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 Opioids, such as oxycodone, morphine, and fentanyl, are commonly used medications in 

the treatment of moderate to severe pain. In spite of their efficacious analgesic properties, their 

increased prescribing rates by physicians and inherent abuse-related effects have led to the ongoing 

opioid epidemic. Their clinical utility is limited by the risk of adverse dose-dependent side effects, 

such as constipation and respiratory depression, and the development of tolerance and dependence. 

Opioid-sparing adjunctive therapies are sought to address these issues by reducing the dose of 

opioid needed to achieve analgesia through alternative non-opioidergic mechanisms and as a 

result, reduce the incidence of the previously mentioned side effects. Serotonin type-2C receptor 

agonists have demonstrated antinociceptive efficacy in preclinical models of chronic pain. 

Lorcaserin is a selective 5-HT2C receptor agonist and was reported to attenuate the abuse-related 

effects of oxycodone. The antinociceptive properties of 5-HT2C receptor agonists and their 

potential to alter the abuse-related effects of commonly abused drugs suggest that lorcaserin may 

be a potential opioid-sparing therapeutic. The goal of these studies was to evaluate the utility of 
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lorcaserin, in combination with opioids, in a preclinical model of acute pain. Based on previous 

studies demonstrating the antinociceptive activity of 5-HT2C agonists, the hypotheses for these 

studies were that lorcaserin would increase the acute antinociceptive effects of opioids and would 

attenuate the development of tolerance associated with chronic opioid consumption.  

The results demonstrate that the acute antinociceptive effects and the time-course of activity 

of opioids were enhanced by doses of lorcaserin. These effects were mediated through activation 

of the 5-HT2C receptor and were not blocked by administration of naloxone. Additionally, the acute 

effects of lorcaserin to increase opioid potency and time course was not mediated through changes 

in opioid distribution in the blood or central tissues.  

Opioid tolerance was evaluated in vivo, and tolerance was developed using two methods of 

treatment: an acute (single dose administration) model of tolerance and a multiple-injection model. 

Testing the effect of lorcaserin in these models was important because current research suggests 

that the mechanisms that underlie both models of tolerance are distinct from one another. The 

results demonstrate that lorcaserin significantly blocked the development of acute tolerance in the 

whole animal and on a single cell level in dorsal root ganglion cell cultures.  

In the multiple-day tolerance model, lorcaserin partially attenuated the development of opioid 

antinociceptive tolerance. Chronic administration of an opioid is associated with desensitization 

of the MOR, and the effect of lorcaserin on opioid tolerance may be mediated through changes in 

MOR functional activity. Upon further investigation using agonist-stimulated [35S]GTPyS, the 

results showed that lorcaserin altered basal binding of [35S]GTPyS but not agonist-stimulated 

binding in mice that received chronic opioid treatment. These data suggest that the effect of 

lorcaserin on opioid tolerance, in the multiple-injection model, is not mediated through changes in 

MOR functional activity. Collectively, the tolerance studies suggest that the effect of 5-HT2C 
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receptor activation by lorcaserin has differential effects on the stages of opioid tolerances and 

further supports the notion that the mechanisms that underlie the stages of opioid tolerance are 

distinct. Given the efficacy of lorcaserin to increase the acute antinociceptive effects of opioids 

and its ability to impair the development of opioid tolerance, collectively, these data suggest that 

lorcaserin may be a useful opioid-sparing adjunctive therapy.
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I. Introduction 

 

“Not the Opium-eater, but the opium, is the true hero of the tale, and the legitimate centre on which the 

interest revolves.” 

 -Thomas De Quincey, Confessions of an English Opium Eater 

 

The earliest reference to opiate use dates back to 3400 B.C by the ancient Sumerians, who 

cultivated the opium poppy plant (Papaver somniferum), or the “Joy Plant” as it was referred to, 

in lower Mesopotamia (Brownstein, 1993). It is suggested that opium spread to the rest of the old 

world from its early origins in Sumeria and since then, opium and its subsequent derivates have 

remained mainstay for both therapeutic and recreational purposes. From early autobiographical 

documentation in Confessions of an English Opium Eater by Thomas De Quincey, to frequent 

references in pop culture and music, to our modern day opioid epidemic, opiates are unyielding in 

their captivation. 

Opium is comprised of several alkaloid compounds called opiates and from this material 

in 1805, a German pharmacist named Friedrich Sertürner isolated the first active alkaloid from the 

opium poppy plant (Sertürner, 1805, 1806, 1817). He named this compound “morphine” after the 

Greek God, Morpheus, as it had a tendency to induce sleep. Following the invention of the 

hypodermic syringe and needle, morphine gained popularity as a treatment for pain in surgical 

procedures and as an anesthetic adjunct (Wood, 1858; Hunter, 1863; Hamilton and Baskett, 2000). 

Morphine, though efficacious for the treatment of pain, was still not safe for use due to its abuse 

potential and side effects. As a result, a great deal of time was spent on developing a safer and 

non-addicting opiate and in 1898, this search yielded heroin. Heroin was claimed to be free of 
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abuse liability and was more potent than morphine (Brownstein, 1993). Heroin was marketed by 

Bayer as a morphine substitute and as a cough suppressant for children until its addictive nature 

was realized (United Nations Office on Drugs and Crime, 1953). 

In spite of failed attempts at developing a “safer” opiate, the search for the holy grail of 

opiate drugs continued and led to the subsequent synthesis of one of the most well-known 

prescription opioids in 1917: oxycodone (Falk, 1917). The term “opiate” refers to compounds that 

are derived from, and are structurally similar to, naturally occurring opium compounds and this 

encompasses alkaloids such as thebaine, morphine, heroin, and also oxycodone (Rosenblum et al., 

2008). Oxycodone was the first of many semi-synthetic opioid compounds that are structurally 

similar to morphine and contain a similar structural backbone (Figure 1.1). The term “opioid” 

represents a broad class of compounds that have morphine-like activity but may be structurally 

similar or dissimilar to traditional opiates and as a result, may be either naturally occurring or 

synthesized (Rosenblum et al., 2008). Semi-synthetic compounds, such as fentanyl and 

methadone, fall under the ‘opioid” category because they exhibit opiate-like activity but are 

structurally distinct from morphine (Figure 1.1). 

Decades after the initial synthesis of oxycodone in the mid-1990s, oxycodone was 

marketed by Purdue Pharma under the name “Oxycontin” as a safer opioid analgesic for the 

treatment of acute and chronic pain (Van Zee, 2009). Over the next decade, prescription opioid 

sales quadrupled from 1994 to 2014 because of the importance of providing “pain management” 

(Haddox et al., 1997; CDC, 2017). In the midst of the widespread opioid prescribing, there was a 

simultaneous increase in the non-medical use of these opioids (US Government Accountability 

Office, 2011; Hughes et al., 2016). The consequences of these prescribing rates were widespread, 

with the CDC estimating the nearly 1.9 million Americans qualify as having an opioid use disorder 
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and reporting that approximately 115 individuals experience fatal overdose every day (CDC et al., 

2016). 

In an effort to address the opioid epidemic, the United States Government drafted a five-

part plan that involved improving our understanding of the physiology of pain and developing 

alternative treatments for pain that do not rely on opioidergic mechanisms (F Collins et al., 2017). 

Pain was endorsed as a the “fifth vital sign” by the American Pain Society and until recently, 

opioids were the mainstay for treating these conditions (Max et al., 1995). The reality is that 

although opioids provide adequate pain relief for some conditions but do so at a risk. The risks of 

opioid use are great and chronic use is associated with an increased risk in unwanted side effects, 

such as constipation, dependence, and an overall increase in opioid-related mortality (Gomes et 

al., 2011).  

Several avenues of opioid-sparing medications have been explored, including non-steroidal 

anti-inflammatories (NSAIDs), gabapentenoids, and antidepressants (Sunshine et al., 1993; 

Kolesnikov et al., 2003; Nikolajsen et al., 2006; Derry et al., 2009, 2013; Gaskell et al., 2009; 

Straube et al., 2010; Wibbenmeyer et al., 2014; Sullivan et al., 2016). Each category provides its 

own set of risks and benefits and vary overall in their efficacy in treating pain. NSAIDs and 

prescription opioid combinations, however, have found great success in reducing the overall dose 

of opioid needed to treat pain but their chronic use has significant gastrointestinal side effects 

(Gaskell et al., 2009; Derry et al., 2013). The varieties of pain in clinical populations require 

alternative avenues for its treatment, as no two conditions or patients are alike, and the goal of this 

dissertation is to explore one such alternative mechanism through which the therapeutic effects of 

opioids can be favorably enhanced 

 



4 
 

 

 

  

Figure 1.1: Structural characteristics of natural opiate and synthetic opioid compounds. 
Morphine and thebaine are natural opiate compounds that were isolated from the opium poppy 
plant (Papever somniferum). Oxycodone is a semi-synthetic opiate compound that is derived 
from a thebaine backbone. Fentanyl and methadone are both synthetic opioids that were not 
derived from naturally occurring opiate substances but demonstrate opiate-like effects. 
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II. Opioid Pharmacology 

The hypothesis that opiates and similarly derived compounds shared a common binding site 

was a concept that developed in the mid-1900s (Beckett and Casy, 1954; Portoghese, 1966). With 

the development of amazingly potent opiates and highly selective antagonists, the notion that these 

compounds exhibited strict structure-activity relationships favored the existence of specific 

receptors and in the 1970s, the existence of an opioid receptor was confirmed and a new age of 

modern opioid pharmacology was ushered in (Goldstein et al., 1971; Pert et al., 1973; Simon et 

al., 1973). Following these fundamental demonstrations of opioid-receptor mediated activity, the 

existence of not only one, but multiple, opioid receptors were postulated to exist. A lack of 

homogeneity among these opioid receptors was presented by Gilbert and Martin in 1976. Several 

groups identified these distinct subclasses of opioid receptors, which are comprised of the mu-

opioid receptor (MOR, μ) (Chang and Cuatrecasas, 1979), the delta opioid receptor (DOR, δ) 

(Kosterlitz, 1980) and the kappa opioid receptor (KOR, κ) (Gilbert and Martin, 1976; Chang et al., 

1979; Schulz et al., 1980). An additional opioid receptor subtype was identified in 1994 by three 

independent laboratories, and this receptor was identified as the nociceptin/orphanin (n/OFQ) 

receptor (NOP) (Chang et al., 1979; Bunzow et al., 1994; Fukuda et al., 1994; JB Wang et al., 

1994; Mollereau et al., 1994). The endogenous agonist for the NOP receptor, orphanin FQ or 

nociceptin, antagonizes opioid-mediated antinociception and is considered to be the “anti-opioid” 

peptide (Mogil et al., 1996). Further discussion of the NOP receptor is not relevant to these studies 

and is beyond the scope of this dissertation. 

These receptors were eventually discovered to be the targets of an endogenous opioid system, 

comprised of peptidergic compounds with varying affinities for each opioid receptor subtype. The 

search for endogenous opiates led to the discovery of three general classes: enkephalins (Hughes 
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et al., 1975), endorphins (Cox et al., 1976) and dynorphin (Goldstein et al., 1979) and are each the 

products of precursor peptides: proenkephalin, proopiomelanocortin and prodynorphin. Additional 

endogenous opioid peptides have been identified and include: endomorphins and the previously 

mentioned nociception/orphanin peptides (Mogil et al., 1996; Hackler et al., 1997; Zadina et al., 

1997).  

Endogenous opioids and exogenous opioids, such as morphine or oxycodone, exert their 

pharmacological effects through the classical opioid receptors described earlier. MOR, KOR, and 

DOR share several characteristics and collectively belong to the G protein-coupled receptors 

(GPCR) superfamily, more specifically of the Gi/o-subtype. They exhibit the typical seven 

transmembrane regions with an extracellular NH2 terminus and an intracellular COOH terminus 

and display ~60% sequence homology with one another (Satoh and Minami, 1995). Within the 

third intracellular loop is a binding site for the Gi/o G-protein α subunits and of these, the Gαi is 

shown to inhibit the activity of adenylyl cyclase (Kurose et al., 1983) and the Gαo subunit inhibits 

voltage-gated Ca2+ channels (Hescheler et al., 1987), and with both Gi and Go, activation of 

inwardly rectifying K+ channels (Hescheler et al., 1987). Overall, these effects result in reduced 

neuronal excitability through hyperpolarization which may explain the reduction in pain 

transmission associated with opioid use (Mansour et al., 1995).  

Underlying characteristics of the acute effects of opioids 

Receptor Distribution 

Distribution of opioid receptors throughout the periphery and central nervous system 

differs between subtypes and in part, underlie their observed pharmacological effects. Opioid 

receptors display a broad, but specific expression in many different tissues, including (but not 

limited to) the gastrointestinal tract, adrenal glands, kidneys, and reproductive organs (Wittert et 
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al., 1996). Their expression in the central nervous system varies but is widespread, with expression 

notable at both spinal and supraspinal levels. For the purpose for this dissertation, “supraspinal” is 

defined as a region above the spinal cord. Unsurprisingly, there is notable expression in brain 

regions mediating reward and motor function, such as the nucleus accumbens and striatum, and in 

regions dedicated to sensory processing, such as the thalamic nuclei (Tempel and Zukin, 1987; 

Mansour et al., 1988). The analgesic effects of opioids are proposed to be mediated through a 

combination of spinal and supraspinal mechanisms (Figure 1.2). For instance, the periacqueductal 

grey (PAG), a region implicated in the analgesia elicited by opioids, displays high expression of 

MOR (Mansour et al., 1988). Additionally, MOR expression can be seen in the dorsal and ventral 

horns of the spinal cord, as well as in the dorsal root ganglion. (Mansour et al., 1988, 1995)  

Opioid receptors, primarily the MOR in this context, are located within a pathway that 

serves to modulate incoming nociceptive information. This pathway is generally referred to as the 

descending modulatory pain pathway (Figure 1.2). Opioid receptors are one of many in a complex 

system that includes the likes of norepinephrine, serotonin, and dopamine. In terms of 

antinociception, this pathway functions in a manner to provide descending inhibition to reduce the 

excitability of primary afferent neurons (Millan, 2002). 

Potency & Efficacy 

Efforts to better understand the pharmacological profile of opioids has led to the 

development of additional opioid compounds, each varying in their affinities for opioid receptors 

and their efficacies at these receptors. Potency and efficacy are important components of a 

compound’s in vivo analgesic efficacy and are analyzed using a wide range of methodologies that 

range from in vivo characterizations with the whole animal to in vitro studies in cell homogenates.  
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Opioid compounds vary in their binding affinities for the MOR, KOR, and DOR. Due to 

the primary clinical use of MOR-targeted ligands in the treatment of pain, the remainder of this 

discussion will focus on MOR ligands (Pasternak and Pan, 2011). Affinity is defined as the 

“tenacity with which the drug binds to a receptor…it reflects the probability of the drug occupying 

the receptor at any instant in time” (Clarke and Bond, 1998) In some cases, a drug’s binding 

affinity may serve as an indicator of a drug’s relative potency. Potent drugs are capable of eliciting 

an effect by binding to some amount of receptor at low concentration by virtue of having high 

affinity for that receptor type. Less potent drugs which may have a lower affinity for a receptor 

require greater binding to elicit that same effect. The relative potency of MOR ligands are subject 

to variability across the system in which they are tested (i.e., in cell membranes, mouse vs. monkey 

tissue, etc.) and as a result, data sets can be inconsistent and sometimes incomplete.  

In spite of the inconsistency among data sets, opioid agonists display a typical pattern of 

affinity and potencies. Typically, competitive binding studies to assess affinities using [3H]-

naloxone or [3H]-DAMGO ([D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin). Both possess high 

affinities for the MOR and are used as a standard against which other opioid ligands can be 

compared (Pert et al., 1973; Simon et al., 1973; Handa et al., 1981). Fentanyl and fentanyl-

analogues and naloxone/naltrexone (opioid antagonists) are generally characterized as having the 

greatest affinities for the MOR (Emmerson et al., 1994; Volpe et al., 2011). The affinity of 

methadone for the MOR is controversial and has been reported as possessing both relatively high 

and relatively low affinity and in one case, a lower affinity agonist relative to morphine, but this 

may be related to differences in testing conditions (Chen et al., 1991; Emmerson et al., 1994; 

Volpe et al., 2011). Similarly, the affinity of morphine is also dependent upon the conditions in 

which it is evaluated, where in some cases it demonstrates moderate affinity for the MOR but in 
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others, its relative affinity is greater than that of fentanyl (Chen et al., 1991; Volpe et al., 2011). 

Oxycodone is generally ranked as having a lower relative affinity than morphine (Chen et al., 

1991; Volpe et al., 2011).  

It should be noted that although these compounds vary in their affinities for the MOR, poor 

in vitro binding does not necessarily preclude poor in vivo antinociceptive activity (Silvasti et al., 

1998; Volpe et al., 2011). Agonist efficacy is defined as the capacity of a drug to activate a receptor 

and in this case, the capacity of an opioid ligand, such as morphine or oxycodone, to activate an 

opioid receptor (Clarke and Bond, 1998). Similar to variations in MOR affinity, opioid ligands 

also display an astounding variation in their efficacies. Opioid efficacy can be assessed using both 

in vivo and in vitro techniques but can vary as a function of behavioral or technical endpoints (i.e., 

the temperature of a noxious stimulus in vivo or drug incubation time in vitro) (Morgan and 

Christie, 2011).  

Opioid efficacy in vivo can be assessed using a wide range of techniques, including the 

classical tail flick test (which utilizes a noxious thermal stimulus that can be adjusted for 

temperature intensity), the hot plate test, and many others. In vitro techniques utilize a direct 

approach of assessing MOR function as an indicator of opioid efficacy, and these include agonist-

stimulated [35S]GTPγS binding, receptor internalization studies, and studies of arrestin protein 

recruitment (Morgan and Christie, 2011). Most studies evaluate efficacy using agonist-stimulated 

[35S]GTPγS binding in both cell culture models and native tissue. [35S]GTPγS is an assay that was 

developed to evaluate the functional action of a drug and allows for rapid screening of compounds 

to determine if they are agonists, inverse agonists, or antagonists (Strange, 2010). The issue of 

differences between tissue and cell models still persists but overall the ranking of efficacy is 

similar, where DAMGO and methadone are among the highest efficacy agonists, followed by 
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fentanyl and morphine being equi-efficacious, and then oxycodone as a lower efficacy agonist 

(Emmerson et al., 1996; Selley et al., 1997; Alt et al., 1998). Based on earlier described efficacies 

in this paragraph, the opioid compounds can be ranked as such: DAMGO = Methadone > Fentanyl 

= Morphine > Oxycodone > Buprenorphine > Naltrexone (Table 1.1).  

Determinants of opioid efficacy will inherently vary depending upon the endpoint but in 

the case of measuring maximal drug responses, there is the question of whether in vitro efficacy 

correlates with in vivo efficacy. As mentioned previously, there are a wide range of nociceptive 

tests that have been developed to assess the efficacy of opioid agonist. They vary in the types of 

stimuli used (thermal, chemical or mechanical), the duration of the pain state (acute vs chronic 

pain), and the subsequent behavior recorded (reflexive vs. supraspinally-organized behavior). The 

efficacy and potency of morphine to alter nociceptive responses varies as a function of the stimulus 

tested, whereby morphine is more efficacious in the tail withdrawal and hot plate tests but less 

efficacious in in the formalin test (Morgan et al., 2006). In vivo determinations of opioid efficacy 

are subject to artificial constraints that serve to limit potential tissue damage to the animal (such 

as limiting stimulus exposure times) and for this reason, make it difficult to fully assess efficacy.  
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Figure 1.2: Distribution of mu-opioid receptors in the descending pain pathway. Mu-
opioid receptors are distributed throughout regions that are important for the elicitation of 
opioid-induced antinociception. Neurons in the PAG project (1) to regions in the medulla, 
notably the rostral ventral medulla) and then projections from the medulla (3) directly modulate 
nociceptive afferents and interneurons in the dorsal horn of the spinal cord. The interneurons 
synapse on afferent neurons which then decussate and project back towards the brain and higher 
order structures (4). MOR is localized on primary afferent neurons in the dorsal horn of the 
spinal cord whereby it can directly modulate incoming nociceptive transmission. Opioids work 
by activating regions involved in a descending pain suppression mechanism in the spinal cord. 
Figure adapted from Goodman and Gilman’s Manual of Pharmacology and Therapeutics, 2nd 
edition. 
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Opioid Ligand MOR Affinity Relative Efficacy 
DAMGO +++++ ** +++++ 

Buprenorphine ++++ + 
Morphine +++ ++++ 
Fentanyl +++ ++++ 

Methadone ++ +++++ 
Oxycodone + ++ 

Hydrocodone + ++ 
Table 1.1: In vitro determinations of the relative affinity and efficacy of various MOR 

agonists. These approximations were derived from Volpe et al., 2011. Agonist affinity was 

assessed using competition binding with [3H]naloxone or [3H]DAMGO. Agonist efficacy was 

determined using [35S]GTPγS.**the affinity and efficacy of DAMGO were used as the reference 

for the relative affinity and efficacy of all opioid MOR agonists.  
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Tolerance 

Acutely, the ability of opioids to alter the activity of descending pain pathway allows for 

their renowned antinociceptive/analgesic properties (Millan, 2002). In many cases, however, 

opioids are rarely administered just once, and in most cases, opioid treatment spans the course of 

days to weeks. Tolerance is a pharmacology/physiological adaptation that follows acute or 

repeated administrations of a drug such that increased doses of a drug are required to produce 

pharmacological effects that were previously elicited by smaller doses; this effect is characterized 

by a rightward shift of the dose-response curve (Savage et al., 2003; Brunton et al., 2011). The 

development of tolerance to the effects of opioids is not equivalent, as tolerance to the 

antinociceptive, euphoric, respiratory depressive, and constipating effects occur at different rates 

(Shook et al., 1987; Ling et al., 1989; White and Irvine, 1999; Ross et al., 2008; Hill et al., 2016). 

For this reason, the diversity in opioid tolerance expression has led to its discussion as 

opioid tolerances. The differences in tolerances may be due to differences in their cellular effects. 

The extent to which these tolerances develop are dependent upon a multitude of factors: the dose 

of opioid, the frequency of administration, and the route of administration, to name a few (Paronis 

and Holtzman, 1992; Duttaroy and Yoburn, 1995; Fairbanks and Wilcox, 1997). Tolerance is a 

multifaceted phenomenon that encompasses changes in behavior, drug metabolism, receptor 

signaling, and changes in compensatory/inhibitory processes.  

On a cellular level, opioid tolerance is thought to be regulated through the canonical GPCR 

mechanisms of desensitization, internalization, degradation, and downregulation (Figure 1.3) 

(Ferguson and Caron, 1998; Lefkowitz, 1998; Williams et al., 2013). Desensitization refers to 

changes at the level of receptor signaling and is characterized as homologous or heterologous 

(where activation of one receptor leads to a convergence upon a signaling cascade and leads to 
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desensitization of another receptor) (Stadel et al., 1983; Sibley et al., 1984, 1987; Hausdorff et al., 

1989). It’s been suggested that desensitization is the acute loss of MOR-effector coupling and that 

this effect occurs within seconds to minutes after initial exposure to an opioid agonist (Kovoor et 

al., 1998; Borgland et al., 2003; Williams et al., 2013). 

Internalization is considered to be the recovery step from desensitization which occurs via 

endocytosis and leads to the eventual re-insertion of the resensitized receptor complex back into 

the plasma membrane (Ferguson et al., 1996; Goodman et al., 1996; Zhang et al., 1996; Lefkowitz, 

1998). Receptor internalization is ligand-specific and suggested to be dependent upon the intrinsic 

efficacy of the drug (Sternini et al., 1996; Bohn et al., 2004; McPherson et al., 2010).  High 

efficacy compounds, such as methadone, etorphine or DAMGO, rapidly induce MOR 

internalization following drug exposure, and relatively lower efficacy ligands, such as morphine, 

are less capable of inducing MOR receptor internalization (Keith et al., 1996, 1998; Sternini et al., 

1996; Whistler and von Zastrow, 1998; Bohn et al., 2004; McPherson et al., 2010). Clearly, opioid 

agonists have substantial specificity in their ability to induce MOR internalization and it is of 

particular interest that morphine, a drug which possesses appreciable efficacy, is consistently 

reported to have impaired MOR trafficking. 

Receptor downregulation refers to the reduction in overall availability of functional 

receptors that are present in the cell membrane (Williams et al., 2013). Downregulation can be the 

result of increased receptor degradation following internalization or reduced biosynthesis of 

receptors (Law et al., 1984, 1985; Klein et al., 1986; Ronnekleiv et al., 1996; Prenus et al., 2012). 

 The rate and extent to which opioid tolerance develops can be altered by the addition of 

non-opioid ligands such as cannabinoids (Larson and Takemori, 1977; Trujillo and Akil, 1991; 

Smith et al., 2007; Song et al., 2015). In particular Δ9-THC, have been investigated for the opioid-
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sparing properties and act in a synergistic manner with opioid co-administration in preclinical tests 

of antinociception (Welch and Stevens, 1992; Welch et al., 1995). Several studies have shown that 

cannabinoids alter the development of acute tolerance to morphine, where co-administration of a 

low dose of THC with a low dose of morphine blocks MOR desensitization (Smith et al., 2007). 

Cannabinoids are one such example of drugs that may alter the acute and chronic effects of opioids. 

The risks presented to patients taking opioids prompts a much-needed investigation into alternative 

means through which the pharmacological effects of opioids can be favorably altered. Therefore, 

in addition to altering the acute effects of an opioid with an adjunct that permits a lower dose 

needed to achieve analgesia, the rate and extent to which antinociceptive tolerance and dependence 

develop can also be thwarted as lower doses of opioid consumed are overall reduced. 
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Figure 1.3: Time course of mu-opioid receptor trafficking following stimulation by an agonist. 

Upon binding of an agonist and initiation of G-protein mediated signaling, there is immediate 

recruitment of phosphorylating kinases, such as GRK, and subsequent binding of arrestin. Shortly 

after the desensitization process, endocytosis of the desensitized receptor occurs. The receptor can 

either undergo rapid re-sensitization or can be recycled. Short-term (acute) tolerance is defined as 

occurring within one day involves desensitization as a major process that precedes receptor 

endocytosis. Long-term, multiple-injection, tolerance is defined on a time scale of greater than one 

day and is presumed to require many compensatory mechanisms besides those described above.  

 

 

 

 

         (Williams et al., 2013)  
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III. History of Serotonin Pharmacology 

The history of serotonin is vast, with there being major bodies of literature detailing the role 

of serotonin in nearly every physiological function including but not limited to, mood, appetite, 

sleep, temperature regulation, gastrointestinal function and pain. Serotonin’s functions and 

mechanisms are as diverse as its receptor subtypes (which will be explained in greater detail later) 

and its history is eventful. The discovery of serotonin and its receptors occurred during the golden 

age of receptor pharmacology, where the radioligand binding techniques were developed which 

allowed for the distinction of many different types of receptor types. In the words of Robert 

Lefkowitz, “if a single technical advance can be said to have opened the door to the molecular era 

of receptors, it was the development of radioligand binding methods during the 1970’s” 

(Lefkowitz, 2004). Similar to the postulation of multiple types of opioid receptor, the existence of 

multiple serotonin receptors was hypothesized and subsequent subtypes later confirmed through 

radioligand studies. 

