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Abstract

WARP DRIVE SPACETIMES

By Nicholas Arthur Scott Driver

A thesis submitted in partial fulfillment of the requirements for the degree of Master

of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Directors: Robert H. Gowdy,

Department of Physics

The concept of faster than light travel in general relativity is examined, starting

with a review of the Alcubierre metric. This spacetime, although incredible in its

implications, has certain unavoidable problems which are discussed in detail. It is

demonstrated that in order to describe faster than light travel without any ambigu-

ities, a coordinate independent description is much more convenient. An alternative

method of describing superluminal travel is then proposed, which has similarities to

the Krasnikov tube.
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CHAPTER 1

INTRODUCTION

One of the greatest triumphs in theoretical physics is the theory of relativity. With-

out relativistic corrections, our Global Positioning System (GPS) would be useless.

General relativity has also been used to calculate, with incredible success, the motion

of planets, stars, and satellites. In fact, one of the first major successes of general

relativity was finally explaining the observed perihelion precession of Mercury, which

was not accurately represented in Newtonian gravity. Recently, the LIGO intefero-

metric observatories confirmed another prediction of general relativity: gravitational

waves[1–6]. The findings of LIGO match numerical relativistic predictions with un-

canny accuracy. Additional experimentally confirmed predictions of general relativity

include gravitational lensing and and the gravitational redshift. To date, the theory

has stood up to almost every experimental challenge, with the only notable exception

being at very large distances in the case of galaxy rotation curves.

When Albert Einstein invented special relativity, he came up with one of the

most famous rules in physics: objects with mass can approach, but never reach or

exceed, the speed of light. About ten years later, Einstein implicitly came up with a

way to break his own rule in the form of general relativity.

When moving from the framework of special relativity to that of general relativity

the mathematics certainly become more complicated, but the rules appear to be more

relaxed. Since spacetime is curved by the presence of mass, we can no longer make

comparisons of velocity unless they are limited to very small distance scales, over

which the rules of special relativity “kick back in”. Thus, the cosmic speed limit need
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only be obeyed locally. This fact, combined with the compelling predictive power

demonstrated by general relativity thus far might lead one to ask the question ”Is it

truly possible to exceed the speed of light?”

It was this concept which led Miguel Alcubierre to come up with the first mathe-

matical description of superluminal (faster than light) travel in the form of the ”warp

drive” metric. His solution to the Einstein field equations permits for superluminal

travel by the apparent mechanism of distorting spacetime in a particular region, the

”warp bubble” in such a way that the cosmic speed limit can be broken. This prescrip-

tion for space travel is not without its problems though; and so we seek to describe

the warp drive in a mathematically rigorous manner, and analyze the implications of

the Alcubierre spacetime and related metrics through various lenses of physics.

Although warp drive spactimes themselves may have unphysical qualities which

could exclude the possibility of ever experimentally realizing a warp bubble, they can

be used quite effectively to probe the foundations and limits of general relativity, for

the purpose of better understanding the underpinnings of the theory.

We begin with a review of the primary mathematical language used for general

relativity: differential geometry. This will by no means be a thorough review of dif-

ferential geometry, as it will be skewed toward the purpose of taking the fastest route

to the fundamental equations of general relativity: the Einstein field equations. Next,

special topics in the theory will be presented which are necessary for the understand-

ing of warp drive spacetimes and their implications, after which we move to a review

of the literature surrounding warp drives from past to present. Finally, an alterna-

tive methed of characterizing superluminal travel using a light cone based coordinate

system is presented.
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CHAPTER 2

REVIEW OF GENERAL RELATIVITY

Before continuing the discussion of Warp drives, the necessary mathematical and

physical frameworks must be laid down. This section utilizes the textbooks [7–10] for

reference.

In general relativity, gravity is not actually modeled as a force between objects,

as it is in Newtonian mechanics. Gravity is instead thought of as a manifestation of

the curvature of spacetime, which is brought about by the presence of matter and

energy density. The path that a particle takes in the presence of a gravitational field

is a geodesic, or the equivalent of a ”straight line” in a curved space. In the next

several sections, the key concepts of general relativity are reviewed, along with some

specialized topics for the purpose of describing warp drive spacetimes.

2.1 Manifolds and Maps

In order to model the curvature of spacetime and describe gravitation the way

Einstein intended, we must decide what exact mathematical object to take as our

representation of spacetime itself. An important property we want this structure to

have is that over sufficiently small distances spacetime is locally Minkowskian, or

”flat”, but over larger distances the curvature can still be nontrivial. The object

satisfying these properties is called a manifold.

