

48 hours have no detectable STAT3 at Day 0, when the cells are confluent but have yet to be 

induced. Interestingly, there are also reduced PRDM16, PPARγ, and CEBPδ levels before the 

start of differentiation. The reduced levels of PRDM16 are in agreement with our prior published 

work (139). 
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Figure 3.4- Treatment with 4-OH Tamoxifen efficiently reduces STAT3 and loss of STAT3 

reduces levels of transcription factors important for differentiation. 

Immunoblot of three biological replicates of STAT3 WT and KO preadipocytes on Day 0. 

GAPDH was used as a loading control. 
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3.5 Deletion of STAT3 Does Not Affect Proliferation of Preadipocytes in the Growth Phase 

 It has previously been reported that knockdown of STAT3 in the 3T3-L1 line reduces the 

proliferation rate of the cells compared to control during the growth phase to confluence (131). 

Any differences in proliferation during growth to confluence must be assessed as the cells are not 

primed to differentiate before they reach confluence and contact-growth inhibit each other, and 

any reduction in differentiation of the STAT3 KO must take this into consideration. Therefore, 

we assessed whether the STAT3 KO cells have reduced proliferation compared to wild type in 

the growth phase before differentiation. We used the Tag-IT Violet Dye system, a dye that 

covalently attaches to proteins in the cell and becomes diluted with each cell division, to track 

the proliferation rate of the cells from isolation to confluence. As seen in Figure 3.5, there is no 

difference in proliferation of the WT and KO cells during the growth phase.  
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Figure 3.5- No difference in proliferation to confluence between WT and KO preadipocytes 

A) Cells were labeled with 5µM Tag-It on the day of isolation (grey shaded distribution) and 

followed until they reached confluence 6 days later. WT is blue and KO is red. These are 

concatenated histograms that contain all 3 biological replicates within each panel. N=3 for each 

time point. N.B.: the days indicated here are measured from the date of isolation of the cells, this 

is in contrast to other figures where the days are measured starting from induction B) The 

relative change in mean fluorescence intensity from the day of isolation to confluence. Data is 

expressed as mean ± SEM.  
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3.6 STAT3 KO Preadipocytes Have Reduced Proliferation After Induction 

 The induction phase, also known as the mitotic clonal expansion, is the 48 hours that the 

cells are incubated in the induction cocktail. During this time, the cells that were previously 

contact-growth inhibited divide 1-3 more times before entering the terminal differentiation phase 

(167). Previous work in the 3T3-L1 line indicates that STAT3 is required for the mitotic clonal 

expansion (164). To determine if primary brown adipocytes also require STAT3 for the mitotic 

clonal expansion, we again used the Tag-IT Violet dilution dye to measure proliferation. As 

shown in Figure 3.6, at the end of the Induction Phase (Day 2) there is no difference in loss 

relative loss of Tag-IT dye, indicating equal proliferation; however, by Day 4 the WT cells have 

undergone a few more rounds of proliferation than the KO. Therefore, we conclude that in the 

primary brown adipocyte system, STAT3 can modulate the proliferation of the primary brown 

preadipocytes after treatment with the induction cocktail.  
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Figure 3.6- STAT3 KO brown adipocytes have reduced proliferation after induction 

Cells were stained with 5µM Tag-IT Violet on Day 0 and then immediately induced to 

differentiate. A Day 0 WT and KO sample was collected and fixed to provide the baseline 

fluorescence. Data is calculated as mean fluorescent intensity of Day 0 divided by the mean 

fluorescent intensity of the sample day. N=3. * = p< 0.05, N.S. = not significant. Data is 

presented as mean ± SEM.  
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3.7 Deletion of STAT3 Leads to Significant Reduction in Differentiation and Brown 

Specific Genes 

 With the Tamoxifen Cre system, the effects of STAT3 on differentiation of primary 

brown adipocytes can be studied without the off-target effects of a chemical inhibitor. We 

induced STAT3 WT and KO cells and analyzed Day 0 and Day 7 samples for markers of 

terminal adipocytes. In Figure 3.7, knockout of STAT3 reduces expression of UCP1 protein to 

near undetectable levels, similar to what we observed with the STAT3 inhibitor. Additionally, 

PPARγ and CEBPα, two important transcription factors common to both WAT and BAT 

differentiation, are reduced. FABP4, a common fat marker, is slightly reduced. Because UCP1 is 

so dramatically decreased compared to the other markers of adipogenesis, we wanted to see if 

brown-specific markers are affected more by the STAT3 KO than common markers of 

adipogenesis. In Figure 3.8, we measured the mRNA expression of brown fat specific or 

selective markers and markers common to both WAT and BAT. Interestingly, brown fat markers 

are significantly reduced, while the general fat markers are only trending downward in their 

expression. 

 Visually, knockout of STAT3 led to a significant decrease in lipid accumulation 

compared to the WT STAT3 samples, as well as an apparent reduced number of cells while still 

confluent (Figure 3.9). Together, this data indicates that loss of STAT3 does not prevent the 

cells from attempting differentiation, however, full differentiation is suppressed and the 

thermogenic program is significantly affected. 
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Figure 3.7- KO of STAT3 significantly reduces expression of UCP1 

Representative immunoblot of Day 0 and Day 7 brown adipocytes for markers of brown fat and 

markers common to all types of fat. N=3. 
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Figure 3.8- Expression of brown fat markers are more affected by knockout of STAT3 than 

general fat markers 

RT-qPCR of Day 7 adipocytes for markers of brown fat and markers common to all types of fat. 

* indicate p< 0.05 compared to the wild type marker. Student’s t-test. N=4. Data is expressed as 

mean ± SD. 
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Figure 3.9- Knockout of STAT3 significantly reduces lipid accumulation 

A) Representative plates of Day 7 adipocytes were fixed and stained with Oil-Red O, a dye that 

is retained in the neutral triglycerides of adipocyte lipid droplets. B) Day 7 adipocytes were 

imaged at 10x magnification, scale bar = 200µm. C) Quantitation of B). Student’s t-test. N=3. * 

indicates p< 0.05. Data is presented as mean ± SEM. 
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3.8 Tamoxifen is not Responsible for the Defects in Differentiation 

 While the Tamoxifen Cre system is a powerful tool to isolate the effects of STAT3 on 

differentiation of brown adipocytes, one weakness is that only one group receives tamoxifen 

while the other receives the ethanol vehicle. Because tamoxifen has been reported to affect 

UCP1 expression in-vivo, we wanted to rule out that the effects we see with the STAT3 KO are 

due to tamoxifen (168). In Figure 3.10, preadipocytes that contain floxed STAT3, but lack the 

Cre Recombinase, were treated with either ethanol or tamoxifen for 48 hours after isolation, 

exactly as is done for the STAT3 KO preadipocytes. Figure 3.10A shows that treatment with 

tamoxifen does not alter the levels of UCP1 protein, and Figure 3.10B shows that tamoxifen does 

not alter the ability of the cells to accumulate lipid. Thus, with these controls, we can conclude 

that the effects we see in the STAT3 KO are due to loss of STAT3 and not the tamoxifen 

treatment. 
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Figure 3.10- Tamoxifen treatment has no affect on brown preadipocytes ability to 

differentiate 

A) Representative Immunoblot of whole cell lysates from Day 0 or Day 7. The cells were treated 

with 1µM 4-OH Tamoxifen for 48 hours after isolation, exactly as for the STAT3 KO, but these 

cells lack the Cre Recombinase. N= 3. B) Representative plates of Oil Red O Staining in cells 

lacking the Cre Recombinase treated with tamoxifen. N= 3. 
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3.9 PPARγ is Less Stable in the STAT3 KO 

 We have observed that the levels of PPARγ are reduced at Day 7 (Figure 3.7), and if we 

increase the exposure time, we can also see that at Day 0 there is already a reduction in PPARγ 

levels (Figure 3.4). Since PPARγ is considered a master regulator of adipogenesis, and previous 

work indicates that STAT3 is upstream of PPARγ, we wanted to determine if STAT3 is involved 

in regulating PPARγ expression. In Figure 3.11A, we analyzed Day 0 mRNA expression of 

PPARγ and found no difference, indicating that STAT3 may regulate PPARγ post-

transcriptionally. There is a report that PPARγ stability can be regulated by Interferon Gamma 

(IFNγ) (169). Specifically, IFNγ recruits ERKs 1 and 2 to phosphorylate PPARγ, which marks 

PPARγ for degradation by the proteasome. While we did not measure IFNγ levels in the media, 

we did measure expression of a marker of interferon signaling, ISG15, at Day 0 and found it to 

be highly up regulated in the STAT3 KO (Figure 3.11B). It should be noted that ISG15 

expression is not specific to IFNγ, as other interferons can also increase expression of this gene 

(170). Therefore, we wanted to test if PPARγ has a higher turnover rate in STAT3 KO cells, and 

if this is due to IFNγ/ERK signaling. In Figure 3.11C we treated Day 1 STAT3 WT and KO 

preadipocytes with 10µM MG-132 (Lanes 3 and 4), a proteasome inhibitor, for 8 hours. 

Treatment with MG-132 was able to restore levels of PPARγ in the STAT3 KO; however, 

treatment with the MEK inhibitor PD0325901 for 8 hours had no affect on PPARγ levels (Lanes 

5 and 6), even though the MEK inhibitor did reduce phosphorylation of ERK1/2 (Figure 3.11E). 

During the treatment period levels of PPARγ mRNA levels trended downward, but to the same 

extent on the WT and KO (Figure 3.12E). These results indicate that PPARγ is undergoing 

increased degradation in the absence of STAT3, but it is not likely through the reported 

IFNγ/ERK pathway.  
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Figure 3.11- PPARγ has increased turnover in the STAT3 KO preadipocytes 

A) RT-qPCR of PPARγ from Day 0 preadipocytes. N=3. Student’s t test. B) RT-qPCR of ISG15 

from Day 0 preadipocytes. N=3. Student’s t test. Data is presented as the mean ± SD C) 

Representative immunoblot of whole cell extracts from Day 1 preadipocytes treated with either 

10µM MG132 or 10µM PD0325901 for 8 hours. N=2. TBP is used as a loading control. D) 

Densitometry of immunoblot in C). N=2. Data is expressed as mean ± SEM. E) Immunoblot of 

two STAT3 WT and KO biological replicates from Day 1 whole cell lysates blotted for 

phosphorylated ERK1/2. Cells were treated with vehicle or PD0325901 for 8 hours. TBP is used 

as a loading control. F) RT-qPCR of PPARγ from Day 1 STAT3 WT and KO treated with 

vehicle or MG132 for 8 hours. N=2. Data is expressed as mean ± SD.   
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3.10 Deletion of STAT3 after the Induction Phase does not alter UCP1 levels 

Although the STAT3 inhibitor studies (Figure 3.3) suggested that STAT3 was required 

only during the induction period, there is the possibility of non-specificity using a STAT3 

inhibitor. Using the Tamoxifen-Inducible Cre system, we are able to delete STAT3 at different 

times during differentiation and avoid the problem of off target effects. Deletion of STAT3 prior 

to induction leads to loss of UCP1 levels and a reduction in PPARγ (Figure 3.12, Lane 1). 

However, if tamoxifen is added at Day 2 or Day 5, there is no reduction in UCP1 or PPARγ 

protein compared to the WT (lanes 2, 3, 4). This confirms that STAT3 is only required for 

differentiation during the induction phase, and is dispensable for UCP1 expression after the 

induction phase is complete.  
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Figure 3.12- Deletion of STAT3 after the induction phase has no effect on UCP1 protein 

levels 

Representative immunoblot of Day 7 whole cell extracts. D2= tamoxifen added to WT cells on 

Day 2, D5= tamoxifen added to WT cells on Day 5. N=3. 
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3.11 pan-JAK Inhibition Suggests that the JAK/STAT Pathway has a Biphasic Response to 

Differentiation 

 Since STAT3 is down regulated after the induction period, and deletion of STAT3 after 

induction does not affect total UCP1 amounts, it is possible that the JAK/STAT pathway may be 

pro-adipogenic during the induction period and anti-adipogenic after induction. To test this 

hypothesis, we treated the preadipocytes with 2µM of Ruxolitinib, a pan-JAK inhibitor, either 

during the induction phase (D0-D2), or after the induction phase (D2-D7). In Figure 3.13, 

treatment with 2µM of Ruxolitinib during the induction period results in reduced amounts of 

UCP1 in the STAT3 WT (Lane 3), which is expected as this should block both STAT3 and 

STAT5 signaling. Interestingly, treatment with Ruxolitinib during the terminal differentiation 

phase actually up regulated expression of UCP1 in the STAT3 WT (Lane 5). We have seen 

before that Ruxolitinib can increase UCP1 expression, but that was in an immortalized system 

and treatment improved UCP1 expression regardless of what stage of differentiation the cells 

were in (171). This indicates that: 1) The JAK/STAT pathway is either pro-adipogenic or anti-

adipogenic depending on the stage of differentiation, and 2) that immortalization changes the 

cells in an unknown way that removes this biphasic response. Treatment with Ruxolitinib had no 

affect on the KO regardless of when the drug was added (Lanes 4 and 6). 
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Figure 3.13- Inhibition of JAK shows a biphasic response 

Representative Immunoblot of Day 7 lysates from STAT3 WT (Lanes 1, 3, 5) and KO (Lanes 2, 

4, 6) cells treated with vehicle or 2µM Ruxolitinib during different periods of the differentiation 

time course. The exposure time was adjusted so that Lane 5 was not saturated; WT vehicle (Lane 

1) appears to be decreased due to these exposure conditions but are likely not affected. N=2. 
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3.12 STAT3 KO Cells Have Increased Apoptosis in the Early Terminal Differentiation 

