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Abstract 
 

EFFECTS OF THE NA-CL CO-TRANSPORTER (NCC) IN WESTERN DIET INDUCED 

METABOLIC AND CARDIAC DYSFUNCTION 

Zachary S. Cutter 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2018. 
 

Major Director: STEFANO TOLDO, PH.D. Assistant Professor Department of Internal 

Medicine, Division of Cardiology, Department of Physiology and Biophysics 

 
 Obesity and heart failure are increasingly known as pro-inflammatory states that 

carry a significant and debilitating health burden. High-fat diets represent a common 

pathogenic route to obesity and future development of heart failure. Interleukin-18, a pro-

inflammatory cytokine, has been identified as essential for metabolic and glucose 

homeostasis; however also mediates cardiac dysfunction, in particular diastolic 

dysfunction. A divergence of mouse IL-18KO and IL-18RKO metabolic phenotypes have 

been shown and, additionally, the Na-Cl Co-transporter (NCC) has recently been 

identified as a novel receptor for IL-18. Therefore, we hypothesized that NCC mediates 

the IL-18 induced positive metabolic and negative cardiac effects. Using male C57BL/6J 

mice, we evaluated metabolic and cardiac function changes in wild-type, IL-18KO, and 

NCCKO mice after at least 8 weeks of high saturated-fat and high sugar diet (Western 

Diet, WD). This was accomplished by measurements of body weight gain, fasting 
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glucose, and cardiac systolic and diastolic function parameters. We report NCCKO mice 

had a significantly increased body weight gain compared to baseline vs. wild-type mice 

(55% vs. 22%). Additionally, NCCKO mice had a lower percent worsening from baseline 

in isovolumetric relaxation time (IRT) (29% vs. 123%) and Tei Index (62% vs. 162%) vs. 

wild-type mice (P<0.05). Collectively, the metabolic and cardiac changes in NCCKO mice 

after WD resembled those of IL-18KO mice on the same diet. The Na-Cl Co-transporter 

may function to mediate metabolic and cardiac effects of IL-18 during high-fat diet feeding 

and its possible role in doing so warrants further investigation.



 

Introduction: 
 

Obesity: Prevalence, Classification, and Health Risks 
 

 Combinations of poor quality diet, sedentary lifestyle, smoking, and socioeconomic 

status continue to cause and be associated with the frightening prevalence of obesity, 

where 37.7% of adults and 17.2% of youth in the United States were obese (BMI ≥30) in 

2014 (1,2). Although burdened by its limitations in finely discriminating between body fat 

% and lean mass (3,4), body mass index, (BMI, calculated as weight in kilograms divided 

by height in meters squared) for the time being remains the conventional measure used 

in broad population studies to evaluate body composition due to its ease in obtaining and 

reproducibility. Before understanding potential health implications of obesity, it is 

important to define the spectrum of BMI classifications. As indicated in Table 1, the 

calculated value of a patient’s BMI stratifies them into defined groupings where increases 

in BMI are labeled as worsened obesity.  

 

Table 1. BMI classifications 

 
Body Mass Index (BMI) classification 
 

 Underweight Normal Overweight Obese 
Class II 
Obesity 

Class III 
Obesity 

 
kg/m2 <18.5 18.5-24.9 25-29.9 30-34.9 35-39.9 >40 

 

 



2 
 

Depicted in Figure 1, a J or U-shaped curve exists correlating BMI to risk of 

mortality; where a BMI classification that is either lower than normal or obese carries with 

it an increased risk of all-cause mortality (5, 6). The risk for cardiovascular diseases also 

exhibit similar trends with BMI. When stratified into normal, overweight, or obese BMI it is 

apparent that obesity is associated with higher risk of future development of heart failure. 

In fact, for each 1 increment increase in BMI, the risk of heart failure increases 5% for 

men and 7% for women (7). This evidence clearly places obesity (BMI>30 kgm-2) as a risk 

factor for development of heart failure.  

 

 

 

 

 

      

 

 

 

 

 

 

 

Figure 1. Heart Failure Incidence with Obesity: Adapted from Adams et al, NEJM, 2006. Relationship 

of BMI to relative risk of death compared to the reference group (BMI 23.5-24.9) with respect to age 

groups (A). Adapted from Kenchaiah et al, NEJM, 2002. Increase incidence of heart failure with 

increasing BMI in aging women and men (B).  

A. 

B. 
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Heart Failure: Definitions, pathophysiology, and paradoxical prognosis with 

obesity  
 

  Normally, the heart and the vasculature are able to adapt and supply adequate 

amounts of oxygenated blood to match increased physiological demands of the body. 

When the heart is unable to supply sufficient oxygenated blood to match systemic needs, 

whether at baseline or during exertion, and symptoms of shortness of breath, dyspnea on 

exertion, fatigue, or exercise intolerance become clinically apparent, a patient is 

diagnosed with the syndrome of heart failure. Echocardiographic assessment of cardiac 

function is essential to evaluating a patient’s status, future prognosis, and tracking of 

medical management. Ejection Fraction (EF, %) is a calculated value derived from the 

difference in volume estimations at end diastole (EDV) and end systole (ESV) of the 

cardiac cycle ([EDV-ESV]/EDV]*100) that is used to evaluate aspects of cardiac 

contractile function. Population based studies have helped establish normal reference 

values for EF where guidelines refer to a normal EF for an adult to be 62% with a 2 

standard-deviation range to be 52-72% (8).  

 While proper contractile function of the heart is undeniably essential, the ability of 

the heart to relax and properly fill (diastole) with blood before the next ejection is just as 

functionally important. The filling capacity of the heart is derived from two processes: 

active re-uptake of intracellular calcium that initiates the relaxation process and the ability 

of myocardium to stretch as one functional unit to accommodate the reception of blood 

from the atria. Impairments in contractility, relaxation, or compliance can lead to a 

decrease in systemic output of oxygenated blood and heart failure.  
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 Essential to a diagnosis of heart failure is the presence of symptoms. After systolic 

and/or diastolic dysfunction manifests symptomatically and an echocardiographic 

assessment has been completed, a patient is grouped into a certain classification of heart 

failure based on ejection fraction. If calculated EF is <40% that patient is diagnosed with 

heart failure with reduced ejection fraction (HFrEF), whereas a patient with calculated EF 

≥50% is diagnosed with heart failure with preserved ejection fraction (HFpEF) (9). 

Additionally, an EF between the two cut-off values (40-49%) places an individual in a 

heart failure with mid-range ejection fraction (HFmrHF); however, this is a novel category 

that is still under investigation (9). The larger divisions of heart failure diagnosis (HFrEF 

vs. HFpEF) both encompass a heart that is unable to meet systemic needs; however, the 

mechanism and etiology of the different diagnosis are mixed, with some features common 

to both, and others that predominate in one or the other.  

Whereas an ischemic insult results in an intense local immune response that 

extends myocyte loss, ventricular chamber dilation, and systolic impairment (classic of 

HFrEF), the consequence of comorbidities as T2D, obesity, and a poor-quality diet that 

result in a low grade state of inflammation contribute to ventricular hypertrophy, stiffness, 

increased filling pressures, overt diastolic dysfunction and a restricted/hypertrophied 

ventricular cavity (more classic of HFpEF, Figure 2) (32,33). Despite the differing original 

insult to the myocardium, a common feature of both heart failure classifications is 

supranormal inflammation that alters cardiac structure and function in one form or 

another. Thus, greater understanding of the intricate biology of inflammation within the 

context of metabolic and cardiac dysfunction is essential. 
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Figure 2. Differing cardiac insults lead to a spectrum of geometric and functional changes. 

Progression of cardiac structure and function based on differing initial insults. Acute ischemic damage 

(right) causes rapid and widespread myocyte cell death that sparks an intense local immune response. 