 The colorful history of serotonin as an endogenous neurotransmitter began far before the 

1970s though, and in fact, as early at 1868 it was suspected that the blood contained a 

vasoconstrictive substance that would later be classified as serotonin (Richard Green, 2009). This 

substance was eventually characterized in the lab of Irvine Page where they were studying 

substances that were responsible for malignant hypertension (Rapport et al., 1948). Eventually 

with the help of Arda Green and Maurice Rapport, the unknown substance was isolated from the 

serum component of two tons of coagulated bovine blood that was procured from a local 

slaughterhouse (Rapport et al., 1948). They found that this compound was released from platelets 

during blood clotting and appropriately named it “serotonin” (or 5-hydroxytryptamine) because it 

was derived from serum and increased blood vessel tone (Rapport, 1948; Rapport et al., 1948).  In 
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1951, the synthesis of serotonin was confirmed and published by Hamlin and Fischer from Abbott 

laboratories (Hamlin and Fischer, 1951). 

In the later 1930s, Vittorio Erspamer, a scientist in Rome, Italy, had discovered that 

secretions from enterochromaffin cells in the gastrointestinal tract contained a substance that 

produced intestinal contractions and uterine smooth muscle contractions (Erspamer and Boretti, 

1951; Erspamer and Asero, 1952; Feldberg and Toh, 1953). This substance was dubbed 

“enteramine” as it had been isolated from the enteric nervous system and the compound’s structure 

contained an indole ring. In 1953, serotonin and enteramine were reported to be identical 

compounds and shortly after, serotonin’s presence in the brain was confirmed (Erspamer, 1952; 

Twarog and Page, 1953). Up to this point, serotonin was confirmed to be present in both peripheral 

tissues (the gut and platelets) and central tissues. 

In 1957, the first two serotonin receptors were discovered in the guinea-pig ileum, named 

the “M” receptors (which can be blocked by morphine and thought to be in nervous tissue) and the 

“D” receptors (which are blocked by dibenzylaine and in muscle tissue) (Gaddum and Picarelli, 

1957). For about twenty years after, serotonin-related discoveries slowed down but in 1979, there 

was a resurgence of interest in 5-HT receptor diversity. Peroutka and Synder (1979) demonstrated 

the presence of multiple serotonin binding sites  using radiolabeled [3H]5-Hydroxytryptamine, 

[3H]LSD, and [3H]Spiroperidol in frontal cerebral cortex and classified these distinct sites into two 

classes: 5-HT1 and 5-HT2. The 5-HT1 class was further subdivided into 5-HT1A, 5-HT1B, and 5-

HT1C (which would later be reclassified as 5-HT2C) (Pedigo et al., 1981; Palacios et al., 2017).  

Following the introduction of receptor cloning, many new serotonin receptors were 

identified and some reclassified (at that point, 5-HT1C became the 5-HT2C) (Julius et al., 1990). In 

1994, a new classification scheme for serotonin receptors was introduced by Hoyer and up until 
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that point, over 14 different 5-HT receptors were identified and all were GPCRs, except for 5-HT3 

(Hoyer et al., 1994). See table 1.2 for the signaling pathways, expression, and function of the 

known 5-HT receptors. 
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Receptor 
Subtype 

Signal 
Transduction 

Location Function 

5-H1A ↓ AC  Raphe nuclei, cortex, hippocampus) Autoreceptors 
5-HT1B ↓ AC Subiculum, globus pallidus, 

substantia nigra 
Autoreceptor 

5-HT1D ↓ AC Cranial vessels, globus pallidus, 
substantia nigra 

Vasoconstriction 

5-HT1E ↓ AC Cortex Striatum ---- 
5-HT1F ↓ AC Brain and periphery ---- 
5-HT2A ↑PLC 

↑PLA2 
Platelets, smooth muscle, cortex, 

spinal cord, PAG, striatum, cortex 
Plate aggregation, 

contraction, neuronal 
excitation 

5-HT2B ↑PLC Stomach fundus, kidneys, heart Contraction  
5-HT2C ↑PLC 

↑PLA2 
Choroid plexus, striatum, 

hippocampus, spinal cord, cortex, 
hypothalamus 

CSF production, neuronal 
excitation 

5-HT3 Ligand-gated ion 
channel 

Parasympthetic nerves, solitary 
tract, area postrema 

Neuronal excitation 

5-HT4 ↑AC Hippocampus, GI Tract Neuronal excitation 
5-HT5A ↓AC Hippocampus Unknown 
5-HT6 ↑AC Hippocampus, striatum, nucleus 

accumbens 
Neuronal excitation 

5-HT7 ↑AC Hypothalamus, hippocampus, GI 
tract 

Unknown 

 

Table 1.2: Table of the serotonin receptor subtypes and their location and function. Table adapted 

from Goodman and Gilman’s Manual of Pharmacology and Therapeutics, 2nd Edition (Hilal-

Dandan and Brunton, 2016). Additional information cited from (Helton et al., 1994; Choi and 

Maroteaux, 1996; Pierce et al., 1996; López-Giménez et al., 2001; Doly et al., 2004).  
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IV. Serotonin in Pain Modulation 

The role of serotonin in pain is established but the specific mechanisms through which 

serotonin may alter pain is unclear (for a review see Millan, 2002). Serotonin serves a dual role in 

both facilitating nociception and inhibiting nociceptive stimuli and this can be linked back to its 

diverse family of receptors and the sites at which these receptors are expressed (Hoyer et al., 1994).  

In the periphery, serotonin is a component of inflammatory responses but within the central 

nervous system (CNS), it plays dual roles in both nociceptive transmission and descending pain 

modulation (Tokunaga et al., 1998; Bardin et al., 2000; Jeong et al., 2004; Kayser et al., 2007; 

Nakajima et al., 2008; Rahman et al., 2011). For example, peripherally administered serotonin is 

reported to produce hyperalgesia by acting directly on nociceptors (Oliveira et al., 2007). In cases 

of tissue injury, mast cells release serotonin that serves as an agent that produces both inflammation 

and potentiation of other inflammatory mediators (Taiwo and Levine, 1992; Hong and Abbott, 

1994). 

Serotonin is one of many components of an endogenous system that serves to modulate 

nociceptive transmission (Millan, 1997, 2002). Serotonergic cell bodies are localized in the raphe 

nuclei, and the projections of the serotonergic cell bodies innervate a vast majority of brain nuclei 

including the PAG or rostral ventral medulla (RVM) (Chan-Palay et al., 1978; Yezierski et al., 

1982; Takeuchi et al., 1983; Beitz et al., 1986; Jones and Light, 1990; Zhang et al., 2000) Neuronal 

projections from the PAG innervate the RVM and then project to the dorsal horns of the spinal 

cord (Castiglioi et al., 1978; Yaksh and Tyce, 1979; Yaksh and Wilson, 1979; Aimone et al., 1987; 

Cui et al., 1999; Zhang et al., 2000) Serotoninergic neurons only comprise ~20% of the neurons 

that project from the RVM to the dorsal horns, with the remainder being of non-serotonergic origin 

such as GABAergic (Ossipov et al., 2010).  



22 
 

Early studies showed that stimulation of the PAG or RVM resulted in a release of serotonin 

from the spinal cord and intrathecal administration of serotonin was sufficient to produce 

antinociception (Yaksh and Wilson, 1979; Schul and Frenk, 1991). But the effect of spinal 

serotonin has the potential to be either inhibitory or faciliatory, with this effect depending upon 

the receptor subtype activated (Wilson et al., 1979; Yaksh and Wilson, 1979; Bardin et al., 2000; 

Jeong et al., 2004). Although serotoninergic neurons only make up a small proportion of total 

neurons within the descending pain modulation system, it’s the diverse receptor family that serves 

a critical role in modulating nociceptive transmission. For the sake of brevity, the remainder of 

this chapter will only focus on the 5-HT2 receptor family but these receptors nonetheless exemplify 

this dual role of serotonin which will be expanded upon later. 

The 5-HT2 receptor class is comprised of three subtypes: 5-HT2A, 5-HT2B, and 5-HT2C, and 

are Gq-coupled receptors which produce downstream effects through activation phosphoinsotide 

(PI) hydrolysis, increased Ca2+ mobilization, and inhibition of  K+ channel current conductance, 

which underlie their overall excitatory effect on neuronal activity (Boess and Martin, 1994). The 

receptors demonstrate a high level of sequence homology, where the 5-HT2A receptor shares an 

overall sequence identity of 53% with the 5-HT2C receptor and both the 5-HT2A and 5-HT2C 

receptors share an overall sequence identity of 43% with the 5-HT2B receptor (Julius et al., 1990; 

Boess and Martin, 1994). Their conserved degree of sequence homology and functional activities, 

mainly similarities in signaling mechanisms (effect on PI metabolism) and pharmacological 

profiles, were the basis for their classification as members of the 5-HT2 receptor family (Hoyer et 

al., 1994). 

It is of importance to note that the older literature has displayed a pattern of both pro- and 

anti-nociceptive roles for the 5-HT2 receptors and for this reason, it was difficult to ascribe any 
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particular pharmacological effects to any one receptor subtype (Rahman et al., 2011). The 

development of increasingly selective agonists and antagonists, however, that can differentiate 

between subtypes has allowed for further characterization of the roles of each individual subtype 

(see Table 1.3).  

5-HT2A Receptors 

In recent years, multiple studies characterizing the role of peripheral and central 5-HT2a 

receptors in preclinical models of pain have been published (Abbott et al., 1996; Tokunaga et al., 

1998; Millan, 2002; Okamoto et al., 2002; Kayser et al., 2007). Several lines of evidence suggest 

a direct role of serotonin in these nociceptive states which may be mediated through activation of 

the 5-HT2A. 

Peripheral 5-HT2A Receptors 

The role of serotonin in peripheral nociception is hypothesized to be partially due to its 

direct effect on primary nociceptors in the peripheral tissues (Oliveira et al., 2007). 

Immunohistochemical analysis of peripheral nerve fibers demonstrated anatomical localization of 

5-HT2A receptors on unmyelinated sensory neurons in the dermal-epidermal junctions of glabrous 

skin and suggest that serotonin can produce its effect locally within the subcutaneous tissue 

(Carlton and Coggeshall, 1997). Under “normal” conditions (in the absence of a chronic pain or 

inflammatory pain state), these receptors are expressed on dorsal root ganglion neurons (DRGs), 

specifically on the small diameter C-fibers (Pierce et al., 1996, 1997; Tokunaga et al., 1998; 

Nicholson et al., 2003). Several preclinical models show that inflammatory conditions induced by 

Conjugated Freund’s Adjuvant (CFA) or carrageenan results in an increased expression of 5-HT2A 

receptor mRNA in DRGs  (Okamoto et al., 2002; Liu et al., 2005). This increase in DRG 5-HT2A 

receptor expression was also replicated in a model of peripheral neuropathy induced by the HIV  
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 Ki (nM)  

Compound 5-HT2A 5-HT2B 5-HT2C Reference 

5-HT 21 ± 8a 19 ± 5a 2.4 ± 4a (Kimura et al., 2004) 

mCPP 16.1 ± 1a 40 ± 9a 16.1 ± 1a (Kimura et al., 2004) 
(-) DOI 1.1 ± 0.6 56.2 ± 5.3b 4.8 ± 0.6 (Song et al., 2005) 

Ro 01075 24 ± 6a 2.4 ± 0.1a 19.2 ± 2a (Kimura et al., 2004) 

Lorcaserin 112 943a 15 (Thomsen et al., 2008) 

Vabicaserin 3 152a 14 (Dunlop et al., 2011) 

WAY 163909 212 ± 29 485 ± 49a 10.5 ± 1.1 (Dunlop et al., 2005) 
 
 
Table 1.3: Competition binding affinity constants (Ki values) of 5-HT2 receptor ligands for 

the Human 5-HT2A, the human 5-HT2B, and the human 5-HT2C receptors. Values listed in this 

table are the mean ± S.E.M. For the 5-HT2A and 5-HT2C receptors, Ki values were determined using 

[125I]DOI except where indicated otherwise. a Ki values determined using [3H]5-HT. b Ki values 

determined using [3H]LSD. 
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medication, 2’,3’-dideoxycytidine (Van Steenwinckel et al., 2009). These studies suggest that 

under healthy conditions, the 5-HT2A receptor serves a functional role in transmitting nociceptive 

information but in the case of pathological conditions, its expression pattern is altered and may 

contribute to the pathophysiology of neuropathic pain states. 

Pharmacological studies utilizing ketanserin, a 5-HT2 receptor antagonist that displays a 

preferential affinity for the 5-HT2A receptor, support a role of peripheral 5-HT2A receptors on 

sensory nociceptors. Intraplantar administration of ketanserin dose-dependently attenuates 

hyperalgesia induced by intraplantar 5-HT, using a measure of heat-stimulated paw withdrawal 

(Tokunaga et al., 1998). A more specific evaluation of peripheral 5-HT2A receptors by Abbot 

(1996) demonstrated that intraplantar ketanserin dose-dependently attenuates the noxious effects 

of 5-HT and that administration of a selective 5-HT2 receptor agonist (that exerts its primary effects 

through 5-HT2A receptors) produces a robust inflammatory state that is marked by nocifensive 

behaviors (licking, lifting, and favoring) (Abbott et al., 1996). Though these studies provide 

compelling evidence for the purported 5-HT2A receptors, it’s worth noting that a major limitation 

of ketanserin is that in addition to antagonizing the 5-HT2A receptor, it also displays affinity for 

the 5-HT2C receptor.  

Central 5-HT2A Receptors 

The central nervous system is marked by a wide distribution of 5-HT2A receptors, including 

areas known to be involved in nociceptive processing (J F López-Giménez et al., 1997; Juan F. 

López-Giménez et al., 1997; López-Giménez et al., 1998). Modulation of incoming nociceptive 

information occurs at multiple levels within the spinal cord and gross neuroanatomical 

characterization shows low to moderate expression of 5-HT2A receptors in the dorsal horn of 

healthy animals (Maeshima et al., 1998; Zhang et al., 2001). It is worth noting, however, that the 
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motor neurons of the ventral horn show significant 5-HT2A expression relative to the dorsal horn  

(Pompeiano et al., 1994; Maeshima et al., 1998; Doly et al., 2004). The spinal cord neurons are 

also noted to display considerable localization on the post-synaptic plasma membrane (Doly et al., 

2004). 

Similar to observations observed in the periphery, central 5-HT2A receptors display 

sensitivity to pain states. For example, carrageenan-induced inflammation produces robust c-Fos 

(a marker of neuronal activation) immunoreactivity in the dorsal horn, with this effect antagonized 

by a local administration of ketanserin in the affected paw (Wei et al., 2005). Further studies with 

carrageenan elucidated a distinct upregulation of 5-HT2A receptor mRNA in the dorsal horn, also 

noting increased expression levels in the ventrolateral PAG grey and dorsal raphe nucleus (Zhang 

et al., 2001). Peripheral neuropathy induced by administration of the HIV/AIDS therapy, 2’,3’-

dideoxycytidine, significantly increased 5-HT2A receptor immunolabelling in the dorsal horn of 

mice relative to vehicle controls (Van Steenwinckel et al., 2009). These data suggest a possible 

pro-nociceptive role of the 5-HT2A receptor.  

5-HT2B Receptors 

The functional role of the 5-HT2B receptor has not been thoroughly characterized and its 

distribution remains controversial. The 5-HT2B receptor has significant expression in the stomach 

fundus and mediates the smooth muscle contractile response induced by serotonin (Foguet et al., 

1992; Hoyer et al., 1994). Immunohistochemical analysis confirms previous studies suggesting its 

expression in the gastrointestinal tract and, furthermore, was detected in both the myocardium and 

vascular endothelium (Choi and Maroteaux, 1996). Expression within the cardiac tissue is thought 

to underlie the potentially fatal valvopathy associated with activation of 5-HT2B receptors and it 
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has been recommended that all new drugs are to be screened against this receptor for activity 

(Rothman et al., 2000). 

 The 5-HT2B receptor displays modest CNS expression, with notable expression in discrete 

brain nuclei of the hypothalamus, amygdala, and septum (Duxon et al., 1996). Expression of 

mRNA transcripts for 5-HT2B receptor is found in the spinal cord but expression in dorsal root 

ganglion neurons remains controversial (Helton et al., 1994). Wu et al. (2001) reported no 5-HT2B 

receptor mRNA expression in DRGs and, in contrast, Nicholson et al. (2003) demonstrated mild 

expression of the 5-HT2B receptor mRNA transcript, so there is no overall consensus. The 5-HT2B 

receptor is implicated in the progression of peripheral neuropathy and an upregulation of mRNA 

5-HT2B receptor levels in the DRG are observed following chronic constriction injury (Urtikova 

et al., 2012). This suggests a role of the 5-HT2B receptor in the initiation and maintenance sustained 

pain states and may be another mechanism through which interventions can be developed. 

 The 5-HT2B receptor is implicated in the pathophysiology of serotonin-induced mechanical 

hypersensitivity but this effect is confounded by the use of an antagonist that possess appreciable 

affinity for both the 5-HT2B and the 5-HT2C receptor (Lin et al., 2011). In support of this idea, 

further study with an antagonist (that possesses greater selectivity for the 5-HT2B receptor) 

attenuated visceral hypersensitivity induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) and 

restraint stress (Ohashi-Doi et al., 2010). Although the functional significance of the 5-HT2B 

receptor in pain is debated, early data suggests a role in the modulation of nociceptive processing 

that should be evaluated following further development of more selective ligands.  

5-HT2C Receptors 

The 5-HT2C receptor is a G-protein-coupled-receptor that signals through the Gq pathway 

and is the only known GPCR that undergoes post-transcriptional mRNA editing to yield diverse 
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receptor isoforms (Fitzgerald et al., 1999). Its expression is considered to be restricted to the central 

nervous system with little basal expression observed in the periphery. In the CNS, 5-HT2C receptor 

expression is observed in several regions related to nociception, including the dorsal and ventral 

horns of the spinal cord and the thalamus (Pompeiano et al., 1994). The role of 5-HT2C receptors 

in nociception, however, is in some ways unclear due to the previous lack of available selective 

agonists that would incidentally signal through the 5-HT2A or 5-HT2B receptors (Serafine et al., 

2015). With the recent development of selective agonists, such as lorcaserin and vabicaserin, 

additional studies can be conducted to further investigate the role of the 5-HT2C receptor in 

nociception and pain (Thomsen et al., 2008; Dunlop et al., 2011). 

 Several lines of evidence point to the involvement of the 5-HT2C in nociception. First, the 

receptor is expressed within the dorsal and ventral horns of the spinal cord and is optimally placed 

to modulate nociceptive afferents in the superficial and deeper lamina (Fonseca et al., 2001). 

Secondly, the 5-HT2C receptor is also expressed in the thalamus, the critical relay station for all 

ascending sensory tracts before synapsing in the cortex (Clemett, et al., 2000).   

The role of the 5-HT2C receptor in peripheral inflammation and pain is heavily debated, as 

the current literature suggests that 5-HT2C receptor expression is limited to the CNS (Julius et al., 

1988; Clemett, et al., 2000; López-Giménez et al., 2001). Recent evidence suggests however that 

its peripheral expression may be dependent upon a pathophysiological state. Under normal 

physiological conditions, there is little expression of 5-HT2C receptor mRNA in DRGs but after 

treatment with CFA, DRGs show a marked induction of 5-HT2C receptor mRNA expression 

(Pierce et al., 1996; Nicholson et al., 2003). A similar induction of 5-HT2C receptor mRNA is also 

observed after an injection of bee venom into the hind paw of rats (Liu et al., 2005). These data 

suggest that the 5-HT2C receptor may underlie the some of the pathophysiological adaptations that 
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occur following the induction of chronic pain states but the mechanism through which it is acting 

has yet to be elucidated. 

 Another interesting piece of evidence is that intraplantar administration of selective 5-HT2C 

receptor antagonists, SB242084 and RS-10221, attenuates formalin-induced paw-withdrawal 

behavior and reduces C-Fos expression in the superficial laminae of the dorsal horn in rodents 

(Nakajima et al., 2008). Unlike the forthcoming studies, this is one the first experiments to suggest 

the existence and a possible role of peripheral 5-HT2C receptors in the elicitation of nociception.  

 In most studies, 5-HT2C receptor agonists are administered via the intrathecal route and it 

is unclear why these agonists are typically inactive when administered systemically (Obata et al., 

2004, 2007; Nakai et al., 2010). Administration of intrathecal 5-HT2C receptor agonists – MK212, 

Ro 60-0175 or WAY-161503, produced a dose-dependent attenuation of mechanical 

hypersensitivity induced by a chronic constriction injury in rodents (Nakai et al., 2010). Consistent 

with this finding, intrathecal administration of another 5-HT2C receptor agonist produces 

antiallodynic effects in a rodent model of peripheral neuropathy (Obata et al., 2007). Curiously, 

the antiallodynic effects of these agonists were attenuated by administration of muscarinic and α2-

adrenergic antagonists, suggesting that these receptor systems may partially mediate the 

antinociceptive effects of 5-HT2C receptor agonists. 

 Although 5-HT2C  receptor agonists as antinociceptive agents are administered via the 

intrathecal route, it should be noted that systemic administration of antinociceptive 5-HT2C 

agonists has been reported (Ogino et al., 2013). 5-HT2C receptor agonists, including lorcaserin and 

vabicaserin, display antinociceptive effects when administered systemically in a preclinical model 

of fibromyalgia (Ogino et al., 2013) Fibromyalgia is a musculoskeletal disorder that is 
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characterized by chronic pain and can be modeled in rodents by treating animals with reserpine 

(Ogino et al., 2013).  

 

V. Opioids & 5-HT2c agonists 

Early studies from the 1970s demonstrated that serotonergic signaling is an important 

component of opioid analgesia. Though opioid analgesia is primarily mediated through mu opioid 

receptor (MOR) activation, descending serotonergic spinal projections were discovered as an 

important component (Yaksh and Tyce, 1979; Aimone et al., 1987; Paul et al., 1988; Schul and 

Frenk, 1991; Cui et al., 1999). This descending input originates from the periaqueductal grey 

(PAG), synapses in the rostral ventral medulla (RVM), before finally projecting downward into 

both the contralateral and ipsilateral dorsal and ventral horns, where it modulates incoming 

nociceptive afferents and outgoing motor efferents (Millan, 2002).  

The necessity of serotonin in the elicitation of morphine analgesia is supported by the 

observation that 1) depletion of serotonin by pharmacological inhibition of synthetic enzymes 

reduced morphine efficacy (Tenen, 1968); 2) intrathecal administration of serotonin antagonists 

attenuated morphine-induced antinociception (Wigdor and Wilcox, 1987; Paul et al., 1988);  3) 

morphine administration evoked the release of spinal serotonin (Yaksh and Tyce, 1979; Tao et al., 

2002); 4) morphine increased serotonin metabolic turnover (Raffaello et al., 1975; Theiss et al., 

1975); and 5) administration of selective-serotonin reuptake inhibitors (SSRIs) or tricyclic 

antidepressants (TCAs) enhanced morphine’s antinociceptive effects (Larson and Takemori, 1977; 

Kellstein et al., 1984; Hynes et al., 1985; Banks et al., 2010; Li et al., 2011). Serotonin and opioid 

systems work in a cooperative fashion and all components may be necessary to achieve full
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expression of opioid-induced antinociception (Dewey et al., 1970; Crisp et al., 1991; Cui et al., 

1999; Li et al., 2001; Lo et al., 2004; Aira et al., 2012). 

The role of a 5-HT2C receptor agonist, like lorcaserin, in the elicitation of opioid-induced 

antinociception is even less clear. In the past few years, however, two studies have emerged 

demonstrating 5-HT2C agonists as potential treatments for opioid dependence. Lorcaserin, a 5-

HT2C agonist, and reported to attenuate naloxone-precipitated withdrawal in animals that are 

chronically administered either morphine or heroin (Wu et al., 2015; Zhang et al., 2015). In 

addition,  chronic administration of morphine increased 5-HT2C receptor expression in the nucleus 

accumbens, locus coeruleus, and ventral tegmental area (Wu et al., 2015; Zhang et al., 2015).  

Currently, lorcaserin (in combination with extended release naltrexone) is undergoing clinical 

trial testing for the treatment of opioid use disorder (OUD) (ClinicalTrials.gov, 2017). In addition 

to understanding how lorcaserin alters OUD, it is important to understand the effect of lorcaserin 

on opioid antinociception.  
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Figure 1.4: Experiments planned for the dissertation and how they relate to one another. The 

initial studies evaluated the acute interactions between lorcaserin and opioids, primarily 

oxycodone. From these studies, we used a dose of lorcaserin (2 mg/kg, s.c.) that significantly 

shifted the oxycodone dose-response curve to evaluate lorcaserin’s effects on acute chronic 

tolerance. Acute tolerance is often thought to be the initial stage preceding chronic tolerance, 

therefore, it was important to evaluate lorcaserin’s effects in this stage first using in vivo and in 

vitro approaches. The development of “chronic tolerance” follows the development of acute 

tolerance. The same dose of lorcaserin (2 mg/kg, s.c.) that altered the acute interactions and acute 

tolerance to oxycodone was tested in the models of chronic tolerance in models of antinociception 

and opioid-induced constipation. These studies provide insight into the temporal effect of 

lorcaserin on opioid pharmacology.  
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VI. Models to Investigate Interactions 

Investigations of the acute and chronic interactions of lorcaserin and oxycodone are important 

if lorcaserin will ever be translated into a possible opioid-sparing therapy in the clinic. Figure 1.4 

provides a visual schematic of the relationship between the experiments and how they relate to one 

another. Acute interactions were evaluated using the warm-water tail-withdrawal assay, which is 

used as a model of acute pain. The tail-withdrawal assay has been used repeatedly and shown to 

be an adequate predictor of opioid-mediated analgesic effects and has been used to evaluate drug-

drug interactions for other opioid-sparing compounds (Welch and Stevens, 1992; Fairbanks and 

Wilcox, 1999; Raffa et al., 2000; Cichewicz and McCarthy, 2003; Smith et al., 2007; Williams et 

al., 2008; Stone et al., 2014).  

Using the tail-withdrawal procedure, the acute interactions were evaluated as follows. First, 

the dose-relationship effect of lorcaserin alone was evaluated because it is important to evaluate 

the effect of each drug on its own prior to combination testing. In addition to this, the effect of 

lorcaserin on locomotor activity was evaluated because general behavioral sedation is a potential 

confound that may affect the perceived antinociceptive properties of a drug (Negus et al., 2006) 

Second, the dose-related and time-course of lorcaserin’s effects on opioid antinociception were 

characterized. Following this analysis, studies evaluating the contributions of the 5-HT2A receptor 

(through use of a knockout model) and the 5-HT2C receptor (using the selective 5-HT2C receptor 

antagonist SB242084) were conducted because lorcaserin has notable activity at both of these 

receptors (Thomsen et al., 2008). In addition to evaluating the pharmacodynamic interactions of 

lorcaserin and oxycodone, studies were conducted to evaluate the effect of lorcaserin on the 

biodistribution of oxycodone. Lorcaserin is reported as a competitive inhibitor of the CYP2D6 
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enzyme and it is important to evaluate any potential changes in opioid metabolism that may be 

underlying the observed antinociceptive interactive effects (Center for Drug Evaluation and 

Research, 2012).  

In order to fully characterize the pharmacology of lorcaserin, it’s effects were evaluated 

via intrathecal and intracerebroventricular routes of administration. Previous opioid-sparing 

adjunctive therapies, such as clonidine, Δ9-THC, and acetaminophen, have been evaluated via i.t. 

and i.c.v. routes of administration (Ossipov et al., 1985, 1988; Lichtman and Martin, 1991; Welch 

and Stevens, 1992; Fairbanks and Wilcox, 1999; Raffa et al., 2000; Stone et al., 2014). Although 

these studies do not directly provide insight into the opioid-sparing potential of lorcaserin, they 

provide a general anatomical locus of activity and insight into the role of 5-HT2C receptors in 

nociception. 