Phase 

 We noticed that the number of cells on the STAT3 KO plate seemed to become less 

numerous as the differentiation time course proceeded, even though the cells start at a similar 

density to STAT3 WT cells. While part of this difference may be due to reduced proliferation of 

the STAT3 KO cells during the induction phase, we wanted to see if there were any differences 

in apoptosis between STAT3 WT and KO during the differentiation time course. In Figure 

3.14A and B, we sampled different time points utilizing Annexin V/Propidium Iodide Flow 

Cytometry. We saw that the induction cocktail increased Annexin V staining equally in the WT 

and KO on Day 2 compared to pre-induction at Day 0. However, by Day 4, the levels of Annexin 

V staining decreased in the WT whereas levels doubled for the KO. By Day 7, the levels of 

Annexin V in the KO returned to WT levels. The increased Propidium Iodide positive/Annexin 

V negative staining seen in the WT and the KO at later time points are likely artifacts of 

processing cells as the adipocytes become more fragile and more likely to have a membrane 

rupture due to the increased lipid droplet accumulation. As a positive control, we treated WT 

Day 0 and Day 4 cells with 500µM H2O2 for 5 hours (Figure 3.14B and C). These results 

indicate that there is a defined window during the early terminal differentiation phase where the 

KO cells can initiate apoptosis. Not all cells initiate apoptosis, as the plate is still confluent by 

Day 7 (Figure 3.9). There is likely a spectrum of response in the STAT3 KO cells. Some cells 

may not respond to the induction cocktail and begin differentiation. Other cells respond and are 

able to fully differentiate by forming lipid droplets and expressing some UCP1. Most cells 

appear to fall in between, differentiating up to a point and then either stalling or initiating 

apoptosis.  
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Figure 3.14- STAT3 KO have increased apoptosis during the early terminal differentiation 

phase 

A) Annexin V/Propidium Iodide Flow Cytometry time course for WT and KO STAT3 

adipocytes. The graph is a concatenation of 3 biological replicates per time point for both WT 

and KO. B) Quantitation of the Apoptosis time course. Two-way ANOVA with Sidak’s multiple 

comparison’s tests. * = p< 0.05. N=3 for each sample. Data is presented as the mean ± SEM. C) 

Positive controls for Apoptosis assay utilizing 500µM H2O2 for 5 hours. D) Quantitation of C). 

One-way ANOVA with Dunnett’s multiple comparison’s test. N.s. = not significant. N=3 for 

WT Day 0 and N=2 for WT Day 4. Data is presented as the mean ± SEM. 
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3.13 Inhibition of Wnt Ligand Secretion During Induction Rescues the Adipogenic and 

Thermogenic Program in STAT3 KO Preadipocytes  

We wanted to determine if STAT3 regulates signaling pathways known to be important 

during the early stages of adipogenesis. We decided to use an inhibitor/activator screen to see if 

we could identify a pharmacological agent that could rescue adipogenesis in the STAT3 KO. We 

selected the following three agents for our first screen: IWP2, a general Wnt inhibitor; DAPT, an 

inhibitor of the Notch Pathway; and SAG, an agonist for the Hedgehog Pathway. We selected 

these three drugs after a literature search indicated that these three pathways (Wnt, Notch, and 

Hedgehog) can modulate adipogenesis and that these pathways have been reported to have cross-

talk with the JAK/STAT pathway (172-178). We incubated the preadipocytes with these three 

drugs starting one day before induction and continuing throughout the full differentiation period. 

We found that inhibition of the Notch pathway or activation of the Hedgehog pathway did not 

rescue differentiation of STAT3 KO cells. However, treatment with 1µM of IWP2, an inhibitor 

of Porcupine (PORCN) in the Wnt signaling pathway, fully restored UCP1 expression in the 

STAT3 KO cells (Figure 3.15A, lanes 2 vs. 4). PORCN is an endoplasmic reticulum 

intramembrane O-serine palmityltransferase whose function is to add an acyl group to a 

conserved serine in all Wnt ligands (179). This acylation is necessary for proper secretion and 

signaling of Wnt ligands (145). IWP2 does not affect Wnt signaling from exogenous sources of 

Wnt, suggesting that the source of the Wnt that is suppressing STAT3 KO cells are from the cells 

themselves and not the media. We also tested another PORCN inhibitor, Wnt-C59, to confirm 

that the results are due to inhibition of PORCN and reduce the possibility of off-target effects. As 

expected, treatment with 1µM of this second PORCN inhibitor recapitulated the results seen with 
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IWP2 (Figure 3.15B). Treatment with IWP2 and Wnt-C59 also restored lipid droplet 

accumulation in the STAT3 KO cells (Figure 3.15C).  
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Figure 3.15- Inhibition of PORCN rescues STAT3 KO brown adipocytes 

A) Representative immunoblot of Day 7 cells from an inhibitor/activator screen for drugs that 

can rescue STAT3 KO cells. Cells were treated for 7 days with either 1µM IWP2, 5µM DAPT, 

100nM SAG, or DMSO control. N=3. B) Representative immunoblot of Day 7 cells treated with 

1µM Wnt-C59 for 7 days. C) 10x micrograph of Oil Red O staining from Day 7 cells treated 

with IWP2 or Wnt-C59 for 7 days. Scale bar = 200µm. N=3. D) Whole plate Oil Red O Staining 

of Day 7 cells treated for 7 days with Wnt-C59. N=3. 
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3.14 STAT3 KO Cells have Reduced Histone H3K27 Acetylation at the UCP1 Promoter 

and Enhancer Regions and can be Rescued with IWP2 

Epigenetic changes occur during adipogenesis that regulate access to cell-specific genes 

involved in the mature functioning brown adipocyte (180). We wanted to determine if STAT3 

KO adipocytes have altered histone modifications at the UCP1 enhancer and proximal promoter 

regions, and whether rescue with Wnt inhibition can restore those histone modifications. ChIPs 

were performed using an antibody to H3K27Ac, a marker of open and active chromatin (181). In 

Figure 3.16, STAT3 KO cells have reduced levels of H3K27Ac in the enhancer and proximal 

promoter regions of UCP1, and treatment with IWP2 restores this histone modification. 

PRDM16 mRNA expression is down 5-fold in the KO, so we also analyzed histone acetylation at 

the PRDM16 promoter. Although it failed to reach statistical significance, the same trend can be 

seen: STAT3 KO have less acetylation and IWP2 treatment can restore acetylation. The reduced 

acetylation is not a global depression as acetylation levels are equivalent between the WT and 

KO, and are also unchanged between vehicle and IWP2 treatment conditions. Additionally, we 

profiled a site that should not contain acetylated histone. IGX1A is a region in the mouse 

genome that is considered a “gene desert” as there are no known transcription start sites within 1 

megabase of the region. As expected, histone acetylation is barely above the non-specific IgG 

background. 

  



 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16- STAT3 KO cells have reduced H3K27Ac levels that can be rescued with IWP2 

ChIP of the UCP1 Enhancer and Proximal Promoter regions, PRDM16 promoter, and positive 

(Actin Promoter) and negative (IGX1A) controls from Day 5 adipocytes treated with 1µM IWP2 

or vehicle from D0-D5. Two-way ANOVA with post-hoc testing compared to the KO H3K27Ac 

sample. * = p< 0.05. N=3. Data is presented as the mean ± SEM. 
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3.15 Wnt Inhibition is needed only during the Induction Period, showing temporal 

correlation with STAT3 

We wanted to determine if inhibition of Wnt signaling during the induction period is 

sufficient to rescue STAT3 KO preadipocytes. STAT3 KO cells were incubated with IWP2 

either during the induction phase (Day 0 to Day 2), after the induction phase (Day 2 to Day 7), or 

for the whole period (Day 0 to Day 7). Inhibition of Wnt signaling during the induction period is 

necessary and sufficient to rescue UCP1 in STAT3 KO cells, and is unable to rescue UCP1 after 

the induction period is completed (Figure 3.17). This result is in agreement with a previous 

study that determined that Wnt inhibition increases UCP1 expression in wild-type beige cells 

when added during the induction phase (182). Therefore, there is a temporal correlation between 

when STAT3 is required, and when Wnt inhibition can rescue STAT3 KO preadipocytes. 

  



 96 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17- IWP2 can only rescue STAT3 KO preadipocyte differentiation when applied 

during the induction period 

Immunoblot from Day 7 lysates of adipocytes treated with IWP2 during different phases of 

differentiation. The time range for IWP2 treatment is given relative to addition of the induction 

cocktail. N= 3. 
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3.16 β-Catenin Levels are not Down Regulated in the STAT3 KO 

Inhibition of the Wnt pathway with IWP2 provides a way to rescue STAT3 KO preadipocytes, 

but this alone does not tell us which Wnt pathway is responsible as IWP2 suppresses secretion of 

Wnt ligands for both the β-catenin canonical pathways and the non-canonical β-catenin 

independent pathways. Previous studies have shown that the canonical β-catenin pathway and 

the non-canonical Calcium-Calmodulin/Calcineurin pathway both suppress adipogenesis in 3T3-

L1 cells (159). Most of the literature to date has focused on the canonical β-catenin pathway in 

the suppression of adipogenesis, so we decided to analyze β-catenin levels over the course of 

differentiation. 

In Figure 3.18A, by the end of the induction phase, β-catenin has been down regulated in 

the WT cells but not in the KO. There also appears to be a trend towards increased β-catenin 

levels in the KO during the induction period. Surprisingly, by Day 7 β-catenin is still detectable 

in the KO cells and is increased approximately 15 fold over the WT (Figure 3.18B and C). 

When the mRNA levels of β-catenin are measured at Day 7, we see no difference, indicating that 

the down regulation of β-catenin is occurring post-transcriptionally (Figure 3.18D).  
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Figure 3.18 -β-Catenin is not down regulated in the STAT3 KO 

A) Representative immunoblot of STAT3 WT and KO preadipocytes during the induction phase. 

Time is hours after addition of induction cocktail. N=3. B) Representative immunoblot of Day 7 

STAT3 WT and KO adipocytes. N=5. C) Densitometry of B). O.D. (A.U.) = Optical Density, 

Arbitrary Units. N=5. * = p< 0.05. Student’s t test. Data is presented as mean ± SEM D) RT-

qPCR of Day 7 STAT3 WT and KO adipocytes for β-Catenin. N=3. N.S.= not significant. 

Student’s t test. Data is presented as mean ± SD. 
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3.17 STAT3 KO adipocytes have increased Wnt/β-Catenin signaling during the induction 

phase 

 Since β-Catenin levels are not down regulated by the end of the induction phase, this 

suggested that there is increased Wnt/β-Catenin Signaling during the induction period. 

Measurement of mRNA levels for Axin2, a scaffold protein that is integral to the β-catenin 

destruction complex, and Dkk1, a natural antagonist to the Wnt pathway through sequestering of 

the co-receptor LRP6, are considered β-catenin regulated genes and are thus used to determine 

any differences in Wnt/β-catenin signaling (183, 184). In Figure 3.19, both Axin2 and Dkk1 are 

elevated in the STAT3 KO, confirming that the canonical Wnt pathway is elevated in the STAT3 

KO adipocytes. 
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Figure 3.19- Wnt/β-catenin signaling is elevated during induction phase in STAT3 KO 

RT-qPCR of Day 1 STAT3 WT and KO adipocytes profiled for β-catenin regulated genes Axin2 

and Dkk1. N=3. * = p<0.05. Student’s t-test. Data is presented as mean ±SD. 
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3.18 Wnt Ligands 3a, 1, and 10b are elevated in STAT3 KO adipocytes during the 

induction phase 

 Now that we have established increased canonical Wnt/β-Catenin Signaling, we wanted 

to determine if there is any increased expression in Wnt ligands in the STAT3 KO adipocytes. 

Recall from Figure 3.15 that the Wnt ligand secretion inhibitor IWP2 is able to rescue STAT3 

KO adipocytes. As IWP2 only blocks Wnt signaling from endogenous sources of Wnt ligands, 

this suggested that the KOs may have increased synthesis and secretion of Wnt ligands during 

the induction phase. In Figure 3.20, mRNA levels of Wnts 1, 3a, and 10b were measured. All 

three signal through the canonical Wnt pathway and all three are elevated; in the case of Wnt3a 

the mRNA is up regulated in the STAT3 KO 50 fold. 
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Figure 3.20- Canonical Wnt/β-catenin ligands are up regulated during the induction phase 

in STAT3 KO adipocytes 

RT-qPCR of Day 1 STAT3 WT and KO adipocytes for Wnt ligands that signal through the 

canonical β-catenin pathway. N=3. * = p<0.05. Student’s t-test. Data is presented as mean ±SD. 
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3.19 The Canonical β-Catenin Pathway is responsible for suppression of differentiation in 

STAT3 KO Brown Preadipocytes 

Previous studies have established that the canonical β-catenin pathway and the non-

canonical Calcium-Calmodulin/Calcineurin pathway suppress adipogenesis in 3T3-L1 cells 

(159). Since inhibition of Porcupine is a pan-Wnt inhibitor, we wanted to determine which 

pathway or pathways were responsible for suppression of UCP1 in STAT3 KO adipocytes. We 

selected IWR1-endo to target the canonical β-catenin pathway; the mechanism of action is 

through stabilization of Axin2, a scaffold protein of the β-Catenin destruction complex (185) . 

For the Calcium-Calmodulin/Calcineurin pathway, we selected FK506, an immunosuppressant 

that binds to FK506 Binding Protein (FKBP), which allows for FKBP to bind an inactivate 

calcineurin (186). 

 Treatment with 5µM of the β-catenin inhibitor IWR1-endo resulted in full rescue of 

UCP1 protein levels (Figure 3.21A Lanes 2 vs 8). The Calcineurin inhibitor FK506 (10ng/mL) 

produced a slight increase in UCP1 levels, which was statistically insignificant. Additionally, 

IWR1-endo rescued lipid accumulation in the STAT3 KO, whereas FK506 did not (Figure 3.21 

C-E). We also profiled more brown fat selective/specific and general fat markers by RT-qPCR. 