One can rationalize an intuitive definition of manifolds simply by examples: the

surface of a sphere or a torus, the Euclidian space Rn, the surface of a table, or even

a single cone. In general, a manifold can be described as a space that may be curved

3



Fig. 2.1.1.: A composite map. In this composition the map φ first acts on a ∈ A to give the image φ(a) ∈ B. Next
the map ψ acts on φ(a) to give ψ(φ(a)) ∈ C.

and have a complicated topology, but locally looks just like Rn. There are some

subtleties that become obscured by this definition, however, and so a more formal

treatment is necessary.

We begin with the notion of a map between two sets. For two sets M and N ,

a map φ : M → N is an object which assigns exactly one element of N to each

element of M . A map generalizes the concept of a function. Additionally, given

two maps φ : A → B and ψ : B → C we can define the composition of φ and

ψ as ψ ◦ φ : A → C. In more familiar notation we can write the composition as

(ψ ◦ φ)(a) = ψ(φ(a)). In this composition the map φ first acts on a ∈ A to give the

image φ(a) ∈ B. Next the map ψ acts on φ(a) to give ψ(φ(a)) ∈ C. This relationship

is represented graphically in Figure 2.1.1.

A map is one-to-one if each element of N has at most one element of M mapped

into it, and onto if each element of N has at least one element of M mapped into it.

A map which is both one-to-one and onto is called invertible or bijective. In that

case we can define the inverse map φ−1 : N → M . In the more familiar notation

this becomes (φ−1 ◦ φ)(a) = φ−1(φ(a)) = a.

4



Now we take a brief intermission to define and clarify the concept of differen-

tiability. We seek a fundamental definition of a derivative, which will apply to all

vector spaces we will discuss in the future. Begin with a map K : X → V , where X

and V are both vector spaces. Consider two vectors x ∈ X and v ∈ X. The Fréchet

derivative with respect to a real parameter ε can then be defined

DxK(v) ≡ d

dε
K(v + εx)

∣∣∣
ε=0
. (2.1.1)

The Fréchet derivative can be generalized to higher order by

Dx1,x2,...xnK(v) =
∂n

∂ε1∂ε2...∂εn
K(v + ε1x1 + ε2x2 + ...+ εnxn)

∣∣∣
ε1,2,...n=0

. (2.1.2)

We then say that a map is Cn or differentiable n times.

Given this concept of differentiability, there exists a special kind of map of interest

called a smooth map, which must be continuous and infinitely differentiable (C∞).

We then call two sets M and N diffeomorphic if there exists a (C∞) map φ : M → N

and a (C∞) inverse φ−1 : N →M . The map φ is then called a diffeomorphism.

Next we define a chart or coordinate system as a subset U of M , along with

a one-to-one map φ : U → Rn such that the image φ(U) is an open set in Rn and U

is an open set in M . A C∞ atlas is an indexed collection of charts {Uα, φα} which

satisfies the two conditions:

1. The union of the Uα is equal to M , in other words the Uα cover M entirely.

2. The charts are smoothly sewn together, or in other words the intersections of

any subsets Uα∩Uβ on the manifold map smoothly to Rn and all the associated

maps are C∞

This process of smoothly sewing together C∞ maps to describe a manifold is

illustrated in Figure 2.1.2. Finally, the C∞ manifold is defined as a set M together

5



Fig. 2.1.2.: A manifold can be described by overlapping coordinate charts.

with an atlas that contains every possible chart. It is implicitly assumed hereinafter

that all manifolds are smooth and differentiable at least as many times as we need

them to be.

6



2.2 Vectors and Tangent Spaces

Now that we have a mathematical notion of ”what is spacetime?”, we now turn

to the question of ”what is in spacetime?” As in all of physics, we model the motion

and interaction of objects using vectors. The concept of a vector is familiar, but we

will introduce them in a way which generalizes to curved spaces effectively.

An important feature of the definitions we use is that they do not depend upon

the manifold M being embedded in Rn, in order to keep our results as general as

possible. To this end, we define a curve α on M as a smooth map

α : R→M (2.2.1)

which assigns to each real number a unique point on the manifold. Then, let (U, φ)

be a coordinate chart on M , with the assumption that α(t) ∈ U for all t ∈ R. The

curve α then has the coordinate representation

xk = φk(α(t)) (2.2.2)

where φk denotes the kth coordinate at the point φ(α(t)) ∈ Rn.