Following characterization of the acute interactions between lorcaserin and oxycodone, the 

effect of lorcaserin on the effect of repeated oxycodone administration was evaluated. Tolerance 

is thought to be comprised of two components: an acute (short-term) component and a chronic 

(long-term) component (Cox et al., 1968; Rosenfeld et al., 1977; Huidobro-Toro and Way, 1978; 

Fairbanks and Wilcox, 1997; Bohn et al., 2000; Williams et al., 2013). In the acute tolerance 

studies, the effect of lorcaserin was evaluated in vivo using a dosing paradigm that has been 

extensively validated in the literature (Cox et al., 1968; Huidobro-Toro and Way, 1978; Ling et 

al., 1989; Fairbanks and Wilcox, 1997; Bohn et al., 2000). Further studies were conducted to 

evaluate the effect of lorcaserin on acute opioid tolerance at a single-cell level in dorsal root 

ganglion neurons. After characterization of lorcaserin’s effects in the models of acute tolerance, 

the effect of lorcaserin to alter the development of chronic opioid tolerance in vivo was assessed 

and then based upon the results generated from that study, further tests were conducted using a 



36 
 

measure of MOR-mediated functional activity. Collectively, these studies provide insight into the 

potential of lorcaserin as an opioid-sparing adjunct and the possible mechanisms through which 

lorcaserin maybe working. 

In vivo models 

Rationale for mouse sex and strains tested. 

 In order to complete a thorough pharmacological evaluation of the effect of lorcaserin on 

oxycodone antinociception, male mice were exclusively tested in all paradigms. Previous data on 

lorcaserin were generated in primarily male subjects and this project aimed to be consistent with 

the literature (Higgins et al., 2012; Ogino et al., 2013; Wu et al., 2015; Zhang et al., 2015; Banks 

and Negus, 2016; Harvey-Lewis et al., 2016; Neelakantan et al., 2017). Future studies should 

evaluate the effect of lorcaserin on opioid antinociception in female subjects because significant 

differences in serotonin synthesis, serotonin receptor expression and distribution, and serotonin 

transporters are reported (Carlsson and Carlsson, 1988; Nishizawa et al., 1997; Zhang et al., 1999; 

Cannon et al., 2013).  

 The primary mouse strain used in these studies was the swiss webster (SW) outbred mouse 

from Envigo (Frederick, MD). The SW mice are routinely used in this laboratory to characterize 

the antinociceptive activity and tolerance of opioid compounds, and to be consistent, they were 

used in these studies for appropriate comparison to previous data generated from our lab. In the 

electrophysiology studies, C57/B6J mice were purchased from Envigo (Frederick, MD). C57/B6J 

mice were used because previous testing in our lab has demonstrated that the dorsal root ganglion 

neurons from the SW mice are difficult to patch on and maintain a strong seal to record from within 

the neuron. The 5-HT2A receptor knockout studies were generated on a 129Sv background and 

were the only strain of mouse available for these studies. 
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Doses of lorcaserin tested for studies. Doses of lorcaserin and oxycodone were generated using a 

Log2 scale (0.25, 0.5, 1, 2, 4, 8….). Lorcaserin has previously been tested at doses on the log scale 

and range as used in these studies from 0.125, 0.25, 0.5, and 1 mg/kg, and these studies also 

primarily utilized subcutaneous administration of lorcaserin (Levin et al., 2011; Wu et al., 2015; 

Zhang et al., 2015; Neelakantan et al., 2017). Lorcaserin was administered subcutaneously in the 

initial studies based on the work of the previously cited work.  

Although this is not necessarily a clinically relevant route of administration for lorcaserin, 

we felt that the studies should be comparable to previously published research. A few years into 

the generation of the work described herein, I found a paper that described the effect of lorcaserin 

administered orally, and that study demonstrated the oral efficacy of lorcaserin to attenuate 

mechanical hypersensitivity in a preclinical chronic pain model of fibromyalgia (Ogino et al., 

2013). Although these studies evaluated lorcaserin subcutaneously, future studies should 

investigate the interactions between oral oxycodone and oral lorcaserin. In general, most studies 

that evaluate the opioid-sparing effects of a novel compound administer it via the subcutaneous 

route of administration and it is only when results are encouraging that additional testing is 

conducted using the clinically relevant route (in this case, p.o.). 

Warm-Water Tail Withdrawal 

The warm-water tail-withdrawal test utilizes a thermal stimulus that stimulates 

thermoreceptors and nociceptors in the skin. The test is a modified version of the tail-flick test 

using radiant heat by D’Amour and Smith (1941) and was developed as a simplified, preclinical 

version of the method tested on human subjects by Hardy et al. (1940). In practice, a thermal 

stimulus (heated water) is applied to the distal end of a rodent’s tail which provokes a withdrawal 

response by way of a vigorous movement. Reaction time of this withdrawal is recorded and 
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referred to as the “latency to withdraw” or “tail-flick latency.” An artificial cut-off threshold of 

typically 10 seconds is imposed to prevent the incidence of tissue damage, otherwise skin burning 

may occur.  

 The tail-withdrawal is demonstrated to be primarily a spinally-mediated reflex because the 

response persists even after resection of upper components of the spinal cord (Irwin et al., 1951). 

The tail withdrawal reflex is also subject to modulation by supraspinal structures as stimulation of 

the tail resulted in recorded neuronal activity in the thalamus and additionally, reports of increased 

flexor reflex following spinal resection suggest that supraspinal structures may provide inhibitory 

tone (Irwin et al., 1951; Mitchell and Hellon, 1977). 

 Opioids in this paradigm work by inhibiting the withdrawal response and this effect is a 

combination of spinal and supraspinal mechanisms (Dewey et al., 1969; Wu and Martin, 1982; 

Bell et al., 1985; Sinclair et al., 1988). Decerebration of the spinal cord reduces the potency of 

morphine and suggests that the antinociceptive effects of morphine are dependent on both spinal 

and supraspinal structures (Dewey et al., 1969; Wu and Martin, 1982). 

 Opioid analgesics have been shown to significantly inhibit this reflexive tail-withdrawal 

response and reliably do so across many species (Dykstra and Woods, 1986; Le Bars et al., 2001). 

The tail flick/tail withdrawal assay is particularly sensitive to the antinociceptive opioid agonists 

including MOR and KOR agonists, but the assay is insensitive and lacks predictive validity to 

determine to the antinociceptive effects of systemically-administered non-opioid analgesics such 

as NSAIDs (Negus et al., 2006; Dogrul et al., 2007; Foroud and Vesal, 2015). Although the tail 

withdrawal assay has its limitations, this test has been shown to be predictive of analgesic effects 

mediated through the MOR in human populations and has remained a mainstay for testing the 

analgesic potential of new opioid compounds (Le Bars et al., 2001).  
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Locomotor Studies 

 Most assays that are used to assess nociception (and subsequently antinociception) rely on 

animals to engage in motor responses to noxious stimuli. A potential confound of testing candidate 

analgesic drugs are drug effects that produce motor impairment and general behavioral depression 

(Le Bars et al., 2001; Negus et al., 2006). An “antinociceptive” response may be confounded by a 

subject’s impaired ability to respond to a noxious stimulus and may be interpreted as a false 

positive result. Tests such as the warm-water tail withdrawal are intrinsically dependent upon the 

elicitation of motor responses and mark stimulus sensitivity thresholds which may be manipulated 

by the addition of an antinociceptive compound. This is a known and appreciated limitation of 

assays like the warm-water tail withdrawal test. The assessment of locomotor activity provides 

some insight to ensure that the observed antinociceptive effect is not due to motor impairment 

blocking the nocifensive behaviors. 

5-HT2A Knockout Mice 

A common issue among commercially available 5-HT2 receptor agonists (until recently) is 

their indiscriminate activity at all 5-HT2 receptors. Previously tested compounds, such as DOI 

(2,5-Dimethoxy-4-iodoamphetamine), Ro 60-0175, or mCPP [1-(3-Chlorophenyl)piperazine)], 

possess affinity for the 5-HT2C receptor but additionally display varied affinity and efficacy at the 

5-HT2A and 5-HT2B receptors (Porter et al., 1999; Kimura et al., 2004; Cheng and Kozikowski, 

2015). Lorcaserin was one of the first agonists that displayed preferred activity at the 5-HT2C 

receptor and demonstrated greater selectivity over the 5-HT2A and the 5-HT2B receptors (Thomsen 

et al., 2008). Although lorcaserin has greater selectivity, the possibility of off-target effects, likely 

mediated through the 5-HT2A receptor, were of concern. As a means to assess contributions of the 

5-HT2A receptor in the effect of lorcaserin on opioid antinociception, a global knockout model of 
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the 5-HT2A receptor was used to assess the effect of 5-HT2A receptor deletion on the combined 

effects of lorcaserin and opioids. Although as previously mentioned early in this chapter, the 5-

HT2A receptor primarily serves a “pro-nociceptive” role, it was important to rule out its 

contributions.   

Biodistribution Studies 

Drug-drug interactions are a major clinical concern, as alterations in drug concentrations 

may have fatal effects on a patient. Opioid drugs differ in the mechanisms through which they are 

metabolized and there is great variability in metabolic pathways among patient populations 

(Poyhia ’ et al., 1992; Stamer et al., 2013). Opioids, such as oxycodone and fentanyl, are subject 

to first pass hepatic effect and are subsequently metabolized by CYP3A4 and to a lesser extent 

CYP2D6 (Smith, 2009; Söderberg Löfdal et al., 2013). Though each opioid may vary in enzyme 

metabolism, there is potential for interactions with other drugs that may act as substrates, 

inhibitors, or inducers of those enzymes. The net effect of these effects may be increased 

circulating opioid concentrations, which presents itself as an increased analgesic effect and 

increased risk of adverse side effects such as respiratory depression. There are many agents that 

may alter enzyme function but a few examples include antibiotics, SSRIs, and some antipsychotics 

(Crewe et al., 1992; Ball et al., 1997; Chiu et al., 2004; Smith, 2009). 

Due to the potential for substantial drug-drug interactions between opioids and lorcaserin, 

it was important to evaluate the bio-disposition of oxycodone with and without lorcaserin 

pretreatment. Lorcaserin is similarly subject to metabolism by CYP P450 enzymes and is a 

competitive inhibitor of CYP2D6 (which is responsible for some oxycodone metabolism) (Samer 

et al., 2010; Center for Drug Evaluation and Research, 2012). Understanding the effect of 

lorcaserin on opioid biodisposition is an important step in characterizing the effect of lorcaserin 
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on opioid antinociception and ensuring that the effects observed in vivo are not mediated through 

(potentially fatal) changes in opioid metabolism. 

In vivo Models of Tolerance 

Tolerance is defined as the reduction in response to a drug after repeated administration 

and is expressed as a right-ward shift of the dose response curve (Brunton et al., 2011). Tolerance 

to the antinociceptive effects of opioids can be modeled using a variety of dosing paradigms that 

range from a single injection (acute tolerance) to multiple injections on the time-scale of a few 

days or a few weeks of treatment. The mechanisms that underlie the degree of tolerance that 

develops differ based on frequency with which the opioid is administered, and the induction of 

antinociceptive tolerance is also considered to occur in two phases: an acute component and a 

chronic state (Cox et al., 1968; Huidobro-Toro and Way, 1978; Ling et al., 1989; Fairbanks and 

Wilcox, 1997; Bohn et al., 2000, Tempel et al., 1988; Z Wang et al., 1994; Sim et al., 1996; Sim-

Selley, 2005). Indeed, this idea has been supported by several lines of research demonstrating that 

agents that alter morphine tolerance do not equivalently alter acute and chronic tolerance 

(Rosenfeld and Burks, 1977; Fairbanks and Wilcox, 1999). activity  

The injection method that we are using to test acute tolerance in these studies is based on 

a model developed by Cox et al., (1968) and later adapted by Wigdor and Wilcox (1987). The time 

frame of the drug treatment occurs within a day and may be limited to a single drug administration 

in a day or repeated drug exposures within a day. The mechanisms that underlie acute tolerance 

are considered to be more well-understood and mediated through rapid receptor desensitization 

that results in an acute loss of MOR-effector coupling (Sibley et al., 1984, 1985, 1987; Ferguson 

et al., 1996; Kovoor et al., 1998; Laura M. Bohn et al., 2000; Alvarez et al., 2002; Bailey et al., 

2004; Williams et al., 2013; Arttamangkul et al., 2018).  
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The degree of tolerance that develops following multiple opioid exposures across a period 

of several days (long-term tolerance) is thought to be mediated through mechanisms that are 

distinct from those responsible for acute tolerance (Tempel and Zukin, 1987; Tempel, 1991; Tao 

et al., 1993; Z Wang et al., 1994; Wang et al., 2004; Sim-Selley, 2005; Shoblock and Maidment, 

2006; Sim-Selley et al., 2009). It is marked by compensatory changes in regulatory processes and 

receptor downregulation. The model of chronic tolerance varies by several factors including, but 

not limited to, the route of administration (systemic vs spinal), the dose and dosing frequency of 

opioid administered (acute vs. chronic dosing), the species of the animal (rodent vs monkey), and 

the method through which tolerance will be evaluated (tail flick vs. hot plate). Though these factors 

vary, the general consensus is that “chronic” tolerance is a series of multiple injections across 

multiple days (Fairbanks and Wilcox, 1997; Williams et al., 2013). The model of long-term 

tolerance used in these studies has been previously published and produces profound, reproducible 

antinociceptive tolerance to oxycodone (Jacob et al., 2017).  

Both the acute and multiple-dosing/chronic models of tolerance are useful because they 

provide an approximate framework through which the effect of an additional drug, in this case 

lorcaserin, can be evaluated. It is well-known that the addition of non-opioid compounds, such as 

NMDA antagonists, differentially alter the acute and chronic phases of tolerance (Trujillo and 

Akil, 1991; Pasternak et al., 1995). Acute tolerance in the clinic is a debated phenomenon and 

studies report that acute tolerance may develop following intraoperative administration of 

remifentanil and this treatment increases post-operative opioid consumption (Vinik and Kissin, 

1998; Schraag et al., 1999; Guignard et al., 2000; Cortínez et al., 2001; Gustorff et al., 2002; 

Dworkin et al., 2007). Though acute tolerance in the clinical setting is debated, it is clearly an 
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important component worth investigating as it provides insight in the overall mechanisms that 

opioid tolerance can be modulated. 

In vitro models  

Electrophysiology 

As mentioned previously, tolerance is characterized by a loss of response to a drug 

treatment. Electrophysiological measures of neuronal activity are used as a reliable measure that 

are altered by repeated drug exposures. The hallmark effects of opioids on neurons include an 

increase in threshold potential and a reduction in action potential amplitude. Tolerance to the effect 

of opioids can be evaluated through measures of neuronal excitability and is a reproducible model 

to evaluate tolerance on a neuronal level (Kang et al., 2017; Jacob et al., 2018). Dorsal root 

ganglion neurons (DRGs) are a model used to evaluate the development of tolerance at this level 

because of their critical role as a “relay station” between peripheral nociceptors/stimuli and the 

central nervous system.  

 DRGs express a wide-variety of receptors, including MORs and a variety of serotonin 

receptors (Pierce et al., 1997; Nicholson et al., 2003). Expression of the 5-HT2C receptor in DRGs 

is debated, with the caveat being that their basal expression is in such low quantities that it is 

difficult to detect via PCR analysis or via radioligand competition binding (Pierce et al., 1996, 

1997; Chen et al., 1998; Nicholson et al., 2003). The 5-HT2C receptor has been implicated in the 

initial stages of neuronal sensitization following the induction of a chronic pain state, as it displays 

an upregulation of mRNA following injury with CFA or bee venom (Wu et al., 2001; Liu et al., 

2005).  

 The DRGs are an ideal target for evaluating opioid tolerance and its modulation by 

activation of the 5-HT2C receptor for several reasons. Although tolerance is primarily thought of 
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as a centrally-mediated phenomenon, maladaptive changes in peripheral nociceptors are 

implicated as the initial site for the development of analgesic tolerance (Corder et al., 2017). 

Opioid tolerance within the afferent cell bodies has been repeatedly demonstrated and is a well-

regarded phenomenon (Kang et al., 2017; Jacob et al., 2018). Although the expression and role of 

the 5-HT2C receptor is debated, electrophysiological methods using the DRGs allow for a 

functional, though indirect, assessment of the role of the 5-HT2C receptor on opioid tolerance. 

Opioid tolerance can be modulated through administration of several exogenous compounds, 

including ethanol and a protein kinase C inhibitor (Bailey et al., 2004; Hull et al., 2010; Jacob et 

al., 2018). Use of this methodology will allow for the characterization of lorcaserin’s effects on a 

single cell level (in a cell type that serves a critical role in nociception and opioid tolerance) and 

provide an understanding of how it relates to observations in vivo. 

[35S]GTPγS Binding 

The mechanisms of opioid tolerance are expressed in many levels of an organism, 

including at the receptor level. Tolerance at this level is marked by a loss of MOR-effector 

coupling through desensitization and an overall receptor downregulation (Tempel et al., 1988; 

Tempel, 1991; Ronnekleiv et al., 1996; Kovoor et al., 1998; Whistler and von Zastrow, 1998; 

Alvarez et al., 2002; Borgland et al., 2003; Lopez-Gimenez et al., 2008). The [35S]GTPγS binding 

assay is a measure of receptor mediated G-protein activation that can be altered through the 

addition of opioid agonists and antagonists (Selley et al., 1997). It is useful in applications of 

analyzing acute opioid efficacy and opioid tolerance. The loss of MOR-effector coupling is 

proposed as one such mechanism that may underlie tolerance and [35S]GTPγS is an appropriate 

tool to examine changes in first stage of initial receptor-mediated signaling following chronic 

opioid exposure (Celver et al., 2004). 
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Region-specific decreases in MOR-uncoupling or “desensitization” are reported in the spinal 

cord, PAG, and pontine and medullary nuclei following chronic in vivo opioid exposure (Tao et 

al., 1993; Sim et al., 1996; Sim-Selley et al., 2009). Combination treatments utilizing an opioid 

and a non-opioid compound, in this case Δ9-THC, were shown to not produce receptor adaptations, 

such as desensitization, after chronic treatment (Smith et al., 2007). Binding assays, such as 

[35S]GTPγS provide important insight into the mechanisms through which combination treatments 

may be altering tolerance by directly evaluating agonist-stimulated MOR activation.  

 

VII. Overall Scope of this Dissertation 

The 5-HT2C receptor is expressed in regions that are known to modulate nociceptive responses 

and administration of 5-HT2C agonists are antinociceptive agents in preclinical models of chronic 

pain (Obata et al., 2004; Nakai et al., 2010; Ogino et al., 2013). The development of more selective 

5-HT2C receptor agonists, such as lorcaserin, provides the tools to further investigate how the 

activation of this receptor alters acute pain-like responses (which to date have not been 

investigated using this class of compound).  

In the past several years, numerous studies have investigated the therapeutic potential of 

lorcaserin to alter the abuse-related effects of drugs of abuse in preclinical assays and yield 

conflicting results (Higgins et al., 2012; Rezvani et al., 2014; Banks and Negus, 2016; Harvey-

Lewis et al., 2016; Neelakantan et al., 2017; Panlilio et al., 2017). Despite the disparity in the data, 

the therapeutic use of lorcaserin in humans has progressed to several clinical trials investigating 

its effects on OUD in combination with naltrexone (ClinicalTrials.gov, 2017). In addition to 

understanding the means through which lorcaserin alters the abuse-related effects of opioids, it is 

important to understand how lorcaserin alters the antinociceptive effects of opioids as well.  



46 
 

The current status of the opioid epidemic supports the development of opioid-sparing analgesic 

combinations that serve to reduce the abuse-related effects and dose-dependent side effects 

associated with chronic opioid treatment.  The analgesic properties of opioids are the most 

important component of their pharmacology and as further clinical development of lorcaserin as a 

treatment to prevent the development of opioid use disorder progresses, additional information 

investigating its effects on the antinociceptive effects of opioids is necessary. Based on the patterns 

from previous studies investigating opioids and lorcaserin, the hypotheses for the series of studies 

described herein is that lorcaserin will enhance the acute antinociceptive effects of opioids and 

attenuate the development of tolerance. To further develop these hypotheses, we employed three 

general aims: 

1) Characterize the pharmacological effects of lorcaserin in a preclinical model of acute pain. 

a. Early preclinical studies administer 5-HT2C receptor agonists via intrathecal 

injection (see section on 5-HT2C agonists in the introduction for citations). 

Therefore, in a manner consistent with previously published data on 5-HT2C 

receptor agonists, lorcaserin was administered via the intrathecal route of 

administration for an appropriate basis of comparison.  

b. Further studies will compare its efficacy across other routes of administration and 

may provide insight into its general neuroanatomical locus of action. 

2) Evaluate the effect of lorcaserin on the acute antinociceptive properties of opioids in the 

whole animal in a model of acute pain. 

3) Evaluate the effect of chronic lorcaserin treatment on tolerance to the antinociceptive 

effects of oxycodone and determine the mechanisms through which the interaction may be 

occurring using previously validated in vitro models of tolerance. 
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Therefore, the overall goal of this dissertation is to characterize the effect of lorcaserin, a selective 

5-HT2C receptor agonist, on both the acute and chronic properties of oxycodone. From these 

studies, we have characterized a novel, opioid-sparing target that should be investigated further 

for preclinical development that may provide alternative solutions to the current opioid epidemic. 
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Chapter 2 

Characterization of the pharmacology of lorcaserin and its effects on acute opioid-induced 

antinociception 

1. Summary 

Opioids, such as morphine, oxycodone, fentanyl and methadone, are commonly used for the 

treatment of moderate to severe pain. Their use, even for short periods of time, present significant 

risks to the patient but these risks can be mitigated through use of multimodal adjunct therapies. 

Lorcaserin is a 5-HT2C receptor agonist that is shown to attenuate the abuse-related effects of 

oxycodone. The purpose of these studies was to characterize the effect of lorcaserin alone through 

several routes of administration and then evaluate its effects on acute opioid-induced 

antinociception. Intracerebroventricular lorcaserin was inactive but administration via intrathecal 

injection produced robust dose-dependent antinociception, suggesting a spinally-mediated 

mechanism of action. The spinal effects of lorcaserin were not blocked by naloxone pretreatment 

so the antinociceptive effects are not mediated through the endogenous opioid system. 

Subcutaneous injection of lorcaserin was inactive in the tail-withdrawal test. A combination 

treatment of subcutaneous lorcaserin and oral oxycodone produced a robust increase in both the 

potency and the time course of the opioid’s activity. These effects were not blocked by naloxone 

but were antagonized by a 5-HT2C receptor antagonist. General behavioral depression is a concern 

in the evaluation of candidate analgesics, so the effect of lorcaserin on motor behavior was 

assessed.  Lorcaserin did not alter the blood or brain concentrations of oxycodone, therefore its 

effects are not dependent upon changes in opioid metabolism. Agents, such as lorcaserin, may be 

useful adjunctive therapies for oxycodone in the treatment of acute pain. 
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II. Introduction 

Opioids, such as oxycodone, fentanyl, and morphine, are commonly prescribed for the 

treatment of moderate to severe pain, but their chronic use presents serious risks to the patient, 

including the development of opioid use disorder (OUD) and overdose. Opioids produce their main 

pharmacological effects through the mu-opioid receptor (Sora et al., 1997; Kitanaka et al., 1998; 

Loh et al., 1998). Increased prescription opioid misuse has led to the emergence of the opioid 

epidemic within the United States, and increased focus on developing alternative nonaddictive 

treatments for pain (CDC et al., 2016, 2017; Volkow and Collins, 2017). Multimodal analgesia is 

a technique that seeks to improve pain-relief and reduce the incidence of side effects by optimizing 

the doses of analgesics in a manner that maximizes their efficacy (Buvanendran and Kroin, 2009; 

Buvanendran, 2011). Combination therapies aim to reduce the dose of opioid needed to achieve 

adequate pain relief while reducing overall risk to the patient.  

Commonly used opioid-sparing adjuncts for the treatment of acute pain include 

nonsteroidal anti-inflammatory drugs (NSAIDs) and acetaminophen, which produce effects 

through inhibition of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes 

(Huang et al., 2008; Derry et al., 2009, 2013; Gaskell et al., 2009; Sullivan et al., 2016). There are 

a number of opioid medications that have been formulated with NSAIDs or acetaminophen as a 

co-analgesic and the combinations are well-regarded in their ability to reduce the severity of pain 

(Derry et al., 2009, 2013; Gaskell et al., 2009). A major limitation of their utility is the risk of 

hepatoxicity or gastrointestinal bleeding associated with their prolonged use (James et al., 2003; 

Nikolajsen et al., 2006). 

Tricyclic antidepressants (TCAs) and selective-serotonin reuptake inhibitors (SSRIs) are 

opioid-sparing treatments that are primarily used to treat chronic and neuropathic pain (Watson, 
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2000; Micó et al., 2006; Dworkin et al., 2007; Saarto and Wiffen, 2007; Dowell et al., 2016a). 

Although opioids are no longer indicated as a first-line treatment for this population of patients, 

these drugs are effective in reducing the overall dose of opioid requirement (Watson, 2000; Dowell 

et al., 2016a). Although antidepressants are mostly effective for treating chronic pain, their 

efficacy in treating acute pain is unclear (Gilron, 2016). 

The serotonergic system is an important component in the elicitation of pain-relief and is 

proposed to exert its pharmacological effects through a descending modulatory pathway that 

directly modulates the activity of primary afferent neurons (Wilson et al., 1979; Yahsh, 1979; 

Yezierski et al., 1982; Takeuchi et al., 1983; Jones and Light, 1990; Unit et al., 1995; Millan, 

1997; Cui et al., 1999). Functional interactions between the opioid and serotonergic systems are 

noted and several studies demonstrate that the release of spinal serotonin partially underlies the 

antinociceptive effects of morphine (Ho et al., 1975; Wilson et al., 1979; Yaksh and Tyce, 1979; 

Crisp et al., 1991; Schul and Frenk, 1991; Jolas et al., 1999). 

The serotonergic system is composed of over 14 different subtypes and the serotonin 2c 

receptor (5-HT2C) has emerged as a novel target for treating drug addiction, neuropsychiatric 

diseases, and pain (Hoyer et al., 1994; Bubar and Cunningham, 2008; Vincenzo, 2015). 5-HT2C 

receptor agonists have demonstrated preclinical efficacy in rodent models of fibromyalgia and 

neuropathic pain (Obata et al., 2004; Nakai et al., 2010; Ogino et al., 2013). Lorcaserin is a 

selective 5-HT2C receptor agonist that possesses 15-fold greater selectivity for the 5-HT2C receptor 

than 5-HT2A receptor (Thomsen et al., 2008). Lorcaserin was originally developed as a 

pharmacotherapeutic treatment for obesity but in recent years evaluated as a possible treatment for 

drug addiction (Smith et al., 2009; Fidler et al., 2011; GT Collins et al., 2017). 
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 The current literature suggests that lorcaserin may function as a favorable opioid-sparing 

adjunct as it reduces the abuse-related effects of opioids and may produce antinociception through 

alternative, non-opioid-dependent mechanisms (Nakai et al., 2010; Ogino et al., 2013; Wu et al., 

2015; Zhang et al., 2015; Neelakantan et al., 2017). In the study by Nakai et al. (2010), lorcaserin 

attenuated mechanical hypersensitivity in a rodent model of fibromyalgia. Previous research has 

exclusively evaluated the effect of 5-HT2C agonists in models of chronic pain. The aim of these 

studies was to evaluate the effect of lorcaserin in a model of acute pain and its potential as an 

opioid-sparing analgesic in this model. 