In Figure 3.22, there is robust rescue of brown fat markers such as CIDEA, PRDM16, and 

PPARα. Interestingly, the general fat markers were more mixed; some markers were down in the 

STAT3 KO and were rescued by Wnt/β-Catenin inhibition, others appear to be unchanged in the 

WT versus the KO samples.  

 Since Wnt inhibition can rescue the expression of UCP1 and other aspects of adipocyte 

differentiation, we wanted to profile the other defects we have seen in the STAT3 KO to 

determine if the Wnt/β-Catenin pathway is involved. In Figure 3.23, we analyzed Annexin 
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V/Propidium Iodide staining of Day 4 WT and KO STAT3 adipocytes. Treatment with IWP2 

and IWR1-endo, but not FK506, is sufficient to reduce Annexin V staining. This indicates that 

the Wnt/β-catenin pathway is responsible for the increased marker of apoptosis we see in the 

STAT3 KO cells.  

 We also measured the proliferation of the cells treated with the inhibitors to determine if 

the proliferation defect seen in the STAT3 KO could be rescued by Wnt inhibitions. Day 4 

adipocytes were analyzed with the dilutional dye Tag-IT in the presence of the inhibitors or 

vehicle (Figure 3.24). The proliferation defect was unaffected by treatment with the Wnt 

inhibitors, indicating that the proliferation defect is independent of the increased Wnt signaling 

in the STAT3 KO. 

 As a positive control, we took STAT3 KO Day 1 adipocytes treated with the inhibitors 

and profiled expression of Axin2. In Figure 3.25, Axin2 levels are decreased in the IWP2 and 

IWR1-endo conditions, but not in the FK506 condition. FK506 targets a non-canonical β-catenin 

independent pathway so the unchanged expression of Axin2 is as expected. 

 To confirm our results that it is the β-catenin pathway that is specifically involved, we 

selected a second β-catenin inhibitor, XAV939. In Figure 3.26A-C, treatment with 1µM of 

XAV939 was also able to rescue UCP1 protein levels, decrease β-Catenin levels, and restore 

lipid accumulation in the STAT3 KO cells. Conversely, we inhibited GSK3β in WT cells using 

10µM CHIR99021 for just the induction period (D0-D2). It is well known that inhibiting GSK3β 

can stabilize β-catenin levels and suppress adipogenesis in-vitro, and here we see no exception 

(187). In Figure 3.26D-F, GSK3β inhibition results in total suppression of differentiation in the 

WT STAT3 brown adipocytes and also stabilizes β-catenin levels out to Day 7. Altogether, these 
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results indicate that Wnt/β-catenin inhibition is sufficient to restore differentiation in STAT3 KO 

cells. 
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Figure 3.21- β-catenin pathway inhibitors rescue STAT3 KO brown adipocytes 

A) Representative immunoblot of Day 7 WT and KO STAT3 brown adipocytes treated with 

different inhibitors or vehicle for 7 days. N=4-5 for each treatment. B) Densitometry of A). O.D. 

(A.U.) = Optical Density (Arbitrary Units). N=4-5 for each treatment. * = p< 0.05 compared to 

KO DMSO. One-Way ANOVA with Sidak Multiple Comparison Test. Data is presented as 

mean ± SEM. C) 10x micrographs of Oil Red O staining of Day 7 WT and KO STAT3 brown 

adipocytes. Scale bar = 200µm. D) Quantitation of percent of field positive for Oil Red O stain in 

C). N=3-4 per treatment. * = p< 0.05 compared to KO DMSO. One-Way ANOVA with Sidak 

Multiple Comparison Test. Data is presented as mean ± SEM. E) Whole Plate Oil Red O staining 

of Day 7 WT and KO STAT3 brown adipocytes. 
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Figure 3.22- RT-qPCR analysis of Wnt inhibitors 

Day 7 STAT3 WT and KO Cells were treated with the Wnt inhibitors for 7 days or vehicle. RT-

qPCR was performed on various targets important in brown- and general-adipocyte 

development. N=4. * = p< 0.05 compared to KO DMSO. One-Way ANOVA with Sidak’s 

Multiple Comparison Tests. Data is presented as mean ± SD. Tbp was used as a loading control. 
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Figure 3.23- Treatment with Wnt inhibitors reduces Annexin V staining in the KO brown 

adipocytes 

A) Flow Cytometry Annexin V/Propididum Iodide of Day 4 primary cells treated with the Wnt 

inhibitors or vehicle for 4 days. Each panel is a concatenation of three independent biological 

replicates. B) Quantitation of A). One-Way ANOVA with Sidak’s Multiple Comparison Test. 

* = p< 0.05. N=3. Data is presented as mean ± SEM. 
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Figure 3.24- Wnt inhibition fails to rescue proliferation defect in STAT3 KO 

Tag-IT assay of Day 4 STAT3 WT and KO adipocytes treated with the Wnt inhibitors. N=3. * = 

p<0.05, compared to KO DMSO. N=3. One-way ANOVA. Data is presented as mean ±SEM. 
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Figure 3.25- Canonical Wnt inhibitors block β-catenin signaling 

RT-qPCR of Day 1 STAT3 KO adipocytes treated with the Wnt inhibitors or vehicle. N=4. * = 

p<0.05. One-way ANOVA. Data is presented as mean ±SD. 
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Figure 3.26- XAV939, a second β-catenin inhibitor, rescues STAT3 KO while a GSK3β 

inhibitor, CHIR99021, blocks differentiation in WT STAT3 brown adipocytes 

A) Representative immunoblot of Day 7 STAT3 WT and KO cells treated for 7 days with 1µM 

XAV939 or vehicle. N=2. B) Oil Red O micrographs of Day 7 STAT3 WT and KO cells treated 

for 7 days with XAV939 or vehicle. 10x magnification, scale bar = 200µm. N= 3. C) Whole 

plate Oil Red O of cells treated with XAV939 for 7 days or vehicle. N=3. D) Representative 

immunoblot of Day 7 STAT3 WT cells treated only during the induction with 10µM CHIR99021 

or vehicle. N=3. E) Whole plate image of Day 7 WT STAT3 cells treated with CHIR99021 or 

vehicle. N=3. F) Oil Red O micrographs of Day 7 WT STAT3 cells treated with CHIR99021 or 

vehicle. 10x magnification, scale bar = 200µm. N=3. 
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3.20 Knockdown of β-Catenin Before Induction Fully Rescues UCP1 Levels 

 So far we have demonstrated that inhibitors to the Wnt/β-catenin pathway are able to 

rescue adipogenesis in the STAT3 KO cells. Even though we have targeted different aspects of 

the pathway with different drugs, there is still a small chance that these inhibitors could be doing 

something else to the STAT3 KO to effect rescue independent of β-catenin. Therefore, the 

definitive test that it is the inability to suppress β-catenin that is causing the block in 

differentiation is to knockdown β-catenin through RNA interference. 

 48 hours before induction, we transfected either non-targeting control siRNA or β-catenin 

specific siRNA and let the transfection proceed for 2 days. When the transfection was complete, 

the cells were either induced to differentiate, or Day 0 mRNA was collected for β-catenin 

knockdown efficiency analysis. In Figure 3.27A, we saw that the siRNA was effective in 

reducing levels of β-catenin approximately 20 fold compared to the non-targeting siRNA. In 

Figure 3.27B, the levels of β-catenin in the β-catenin siRNA STAT3 KO sample are still 

undetectable at Day 7 compared to control siRNA STAT3 KO (Lanes 2 and 4). Additionally, we 

see full recovery of UCP1 in the STAT3 KO where β-catenin is absent. With these results, 

combined with the Wnt inhibitor studies, we can confidently conclude that the block in 

adipogenesis in the STAT3 KO adipocytes is singly due to the inability to down regulate β-

catenin during the induction phase and that full restoration of the adipogenic and thermogenic 

program can be rescued in primary Myf5+ brown adipocytes by blocking Wnt/β-catenin. 
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Figure 3.27- Knockdown of β-catenin can fully rescue UCP1 in the STAT3 KO brown 

adipocyte 

A) Day 0 STAT3 WT and KO samples were collected and analyzed by RT-qPCR for β-catenin 

knockdown efficiency. N=3. * = p< 0.05. Student’s t test. Data is presented as mean ± SD. B) 

Representative immunoblot of Day 7 STAT3 WT and KO Adipocytes. N=2. 
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3.21 Beige Cells also Require STAT3 Prior to Induction and can be Partially Rescued with 

Wnt Inhibition 

 The results so far have all been in the Myf5+ lineage of thermogenic adipocytes. 

However, as stated in the introduction, beige cells likely have more human relevance as the 

UCP1+ adipocytes in humans are Myf5- (77, 81). Therefore, using the results generated in the 

Myf5+ lineage, we wanted to determine if STAT3 is also required for beige development, is it 

also only required during the induction period, and can Wnt inhibition also rescue STAT3 KO 

beige adipocytes. 

 The SVF from the inguinal fat pads from 1-month-old mice was isolated and STAT3 was 

deleted using tamoxifen in an identical fashion to the Myf5+ cells. In Figure 3.28A, we 

performed a knockout time course where we either knocked out STAT3 prior to induction or at 

Days 2 and 5 after induction. In agreement with the Myf5+ cells, STAT3 is required for UCP1 

expression and must be present during the induction period. Deletion of STAT3 after the 

induction period also has no deleterious effect on UCP1 protein levels, and if anything, deleting 

STAT3 after induction seems to improve UCP1 levels. Also, we see the levels of β-catenin are 

elevated in the STAT3 KO beige cells compared to the WT cells, just as it was for the Myf5+ 

cells.  

 In Figure 3.28B, we treated the STAT3 WT and KO cells with the Wnt inhibitors. We 

used the same treatment conditions as we did for the Myf5+ cells. Interestingly, while IWP2 and 

IWR1-endo can increase UCP1 in the STAT3 KO cells, the rescue is not as robust as in the 

Myf5+ cells. 
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Figure 3.28 Beige cells also require STAT3 during the induction period, but Wnt inhibition 

is not as robust 

A) Representative immunoblot of Day 7 STAT3 WT and KO beige cells. D2= Tamoxifen added 

to WT on Day 2, D5= Tamoxifen added to WT on Day 5. N=3. B) Representative immunoblot 

of Day 7 STAT3 WT and KO beige cells treated for 7 days with the indicated inhibitor. N=2. 
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3.22 Pilot In-Vivo Beiging Study Shows Equal Induction of UCP1 in the STAT3 WT and 

KO animals 

 We were unable to generate any viable pups from a Myf5+ promoter driven Cre, Floxed 

STAT3 animal. Because our Tamoxifen Cre mouse has Cre Recombinase ubiquitously expressed 

in every tissue, we were hesitant to attempt to knockout STAT3 in the entire adult animal. We 

decided to attempt a pilot study where we orally gavaged three 8-week-old mice once a day for 

five days at a dose of 5mg/20g body weight. One mouse died within a week of administration of 

the tamoxifen, while the other two mice were viable. We waited four weeks with the remaining 

two mice to allow tamoxifen to clear the system, since it is reported that tamoxifen can induce 

browning in the inguinal fat pad (168). For one mouse, we injected I.P. once daily a 1mg/kg 

body weight dosage of CL316,243, a β3 agonist, to induce browning of the inguinal fat pads for 

a total of 7 days. The other mouse received an equivalent dosage of PBS. As controls, we took 

two mice that had not been gavaged with tamoxifen and injected one with CL316,243 and the 

other with PBS at the same dosage as the KO mice. We harvested the fat pads and ran 

immunoblots for STAT3 and UCP1. In Figure 3.29, the tamoxifen was effective in knocking 

down STAT3 expression (Lanes 2 and 4), however, the mice still induced UCP1 protein levels to 

an equal extent to the WT controls (Lanes 3 and 4). The PBS mice as expected show no evidence 

of browning.  
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Figure 3.29- Deletion of STAT3 in inguinal fat pad of 8 week old mice appears to not affect 

UCP1 induction with the β3 agonist CL316,243 

Immunoblot of mouse inguinal pads from WT and KO STAT3 mice treated once per day for 7 

days with 1mg/kg CL316,243 by I.P., or with PBS control. N=1 mouse for each condition. 
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3.23 Primary Tyk2 KO cells Differentiate Normally 

 Previously, our lab had investigated the role of Tyk2 in brown adipocyte differentiation . 

Most of the cell work involved SV40 immortalized Tyk2 WT and KO cells. We decided to 

continue the project utilizing primary cells. However, in the primary cell system, we were unable 

to recapitulate our prior results. We isolated SVF from interscapular fat pads of newborn mice 

from either a Tyk2 WT or total Tyk2 KO line. We grew them to confluence and induced them to 

differentiate and analyzed the cells by RT-qPCR. In Figure 3.30, the expression levels of UCP1 

and CIDEA are not different between the Tyk2 WT and Tyk2 KO lines. 
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Figure 3.30- Primary Tyk2 KO brown adipocytes have equal UCP1 and CIDEA expression 

to the WT 

RT-qPCR of Day 6 Tyk2 WT and KO adipocytes. N=4. Data is presented as mean ± SD. 18S 

rRNA was used as a loading control. 
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3.24 Tyk2 KO animals Appear to Beige Normally under β3 Agonist Stimulation 

 We also attempted to determine if Tyk2 is required for beiging under stimulation by the 

β3 agonist CL316,243. We treated WT and KO Tyk2 mice to once daily I.P. injections of either 

PBS or 1mg/kg body weight CL316,243 for 7 days and then harvested the inguinal fat pad for 

analysis by RT-qPCR for UCP1 expression. In Figure 3.31, the WT and the KO Tyk2 animals 

induced equal expression of UCP1 under stimulation from the β3 agonist. 
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Figure 3.31- Induction of UCP1 mRNA by CL316,243 in Tyk2 KO mice appear to be 

normal 

RT-qPCR for UCP1 expression in the inguinal fat pads of mice treated with either PBS or 

1mg/kg CL316,243 once a day for 7 days by I.P. injection. N=2 mice per group. 18S was used as 

a loading control. Data is presented as mean ± SD; normalized to Tyk2 WT control. 
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3.25 Immortalization of STAT3 Preadipocytes Appears to Remove the Requirement for 

STAT3 in Differentiation 

 Use of primary cells allows for robust differentiation of adipocytes and expression of 

UCP1; however there are downsides. The primary cells only become available when there are 

newborn pups available, which makes the frequency of obtaining samples difficult to predict; 

therefore, a large breeding colony has to be maintained to ensure constant supply of primary 

cells. Additionally, primary cells lose their ability to differentiate the longer they are in culture. 