For some fixed t = t0 we can define the tangent vector at the point α(t0) as

the directional derivative of the real-valued function f(α(t)) at t = t0 using the chain

rule, which gives

d

dt
f(α(t))

∣∣∣
t=t0

=
∂f

∂xk
dxk

dt

∣∣∣
t=t0

. (2.2.3)

Now define the differential operator v as

v =
∑
k

vk
∂

∂xk
, (2.2.4)

7



where vk =
dxk

dt
=

d

dt

(
φk(α(t))

)∣∣∣
t=t0

. Then we can rewrite (2.2.3) as

d

dt
f(α(t))

∣∣∣
t=t0

= vk
∂f

∂xk
, (2.2.5)

where we have now introduced the Einstein summation convention. In this con-

vention, it is implied that there is a sum over all possible values of an index which

is repeated once up and once down. Additionally, an index can only be repeated

exactly once up and once down. This convention will become more important when

we introduce tensors in the next section.

From (2.2.5) we see that a vector can be thought of as not only a tangent to a

curve, but also as a differential operator which acts on a smooth function f to give a

number v(f). We then define the set of all possible tangent vectors at a point p in

M as the tangent space of M at p, denoted Tp(M). A useful way to conceptualize

the tangent space is to visualize all of the possible curves on M that pass through

the point p and then drawing their tangent vectors at that point. An example of this

is shown in Figure 2.2.1.

It can be shown that the tangent space satisfies all properties of a vector space,

but it is sufficient for our purposes to just take this fact for granted and move on.

Given the fact that Tp(M) is a vector space we rewrite (2.2.4) as

v = vkek, (2.2.6)

where ek =
∂

∂xk
are the basis vectors for the space.

An important consideration is that vectors are geometrical objects, and therefore

must be independent of the coordinate system in which they are described. Thus we

require that the components of vectors transform contravariantly, according to

vk
′
=
∂xk

′

∂xk
vk. (2.2.7)

8



Fig. 2.2.1.: An example tangent space Tp for a two-sphere.

Since the tangent space is a vector space, it stands to reason that there exists a

dual vector space (again the proof can be found in the reference texts), which is

called the cotangent space, denoted T ∗p (M). Each element of this space is a linear

function ω which takes each vector v to a real number ω(v). These linear functions

are called dual vectors, covariant vectors, one-forms, or even just ”forms” for

short.

Given a smooth function f , its differential df is in fact a one-form, which acts

on vectors according to

df(v) ≡ 〈df, v〉 ≡ v(f) = vk
∂f

∂xk
(2.2.8)

where 〈 , 〉 denotes the inner product of a vector and a form. df has the coordinate

representation

df =
∂f

∂xk
dxk. (2.2.9)

Analogously to vectors, the set of dxk form a dual basis for the cotangent space

and we can write the components as ωk =
∂f

∂xk
. Dual vectors can then be represented

9



by

ω = ωkdx
k . (2.2.10)

Then the inner product of a vector and a form can be written as

〈
ωkdx

k, vm
∂

∂xm

〉
= ωkv

m
〈
dxk,

∂

∂xm

〉
= ωkv

mδkm = ωkv
k. (2.2.11)

Analogously to vectors, the transformation equation for the components of one-

forms is given by

ωk′ =
∂xk

∂xk′
ωk. (2.2.12)

2.3 Tensors

To continue our discussion of objects in spacetime, we now turn to tensors. In

short, tensors are multilinear maps defined at a point in the manifold, which generalize

the concepts of vectors and forms. This section will define tensors in a rigorous

way, utilizing both index-free and indexed (local coordinate) notation. Then, after

discussing some of the properties of tensors and their components, we will discuss a

very special tensor called the metric.

Begin with a differentiable manifold M of dimension n and consider a point p

on the manifold. We call V a tensor of rank {1,0} if V is a linear map assigning a

unique real number to each one-form ω ∈ T ∗p (M). More specifically, linearity implies

that

V(ω + σ) = V(ω) + V(σ) (2.3.1)

and

V(cω) = cV(ω). (2.3.2)

From this it should be clear that a tensor of rank {1,0} is a contravariant vector.