 
III. Materials & Methods 

 
Drugs and Chemicals. Oxycodone hydrochloride and methadone hydrochloride (National 

Institutes on Drug Abuse, Bethesda, MD) were prepared in pyrogen-free isotonic saline (Hospira, 

Lake Forest, IL) and administered via oral gavage (p.o.). Morphine sulfate and fentanyl (National 

Institute on Drug Abuse, Bethesda, MD) were dissolved in pyrogen-free isotonic saline and 

administered subcutaneously (s.c.). Lorcaserin hydrochloride and SB242084 were purchased from 

Cayman Chemicals (Ann Arbor, MI). Lorcaserin was prepared in isotonic saline to be injected s.c. 

SB242084 was prepared in a mixture of 8% by volume 2-hydroxypropyl-β-cyclodextrin in saline. 

WAY163909 was generously provided by Dr. Kathryn Cunningham and Mr. Robert Fox of the 

University of Texas Medical Branch (Galveston, TX) and prepared in saline. Drugs prepared for 

intracerebroventricular and intrathecal injections were prepared in deionized water (in house). 

Drugs for i.c.v. and i.t. were not prepared in saline due to the adverse effects of saline when 

administered via i.t. and i.c.v.. 

Subjects. Male, Swiss Webster mice (8 – 10-week-old, Harlan Laboratories, Indianapolis, IN) 

weighing 25 – 35g were housed in community cages in the animal care facilities (22 ± 2°C, 12-
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hour light-dark cycle) with ad libitum access to food and water. On the day prior to 

experimentation, the mice were moved to the laboratory and allowed to acclimate overnight. 

Animal care and experimental procedures were performed according to an Institutional Animal 

Care and Use Committee (IACUC) approved protocol at Virginia Commonwealth University.  

Intracerebroventricular Injections. Intraventricular injections were performed as described by 

Pedigo et al. (1975). Mice were anaesthetized with 2.5% isoflurane before a transverse incision 

was made in the scalp. Mice were allowed to recover for at least two hours after surgery. A free 

hand 5μL injection of the drug or vehicle was made 2mm rostral and 2mm lateral at a 45° angle 

from the bregma into the lateral ventricle. The extensive experience of this laboratory has made it 

possible to inject drugs with greater than 95% accuracy. Immediately after testing, animals were 

euthanized to minimize excessive distress, according to IACUC protocols. Antinociceptive testing 

was conducted 10 minutes after intracerebroventricular administration. 

Intrathecal Injections. Intrathecal injections were performed according to the protocol of Hylden 

and Wilcox (1983). Unanesthetized mice were injected with a volume of 5 μL between the L5 and 

L6 area of the spinal cord using a 30-gauge, ½-inch needle. Based on the time course experiments 

of lorcaserin’s intrathecal activity, all antinociceptive testing was conducted 10 minutes after 

intrathecal injection. 

Warm Water Tail-Withdrawal Test. The warm water tail withdrawal test used to assess 

antinociception in mice was developed by D’Amour and Smith (1941) but modified by Dewey et 

al (1970). In all experiments (unless otherwise stated), mice were tested using a 52° C water bath. 

Before drug administration, the baseline (control) latency for each mouse was determined and only 

mice with a control reaction time from 2 – 4 seconds were used. The test latency after drug 

treatment was assessed 20 minutes after drug administration, with a maximum cut-off value of 10 
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seconds to prevent tissue damage to the tail. Antinociception was quantified according to the 

method of Harris & Pierson (1964) as the percentage of maximum possible effect (%MPE) which 

was calculated ad: %MPE = [(test control – control)/(10 – control)]x100.  

Experimental Design for cumulative dosing protocol. Drugs were administered using a 

cumulative dosing technique. In the drug-combination studies, saline or lorcaserin were 

administered at doses of 0.25, 0.5, 1, 2, and 4 mg/kg (s.c.), 30 minutes prior to the first opioid 

treatment. After lorcaserin pretreatment, the first dose of opioid was administered via oral gavage 

or subcutaneous injection and animals were tested 20 minutes later. After each round of testing, 

animals received an additional cumulative dose of opioid and tested again 20 minutes later. Testing 

and dosing continued until the animal reached the maximum cut-off time of 10 seconds. 

Time Course Experiment. The warm-water tail withdrawal test used to evaluate the effect of 

lorcaserin on the time-course of oxycodone. Mice were first administered saline or lorcaserin (0.5 

or 1 mg/kg, s.c.), 30 minutes prior to opioid treatment. After the lorcaserin pretreatment, mice were 

administered saline or oxycodone (10 mg/kg, p.o.) and then tested at the following time points: 15, 

30, 60, 120 minutes for the tail flick latency response times. For studies utilizing the 5-HT2C 

receptor antagonist, SB242084, mice were injected 10 minutes before lorcaserin treatment. All 

other drug treatments and time points remained the same. 

Locomotor Activity Studies. The motor effects of lorcaserin were assessed using measurements 

of locomotor activity. Locomotor activity was assessed in enclosed, sound attenuating, photo beam 

activity monitors (Med Associates., St. Albans, VT) that record “ambulatory counts” via photo 

beam breaks. Numbers of beam breaks were recorded in 5-minute time blocks. Mice were 

administered saline or lorcaserin (0.5, 1, or 2 mg/kg, s.c.) and immediately placed in the chamber 

for 40 minutes of recording. Activity chambers were thoroughly cleaned between subjects with 
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cleaning solution and then dried. In studies using lorcaserin and oxycodone, mice were 

administered lorcaserin 30 minutes before treatment with oxycodone (64 mg/kg, p.o.) and then 

transferred to the activity cages 20 minutes after oxycodone treatment. 

Naloxone Antagonism and Cumulative Oxycodone Dosing Study. The warm-water tail 

withdrawal test was used to evaluate the effect of lorcaserin on naloxone-antagonism of 

oxycodone-induced antinociception. Lorcaserin (1 mg/kg, s.c.) was administered 30 minutes 

before the first cumulative dose of oxycodone. 5 minutes before the first dose of oxycodone was 

administered, naloxone (1 mg/kg, s.c.) was injected. Mice were tested 20 minutes after the 

administration of oxycodone for antinociceptive responses. After each round of testing, animals 

received an additional cumulative dose of oxycodone and were tested 20 minutes later. This 

process was repeated until animals reached the cut-off time of 10 seconds. 

5-HT2A Knockout Animals. Experiments were performed on adult (10- to 14-week-old) male 

mice. 5-HT2A receptor knockout mice of 129S6/Sv background have been previously described 

(González-Maeso et al., 2003). For experiments using genetically modified mice, wild-type 

controls purchased from Taconic Biosciences (Rensselaer, NY). Morphine dose-response curves 

were generated using a cumulative dosing protocol as previously described above and nociceptive 

testing was conducted using the warm-water tail withdrawal test at 56°C.  

Oxycodone Distribution Experiments. Tissues were dissected from mice that were treated with 

oxycodone (10 mg/kg, p.o.) and/or lorcaserin (2 m/kg, s.c.). Mice were administered oxycodone 

(10 mg/kg, p.o.) and/or lorcaserin (2 mg/kg, s.c.) and then dissected 30-minutes or 120-minutes 

after drug administration. After dissection, tissues were homogenized in 1:3 ratio of brain tissue 

(mg): deionized water (mL). The quantification of oxycodone was performed using Ultra 

performance liquid chromatography tandem mass spectrometer (UPLC-MS/MS) method. An 
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oxycodone seven-point calibration curve at concentrations of 10 -1000 ng/mL for blood and 10 – 

1000 ng/kg for brain tissue homogenate and negative controls with or without internal standard 

(ISTD) were prepared in drug-free mouse blood and brain tissue with each analytical run. 

Oxycodone was extracted from blood and brain tissue homogenate using an ISOLUTE® PLD+ 

Protein and Phospholipid Removal 96 well plate.  In brief, the ISTD, 10 ng of oxycode-d6, was 

added to aliquots of 100 µL of blood or 400 µL of homogenized brain tissue calibrators, controls 

and samples. These samples were mixed and allowed to equilibrate. 0.4 mL acetonitrile was added 

to the extraction chambers in the plate. The samples were then dispensed with force and allowed 

to mix for 5 mins. Samples were then eluted at 2-4 psi under nitrogen in to a 96 well plate for 

analysis using a UCT Positive Pressure Manifold (Bristol, PA) for analysis.  

The Ultra performance liquid chromatography tandem mass spectrometer (UPLC-MS/MS) 

analysis was performed on Waters AcQuity XEVO-TQ-S Micro UPLC-MS/MS system (Milford, 

Massachusetts). Chromatographic separation of Oxycodone and the ISTD, oxycodone d6, was 

performed using Restek Ultra Biphenyl 3um, 100 x 2.1 mm column (Bellefonte, PA).  The mobile 

phase contained A (20 mM ammonium formate in water) and B (20 mM ammonium formate in 

methanol) and was delivered at a flow rate of 0.6 mL/min with the following gradient: 95% A 

changed to 60 at 1.5 mins. Then ramped to 100% B and held for 0.5 mins and returning to 95% B 

at 3.6 mins.  The source temperature was set at 150°C with a desolvation temperature of 500°C. 

The cone flow rate was 100 L/hr and the desolvation gas had a flow rate of 40°C L/H. The 

acquisition mode used was multiple reaction monitoring (MRM). The following transition ions 

were monitored in positive mode: 316>241 & 316>212 for oxycodone and 322>247 & 322>218 

for oxycodone-d6. The total run time for the analytical method was 4.0 minutes. 
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Lorcaserin Distribution Experiments. The quantification of lorcaserin was performed using an 

Ultra performance liquid chromatography tandem mass spectrometer (UPLC-MS/MS). A 

lorcaserin seven-point calibration curve at concentrations of 10 -1000 ng/mL for blood and 10 – 

1000 ng/kg for brain tissue homogenate and negative controls with or without internal standard 

(ISTD) were prepared in drug-free mouse blood and brain tissue with each analytical run. 

Lorcaserin was extracted from blood and brain tissue homogenate using the addition of 

acetonitrile. In brief, the ISTD, 10ng of cocanine-d3, was added to aliquots of 100 µL of blood or 

400 µL of homogenized brain tissue calibrators, controls and samples. These samples were mixed 

and allowed to equilibrate. 0.2 mL acetonitrile was added to each sample and vortex mixed. The 

samples were then centrifuged at 3500 rpm for 10 min. After centrifuging the top layer containing 

the acetonitrile was removed and placed in auto-sampler vials for analysis. 

The Ultra performance liquid chromatography tandem mass spectrometer (UPLC-MS/MS) 

analysis was performed on a Sciex 6500 QTRAP system with an IonDrive Turbo V source for 

TurbolonSpray® (Sciex, Ontario, Canada) attached to a Shimadzu UPLC system (Kyoto, Japan) 

controlled by Analyst software (Sciex, Ontario, Canada). Chromatographic separation of 

lorcaserin and the ISTD, cocaine d3, was performed using a Thermo Hypersil Gold column, 50 x 

2.1 mm, 3 micron (Thermofisher Scientific, USA).  The mobile phase contained water/methanol 

(40:60, v/v) with 0.1 mM ammonium formate and was delivered at a flow rate of 1 mL/min. The 

source temperature was set at 600°C, and curtain gas had a flow rate of 30 mL/min. The ionspray 

voltage was 5500 V, with the ion source gases 1 and 2 having flow rates of 60 and 45 mL/min, 

respectively. The acquisition mode used was multiple reaction monitoring (MRM). The following 

transition ions were monitored in negative mode: 196>144 & 196>129 for lorcaserin and 307>185 

& 307>105 for cocaine-d3.  The total run time for the analytical method was 2.0 minutes. 
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Data Analysis. Opioid dose-response curves were constructed for determination of ED50 values 

by the Bliss (1967) method, using least-squares linear regression analysis followed by calculation 

of 95% confidence limits. All other statistical analysis were conducted in GraphPad Prism 5 

software (GraphPad Software, La Jolla, CA) and all data are presented as the mean ± standard 

error of the mean. In comparisons between three or more groups with a single factor, a one-way 

analysis of variances (ANOVA) with Tukey’s post-hoc analysis was used. In two or more groups 

of data, statistical differences were analyzed using the Student’s two-tailed unpaired t-test. 

Differences were considered significant when P < 0.05 and when ED50 confidence limits did not 

overlap. 

IV. Results 

Subcutaneous Lorcaserin and Opioid antinociception 

Dose response effect of lorcaserin on opioid antinociception. Lorcaserin alone was inactive in 

the warm-water tail withdrawal test, up to doses of 8 mg/kg (Figure 2.1). A range of doses (0.25 – 

4 mg/kg, s.c.) of lorcaserin were tested for their effect following administration of cumulative 

doses of oral oxycodone (Figure 2.2). At all doses tested, there was an observable shift to the left 

of the oxycodone dose-response curve. Acute oxycodone alone produced an ED50 of 8.39 mg/kg 

(7.30 – 9.65) and significant shifts of the curve were produced by 2 and 4 mg/kg lorcaserin (see 

Table 2.1). Shifts were considered significant when 95% confidence limits did not overlap.  

Morphine produced an ED50 of 4.19 mg/kg (3.23 – 5.43) in control mice. Pretreatment with 

1 or 2 mg/kg lorcaserin shifted the curves to the left (Figure 2.3A). An acute injection of fentanyl 

(Figure 2.3B) produced an ED50 value of 57.64 ug/kg (47.67 – 69.69) and pretreatment with a dose 

of 1 mg/kg lorcaserin produced a significant shift of the ED50 to 33.52 μg/kg (26.75 – 42.02). The 



58 
 

effect of subcutaneous lorcaserin on methadone was also characterized (Figure 2.4) but at all doses 

tested, lorcaserin did not shift the dose-response effect. 

WAY163909 on oxycodone-induced antinociception. In order to determine if the effect of 

lorcaserin was due to some other effect other than activation of the 5-HT2C receptor, an additional 

5-HT2C receptor agonist, WAY163909, was tested for its effect on oxycodone-induced 

antinociception (Figure 2.5). Control mice that received saline produced an ED50 value of 6.83 

mg/kg (5.30 – 8.81). Treatment with WAY163909 produced a significant shift at 1 mg/kg with an 

ED50 of 3.35 mg/kg (2.20 – 5.10) and treatment with 2 mg/kg WAY163909 produced an ED50 of 

4.05 mg/kg (2.42 – 6.79). 

Antagonism Studies. The potentiating effect of lorcaserin on oxycodone antinociception was not 

antagonized by naloxone (Figure 2.6). Mice were administered pretreatments of saline only, 

lorcaserin (1 mg/kg, s.c.) and saline, saline and naloxone (1 mg/kg, s.c.), or lorcaserin and 

naloxone. Control animals that received only saline prior to oxycodone dosing produced an ED50 

of 9.07 mg/kg (7.23 – 11.38) and pretreatment with naloxone produced a significant 2-fold shift 

in the ED50 to 17.81 mg/kg (13.23 – 23.99). Treatment with lorcaserin alone produced a shift in 

the ED50 to 7.34 mg/kg (5.62 – 9.60). Lorcaserin blocked antagonism by naloxone and produced 

an ED50 of 8.23 mg/kg (6.40 – 10.58) which is similar to control (oxycodone alone) mice. The 

inability of naloxone to block the enhancement of oxycodone antinociception by lorcaserin is 

consistent with an earlier study where naloxone was similarly unable to block the antinociceptive 

effect of intrathecal lorcaserin. 

 The selective 5-HT2C receptor antagonist, SB242084, was tested against the 

antinociceptive effect of oxycodone (Figure 2.7) and was inactive at all doses test (0.5,1 and 2 

mg/kg, i.p.). Two-way ANOVA with Dunnet’s multiple comparison test revealed that there was 
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no main effect of pretreatment with SB242084 [F (3, 155) = 1.969, P = 0.1209].Mice treated with 

oxycodone alone produced an ED50 value of 8.50 mg/kg (7.16 – 10.08). Pretreatment with 0.5 

mg/kg SB242084 produced an ED50 value of 6.99 mg/kg (5.49 – 8.77). Pretreatment with 1 mg/kg 

SB242084 produced an ED50 value of 8.79 mg/kg (7.16 – 10.08) and preareatment with 2 mg/kg 

SB242084 produced an ED50 value of 6.43 mg/kg (5.34 – 7.74). 

The effect of genetic deletion of the 5-HT2A receptor on morphine-induced antinociception 

and lorcaserin treatment. Mice with a global knockout of the 5-HT2A receptor were tested to 

assess the contributions of the 5-HT2A receptor on the antinociceptive effects of morphine and the 

combined treatment of lorcaserin and morphine (Figure 2.8). Wild-type mice treated with 

cumulative morphine produced an ED50 of 1.73 mg/kg (1.38 – 2.18) and in 5-HT2A receptor KOs 

produced an ED50 of 0.95 mg/kg (0.56 – 1.61), trending towards a significant ED50 shift. 

Pretreatment with lorcaserin (2 mg/kg, s.c.) in the WT mice produced an ED50 of 1.15 mg/kg (0.90 

– 1.46 mg/kg) and in the KO mice, an ED50 of 0.66 mg/kg (0.39 – 1.11).  

The effect of subcutaneous lorcaserin on the time course of oxycodone. Lorcaserin’s effect on 

oxycodone’s time course of activity was evaluated (Figure 2.9). Mice were pretreated with a dose 

of lorcaserin (0.5 or 2 mg/kg, s.c.) and then 30 minutes later, administered an approximate ED50 

dose of oxycodone (10 mg/kg, p.o.). The control animals that only received oxycodone displayed 

peak antinociceptive activity at 30 minutes and returned to baseline tail withdrawal latency values 

by 60 minutes. 2 mg/kg lorcaserin pretreatment [F (1, 16) = 17.77, P=0.0007] produced significant 

shifts in oxycodone efficacy relative to control values at time points 15, 30 and this effect persisted 

up to 60 minutes [P < 0.005] (15 and 60 minutes) and P < 0.05 (15 minutes), two-way ANOVA 

with Dunnett’s multiple comparisons test]. Mice that received a subthreshold dose of lorcaserin 

(0.5 mg/kg, s.c. [F (1, 26) = 3.542, P = 0.0711]) displayed a significant potentiation at the 60-
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minute time point (P < 0.05, two-way ANOVA with Dunnett’s multiple comparisons test). These 

data indicate that lorcaserin alters both the acute potency of opiates, as well as its time course of 

activity.  

Furthermore, the data demonstrate that the enhancing effect of lorcaserin (2 mg/kg, s.c.) 

was blocked by administration of SB242084, a 5-HT2C receptor antagonist (Figure 2.10). Relative 

to control mice that only received oxycodone (10 mg/kg, p.o.), pretreatment with lorcaserin (2 

mg/kg, s.c., [F (1,17) = 29.77, P<0.0001]) significantly extended the time course of oxycodone’s 

activity at all time points tested (P <0.001, two-way ANOVA with multiple comparisons and 

Sidak posthoc test). SB242084 (1 mg/kg, i.p.; [F(1,17) = 18.06, P < 0.0005]) significantly blocked 

the effect of lorcaserin relative to mice that received lorcaserin and oxycodone at the 60- and 120-

minute time points (P < 0.05, two-way ANOVA with multiple comparisons) and were not 

significantly different from mice that received oxycodone alone [F(1, 18) = 1.365, P = 0.257] . 

SB242084 alone did not significantly alter the time course of oxycodone’s antinociceptive activity 

[F (1, 17) = 0.6833, P = 0.4199]. 

Effect of subcutaneous lorcaserin on motor activity. To assess the potential of lorcaserin to 

produce general motor depressant effects which may confound observed antinociceptive effects, 

lorcaserin was tested for its effects on locomotor activity (Figure 2.11). The data in Figure 3 are 

presented as total ambulatory counts per 40-minute testing period. Saline treated mice displayed a 

mean ambulatory count value of 3801 (S.E.M. = 570.4). Treatment with lorcaserin (1 and 2 mg/kg, 

s.c.) significantly reduced total ambulatory counts to 1508 (S.E.M. = 321.0) and 1603 (S.E.M. = 

184.4) counts (P < 0.001, one-way ANOVA) respectively. The low dose of lorcaserin (0.5 mg/kg, 

s.c.) did not significantly attenuate motor activity and presented a mean count of 2425 (S.E.M. = 

244.9).  
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The effect of intrathecal lorcaserin on oxycodone antinociception. Interactions between i.t. 

lorcaserin and oral oxycodone in the warm-water tail withdrawal test were evaluated (Figure 2.12). 

First, the antinociceptive effect of lorcaserin alone was characterized. Intrathecal lorcaserin (Figure 

2.12A) produced robust dose-dependent antinociception and significant antinociceptive effects 

were observed at 64 and 128 μg (P < 0.001, one-way ANOVA) compared to control mice. The 

ED50 value for intrathecal lorcaserin was 54 μg. Intrathecal lorcaserin displayed a quick onset of 

activity, with peak effect occurring at 5 – 10 minutes, and then rapidly returned to normal baseline 

values (Figure 2.12B). The antinociceptive effect of intrathecal lorcaserin (Figure 2.12C) was not 

blocked by pretreatment with the opioid antagonist, naloxone (1 mg/kg, s.c.).  

Following this characterization, in Figure 2.12D, mice were administered a dose of 

oxycodone (10 mg/kg, p.o.) and then given an intrathecal injection of a subthreshold dose of 

lorcaserin (32 μg). The intrathecal dose of lorcaserin (32 μg) did not produce a behaviorally 

significant effect on its own and modestly increased the efficacy of the oxycodone treatment but 

not in a significant manner (P = 0.0692, one-way ANOVA).  

Intracerebroventricular Lorcaserin and Oxycodone antinociception. The effect of 

intracerebroventricular (i.c.v.) lorcaserin on oxycodone antinociception was similarly evaluated 

(Figure 2.13). Intracerebroventricular lorcaserin alone was behaviorally inactive at all doses tested 

and did not display any antinociceptive activity at any point during the time course study (Figure 

2.13A and 2.13B). Some mice that were injected with lorcaserin (128 μg, i.c.v.) exhibited 

spontaneous seizure activity and were not used for antinociceptive testing. The data presented in 

Figure 2.13C demonstrated the effect of lorcaserin (i.c.v., 64 μg) on an ED80 dose of oxycodone 

(16 mg/kg, p.o.), where lorcaserin significantly attenuated the acute antinociceptive effect of oral 

oxycodone (P < 0.05, Student’s two-tailed unpaired t-test). These data and the intrathecal 
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lorcaserin data demonstrate differences in the spinal and supraspinal routes of administration and 

their effects on opioid antinociception. 

Biodisposition of SC lorcaserin in the mouse and its effects on oxycodone distribution. The 

concentrations of lorcaserin in the whole brain, spinal cord, and blood after subcutaneous 

administration are presented in Figure 2.14. Administration of lorcaserin resulted in a notably 

elevated accumulation in the brain and spinal cord tissue relative to the blood by an approximately 

~20-fold difference. Lorcaserin (2 mg/kg, s.c.) did not alter the blood or brain concentrations of 

oxycodone at either 30 and 120-minute intervals (Figure 2.15). 
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Figure 2.1: Subcutaneous lorcaserin is inactive in the warm-water tail-withdrawal assay. 

Administration of lorcaserin (up to 8 mg/kg, s.c.) did not produce antinociceptive effects in the tail 

withdrawal assay. Each point was generated with five mice and data points are represented as the 

mean ± S.E.M. 
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Figure 2.2 Lorcaserin pretreatment shifts the dose-response curves of cumulatively 

administered oxycodone. At all doses tested, lorcaserin treatment produced shifts of the dose-

response curves to the left, with significant shifts in the ED50 values (relative to saline controls) 

occurring with 2 and 4 mg/kg lorcaserin. Data points are represented by the mean ± S.E.M. 
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Opioid Lorcaserin 
(mg/kg) 

ED50 (mg/kg) +/- CL Potency Ratio 

Oxycodone 0 8.39 7.30 – 9.65 --- 
Oxycodone 0.25 7.75 6.50 – 9.23 1.06 (0.82 – 1.38) 
Oxycodone 0.5 6.17 4.80 – 7.95 1.34 (0.99 – 1.82) 
Oxycodone 1 6.22 5.23 – 7.40 1.32 (1.06 – 1.65) 
Oxycodone 2 4.73* 3.88 – 5.77 1.69 (1.69 – 2.15) 
Oxycodone 4 5.58* 4.33 – 7.18 1.45 (1.10 – 1.94) 

*Significant shift in the ED50, determined by confidence limits that do not overlap 
 
Table 2.1: Comparison of the ED50 values of oral oxycodone with and without subcutaneous 

lorcaserin pretreatment. ED50 values and the 95% confidence limits were generated using a 

cumulative dosing protocol in mice. Oral oxycodone produced dose-dependent antinociception 

following repeated administration. Lorcaserin produced significant shifts in the observable ED50 

of oxycodone. 
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Figure 2.3: The administration of subcutaneous lorcaserin potentiated the acute 

antinociceptive effect of fentanyl and morphine. Animals were tested using the cumulative 

dosing protocol and both fentanyl and morphine were administered subcutaneously. Prior to opioid 

administration, animals received an injection of lorcaserin and then thirty minutes later, the first 

dose of opioid was administered. Behavioral testing occurred twenty minutes after each opioid 

dose and from this data, dose-response curves were constructed and ED50 values were generated. 

Lorcaserin (1 mg/kg, s.c.) produced significant shifts in the ED50 values of morphine and fentanyl. 

Each data point is represented by a minimum of five animals and each individual point is 

represented as the mean ± S.E.M.  
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Figure 2.4: Lorcaserin did not enhance the antinociceptive effects of orally administered 

methadone. Mice were treated with lorcaserin (0.5, 1, or 2 mg/kg, s.c.) and then administered 

cumulative doses of oral methadone1. The resultant ED50 values of all groups did not significantly 

differ from their controls. A minimum of 5 mice were used per curve and data are expressed at the 

mean ± S.E.M. 

 
 
 
 
 
1The curves generated for methadone are on separate graphs because the final tested doses are different 
(i.e., 24 mg/kg vs. 32 mg/kg). After noticing that the ascending portion of the curve was extremely steep 
after 16  32 mg/kg, we chose a dose (24 mg/kg) on the intermediate portion of that ascending curve for 
additional testing. 
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Figure 2.5: Administration of WAY 163909, another selective 5-HT2C receptor agonist, 

enhanced the antinociceptive effect of oxycodone. Mice were administered intraperitoneal 

injections of WAY163909 (1 or 2 mg/kg, i.p.) and then administered cumulative doses of 

oxycodone. WAY163909 produced significant shifts in the oxycodone dose response curve. Each 

data point is represented by a minimum of five mice and displayed as the mean ± S.E.M.  
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Figure 2.6: The effect of lorcaserin on oxycodone antinociception was not antagonized by 

naloxone. Animals were pretreated with a s.c. injection of lorcaserin (1 mg/kg). Approximately 5 

minutes before the first oxycodone treatment, animals were administered a dose of (1 mg/kg, s.c.).  