In our hands, the WT cells start to significantly lose their ability to express UCP1 after more than 

one week in culture (data not shown). For these reasons, many investigators create cell lines of 

adipocytes through immortalization using Murine Stem Cell Virus containing the SV40 Large T 

Antigen. Our prior work in adipocytes utilized immortalized lines, and we began the project with 

the intent to create an immortalized STAT3 line. However, as Figure 3.32 shows, once the cells 

are immortalized, the difference seen in UCP1 mRNA expression levels in primary cells is lost. 
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Figure 3.32- UCP1 mRNA expression appears to be equal in SV40 immortalized WT and 

KO STAT3 brown adipocytes 

RT-qPCR of UCP1 mRNA in Day 7 WT and KO STAT3 immortalized brown fat cells. N=2. 

Data is expressed as mean ± SD. Tbp was used as a loading control. 

  



 127 

3.26 Mitochondrial STAT3 Levels Decrease During the Induction Period and Remained 

Depressed Throughout the Terminal Differentiation Phase 

 Previous work in our lab has identified that STAT3 can localize to the mitochondria, 

where it can affect functions such as ROS production, ETC activity, and binding to Cyclophilin 

D, part of the Mitochondrial Permeability Transition Pore (MPTP) (188-190). Therefore, we 

wanted to determine whether STAT3 localizes to the mitochondria in brown adipocytes and how 

its levels change during differentiation. In Figure 3.33, STAT3 rapidly exits the mitochondria 

during the induction phase and appears to stay depressed throughout the terminal differentiation 

phase. This rate of loss from the mitochondria appears to be more rapid than the reduction in 

cytosolic fractions. In contrast, levels of STAT1 in the mitochondria appear to be relatively 

unchanged during the time course. 
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Figure 3.33- STAT3 rapidly exits the mitochondria during brown adipocyte differentiation 

Representative immunoblot of cytosolic and mitochondrial fractions from primary adipocytes at 

the indicated time points along the differentiation time course. N=2. 
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Chapter 4: Discussion 
 

We have shown for the first time that STAT3 is necessary for differentiation of primary 

brown adipocytes. Loss of STAT3 leads to a more than 10 fold loss of UCP1 and CIDEA, and 5 

fold reduction in PRDM16 and PPARα expression (Figure 3.8). Interestingly, the general fat 

genes show more variability; this is a result we have seen before in a STAT3 shRNA 

immortalized cell system (139). One interpretation is that STAT3 may have brown fat specific 

effects in addition to its role in the general adipogenic program; our previous results did show 

that STAT3 physical interacts with and stabilizes PRDM16, which lends support to this model. 

However, another equally valid model is that the cells are encountering a decision point early in 

the differentiation program before the thermogenic program is fully initiated so that cells can 

gain access to the chromatin of brown fat specific genes. Figure 3.16 showed that at Day 5, 

Histone H3K27Ac is decreased in the STAT3 KO at the UCP1 promoter and enhancer regions. 

We have attempted to ChIP the UCP1 promoter and enhancer before Day 5, but we were unable 

to detect any significant histone acetylation (data not shown). The reduction is histone 

acetylation would presumably make access to the promoter and enhancer binding sites for 

transcription factors like PPARγ, PPARα, PGC1α, and PRDM16 much more difficult. Also 

supporting this model is the increase in apoptosis seen at Day 4 in the STAT3 KO (Figure 3.14). 

The increased apoptosis could be due to conflicting signals in the cells. The STAT3 KO cells are 

clearly attempting to differentiate as markers of adipocytes are not present in Day 0 lysates, but 

present in Day 7 and show little difference (Figure 3.4). However, if they are also receiving 
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suppressive signals, for example from the Wnt/β-Catenin pathway, the cells undergo a stochastic 

decision point to either halt differentiation and remain in a quasi-adipocyte state, or initiate 

apoptosis. 

Since STAT3 has first been studied in the 3T3-L1 system, it has been hypothesized that 

STAT3 only functions during the induction phase in in-vitro differentiation of adipocytes . 

However, to our knowledge, no one has directly tested that hypothesis through either 

pharmacological inhibition time courses or gene deletion time courses. We therefore believe we 

are the first to confirm this hypothesis. It is also interesting that the JAK/STAT pathway appears 

to have a biphasic response during differentiation of brown fat. In Figure 3.13, Ruxolitinib 

increased UCP1 protein levels in WT STAT3 cells over the vehicle control. This effect has been 

seen before in immortalized systems of brown and beige (171). However, the decrease with 

Ruxolitinib during the induction phase is a new finding, and not surprising given the role that 

STAT3 and STAT5 play in adipogenesis. What complicates these findings are in-vivo studies 

that show that cytokines like IL-6, which signal in part through STAT3, generally increase UCP1 

levels (191). It could be that the in-vitro system is exposed to cytokines in the serum or released 

from the cells themselves that suppress full expression of UCP1, while other cytokines that are 

not present in-vitro but are present in-vivo would always be pro-thermogenic and adipogenic no 

matter what phase of development the tissue is in. Another explanation is the in-vitro model of 

adipogenesis fails to adequately recapitulate what is seen in-vivo, which is certainly possible. 

This is concerning about the applicability of our findings to in-vivo models, however, this pilot 

study has some caveats. First, we do not know which cells in the tissue actually were knocked 

out with STAT3. Some cells may not have been exposed to tamoxifen, and these cells were 

enough to produce UCP1 under β3 agonism. Tissue immunofluorescence for STAT3 after 
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addition of tamoxifen would determine what percentage of cells in the tissue are STAT3 KO. 

Additionally, we may have deleted STAT3 at a point in the development of the tissue where 

STAT3 is no longer required. We unfortunately were unable to create a tissue specific knockout 

line of STAT3 using an early acting Cre. While another STAT3 adipose specific knockout 

mouse exists, it is driven by the aP2 promoter- a terminal marker of adipocytes. If our in-vitro 

results do correlate to an in-vivo system, then by the time aP2 is turned on, STAT3 has already 

fulfilled its function in adipogenesis and any effects seen are defects in the functioning of mature 

adipocytes. Currently, other than Myf5 Cre, with which we failed to generate any viable pups, 

there is no early acting Cre that would be limited to BAT that could be used to test the in-vivo 

role of STAT3 in brown adipose development.  

Until now the function of STAT3 during the induction phase was not well characterized. 

There was a report that PPARγ was downstream of STAT3 and STAT3 KO cells can be rescued 

by application of a PPARγ agonist. Our protocol involves treating the cells with rosiglitazone, a 

PPARγ agonist, during the induction period. We have attempted to leave rosiglitazone in the 

cells for the entire 7 days, but we have seen that most replicates are unable to be rescued by 

continuous PPARγ agonism. In fact, our beige in-vitro system involves leaving rosiglitazone in 

the entire 7 days to maximize UCP1 expression, but rosiglitazone still failed to rescue UCP1 

levels in the beige cells.  

With our results, we now show that the major function of STAT3 during in-vitro 

differentiation is to suppress β-catenin levels. Through both pharmacological inhibition and 

knockdown studies, we were able to completely restore UCP1 protein levels, and mRNA 

expression of other markers of brown adipocytes like PRDM16 and CIDEA. Therefore, we 
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conclude that the single block to differentiation of STAT3 KO primary brown adipocytes is the 

inability to suppress β-catenin. 

In hindsight, it is not surprising that STAT3 would be involved in cross talk with β-

catenin; there are multiple papers in the literature describing cross talk between β-catenin and 

STAT3 (192, 193). However our results are novel, because research to date has usually shown 

STAT3 and Wnt co-operatively functioning rather than in opposition (178, 193-195). Why there 

is this difference between STAT3 and Wnt interaction in adipocytes versus other systems 

requires further study. 

Another interesting finding is that STAT3’s regulation of β-catenin is post-

transcriptional. β-catenin mRNA amounts at Day 7 are not different between the STAT3 WT and 

the STAT3 KO (Figure 3.18). This is likely due to increased synthesis and secretion of Wnt 

ligands, especially Wnt3a, as the presence of Wnt ligands stabilizes β-catenin (Figure 3.20). 

That β-catenin is still elevated at Day 7 indicates that Wnt ligands are still present in the STAT3 

KO. There are multiple reports describing long-term regulation of Wnt ligand expression in 

adipocytes. Specifically, EZH2, a metyltransferase that is part of the polycomb repressor 

complex 2 (PRC2), methylates Histone H3 K27 in the promoters of Wnt ligands as 

differentiation progresses, which results in silencing of those genes (160, 196). This could 

indicate that in the absence of STAT3, the long-term suppression of Wnt signaling is affected. 

The elevated β-catenin could also be the result of suppressed proteasomal degradation. It is 

known that STAT3 can crosstalk with GSK3β, which is part of the β-catenin destruction 

complex, and they can appear to regulate each other (197, 198). Additionally, a recent report 

determined that STAT3 interacts with and stabilizes an E3 Ubiquitin Ligase, SIAH1 (199). The 

stabilized SIAH1 then leads to increased proteasomal degradation of β-catenin. 
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Our findings also show that STAT3 is required for full UCP1 expression in beige cells, 

and indeed, KO of STAT3 also led to increased β-catenin in the beige cells (Figure 3.28). 

However, rescue with Wnt inhibition was only partial. There are several possible explanations 

here. The first is that the mechanism of STAT3 in beige fat is slightly different and does not 

depend as much on surpressing β-catenin. Another explanation is that the inhibitors are not 

adequate in beige fat and knockdown or deletion of β-catenin is necessary for full restoration. 

Additionally, we are isolating the SVF from one month old mice for beige studies and newborn 

pups for the Myf5+ studies. This difference in isolation protocols exists because at birth the 

Myf5+ interscapular fat pad is present, while the inguinal fat pad is not. We must wait for the fat 

pad to develop before we can harvest and adequate number of preadipocytes for experiments. It 

is possible that the Wnt pathway plays a stronger role in suppression of differentiation in the 

younger cells. 

 Immortalization of primary brown adipocytes removed all differences between the WT 

and KO STAT3 cells, which is what necessitated the use of primary cells. One explanation is that 

the β-catenin pathway is suppressed or bypassed in SV40 immortalize cells. However, that is not 

the case. The explanation is that immortalization affects the WT more than the KO. When the Ct 

values of primary and immortalized lines are compared, we see that the Ct value increases in the 

WT, but remains unchanged in the KO. Immortalization therefore negatively affects the WT to 

the point that it differentiates comparably to a primary KO STAT3 cell. 

Finally, the inability to replicate the results in the Tyk2 primary system is disappointing. 

We have no explanation as to why the results were unable to be replicated. The Tyk2 KO mice 

are knockout from conception, so it cannot be that the cells have passed a cell fate point where 

Tyk2 is no longer needed. One possible explanation is that immortalization may render Tyk2 
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more important than in primary cells. As stated above, immortalized WT cells have a reduced 

ability to differentiate. We use a retrovirus in our immortalization protocol and we have found 

that after immortalization, ISG15, a marker of interferon signaling, is elevated in immortalized 

cells compared to primary cells (data not shown). It could be that Tyk2 is needed to attenuate this 

“inflammatory” signaling. It is known that interferons can suppress adipogenesis (200, 201). The 

suppression of this interferon response in brown adipocytes seems to be through PRDM16 (202). 

We have published that deletion of Tyk2 can lead to reduction in PRDM16, but perhaps there is 

more complexity to this regulation than is currently understood. 

 We propose that the function of STAT3 is to repress expression of select Wnt ligands 

during the induction phase of adipogenesis. Our model is presented as Figure 4.1. Once the cells 

are induced to differentiate, STAT3 is activated through phosphorylation and translocates to the 

nucleus, where through either direct or indirect means leads to repression of Wnt ligand 

expression. Loss of STAT3 relieves that suppression, leading to increased expression and 

secretion of Wnt ligands−particularly Wnt3a which was 50 fold up regulated. The increased Wnt 

ligands signal in an autocrine/paracrine manner leading to stabilization and nuclear translocation 

of β-catenin. β-catenin then suppresses the expression and activity of transcription factors 

important for adipogenesis and the thermogenic program, such as PPARγ, CEBPα, PRDM16, 

and PGC1α. 

 Future work in understanding how STAT3 regulates adipogenesis will require adequate 

in-vivo models to confirm that this STAT3/Wnt/β-catenin regulatory pathway is important in the 

development of brown and beige adipose tissue. This can be accomplished through adipose 

tissue selective STAT3 KO animals treated with either Wnt inhibitors, or by combining the 

STAT3 KO animals with a targeted knockout of PORCN, the Wnt ligand acylating enzyme. 
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Additionally, how STAT3 regulates Wnt ligand expression is unknown. A pilot in-silico analysis 

of the Wnt3a promoter identified putative STAT3 binding motifs within 1000bp of the 

transcription start site (data not shown). Finally, more work is required in the primary beige ex-

vivo system to determine if the Wnt suppression mechanism is not conserved in this lineage. 