Next, call T a tensor of rank{2,0} at p, if T assigns a unique real number to

10



each ordered pair of one-forms ω, σ ∈ T ∗p (M), and does so in a bilinear fashion. That

is, that T is linear in each of its arguments separately:

T(c1ω1 + c2ω2, σ) = c1T(ω1, σ) + c2T(ω2, σ). (2.3.3)

and

T(ω, c1σ1 + c2σ2) = c1T(ω, σ1) + c2T(ω, σ2). (2.3.4)

The collection of all such bilinear maps T : T ∗p (M) × T ∗p (M) → R is called

the tensor product space ⊗2Tp(M). Analogously to the tangent space, it is the

collection of all {2,0} tensors at p. The tensor product space is also a vector space,

with addition and scalar multiplication defined by

(T1 + T2)(ω, σ) = T1(ω, σ) + T2(ω, σ) (2.3.5)

and

(cT)(ω, σ) = c(T(ω, σ)) (2.3.6)

for all c ∈ R.

We can then define a special kind of {2,0} tensor u⊗ v : T ∗p (M)× T ∗p (M)→ R

as

(u⊗ v)(ω, σ) = ω(u)σ(v) (2.3.7)

for all one-forms ω, σ. We call u⊗ v the tensor product of u and v, and of course

this object is an element of the tensor product space.

To write this tensor as an indexed object, first consider the set of one-forms {βk}

which constitutes a basis for T ∗p (M). If we expand ω, σ ∈ T ∗p (M) in terms of this

basis as ω = ωaβ
a and σ = σbβ

b then, using the linearity property we can write

T(ω, σ) = T(ωaβ
a, σbβ

b) = T(βa, βb)ωaσb ≡ T abωaσb (2.3.8)

11



where T ab are the components of T relative to this basis. We will, often enough,

refer to the components of a tensor and the tensor itself interchangeably, although

splitting the tensor into components technically requires the extra structure of a set of

basis objects. This is analogous to vectors, which are geometrical objects independent

of a particular coordinate system, but whose components are not. Note that we will

be using ”index notation” and ”abstract notation” interchangeably depending on the

situation.

If we instead have a basis {bk} for Tp(M) it can similarly be shown that

T = T abba ⊗ bb. (2.3.9)

Thus, any tensor can be written as a linear combination of the tensor products of

basis vectors.

To complete the definition of {2,0} tensors we now want to determine how they

transform. By using the definition of tensor components and the transformation

property of differential forms we can write

T a
′b′ = T(dxa

′
, dxb

′
) = T(

∂xa
′

∂xa
dxa,

∂xb
′

∂xb
dxb) =

∂xa
′

∂xa
∂xb

′

∂xb
T(dxa, dxb) (2.3.10)

or equivalently

T a
′b′ =

∂xa
′

∂xa
∂xb

′

∂xb
T ab. (2.3.11)

This equation holds for any {2,0} tensor. It is clear to see that this process of defining

a {2,0} tensor easily generalizes to tensors of type {n,0}. We will just have n upper

indices and all of the properties are otherwise the same. Another name for an {n,0}

tensor is a rank n contravariant tensor.

Now we seek a definition of a {0,n} tensor or a rank n covariant tensor. Begin

with a {0,1} tensor, which can be defined as a linear map which assigns a unique real

12



number to each tangent vector u ∈ Tp(M). As we saw with {1,0} tensors (which

were just vectors), {0,1} tensors are the same as forms. Next, define a {0,2} tensor

as a bilinear map which assigns a unique real number S(u,v) to each ordered pair of

tangent vectors u,v ∈ Tp(M) in a bilinear fashion, that is

ω(u + v) = ω(u) + ω(v) (2.3.12)

and

ω(cu) = cω(u) (2.3.13)

for any real number c.

We then call the collection of all such bilinear maps S : Tp(M) × Tp(M) → R

the tensor product space ⊗2T ∗p (M). This is the collection of all rank 2 covariant

tensors at a point p. Again, this tensor product space is a vector space with the usual

definitions of addition and scalar multiplication. Similarly to the contravariant case,

we can define the tensor product ω ⊗ σ, which is of course an element of the tensor

product space.

If the set of tangent vectors {bk} is a basis for Tp(M), then we can expand a

tensor in terms of components in this basis as

S(u,v) = S(uaba, v
bbb) = uavbS(ba,bb) = Sabu

avb. (2.3.14)

Alternatively, if the set of one-forms {βk} is a basis for T ∗p (M) then we can

expand to get

S = Sabβ
aβb (2.3.15)

. So, any {0,2} tensor can be written as a linear combination of tensor products of

basis one-forms. Next we write the transormation equation for a rank 2 covariant

13



tensor as

Sa′b′ =
∂xa

∂xa′
∂xb

∂xb′
Sab. (2.3.16)

As was the case with contravariant tensors, the generalization to rank {0,n} is trivial.