A minimum of 5 mice were used per curve and each data point is represented as the mean ± SEM. 
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Figure 2.7: The effect of SB242084, a selective 5-HT2C receptor antagonist, on the acute 

antinociceptive effect of oxycodone. Pretreatment with SB242084 (0.5, 1, or 2 mg/kg, i.p.) did 

not significantly alter the ED50 value of acute oxycodone. Treatment with 2 mg/kg SB242084 

significantly enhanced the acute antinociceptive effect of 16 mg/kg oxycodone (P < 0.05, Two-

way ANOVA with multiple comparisons). A minimum of 5-10 mice were used per curve and each 

data point is represented as the mean ± S.E.M.  
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Figure 2.8: Genetic knockout of the 5-HT2A receptor did not alter the enhancing effect of 

lorcaserin on opioid antinociception. Mice were pretreated with lorcaserin (2 mg/kg, s.c.) and 

then administered cumulative doses of morphine. Each point is represented by the mean of 5 

animals ± S.E.M. 
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Figure 2.9: The subcutaneous administration of lorcaserin altered the time course of 

oxycodone. 2 mg/kg lorcaserin produced the greatest enhancement with significant effects 

observed up to 60 minutes (*P<0.05, ** P < 0.005, two-way ANOVA). The subthreshold dose of 

lorcaserin similarly produced an enhancement of oxycodone but was only significant at 60 minutes 

(†P<0.05, two-way ANOVA). A minimum of 5-10 mice per group with the data shown as the 

mean ± S.E.M. 
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Figure 2.10: Treatment with SB242084, a selective 5-HT2C receptor antagonist, blocked the 

enhanced antinociceptive time course of lorcaserin and oxycodone. Lorcaserin significantly 

enhanced the time course of oxycodone relative to saline controls at the at all time points (**P < 

0.005, 2-way ANOVA with multiple comparisons). Treatment with SB242084 did not 

significantly alter the time course of oxycodone relative to control mice that received oxycodone 

alone. SB242084 significantly antagonized the enhanced effect of opioid antinociception by 

lorcaserin at the 60- and 120-minute time points relative to mice that received lorcaserin and 

oxycodone (#P < 0.01, 2-way ANOVA with multiple comparisons). Each point is represented as 

the mean ± S.E.M and by at least 9 mice. 
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Figure 2.11: Subcutaneous lorcaserin attenuated exploratory activity in mice. Lorcaserin (1 

and 2 mg/kg, s.c.) significantly attenuated motor activity relative to control mice (P < 0.001, one-

way ANOVA). The low dose of lorcaserin (0.5 mg/kg, s.c.) was not significantly different from 

controls. A minimum of five mice were used per group and bars are represented as the mean 

ambulatory counts in the total 40-minute testing period ± S.E.M. 
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Figure 2.12: Intrathecal lorcaserin produced dose-dependent antinociception that was not 

blocked by administration of naloxone. Intrathecal lorcaserin (A) dose-dependently produced 

an antinociceptive response, with a significant effect occurring at 64 μg and peak effects at 10 

minutes (B). The effect of 64 μg lorcaserin (i.t.) was not blocked by naloxone (1 mg/kg, s.c., figure 

C). A subthreshold dose of 32 μg lorcaserin (i.t.) (D) did not produce a significant additive effect 

on a subthreshold dose of oral oxycodone. Each data point is represented by a minimum of five 

mice and presented as the mean ± S.E.M and separate cohorts of mice were used for each 

experiment. Values were compared using a one-way ANOVA. 
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Figure 2.13: Intracerebroventricular (i.c.v.) lorcaserin did not produce antinociceptive 

effects on its own and attenuated the antinociceptive effect of oxycodone. The administration 

of intracerebroventricular lorcaserin, at all doses tested up to 128 μg, did not produce 

antinociceptive effects (A). The time course of locaserin (64 μg, i.c.v.) was inactive at all time 

points tested (B). An inactive dose of lorcaserin (64 μg, i.c.v.) (C) significantly attenuated the 

antinociceptive effect of oral oxycodone (*P<0.05, one-way ANOVA). Antinociceptive activity 

was assessed using the warm-water tail withdrawal assay. All values are represented by at least 

four to ten mice per group and the mean ± SEM.  
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Figure 2.14: Blood, brain, and spinal cord distributions of subcutaneously administered 

lorcaserin. Lorcaserin (2 mg/kg, s.c.) preferentially accumulated in the central tissues relative 

to blood at both 30 and 120 minutes post administration. Subcutaneous lorcaserin displayed 

20-fold greater accumulation in the brain relative the blood. Five to ten mice were used for 

each group tested and, with the bars representing the mean ± S.E.M. 
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Fig. 2.15: Subcutaneous lorcaserin did not significantly alter the distribution of oral 

oxycodone in the brain or the blood. Mice were injected with lorcaserin (2 mg/kg s.c.) and 

then gavaged thirty minutes later with an ED50 dose of oral oxycodone (10 mg/kg, p.o.). Blood 

and brain samples were collected at the time points where lorcaserin significantly altered the 

time course of oxycodone’s antinociceptive effect. Lorcaserin pretreatment did not significantly 

alter the kinetic distribution of oxycodone at either time points tested. Values were compared 
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using the Student’s unpaired two-tailed t-test with P > 0.05.  A minimum of eight mice were 

used per group and the values are displayed as the mean ± S.E.M.   

 

  



80 
 

V. Discussion 

In spite of the current opioid epidemic, opioids are still commonly used for the treatment of 

moderate to severe pain, but there is renewed interest in developing opioid-sparing treatments that 

reduce the overall quantity of opioid consumed (Sullivan et al., 2016; F Collins et al., 2017; 

Volkow and Collins, 2017). Although current opioid-sparing drugs, such as NSAIDs and 

antidepressants, are demonstrably well-regarded and tolerated, each drug class presents its own set 

of risks and alternatives need to be investigated (Watson, 2000; Saarto and Wiffen, 2007; Huang 

et al., 2008; Derry et al., 2009, 2013; Gilron, 2016). Lorcaserin is a 5-HT2C receptor agonist that 

is FDA approved for the treatment of obesity and is under investigation as a possible novel 

therapeutic agent for treating addiction (Bubar and Cunningham, 2008; Smith et al., 2009, 2010; 

Fidler et al., 2011; CDER and FDA, 2016; GT Collins et al., 2017). Preclinical studies have 

demonstrated that lorcaserin suppressed the abuse-related effects of opioids and reduced naloxone-

precipitated withdrawal symptom severity in mice (Wu et al., 2015; Zhang et al., 2015; 

Neelakantan et al., 2017). Based on the observations that lorcaserin can alter one aspect of the 

pharmacological effects of opioids, the purpose of these studies was to evaluate the effect of 

lorcaserin on another important component of opioid evaluation: opioid-induced antinociception. 

The critical findings of these studies suggest the use of lorcaserin as a potential opioid-sparing 

adjunct for the treatment of pain which necessitates further investigation. The goal of the studies 

represented here was to evaluate the effect of lorcaserin on acute opioid antinociception in a model 

of acute pain. 

Dose-response analysis of subcutaneous lorcaserin on opioid antinociception. Initial studies 

were conducted to evaluate the dose-responsive effect of lorcaserin on the antinociceptive 

properties of several clinically used opioids, such as oxycodone, morphine, fentanyl and 
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methadone. The most important finding of these studies was that lorcaserin, and another 5-HT2C 

receptor agonist WAY163909, produced increases in both the potency and the time course of 

activity of oral oxycodone and similar opiates, including morphine and fentanyl. These combined 

effects of increased potency and increased duration of action are desirable traits of an opioid-

sparing adjunctive therapy, as they will reduce the dose and frequency of opioid needed to treat 

pain.  

 Dose-response analysis of lorcaserin and oxycodone revealed that lorcaserin produced 

relative shifts in the ED50 values of oxycodone, morphine, fentanyl (but not methadone which will 

be discussed further). As the dose of lorcaserin increased, the relative opioid ED50 of oxycodone 

decreased and significant shifts were observed at 2 mg/kg of lorcaserin with a resulting ED50 of ~ 

4 mg/kg for oxycodone. It is important to note that the effect of lorcaserin on the ED50 value of 

oxycodone produced a biphasic curve, where lower doses of lorcaserin (2 mg/kg) produced a 

greater shift in the ED50 than higher doses of lorcaserin (4 mg/kg). It is possible that this may be 

due to off-target effects of lorcaserin that may be mediated through the 5-HT2A receptor because 

lorcaserin has some affinity and moderate efficacy at the 5-HT2A receptor (Thomsen et al., 2008). 

Interestingly, this enhancement of opioid antinociception by lorcaserin was not 

antagonized by the administration of naloxone, suggesting that the observed effects are not 

mediated through the opioid system and lorcaserin has a distinct mechanism of action. The 

antinociceptive effects of 5-HT2C receptor agonists are suggested to be partially mediated through 

changes in noradrenergic and cholinergic signaling and this may be a possible mechanism for this 

interaction (Obata et al., 2007).  

In order to determine if the effect of lorcaserin was due to some other effect than 5-HT2C 

receptor activation, another non-structurally related 5-HT2C agonist was evaluated. WAY 163909 
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is a selective 5-HT2C receptor agonist and a 5-HT2A receptor antagonist (Dunlop et al., 2005). 

Similar to lorcaserin, treatment with another 5-HT2C agonist, WAY 163909, enhanced oxycodone 

antinociception and produced its greatest enhancement at the lower tested dose (1 mg/kg). The 

lack of dose-responsivity of 5-HT2C agonists in their effects on opioids may be intrinsic to this 

class of compound and mediated through some unknown off-target effect. Based on the 

concurrence of their effects, however, it is clear that activation of the 5-HT2C receptor is an 

important component of the earlier described enhanced opioidergic effects. 

 Unlike previously tested opioids, the antinociceptive potency of methadone was not altered 

by lorcaserin at any of doses tested. Methadone is used as both an agonist-replacement therapy 

and as a treatment for chronic pain (Brown et al., 2004). Methadone has a complex 

pharmacological profile that includes serotonergic reuptake inhibition and is a much higher 

efficacy agonist relative to traditional opioids like morphine or oxycodone (Horng et al., 1976; 

Codd et al., 1995; Ebert et al., 1995; Brown et al., 2004; Callahan et al., 2004). The lack of 

potentiation by lorcaserin could be due to a ceiling effect associated with methadone’s serotonergic 

activity or that intrinsic efficacy of an opioid agonist is an important determinant when in 

combination with lorcaserin. Opioid agonist efficacy has been reported as an important 

determinant in drug-drug interactions, specifically in combination with SSRIs and TCAs (Gatch 

et al., 1998; Banks et al., 2010).  

Opioid efficacy is proposed to be an important factor in the mechanisms that regulate 

MOR-trafficking (Keith et al., 1996, 1998; Sternini et al., 1996; Whistler and von Zastrow, 1998; 

Bohn et al., 2004; McPherson et al., 2010). High efficacy agonists, such as methadone and 

DAMGO, are reported to produce robust receptor internalization and in contrast, relatively lower 

efficacy agonists, such as morphine, have preferentially induced a desensitized receptor state 
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without significant receptor endocytosis (Keith et al., 1996, 1998; Sternini et al., 1996; Whistler 

and von Zastrow, 1998; Borgland et al., 2003; Arttamangkul et al., 2008; McPherson et al., 2010). 

It is possible that the effect of lorcaserin on opioid antinociception may be due to heterologous 

alterations in receptor trafficking, as activation of the 5-HT2C receptor converges onto protein 

kinase C signaling which is known to be an important regulator MOR desensitization (Laura M. 

Bohn et al., 2000; Kohout et al., 2003; Bailey et al., 2004; Gabra et al., 2008; Hull et al., 2010; 

Jacob et al., 2018). Further study evaluating MOR trafficking and lorcaserin treatment interactions 

are necessary though. 

 

Deletion of the 5-HT2A receptor and the effect of lorcaserin. Lorcaserin has notable affinity as 

a partial agonist for the 5-HT2A receptor (Thomsen et al., 2008). Although the literature supports 

a pro-nociceptive role for the 5-HT2A receptor, we evaluated its contributions in the enhanced 

opioid antinociceptive effect (by lorcaserin) using a global 5-HT2A KO model (Tokunaga et al., 

1998; Zhang et al., 2001; Nitanda et al., 2005; Wei et al., 2005; Nakajima et al., 2008; Huang et 

al., 2009, 2011; Lippold and Dewey, 2017). Compared to the wildtype controls, genetic deletion 

of the 5-HT2A receptor trended towards increased opioid potency but failed to reach statistical 

significance. In addition, the effect of lorcaserin on opioid antinociception in these mice also did 

not significantly shift the ED50. Therefore, the role of the 5-HT2A receptor in the effects elicited by 

lorcaserin is unclear and requires further study.  

It should also be noted that co-activation of the 5-HT2A receptor and the MOR is reported 

to produce measurable changes in MOR trafficking (Lopez-Gimenez et al., 2008). Treatment with 

a 5-HT2A antagonist is reported to block desensitization of the MOR and may underlie the trend 

towards increased morphine potency that was observed in the 5-HT2A knockout model. 
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Additional studies have reported that the 5-HT2A receptor is an important component of 

fenfluramine’s (a serotonin releaser) enhancement of the antinociceptive effect of morphine in 

monkeys and furthermore, addition of a 5-HT2A agonist potentiated the antinociceptive effect of 

morphine on its own (Li et al., 2011). In contrast, a similar study in rodents show that treatment 

with a 5-HT2A agonist only altered the antinociceptive activity of morphine at doses that had a 

modest antinociceptive effect on their own (Li et al., 2013). There are clear differences in 5-HT2A 

expression between species, though the functional effect of these species-differences has yet to be 

fully elucidated (Juan F. López-Giménez et al., 1997; López-Giménez et al., 1998). 

Lorcaserin increased the time course of oxycodone. In addition to characterizing the dose-

related effects of lorcaserin on opioid antinociception, it was important to characterize the effect 

on lorcaserin on opioid time course of activity. Two doses of lorcaserin were tested, a dose that 

produced a significant shift in the ED50 of oxycodone (2 mg/kg, s.c.) and a subthreshold dose (0.5 

mg/kg, s.c.) that shifted the dose-response curve but not to a significant degree. The 2 mg/kg dose 

of lorcaserin significantly extended the time course of oxycodone up to 2 hours post a single 

administration. The low dose (0.5 mg/kg s.c.) produced a modest, but statistically significant, 

enhancement of oxycodone’s activity at the 60-minute time point. In addition, the enhanced time 

course was blocked by treatment with the selective 5-HT2C receptor antagonist, SB242084, and 

supports the notion that activation of the 5-HT2C receptor is responsible for the enhanced opioid 

antinociceptive responses. 

A potential confound that is inherent to assays that necessitate motor responses is that the 

observed analgesic response is due to motor impairment of the withdrawal response (Le Bars et 

al., 2001). Given this, lorcaserin’s effects on motor activity were evaluated and the data show that 

lorcaserin produced dose-dependent reductions in motor activity. The data suggest that lorcaserin 
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is more potent to suppress motor function than it is to significantly alter the acute antinociceptive 

effects of opioids. It is important to note, however, that in the studies conducted to evaluate the 

effect of lorcaserin on motor activity, the 2 mg/kg dose significantly attenuated motor activity 

while the 0.5 mg/kg dose did not. The effect of the low dose of lorcaserin (0.5 mg/kg) in the 

antinociceptive time course of oxycodone at the 60-minute mark suggested that the observed 

antinociceptive effects may not be due to changes in motor activity, as this was not a dose that 

significantly altered motor function. It should also be noted that lorcaserin on its own was inactive 

in the warm-water tail withdrawal test despite its effects in the locomotor assay. 

The differential site-dependent effects of lorcaserin on opioid antinociception: intrathecal 

versus intracerebroventricular actions. Anatomical locus of activity is important for 

determining the site of action through which a drug is producing its effects. While these studies 

may not directly provide insight into the opioid-sparing antinociceptive properties of lorcaserin, 

these studies do provide additional data on the role of the 5-HT2C receptors in spinal and 

supraspinal sites and how activation of these receptors alter opioid antinociception.  

Previous studies have almost exclusively evaluated the antinociceptive effects of 5-HT2C 

receptor agonists through intrathecal administration in rodent models of trigeminal neuralgia and 

neuropathy (Obata et al., 2004; Nakai et al., 2010; Ogino et al., 2013). In light of these 

publications, it was not unexpected that intrathecal administration of lorcaserin, a 5-HT2C receptor 

agonist with greater selectivity, produced a similar dose-dependent antinociceptive response in the 

model of acute pain. The lack of antagonism by naloxone in blocking this antinociceptive effect 

suggested that the spinal effect of lorcaserin is not mediated through opioid-dependent 

mechanisms. Earlier studies evaluating the intrathecal activity of 5-HT2C receptor agonists (as a 

caveat, these agonists did not possess improved  selectivity for the 5-HT2C receptor and may have 
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had off-target effects) suggest that indirect interactions may be occurring through spinal 

noradrenergic or cholinergic mechanisms (Obata et al., 2007). Indirect interactions with the 

noradrenergic system could be one mechanism that lorcaserin could be affecting to produce its 

effects through with activation of the 5-HT2C receptor. Overall, these data support the hypothesis 

that the antinociceptive effect of intrathecal lorcaserin are due to its action on 5-HT2C receptors in 

the spinal cord and not due to an effect on the endogenous opioid systems. 

Surprisingly, intracerebroventricular administration of lorcaserin was completely inactive at 

all doses tested in the warm-water tail withdrawal test. In spite of evidence that compounds that 

are administer intracerebroventricularly can be rapidly transported to the lowest portions of the 

spinal cord (where lorcaserin was active), i.c.v. administration of lorcaserin did not have a 

significant antinociceptive effect (Ohlsson et al., 1982). The time course of i.c.v. lorcaserin 

revealed a similar result that it was inactive up to 80 minutes post i.c.v. administration. In spite of 

the potential for circulation into the spinal cord following i.c.v. administration, it is clear that 

possibly sufficient concentrations of lorcaserin have not circulated into the spinal cord to produce 

a significant effect and that intracerebroventricular and intrathecal administrations of lorcaserin 

have distinctly different antinociceptive effects. 

Following the idea that central and spinal 5-HT2C receptors serve differential roles, reports 

suggest that the 5-HT2C receptors in the brain may serve a “pro-nociceptive” role, where genetic 

knockdown or antagonism of the 5-HT2C receptor improves the antinociceptive efficacy of SSRIs 

in preclinical neuropathic pain models (Grégoire and Neugebauer, 2013; Ji et al., 2017). The site-

specific role of 5-HT2C receptors has been demonstrated once before, where administration of the 

5-HT2C receptor antagonist, SB242084, into the basolateral amygdala (BLA) augments the 

antinociceptive properties of an SSRI in a rodent model of arthritis (Grégoire and Neugebauer, 
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2013). Furthermore, genetic knockdown of the 5-HT2C receptor in the amygdala inhibited the 

elicitation of neuropathic pain-related behaviors in a model of spinal nerve ligation (Ji et al., 2017). 

Taken together, our studies agree with the notion that 5-HT2C receptors centralized within the brain 

serve a differential role in pain that remains to be elucidated. Although these studies do not directly 

provide evidence of the opioid-sparing role of lorcaserin, they provide insight into the role of the 

5-HT2C receptor in pain-states and provide information that may be useful in the development of 

other serotonergic compounds. 

The effect of intrathecal and intracerebroventricular administrations of lorcaserin on oral 

oxycodone-induced antinociception are similarly different and suggest that the primary site of 

lorcaserin’s actions on opioid antinociception are mediated through the spinal cord. The site of 

action was evaluated by administering an ED50 dose of oxycodone (10 mg/kg, p.o.) in combination 

with a subthreshold dose of IT lorcaserin (32 μg). Although the combination did not produce a 

significant effect (P-value = 0.0692), the measured antinociceptive response roughly doubled. The 

attenuation of oxycodone’s effect by ICV lorcaserin could be due to changes in body temperature. 

5-HT2C receptor agonists are shown to be thermogenic and increase body temperature (Hayashi et 

al., 2004). The warm-water tail withdrawal test is sensitive to changes in body temperature and 

typically, as body temperature increases, the animal’s latency to withdraw its tail from the water 

inversely decreases (Tjolsen and Hole, 1993; Le Bars et al., 2001). Alternatively, it could be due 

to the discussed “pro-nociceptive” role of brain-centralized 5-HT2C receptors. Nonetheless, the 

observation that activation of spinal and supraspinal 5-HT2C receptors have such vastly differential 

effects remains to be further investigated. 

Brain, Spinal Cord, and Blood concentrations of Lorcaserin. Based on the earlier nociceptive 

data involving the site-specific effects of lorcaserin on opioid antinociception, further studies were 
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conducted to evaluate the distribution of lorcaserin in the central tissues relative to the blood. The 

results revealed considerable accumulation of lorcaserin in the central tissues, by ~20-fold greater 

concentrations, than in the blood. This observation is in agreement with previous reports in 

preclinical studies, using rodents and monkeys, reporting similar accumulation of lorcaserin in the 

brain relative to blood plasma (CHMP, 2013). The accumulation of lorcaserin in central tissues is 

shown to not be due to P-glycoprotein (P-gp) activity, as lorcaserin is not a substrate of the P-gp 

transporter but simply a highly soluble and highly permeable compound (Center for Drug 

Evaluation and Research, 2012). It is important to note that the preferential CNS-accumulation of 

lorcaserin was not observed during clinical trials in humans, whereby measured lorcaserin 

concentrations were greater in human plasma relative to cerebrospinal fluid (Center for Drug 

Evaluation and Research, 2012). Although the unusual accumulation of lorcaserin in specific 

tissues is compelling, it does not appear to be clinically relevant. 

Central nervous system and Blood Concentrations of Oxycodone after Lorcaserin treatment. 

Lorcaserin is a competitive inhibitor of CYP P450 enzymes, particularly CYP2D6, and is a mild 

inducer of CYP3A4 and thus displayed potential for drug-drug interactions (Center for Drug 

Evaluation and Research, 2012). Opioids are subjected to phase 1 metabolism by CYP enzymes 

and oxycodone, in particular, is subjected to metabolism primarily by CYP3A4 and to a lesser 

extent by CYP2D6 (Lalovic et al., 2004; Smith, 2009; Samer et al., 2010; Söderberg Löfdal et al., 

2013; Stamer et al., 2013). The potential for lorcaserin and oxycodone interactions were of concern 

because increases in oxycodone concentrations could be lethal. The oxycodone concentrations 

were measured to ensure that the potentiating effects of lorcaserin were not mediated through 

inhibition of oxycodone metabolic pathways. Blood, brain and spinal cord concentrations of 

oxycodone were evaluated following a pretreatment with lorcaserin (2 mg/kg, s.c.) and a single 
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gavage of oxycodone (10 mg/kg, p.o.). As discussed earlier, the time-course of oxycodone’s 

antinociceptive activity was significantly enhanced and extended and this could be attributed to 

changes in metabolism. Following analysis using UPLC-MS/MS, no significant changes in blood, 

brain or spinal cord concentrations with lorcaserin treatment were observed. Although lorcaserin 

does present the potential for drug-drug metabolic interactions, this effect did not underlie the 

behavioral effects observed.  

Final Conclusions 

The primary goal of these studies was to investigate the effect of lorcaserin on opioid 

antinociception and to determine the general mechanism through which these effects are occurring. 

The antinociceptive effect of lorcaserin alone was investigated and determined to produce dose-

dependent antinociception when administered intrathecally but not when given by any other route. 

This effect was also not blocked by the opioid antagonist, naloxone. We hypothesize that this effect 

was due to its selectivity for the 5-HT2C receptor in the spinal cord. The studies demonstrate that 

parenterally-administered lorcaserin significantly enhanced the acute effects and the time course 

of opioids and that this effect is primarily mediated through spinal serotonergic receptors. 

Therefore, we suggest that 5-HT2C receptor agonists, such as lorcaserin, deserve additional 

investigation into their potential use as opioid sparing agents. 

 

 

The significance of these data are that this is the first demonstration of the effect of 5-HT2C agonists 

altering the antinociceptive effects of opioids. Previously, studies have only investigated the effect 

of lorcaserin (and similar agonists) on the addictive and dependence-related properties of opioids. 

In many cases, opioids are typically consumed for the treatment of pain and it was critical to 
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evaluate the interactions between these two compounds in an acute dosing fashion before moving 

onto evaluations of tolerance interactions. These studies, in conjunction with previously published 

work, suggest that lorcaserin and oxycodone may be a useful combination in that it increases the 

favorable antinociceptive properties while reducing the abuse-related properties. Another finding 

from this work is that overall, the data suggest that the dose of opioid that is necessary to treat pain 

may be reduced, thus additionally reducing the risk to the patient. 
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Chapter 3 

The Effect of Lorcaserin on the Development of Opioid Tolerance 

The data for the electrophysiology studies was the result of a wonderful collaboration with Dr. 

Jacy Jacob of the Department of Pharmacology & Toxicology at VCU. She conducted the 

experiments and collected the data for the studies described in Figures 3.3 and 3.4. 

I. Summary 

Oxycodone and lorcaserin produce antinociception through activation of mu opioid receptors and 

5-HT2C receptors in the central nervous system, with notable effects mediated through the spinal 

cord. Chronic treatment with oxycodone results in many unwanted side-effects that can be 

mitigated by the addition of an opioid-sparing adjunct, such as lorcaserin, that reduces the dose of 

opioid needed. The goal of these studies was to evaluate the effect of lorcaserin on the development 

of acute and multiple day tolerance models in vivo and in vitro. In the whole animal studies 

utilizing the warm-water tail withdrawal assay, lorcaserin differentially modulated the 

development of acute and multiple-day tolerance. Lorcaserin significantly blocked the 

development of acute tolerance but only partially attenuated the development of multiple-day 

tolerance. Acute tolerance was further assessed on a single cell level using electrophysiological 

recording methods in dorsal root ganglion neurons and the results showed that overnight co-

incubation with lorcaserin and oxycodone significantly attenuated the development of tolerance. 

Agonist-stimulated [35S]GTPγS binding was used to assess mu opioid receptor activity after the 

multiple-day treatment paradigm with oxycodone and lorcaserin. Chronic administration of 

oxycodone decreased MOR-stimulated [35S]GTPyS binding in the spinal cord and reduced basal 

activity of the receptors. Treatment with lorcaserin partially restored basal activity but did not 

significantly alter maximal stimulation of G-protein activity relative to chronic oxycodone 
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treatment. These results demonstrate that lorcaserin has differential effects on opioid tolerance that 

depend on the frequency of administration and that the mechanisms underlying acute and multiple-

day tolerance are distinct. Furthermore, these data suggest that combination treatment with 

lorcaserin may be a potential opioid-sparing alternative that requires further investigation. 