Secondary loss of nearby functional myocytes due to immune activation amplifies local damage. Ventricular 

volume increases in a Frank-Starling mechanism to increase preload to compensate for poor contractility, 

culminating in dilated LV and systolic dysfunction. Chronic systemic inflammation stemming from 

multifactorial combinations of aging, poor quality diet, obesity, and Type II Diabetes (T2D) (left) can cause 

myocyte hypertrophy and stiffness that restrict the ventricle’s ability to relax and reduce ventricular tissue 

compliance resulting diastolic dysfunction.     
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Epidemiologic studies to estimate new and total cases of a disease on a population 

scale serve to evaluate disease burden placed on the collective health care system and 

members. A recent population study evaluating the decade of 2000—2010 discovered a 

decline in incidence of overall heart failure diagnosis; however a categorical shift in 

incidences occurred. HFrEF reduced to a greater degree than HFpEF to the point that 

HFpEF is making up a larger proportion of new heart failure cases (10, 11). Problematic to 

this rise in HFpEF is the nearly matching high mortality rate at 5 years with HFrEF (65% 

vs. 68% respectively), and the disconnect that current therapeutic options for HFrEF 

patients do not appear to improve mortality in HFpEF patients (12,13). Perhaps due to the 

multifactorial nature of heart failure including aging, obesity, and hypertension that are 

exhibiting parallel prevalence increases, the overall prevalence of heart failure continues 

to rise in the United States (11).   

 Although established that obesity increases the risk of developing heart failure, 

after the onset of heart failure there in fact may be a survival benefit associated with being 

obese. Depicted in Figure 3, multiple studies have replicated this paradoxical finding of 

lowest mortality in heart failure patients to be patients that are obese (BMI 30-34.9 kg/m2) 

(14–18). This apparent relationship is complex, but some varying hypothesis exist in 

attempts to explain this phenomenon including: a metabolic “reserve” that benefits obese 

patients during the catabolic state of heart failure, increased skeletal muscle mass, 

increased levels of adipocyte derived anti-inflammatory/insulin-sensitizing proteins (19),  

decreased sympathetic nervous system activation (20), or earlier identification of disease 

and better tolerance of protective medications (21). Interestingly, the paradox appears to 

be more apparent in patients with low cardiorespiratory fitness, with low CRF obese 
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patients again having improved survival over low CRF normal BMI patients (22). Although 

unclear, the biological mechanisms that contribute to outcomes in patients with co-

existing metabolic and cardiac dysfunction certainly warrant further investigation.    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mortality in Obese HF patients. Adapted from Horwich et al JACC 2001, Curtis et al JAMA 

2005, and Oreopoulos et al AHJ 2008. Differing representations of improved survival in obese (BMI ≥ 

30kg/m2) patients that have diagnosed heart failure.  
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Inflammation: obesity derived and heart failure mediator 
 

The numerous adverse effects of obesity for development of morbid conditions 

including Type II Diabetes (T2D), coronary artery disease, heart failure, cancer, and more 

have been noted for decades. Elucidation of exact chronologic events that initiate a path 

toward obesity and end with a co-morbid condition have been elusive, but our 

understanding of changes in physiology during obesity have expanded.  

The overlap of metabolic and immune system functions to homeostasis indicate 

that perturbations of one can have a maladaptive domino effect on the other. Individual 

observations in the clinic and within entire populations have depicted a clear connection 

between metabolic dysfunction and immune responses. Increases of BMI (overweight 

and obese) in men and women are positively associated with increased levels of high-

sensitivity C-Reactive Protein (hs-CRP), a protein secreted by the liver in response to 

stress or injury that functions to augment acute innate immune activity (23). These 

observations have led to the catch-phrase describing obesity as a state of “low-grade 

chronic inflammation.”   

When the balance of energy intake exceeds energy expenditure, due to any 

combination of increased whole caloric consumption, increased dietary energy density 

from higher saturated fat composition, or decreased physical activity, the capacity of 

adipose tissue to store the energy is exceeded. Due to the fact that adipose tissue is 

composed of a mix of adipocytes, networks of endothelial and smooth muscle cells, and 

resident macrophages and T-cells, changes in the integrity of adipocytes are rapidly 

sensed and transmitted systemically (24). Overwhelming the adipose storage depot leads 
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to a detrimental cycle of adipocyte dysfunction and immune activation with whole body 

negative implications.  

Depicted in Figure 4, multiple hypothesis exist for how adipocyte dysfunction 

manifests with subsequent immune activation and eventual metabolic dysfunction. 

Included are synergistic activity of adipocyte-derived cytokines, free fatty acid (FFA) 

release, endoplasmic reticulum (ER) and oxidative stress, and hypoxia from outgrowing 

local vascular supply (25). Prolonged adipocyte and immune cell shifts toward pro-

inflammatory routes participate in local and systemic impairment of insulin sensitivity and 

glucose utilization, hallmarks of T2D and metabolic syndrome (26).  
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Figure 4. Inflammation from adipocytes. (Top) Adapted from Heredia et al Proceedings of the Nutrition 

Society 2012, Mechanisms for how adipocyte dysfunction communicates with local macrophages to 

perpetuate a state of inflammation that lead to insulin resistance. (Bottom) Adapted from Ouchi et al 

Nature Reviews: Immunology 2011, Development of obesity changes adipose tissue morphology and 

composition toward a milieu of pro-inflammatory cytokines and adipokines that derail homeostatic 

metabolism.  
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 After growing evidence of increased cytokines such as TNF-α, IL-6, and other 

inflammatory components such as hs-CRP directly associated with increased heart failure 

incidence and worsening heart failure functional classification, it became apparent that 

the presence of inflammation in heart failure patients could be valuable targets to predict 

outcomes (27–29). Basic science observations of cytokines, such as TNF-α, IL-1β, and IL-

18, causing ventricular remodeling, myocyte hypertrophy, decreasing contractility,  and 

inducing apoptosis pushed the role of inflammation from association toward causative in 

the pathogenesis of heart failure (30–33). Discussed further is a major component of 

inflammation, Interleukin-18, and its contributions to immune, cardiovascular and 

metabolic function.   

 

 

IL-18: Production and Signaling 
 

Since first implicated in 1989 as a soluble factor that, in combination with IL-12, 

induced Interferon-γ in a mouse model of endotoxemia, our understandings of the 

signaling and function of Interleukin-18 in human physiology and pathophysiology have 

expanded (34). The Interleukin-1 family of cytokines, now encompassing 11 proteins of 

varying homology including IL-1β and IL-18, have been extensively studied for how they 

contribute to coordination of immune response. Unlike its IL-1 family member IL-1β, the 

human chromosome 11 and murine chromosome 9 gene product IL-18 has been 

identified to be constitutively expressed in human peripheral blood mononuclear cells 

(PBMCs, including T cells, B cells, natural killer (NK) cells and monocytes) as well as 
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endothelial cells, keratinocytes, osteoblasts, dendritic cells, astrocytes, microglia and gut 

epithelial cells (35,36). Depicted in Figure 5, The 24kD 193 amino acid product is 

synthesized without an endoplasmic reticulum signaling peptide, does not contain N-

glycosylation sites, and remains inactive in the cytosol until cleavage by the cysteine 

protease Caspase-1 creates the 17kD 157 amino acid active form to be secreted out of 

the cell via plasma membrane pore or released by membrane rupture (37–40). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. IL-18 Activation and Release. Activation of an Inflammasome yields an active Caspase-1 that 

is able to cleave Pro-IL-18 into its active form, IL-18. Secretion out of the cell is mediated by either 

release out of an intact cell membrane through a pore (shown here), or via cell membrane rupture, as 

during cell death.  

IL-18 

IL-18 

IL-18 

Activated  
Inflammasome  
& Caspase-1 
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While constitutive synthesis exists in the aforementioned cells, synthesis of IL-18 

induced by stimuli is partially controlled by the transcription factor Nuclear Factor kappa-

light-chain-enhancer of activated B cells, commonly NF-κB (41). Naturally then, a wide 

array of stimuli that converge upon the activation of NF-κB, including microbial and 

endogenous products binding to the Toll-like receptor (TLR) family, cytokines, and the 

antigen receptors T-cell Receptor (TCR) and B-cell Receptor (BCR), result in an increase 

in IL-18 production. Of note, the kinetics of IL-18 induction after TLR stimulation are 

different from IL-1β. Lipopolysaccharide (LPS) activation of TLR4 showed IL-18 levels 

reach maximal level at 8 hours and remain elevated at 24 hours, whereas IL-1β reaches 

maximum levels at 4 hours and decrease by 24 hours (42).  