Finally, we can write the definition of a rank {r, s} mixed tensor as a multi-

linear map

M : (T ∗p (M))r × (Tp(M))s → R (2.3.17)

which maps each ordered (r + s) tuple into a real number. This can be written as

M(ω1, ω2, ...ωr,u1,u2, ...,us) ∈ R. (2.3.18)

Similarly to the previous processes, it can be shown that M can be expanded in

the form

M = M j1j2...jr
k1k2...kr

bj1 ⊗ bj2 ⊗ ...⊗ bjr ⊗ βk1 ⊗ βk2 ⊗ ...⊗ βks . (2.3.19)

We refer to such a tensor as ”rank r contravariant and rank s covariant” or even just

”rank(r+s)”. As was stated before, tensors are often referred to by only their indexed

components for shorthand notation. The transformation equation follows the same

pattern we have established, that is

M
j′1j

′
2...j

′
n

k′1k
′
2...k

′
n

= (
∂xj

′
1

∂xj1
∂xj

′
2

∂xj2
...
∂xj

′
n

∂xjn
) · (∂x

k1

∂xk
′
1

∂xk2

∂xk
′
2
...
∂xkn

∂xk′n
)M j1j2...jn

k1k2...kn
. (2.3.20)

Next we turn to a discussion of the properties of tensors. Begin with the operation

of contraction, which turns a {r, s} tensor into a {r− 1, s− 1} tensor. Contraction

is just summing over one upper and one lower index, according to

Sµρ σ = T µνρσν . (2.3.21)

The result will always be a well defined tensor according to previous definitions. It is
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only permissible to contract and upper index with a lower index. Note that the order

of the indices matters, so that in general

T µνρσν 6= T µρνσν . (2.3.22)

Tensors can also be symmetric in two indices (in this case µ and ν) if they

satisfy

Sµνρ = Sνµρ. (2.3.23)

Tensors can be symmetric in more than two indices. For the above example, if all

possible combinations of µ, ν and ρ are equivalent, the tensor is symmetric in all

three of those indices.

Similarly, a tensor is antisymmetric in any of its indices if it changes sign when

those indices are exchanged. For example if

Sµνρ = −Sµρν (2.3.24)

then the above tensor is antisymmetric in ρ and ν. If a tensor is symmetric or

antisymmetric in all of its indices we can refer to it as just ”symmetric” or just

”antisymmetric”.

For a {1,1} tensor we can define the trace as the scalar quantity:

X ≡ Xµ
µ = Tr(X). (2.3.25)

To conclude the exposition of tensors, we now introduce what is probably the

single most important object in general relativity: the metric tensor. The metric

tensor is a very special symmetric {0,2} tensor that has many different interpretations

and functions. It extends the concept of a scalar or ”dot product” in curved spacetime

15



via

g(u, v) = u · v. (2.3.26)

Note that the above equation begins the convention of not writing vectors with ar-

rows or bold face. As there are many different objects being manipulated in general

relativity, it is common practice to ”abuse notation” for the sake of simplicity. It is

common in general relativity to see vectors written as either their components vµ or

just as the vector itself v. From the above, we see that the metric can give the length

of a vector via

g(v, v) = v · v = |v|2. (2.3.27)

Two vectors are orthogonal if

g(u, v) = u · v = 0. (2.3.28)

Given a basis ei the dot product can also be written

g(u, v) = g(uiei, v
jej) = giju

ivj (2.3.29)

Another important function of the metric is to provide the notion of a line

element, or infinitesimal distance in curved spacetime via

ds2 = gijdx
idxj, (2.3.30)

where dxi and dxj are basis forms. Quite often ”line element” is used interchangeably

with ”metric”, as the two are intimately related. In fact, given a line element

ds2 = g11dx
2 + 2g12dxdy + g22dy

2 (2.3.31)
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we can read off the coefficients of the metric in matrix form as

gij =

 g11 g12

g21 g22

 (2.3.32)

We say that an interval (or a vector) is timelike if ds2 < 0, it is spacelike if

ds2 > 0, and it is null or lightlike if ds2 = 0. We can define the locus of lightlike

points emanating from a point p as the surface of a light cone. Then, any interval

beginning at p and extending to a point inside this cone is timelike and any interval

extending outside the cone is spacelike.