 The data presented here advance our understanding of how the JAK/STAT pathway, and 

STAT3 in particular, regulates brown adipogenesis. While still in the pre-clinical stages, 

methods to increase BAT mass in humans holds potential as an adjunct treatment of obesity, 

when combined with diet and exercise. Additionally, increased BAT mass in rodents led to better 

glucose control while on a high fat diet; therapies to increase BAT mass could also be used in the 

treatment of T2D. Targeted activation of STAT3 at the proper time point in development of these 

adipocytes, or inhibition Wnt signaling could be one treatment avenue towards increasing 

UCP1+ fat tissue in humans.  
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Figure 4.1- Model of STAT3 Suppressing β-Catenin in Brown Adipogenesis 

When the preadipocytes are induced to differentiate, STAT3 is activated and through either 

direct or indirect means inhibits the expression of select Wnt ligands, leading to reduction in 

Wnt/β-Catenin Signaling. The resulting suppression of β-Catenin levels leads to promotion of 

adipogenesis. 



 137 

 
 
 
 
 

References 
 
1. Seidell, J. C. (2005) Epidemiology of Obesity. Seminars in Vascular Medicine 5, 3-14 
2. Upadhyay, J., Farr, O., Perakakis, N., Ghaly, W., and Mantzoros, C. (2018) Obesity as a 

Disease. The Medical clinics of North America 102, 13-33 
3. Cawley, J., and Meyerhoefer, C. (2012) The medical care costs of obesity: an 

instrumental variables approach. Journal of health economics 31, 219-230 
4. Cannon, B., and Nedergaard, J. (2004) Brown adipose tissue: function and physiological 

significance. Physiological reviews 84, 277-359 
5. Cypess , A. M., Lehman , S., Williams , G., Tal , I., Rodman , D., Goldfine , A. B., Kuo , 

F. C., Palmer , E. L., Tseng , Y.-H., Doria , A., Kolodny , G. M., and Kahn , C. R. (2009) 
Identification and Importance of Brown Adipose Tissue in Adult Humans. New England 
Journal of Medicine 360, 1509-1517 

6. Health, N. I. o. (2017)  Vol. 2018 
7. Organization, W. H. (2017)  Vol. 2018 
8. Prevention, C. f. D. C. a. (2018)  Vol. 2018 
9. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D., and Ogden, C. L. (2016) 

Trends in Obesity Among Adults in the United States, 2005 to 2014. Jama 315, 2284-
2291 

10. Nguyen, D. M., and El-Serag, H. B. (2010) The Epidemiology of Obesity. 
Gastroenterology clinics of North America 39, 1-7 

11. Le, A., Judd, S. E., Allison, D. B., Oza-Frank, R., Affuso, O., Safford, M. M., Howard, 
V. J., and Howard, G. (2014) The Geographic Distribution of Obesity in the US and the 
Potential Regional Differences in Misreporting of Obesity. Obesity (Silver Spring, Md.) 
22, 300-306 

12. Kim, J. H., Kim, S. H., Song, S. Y., Kim, W. S., Song, S. U., Yi, T., Jeon, M. S., Chung, 
H. M., Xia, Y., and Sung, J. H. (2014) Hypoxia induces adipocyte differentiation of 
adipose-derived stem cells by triggering reactive oxygen species generation. Cell biology 
international 38, 32-40 

13. Ogden, C. L., Carroll, M. D., Lawman, H. G., and et al. (2016) Trends in obesity 
prevalence among children and adolescents in the united states, 1988-1994 through 2013-
2014. Jama 315, 2292-2299 

14. Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A. E., Cushman, S. W., and 
Periwal, V. (2009) Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue 
Growth. PLoS Computational Biology 5, e1000324 

15. Farooqi, I. S., and O'Rahilly, S. (2004) Monogenic Obesity in Humans. Annual Review of 
Medicine 56, 443-458 

16. Schwartz, M. W., Woods, S. C., Porte, D., Jr., Seeley, R. J., and Baskin, D. G. (2000) 
Central nervous system control of food intake. Nature 404, 661-671 

17. Dubern, B., and Clement, K. (2012) Leptin and leptin receptor-related monogenic 
obesity. Biochimie 94, 2111-2115 



 138 

18. Farooqi, I. S., Matarese, G., Lord, G. M., Keogh, J. M., Lawrence, E., Agwu, C., Sanna, 
V., Jebb, S. A., Perna, F., Fontana, S., Lechler, R. I., DePaoli, A. M., and O'Rahilly, S. 
(2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and 
neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin 
Invest 110, 1093-1103 

19. Wang, B., P, C. C., and Pippin, J. J. (2014) Leptin- and Leptin Receptor-Deficient Rodent 
Models: Relevance for Human Type 2 Diabetes. Current Diabetes Reviews 10, 131-145 

20. Farooqi , I. S., Keogh , J. M., Yeo , G. S. H., Lank , E. J., Cheetham , T., and O'Rahilly , 
S. (2003) Clinical Spectrum of Obesity and Mutations in the Melanocortin 4 Receptor 
Gene. New England Journal of Medicine 348, 1085-1095 

21. Tao, Y.-X. (2010) The Melanocortin-4 Receptor: Physiology, Pharmacology, and 
Pathophysiology. Endocrine Reviews 31, 506-543 

22. Cheung, C. C., Clifton, D. K., and Steiner, R. A. (1997) Proopiomelanocortin Neurons 
Are Direct Targets for Leptin in the Hypothalamus. Endocrinology 138, 4489-4492 

23. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J., and Cone, R. D. (1997) Role of 
melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165 

24. Frazier-Wood, A. C., and Wang, Z. (2016) Genetics of Obesity. In Metabolic Syndrome: 
A Comprehensive Textbook (Ahima, R. S., ed) pp. 123-140, Springer International 
Publishing, Cham 

25. Dina, C., Meyre, D., Gallina, S., Durand, E., Korner, A., Jacobson, P., Carlsson, L. M., 
Kiess, W., Vatin, V., Lecoeur, C., Delplanque, J., Vaillant, E., Pattou, F., Ruiz, J., Weill, 
J., Levy-Marchal, C., Horber, F., Potoczna, N., Hercberg, S., Le Stunff, C., Bougneres, 
P., Kovacs, P., Marre, M., Balkau, B., Cauchi, S., Chevre, J. C., and Froguel, P. (2007) 
Variation in FTO contributes to childhood obesity and severe adult obesity. Nature 
genetics 39, 724-726 

26. Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, 
C. M., Perry, J. R. B., Elliott, K. S., Lango, H., Rayner, N. W., Shields, B., Harries, L. 
W., Barrett, J. C., Ellard, S., Groves, C. J., Knight, B., Patch, A.-M., Ness, A. R., 
Ebrahim, S., Lawlor, D. A., Ring, S. M., Ben-Shlomo, Y., Jarvelin, M.-R., Sovio, U., 
Bennett, A. J., Melzer, D., Ferrucci, L., Loos, R. J. F., Barroso, I., Wareham, N. J., 
Karpe, F., Owen, K. R., Cardon, L. R., Walker, M., Hitman, G. A., Palmer, C. N. A., 
Doney, A. S. F., Morris, A. D., Smith, G. D., Hattersley, A. T., and McCarthy, M. I. 
(2007) A Common Variant in the <em>FTO</em> Gene Is Associated with Body Mass 
Index and Predisposes to Childhood and Adult Obesity. Science 316, 889-894 

27. Jebb, S. A., and Moore, M. S. (1999) Contribution of a sedentary lifestyle and inactivity 
to the etiology of overweight and obesity: current evidence and research issues. Medicine 
and science in sports and exercise 31, S534-541 

28. Vilchis-Gil, J., Galván-Portillo, M., Klünder-Klünder, M., Cruz, M., and Flores-Huerta, 
S. (2015) Food habits, physical activities and sedentary lifestyles of eutrophic and obese 
school children: a case–control study. BMC Public Health 15, 124 

29. Martínez-González, M. Á., Alfredo Martínez, J., Hu, F. B., Gibney, M. J., and Kearney, 
J. (1999) Physical inactivity, sedentary lifestyle and obesity in the European Union. 
International Journal Of Obesity 23, 1192 

30. Hu, F. B. (2003) Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 38, 
103-108 



 139 

31. Hu, F. B., Li, T. Y., Colditz, G. A., Willett, W. C., and Manson, J. E. (2003) Television 
watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes 
mellitus in women. Jama 289, 1785-1791 

32. John, G. K., and Mullin, G. E. (2016) The Gut Microbiome and Obesity. Current 
oncology reports 18, 45 

33. Maruvada, P., Leone, V., Kaplan, L. M., and Chang, E. B. (2017) The Human 
Microbiome and Obesity: Moving beyond Associations. Cell host & microbe 22, 589-599 

34. Parekh, P. J., Balart, L. A., and Johnson, D. A. (2015) The Influence of the Gut 
Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease. Clinical And 
Translational Gastroenterology 6, e91 

35. Pinhas-Hamiel, O., and Zeitler, P. Acute and chronic complications of type 2 diabetes 
mellitus in children and adolescents. The Lancet 369, 1823-1831 

36. Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, 
B. J., Jacobsen, L. M., Schatz, D. A., and Lernmark, Å. (2017) Type 1 diabetes mellitus. 
Nature Reviews Disease Primers 3, 17016 

37. Kahn, S. E., Cooper, M. E., and Del Prato, S. (2014) Pathophysiology and treatment of 
type 2 diabetes: perspectives on the past, present, and future. Lancet (London, England) 
383, 1068-1083 

38. Rabe, K., Lehrke, M., Parhofer, K. G., and Broedl, U. C. (2008) Adipokines and Insulin 
Resistance. Molecular Medicine 14, 741-751 

39. Huang, S., and Czech, M. P. (2007) The GLUT4 Glucose Transporter. Cell Metabolism 
5, 237-252 

40. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L., and Spiegelman, B. M. (1995) 
Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and 
insulin resistance. The Journal of Clinical Investigation 95, 2409-2415 

41. Uysal, K. T., Wiesbrock, S. M., Marino, M. W., and Hotamisligil, G. S. (1997) Protection 
from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610 

42. Roden, M., Price, T. B., Perseghin, G., Petersen, K. F., Rothman, D. L., Cline, G. W., and 
Shulman, G. I. (1996) Mechanism of free fatty acid-induced insulin resistance in humans. 
The Journal of Clinical Investigation 97, 2859-2865 

43. Boden, G., She, P., Mozzoli, M., Cheung, P., Gumireddy, K., Reddy, P., Xiang, X., Luo, 
Z., and Ruderman, N. (2005) Free Fatty Acids Produce Insulin Resistance and Activate 
the Proinflammatory Nuclear Factor-κB Pathway in Rat Liver. Diabetes 54, 3458-3465 

44. Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., and Straif, K. 
(2016) Body Fatness and Cancer — Viewpoint of the IARC Working Group. New 
England Journal of Medicine 375, 794-798 

45. Louie, S. M., Roberts, L. S., and Nomura, D. K. (2013) Mechanisms linking obesity and 
cancer. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 
1831, 1499-1508 

46. Park, J., Morley, T. S., Kim, M., Clegg, D. J., and Scherer, P. E. (2014) Obesity and 
cancer—mechanisms underlying tumour progression and recurrence. Nature Reviews 
Endocrinology 10, 455 

47. Schelbert, K. B. (2009) Comorbidities of obesity. Primary care 36, 271-285 
48. Legro, R. S. (2012) Obesity and PCOS: Implications for Diagnosis and Treatment. 

Seminars in reproductive medicine 30, 496-506 



 140 

49. Grodstein, F., Goldman, M. B., and Cramer, D. W. (1994) Body mass index and 
ovulatory infertility. Epidemiology (Cambridge, Mass.) 5, 247-250 

50. Best, D., and Bhattacharya, S. (2015) Obesity and fertility. Hormone molecular biology 
and clinical investigation 24, 5-10 

51. Schwartz, M. W., and Gelling, R. W. (2002) Rats lighten up with MCH antagonist. 
Nature medicine 8, 779 

52. Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., 
Bihain, B. E., and Lodish, H. F. (2001) Proteolytic cleavage product of 30-kDa adipocyte 
complement-related protein increases fatty acid oxidation in muscle and causes weight 
loss in mice. Proceedings of the National Academy of Sciences of the United States of 
America 98, 2005-2010 

53. Diez, J. J., and Iglesias, P. (2003) The role of the novel adipocyte-derived hormone 
adiponectin in human disease. European journal of endocrinology 148, 293-300 

54. Munzberg, H., Bjornholm, M., Bates, S. H., and Myers, M. G., Jr. (2005) Leptin receptor 
action and mechanisms of leptin resistance. Cellular and molecular life sciences : CMLS 
62, 642-652 

55. Gao, Q., Wolfgang, M. J., Neschen, S., Morino, K., Horvath, T. L., Shulman, G. I., and 
Fu, X. Y. (2004) Disruption of neural signal transducer and activator of transcription 3 
causes obesity, diabetes, infertility, and thermal dysregulation. Proceedings of the 
National Academy of Sciences of the United States of America 101, 4661-4666 

56. Tam, C. S., Lecoultre, V., and Ravussin, E. (2012) Brown Adipose Tissue. Mechanisms 
and Potential Therapeutic Targets 125, 2782-2791 

57. Fruhbeck, G., Becerril, S., Sainz, N., Garrastachu, P., and Garcia-Velloso, M. J. (2009) 
BAT: a new target for human obesity? Trends in pharmacological sciences 30, 387-396 

58. Cioffi, F., Senese, R., de Lange, P., Goglia, F., Lanni, A., and Lombardi, A. (2009) 
Uncoupling proteins: a complex journey to function discovery. BioFactors (Oxford, 
England) 35, 417-428 