Once produced, activated, and secreted, IL-18 diffuses locally and is capable of 

acting in autocrine, paracrine, and endocrine fashions. With resemblance to IL-1β 

signaling, a heterodimeric receptor complex mediates conversion of the extracellular IL-

18 signal to an intracellular response(43). Depicted in Figure 6 below, the two proteins that 

complement each other to facilitate binding and signal transduction are IL-18Rα and IL-

18Rβ. The alpha chain is expressed on a broad array of cell types, possess low affinity 

for IL-18, and alone is non-responsive to IL-18 in vitro (43–45). In contrast, the beta chain, 

known also as an accessory protein, is expressed in lung, spleen, prostate, small 

intestine, peripheral blood T cells and NK cells and has higher affinity for its IL-18 

substrate (45). Alone, each receptor is unable to activate NF-κB or c-Jun N-terminal kinase 

1 (JNK1, a regulatory protein for gene transcription); however, in combination the 

receptors elicit strong NF-κB and JNK1 activation (45). Additional intricacies of the IL-18 

receptor complex, responsible for the research here, are discussed later.  
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Due to partial cytoplasmic homology of the IL-1 and IL-18 receptors, it is no 

surprise the two provoke a similar intracellular response (43). Intracellular cascades 

consist of myeloid differentiation primary response 88 (MyD88) recruitment to the receptor 

tail, IL-1 Receptor-Associated Kinase (IRAK) and TNF receptor associated factor 6 

(TRAF6) interaction, and eventual NF-κB activation (46–48). Distinct again from IL-1 

signaling is the additional activation of mitogen-activated protein kinase (MAPK) and 

signal transducer and activator of transcription 3 (STAT3) with IL-18 stimulus as 

evidenced by in vitro studies of NK cell lines (49). 

Also integral to net IL-18 signaling are the soluble circulating endogenous protein 

isoforms, known as IL-18 Binding Protein (IL-18BP), that bind free extracellular IL-18 in a 

1:1 ratio and remove it from the pool of available and functional IL-18 (50). Constitutively 

secreted at levels approximately 20 times that of IL-18 and with high affinity for IL-18, IL-

18BP functions seemingly as a natural balance to the activation of the T helper cell 

response to prevent a detrimental autoimmune cycle (51–53). 
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Figure 6. IL-18 Binding and Signaling. Once in the extracellular space, free and active IL-18 (not bound 

to circulating IL-18BP) binds to its receptor complex composed of, at least, IL-18Rα and IL-18Rβ. 

Activation of the receptor complex leads to intracellular cascades including the activation of MyD88, 

IRAK4, TRAF6, JNK, MAPK, STAT3, and NF-κB, which facilitate transcription of genes involved in 

numerous cell functions, including inflammation.  
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IL-18: Functions  
 

Role of IL-18 in the Immune System 
 

The uniqueness and complexity of IL-18 biology is derived from its pleotropic 

effects on multiple cells and organ systems as well as the intricate balance between 

homeostatic and pathologic functions. In regards to the immune system, IL-18 has its 

hand in innate, adaptive, and autoimmunity; responsible for activation and/or 

differentiation of multiple cell types including macrophages, naive T cells, NK cells, and 

B cells (54). Specific cytokine environments coordinate and specialize immune cell 

responses and contribute to acute disease states (such as myocardial infarction, 

microbial invasion of the gut, and skin lesions), chronic disease states (such as heart 

failure and Type II diabetes mellitus) and genetic mutations (macrophage activation 

syndrome) (54–56).  

Inflammation is an evolutionarily refined process initiated by the immune system 

designed to clear local and global pathogen or damage insults and best attempt to restore 

tissue to its previous functional state. The ability of IL-18 to induce chemokine production 

to attract neutrophils (57), increase endothelial Intercellular Adhesion Molecule-1 (ICAM-

1), Vascular Cell Adhesion Molecule-1 (VCAM-1), and E-Selection expression (58, 59), and 

stimulate production of IL-6 and IL-1β place it central to initiation and propagation of 

inflammation in various disease states (60). Innate immune cell products, such as IL-18, 

serve also to bridge the innate and adaptive immune responses. Pathogen associated 

molecular patterns (PAMPs), such as lipopolysaccharide or bacterial DNA, or damage 

associated molecular patterns (DAMPs), such as extracellular ATP or mitochondrial DNA, 
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bind to a family of pattern recognition receptors (PRRs) that include the Toll-Like 

Receptors (TLRs). Binding of ligands to TLRs present on neutrophils and macrophages 

initiates intracellular cascades leading to production of cytokines, including IL-18. 

Interleukin-12 importantly acts to increase plasma membrane IL-18Rα levels in CD4+ T 

cells, rendering the naïve T-cells able to bind extracellular IL-18. Binding of Il-18 to the 

IL-18 receptor complex and subsequent intracellular cascades culminate in transcription, 

translation, and release of INF-γ from the T-cell (61). IL-18 induced release of INF-γ further 

results in activation of macrophages to begin a pro-inflammatory feedback mechanism to 

amplify IL-18, IL-1β, and TNF-α levels, the defining characteristics of the Th1 response 

(62).  
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Role of IL-18 in the cardiovascular system: Health and Disease 
 

 Little evidence exists for the function of IL-18 in homeostasis and preservation of 

the myocardium or vasculature. The identification of pro-inflammatory cytokines, 

including IL-18, as factors associated with diseases such as hypertension, 

atherosclerosis, myocardial infarction, and heart failure has been studied extensively in 

the clinical and pre-clinical realms. 

 

Hypertension  
 

Hypertension is now present in approximately 46% of U.S. adults with varying 

etiologies (63). In response to prolonged hypertension, the myocardium undergoes 

physiologic hypertrophy to decrease wall stress and oxygen consumption in order to 

continue ejecting adequate volumes of blood without entering into an ischemic state (64). 

However, sustained pressure overload tips the physiologic hypertrophic adaptation to 

pathologic as further hypertrophy stiffens the ventricle, impairs coronary circulation, and 

can lead to arrhythmias. Evidence of this hypertrophy discovered on electrocardiographic 

or echocardiographic assessment is an independent risk factor for future cardiovascular 

morbidity and all-cause mortality (65–67).  

Clinical correlations and basic science investigation have identified IL-18 to be 

involved in the hypertrophic response (Figure 7, below). In patients, increased circulating 

IL-18 is correlated with hypertension as well as left ventricle mass (68). In a mouse model 

of pressure overload induced by thoracic aorta constriction (TAC), the genetic deletion of 

IL-18 (IL-18KO) resulted in less hypertrophy than wild-type control; however, was 

accompanied by worse LV contractility, indicating that in response to pressure overload 
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IL-18 is necessary to some degree for hypertrophic adaptations (69). A molecular pathway 

identified in hypertrophy induced by IL-18 is the PI3K→Akt→GATA4 signal that leads to 

transcription of genes including atrial natriuretic peptide (ANP), brain natriuretic peptide 

(BNP), and β-myosin heavy chain (MHC), presumably to combat pressure overload (70, 

71). In vitro, cyclical mechanical stress of cardiomyocytes increases mature IL-18 that is 

blunted with neutralizing antibodies or IL-18BP while in vivo, pressure overload increased 

myocardial IL-18 mRNA and protein, but decreased IL-18BP mRNA and protein (71). To 

further support the notion of IL-18 directly involved in the hypertrophic response, daily 

administration of IL-18 to young healthy mice induced left ventricular wall thickness and 

diastolic dysfunction (72,73). The expanding understanding of IL-18 in mediating 

hypertensive induced cardiac remodeling places further investigation of IL-18 signaling at 

the forefront of cardiovascular research.  

 

 

 

 

 

 

 

Figure 7. Hypertrophic Adaptation and IL-18. IL-18 is capable of signaling cascades leading to 

physiologic hypertrophy and diuresis to adapt to elevated afterload. Sustained hypertrophy; however, 

impairs ventricular function and increases mortality risk.  
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Atherosclerosis 
 

Atherosclerosis is increasingly defined as an inflammatory disease. Disease 

progression is characterized by damaged endothelium, due to shear stress 

(hypertension), oxidative stress from increased lipid metabolism (hyperlipidemia) or 

cholesterol accumulation (hypercholesterolemia), that attracts neutrophils to hone and  

activate macrophages and T lymphocytes that amplify local inflammation resulting in 

advanced complicated lesions in vessel walls (74,75). IL-18 has an integral role in gradual 

progression of lesions as well as the latter stages of plaque instability and rupture (Figure 

8, below). Endothelium that has accumulated low-density lipoproteins and its derivatives 

are prone to oxidative stress and release of cytokines. IL-18 induced increases in 

adhesion molecules (ICAM-1) on the plasma membrane of the endothelium promote 

monocyte and T-cell adhesion and extravasation into the vascular intima where lipids are 

accumulating.  

The aforementioned combination of local IL-12 and IL-18 drive the differentiation 

of naïve T-cells into the Th-1 phenotype to produce INF-γ within the vascular intima. 