The metric has an inverse gij defined via

gijgjk = gmkg
mi = δik. (2.3.33)

The metric and its inverse also provide the important operation of raising and

lowering indices. To raise an index use

Tαβµ δ = gµγTαβ γδ (2.3.34)

and to lower an index use

Tαβµδ = gβγT
αγ

µδ. (2.3.35)

These roles that the metric fulfills are just a sampling of the most common

operations. When we move on to curvature and the Einstein field equations, we will

see that the metric even serves to replace the role of the Newtonian gravitational field

φ.

17



2.4 Lie Derivatives

With vectors and tensors thoroughly defined, we move on to the methods of

manipulating these objects. Since they are defined at particular points on manifolds,

there is no obvious way to compare two vectors/tensors at two different points. Be-

cause a manifold can, in general, be curved arbitrarily the objects at the two points

in question exist in different tangent spaces and thus cannot be logically compared

to one another. In later sections this fact will help us to rationalize the idea of faster

than light travel, but at the moment we would like a method of comparison. The Lie

derivative fulfills this role, completely independent of the existence of the metric.

Consider a smooth vector vield v on a region of a manifold. The congruence

of integral curves (with curve parameter λ) of this vector field defines a mapping φ

of the manifold onto itself. We can identify a point p with another point q on the

same integral curve using this mapping according to q = φλ(p) . Consider another,

independent, vector field u on the manifold with its own associated curve. If we take

the curve associated with u and ”drag” it from p to q using the congruence associated

with v, as demonstrated in Figure 2.4.1 we have completed the act of Lie dragging

the vector u.

The Lie derivative is then defined as the following: evlauate the vector at q =

φλ(p), drag it back to p using the inverse map φ−1
λ , and take the difference with the

original vector at p in the limit λ→ 0. Mathematically this can be written as

£vu ≡ lim
λ→0

(
φ−1
λ (u|φλ(p))− u|p

λ

)
. (2.4.1)

We can then write this component-wise as

£vu
α =

duα

dλ
− uβ∂βvα , (2.4.2)
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Fig. 2.4.1.: Lie dragging. The vector field v is represented by the vertical curves, while the vector field u is represented
by the horizontal curves

or equivalently

£vu
α = vβ∂βu

α − uβ∂βvα . (2.4.3)

The above can be recognized as the commutator of two vectors so that

£vu = [v, u] . (2.4.4)

The above definition applies to vectors and vector fields, and can easily be adapted

to forms and form fields via

£vωα = vβ∂βωα + ωβ∂αv
β . (2.4.5)

From here, it is a simple matter to extend the Lie derivative to tensors and tensor

fields of arbitrary rank by adding/subtracting a term for each index. As an example

we have

£vT
α
β = vµ∂µT

α
β − T

µ
β∂µv

α + Tαµ∂βv
µ . (2.4.6)
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The Lie derivative can be thought of as a way to write partial derivatives along

the direction of a given vector field in a way that is independent of the coordinates.

Consider an adapted coordinate system, in which we adapt one of the coordinates

of a given coordinate system, say x1, to the curves of a vector field v. We will then

have x1 = λ and e1 = v, which implies that the components of v are given by vα = δα1 .

Then the Lie derivative of a tensor Tαβ will simplify to just

£vT
αβ = ∂1T

αβ . (2.4.7)

As an illustration of the importance of the Lie derivative in the context of sym-

metries of a given spacetime, consider a manifold with metric gαβ. If the metric is

invariant under Lie dragging with respect to some vector field ξ then we will have

£ξgαβ = 0 . (2.4.8)

If, for some metric gαβ there exists a vector field ξ that satisfies the above equa-

tion, we say that ξ is a Killing vector field. This concept is analogous to cyclic

coordinates, which lead to conserved quantities in the Lagrangian formulation of

classical mechanics. Killing vectors can be used to arrive at various useful equations

involving symmetries of the spacetime in question, for example the orbits of celestial

bodies in the Schwarzschild solution.
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2.5 Curvature

Next on the quest to describe spacetime, we need to figure out how to charac-

terize its curvature. The go to object for describing how things change is the partial

derivative ∂µ. The problem with the partial derivative on curved manifolds, however,

is that it does not transform in a covariant manner (i.e. like a tensor should). We

will therefore seek a covariant form of the derivative which will act on vectors and

transform the way that a tensor operator should.