II. Rationale 

Tolerance to the analgesic effects of opioids is a clinically relevant effect that may require 

dose-escalation of the opioids and opioid-switching (Mehta and Langford, 2006; Huxtable et al., 

2011; Simpson and Jackson, 2017). Following prolonged opioid exposure, tolerance is thought to 

develop in two phases: an acute component and a chronic component (Cox et al., 1968; Rosenfeld 

et al., 1977; Huidobro-Toro and Way, 1978; Fairbanks and Wilcox, 1997; Bohn et al., 2000; 

Williams et al., 2013). Based on this idea of two distinct phases of tolerance, we completed a 

thorough evaluation of the effect of lorcaserin on opioid tolerance. Acute opioid tolerance was 

assessed both in vivo and in vitro. Antinociceptive tolerance was induced in a manner that is 

similar to previously published reports and used a model of exposure that involved a single bolus 

or limited exposure to 24 hours (Cox et al., 1968; Huidobro-Toro and Way, 1978; Ling et al., 1989; 

Fairbanks and Wilcox, 1997; Bohn et al., 2000). Based on the observation that lorcaserin 

completely attenuated the development of acute tolerance in vivo, further studies were conducted 

to evaluate the effect of lorcaserin on a single cell level in dorsal root ganglion neurons. DRGs are 

important components in the transmission of nociceptive information and are implicated as an 

important component in the development of opioid tolerance (Corder et al., 2017; Jacob et al., 

2018). Following evaluation of lorcaserin’s effects on the acute component of opioid tolerance, 

further studies were conducted to evaluate the effect of lorcaserin on the chronic component of 

tolerance both in vivo and in vitro. The chronic component of opioid exposure is marked by 
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differential rates of tolerance development (Shook et al., 1987; Ling et al., 1989; White and Irvine, 

1999; Ross et al., 2008; Hill et al., 2016). Therefore, the effect of lorcaserin was evaluated on two 

subcomponents of chronic opioid exposure: antinociceptive tolerance and opioid-induced 

constipation. The purpose of the constipation study was to conduct a thorough evaluation of the 

effect of lorcaserin on several aspects associated with chronic opioid administration. Lorcaserin 

treatment did not alter the constipating effect of oxycodone but did partially attenuate the 

development of antinociceptive tolerance. Based upon this observation, we developed the 

hypothesis that lorcaserin is altering the functional activity of the MOR and this change underlies 

the observed in vivo effect in the chronic oxycodone model. Changes in MOR-mediated signaling 

occurs following chronic administration of an opioid in vivo and this alteration in functionality 

can be modified by the addition of non-opioid ligands (Tao et al., 1993; Sim et al., 1996; Smith et 

al., 2007; Sim-Selley et al., 2009). These studies were conducted using [35S]GTPγS binding 

because it assesses the initial stage of receptor-mediated signaling following opioid exposure. 

III. Introduction 

Opioid tolerance is a complex phenomenon that is thought to be comprised of many stages 

and distinct mechanisms. Tolerance is a physiological adaptation that follows acute or repeated 

administrations of a drug such that increased doses of a drug are required to produce 

pharmacological effects that were previously elicited by smaller doses; this effect is characterized 

by a rightward shift of the dose-response curve (Brunton et al., 2011; Savage et al., 2003). There 

are many mechanisms and levels through which tolerance manifests itself, including: changes in 

behavior, adaptations in drug metabolism, alterations in receptor signaling on a cellular level 

(receptor desensitization and downregulation), and compensatory changes in intracellular 

signaling (Williams et al., 2001, 2013; Brunton et al., 2011; Cahill et al., 2016). Several hallmark 
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opioid effects, such as antinociception, respiratory depression, and constipation, are independently 

marked by differences in the mechanisms through which tolerance occurs and their rates of 

development (Shook et al., 1987; Ling et al., 1989; Ross et al., 2008; Hill et al., 2016; Jacob et 

al., 2017).  

The mechanisms through which tolerance develops has been divided into two stages: short-

term (or acute) tolerance and long-term (chronic) tolerance (Cox et al., 1968; Rosenfeld et al., 

1977; Huidobro-Toro and Way, 1978; Fairbanks and Wilcox, 1997; Laura M. Bohn et al., 2000; 

Williams et al., 2013). The many methods that have been used to produce what investigators term 

“short” or ‘long-term” tolerance varies so much from one study to another, one should define the 

terms for each specific definition. For the purpose of these studies, short-term (acute) tolerance is 

defined as the tolerance that develops within the time course of one day and is mediated through 

rapid changes in phosphorylation, desensitization, and endocytosis of the receptor (Cox et al., 

1968; Sibley et al., 1984, 1987; Hausdorff et al., 1989; Kovoor et al., 1998; Lefkowitz, 1998; 

Whistler and von Zastrow, 1998; Laura M. Bohn et al., 2000; Borgland et al., 2003; Bohn et al., 

2004). Short-term tolerance is often considered to be the initiation phase preceding long-term 

tolerance (Rosenfeld et al., 1977; Fairbanks and Wilcox, 1997). Long-term tolerance in this study 

is defined as the tolerance that develops after a period of several days to weeks and is presumed to 

involved multiple regulatory and compensatory mechanisms, such as receptor downregulation and 

changes in receptor constitutive activity (Tempel and Zukin, 1987; Tempel, 1991; Tao et al., 1993; 

Z Wang et al., 1994; Wang et al., 2004; Sim-Selley, 2005; Shoblock and Maidment, 2006; Sim-

Selley et al., 2009). Based on these principles, the studies described herein employed two models 

of tolerance. The short-term tolerance model was based off of early studies that administered a 

large single dose of opioid and challenged the following day (Cox et al., 1968; Huidobro-Toro and 
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Way, 1978; Wigdor and Wilcox, 1987; Fairbanks and Wilcox, 1997). Long-term tolerance models 

vary across studies but for these studies, we opted to use a 4 day treatment paradigm whereby 

doses of oxycodone were administered orally, twice a day for four days (Jacob et al., 2017). 

The progression of opioid tolerance can be modulated by activation of other receptors, such 

as cannabinoid, N-methyl-D-aspartate, dopamine receptors or serotonin receptors (Ho et al., 1975; 

Larson and Takemori, 1977; Siu-Chun et al., 1996; Smith et al., 2007; Lopez-Gimenez et al., 

2008; Song et al., 2015; Dai et al., 2016). Modulation of the serotonergic system has emerged as 

a target for altering the abuse-related properties and general pharmacological effects of opioids. In 

fact, co-activation of the serotonin type-2A receptor (5-HT2A) and the MOR results in changes in 

MOR receptor trafficking that are heavily implicated in the development in opioid tolerance 

(Lopez-Gimenez et al., 2008). In many ways, the 5-HT2A receptor and the 5-HT2C receptor function 

in an inverse manner and further studies evaluating the effect of a 5-HT2C agonist on the chronic 

effects of opioids is necessary (Abbott et al., 1996; Tokunaga et al., 1998; Willins and Meltzer, 

1998; Porras et al., 2002; Obata et al., 2004; Bortolozzi et al., 2005; Nakai et al., 2010; Ogino et 

al., 2013). 

Several studies have described the effect of 5-HT2C receptor agonists, such as lorcaserin, 

in preclinical models of pain. Overall, 5-HT2C receptor agonists behave as antinociceptive agents 

in models of trigeminal neuropathy, fibromyalgia, and chronic constriction injuries (Obata et al., 

2003, 2004, 2007; Nakai et al., 2010; Ogino et al., 2013). Two studies have specifically 

investigated the effect of lorcaserin on opioid pharmacology. First, lorcaserin is shown to attenuate 

the abuse-related effects of oxycodone in a rodent self-administration model (Neelakantan et al., 

2017). Second, lorcaserin inhibits the induction and expression of behavioral sensitization in mice 

treated chronically with morphine or heroin (Wu et al., 2015; Zhang et al., 2015). Those same 
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studies also demonstrate that lorcaserin significantly ameliorates naloxone precipitated withdrawal 

behaviors in morphine- and heroin-dependent mice.  

Work from our lab (chapter 2 of this dissertation) shows that lorcaserin also alters the acute 

antinociceptive effects of oxycodone and similar opiates, such as morphine and fentanyl. Although 

previous studies have evaluated the effect of lorcaserin on naloxone-precipitated opioid 

withdrawal, little is known about its effect on opioid tolerance (Wu et al., 2015; Zhang et al., 

2015). Evaluating these interactions are important for several reasons. Dose escalation of opioids 

can exacerbate opioid-induced hyperalgesia and overall, increase the risk of mortality for the 

patient (Dasgupta et al., 2015). Understanding alternative mechanisms through which opioid 

tolerance can be favorably modulated for the patient is of critical importance in light of our current 

opioid epidemic. Therefore, the aim of these studies was to characterize the effect of lorcaserin, a 

5-HT2C receptor agonist, in models of opioid tolerance and to elucidate the mechanism through 

which these effects may be occurring.  

IV. Methods 

Drugs and Chemicals  

Dulbecco’s modified Eagle medium (DMEM), Hank’s balanced salt solution (HBSS) and fetal 

bovine serum were purchased from Gibco (Grand Island, NY). Papain was purchased from 

Worthington Biochemical Corporation (Lakewood, NJ). B27 supplement, L-glutamate, and 

pencillin/streptomycin were purchased from Invitrogen (Carlsbad, CA). Glial cell line-derived 

neurotrophic factor (GDNF) was purchased from Neuromics (Edina, MN). Glass cover slips were 

purchased from ThermoFisher Scientific (Waltham, MA). Laminin was purchased from BD 

Biosciences (San Jose, CA) and poly-D-lysine was purchased from MP Biomedicals (Solon, OH). 

24-well cell culture dishes were purchased from CELLTREAT (Pepperell, MA). Collagenase from 
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Clostridium histolyticum, magnesium chloride (MgCl2), calcium chloride (CaCl2), NaCl, KCl, 

HEPES, EGTA, sodium dihydrogen phosphate (NaH2PO4), glucose, ATP disodium salt, K-

aspartic acid, potassium hydroxide (KOH) and sodium hydroxide (NaOH) were purchased from 

Sigma Aldrich (St. Louis, MO). Oxycodone HCl was obtained from the National Institutes of 

Health National Institute on Drug Abuse (Bethesda, MD) and dissolved in ddH20. Lorcaserin HCL 

was purchased from Cayman Chemical (Ann Arbor, MI). [35S]GTPyS (1250 Ci/mmol) was 

purchased from PerkinElmer. 

Animals. For the in-vivo, tolerance experiments, adult male Swiss Webster mice (25-35g) and at 

least 7 weeks of age were purchased from ENVIGO (Frederick, MD). For the electrophysiology 

experiments: adult male C57/BL6, 25-30g and at least 6 weeks of age, were purchased from 

ENVIGO (Frederick, MD). β-arrestin 2 wild type (WT) and knockout (KO) male mice (25-30 g) 

were obtained from Dr. Lefkowitz (Duke University, Durham, NC). All animals were housed up 

to five per cage in animal care quarters and maintained at 22±2°C on a 12-hour light-dark cycle. 

Access to food and water was available ad libitum. Protocols and procedures were approved by 

the Institutional Animal Care and Use Committee (IACUC) at Virginia Commonwealth University 

Medical Center and comply with the recommendations of the International Association for the 

Study of Pain (IASP).  

Acute Tolerance Model. The model for inducing acute tolerance to oxycodone was adapted from 

a previously published protocol for inducing acute morphine tolerance (Fairbanks and Wilcox, 

1999). Lorcaserin or saline pretreatments (2 mg/kg, s.c.) were administered 30 minutes before 

opioid treatment. Mice were made acutely tolerance to oxycodone by a single gavage of oxycodone 

(100 mg/kg, p.o.) or saline. Twenty-four hours after opioid exposure, mice were tested for tail 

withdrawal latencies to ensure that they had returned to baseline values. All subjects were then 
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administered a challenge dose of oxycodone (12 mg/kg, p.o.) and tail withdrawal latencies were 

assessed 20 minutes later. 

Four-Day Tolerance Model. Tolerance to oral oxycodone was developed by administering a 

twice-daily gavage of oxycodone [64 mg/kg, by mouth (p.o.)] in the morning and the evening, 

with at least 8 to 10 hours between administrations. Lorcaserin (2 mg/kg, s.c.) was administered 

30 minutes before oxycodone gavage, twice daily for four days. This model is reported in Jacob et 

al. (2017) and adapted from a previously published protocol developed for inducing morphine 

tolerance (Bernstein and Welch, 1998). Animals were weighed daily and drug volumes were 

adjusted accordingly. To ensure overall health and hydration, animals received additional 

subcutaneous injections of saline for the duration of the treatment. The final maintenance dose was 

on the evening of day 4 and all animals received challenge treatments on day 5 and did not receive 

lorcaserin treatment. Drug volume was calculated for 0.1mL/10g body weight. All mice had access 

to ad libitum food and water access throughout the treatment and were grouped-housed in home 

cages. 

Warm Water Tail-Withdrawal Test. The warm water tail withdrawal test (52° C) used to assess 

antinociception in mice was developed by D’Amour and Smith (1941) but modified by Dewey et 

al (1970).  Before drug administration, the baseline (control) latency for each mouse was 

determined and only mice with a control reaction time from 2 – 4 seconds were used. The test 

latency after drug treatment was assessed 20 minutes after drug administration, with a maximum 

cut-off value of 10 seconds to prevent tissue damage to the tail. Antinociception was quantified 

according to the method of Harris & Pierson (1964) as the percentage of maximum possible effect 

(%MPE) which was calculated ad: %MPE = [(test control – control)/(10 – control)]x100.  
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Experimental Design for cumulative dosing protocol. Oxycodone was administered using a 

cumulative dosing technique. After treatment with the 4-day dosing protocol described above on 

day 5, the first dose of opioid was administered via oral gavage or subcutaneous injection and 

animals were tested 20 minutes later. On testing day, animals only received oral oxycodone 

challenges. After each round of testing, animals received an additional cumulative dose of opioid 

and tested again 20 minutes later. Testing and dosing continued until the animal reached the 

maximum cut-off time of 10 seconds. 

Gastrointestinal Motility Study. Measurement of total gastrointestinal transit was assessed using 

the carmine red dye assay. Mice were treated using the four-day tolerance paradigm described 

above to induce constipation and on the fifth day, GI transit time was assessed. Mice that received 

the 4-day treatment of chronic oxycodone were observed to enter spontaneous withdrawal on the 

5th test day. The carmine red dye assay occurs over a period of several hours and to reduce 

withdrawal symptoms, mice that received the chronic oxycodone treatment received a low dose of 

oral oxycodone (10 mg/kg, p.o.) Carmine was suspended in water containing 0.5% methylcellulose 

and administered intragastrically via gavage at a dose of 0.1mL/10g bodyweight. Immediately 

after administration of carmine dye, mice were left in separate empty cages until expulsion of a 

red fecal boli.  

Isolation and Culture of Primary Cells from Adult Mouse Dorsal Root Ganglia. DRGs from 

the adult mouse were prepared as described (Gracious R Ross et al., 2012). Mice were sacrificed 

via CO2 inhalation followed by cervical dislocation. L5-S1 DRGs were immediately harvested 

under a dissecting microscope and placed in a dish containing HBSS.  Papain [15 U/ml] was then 

added to the dish and incubated for 18 min at 37°C. Subsequently, ganglia were transferred to a 

separate dish containing HBSS and 1.5 mg/ml collagenase from Clostridium histolyticum and 
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incubated for 60 min at 37°C. After incubation, ganglia were transferred to DMEM in a sterile 

15mL conical flask, dissociated by triturating and centrifuged for 5 min at 1000 rpm. The 

supernatant was discarded and the pellet was re-suspended in neurobasal A media containing 1% 

fetal bovine serum, 1x B-27 supplement, 10 ng/mL GDNF, 2mM L-glutamine and 100 U/ml 

penicillin/streptomycin/amphotericin B (complete neuron media). Isolated cells were plated on 

laminin and poly-D-lysine-coated glass cover slips and maintained at 37°C in a humidified 5% 

CO2/air incubator. Where indicated, isolated neurons were exposed to 10 µM oxycodone and/or 

200 nM lorcaserin in complete neuron media for 18-24 hours prior to whole-cell patch-clamp 

experiments.  

Electrophysiology. Methods were used as previously described in Jacob et al. (2018). Patch 

micropipettes were pulled from 1.5/0.84 OD/ID (mm) borosilicate glass capillaries (World 

Precision Insturuments, Sarasota, FL) on a Flaming/Brown Micropipette puller P97 (Sutter 

Instruments, Novato, CA) and fire polished. Initial pipette resistances were 2–4 MΩ when filled 

with filtered internal solution containing (in mM): 100 L-aspartic acid (K salt), 30 KCl, 4.5 

Na2ATP, 1 MgCl2, 10 HEPES, and 0.1 EGTA (pH adjusted to 7.2). Current-clamp experiments 

were conducted by transporting coverslips containing adhered DRG neurons to a microscope stage 

plate and superfusing with HEPES-buffered external solution containing (in mM): 135 NaCl, 5.4 

KCl, 0.33 NaH2PO4, 5 HEPES, 1 MgCl2, 2 CaCl2, and 5 glucose (pH adjusted to 7.4 with NaOH). 

Because small-diameter neurons correspond to nociceptive Aδ fiber and C-type neurons, only 

small neurons (<30 pF capacitance) were used (pF = 16.06 ± 0.64, n = 64) (Abraira and Ginty, 

2013; Barabas et al., 2014). Whole cell current-clamp recordings were made at room temperature 

using an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA), with a set protocol 

consisting of 0.01 nA steps beginning at -0.03 nA to assess both active and passive cell properties. 
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Values reported did not reflect corrected junction potentials (~ -12 mV). Pulse generation and data 

acquisition were achieved with Clampex and Clampfit 10.2 software (Molecuar Devices, 

Sunnyvale, CA). Action potential (AP) derivatives were determined using the differential function 

in Clampfit software, by taking the derivative of the voltage with respect to time (dV/dT). 

Threshold potentials were defined as the voltage at which dV/dt deviated significantly from zero 

during the course of an action potential uprise. Assessment of acute oxycodone effects began after 

a 2-3 min equilibration period, where an external solution containing 3 μM oxycodone solution 

was then superfused over neurons. Threshold potentials were determined from the first-derivatives 

of current clamp recordings taken at 1 min intervals for 10 min following oxycodone exposure. 

The difference between threshold potential values at 0 and 10 minutes was calculated for each cell. 

Tolerance to oxycodone was assessed in an identical manner in cells that had been incubated 

overnight in media containing 10 μM oxycodone. The effect of lorcaserin on oxycodone tolerance 

was assessed by incubating cells overnight in 10 μM oxycodone and 200 nM lorcaserin. The 

following day, neurons were then superfused with external solution containing 3 μM oxycodone. 

In all experiments, “N” represents the total number of mice and “n” represents the total number of 

cells within each group from which recordings were obtained.  

Binding Assay. Mice were treated using the 4-day chronic oxycodone paradigm and on the fifth 

day, spinal cord tissues were dissected and then flash frozen in liquid nitrogen. For obtaining 

membrane homogenates, tissues samples were homogenized in a HEPES buffer (in mM 20 

HEPES, 10 MgCl2, 2 EGTA, and 100 NaCl, pH 7.7) containing 0.25 M sucrose using a telfon-

glass dounce homogenizer. The homogenates were centrifuged at 1000xg for 10 minutes at 4C and 

then the pellet was discarded. The supernatant was centrifuged again at 40,000xg for 15 minutes 

and the remaining pellet was washed twice with homogenization buffer and then subsequenty 
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respun after each washing at 40,000xg for 20 minutes. The final pellet was kept at -80C until use. 

On test day, the pellet was suspended in assay buffer and protein concentrations were assessed 

using the Bradford method and 7 – 10 ug of protein were used per data point. Assay conditions 

were developed based on Leitchi et al. (2007). Spinal cord membranes were run in triplicate for 

45 minutes in assay buffer at 30C with 10uM GDP, 0.1nM [35S]GTPyS, and in the presence or 

absence of opioid agonist (10nm – 1mM, DAMGO). Basal [35S] GTPyS binding was determined 

in the absence of opioid agonist. Nonspecific binding was measured with 20uM unlabeled GTPyS 

and specific binding was determined by substracting nonspecific binding from total binding. The 

binding reaction was termined using rapid vacuum filtration through GF/C glass fiber filters using 

a harvester (Brandel, Gaithersburg, MD) and washed 3 times with ice cold assay buffer. Filters 

were allowed to dry for one hour and then bound radioactivity was determined using the Liquid 

Betaplate Scintillation counter (Wallace SC/9200/21, PerkinElmer 1205-440). 

Data Analysis. All data are reported as mean values ± S.E.M. from experiments that were 

performed in at least duplicate. For the binding studies, nonspecific binding was substrated from 

total [35S]GTPγS binding and net agonist-stimulated [35S]GTPγS binding is defined as agonist-

stimulated binding minus basal binding. Non-linear aggression analyses of concentration-effect 

curves were performed using GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA). 

Statistical significance was determined using two-way analyses of variance (2-way ANOVA) with 

drug treatment and the concentration of agonist used as the independent variables. If significance 

was detected, the data was subject to a Tukey’s post-hoc analysis. 

For the electrophysiology data, statistical differences were calculated using GraphPad Prism 

5.0 (GraphPad Software, Inc., La Jolla, CA). For All analyses were conducted on the small “n” 

value, representing total cell numbers (except for Figure 5, where the “N” representing the number 
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of mice was analyzed). Within-subject comparisons were analyzed via Student’s paired t-test. For 

group comparisons, results were analyzed by two-way ANOVA with Bonferroni post-hoc test, and 

an alpha level set to 0.05. The results are expressed as mean value ± SEM, except where individual 

data points are shown.  

V. Results 

Lorcaserin blocked the development of acute antinociceptive tolerance. 

Acute Tolerance in vivo 

 The data presented in Figure 3.1 show the effect of lorcaserin (2 mg/kg, s.c.) pretreatment 

on the development of acute antinociceptive tolerance to the warm-water tail withdrawal test. On 

challenge day, all animals displayed normal baseline tail-withdrawal behavior (2 – 4 seconds to 

remove their tails from the water). All animals were administered the same challenge dose of 

oxycodone (12 mg/kg, p.o.). Control mice that received only saline produced a maximal 

antinociceptive response of 50.69 %MPE. Lorcaserin treatment on its own did not significantly 

alter the acute effect of the oxycodone challenge compared to saline controls. Pretreatment with 

the large dose of oxycodone (100 mg/kg, PO) on day 1 produced a significant reduction in the 

maximal possible effect of the challenge dose from 50.69% to 23.91 %MPE in the tolerant animals 

(P < 0.05, one-way ANOVA). The combination treatment of lorcaserin and the large dose of 

oxycodone on day 1 significantly altered the effect of the challenge dose of oxycodone (64.88 

%MPE) compared to tolerant mice (P < 0.05, one-way ANOVA) and this level of antinociception 

was not significantly different from saline controls.   

Overnight exposure to oxycodone in vitro led to tolerance. Previously, our lab has demonstrated 

that overnight incubation with 10 μM oxycodone in vitro leads to a tolerant phenotype (Jacob et 

al., 2018). Neurons were incubated overnight for a minimum of 18 hours with 10 μM oxycodone 
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before being moved to the microscope stage plate which contained an external solution with no 

drug treatment. Cells were challenged in the bath with a 10-minute treatment of 3 μM oxycodone. 

Control neurons produced a significant shift in threshold potential of +4.10 ± 1.30 mV relative to 

their baseline threshold values (P-value < 0.0002). Cells incubated overnight with 10 μM 

oxycodone did not produce a change in threshold potential (-25.36 ± 4.207 mV v.s. -23.183 ± 

3.719 mV; P > 0.05) after 3 μM oxycodone challenge, indicating that tolerance had developed 

(Figure 3.4). 

Overnight co-incubation with lorcaserin and oxycodone results in an attenuation of acute 

tolerance in vitro. To further test the hypothesis that lorcaserin will attenuate the development of 

acute tolerance in vitro, neurons were incubated overnight with 10 μM oxycodone and 200 nM 

lorcaserin (Figure 3.4). Following overnight exposure, neurons were assessed for baseline 

threshold potentials and then perfused for 10 minutes with a 3 μM oxycodone challenged. Upon 

challenge, the neurons displayed a significant shift in the threshold potential and demonstrated a 

+3.75 ± 1.42 mV increase, from -13.41 ± 1.52 to -9.16 ± 1.33 mV (P < 0.05), and shifted similar 

to cells observed under acute, non-tolerant oxycodone conditions. Furthermore, overnight 

treatment with 1 μM SB242084, a selective 5-HT2C receptor antagonist, oxycodone, and lorcaserin 

returned threshold recordings to that of the tolerant phenotype, with no change in threshold 

potential (-14.55 ± 2.55 mV v.s. -16.66 ± 1.98 mV) after 3 μM oxycodone challenge. 

Lorcaserin partially attenuated the development of multiple-day tolerance. 

Multiple-day tolerance in vivo. Tolerance to the antinociceptive effect of oxycodone was induced 

using our 4-day tolerance model. The ED50 values for the treatment groups are listed in Table 3.1. 

The dose-response curves from which the ED50 values were generated for the treatment groups are 

shown in Figure 3.2. On day 5, mice only received cumulative doses of oxycodone and did not 
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receive an additional pretreatment. All animals display normal baseline values for latency to 

withdraw their tails from the water (2 – 4 seconds). Saline control mice produced an ED50 of 5.39 

(4.3 – 6.74). Chronic oxycodone treatment [F(1, 126) = 167.7, p < 0.0001] produced a significant 

4-fold shift in the ED50 value to 19.56 (17.01 – 22.48). The ED50 value for the animals that received 

only the lorcaserin treatment (and no oxycodone) did not significantly differ from saline controls 

[F (1, 126) = 2.93, P = 0.089), although a trend toward increased potency was observed. Mice that 

were treated with both lorcaserin and oxycodone displayed a partial attenuation of the development 

of antinociceptive tolerance [F (1, 119) = 17.76, p < 0.0001], as denoted by the significant shift in 

the ED50 value (9.53, 7.84 – 11.59) relative to the tolerant mice and saline controls. Two-way 

ANOVA indicated significant main effects of drug treatment and dose for all drugs (p-value < 

0.0001).  

Lorcaserin did not alter the constipating effect of chronic oxycodone. The constipating effect 

of chronic oxycodone was assessed using the 4-day treatment paradigm and on day 5, total 

gastrointestinal transit time was assessed using the carmine dye assay. The data presented in Figure 

3.3 shows the effect of lorcaserin pretreatment on the chronic effect of oxycodone. Saline control 

mice displayed a mean GI transit time of 77.90 minutes and treatment with chronic oxycodone 

produced a significant increase in total transit time to 112.6 minutes (P < 0.001, one-way 

ANOVA). Lorcaserin treatment alone did not alter transit time and mean time to expulsion of red 

bolus was 84.56 minutes. Combination treatment with lorcaserin and oxycodone did not block the 

constipating effect of chronic oxycodone, as the mean transit time was 113.0 minutes, and these 

mice were significantly different from saline controls (P < 0.01, one-way ANOVA).  