Macrophage activation via INF-γ polarizes that cell line to a pro-inflammatory state, 

deemed the M1 response. Macrophages become significant local effector cells 

contributing to smooth muscle cell proliferation, necrosis of the plaque core, and extra-

cellular matrix breakdown (76). Unstable/symptomatic plaques have shown increased 

levels of IL-18mRNA compared to stable/asymptomatic plaques in patients (77). Inhibition 

of IL-18 with an IL-18BP expression plasmid decreased lipid deposition, macrophage and 

T-lymphocyte infiltration, and increased collagen content in mice, further indicating that 

IL-18 is involved in plaque development and stability (77,78).  
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Figure 8. Atherosclerosis and IL-18. Initial LDL and lipid accumulation within the vascular intimal wall 

occurs over a prolonged period. Extended exposure of endothelial cells to lipids results in oxidative 

stress, endothelial damage, and initiation of pro-inflammatory cascades, including IL-18, which recruits 

immune cells to the damage site. Local inflammation is amplified and leads to cell death within the plaque 

core and proliferation of surrounding smooth muscle cells that further narrow the vessel. Exacerbation 

past this point can create symptomatic ischemia with exercise or at rest.  
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Myocardial Infarction 
 

After plaque rupture, coronary vessel occlusion, and myocardial ischemia, the 

crosstalk between immune cells and surviving myocytes and fibroblasts is essential to 

best repair the cardiac tissue. While essential to a degree, prolonged and exaggeration 

of this response is detrimental as it continues to destruction of remaining cardiomyocytes, 

expands infarct size, and accelerates the progression to heart failure (79). If the immune 

system response teeters the myocardium on the delicate balance between repair and 

worsening prognosis, it comes logically that suppression of an exaggerated immune 

response could be beneficial (80). While IL-1β has received more investigation and 

therapeutic attention in this setting, IL-18 is also a key player.  

After ischemia reperfusion in the mouse, cardiac, endothelial, and smooth muscle 

cell IL-18 mRNA is increased, as well as serum IL-18 levels (81,82). Pre-treatment with an 

IL-18 neutralizing antibody or injection of mesenchymal stem cells overexpressing IL-

18BP into the coronary artery of mice reduced infarct size and improved ejection fraction 

(82,83).  The cardiodepressant effects of IL-1β have been shown to be mediated by 

induction of IL-18, as IL-18KO mice treated with IL-1β did not have reduced fractional 

shortening compared to wild-type mice treated with IL-1β (32). Therefore, where treatment 

with IL-1R blockade improves cardiovascular outcomes in patients with previous 

myocardial infarction (MI), and IL-1 effects are in part mediated by IL-18, it is possible 

that inhibition of IL-18, either with exogenous binding protein or neutralizing antibody, 

could also be a treatment that yields meaningful clinical benefits to patients who achieved 

reperfusion after MI (84).  
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Heart Failure 
 

Regardless of etiology, a staple of a failing heart is damaged or stressed 

myocardium that recruits and activates effector immune cells (79). Cytokine signaling 

between immune, fibroblast, endothelial, and cardiac cells induces altered calcium signal 

coordination, oxygen free radical damage, apoptosis, and myofibroblast expansion that 

combine to impair systolic and/or diastolic function and manifest as clinically relevant 

symptoms (85).  

Clinical and basic science observations have identified elevated IL-18 to be 

associated with worsening heart failure functional class and involved in the pro-fibrotic 

response that contributes to diastolic dysfunction (86, 87). Carbone et. al. have shown that 

IL-18KO mice on a high-saturated fat diet have preserved diastolic function despite 

greater obesity (86). In a rat model of metabolic syndrome and IL-18 overexpression, 

worsened diastolic dysfunction but preserved ejection fraction was noted (88). 

A classic characteristic of heart failure is over activation of the sympathetic nervous 

system (SNS) that attempts to compensate for a failing heart’s inability to perfuse tissue 

as it once could. The interplay between sympathetic activation and ensuing immune 

activation that perpetuates a failing heart, specifically involving IL-18, has been 

investigated in humans and mice (Figure 9, below). After noting an association between 

increased serum norepinephrine and IL-18 in patients with non-ST-segment elevation 

myocardial infarction (NSTEMI) or unstable angina, Xiao et. al. observed that acute over-

activation of β-AR receptors with isoproterenol in mice induced myocardial IL-18 and 

macrophage infiltration (89). Blockade of IL-18 using antibodies reduced chemokine, 
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adhesion molecule, and pro-inflammatory cytokine gene expression, as well as reduced 

cardiac inflammation, fibrosis, and improved functional parameters (89).  

Additionally involved in the circulatory system’s response to heart failure is 

activation of the renin-angiotensin-aldosterone system (RAAS), again in attempt to 

maintain cardiac output by retaining Na+ and arterial vasoconstriction. There is increasing 

evidence of hormonal (Angiotensin II) and inflammatory (IL-18) convergence onto 

pathways causative of diastolic dysfunction. Angiotensin II increases myocardial fibrosis 

in mice, partially through production of Osteopontin (OPN). OPN is a protein secreted by 

macrophages, fibroblasts, and myocytes into the extracellular space that is critical to 

collagen synthesis and deposition, as well as myofibroblast differentiation (90). IL-18 

administration to mice has also been shown to increase OPN levels, along with 

myocardial fibrosis, collagen, and ventricular stiffness (Figure 9, below) (91).  

In summary, basic science models and patient cohorts have represented IL-18 

involvement in development and worsening of cardiovascular diseases including 

hypertension, atherosclerosis, myocardial infarction, and heart failure. Further 

clarification of IL-18 pathways may pay great dividends going forward for patients at risk 

for and those who have already developed the aforementioned diseases.  
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Figure 9. IL-18 and diastolic dysfunction. Overexpression of IL-18 and induction of the protein 

Osteopontin (OPN) leads to fibrosis and diastolic, while genetic knockout of IL-18 in a model of diet-induced 

obesity preserved diastolic function and reduced fibrosis (80). Stimulation of β-Adrenergic receptors with 

isoproterenol induces immune cell recruitment and diastolic dysfunction that was preserved with antibody 

blockade of Il-18 (82).   
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Role of IL-18 in metabolism: Health and Disease 
 

The complicated nature of IL-18 signaling in metabolism is in part due to 

contrasting physiological observations. In the early 2000’s, clinical correlations between 

circulating IL-18 levels and obese and diabetic patients were made. Compared to healthy 

volunteers, patients with type 2 diabetes mellitus had higher serum IL-18 (92). Obese 

women were also found to have higher serum IL-18 levels that positively correlated with 

BMI, waist-to-hip ratios, and negatively correlated with insulin sensitivity (93). Acute 

hyperglycemia in healthy and glucose intolerant patients showed an increase in IL-18 

levels that was prolonged in patients with impaired glucose tolerance (94). A separate 

study incorporating a large community population indicated a consistent graded 

relationship between plasma IL-18 and odds ratio for metabolic syndrome (95).  

This discovery of IL-18 positively correlating with the metabolic syndrome in 

patients has led to a growing number of preclinical investigations. Early evaluation by 

Netea et. al. in IL-18KO mice showed the spontaneous development of obesity and insulin 

resistance at 6 months of age that was preceded by increased chow intake (hyperphagia) 

(96). Supporting data by Zorrilla et. al. again showed that IL-18KO mice developed a 

phenotype of increased body weight and adiposity preceded by increased standard chow 

or high fat diet intake, as well as an increased respiratory exchange ratio (RER) (97,98). 

Collectively, these initial results indicated that although clinical data suggested a 

pathophysiologic association of IL-18 in the development of the metabolic syndrome, the 

genetic absence of IL-18 was also able to produce a phenotype of obesity and insulin 

resistance.  
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Recent work has further implied IL-18 to be essential to body weight and glucose 

homeostasis through catalytic activation by the NLRP1 inflammasome in the mouse. 

Collectively, Murphy et.al. was able to show NLRP1’s ability to respond to energy intake 

and coordinate metabolic homeostasis, specifically through IL-18 (99).  

Interestingly, administration of recombinant IL-18 (rIL-18) to mice via intravenous 

administration had no effect on food intake while intracerebral administration significantly 

reduced food intake, suggesting the effect of IL-18 on food intake may occur within the 

central nervous system (CNS) (96,98). After elegant work discovered precise neurocircuit 

elements responsible for feeding behavior in the lateral hypothalamus (LH), the central 

effects of IL-18 on appetite were further investigated (100,101). It was discovered that IL-18 

altered neuron activity in the (LH) to result in decreased food intake in mice (101). 