59. Fedorenko, A., Lishko, Polina V., and Kirichok, Y. Mechanism of Fatty-Acid-Dependent 
UCP1 Uncoupling in Brown Fat Mitochondria. Cell 151, 400-413 

60. Klingenspor, M. (2003) Cold-induced recruitment of brown adipose tissue 
thermogenesis. Experimental physiology 88, 141-148 

61. Arsenijevic, D., Onuma, H., Pecqueur, C., Raimbault, S., Manning, B. S., Miroux, B., 
Couplan, E., Alves-Guerra, M. C., Goubern, M., Surwit, R., Bouillaud, F., Richard, D., 
Collins, S., and Ricquier, D. (2000) Disruption of the uncoupling protein-2 gene in mice 
reveals a role in immunity and reactive oxygen species production. Nature genetics 26, 
435-439 

62. Brand, M. D., and Esteves, T. C. (2005) Physiological functions of the mitochondrial 
uncoupling proteins UCP2 and UCP3. Cell Metabolism 2, 85-93 

63. Nussbaum, R. L. (2005) Mining yeast in silico unearths a golden nugget for 
mitochondrial biology. The Journal of Clinical Investigation 115, 2689-2691 

64. Stanford, K. I., Middelbeek, R. J., Townsend, K. L., An, D., Nygaard, E. B., Hitchcox, K. 
M., Markan, K. R., Nakano, K., Hirshman, M. F., Tseng, Y. H., and Goodyear, L. J. 
(2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin 
Invest 123, 215-223 

65. Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, 
E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., Gromada, J., 



 141 

Brozinick, J. T., Hawkins, E. D., Wroblewski, V. J., Li, D. S., Mehrbod, F., Jaskunas, S. 
R., and Shanafelt, A. B. (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115, 
1627-1635 

66. Liu, X., Wang, S., You, Y., Meng, M., Zheng, Z., Dong, M., Lin, J., Zhao, Q., Zhang, C., 
Yuan, X., Hu, T., Liu, L., Huang, Y., Zhang, L., Wang, D., Zhan, J., Jong Lee, H., 
Speakman, J. R., and Jin, W. (2015) Brown Adipose Tissue Transplantation Reverses 
Obesity in Ob/Ob Mice. Endocrinology 156, 2461-2469 

67. Yuan, X., Hu, T., Zhao, H., Huang, Y., Ye, R., Lin, J., Zhang, C., Zhang, H., Wei, G., 
Zhou, H., Dong, M., Zhao, J., Wang, H., Liu, Q., Lee, H. J., Jin, W., and Chen, Z.-J. 
(2016) Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. 
Proceedings of the National Academy of Sciences 113, 2708 

68. Gunawardana, S. C., and Piston, D. W. (2012) Reversal of Type 1 Diabetes in Mice by 
Brown Adipose Tissue Transplant. Diabetes 61, 674-682 

69. Kikai, M., Yamada, H., Wakana, N., Terada, K., Yamamoto, K., Wada, N., Motoyama, 
S., Saburi, M., Sugimoto, T., Irie, D., Kato, T., Kawahito, H., Ogata, T., and Matoba, S. 
(2017) Transplantation of brown adipose tissue inhibits atherosclerosis in apoE-/- mice: 
contribution of the activated FGF-21-adiponectin axis. Cardiovascular research  

70. van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., Drossaerts, J. 
M., Kemerink, G. J., Bouvy, N. D., Schrauwen, P., and Teule, G. J. (2009) Cold-activated 
brown adipose tissue in healthy men. The New England journal of medicine 360, 1500-
1508 

71. Lee, P., Smith, S., Linderman, J., Courville, A. B., Brychta, R. J., Dieckmann, W., 
Werner, C. D., Chen, K. Y., and Celi, F. S. (2014) Temperature-acclimated brown 
adipose tissue modulates insulin sensitivity in humans. Diabetes 63, 3686-3698 

72. Klaus, S., Seivert, A., and Boeuf, S. (2001) Effect of the beta(3)-adrenergic agonist 
Cl316,243 on functional differentiation of white and brown adipocytes in primary cell 
culture. Biochimica et biophysica acta 1539, 85-92 

73. Krief, S., Lönnqvist, F., Raimbault, S., Baude, B., Van Spronsen, A., Arner, P., 
Strosberg, A. D., Ricquier, D., and Emorine, L. J. (1993) Tissue distribution of beta 3-
adrenergic receptor mRNA in man. The Journal of Clinical Investigation 91, 344-349 

74. Warren, K., Burden, H., and Abrams, P. (2016) Mirabegron in overactive bladder 
patients: efficacy review and update on drug safety. Therapeutic Advances in Drug Safety 
7, 204-216 

75. Cypess, Aaron M., Weiner, Lauren S., Roberts-Toler, C., Elía, Elisa F., Kessler, 
Skyler H., Kahn, Peter A., English, J., Chatman, K., Trauger, Sunia A., Doria, A., and 
Kolodny, Gerald M. Activation of Human Brown Adipose Tissue by a &#x3b2;3-
Adrenergic Receptor Agonist. Cell Metabolism 21, 33-38 

76. Seale, P., Bjork, B., Yang, W., Kajimura, S., Kuang, S., Scime, A., Devarakonda, S., 
Chin, S., Conroe, H. M., Erdjument-Bromage, H., Tempst, P., Rudnicki, M. A., Beier, D. 
R., and Spiegelman, B. M. (2008) PRDM16 Controls a Brown Fat/Skeletal Muscle 
Switch. Nature 454, 961-967 

77. Wu, J., Boström, P., Sparks, Lauren M., Ye, L., Choi, Jang H., Giang, A.-H., Khandekar, 
M., Virtanen, Kirsi A., Nuutila, P., Schaart, G., Huang, K., Tu, H., 
van Marken Lichtenbelt, Wouter D., Hoeks, J., Enerbäck, S., Schrauwen, P., and 
Spiegelman, Bruce M. (2012) Beige Adipocytes Are a Distinct Type of Thermogenic Fat 
Cell in Mouse and Human. Cell 150, 366-376 



 142 

78. Park, A., Kim, W. K., and Bae, K.-H. (2014) Distinction of white, beige and brown 
adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells 6, 33-42 

79. Klaus, S., Ely, M., Encke, D., and Heldmaier, G. (1995) Functional assessment of white 
and brown adipocyte development and energy metabolism in cell culture. Dissociation of 
terminal differentiation and thermogenesis in brown adipocytes. Journal of cell science 
108 ( Pt 10), 3171-3180 

80. Ohno, H., Shinoda, K., Spiegelman, B. M., and Kajimura, S. (2012) PPARgamma 
agonists induce a white-to-brown fat conversion through stabilization of PRDM16 
protein. Cell Metab 15, 395-404 

81. Shinoda, K., Luijten, I. H., Hasegawa, Y., Hong, H., Sonne, S. B., Kim, M., Xue, R., 
Chondronikola, M., Cypess, A. M., Tseng, Y. H., Nedergaard, J., Sidossis, L. S., and 
Kajimura, S. (2015) Genetic and functional characterization of clonally derived adult 
human brown adipocytes. Nat Med 21, 389-394 

82. Betz, M. J., and Enerbäck, S. (2015) Human Brown Adipose Tissue: What We Have 
Learned So Far. Diabetes 64, 2352 

83. Tsukada, J., Yoshida, Y., Kominato, Y., and Auron, P. E. (2011) The CCAAT/enhancer 
(C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted 
highly-regulated system for gene regulation. Cytokine 54, 6-19 

84. Lane, M. D., Tang, Q. Q., and Jiang, M. S. (1999) Role of the CCAAT enhancer binding 
proteins (C/EBPs) in adipocyte differentiation. Biochemical and biophysical research 
communications 266, 677-683 

85. Yamada, T., Tobita, K., Osada, S., Nishihara, T., and Imagawa, M. (1997) 
CCAAT/enhancer-binding protein delta gene expression is mediated by APRF/STAT3. 
Journal of biochemistry 121, 731-738 

86. Tang, Q.-Q., and Lane, M. D. (1999) Activation and centromeric localization of 
CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte 
differentiation. Genes & Development 13, 2231-2241 

87. Yeh, W. C., Cao, Z., Classon, M., and McKnight, S. L. (1995) Cascade regulation of 
terminal adipocyte differentiation by three members of the C/EBP family of leucine 
zipper proteins. Genes Dev 9, 168-181 

88. Tanaka, T., Yoshida, N., Kishimoto, T., and Akira, S. (1997) Defective adipocyte 
differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. The EMBO 
journal 16, 7432-7443 

89. Wu, Z., Xie, Y., Bucher, N. L., and Farmer, S. R. (1995) Conditional ectopic expression 
of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. 
Genes & Development 9, 2350-2363 

90. Wu, Z., Bucher, N. L., and Farmer, S. R. (1996) Induction of peroxisome proliferator-
activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is 
mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16, 4128-4136 

91. Bernlohr, D. A., Bolanowski, M. A., Kelly, T. J., and Lane, M. D. (1985) Evidence for an 
increase in transcription of specific mRNAs during differentiation of 3T3-L1 
preadipocytes. Journal of Biological Chemistry 260, 5563-5567 

92. Timchenko, N. A., Wilde, M., Nakanishi, M., Smith, J. R., and Darlington, G. J. (1996) 
CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through 
the p21 (WAF-1/CIP-1/SDI-1) protein. Genes & Development 10, 804-815 



 143 

93. Hwang, C. S., Mandrup, S., MacDougald, O. A., Geiman, D. E., and Lane, M. D. (1996) 
Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding 
protein alpha. Proceedings of the National Academy of Sciences 93, 873-877 

94. Lin, F. T., and Lane, M. D. (1992) Antisense CCAAT/enhancer-binding protein RNA 
suppresses coordinate gene expression and triglyceride accumulation during 
differentiation of 3T3-L1 preadipocytes. Genes Dev 6, 533-544 

95. Wang, N. D., Finegold, M. J., Bradley, A., Ou, C. N., Abdelsayed, S. V., Wilde, M. D., 
Taylor, L. R., Wilson, D. R., and Darlington, G. J. (1995) Impaired energy homeostasis 
in C/EBP alpha knockout mice. Science 269, 1108-1112 

96. Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C., and Sharma, S. (2011) The peroxisome 
proliferator-activated receptor: A family of nuclear receptors role in various diseases. 
Journal of Advanced Pharmaceutical Technology & Research 2, 236-240 

97. Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., and 
Spiegelman, B. M. (2002) C/EBPalpha induces adipogenesis through PPARgamma: a 
unified pathway. Genes Dev 16, 22-26 

98. Janani, C., and Ranjitha Kumari, B. D. (2015) PPAR gamma gene--a review. Diabetes & 
metabolic syndrome 9, 46-50 

99. Zhu, Y., Qi, C., Korenberg, J. R., Chen, X. N., Noya, D., Rao, M. S., and Reddy, J. K. 
(1995) Structural organization of mouse peroxisome proliferator-activated receptor 
gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two 
mPPAR gamma isoforms. Proceedings of the National Academy of Sciences 92, 7921-
7925 

100. Lefterova, M. I., Zhang, Y., Steger, D. J., Schupp, M., Schug, J., Cristancho, A., Feng, 
D., Zhuo, D., Stoeckert, C. J., Jr., Liu, X. S., and Lazar, M. A. (2008) PPARgamma and 
C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide 
scale. Genes Dev 22, 2941-2952 

101. Sears, I. B., MacGinnitie, M. A., Kovacs, L. G., and Graves, R. A. (1996) 
Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: 
regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol 16, 3410-
3419 

102. Mueller, E., Drori, S., Aiyer, A., Yie, J., Sarraf, P., Chen, H., Hauser, S., Rosen, E. D., 
Ge, K., Roeder, R. G., and Spiegelman, B. M. (2002) Genetic analysis of adipogenesis 
through peroxisome proliferator-activated receptor gamma isoforms. The Journal of 
biological chemistry 277, 41925-41930 

103. Tontonoz, P., Hu, E., and Spiegelman, B. M. (1994) Stimulation of adipogenesis in 
fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156 

104. Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., and Spiegelman, B. M. 
(1998) A cold-inducible coactivator of nuclear receptors linked to adaptive 
thermogenesis. Cell 92, 829-839 

105. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., 
Cinti, S., Lowell, B., Scarpulla, R. C., and Spiegelman, B. M. (1999) Mechanisms 
controlling mitochondrial biogenesis and respiration through the thermogenic coactivator 
PGC-1. Cell 98, 115-124 

106. St-Pierre, J., Lin, J., Krauss, S., Tarr, P. T., Yang, R., Newgard, C. B., and Spiegelman, 
B. M. (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor gamma 



 144 

coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. The Journal 
of biological chemistry 278, 26597-26603 

107. Zhou, Z., Yon Toh, S., Chen, Z., Guo, K., Ng, C. P., Ponniah, S., Lin, S. C., Hong, W., 
and Li, P. (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. 
Nature genetics 35, 49-56 

108. Seale, P., Kajimura, S., Yang, W., Chin, S., Rohas, L. M., Uldry, M., Tavernier, G., 
Langin, D., and Spiegelman, B. M. (2007) Transcriptional control of brown fat 
determination by PRDM16. Cell Metab 6, 38-54 

109. Seale, P., Conroe, H. M., Estall, J., Kajimura, S., Frontini, A., Ishibashi, J., Cohen, P., 
Cinti, S., and Spiegelman, B. M. (2011) Prdm16 determines the thermogenic program of 
subcutaneous white adipose tissue in mice. The Journal of Clinical Investigation 121, 96-
105 

110. Cohen, P., Levy, J. D., Zhang, Y., Frontini, A., Kolodin, D. P., Svensson, K. J., Lo, J. C., 
Zeng, X., Ye, L., Khandekar, M. J., Wu, J., Gunawardana, S. C., Banks, A. S., Camporez, 
J. P., Jurczak, M. J., Kajimura, S., Piston, D. W., Mathis, D., Cinti, S., Shulman, G. I., 
Seale, P., and Spiegelman, B. M. (2014) Ablation of PRDM16 and beige adipose causes 
metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304-316 

111. Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., 
Devarakonda, S., Conroe, H. M., Erdjument-Bromage, H., Tempst, P., Rudnicki, M. A., 
Beier, D. R., and Spiegelman, B. M. (2008) PRDM16 controls a brown fat/skeletal 
muscle switch. Nature 454, 961-967 

112. Iida, S., Chen, W., Nakadai, T., Ohkuma, Y., and Roeder, R. G. (2015) PRDM16 
enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene 
through interactions with Mediator subunit MED1. Genes & Development 29, 308-321 

113. Harms, M. J., Lim, H.-W., Ho, Y., Shapira, S. N., Ishibashi, J., Rajakumari, S., Steger, D. 
J., Lazar, M. A., Won, K.-J., and Seale, P. (2015) PRDM16 binds MED1 and controls 
chromatin architecture to determine a brown fat transcriptional program. Genes & 
Development 29, 298-307 

114. Harms, M. J., Ishibashi, J., Wang, W., Lim, H. W., Goyama, S., Sato, T., Kurokawa, M., 
Won, K. J., and Seale, P. (2014) Prdm16 is required for the maintenance of brown 
adipocyte identity and function in adult mice. Cell Metab 19, 593-604 

115. Rajakumari, S., Wu, J., Ishibashi, J., Lim, H. W., Giang, A. H., Won, K. J., Reed, R. R., 
and Seale, P. (2013) EBF2 determines and maintains brown adipocyte identity. Cell 
Metab 17, 562-574 

116. Shapira, S. N., Lim, H.-W., Rajakumari, S., Sakers, A. P., Ishibashi, J., Harms, M. J., 
Won, K.-J., and Seale, P. (2017) EBF2 transcriptionally regulates brown adipogenesis via 
the histone reader DPF3 and the BAF chromatin remodeling complex. Genes & 
Development  

117. Stark, George R., and Darnell, James E. (2012) The JAK-STAT Pathway at Twenty. 
Immunity 36, 503-514 

118. O'Shea, J. J., Schwartz, D. M., Villarino, A. V., Gadina, M., McInnes, I. B., and 
Laurence, A. (2015) The JAK-STAT Pathway: Impact on Human Disease and 
Therapeutic Intervention. Annual Review of Medicine 66, 311-328 

119. Yamaoka, K., Saharinen, P., Pesu, M., Holt, V. E. T., Silvennoinen, O., and O'Shea, J. J. 
(2004) The Janus kinases (Jaks). Genome Biology 5, 253-253 



 145 

120. Ghoreschi, K., Laurence, A., and O’Shea, J. J. (2009) Janus kinases in immune cell 
signaling. Immunological reviews 228, 273-287 

121. Levy, D. E., and Darnell, J. E., Jr. (2002) Stats: transcriptional control and biological 
impact. Nature reviews. Molecular cell biology 3, 651-662 

122. Lim, C. P., and Cao, X. (2006) Structure, function, and regulation of STAT proteins. 
Molecular BioSystems 2, 536-550 

123. Ceresa, B. P., and Pessin, J. E. (1996) Insulin Stimulates the Serine Phosphorylation of 
the Signal Transducer and Activator of Transcription (STAT3) Isoform. Journal of 
Biological Chemistry 271, 12121-12124 

124. Kim, J.-H., Yoon, M.-S., and Chen, J. (2009) Signal Transducer and Activator of 
Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through 
Serine 727 Phosphorylation. Journal of Biological Chemistry 284, 35425-35432 

125. Paulson, M., Pisharody, S., Pan, L., Guadagno, S., Mui, A. L., and Levy, D. E. (1999) 
Stat Protein Transactivation Domains Recruit p300/CBP through Widely Divergent 
Sequences. Journal of Biological Chemistry 274, 25343-25349 

126. Giese, B., Au-Yeung, C.-K., Herrmann, A., Diefenbach, S., Haan, C., Küster, A., 
Wortmann, S. B., Roderburg, C., Heinrich, P. C., Behrmann, I., and Müller-Newen, G. 
(2003) Long Term Association of the Cytokine Receptor gp130 and the Janus Kinase 
Jak1 Revealed by FRAP Analysis. Journal of Biological Chemistry 278, 39205-39213 

127. O'Sullivan, L. A., Liongue, C., Lewis, R. S., Stephenson, S. E., and Ward, A. C. (2007) 
Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Molecular 
immunology 44, 2497-2506 

128. Ehret, G. B., Reichenbach, P., Schindler, U., Horvath, C. M., Fritz, S., Nabholz, M., and 
Bucher, P. (2001) DNA Binding Specificity of Different STAT Proteins: COMPARISON 
OF IN VITRO SPECIFICITY WITH NATURAL TARGET SITES. Journal of 
Biological Chemistry 276, 6675-6688 

129. O'Shea, J. J., Pesu, M., Borie, D. C., and Changelian, P. S. (2004) A new modality for 
immunosuppression: targeting the JAK/STAT pathway. Nature Reviews Drug Discovery 
3, 555 

130. Shuai, K., and Liu, B. (2003) Regulation of JAK–STAT signalling in the immune system. 
Nature Reviews Immunology 3, 900 

131. Deng, J., Hua, K., Lesser, S. S., and Harp, J. B. (2000) Activation of signal transducer 
and activator of transcription-3 during proliferative phases of 3T3-L1 adipogenesis. 
Endocrinology 141, 2370-2376 

132. Deng, J., Hua, K., Caveney, E. J., Takahashi, N., and Harp, J. B. (2006) Protein inhibitor 
of activated STAT3 inhibits adipogenic gene expression. Biochemical and biophysical 
research communications 339, 923-931 

133. Machinal-Quelin, F., Dieudonne, M. N., Leneveu, M. C., Pecquery, R., and Giudicelli, Y. 
(2002) Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK 
and STAT3 signaling pathways. American journal of physiology. Cell physiology 282, 
C853-863 

134. Hogan, J. C., and Stephens, J. M. (2005) Effects of leukemia inhibitory factor on 3T3-L1 
adipocytes. The Journal of endocrinology 185, 485-496 

135. Cernkovich, E. R., Deng, J., Hua, K., and Harp, J. B. (2007) Midkine is an autocrine 
activator of signal transducer and activator of transcription 3 in 3T3-L1 cells. 
Endocrinology 148, 1598-1604 



 146 

136. Muramatsu, T. (2002) Midkine and Pleiotrophin: Two Related Proteins Involved in 
Development, Survival, Inflammation and Tumorigenesis. The Journal of Biochemistry 
132, 359-371 

137. Zhang, K., Guo, W., Yang, Y., and Wu, J. (2011) JAK2/STAT3 pathway is involved in 
the early stage of adipogenesis through regulating C/EBPbeta transcription. J Cell 
Biochem 112, 488-497 

138. Wang, D., Zhou, Y., Lei, W., Zhang, K., Shi, J., Hu, Y., Shu, G., and Song, J. (2009) 
Signal transducer and activator of transcription 3 (STAT3) regulates adipocyte 
differentiation via peroxisome-proliferator-activated receptor gamma (PPARgamma). 
Biol Cell 102, 1-12 

139. Derecka, M., Gornicka, A., Koralov, S. B., Szczepanek, K., Morgan, M., Raje, V., Sisler, 
J., Zhang, Q., Otero, D., Cichy, J., Rajewsky, K., Shimoda, K., Poli, V., Strobl, B., 
Pellegrini, S., Harris, T. E., Seale, P., Russell, A. P., McAinch, A. J., O'Brien, P. E., 
Keller, S. R., Croniger, C. M., Kordula, T., and Larner, A. C. (2012) Tyk2 and Stat3 
regulate brown adipose tissue differentiation and obesity. Cell Metab 16, 814-824 

140. Cernkovich, E. R., Deng, J., Bond, M. C., Combs, T. P., and Harp, J. B. (2008) Adipose-
specific disruption of signal transducer and activator of transcription 3 increases body 
weight and adiposity. Endocrinology 149, 1581-1590 

141. Richard, A. J., and Stephens, J. M. (2014) The role of JAK-STAT signaling in adipose 
tissue function. Biochimica et biophysica acta 1842, 431-439 

142. Logan, C. Y., and Nusse, R. (2004) The Wnt signaling pathway in development and 
disease. Annual review of cell and developmental biology 20, 781-810 

143. Sokol, S. Y. (2011) Maintaining embryonic stem cell pluripotency with Wnt signaling. 
Development (Cambridge, England) 138, 4341-4350 

144. Willert, K., and Nusse, R. (2012) Wnt Proteins. Cold Spring Harbor Perspectives in 
Biology 4 

145. Mikels, A. J., and Nusse, R. (2006) Wnts as ligands: processing, secretion and reception. 
Oncogene 25, 7461-7468 

146. Lorenowicz, M. J., and Korswagen, H. C. (2009) Sailing with the Wnt: charting the Wnt 
processing and secretion route. Experimental cell research 315, 2683-2689 

147. Das, S., Yu, S., Sakamori, R., Stypulkowski, E., and Gao, N. (2012) Wntless in Wnt 
secretion: molecular, cellular and genetic aspects. Frontiers in biology 7, 587-593 

148. Gordon, M. D., and Nusse, R. (2006) Wnt Signaling: Multiple Pathways, Multiple 
Receptors, and Multiple Transcription Factors. Journal of Biological Chemistry 281, 
22429-22433 

149. Valenta, T., Hausmann, G., and Basler, K. (2012) The many faces and functions of beta-
catenin. The EMBO journal 31, 2714-2736 

150. Verheyen, E. M., and Gottardi, C. J. (2010) Regulation of Wnt/β-Catenin Signaling by 
Protein Kinases. Developmental dynamics : an official publication of the American 
Association of Anatomists 239, 34-44 

151. Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., 
and He, X. (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and 
activation. Nature 438, 873-877 

152. MacDonald, B. T., Tamai, K., and He, X. (2009) Wnt/beta-catenin signaling: 
components, mechanisms, and diseases. Developmental cell 17, 9-26 



 147 

153. Huang, S. M., Mishina, Y. M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G. A., 
Charlat, O., Wiellette, E., Zhang, Y., Wiessner, S., Hild, M., Shi, X., Wilson, C. J., 
Mickanin, C., Myer, V., Fazal, A., Tomlinson, R., Serluca, F., Shao, W., Cheng, H., 
Shultz, M., Rau, C., Schirle, M., Schlegl, J., Ghidelli, S., Fawell, S., Lu, C., Curtis, D., 
Kirschner, M. W., Lengauer, C., Finan, P. M., Tallarico, J. A., Bouwmeester, T., Porter, 
J. A., Bauer, A., and Cong, F. (2009) Tankyrase inhibition stabilizes axin and antagonizes 
Wnt signalling. Nature 461, 614-620 

154. Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., and 
MacDougald, O. A. (2000) Inhibition of Adipogenesis by Wnt Signaling. Science 289, 
950 

155. Bennett, C. N., Ross, S. E., Longo, K. A., Bajnok, L., Hemati, N., Johnson, K. W., 
Harrison, S. D., and MacDougald, O. A. (2002) Regulation of Wnt signaling during 
adipogenesis. J Biol Chem 277, 30998-31004 

156. Kang, S., Bajnok, L., Longo, K. A., Petersen, R. K., Hansen, J. B., Kristiansen, K., and 
MacDougald, O. A. (2005) Effects of Wnt Signaling on Brown Adipocyte Differentiation 
and Metabolism Mediated by PGC-1α. Molecular and Cellular Biology 25, 1272-1282 

157. Tseng, Y. H., Butte, A. J., Kokkotou, E., Yechoor, V. K., Taniguchi, C. M., Kriauciunas, 
K. M., Cypess, A. M., Niinobe, M., Yoshikawa, K., Patti, M. E., and Kahn, C. R. (2005) 
Prediction of preadipocyte differentiation by gene expression reveals role of insulin 
receptor substrates and necdin. Nat Cell Biol 7, 601-611 

158. Kanazawa, A., Tsukada, S., Kamiyama, M., Yanagimoto, T., Nakajima, M., and Maeda, 
S. (2005) Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and 
promotes adipogenesis in 3T3-L1 preadipocytes. Biochemical and biophysical research 
communications 330, 505-510 

159. Kennell, J. A., and MacDougald, O. A. (2005) Wnt signaling inhibits adipogenesis 
through beta-catenin-dependent and -independent mechanisms. J Biol Chem 280, 24004-
24010 

160. Wang, L., Jin, Q., Lee, J. E., Su, I. H., and Ge, K. (2010) Histone H3K27 
methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad 
Sci U S A 107, 7317-7322 

161. Liu, J., and Farmer, S. R. (2004) Regulating the balance between peroxisome 
proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A 
glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits 
expression of a subset of adipogenic genes. J Biol Chem 279, 45020-45027 

162. Liu, J., Wang, H., Zuo, Y., and Farmer, S. R. (2006) Functional interaction between 
peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol 26, 
5827-5837 

163. Staal, F. J. T., and Clevers, H. C. (2005) WNT signalling and haematopoiesis: a WNT–
WNT situation. Nature Reviews Immunology 5, 21 

164. Yuan, Y., Xi, Y., Chen, J., Zhu, P., Kang, J., Zou, Z., Wang, F., and Bu, S. (2017) 
STAT3 stimulates adipogenic stem cell proliferation and cooperates with HMGA2 during 
the early stage of differentiation to promote adipogenesis. Biochemical and biophysical 
research communications 482, 1360-1366 

165. Shin, D. S., Kim, H. N., Shin, K. D., Yoon, Y. J., Kim, S. J., Han, D. C., and Kwon, B. 
M. (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of 