We begin by investigating the transformation properties of the partial derivative

acting on a scalar function φ. Using our established transformation equation we arrive

at

∂µ′φ =
∂xµ

∂xµ′
∂µ , (2.5.1)

which transforms exactly as expected. The problem comes in when we allow the

partial derivative to act instead on a vector vν . In this case we have

∂µ′v
ν′ =

(
∂xµ

∂xµ′
∂µ

)(
∂xν

′

∂xν
vν
)
. (2.5.2)

Applying the product rule for the ∂µ operator yields

∂µ′v
ν′ =

∂xµ

∂xµ′
∂2xν

′

∂xν∂xµ
vν +

∂xµ

∂xµ′
∂xν

′

∂xν
∂µv

ν . (2.5.3)

The second term above looks like the transformation behavior of a tensor, but the

first term ruins everything. We therefore define a covariant derivative to be an or-

dinary partial derivative plus a linear correction that guarantees the correct tensorial

transformation properties, that is

∇µv
ν = ∂µv

ν + Γνµλv
λ , (2.5.4)

where the Γνµλ are called the connection coefficients, or the Christoffel symbols

21



of the second kind. It is important to note that, by definition, the connection

coefficients are not tensors. They are defined to transform such that there will be an

extra (subtracted) term in order to cancel the unwanted term in (2.4.3) above. Thus,

the covariant derivative of a vector transforms covariantly because we demanded it

be so in defining it. Similarly we can define the covariant derivative of a one-form by

demanding there be instead a subtracted linear correction so that

∇µων = ∂µων − Γλµνωλ . (2.5.5)

We can then define the covariant derivative of a tensor with any number of indices.

For each upper index introduce one +Γ term and for each lower index introduce one

−Γ term. It’s useful to add that there are different conventions for denoting partial

and covariant derivatives, one of which uses a semicolon directly before an index to

indicate a covariant derivative and a comma before an index to indicate a partial

derivative. Examples would be

vµ,ν = ∂νv
µ . (2.5.6)

T µα;β = ∇βT
µ
α . (2.5.7)

For this discussion, the ”∇” notation will usually be used, but in some cases the

semicolon notation may be used as well.

As might be expected, since the metric tells us about the geometry of a manifold,

the connection coefficients can be found for a given metric. However, to get the

desired form useful for general relativity, we must make two assumptions. The first

assumption requires another definition. Note that while the connection itself is not a

tensor, the difference between two connections is a tensor. Define the torsion tensor

to be

T λµν = Γλµν − Γλνµ . (2.5.8)
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The torsion tensor above is clearly antisymmetric in its lower indices, and therefore

we say that any connection symmetric in its lower indices is ”torsion-free”, since

the torsion tensor will vanish for that connection. Next we define a connection to be

metric compatible if the covariant derivative of the metric (and its inverse) with

respect to that connection is zero, i.e.

∇ρgµν = 0 . (2.5.9)

In general relativity, we typically use the metric compatible torsion-free con-

nection, which satisfies the above two properties. An important feature of this

connection is that it is unique: there is exactly one per metric. These requirements

are not part of the definition of the covariant derivative, they merely identify a unique

one from many possible other definitions.

Finally, with this information in hand, we can find an expression for the metric

compatible torsion-free connection in terms of derivatives of the metric itself:

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.5.10)

We can achieve an intuitive understanding of the connection coefficients by think-

ing of them as gravitational ”forces” in the context of general relativity. Since it is

always possible to pick a coordinate system at a specific point on a manifold for which

the connections vanish (just by requiring that the first derivatives of the metric vanish

at that point), one could then rationalize that this coordinate system corresponds to

the reference frame of a body in free fall. This concept of making the connection

coefficients vanish at a point only applies at that point, and not in its neighborhood,

which will come into play when we next discuss geodesics.

In order to understand curvature and what a covariant derivative implies, we

need to discuss and define geodesics. Simiply put, a geodesic is a ”straight line” on
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a curved manifold. An example would be great circles on the surface of a two-sphere.