Peripherally, IL-18 administration to mice has been shown to slightly increase 

insulin sensitivity, increase 5’ AMP-activated protein kinase (AMPK), and increase fatty 

acid oxidation (96,102). Additionally, rIL-18 administration to mice decreased body weight 

and improved lipid handling capacity of the liver (103). Thus, an overall divide of IL-18 

metabolic contributions between the CNS to regulate food intake and the periphery to 

positively alter insulin sensitivity and lipid metabolism has been discovered (Figure 12).  

The apparent negative contributions of IL-18 to cardiovascular disease mixed with 

possible positive influences on metabolism, namely decreased food intake and improved 

glucose/lipid metabolism, create an unclear therapeutic potential of IL-18. On one hand, 

inhibition of IL-18 signaling at the myocardium appears beneficial, as it has been shown 

to attenuate cardiac dysfunction. However, genetic absence of IL-18 in mice leads to overt 

obesity and T2D. Thus, an apparent disconnect in IL-18 signaling exists (Figure 12).  
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Similarities and differences in IL-18KO and IL-18RαKO mouse phenotypes: A role 

for the Na-Cl Co-transporter? 
 

As discussed before, deletion of the ligand IL-18 (IL-18KO) results in a phenotype 

of obesity and T2D (96,98). However, mildly differing phenotype results have been 

observed after the genetic deletion of the IL-18Rα, responsible for binding IL-18. IL-

18RαKO mice display hyperinsulinemia and decreased glucose tolerance akin to IL-18KO 

mice; however, regardless of diet, they exhibit body weight changes and food intake 

levels that resemble wild-type mice more than IL-18KO mice (Figure 10) (102, 104).  

 

 

 

 

 

 

 

 

 

Figure 10. IL-18KO and IL-18RKO divergence. Adapted from Lindegaard et al Diabetes 2013 and 

Pazos et al Scientific Reports 2015. (Top) Body weight gain on either standard diet (SD, CH, chow) or 

high-fat diet (HFD) of wild-type, IL-18RαKO, or IL-18KO mice. Apparent is the trend that IL-18RαKO mice 

do not have a growth pattern that is alike IL-18KO mice. (Bottom) Chow or HFD food intake of wild-type, 

IL-18RαKO, or IL-18KO mice. Again, the IL-18RαKO mice do not exhibit hyerphagia like IL-18KO mice.  
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Additionally, peripheral disconnects in IL-18 signaling have been shown in the 

context of atherosclerosis. In a mouse model of atherosclerosis, IL-18RαKO was unable 

to decrease plaque size in vivo or prevent IL-18 binding to isolated endothelial cells ex 

vivo. A cell surface binding alternative for IL-18 was found to be the 125 kDa Na-Cl Co-

transporter (NCC) (105). The distal convoluted tubule (DCT) apical transmembrane protein 

is known to be responsible for ~5% of Na+ reabsorption in the kidney and is the target for 

thiazide-type diuretics that are considered to be part of first-line therapy for hypertensive 

patients (106,107).  

Further investigation yielded that IL-18 had strong binding affinity for NCC, and IL-

18 treatment in vitro to cells expressing NCC and not IL-18Rα increased protein tyrosine 

phosphorylation, indicating a signal is transduces across the plasma membrane due to 

IL-18 binding to NCC. Genetic changes in the mouse model of atherosclerosis yielded 

further support to in vitro IL-18/NCC communication observations. Decreases in 

atherosclerotic lesion are were only observed in the double knockout of Apoe−/−NCC−/−IL-

18Rα−/− and not in Apoe−/−NCC−/− or Apoe−/−IL-18Rα−/− backgrounds (Figure 11, below). 

Combined, these results indicated that the membrane localized Na-Cl Co-transporter 

effectively played a role in mediating atherosclerosis through IL-18 signaling in the 

mouse, suggesting that NCC may also mediate other physiologic processes where IL-18 

signaling is important, possibly including metabolic and cardiac function discussed 

previously.  
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Figure 11. NCC in Atherosclerosis. Adapted from Wang et al Nature Medicine 2015, Aortic root lesion 

intima area in different genetic backgrounds. Where Apoe−/−NCC−/− or Apoe−/−IL-18Rα−/− 

backgrounds are not protected from atherosclerosis, Apoe−/−NCC−/−IL-18Rα−/− significantly decreases 

aortic lesion area intimal area. These results implicate NCC as a receptor in physiologic processes where 

IL-18 activity is involved.  

 

 

Thus, further understanding the mechanism by which IL-18 signaling is achieved 

may reveal intricacies to its biology, role in homeostasis, and metabolic and cardiac 

disease as well as open therapeutic doors (Figure 12, below). The major goal of the work 

presented here, and still underway, is aimed at unraveling the role of NCC as a co-

receptor for IL-18 signaling in metabolic and cardiac function by investigating the genetic 

knockout of NCC in a mouse model of high-fat diet induced obesity.  
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Figure 12. IL-18 Physiology. The complex interplay of IL-18 and its contributions to immune, 

cardiovascular, and metabolic function. Within the immune system, IL-18 mediates communication 

between cell types to specialize the immune response toward a pro-inflammatory state. In the vascular 

system, IL-18 functions between endothelial, macrophages, and T-cells to promote atherosclerosis. 

Within the heart, IL-18 can induce cardiomyocyte hypertrophy and fibroblast collagen deposition that 

contribute to diastolic dysfunction. The effects of IL-18 on metabolism are less clear-cut, but include 

decrease food intake within central nervous system and possible positive modulation of glucose and lipid 

metabolism in the periphery at adipose and skeletal muscle tissue. The role of NCC as a receptor that 

mediates these functions is investigated here.  
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 With the comprehensive background of Interleukin-18 being required for 

metabolic homeostasis, but able to cause ventricular hypertrophy, fibrosis, and 

dysfunction with the capability to act through its co-receptor Na-Cl Co-transporter (NCC) 

to elicit function; we hypothesize NCC may act to mediate IL-18 effects on metabolic 

and cardiac function. Therefore, the genetic knockout of NCC (NCCKO) will worsen the 

metabolic phenotype, but attenuate the cardiac phenotype after western diet feeding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Hypothesis Schematic. 
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Methods 
 

a. Animals 
 

i. All animal experiments were conducted under guidelines on the humane 

use and care of laboratory animals for biomedical research published by 

the National Institutes of Health. The Institutional Animal Care and Use 

Committee (IACUC) of Virginia Commonwealth University approved this 

study. Eight- to 12-week-old mice of the C57BL/6J background 

genetically modified to lack the gene for the Na-Cl Co-transporter (NCC) 

(NCC KO) and IL-18KO mice were purchased from The Jackson 

Laboratory (Bar, Harbor, ME). 

b. Study Design 
 

i. Prior to diet intervention, NCCKO male (n=10) mice had free access to 

standard chow and water. After baseline metabolic and cardiac 

assessment, each group was divided so that half of the group (n=5) was 

assigned to maintain a standard chow diet (Teklad LM-485; Envigo) 

while the other half (n=5) was assigned to maintain a “western diet” (WD) 

rich in saturated fat and sugar (Teklad TD.88137; Envigo). A group of 

female mice were studied as well to see differences associated with e 

gender. However, in this study, only the male mice are reported. IL-18 

KO and wild-type (n=10/group) were also fed with WD to be used as 

comparison for the NCCKO mice. The study was performed over an 8 
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to 16 week period to assess metabolic and cardiac phenotype. Nutrient 

composition of each diet is listed in Table 2 below.  

 

 

Figure 14. Research Design. 