Effect of chronic oxycodone and chronic lorcaserin treatment on DAMGO-stimulated 

[35S]GTPγS binding. Mu opioid receptor-stimulated [35S]GTPγS binding was examined in control 
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and chronic drug-treated mice after 4 day treatment in vivo (Figure 3.5). Binding was assessed to 

determine whether chronic treatment with lorcaserin produced a change in MOR-mediated G-

protein activation following chronic oxycodone exposure. The concentration-effect curves were 

generated using the MOR-selective full agonist DAMGO in spinal cord membrane homogenates 

prepared from mice injected with saline, lorcaserin alone, chronic oxycodone alone, or chronic 

lorcaserin and oxycodone. Treatment with chronic oxycodone [F (1, 126) = 303.3, P < 0.0001] 

showed concentration-dependent reduction in DAMGO-stimulated [35S]GTPγS binding and a 

~38% decrease in the EMax value of relative to saline control mice but with no significant difference 

in the EC50 values (P < 0.001, Two-way ANOVA with multiple comparisons) (Table 3.2). There 

was no difference in EMax or EC50 values between saline treated or lorcaserin only treated mice [F 

(1, 95) = 2.475, P = 0.119]. Treatment with combination chronic lorcaserin and oxycodone showed 

a similar significant concentration-dependent reduction in DAMGO-stimulated [35S]GTPγS 

binding but only at 1, 10 and 100 μM concentrations (P < 0.0001, two-way ANOVA with multiple 

comparisons) and an approximate ~35% reduction in EMax and no change in EC50 value relative to 

vehicle controls [F (1, 126) = 187.2, P < 0.0001]. Basal [35S]GTPγS binding significantly differed 

between saline controls and chronic oxycodone alone (P < 0.0001) and significantly differed 

between chronic oxycodone and combination chronic lorcaserin and oxycodone (P < 0.05).  
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VI. Discussion 

To determine the effect of lorcaserin on the development of opioid tolerance, a model of 

both acute (or short-term) tolerance and long-term (chronic) tolerance were used. It should be 

noted that there are distinct differences in the type of tolerance that develops after these treatment 

paradigms and they differ in their mechanisms of induction (Rosenfeld et al., 1977; Fairbanks and 

Wilcox, 1997). The short-term model is suggested to be mediated through acute desensitization 

that occurs in a period of minutes to hours and is considered to be the initiation stage of tolerance 

(Cox et al., 1968; Sibley et al., 1984, 1987; Hausdorff et al., 1989; Kovoor et al., 1998; Lefkowitz, 

1998; Whistler and von Zastrow, 1998; Laura M. Bohn et al., 2000; Borgland et al., 2003; Bohn 

et al., 2004). Chronic, multiple-day, models of tolerance are thought to be mediated through 

counter-adaptive changes in intracellular signaling and receptor downregulation that occurs over 

the period of a few days to weeks (Tempel and Zukin, 1987; Tempel, 1991; Tao et al., 1993; Z 

Wang et al., 1994; Wang et al., 2004; Sim-Selley, 2005; Shoblock and Maidment, 2006; Sim-

Selley et al., 2009). 

It should be noted that the dose of lorcaserin (2 mg/kg, s.c.) that was chosen for these 

studies is an active dose that produced a significant shift in the ED50 value of acute oxycodone (see 

Chapter 2 of this dissertation). These evaluations of lorcaserin’s effects on opioid tolerance utilized 

the 2 mg/kg dose but future studies should evaluate additional doses of lorcaserin.  

Acute Tolerance & Lorcaserin 

Treatment with a single, large dose of oral oxycodone produced significant acute tolerance, 

in agreement with studies previously conducted with morphine (Cox et al., 1968; Huidobro-Toro 

and Way, 1978; Wigdor and Wilcox, 1987; Laura M. Bohn et al., 2000). Pretreatment with 

lorcaserin (2 mg/kg, s.c.) did not have a significant effect on its own although there was a trend 
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towards increased efficacy of the oxycodone challenge on the following day. More importantly, 

the lorcaserin pretreatment significantly blocked the development of the acute tolerance.  

Furthermore, this model can be extended to an ex vivo evaluation of DRG neurons. Several 

studies have validated the use of DRGs as a model of opioid tolerance (Gracious R Ross et al., 

2012; Kang et al., 2017; Jacob et al., 2018). DRGs are a useful model for evaluating neuronal 

tolerance on a single cell level and DRGs are nociceptive afferents that transmit incoming stimuli 

to the central nervous system. This is an ideal model for evaluating the effect of lorcaserin on 

opioid tolerance. The studies by Jacob et al. (2016) have demonstrated that overnight exposure to 

oxycodone (10 μM) produced reproducible tolerance as evidenced by changes in threshold 

potential.  

DRG neurons incubated overnight with 10 μM oxycodone and then challenged with 3 μM 

oxycodone following the overnight exposure did not exhibit a change in threshold potential, 

indicating that tolerance had developed. This tolerance was blocked by a co-incubation with 200 

nM lorcaserin (a dose chosen based on its relative EC50 between the 5-HT2C and 5-HT2A receptors) 

and these cells demonstrated shifts in threshold potential similar to that of naïve cells (Thomsen et 

al., 2008). Furthermore, this effect of lorcaserin was blocked by SB242084, a selective 5-HT2C 

receptor antagonist, and suggests that the effect of lorcaserin on opioid tolerance is indeed 

mediated through the 5-HT2C receptor.  

These data further support the findings in vivo where lorcaserin completely blocked acute 

tolerance in the whole animal and blocked the development tolerance on the single cell level. The 

electrophysiology data suggest that the 5-HT2C receptor is, in fact, expressed outside of the central 

nervous system, a finding that does not agree with the current dogma in the literature (Chen et al., 

1998; Clemett, et al., 2000; López-Giménez et al., 2001; Nicholson et al., 2003). 
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The effect of lorcaserin on multiple-day (long-term) tolerance. 

In the long-term model of oxycodone tolerance, mice treated with both oxycodone and 

lorcaserin develop tolerance to the antinociceptive effects of oxycodone but to a lesser extent 

compared to their chronic oxycodone alone controls. Chronic treatment with oxycodone produced 

an approximate 4-fold shift in the ED50 relative to the mice that only received only the oxycodone 

challenges and chronic saline treatment. Chronic lorcaserin treatment alone did not significantly 

alter the acute effect of oxycodone and did not produce a significant shift in the relative ED50. The 

ED50 of chronic lorcaserin and oxycodone animals was significantly different from both saline-

treated animals and chronic oxycodone-treated animals. The data from both the acute tolerance 

and long-term tolerance models suggest that the role of the 5-HT2C receptor in the mechanisms of 

tolerance is different. This is in support of the observation that the mechanisms that underlie acute 

and long-term tolerance are distinct from one another. 

In addition, the effect of lorcaserin in the long-term model of antinociceptive tolerance 

appears to be different than its effects on chronic opioid-induced constipation. A common side 

effect of chronic opioid use is constipation (Shook et al., 1987; Ling et al., 1989; Ross et al., 2008; 

Tuteja et al., 2010). The long-term tolerance model produced significant constipation relative to 

mice that were only treated with chronic saline. Chronic lorcaserin alone did not have any 

significant gastrointestinal effects and in combination with chronic oxycodone, also did not alter 

the constipating effects. This is not entirely surprising, however, as the 5-HT2C receptor is not 

known to be expressed in the gastrointestinal system nor it is known to contribute to any 

gastrointestinal functions (Fiorica-Howells et al., 2000). In clinical trials of lorcaserin, 

approximately ~6% of patients experienced diarrhea or constipation as an adverse reaction and 
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presently, the direct effects of 5-HT2C receptor activation on gastrointestinal function remains to 

be elucidated (FDA, 2016). 

As the antinociceptive effects of oxycodone are predominantly mediated through the MOR, 

these studies examined the ability of lorcaserin to alter the desensitization state of the MOR 

(Matthes et al., 1996; Sora et al., 1997; Kitanaka et al., 1998; Loh et al., 1998; Weibel et al., 2013). 

Chronic administration of an opiate, such as morphine, has been shown to induce uncoupling of 

G-proteins from opioid receptors and it has been proposed that this phenomenon may, in part, 

underlie tolerance (Sim et al., 1996; Smith et al., 2007; Priyanka A Madia et al., 2012). The spinal 

cord is thought to be a major component in the elicitation of antinociception by opioids and exhibits 

MOR desensitization and downregulation following chronic morphine treatment (Sim-Selley et 

al., 2009). Using spinal cord membrane homogenates from animals chronically treated with 

oxycodone and/or lorcaserin, DAMGO-stimulated [35S]GTPγS binding was assessed. Treatment 

with chronic oxycodone alone, relative to saline controls, produced a significant reduction in basal 

receptor activity (binding in the absence of an agonist) and a ~38% decrease in EMax. Chronic 

treatment with lorcaserin did not alter basal binding or maximal amount of [35S] GTPγS bound 

relative to controls. Combination treatment with both chronic lorcaserin and chronic oxycodone 

resulted in a significant increase in basal activity relative to animals that received chronic 

oxycodone alone and a significant effect at the lowest dose of DAMGO tested (10 nM). This study 

suggests that lorcaserin is not altering desensitization of the MOR and is working to alter tolerance 

through a mechanism that is likely independent of MOR function. The overall reduction in basal 

receptor activity following chronic morphine begs the question of changes in receptor constitutive 

activity or receptor downregulation that requires further evaluation. 
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Conclusions 

The effect of lorcaserin on chronic oxycodone-induced antinociceptive tolerance is a 

dosing-frequency and time-dependent phenomenon that is evidenced by the differential effects of 

lorcaserin in the acute and chronic models of opioid tolerance. Although the frequency of drug 

administration varies greatly between the two paradigms, it is possible that lorcaserin’s effects are 

dependent both upon the frequency of drug exposure and the time in which lorcaserin is 

administered. Lorcaserin is capable of fully attenuating the development of acute tolerance but 

only partially reversed antinociceptive tolerance in the long-term model. This suggests that the 

role of the 5-HT2C receptor in these stages of tolerance is dependent upon different mechanisms. 

The expression of the 5-HT2C receptor throughout the CNS is overall very low but does display 

distinct localization in the dorsal horns of the spinal cord. Colocalization of the 5-HT2C receptor 

and MOR has not been investigated so it is difficult to speculate whether proximity on the same 

neuron is a contributing factor. Clearly, lorcaserin is altering the early stages of 

tolerance/desensitization but the mechanism through which is unclear. Possible roles of the 5-HT2C 

receptor in altering opioid tolerance is through changes in receptor phosphorylation and 

recruitment of kinases, such as GRK or PKC. Although the mechanism is not clear, the potential 

of lorcaserin and oxycodone as a combination treatment, as it is favorable altering the development 

of tolerance. 

 

These data demonstrate that lorcaserin has differential effects on different models of tolerance and 

this provides some insight into different roles of the MOR and the 5-HT2c receptor. Previous 

studies have only evaluated the effect of lorcaserin on self-administration and naloxone-

precipitated withdrawal in opioid dependent rodents. In addition to having characterized the acute 
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effects on opioid antinociception, this is the first series of studies that has shown that lorcaserin 

also alters the antinociceptive tolerance that develops to opioids.  

  



113 
 

%
M

P
E

0

2 0

4 0

6 0

8 0

1 0 0

*

2  m g /k g  L o r c a s e r in

1 0 0 m g /k g  O x y

_ + + _

_ _ + +

†

 

Figure 3.1: Lorcaserin pretreatment attenuated the development of acute antinociceptive 

tolerance. The day after tolerance induction, all animals received a challenge dose of oxycodone 

(12 mg/kg, p.o.) and were tested for antinociceptive responses. Acute tolerance was induced and 

there was a significant reduction in %MPE to the oxycodone challenge and treatment with 

lorcaserin (2 mg/kg, s.c.) blocked this effect. At least 8-10 mice were used per group and the 

experiment was repeated twice. † P < 0.05 using one-way ANOVA with multiple comparisons, 2 

mg/kg lorcaserin + 100 mg/kg oxycodone v.s. saline + 100 mg/kg oxycodone. *P < 0.05 using 

one-way ANOVA with multiple comparisons. 
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Figure 3.2: Lorcaserin partially attenuated the development of multiple-day antinociceptive 

tolerance. Mice were administered 4-day treatment of saline, lorcaserin (2 mg/kg, s.c.), and/or 

oxycodone (64 mg/kg, p.o.). On the fifth day, animals were challenged using a cumulative dosing 

procedure of oral oxycodone. All points represent the mean ± S.E.M. and ten animals per group 

were tested across two separate days. 
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Group ED50 95% CL 

Saline + Saline 5.39 4.3 – 6.74 

Lorcaserin + Saline 3.99 2.37 – 4.86 

Saline + Chr. Oxy 19.56* 17.01 – 22.48 

Lorcaserin + Chr. Oxy 9.53* 7.84 – 11.59 

 

Table 3.1: ED50 values (mg/kg) and 95% confidence limits for long term antinociceptive 

tolerance experiment shown in Figure 3.2. Antinociceptive tolerance was assessed using 

cumulative dosing in the warm-water tail withdrawal test. Significant shifts from saline + saline 

control values are denoted by “*”.  



116 
 

 

Figure 3.3: Lorcaserin did not alter the constipating effect of chronic oxycodone using the 4-

day tolerance paradigm in the carmine red dye assay. Animals were assessed for 

gastrointestinal transit time on the fifth day. At least 9-10 mice were used per treatment group.    

** P < 0.01 and *** P< 0.001 from saline + saline control using one-way ANOVA with Dunnett’s 

post-hoc. 
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Figure 3.4: Threshold potentials in response to 3 μM oxycodone challenge after overnight 

incubation with 10 μM oxycodone, 200 nM lorcaserin, and 1 μM SB242084. Ten-minute 

treatment in the bath with 3 μM oxycodone produced a significant shift in the threshold potential 

of untreated DRG neurons (***P-value < 0.001), and in neurons incubated overnight with both 10 

μM oxycodone and 200 nM lorcaserin (**P-value < 0.05). Neurons incubated overnight with 10 

μM oxycodone alone or 10 μM oxycodone and 1 μM SB242084 did not significantly respond to 

treatment with 3 μM oxycodone (n.s., non-significant). Data represents individual changes in cell 

threshold potentials before (●) drug treatment and 10 minutes after (red ■) 3 μM oxycodone 

treatment in the bath. Statistical significance was assessed using a two-way repeated measures 

analysis of variances with a Bonferroni’s post-hoc test and deemed significant if P < 0.05.  

  

O/N Treatments 
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Figure 3.5: Effect of chronic oxycodone and chronic lorcaserin treatment on DAMGO-

stimulated [35S]GTPγS binding. After 4-day treatment of chronic oxycodone (64 mg/kg, p.o., 

b.i.d.) and/or chronic lorcaserin (2 mg/kg, s.c., b.i.d.) spinal cords were dissected and were 

incubated with 0.1 nM [35S]GTPγS, 10 μM GDP and the indicated concentrations of DAMGO. 

Significant MOR desensitization was observed between animals that received chronic oxycodone 

versus vehicle controls (*P <0.0001, Two-way ANOVA with multiple comparisons). Animals that 

received chronic lorcaserin and chronic oxycodone demonstrated significantly different basal 

activity and at the lowest dose of DAMGO activity (#P <0.05, Two-way ANOVA with multiple 

comparisons). Data were analyzed by nonlinear regression (GraphPad Prism) and presented as the 

% of control mice biding ± S.E.M. Curves are performed in triplicate in which control (saline + 

saline) mice and chronic oxycodone alone were assayed simultaneously.  
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Treatment Group EMax (%Control) LogEC50 ± SE 

Chronic Saline + Chronic Saline 185.6 ± 2.5 -5.91 ± 0.04 

Chronic Lorcaserin + Chronic Saline 189.7 ± 6.4 -5.83 ± 0.13 

Chronic Saline + Chronic Oxycodone 147.7 ± 5.8 -5.84 ± 0.12 

Chronic Saline + Chronic Lorcaserin 150.5 ± 4.5 -5.89 ± 0.14 

 

Table 3.2: Effect of chronic oxycodone and/or lorcaserin combination treatment on EMax and 

logEC50values on mu opioid-receptor-stimulated [35S]GTPγS binding. Spinal cord membrane 

homogenates from treated mice were incubated with 0.1 nM [35S]GTPγS, 10 μM GDP and varying 

concentrations of DAMGO as described in the Methods. Data are demonstrated as EMax and 

logEC50 values ± SE were derived from the concentration-effect curves shown in Figure 5.
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Chapter 4 

General Discussion 

Opioids are a class of compound that have demonstrated continued use in the clinic for the 

treatment of pain in spite of their risks. While efficacious, continued use of opioids is associated 

with the development of analgesic tolerance, dependence, and in some unfortunate cases, increased 

risks of mortality due to its respiratory depressive effects (Gomes et al., 2011). The over-

prescribing of opioids and their associated side-effects has led to the development of the present 

opioid epidemic that claims over 100 lives every day (CDC et al., 2016). Although the 

recommendations for the prescription of opioids by practitioners has changed in light of this 

epidemic, the need for alternative therapies is ever present (Dowell et al., 2016b; F Collins et al., 

2017). Opioid-sparing adjunctive therapies have been explored and several alternatives have been 

identified: non-steroidal anti-inflammatories, gabapentoids, acetaminophen, and antidepressants 

(Saarto and Wiffen, 2007; Buvanendran and Kroin, 2009; Derry et al., 2009, 2013; Gaskell et al., 

2009; Straube et al., 2010; Gilron, 2016; Sullivan et al., 2016). Each combination and therapy vary 

in their efficacies, potential toxicity to patients, and are not equally efficacious in treating pain.  

The notion of “opioid-sparing” was approached with two concepts in mind. First, in the 

event of first exposure with an opioid, opt for a lower dose because lower doses in cases of initial 

exposures are associated with a reduced likelihood of long-term abuse (Shah et al., 2017) Second, 

in the case of long-term use, administration of a lower dose of opioid will produce less toxic side 

effects, such as dependence, tolerance, and constipation, and overall be safer for the patient. 

Therefore, with this approach in mind, the overall goal of these studies was to identify a novel 

opioid-sparing adjunct that altered both the acute and chronic effects of opioids, with a primary 

focus on the prescription opioid oxycodone. The studies described herein advance our knowledge 



121 
 

of the role of lorcaserin, and the 5-HT2C receptor through which it exerts its effects, in the acute 

antinociceptive effects of opioids and its interactions in the development of opioid tolerance at the 

behavioral and cellular level.  

 There are three major conclusions that can be derived from these studies and which will be 

subsequently elaborated on below. First, the effect of lorcaserin in a preclinical model of acute 

thermal pain is site-specific. Second, lorcaserin enhanced the acute antinociceptive effects of 

several opioids and increased the time course of oxycodone’s antinociceptive activity through 

activation of the 5-HT2C receptor. Finally, lorcaserin blocked the development of antinociceptive 

tolerance to oxycodone but with a dosing-frequency-dependent effect. Collectively, these data 

suggest that lorcaserin may be a novel alternative therapeutic adjunct in addition to those that are 

currently available. 

 These studies were initiated due to the observation that lorcaserin attenuated oxycodone 

self-administration and decreased cue reactivity associated with abstinence and relapse in a rodent 

model of opioid addiction (Neelakantan et al., 2017). Additional studies in rodents that evaluated 

the therapeutic potential of lorcaserin to suppress remifentanil self-administration found that 

lorcaserin non-selectively attenuated both food and drug self-administration (Panlilio et al., 2017).  

Conflicting data evaluating lorcaserin in models of opioid addiction may limit lorcaserin’s 

translation into the clinic but the purpose of this discussion is not to evaluate the therapeutic 

potential of lorcaserin as a pharmacotherapeutic for addiction. Based on the idea that lorcaserin 

can alter one aspect of oxycodone’s pharmacology, the overall goal of these studies was to evaluate 

the effect of lorcaserin on the acute and chronic antinociceptive effects of oxycodone and 

specifically from the opioid-sparing perspective.  
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 Over the past several decades, many therapeutics have emerged as possible opioid-sparing 

adjuncts, with the most notable being cannabinoid compounds, and acetaminophen and NSAIDs 

(Kolesnikov et al., 2003; Smith et al., 2007; Huang et al., 2008; Derry et al., 2009, 2013; Gaskell 

et al., 2009; Nielsen et al., 2017). Their preclinical characterization is remarkably similar in that 

first the compounds themselves were evaluated via several routes of administration (e.g., 

subcutaneous, intrathecal, intravenous, intracerebroventricular) within their given preclinical 

model of pain  (Lichtman and Martin, 1991; Welch and Stevens, 1992; Raffa et al., 2000). 

Following this characterization and approximation of possible locus of action, further studies were 

conducted in combination with an opioid. The initial goal of these studies was to characterize the 

effect of lorcaserin by itself in a similar manner to that of which has been previously published.  

 The antinociceptive activity of intrathecally administered 5-HT2C receptor agonists has 

been characterized for some time, though limited by the lack of selectivity among previously 

available ligands (Obata et al., 2003, 2004, 2007; Nakai et al., 2010). Lorcaserin was developed 

as a selective 5-HT2C receptor agonist and had an approximate ~12-fold greater selectivity for 5-

HT2C over 5-HT2A (Thomsen et al., 2008). Lorcaserin, in particular, has only been evaluated in a 

chronic pain model in a study by Ogino et al. (2013) where both systemic administration of 

lorcaserin attenuated mechanical hypersensitivity in a preclinical model of fibromyalgia. A 

thorough literature search showed that 5-HT2C receptor agonists have only been evaluated in 

models of neuropathy and chronic pain, and the effect of lorcaserin on acute pain had not yet been 

investigated. 

 Using the warm-water tail withdrawal test as a model of acute thermal nociception, the 

effect of lorcaserin was evaluated via the subcutaneous, intrathecal, and intracerebroventricular 

routes of administration. In agreement with the previous data on intrathecal administration of 5-
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HT2C agonists, lorcaserin produced the expected dose-dependent antinociceptive response. It 

should also be mentioned that unlike NSAIDs or acetaminophen, its antinociceptive effect was not 

blocked by naloxone which indicates that its effects are not mediated through the opioid system 

(Herrero and Headley, 1996; Raffa et al., 2000). Intracerebroventricular administration of 

lorcaserin was completely inactive and at the highest doses, induced seizures in some animals. 

This finding was unexpected and suggests that activation of the 5-HT2C receptor in nociception 

differs between spinal and supraspinal sites.  

This sort of phenomenon, however, is not entirely unusual. Acetaminophen is another 

example of an opioid-sparing agent that displays measurable intrathecal antinociceptive activity 

but has little to no effect when administered intracerebroventricularly (Raffa et al., 2000). These 

differences in effects could be due to distinct mechanisms of action that underlie their 

antinociceptive effects in spinal and supraspinal sites. Acetaminophen, for example, was not 

equally antagonized by pretreatment with naloxone (Raffa et al., 2000). Intrathecal and 

subcutaneous administrations of acetaminophen were both antagonized by naloxone but 

intracerebroventricular administration of acetaminophen was not, suggesting distinct mechanisms 

of action. Our studies with lorcaserin via intrathecal and intracerebroventricular routes of 

administration displayed a similar pattern of effect, like acetaminophen, that may be attributed to 

differences in their spinal and supraspinal mechanisms. 

Unlike the study by Ogino (2013) where lorcaserin was active when administered orally in 

their chronic pain model, subcutaneous lorcaserin was inactive in our model of acute pain. 

Previously published data and our studies suggest that efficacy of systemically lorcaserin and 

similar 5-HT2C receptor agonists to treat pain is dependent upon the type of pain (Obata et al., 

2004; Nakai et al., 2010; Ogino et al., 2013). Furthermore, chronic pain (where 5-HT2C receptor 
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agonists were effective) displays measurable changes in 5-HT2C receptor expression which may 

underlie this observed difference in efficacy (Wu et al., 2001; Nicholson et al., 2003; Liu et al., 

2005). Administration of intraplantar bee venom or CFA is reported to upregulate 5-HT2C receptor 

mRNA in dorsal root ganglion neurons and  the dorsal horn of the spinal cord (Wu et al., 2001; 

Nicholson et al., 2003; Liu et al., 2005). Further study investigating the effect of lorcaserin in 

models of chronic pain are needed as published data suggests that it may be most efficacious in 

models of chronic pain and not necessarily useful on its own as a treatment for acute pain (Obata 

et al., 2004; Nakai et al., 2010; Ogino et al., 2013).  

After characterizing the effect of lorcaserin in an acute pain model, it was tested in 

combination with acute doses of opioids. Previous studies have evaluated interactions between 5-

HT2C receptor agonists and opioids in models of drug self-administration and addiction, but 

interactions between 5-HT2C receptor agonists and opioids in the study of pain have not been 

characterized (Wu et al., 2015; Zhang et al., 2015; Neelakantan et al., 2017; Panlilio et al., 2017). 

As mentioned previously, the study by Neelakantan et al. (2017) and Panlilio (2017) evaluated the 

effect of lorcaserin in rodent models of opioid self-administration and yielded conflicting results. 

In addition, two additional studies reported that lorcaserin attenuates behavioral sensitization (a 

behavior often thought to be associated with the rewarding effects of drugs of abuse) and naloxone-

precipitated withdrawal symptom severity in mice dependent upon heroin or morphine (Wu et al., 

2015; Zhang et al., 2015). The abuse liability of opioids is a major public health concern, but their 

wide use as analgesics make it necessary to evaluate opioid and 5-HT2C agonist interactions in a 

preclinical model of pain and to determine if reduced doses of opioids can be used as a result of 

this combination. 
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Analgesics are unlikely to be administered via an intrathecal or intracerebroventricular 

routes in the clinic (except in special cases), therefore, the combined effects of subcutaneously 

administered lorcaserin and oxycodone were assessed (Calias et al., 2014; Atkinson, 2017; Cohen-

Pfeffer et al., 2017). Antinociceptive responses were assessed using a cumulative dosing method 

in the warm-water tail withdrawal assay. Several doses of subcutaneous lorcaserin were 

administered prior to treatment with challenging acute doses of oxycodone and the overall effect 

of these treatments were shifts of the oxycodone dose response curves to the left, denoting an 

enhancement. Lorcaserin potentiated the acute antinociceptive effect of oxycodone. In addition, to 

ensure that this wasn’t an oxycodone-specific effect and that it generalized to other opioids, 

fentanyl and morphine were tested and a similar result was observed where pretreatment with 

lorcaserin produced a shift of the opioid dose response curve to the left.  

The most surprising piece of data is the lack of effect of lorcaserin on methadone-induced 

antinociception. Methadone is an atypical opioid that possesses a diverse pharmacological profile. 

Methadone is a high efficacy and long-acting MOR agonist, an NMDA receptor antagonist (which 

has been implicated in altering the development of opioid tolerance) and is both a serotonin and 

norepinephrine reuptake inhibitor (Horng et al., 1976; Codd et al., 1995; Ebert et al., 1995; Davis 

and Inturrisi, 1999; Carpenter et al., 2000; Callahan et al., 2004). The effect of lorcaserin on an 

opioid could be related to a matter of agonist efficacy, as methadone is reported as a higher efficacy 

agonist relative to fentanyl, morphine or oxycodone (see Table 1.1 in the introduction) in 

functional binding studies (Emmerson et al., 1994, 1996; Selley et al., 1997; Alt et al., 1998; Volpe 

et al., 2011). The additional off-target effects of methadone, namely its NMDA antagonist activity 

or its reuptake inhibition, are also possible confounds that may prevent any effect of lorcaserin 

(Ebert et al., 1995; Davis and Inturrisi, 1999; Callahan et al., 2004). Methadone, while an 



126 
 

efficacious opioid agonist, is very different from the typical opioids and further studies are 

necessary to understand why it is not altered by lorcaserin. 