 148 

transcription 3 function through blocking the dimerization in DU145 prostate cancer 
cells. Cancer Res 69, 193-202 

166. Nanbu-Wakao, R., Morikawa, Y., Matsumura, I., Masuho, Y., Muramatsu, M. A., Senba, 
E., and Wakao, H. (2002) Stimulation of 3T3-L1 adipogenesis by signal transducer and 
activator of transcription 5. Molecular endocrinology (Baltimore, Md.) 16, 1565-1576 

167. Tang, Q.-Q., Otto, T. C., and Lane, M. D. (2003) Mitotic clonal expansion: A 
synchronous process required for adipogenesis. Proceedings of the National Academy of 
Sciences 100, 44 

168. Ye, R., Wang, Q. A., Tao, C., Vishvanath, L., Shao, M., McDonald, J. G., Gupta, R. K., 
and Scherer, P. E. (2015) Impact of tamoxifen on adipocyte lineage tracing: Inducer of 
adipogenesis and prolonged nuclear translocation of Cre recombinase. Molecular 
metabolism 4, 771-778 

169. Floyd, Z. E., and Stephens, J. M. (2002) Interferon-γ-mediated Activation and Ubiquitin-
Proteasome-dependent Degradation of PPARγ in Adipocytes. Journal of Biological 
Chemistry 277, 4062-4068 

170. Taylor, J. L., D'Cunha, J., Tom, P., O'Brien, W. J., and Borden, E. C. (1996) Production 
of ISG-15, an interferon-inducible protein, in human corneal cells. J Interferon Cytokine 
Res 16, 937-940 

171. Raje, V., Derecka, M., Cantwell, M., Meier, J., Szczepanek, K., Sisler, J. D., Strobl, B., 
Gamero, A., Harris, T. E., and Larner, A. C. (2017) Kinase Inactive Tyrosine Kinase 
(Tyk2) Supports Differentiation of Brown Fat Cells. Endocrinology 158, 148-157 

172. Christodoulides, C., Lagathu, C., Sethi, J. K., and Vidal-Puig, A. (2009) Adipogenesis 
and WNT signalling. Trends in endocrinology and metabolism: TEM 20, 16-24 

173. Prestwich, T. C., and Macdougald, O. A. (2007) Wnt/beta-catenin signaling in 
adipogenesis and metabolism. Current opinion in cell biology 19, 612-617 

174. Song, B. Q., Chi, Y., Li, X., Du, W. J., Han, Z. B., Tian, J. J., Li, J. J., Chen, F., Wu, H. 
H., Han, L. X., Lu, S. H., Zheng, Y. Z., and Han, Z. C. (2015) Inhibition of Notch 
Signaling Promotes the Adipogenic Differentiation of Mesenchymal Stem Cells Through 
Autophagy Activation and PTEN-PI3K/AKT/mTOR Pathway. Cellular physiology and 
biochemistry : international journal of experimental cellular physiology, biochemistry, 
and pharmacology 36, 1991-2002 

175. Moisan, A., Lee, Y. K., Zhang, J. D., Hudak, C. S., Meyer, C. A., Prummer, M., 
Zoffmann, S., Truong, H. H., Ebeling, M., Kiialainen, A., Gerard, R., Xia, F., Schinzel, 
R. T., Amrein, K. E., and Cowan, C. A. (2015) White-to-brown metabolic conversion of 
human adipocytes by JAK inhibition. Nat Cell Biol 17, 57-67 

176. Kamakura, S., Oishi, K., Yoshimatsu, T., Nakafuku, M., Masuyama, N., and Gotoh, Y. 
(2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT 
signalling. Nat Cell Biol 6, 547-554 

177. Gu, D., Fan, Q., Zhang, X., and Xie, J. (2012) A Role for Transcription Factor STAT3 
Signaling in Oncogene Smoothened-driven Carcinogenesis. The Journal of Biological 
Chemistry 287, 38356-38366 

178. Fragoso, M. A., Patel, A. K., Nakamura, R. E., Yi, H., Surapaneni, K., and Hackam, A. S. 
(2012) The Wnt/beta-catenin pathway cross-talks with STAT3 signaling to regulate 
survival of retinal pigment epithelium cells. PloS one 7, e46892 



 149 

179. Masumoto, N., Lanyon-Hogg, T., Rodgers, U. R., Konitsiotis, A. D., Magee, A. I., and 
Tate, E. W. (2015) Membrane bound O-acyltransferases and their inhibitors. Biochemical 
Society transactions 43, 246-252 

180. Inagaki, T., Sakai, J., and Kajimura, S. (2016) Transcriptional and epigenetic control of 
brown and beige adipose cell fate and function. Nature reviews. Molecular cell biology 
17, 480-495 

181. Creyghton, M. P., Cheng, A. W., Welstead, G. G., Kooistra, T., Carey, B. W., Steine, E. 
J., Hanna, J., Lodato, M. A., Frampton, G. M., Sharp, P. A., Boyer, L. A., Young, R. A., 
and Jaenisch, R. (2010) Histone H3K27ac separates active from poised enhancers and 
predicts developmental state. Proc Natl Acad Sci U S A 107, 21931-21936 

182. Lo, K. A., Ng, P. Y., Kabiri, Z., Virshup, D., and Sun, L. (2016) Wnt inhibition enhances 
browning of mouse primary white adipocytes. Adipocyte 5, 224-231 

183. Niida, A., Hiroko, T., Kasai, M., Furukawa, Y., Nakamura, Y., Suzuki, Y., Sugano, S., 
and Akiyama, T. (2004) DKK1, a negative regulator of Wnt signaling, is a target of the 
beta-catenin/TCF pathway. Oncogene 23, 8520-8526 

184. Jho, E. H., Zhang, T., Domon, C., Joo, C. K., Freund, J. N., and Costantini, F. (2002) 
Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of 
the signaling pathway. Mol Cell Biol 22, 1172-1183 

185. Chen, B., Dodge, M. E., Tang, W., Lu, J., Ma, Z., Fan, C.-W., Wei, S., Hao, W., Kilgore, 
J., Williams, N. S., Roth, M. G., Amatruda, J. F., Chen, C., and Lum, L. (2009) Small 
molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and 
cancer. Nature chemical biology 5, 100-107 

186. Thomson, A. W., Bonham, C. A., and Zeevi, A. (1995) Mode of action of tacrolimus 
(FK506): molecular and cellular mechanisms. Therapeutic drug monitoring 17, 584-591 

187. Zaragosi, L.-E., Wdziekonski, B., Fontaine, C., Villageois, P., Peraldi, P., and Dani, C. 
(2008) Effects of GSK3 inhibitors on in vitro expansion and differentiation of human 
adipose-derived stem cells into adipocytes. BMC Cell Biology 9, 11-11 

188. Szczepanek, K., Chen, Q., Derecka, M., Salloum, F. N., Zhang, Q., Szelag, M., Cichy, J., 
Kukreja, R. C., Dulak, J., Lesnefsky, E. J., and Larner, A. C. (2011) Mitochondrial-
targeted Signal transducer and activator of transcription 3 (STAT3) protects against 
ischemia-induced changes in the electron transport chain and the generation of reactive 
oxygen species. J Biol Chem 286, 29610-29620 

189. Meier, J. A., and Larner, A. C. (2014) Toward a new STATe: the role of STATs in 
mitochondrial function. Semin Immunol 26, 20-28 

190. Meier, J. A., Hyun, M., Cantwell, M., Raza, A., Mertens, C., Raje, V., Sisler, J., Tracy, 
E., Torres-Odio, S., Gispert, S., Shaw, P. E., Baumann, H., Bandyopadhyay, D., Takabe, 
K., and Larner, A. C. (2017) Stress-induced dynamic regulation of mitochondrial STAT3 
and its association with cyclophilin D reduce mitochondrial ROS production. Science 
signaling 10 

191. Buzelle, S. L., MacPherson, R. E. K., Peppler, W. T., Castellani, L., and Wright, D. C. 
(2015) The contribution of IL-6 to beta 3 adrenergic receptor mediated adipose tissue 
remodeling. Physiological Reports 3, e12312 

192. Fragoso, M. A., Patel, A. K., Nakamura, R. E. I., Yi, H., Surapaneni, K., and Hackam, A. 
S. (2012) The Wnt/β-Catenin Pathway Cross-Talks with STAT3 Signaling to Regulate 
Survival of Retinal Pigment Epithelium Cells. PloS one 7, e46892 



 150 

193. Hao, J., Li, T. G., Qi, X., Zhao, D. F., and Zhao, G. Q. (2006) WNT/beta-catenin 
pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse 
embryonic stem cells. Developmental biology 290, 81-91 

194. Katoh, M., and Katoh, M. (2007) STAT3-induced WNT5A signaling loop in embryonic 
stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and 
cancer (Review). International journal of molecular medicine 19, 273-278 

195. Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D., and Niwa, H. (2006) 
Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. 
Biochemical and biophysical research communications 343, 159-166 

196. Hemming, S., Cakouros, D., Isenmann, S., Cooper, L., Menicanin, D., Zannettino, A., 
and Gronthos, S. (2014) EZH2 and KDM6A act as an epigenetic switch to regulate 
mesenchymal stem cell lineage specification. Stem cells (Dayton, Ohio) 32, 802-815 

197. Beurel, E., and Jope, R. S. (2008) Differential Regulation of STAT Family Members by 
Glycogen Synthase Kinase-3. Journal of Biological Chemistry 283, 21934-21944 

198. Moh, A., Zhang, W., Yu, S., Wang, J., Xu, X., Li, J., and Fu, X. Y. (2008) STAT3 
sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta. 
Diabetes 57, 1227-1235 

199. Shin, M., Yi, E. H., Kim, B. H., Shin, J. C., Park, J. Y., Cho, C. H., Park, J. W., Choi, K. 
Y., and Ye, S. K. (2016) STAT3 Potentiates SIAH-1 Mediated Proteasomal Degradation 
of beta-Catenin in Human Embryonic Kidney Cells. Molecules and cells 39, 821-826 

200. Li, B., Shin, J., and Lee, K. (2009) Interferon-stimulated gene ISG12b1 inhibits 
adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells. Endocrinology 
150, 1217-1224 

201. Vidal, C., Bermeo, S., Li, W., Huang, D., Kremer, R., and Duque, G. (2012) Interferon 
gamma inhibits adipogenesis in vitro and prevents marrow fat infiltration in 
oophorectomized mice. Stem cells (Dayton, Ohio) 30, 1042-1048 

202. Kissig, M., Ishibashi, J., Harms, M. J., Lim, H. W., Stine, R. R., Won, K. J., and Seale, P. 
(2017) PRDM16 represses the type I interferon response in adipocytes to promote 
mitochondrial and thermogenic programing. The EMBO journal 36, 1528-1542 

 

  



 151 

 
 
 
 
 

VITA 
 

Marc Taylor Cantwell 
Cancer and Molecular Medicine Program 

Center for Clinical and Translational Research 
Virginia Commonwealth University School of Medicine 

1220 East Broad Street, MMRB Room 2-055 
Richmond, VA 23298 
Phone: 804-828-2772 

Email: cantwellmt@vcu.edu 
 
 

PERSONAL INFORMATION 
 
Date of Birth: May 30, 1985 
 
Place of Birth: Alexandria, VA 
 
Citizenship: United States 
 
 
EDUCATION 
 
B.S. Biology, Virginia Commonwealth University, 2008 
B.S. Chemistry, Virginia Commonwealth University, 2008 
 
 
AWARDS 
 
2014 M2 (Medical Year 2) Award for Highest Score in Pathogenesis Course 
2014 Selected to Alpha Omega Alpha Medical Honor Society 
2007 Herbert John Evans Award for Excellence in Biochemistry 
 
 
FUNDING 
 
1F30DK109633, “Role of STAT3 in Brown Adipose Tissue Development”, August 2016- 
August 2020. 
 
 
 



 152 

PUBLICATIONS 
 
Cantwell MT, Farrar JS, Lownik JC, Meier JA, Hyun M, Raje V, Waters MR, Celi FS, Conrad 
DH, Harris TE, Larner AC. STAT3 Suppresses Wnt/β-Catenin Signaling During the Induction 
Phase of Primary Myf5+ Brown Adipogenesis. FASEBJ. Under Review.  
 
Meier JA, Hyun M, Cantwell M, Raza A, Mertens C, Raje V, Sisler J, Tracy E, Torres-Odio S, 
Gispert S, Shaw PE, Baumann H, Bandyopadhyay D, Takabe K, Larner AC (2017). Stress-
induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D 
reduce mitochondrial ROS production. Sci Signal 10(472) 
 
Raje V, Derecka M, Cantwell M, Meier J, Szczepanek K, Sisler JD, Strobl B, Gamero A, Harris 
TE, Larner AC (2017). Kinase Inactive Tyrosine Kinase (Tyk2) Supports Differentiation of 
Brown Fat Cells. Endocrinology 158(1):148-157 
 
Sisler, JD, Magdalena Morgan, Vidisha Raje, Rebecca C. Grande, Marta  Derecka, Jeremy 
Meier, Marc Cantwell, Karol Szczepanek, William J. Korzun, Edward J. Lesnefsky, Thurl E. 
Harris,  Colleen M. Croniger, and  Andrew C. Larner (2015). The Signal Transducer and 
Activator of Transcription 1 (STAT1) Inhibits Mitochondrial Biogenesis in liver and fatty acid 
oxidation in adipocytes. PLoS ONE 10(12): e0144444 
 
Marc T. Cantwell, Sarah E. G. Porter, Sarah C. Rutan (2007). Evaluation of the multivariate 
selectivity of multi-way liquid chromatography methods. J. Chemometrics 21:335-345 
 
 
 
 


	STAT3 in the Regulation of Brown Adipocyte Differentiation
	Downloaded from

	Copyright
	Dissertation_revision_final