 

Dietary composition  

in %kcal 

Standard Diet 

(SD) 

Western Diet 

(WD) 

Carbohydrate 44.3 42.7 

Protein 19.1 15.2 

Total Fat 5.8 42.0 

Saturated Fat %  

of total fatty acids 
0.8 61.8 

Cholesterol -- 0.2 

Kcal/g  

(Energy Density) 
3.1 4.5 

 

Table 2. WD Composition. Nutrient composition of Standard Diet (SD) and Western Diet (WD). 
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c. Food intake and body weight 
 

i. Food intake was measured biweekly as the disappearance of food in 

grams (g) since last observation. Body weight was measured weekly 

using a scale and recorded in grams.  

d. Oral Glucose Tolerance Test (OGTT) 
 

i. Mice were fasted overnight (16 hours) before measurements of fasting 

blood glucose. The mice were transferred from their previous cage to 

clean cages with no evidence of food or feces in the new cage. Mice had 

free access to water during the fasting period. The blood was collected 

from the distal tails of the mice. The first drop of blood removed via 

gauze pad, and the following drop of blood was used to obtain serum 

glucose concentrations with an AimStrip Plus Blood Glucose Meter 

(Ermaine Laboratories Inc.) and AimStrip Plus Blood Glucose Test 

Strips (Ermaine Laboratories Inc.). Blood glucose concentrations were 

measured at baseline after the 16 hours fasting and at time points 15, 

30, 60, and 120 minutes after glucose challenge. A 20% by weight D-

(+)-Glucose (Sigma-Aldrich) solution in water (ex. 2g D-(+)-Glucose in 

10mL water) and mice were carefully given 10µL/g body weight via oral 

gavage. All the NCC KO mice received the test at baseline and before 

the study termination, while the IL-18 KO and wild-type received the test 

only at baseline, and fasting glycemia prior to termination. For 

consistency, the fasting glycemia is reported for all three groups.  
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e. Insulin Tolerance Test (ITT) 
 

i. Mice were fasted for 6 hours before measurements of serum glucose. 

The mice were transferred from their previous cage to clean cages with 

no evidence of food or feces in the new cage. Mice had free access to 

water during the fasting period. Blood was collected from the distal tails 

of the mice, the first drop of blood removed via gauze pad, and the 

following drop of blood was used to obtain serum glucose concentrations 

with an AimStrip Plus Blood Glucose Meter (Ermaine Laboratories Inc.) 

and AimStrip Plus Blood Glucose Test Strips (Ermaine Laboratories 

Inc.). Serum glucose concentrations were measured at baseline after 

the 6 hours fasting and at time points 15, 30, 60, and 120 minutes after 

insulin challenge. Stock Insulin (Lantus, insulin glargine injection, 

provided by Virginia Commonwealth Division of Animal Resources) 

provided was 1 Unit/10µL and the overall administration was to be 1 Unit 

Insulin/1kg body weight of mice. The body weight of mice undergoing 

testing was summed to find the amount of Insulin Units needed (ex. 20 

mice totaling 640g = .64 Units = 6.4µL stock Insulin). Insulin was diluted 

in 0.9% Normal Saline (NS) to make the final solution (ex. 20 mice 

totaling 640g requires 6.4mL final volume. For simplicity, a solution 

containing 10uL stock Insulin within a total 10mL volume with 0.9% NS 

as solvent was made).  Mice were given 10µL/g body weight 

intraperitoneal injection of the Insulin/Saline solution and blood glucose 
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was measured at time points mentioned above. This test was performed 

on NCC mice only, therefore the results are not part of the dissertation.  

f. Echocardiography  
 

i. Mice underwent transthoracic Doppler echocardiography (Vevo770; 

VisualSonic, Toronto, ON, Canada, 30MHz probe) under sedation (30-

50 mgkg-1 pentobarbital) to evaluate systolic and diastolic parameters at 

baseline prior to diet administration, 4, 8, and 16 weeks after the 

beginning of either standard or western diet. B-Mode was used to find 

mid-papillary region of the left ventricle. M-Mode was then used to 

measure left ventricular end-diastolic diameter (LVEDD) and left-

ventricular end systolic diameter (LVESD), then left ventricle fractional 

shortening (LVFS) was calculated [(LVEDD-LVESD)/LVEDD]*100. 

Pulse-Wave Doppler was used to assess isovolumetric contraction time 

(ICT), ejection time (ET), and isovolumetric relaxation time (IRT). 

Myocardial Performance index (MPI), also known as Tei index, an 

assessment of global systolic and diastolic function, was calculated as 

[(ICT+IRT)/ET].  

g. IL-18 ELISA 
 

i. Blood was collected from mice through the inferior vena cava at the time 

of death. Blood was incubated in tubes with heparin (BD, Franklin Lakes, 

NJ) for 15 min and then centrifuged at 2,000 rpm at 4°C for 10 min to 

obtain plasma. Samples were stored at −80°C and subsequently 
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analyzed with a specific ELISA for murine IL-18 (plasma, MBL) 

according to the supplier's instructions to assess the induction of IL-18 

after WD. Absorbance was read with a Bio-Tek plate reader (model 

μQuant, Bio-Tek, Winooski, VT) at 450 nm. Data are expressed in 

picograms per milliliter (pg/mL).  

h. Statistical Analysis 
 

i. For the animal study, because of the low expected variance within the 

groups, values are expressed as mean and SEM. The differences 

between groups were assessed using analysis of variance followed by 

the Student t test for unpaired data to compare the individual groups. 

Microsoft Excel and GraphPad Prism 7 were used for statistical 

analyses.  
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Results:  
 

We set out to evaluate paramters of metabolism and cardiac function in three groups of 

mice fed a high-saturated fat diet: Wild-type, IL-18KO, and NCCKO.  

 

WD induces systemic release of active IL-18 
 

 To assess the inflammatory state after WD, we measured plasma IL-18 in 

NCCKO and wild-type mice on WD and compared them to separate C57BL6/J wild-type 

mice that were on standard diet (SD). We observed an statistically significant increase 

in plasma IL-18 after WD in wild-type (183.3pg/mL ±  29.3)  and NCCKO (237.6pg/mL ±  

12.7) mice compared to wild-type mice on SD (79.3pg/mL ±  19.9) (Figure 15).  

 

 

Figure 15. WD Increases circulating IL-18. Plasma IL-18 measured by ELISA in wild-type mice and 

NCCKO mice on WD compared to wild-type mice on SD (n=5-8). Data (in pg/mL) are reported as means 

±  SE (One-Way ANOVA — P-values vs. wild-type mice on standard diet).  
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Body Weight changes over study duration 
 

Plotted in Figure 16 (top), we analyzed absolute body weight (g) at 1 week time 

points over the course of 8 weeks for Wild-type, IL-18KO, and NCCKO male mice.  All 

the mice displayed normal appearance and behaviour. At baseline, IL-18KO mice 

weighed significantly more than NCCKO, but not more than wild-type mice. At the later 

time points, the IL-18KO mice started to weigh signifincantly more than the wild-type 

and maintained a constant difference from the NCCKO (Figure 16, top).   

To evaluate rate of growth on WD relative to initial weight in all mouse strains, we 

calculated percent change from baseline (%) at each week (Figure 16, bottom). In this 

way, we can compare the rate at which the mice gain weight, independent from the 

differences at baseline. We found that the IL18KO and NCCKO gain a significantly 

larger percentage of weight, 46.4 % ± 4.1 and 55.0% ±  2.1 respectively, than the wild-

type mice who gained 21.7% ±  6.8 of initial weight (P<0.05) (Figure 16, bottom).  This 

data suggests that NCCKO mice on WD gain weight to a greater extent than wild-type 

mice that resembles body weight changes observed in IL-18KO mice on WD.  
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Figure 16. Increased Body Weight Gain of IL-18KO and NCCKO mice on WD. Absolute body weight 

gain (top) and percent body weight change from baseline (%) (bottom) comparisons between wild-type, 

IL-18KO, and NCCKO over 8 weeks while on Western Diet (n=5-9). (Two-Way ANOVA — #: P<0.05 

NCCKO vs. Wild-type, ^:P<0.05 IL-18KO vs. Wild-Type, *:P<0.05 IL-18KO vs. NCCKO). Data (in g) are 

reported as mean ±SE.  
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WD induced Type II Diabetic phenotype 
 

 In order to assess metabolic function in the three groups of mice before and after 

WD consumption, fasting glucose levels were taken. At baseline before WD, IL-18KO 

and NCCKO mice had significantly higher fasting plasma glucose levels (93.3 ±  4.4 and 

92.6mg/dL ± 5.6 respectively) compared to wild-type mice (78.1mg/dL ±1.7) (Figure 17 

left, P<0.05). After WD, the fasting plasma glucose was not different between any 

groups (151.9 ± 10.6 vs. 165.4 ± 4.7 vs. 156.4 ± 8.0 mg/dL for IL-18KO, NCCKO, and 

Wild-Type respectively, Figure 17 right).  