It should be noted, however, that the degree to which lorcaserin shifted each of these curves 

varied. For example, lorcaserin was more efficacious to shift the curve of fentanyl than it was to 

shift the curve of oxycodone and contrary to both of those compounds, lorcaserin did not alter the 

dose-response curve of methadone at any dose tested. This could be due to the fact that all opioids 

present a different pharmacological profile (their efficacies at the MOR) and have different off-

target effects (Emmerson et al., 1996; Volpe et al., 2011). Opioid efficacy has been reported 

previously as a major determinant of drug-drug interactions, specifically in combination with 

TCAs and SSRIs (Gatch et al., 1998; Banks et al., 2010). A possible mechanism that underlies this 

difference is the relationship between opioid efficacy and receptor desensitization/internalization 

(Duttaroy and Yoburn, 1995; Emmerson et al., 1996; Laura M. Bohn et al., 2000; McPherson et 

al., 2010). High efficacy compounds, such as methadone or DAMGO, readily desensitize and 

internalize MOR (Keith et al., 1996, 1998; Sternini et al., 1996; Kovoor et al., 1998; Whistler et 

al., 1999). In contrast, relatively lower efficacy ligands, such as morphine, rapidly desensitize the 

MOR but are poor at inducing internalization, which is thought to be an underlying component of 

the tolerance that develops (Keith et al., 1996, 1998; Whistler and von Zastrow, 1998; Lopez-

Gimenez et al., 2008; McPherson et al., 2010). Based on these observations and the reports that 

the effect of serotonergic agents (such as SSRIs) on opioid antinociception are dependent upon 

opioid efficacy, it is entirely possible that the effect of lorcaserin may similarly be dependent upon 

MOR agonist efficacy and these effects may be mediated through changes in MOR desensitization 

and internalization. 
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Another unusual finding is that the dose-response of lorcaserin to shift the curve of 

oxycodone was biphasic where 2 mg/kg of lorcaserin produced a greater effect than treating with 

4 mg/kg. At high doses, lorcaserin has notable affinity for the 5-HT2A receptor and this receptor, 

in particular, can function as a “pro-nociceptive” receptor. This observed biphasic effect of 

lorcaserin and oxycodone could be due to off-target effects mediated through the 5-HT2A receptor. 

To address this, a transgenic mouse model with a global knockout of the 5-HT2A receptor was 

utilized. Global knockout of the 5-HT2A receptor trended towards an increase in the potency of 

morphine (though the ED50 were not significantly different). The effect of 5-HT2A receptor 

knockout on the effect of lorcaserin was inconclusive, as the ED50 values from all groups were 

similar. Lorcaserin in this study did not produce a significant effect on morphine antinociception 

in the wild-type mice nor did it alter the effect of morphine in the knockout mice. A limitation 

associated with the 129sV mouse strain is their abnormal responses to opioids, where they exhibit 

increased opioid-induced locomotor stimulation, increased opioid antinociceptive potency, and a 

reduced development of tolerance (Crain and Shen, 2000; Murphy et al., 2001). Additional studies 

may prefer to utilize a mouse strain of the C57/B6J background or some other strain that have not 

been reported to have abnormal responses to opioids. Therefore, we cannot effectively rule out the 

contributions of the 5-HT2A receptor in the effect of lorcaserin. 

In addition to potentiating the acute antinociceptive effects of oxycodone, it was necessary 

to evaluate the effect of lorcaserin on time-course of oxycodone’s antinociceptive activity. This 

was assessed using an ED50 dose of oxycodone and two different doses of lorcaserin: a dose that 

produced a significant potentiating effect (2 mg/kg) and a subthreshold dose that did not 

significantly shift the oxycodone ED50 (0.5 mg/kg) in the warm water tail withdrawal assay. In 

both cases, lorcaserin enhanced oxycodone’s time course of effect and unsurprisingly, the highest 
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dose of lorcaserin produced the greatest change in overall efficacy and time course of oxycodone. 

The subthreshold dose, while it did not potentiate the initial antinociceptive effects within the first 

15 – 30 minutes, it did demonstrate significant potentiation at the 60-minute time point. These data 

demonstrate that enhancing oxycodone’s time course of effect can be achieved by both a high and 

a low dose of lorcaserin. The significant potentiation of oxycodone by the low dose is meaningful 

because subthreshold doses of drugs tend to have fewer dose-dependent side effects. 

After evaluating the effect of lorcaserin via subcutaneous administration and considering 

the previous data demonstrating the site-specific effect of lorcaserin, further studies evaluated a 

possible locus for a potential opioid/lorcaserin interaction. The hypothesis that lorcaserin produced 

its potentiating effect within the spinal cord was developed after observing the differential activity 

of lorcaserin alone in the brain and the spinal cord. This hypothesis was tested using a subthreshold 

dose of intrathecal lorcaserin (a dose which did not produce a statistically significant effect in the 

warm water tail withdrawal) and an ED50 dose of oxycodone. The combination produced a roughly 

~40% increase in the antinociceptive effect relative to oxycodone alone but failed to reach 

statistical significance (P-value = 0.06). Although not statistically significant, these data suggest 

that the effect is at least partially mediated at this spinal level but may also require the addition of 

peripheral cell bodies such as dorsal root ganglion neurons (which will be discussed further on) 

and higher order spinal structures or cortical brain regions. Nonetheless, the combined enhanced 

effect of oxycodone and intrathecal lorcaserin are supported by the observation that both MOR 

and 5-HT2C are expressed in the dorsal horns of the spinal cord (Clemett, et al., 2000; Millan, 

2002). It is unclear if they are colocalized on the same neurons but studies suggest that the 5-HT2C 

receptor may be expressed on GABAergic interneurons and may act through an “excitation of 

inhibition” (Di Matteo et al., 2000; Di Giovanni et al., 2001; Giorgetti and Tecott, 2004; Bubar 
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and Cunningham, 2007; Theile et al., 2009; Bubar et al., 2011). The limitation of this assumption, 

however, is that the expression of the 5-HT2C receptors on GABAergic neurons was characterized 

in regions linked to drug abuse, such as the ventral tegmental area, and is has yet to be elucidated 

if this pattern of expression extends to other physiological systems such as antinociception (Di 

Matteo et al., 2000; Di Giovanni et al., 2001; Giorgetti and Tecott, 2004; Bubar and Cunningham, 

2007; Theile et al., 2009; Bubar et al., 2011). 

Alternatively, there is another common link between the serotonergic system and the 

opioidergic system: noradrenaline (Ossipov et al., 1985; Cui et al., 1999; Fairbanks and Wilcox, 

1999; L M Bohn et al., 2000; Fairbanks et al., 2002). Opioids have been shown to stimulate the 

release of noradrenaline in the spinal cord and this action may, in part, underlie their 

antinociceptive effects (Bouaziz et al., 1996; Cui et al., 1999; Millan, 2002). In addition, 5-HT2C 

receptor agonists are shown to stimulate the release of noradrenaline and their antinociceptive 

effects are antagonized by administration of yohimbine, an α2-adrenoreceptor antagonist(Obata et 

al., 2007). The interactions between opioids and 5-HT2C receptor agonists, like lorcaserin, may be 

the result of a “sum-of-the-parts” mechanism whereby cumulative interactions with many 

neurotransmitter systems yield an overall enhanced antinociceptive effect. The neurobiology 

regarding pain is incredibly complex and neurotransmitter systems exhibit varied “cross-talk” and 

it is possible that these interactions are not purely MOR/5-HT2C receptor mediated. 

In addition to evaluating the intrathecal lorcaserin/oral oxycodone interactions, it was of 

interest to evaluate intracerebroventricular lorcaserin and oral oxycodone administration. The lack 

of effect of lorcaserin when administered intracerebroventricularly was unexpected and its 

combination with oxycodone, significantly attenuated the antinociceptive effects of oxycodone. 

This observation was unexpected, as it further suggests that the 5-HT2C receptor serves a 
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differential role in the spinal cord and in supraspinal structures. The attenuation, however, could 

be attributed to changes in body temperature, as the warm-water tail withdrawal test has been noted 

to be sensitive to such physiological states (Tjolsen and Hole, 1993). 5-HT2C receptor agonists, in 

particular, are thermogenic, in that they raise overall body temperature (Hayashi et al., 2004). One 

hypothesis to explain the observed effect is that intracerebroventricular administration of 

lorcaserin, due to its proximity to the hypothalamus, raised core body temperature which would 

alter the observed antinociceptive effect of an opioid (Hayashi et al., 2004).   

An additional alternative explanation for the i.c.v. lorcaserin/oral oxycodone results is that 

perhaps the 5-HT2C receptor serves differential roles in the higher order brain structures and in the 

spinal cord. Several studies have shown that spinal 5-HT2C receptors serve an antinociceptive role 

by administration of several different 5-HT2C agonists in models of neuropathy and chronic pain 

(Obata et al., 2003, 2004, 2007; Nakai et al., 2010) and the data reported here supports these 

observations where intrathecal lorcaserin was antinociceptive in acute pain. 5-HT2C receptor 

activity in the amygdala is implicated in the inefficacy of SSRIs in the treatment of neuropathy 

and two studies have demonstrated that genetic knockdown or site-specific administration of a 5-

HT2C receptor antagonist inhibits nocifensive behaviors from rodents and improves analgesic 

efficacy of SSRIs (Grégoire and Neugebauer, 2013; Ji et al., 2017). This supports the finding 

observed where intracerebroventricular lorcaserin is capable of attenuating the antinociceptive 

effect of oxycodone. These studies support the hypothesis that the 5-HT2C receptor in supraspinal 

regions serves a different role and may be “pro-nociceptive”.  

Following the studies on the acute interactions between lorcaserin and oxycodone, it 

became clear that it was necessary to evaluate the effect of lorcaserin on chronic opioid treatment 

and tolerance. It was important to evaluate the effect of lorcaserin on opioid tolerance because 
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there are very rare cases in which a patient takes only one dose of an opioid. Opioid tolerance is a 

challenge in that it is commonly managed through dose escalation and incidentally high doses of 

opioid are associated with increased mortality (Dasgupta et al., 2015; Dowell et al., 2016a; Shah 

et al., 2017).  

There are several major findings that suggest that alterations in opioid tolerance by 

lorcaserin may be underlying the observed acute interactions discussed in Chapter 2. First, acute 

dose-response curves were generated using a cumulative dosing paradigm which occurs over a 

period of several hours. Following activation of a receptor by an agonist, rapid desensitization 

occurs within seconds to minutes of exposure and it is reasonable to hypothesize that lorcaserin 

may be altering MOR desensitization and this underlies the ED50 shifts that were observed (Stadel 

et al., 1983; Sibley et al., 1987; Kovoor et al., 1998; Alvarez et al., 2002; Borgland et al., 2003; 

Williams et al., 2013). The changes in the time course of oxycodone’s activity also supports this 

hypothesis, as its effects are significantly enhanced 1 – 2 hours post administration.  

There are several means through which tolerance can be induced. In these studies, we opted 

to evaluate two models of tolerance, with the idea being that it will provide information on the 

mechanism through which lorcaserin is acting. The time scale for acute tolerance is generally very 

rapid and occurs within minutes to hours after drug exposure. It is characterized by a rapid 

desensitization of the receptor and that involves eventual endocytosis, possible receptor recycling, 

and this leads to the expression of what is observed as “acute” tolerance (Cox et al., 1968; 

Huidobro-Toro and Way, 1978; Ling et al., 1989; Fairbanks and Wilcox, 1997; Bohn et al., 2000). 

For the purpose of these studies, acute tolerance is defined as a single drug administration or series 

of drug exposures that is confined to one day. Chronic (long-term) models of tolerance occur on a 

timescale of days to week and are typically encompassed by repeated drug administrations. The 
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mechanisms underlying this process are not as well understood but are thought to involve multiple 

regulatory mechanisms, such as changes in intracellular signaling cascades (e.g., cAMP 

upregulation) and receptor downregulation (Tempel and Zukin, 1987; Tempel, 1991; Tao et al., 

1993; Z Wang et al., 1994; Wang et al., 2004; Sim-Selley, 2005; Shoblock and Maidment, 2006; 

Sim-Selley et al., 2009). Use of these paradigms allow us to understand the contributions of 

lorcaserin, and by extension the effect of activation of the 5-HT2C receptor, in the regulation of the 

MOR with repeated opioid administrations. In addition, studies evaluating the effect of lorcaserin 

on the single-cell level and at the receptor level were conducted in addition to the in vivo studies 

because it provides a greater understanding of how lorcaserin is altering opioid activity. 

Collectively, these studies provide a greater understanding of opioid tolerance and suggest a 

possible role of serotonergic mechanisms and 5-HT2C receptor ligands as a means to alter the 

antinociceptive effects of opioids in a manner that is beneficial to the patient. 

The initial studies using the tolerance model where animals received only a single high 

dose of oxycodone (100 mg/kg, p.o.) prior to the challenge dose the following day demonstrated 

that lorcaserin was capable of completing blocking the development of acute tolerance. It is 

interesting to note that although the lorcaserin treatment on its own did not produce a statistically 

significant effect relative to vehicle controls, the overall antinociceptive response after the 

challenge dose was considerably higher. This same pattern was observed in animals that received 

the high oxycodone and lorcaserin pretreatments where the overall antinociceptive effect was 

modestly greater than the vehicle controls but not statistically significant. 

Based on the data presented in Chapter 2, the current hypothesis is that lorcaserin is altering 

the antinociceptive effects by way of the spinal cord (even when administered subcutaneously and 

not intrathecally), there are additional structures that can provide insight into this interaction. 
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Dorsal root ganglion (DRG) neurons are peripherally located structures that are comprised of 

afferent nerve fibers that synapse in the dorsal horn of the spinal cord. Though technically outside 

of the central nervous system, previous studies have demonstrated their role in the development of 

opioid tolerance (Corder et al., 2017; Jacob et al., 2018). This site is of particular interest in our 

studies because DRGs are a critical component of the nociceptive circuitry and a well-validated 

model for evaluating cellular tolerance (Gracious R. Ross et al., 2012; Kang et al., 2017; Jacob et 

al., 2018). Incubating DRG neurons overnight in oxycodone produces reproducible tolerance and 

with this model, the effect of lorcaserin on overnight exposure to oxycodone was assessed. These 

studies demonstrated that co-incubation of lorcaserin and oxycodone attenuated the development 

of acute tolerance on a single-cell level. This effect corroborates nicely with the observed effect in 

vivo and suggest that within the time course of one day, lorcaserin can significantly attenuate acute 

tolerance.  

The longer-term, or multiple day treatment, model of tolerance consisted of twice daily 

treatments for four days with oral oxycodone and/or lorcaserin treatments. The mechanisms that 

underlie this process are considered to be distinct from that which involves the development of 

acute tolerance ( as reviewed by Williams et al., 2013). The observation that lorcaserin only 

partially attenuated the development of tolerance in the long-term model suggests that the 

mechanisms through which 5-HT2C receptor activation alters opioid tolerance differs based on the 

frequency and timing of opioid administration. The effects in mice that were treated with both 

lorcaserin and oxycodone were significantly different from both tolerant (treated with only chronic 

oxycodone) and vehicle control mice in terms of their antinociceptive responsivity to the 

oxycodone challenges. These data and the acute tolerance data suggest that the mechanisms 
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through which the activation of the 5-HT2C receptor work are distinct from each other because 

lorcaserin did not equivalently block the development of tolerance in the two models.   

It is now well accepted that at a cellular level, adaptive changes occur following chronic 

opioid administration and these changes are marked by changes in G-protein-coupled receptor 

function (Tao et al., 1993; Sim et al., 1996; Bernstein and Welch, 1998; Sim-Selley, 2005; 

Priyanka A. Madia et al., 2012; Arttamangkul et al., 2018). Receptor desensitization is 

characterized by uncoupling of the receptor from the G-protein (also known as desensitization 

which is mentioned earlier) and eventual internalization of the receptor leading to longer-term 

receptor recycling and downregulation (Law et al., 1984; Tempel et al., 1988; Tempel, 1991; 

Ferguson et al., 1996; Ronnekleiv et al., 1996; Kovoor et al., 1998; Alvarez et al., 2002; 

Arttamangkul et al., 2008; Lopez-Gimenez et al., 2008; Priyanka A. Madia et al., 2012; Williams 

et al., 2013). Functional activity of these receptors can be assessed using agonist-stimulated 

[35S]GTPγS binding. Changes in MOR activity following chronic opioid treatment is noted in 

several brain regions and the spinal cord (Sim et al., 1996; Sim-Selley, 2005; Sim-Selley et al., 

2009). Our hypothesis was to test if chronic treatment with both lorcaserin and oxycodone altered 

the functional activity of the MOR and allowed it to signal in a manner similar to naïve controls. 

The binding data demonstrate that treatment with lorcaserin did not block reductions in 

MOR functional activity following treatment with chronic oxycodone. Chronic oxycodone alone 

reduced basal activity (binding the absence of an agonist) and this effect was modestly restored by 

co-treatment with lorcaserin but overall maximal binding between the two groups was not 

significantly different. In addition, chronic treatment with lorcaserin alone did not alter DAMGO-

stimulated binding which agrees with the in vivo results where chronic lorcaserin did not 

significantly shift the ED50 of acute oxycodone relative to vehicle controls. Overall, these data 
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suggest that the effect of lorcaserin on opioid tolerance is not mediated through changes in 

functional activity at the MOR and is in fact working through some other mechanism that remains 

to be elucidated. The evidence presented here suggests that the effect of lorcaserin could be due to 

activation of the 5-HT2C receptor rather than alterations in the regulation of the MOR. 

Alternative explanations for the changes in basal activity, however, could be attributed to 

differences in MOR downregulation between groups. [35S]GTPγS studies do not assess receptor 

densities and it is possible that lorcaserin may be altering receptor expression levels. It has also 

been noted that in addition to opioid tolerance, tolerance to the effects of lorcaserin may develop 

following its repeated administration (Van Oekelen et al., 2003). It is hypothesized that expression 

of the 5-HT2C receptor is inducible following injury, such an inflammatory pain states, but limited 

data is available exploring the relationship between chronic opioid administration and 5-HT2C 

expression (Wu et al., 2001; Liu et al., 2005).  

Further investigations into the interactions between the opioids and the 5-HT2C receptor 

are important for several reasons. Opioids are reported to stimulate the release of serotonin and 

with chronic administration of opioids, there are alterations in serotonin synthesis and turnover 

that is observable in vivo (Theiss et al., 1975; Yaksh and Tyce, 1979). Under conditions of 

sustained serotonin depletion, the 5-HT2C receptor undergoes pre-mRNA transcript editing that 

allows for the synthesis of a 5-HT2C receptor isoform with greater affinity for serotonin and 

additionally increases the expression of the 5-HT2C receptor (Fitzgerald et al., 1999; Gurevich et 

al., 2002; Schmauss, 2005). Sustained changes in neurotransmission following chronic opioid 

exposure may have the capacity to alter the activity of the 5-HT2C receptor (Zhang et al., 2015). 

For example, chronic morphine treatment is reported to increase 5-HT2C receptor protein 

expression in the nucleus accumbens, locus coeruleus, and ventral tegmental area (Zhang et al., 
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2015). These data suggest that opioid treatment may alter 5-HT2C receptor functionality and these 

changes need further investigation. 

Current Opioid-Sparing Adjuncts and Lorcaserin 

 There are many current opioid-sparing treatment options for the treatment of pain, 

including NSAIDs, acetaminophen, α2-receptor agonists, NMDA antagonists, and antidepressants. 

Each class displays specific efficacy in treating certain types of pain. NSAIDs and acetaminophen 

are useful for treating acute and post-operative pain (Cassinelli et al., 2008; Derry et al., 2009, 

2013; Gaskell et al., 2009). Limitations of NSAID and acetaminophen use are marked by an 

increased risk of adverse gastrointestinal effects and potentially fatal hepatoxicity, respectively 

(Laine, 2002, 2003; James et al., 2003; Bhala et al., 2013).   

Agonists at the α2-adrenergic receptor have demonstrated remarkable synergism with 

opioids in preclinical studies but their efficacy in humans is debated (Benhamou et al., 1994; 

Fairbanks and Wilcox, 1999; Fairbanks et al., 2002; Özdoğan et al., 2003; Blaudszun et al., 2012; 

Stone et al., 2014). A major clinical concern for use of clonidine is the risk of hypotension and 

bradycardia and this combination may be risky for hemodynamically unstable patients but 

additional studies suggest that this risk can be minimized by titrating the dose of α2-receptor 

agonist (Ebert et al., 2000; Hall et al., 2000; Stone et al., 2014). 

NMDA antagonists, such as ketamine, is a safe and effective opioid-sparing adjunct but 

the potential for hallucinogenic side effects limits its use to in-patient settings where patients can 

be closely monitored by attending nurses and physicians (Yamauchi et al., 2008; Laskowski et al., 

2011; Brinck et al., 2017). NMDA antagonists are also shown in preclinical studies to block the  

development of opioid tolerance (Trujillo and Akil, 1991; Tiseo et al., 1993; Elliott et al., 1994). 

Overall, NMDA antagonists have a favorable opioid-sparing profile and the potential for 
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psychomimetic effects can be mitigated by administration of sub-dissociative doses(Yamauchi et 

al., 2008; Laskowski et al., 2011; Miller et al., 2015; Motov et al., 2015; Brinck et al., 2017). 

Antidepressants, such as SSRIs and TCAs, are routinely used as first-line 

pharmacotherapuetics for the treatment of chronic pain conditions in spite of their highly debated 

efficacy (Watson, 2000; Dworkin et al., 2007; Saarto and Wiffen, 2007; Moore et al., 2015; 

Welsch et al., 2018). Studies evaluating the use of antidepressants in the treatment of acute and 

post-operative pain lack sufficient evidence and require further investigation but current data 

suggests they may have some utility (Wong et al., 2014; Gilron, 2016). The major risk associated 

with antidepressant use if the risk of serotonin syndrome and this risk may be greater in 

combination with an opioid (Boyer and Shannon, 2005; Gillman, 2005; Sansone and Sansone, 

2009; Rastogi et al., 2011).  

Additional opioid-sparing agents are described in Table 4.1. Each class presents its own 

set of benefits and potential risk. The major conclusion that can derived is that there are specific 

cases in which certain treatments may be preferable. For example, for the treatment of chronic 

pain, use of an antidepressant or gabapentin would be favorable to treatment with an NSAID, and 

then treatment for acute pain would likely use NSAIDs or acetaminophen. Lorcaserin and 

oxycodone are a potentially useful combination because it alters both the acute and the chronic 

effects of opioids which few combinations achieve. The studies in this dissertation provide 

evidence of lorcaserin’s utility as an opioid-sparing treatment for acute pain. In cases where 

hepatoxicity or gastrointestinal bleeding are of concern, lorcaserin and oxycodone may be 

preferable to NSAIDs or acetaminophen. Obviously further studies of the risks are necessary 

though before any significant conclusions of its clinical utility can be made. 
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Translational considerations for 5-HT2C agonists and lorcaserin. 

 Sex differences are an important consideration in the translation of a potential 

pharmacotherapeutic treatment into the clinic. There are significant sex differences in the pain 

severity and frequency in clinical populations, where women frequently report more pain than their 

male counterparts (Attanasio and Andrasik, 1987; Henry et al., 1992; Pietri et al., 1992; Unruh, 

1996; Aubrun et al., 2005). In preclinical studies, treatment with morphine also displays similar 

sex differences, where morphine is generally more potent in male than in females and males 

develop greater tolerance following repeated opioid administration (Kepler et al., 1991; Bartok 

and Craft, 1997; Craft et al., 1999; Mogil et al., 2000). This observed difference in the 

pharmacodynamic effects also generalizes to human studies, where women experienced greater 

levels of post-operative pain and received more frequent morphine administrations (Aubrun et al., 

2005). 

This dissertation has discussed the importance of serotonin in the physiology of pain and 

it should come as no surprise that there are also significant sex differences in the concentrations of 

brain serotonin and serotonin transporter function (Nishizawa et al., 1997; Zhang et al., 1999; 

Cannon et al., 2013). The 5-HT2C receptor displays a sex-specific polymorphism that is associated 

with impaired functionality (Fehr et al., 2000; Anastasio et al., 2014). It could be hypothesized 

that lorcaserin may have reduced efficacy in female populations, assuming that they possess the 

5-HT2C receptor polymorphism. Overall, the significant differences in serotonin physiology in 

females and the significant differences in the potency of morphine in females makes it difficult to 

speculate the potential efficacy of lorcaserin in these populations without further testing.  
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A final consideration is the possibility of serotonin syndrome with combined treatment of 

an opioid and lorcaserin. Opioids are reported to alter the kinetics of serotonin and this may lead 

to an increased risk of serotonin syndrome (Raffaello et al., 1975; Theiss et al., 1975; Gillman, 

2005; Sansone and Sansone, 2009; Rastogi et al., 2011). Serotonin syndrome, or serotonin toxicity, 

is a collection of symptoms that includes: changes in cognition, autonomic hyperactivity, and 

neuromuscular abnormalities, in addition to other symptoms such as tremor, diarrhea, 

neuromuscular rigidity and hyperthermia (Boyer and Shannon, 2005). The 5-HT2 receptor family 

is implicated as a mediator of some serotonin syndrome symptoms and in a preclinical model of 

serotonin syndrome, the behaviors were antagonized by administration of a 5-HT2A antagonist or 

a 5-HT2B/2C antagonist (Van Oekelen et al., 2002). In the case of lorcaserin and oxycodone, the 

incidence of serotonin syndrome may be mitigated by the use of a lower dose of oxycodone and a 

low dose of lorcaserin. There is a lack of studies that have specifically investigated the 

contributions of the 5-HT2C receptor in the pathogenesis of serotonin syndrome so additional 

studies investigating its role are needed. Overall, the risk of serotonin syndrome in the combined 

treatment of lorcaserin and oxycodone is not clear. Anecdotally, animals that were treated with 

oxycodone and lorcaserin (in the described studies in this dissertation) did not display any signs 

of serotonin-syndrome behaviors (forepaw treading, resting tremor, rigidity, Straub tail, hind limb 

abduction, and head weaving) (Haberzettl et al., 2013). Nonetheless, it is important to stress the 

importance of specifically evaluating this potential interaction with further study because it may 

be a potential clinical limitation. 

Final Conclusions 

Overall, our studies suggest an opioid-sparing role for lorcaserin and a possible time-

dependent mechanism through which it may be working through. As implicated by the acute 
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studies with a combination of lorcaserin and oxycodone, an overall lower dose of opioid is 

necessary to induce an antinociceptive effect. Furthermore, the idea that tolerance can be avoided 

by treatment with a low dose combination may be attainable (Smith et al., 2007). Although 

lorcaserin did not fully attenuate tolerance in the long-term model, perhaps if a lower dose of 

oxycodone were used with lorcaserin, the development of tolerance may be abrogated completely.  

Collectively, the results from these experiments in this dissertation further expand our 

understanding of the interactions between opioids and the 5-HT2C receptor in both acute 

administration and tolerance. Acute interactions between lorcaserin and several opioids, mainly 

oxycodone, were thoroughly characterized in vivo and showed that lorcaserin, and another 5-

HT22C receptor agonist, potentiate their acute antinociceptive effects through activation of the 5-

HT2C receptor and not the 5-HT2A receptor. Furthermore, our data show that these effects are not 

mediated through changes in opioid metabolism, as lorcaserin did not have an effect on the 

distribution or metabolism of oxycodone at all time points evaluated. From those studies, we 

evaluated another important component of opioid pharmacology, opioid pharmacology, and found 

that lorcaserin had differential effects. In a model of short-term, acute, tolerance both in vivo and 

in vitro, lorcaserin completely attenuated the development of tolerance but in a longer-term model 

of tolerance (using the whole animal approach and the binding studies), lorcaserin only partially 

attenuated tolerance development. These data suggest that the mechanisms that underlie these two 

stages of tolerance are distinct and that the activation of 5-HT2C receptor plays a differential role 

in both phases. As an opioid-sparing combination, lorcaserin may be useful as it enhances the acute 

effects (and thus reduces the required dose of opioid needed) and alters the development of 

tolerance with chronic use (which can also be mitigated by an overall lower dose of oxycodone 

consumed). Additionally, these studies provide some insight into the mechanisms through which 
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lorcaserin is producing its opioid-sparing effects and are hypothesized to comprise spinally-

mediated mechanisms. These studies demonstrate that serotonergic mechanisms, particularly those 

that involve the 5-HT2C receptor, may be a useful avenue for further investigation in the 

development of alternative opioid-sparing therapeutics. 
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