 

 

  

 

 

Figure 17. Differences in fasting glycemia before, but not after WD. Fasting blood glucose prior to 

western diet (baseline, left) and after 8 weeks (wild-type, IL-18KO) or 16 weeks of western diet (NCCKO) 

(right) (One-Way ANOVA, P-values vs. Wild-Type). Data (in mg/dL) are reported as mean ±SE, n=3-10. 
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Echocardiographic assessment of systolic, diastolic, and global function 
 

 To evaluate the change in cardiac function in the three groups after WD, we 

chose to evaluate percent (%) change from baseline in Fractional Shortening (FS), 

Isovolumetric Relaxation Time (IRT), and Tei Index. When evaluating FS, NCCKO mice 

had a 14% ± 8 decrease in FS, while IL-18KO and wild-type had a 13% ± 4, and 28% ± 

5 decrease, respectively (Figure 18, top). The percent decrease from baseline was 

significantly less in the IL-18KO group compared to Wild-Type, but not statistically 

different between NCCKO and Wild-Type mice. NCCKO mice after WD had a 

significantly smaller increase (29% ± 16) in IRT compared to wild-type (123% ± 21), 

while the IL-18KO % increase in IRT (67 ± 26) was not statistically significant from wild-

type (Figure 18, middle). The percent change in Tei index, a marker of global function, 

from baseline was significantly preserved in NCCKO and IL-18KO mice (62% ± 21 and 

46 ± 22 increase respectively) compared to the wild-type percent increase from baseline 

(162% ± 23 increase, Figure 18, bottom). Collectively, these echocardiographic 

changes over time indicate that after WD, NCCKO mice exhibited less worsening of 

diastolic and global function compared to wild-type mice that resembled the IL-18KO 

phenotype.  
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Figure 18. Attenuated changes in cardiac function after WD in IL-18KO and NCCKO mice. 

Echocardiographic measurements Fractional Shortening (FS, top), Isovolumetric Relaxation Time (IRT, 

middle), and Tei Index (bottom), percent changes from baseline to after western diet completion (wild-

type and IL-18KO 8 weeks, NCCKO 16 weeks). One-Way ANOVA test to evaluate trend within groups, 

and T-test to evaluate statistical differences between groups: #:P<0.05 vs. Wild-Type. Data (in % change) 

are presented as mean ±SE, n=5-9. 



45 
 

Discussion 
 

 The results of the current study show that mice genetically lacking the Na-Cl Co-

transporter have an overlapping phenotype with mice genetically lacking IL-18. IL-18 

has both cardiodepressant activity and prevents weight gain by suppressing appetite. 

NCC is a newly discovered receptor for Interleukin-18, and we hypothesized that it may 

in part mediate the negative effects of IL-18 on cardiac function and the positive effects 

of IL-18 on metabolic function during WD feeding. After establishing that a WD induces 

increased levels of IL-18 in both wild-type and NCCKO mice (Figure 15), we assessed 

metabolic and cardiac phenotypes.  

 To study the role of NCC in metabolism, we used an accepted model of diet-

induced obesity whereby mice are fed with a specific diet for at least 8 weeks to induce 

metabolic and cardiac dysfunction. The high energy density and high percentage of total 

and saturated fat diet used as WD (Western Diet) is advantageous in this basic science 

investigation due to its high relevance to consumption habits in western populations. 

NCCKO mice appear to be smaller than the IL-18KO mice at any weekly interval. 

However, to better evaluate weight gain while on the diet, the weight gain was 

measured and normalized by the initial weight (Figure 16, bottom). Evidently, the rate of 

body weight increases from baseline of the NCCKO mice on WD (55% at 8 weeks) has 

striking resemblance to the rate of body weight increase of IL-18KO mice on WD 

(46.4% at 8 weeks) where both groups gained significantly more weight relative to 

baseline than wild-type mice on WD (21.7% at 8 weeks). This is of importance when 

compared to available literature that has investigated body weight gain of IL-18RαKO 

mice. Two groups have observed a pattern whereby the IL-18RαKO mice growth rate 
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on a WD is slower than that of IL-18KO and more closely resembles that of a wild-type 

mouse on WD (Figure 10, Introduction) (102,104). The trend of acute onset and sustained 

obesity while on WD in mice lacking IL-18 or an upstream activator such as NLRP1 or 

TLR4 is well-documented in the literature (98,99,104,108).  

Our observations indicate that perhaps during a state of high-saturated fat 

feeding which induces a low-grade pro-inflammatory state, IL-18 may be signaling in the 

brain to control appetite and in the heart to regulate relaxation to a greater degree 

through NCC rather than the IL-18Rα. Support for IL-18 “favoritism” to NCC has been 

observed in vitro. Conjugated IL-18 showed a higher binding affinity to NCC than to IL-

18Rα [NCC dissociation constant (a concentration that indicates when 50% of binding 

has occurred) Kd = 17.3nM vs. IL-18Rα Kd= 46nM] (51,105).  Additionally, IL-18 has been 

shown to increase peritoneal macrophage NCC mRNA levels by 65 fold, as well as 

increase plasma membrane NCC in macrophages and T-cells treated with IL-18, 

observable by immunostaining (105). It is possible, but has not been analyzed to our 

knowledge, that IL-18 may cause a similar increase in NCC within neural tissue that 

becomes primarily responsible for binding to IL-18 and modifying neural circuits to 

decrease satiety and eventual body weight. 

Importantly, this hypothesis would necessitate careful investigation of food 

intake. A common method of measuring food intake is to measure the disappearance of 

food from the mice cages; however, this measurement has high variability due to the 

fact that mice “play with” the sticky texture of the high-saturated fat diet and do not 

necessarily ingest all of the WD that disappeared from the previous measurement. This 

method was attempted with these groups of mice, but the pitfall of the measurement 
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tool limited the accuracy of the data. A more precise method of measuring food intake 

using a metabolic chamber is in planning to best evaluate physiologic changes in food 

intake in similar groups studied here. 

It cannot be understated that a key component of IL-18 signaling in positively 

affecting metabolism is within the central nervous system (CNS) to decrease appetite 

and food intake. Common to pro-inflammatory states of non-specific illness is the loss of 

appetite(109). Interleukin-18 has been identified in the mouse to contribute to this 

phenomenon. Through a pre-synaptic disinhibitory mechanism, IL-18 disrupts the 

balance of excitatory and inhibitory electrical signals in the amygdala that culminates in 

increased lateral hypothalamic (LH) firing and a decrease in food intake (101). An 

observed reduction in standard diet food intake after central IL-18 administration was 

deemed to be dependent on the presence of the IL-18Rα as brain slices from IL-

18RαKO mice treated with rIL-18 did not exhibit significant changes in electrical 

properties changes as seen in brain slices from IL-18Rα+/+ mice. However, these 

experiments were done in IL-18RαKO mice 3-5 months of age on a standard diet. Mice 

on a standard diet have been shown to have significantly less (approximately 30%) 

plasma IL-18 than mice fed a WD for 8 weeks (86). Additionally, the ELISA results 

shown here indicate circulating IL-18 approximately doubles after WD (Figure 14). It is 

possible the IL-18Rα+/+ and IL-18RαKO mice fed standard diet, and studied specifically 

for IL-18/IL-18Rα mediated hypophagia, did not have sufficiently elevated IL-18 levels to 

induce relevant NCC expression within the amygdala and hypothalamus, therefore NCC 

function as a receptor could not have been evaluated in that setting.  
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Additionally, our analysis of the obese phenotype through weight gain is not as 

holistic as appears in other literature that separates body composition by fat mass and 

fat-free mass with the use of sophisticated tools such as dual energy X-ray 

absorptiometry (DEXA) or EchoMRI. A possible relevancy of accurately measuring body 

mass composition to the NCCKO mice here is a finding of increased bone mineral 

density (BMD) in NCCKO mice compared to NCC+/+ mice. However, despite an 

increased BMD, the absolute weight of littermate NCC-/- and NCC+/+ mice was indifferent 

(25.7g vs. 25.9g respectively) (110). More specific tools, while more expensive, could 

have elucidated more intricacies of fat and lean mass within the obese phenotypes 

observed.   

To assess whole body glucose metabolism we measured overnight fasting 

plasma glucose levels before and after WD. Prior to the start of WD the IL-18KO and 

NCCKO mice had significantly higher fasting glucose (93.3 and 92.6mg/dL respectively) 

compared to wild-type mice (78.1mg/dL) (Figure 17, left). Although these levels are still 

within a normal range, they indicate that IL-18 and NCC are directly or indirectly 

important for glucose homeostasis. Similar observations have been identified for IL-

18KO mice where, by 3 months of age IL-18KO mice have elevated fasting insulin and 

decreased tolerance to glucose and by 6 months of age exhibit full-fledged Type II 

Diabetes characterized by elevated fasting glucose, decreased glucose tolerance, and 

decreased insulin sensitivity (96).  

Peripheral homeostatic functions of IL-18 that relate to energy metabolism are 

not well understood. In patients, elevated plasma IL-18 are positively associated with 

BMI, Type II Diabetes (T2D), and waist-to-hip ratios, and negatively correlated with 
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insulin sensitivity (93 111). This could reflect another phenomenon seen in obese patients 

of IL-18 resistance. Leukocytes isolated from obese or T2D patients have a blunted 

production of INF-γ in response to IL-18 stimulation that was accompanied by a 50% 

reduction in plasma membrane Il-18Rα and IL-18Rβ (112). Interestingly though, 

intraperitoneal recombinant IL-18 was able to improve insulin sensitivity in IL-18+/+ and 

IL-18-/- mice (96). Additionally, in vitro and ex vivo studies have shown that exogenous 

IL-18 treatment increases AMPK and fat oxidation (102). AMPK is an intracellular protein 

that coordinates a multitude of cellular functions, including fatty acid uptake, β-oxidation, 

translocation of GLUT-4 vesicles to the plasma membrane, promotion of glycolysis and 

inhibition of gluconeogenesis, providing further support for IL-18 acting in part to 

improve glucose metabolism (113).  

 Although no other basic science studies to our knowledge have investigated the 

effects of NCCKO on glucose metabolism, two potential clinical correlations can be 

made. A possible link that has been made for the development of glucose intolerance 

and insulin resistance in patients with genetic mutations in NCC, clinically named 

Gitelman Syndrome, or hypokalemia in patients receiving thiazide diuretics 

(hydrochlorothiazide, chlorthalidone: NCC blockers). Gitelman Syndrome patients and 

patients on thiazide diuretics may exhibit hypokalemia owing to increased urinary K+ 

excretion in the distal tubule and collecting duct (114). Thiazide-induced dysglycemia is a 

well-observed phenomenon, but the mechanism behind it is unclear. Speculation to this 

point focuses on K+ mediated release of insulin by pancreatic β-cells, but it is not 

established as to whether small decreases in K+ are physiologically relevant to cause a 

decrease in insulin secretion that results in hyperglycemia (115).  



50 
 

Connecting apparent findings of IL-18 improving insulin sensitivity, and NCC 

acting as a receptor for IL-18 binding and effects, it is possible that IL-18 functions 

through NCC to improve insulin sensitivity, although this requires much further 

investigation. Although we see higher fasting plasma glucose at baseline in the NCCKO 

and IL-18KO compared to wild-type, WD over time does not worsen glycemia, indicating 

glucose metabolism during high-fat diet may be independent of IL-18 and NCC function 

(Figure 17, right). This finding is somewhat dissociated from the severity of obesity 

development. Despite gaining significantly more weight than wild-type, NCCKO and IL-

18KO display similar fasting glycemia. Future investigation into glucose metabolism and 

insulin function is of interest in the NCCKO genotype to perhaps investigate 

contributions of electrolyte abnormalities and/or IL-18 mediated effects to alterations in 

glucose metabolism.  

To evaluate the contribution of NCC to cardiac function during WD, we assessed 

systolic, diastolic, and global function parameters via echocardiography. We report 

percent change in cardiac function of groups to normalize for baseline differences and 

specifically evaluate the effect of the WD on changes in cardiac function. For all three 

groups there was decline in fractional shortening (FS) with only the IL-18KO group 

having less worse FS changes after WD compared to wild-type mice (13% vs 28% 

decline respectively) (Figure 18, top), indicating systolic function was not statistically 

preserved by genetic deletion of NCC after WD. This result was somewhat expected as 

the model of diet induced obesity induces mild systolic dysfunction, but may retain an 

ejection fraction that is still considered preserved.  
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Pulse wave Doppler measurements allowed for analysis of diastolic and global 

function, specifically isovolumetric relaxation time (IRT) and Tei Index (or Myocardial 

Performance Index). For orientation, an increase in IRT or Tei Index indicates 

worsening function. In terms of changes in the early relaxation of the left ventricle after 

WD, NCCKO mice had significantly attenuated percent changes from baseline 

compared to Wild-Type (29% vs. 123%), whereas the IL-18KO percent change from 

baseline was not significantly less than the Wild-Type (67% vs. 123%) (Figure 18, 

middle). Further support for a less severe effect of WD on cardiac function for NCCKO 

mice is supported by a statistically lower percent increase from baseline in global 

evaluation via the Tei Index. After WD, both the IL-18KO and NCCKO mice had 

significantly lower percent increases in Tei Index (46% and 62% increase respectively) 

compared to wild-type mice (162% increase), indicating that the WD had less of a 

cardiodepressant effect in the IL-18KO and NCCKO groups (Figure 18, bottom). 

Collectively, the echocardiographic results indicated that IL-18 induced by WD may 

have a greater impact on diastolic function, and the genetic knockout of IL-18 or the 

NCC receptor for IL-18 resulted in less worsened diastolic dysfunction from baseline 

after WD.  

Keeping in mind clinical heart failure relevancies, a large clinical study evaluating 

efficacy of differing anti-hypertensive pharmacotherapy in high-risk hypertensive 

patients discovered that the use of a NCC blocker, Chlorthalidone, significantly reduced 

the risk of heart failure at 4-8 year follow up compared to an ACE inhibitor (Lisinopril) or 

a Calcium-Channel Blocker (Amlodipine) (107). This finding represents a possible link to 

the research investigated here, whereby inhibition of NCC aside from the primary goal 
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of diuresis to control blood pressure may also be provide direct inhibition of IL-18 

signaling in the myocardium to prevent or slow the progression of cardiac dysfunction. 

This line of thinking is of high interest that we aim to investigate further in the future.  

An alternative method to evaluate novel contributions of NCC to IL-18 signaling 

could have been through the use of pharmacologic inhibitors of the ion transporter that 

are commercially available, notably hydrochlorothiazide (HCTZ). A flaw to this design 

are reports that HCTZ does not cross the blood brain barrier and therefore centrally 

mediated effects of NCC may not be able to be assessed; however, this could have 

been acutely overcome with direct intracerebral administration of HCTZ via cannulas 

placed into the skull and brain (120). This direct central administration method is 

complicated; however, by post-surgical induction of pain, distress, and risk for infection 

(121). Additionally, although the genetic knockout of NCC has yet to result in embryonic 

lethality to our knowledge, NCC has important other physiologic contributions. As noted 

prior, the Na-Cl Co-transporter is partially responsible for electrolyte homeostasis, 

particularly K+, Mg2+. Therefore, a temporally controlled inducible mutation of SLC12a3, 

the gene encoding NCC, in mice could prove to be a beneficial model to study the 

physiology related to NCC in the future.  

A separate limitation of this study is the fact that the wild-type mice are not 

littermates to the NCCKO or IL-18KO mice. Although all of the mice studied have the 

same C57Bl6/J background, this is of great importance when attempting to control for a 

single genetic change and we cannot exclude the effects of other compounding genetic 

alterations when assessing the data. Moreover, genetic knockout mice remain inbred, 

which can lead to reduced biological fitness of the population.  
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 The strength of research presented here derives from the novel findings, 

specifically regarding the possible role of the Na-Cl Co-transporter (NCC) in mediating 

IL-18 effects on metabolic and cardiac function. We believe the investigation and results 

here have laid a foundation for a more elaborate research plan designed to 

comprehensively investigate the known components of IL-18 signaling in a similar 

experimental model. Others have described that protection from the pro-inflammatory 

disease of atherosclerosis is observed only after combined genetic knockout of IL-18R 

and NCC (IL-18Rα-/-NCC-/-), and not singular littermate knockouts of either (IL-18R-/- or 

NCC-/-) (105). Although the data presented here investigates the sole knockout of NCC, 

in the future we hope to replicate the double knockout design and further investigate IL-

18 signaling mechanisms in the context of diet-induced obesity. In order to accomplish 

this, crossbreeding to obtain littermates with differing components of the IL-18 signaling 

system missing must be done. Crossbreeding and genomic analysis is currently 

underway to establish these mouse lines in preparation for future studies.  
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