If we were to take one of those great circles off of the sphere, cut it in the middle

and lay it out on a table, it would be perfectly straight. For a more mathematically

rigorous definition, start by considering a parameterized curve xµ(λ) and a tensor

Kαβ
ν . In order for this tensor to be constant along the curve in flat space we simply

require (via the chain rule)

d

dλ
Kαβ

ν =
dxµ

dλ

∂

∂xµ
Kαβ

ν = 0 . (2.5.11)

To generalize this property to curved spaces we simply replace the partial derivative

operator with a covariant derivative. Define the directional covariant derivative

to be

D

dλ
=
dxµ

dλ
∇µ . (2.5.12)

Then the parallel transport of the tensor along the path xµ(λ) is just the

requirement that the covariant derivative of the tensor along the path vanishes, i.e.

D

dλ
Kαβ

ν ≡
dxσ

dλ
∇σK

αβ
ν = 0 . (2.5.13)

The above is the parallel transport equation and tells us about how vectors

transport in curved spaces. To arrive at the geodesic equation, we simply demand

that the directional covariant derivative of a tangent vector along the path xµ(λ)

vanish so that

D

dλ

dxµ

dλ
= 0 , (2.5.14)

or equivalently by applying our earlier definition

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 . (2.5.15)

The above is the geodesic equation, whose solutions are geodesics on the man-
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ifold. Note that in flat space the connection coefficients vanish and the geodesic

equation reduces to the equation for a straight line. In general relativity, we say that

a test particle is a particle which does not influence the geometry though which

it moves (a great approximation for small objects orbiting a large one for example).

Test particles always move along geodesics, or the path of greatest proper time along

a manifold.

Next on the path to describing the curvature of a manifold, we finally come to the

fundamental object describing curavature: the Riemann curvature tensor. First,

consider the commutator of two covariant derivatives [∇µ∇ν ]v
ρ. This commutator

tells us the difference between parallel transporting vρ first in one direction and then

in another. Expanding the commutator we can write

[∇µ∇ν ]v
ρ = ∇µ∇νv

ρ −∇ν∇µv
ρ . (2.5.16)

Using the definition of the covariant derivative it can be shown that the above expands

to

[∇µ∇ν ]v
ρ = (∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ)vσ − 2Γλ[µν]∇λv

ρ . (2.5.17)

Recognizing that the last term above has the torsion tensor 2Γλ[µν] and assuming zero

torsion, we can write the Riemann curvature tensor as

[∇µ∇ν ]v
ρ = Rρ

σµνv
σ . (2.5.18)

Then in explicit form, in terms of the (torsion-free) connection, the Riemann curvature

is

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ . (2.5.19)

An important fact to note about the Riemann tensor is that if it vanishes, we can
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always construct a coordinate system in which the metric components are constant,

and vice-versa. This means that if each component of the Riemann tensor vanishes,

the spacetime in question is flat.

At first glance, since there are four indexes and (in 4-dimensional spacetimes) four

possible values for each index, it appears we have 44 = 256 independent components

of the curvature tensor. In fact, there are some symmetries of the curvature tensor

which reduce that number from 256 to just 20 at maximum. These symmetries are

more easily expressed using the form of the curvature tensor with all indices lowered;

and are given by

Rµνρσ = −Rµνσρ = −Rνµρσ , (2.5.20)

Rµνρσ = Rρσµν , (2.5.21)

and

Rµνρσ +Rµρσν +Rµσνρ = 0 , (2.5.22)

where in the last equation we have taken cyclic permutations of the last three indices.

Another important identity involving the Riemann curvature tensor is the Bianchi

identity, which is

∇[λRρσ]µν = 0 , (2.5.23)

where the square brackets around λ, ρ, and σ indicate a sum over cyclic permutations

of those indices. Without the ”bracket notation”, the Bianchi identity is

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0 . (2.5.24)

With the Riemann curvature defined and some identities laid out, we can then

define two other important curvature-related objects. First we define the Ricci ten-
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sor as the contraction of the Riemann tensor

Rµν ≡ Rλ
µλν , (2.5.25)

and next we define the Ricci scalar or scalar curvature as the trace of the Ricci

tensor

R ≡ Rµ
µ = gµνRµν . (2.5.26)

The Ricci tensor is of course symmetric, due to the symmetries of the Riemann tensor.

The last curvature-related tensor to be discussed for this section comes from

contracting the Bianchi identity twice with the inverse metric to write

0 = gνσgµλ(∇λRρσµν +∇ρRσλµν +∇σRλρµν) . (2.5.27)

Writing in terms of the Ricci tensor and Ricci scalar yields

0 = ∇µRρµ +∇ρR +∇νRρν , (2.5.28)

or equivalently

∇µRρµ =
1

2
∇ρR . (2.5.29)

We can use the metric to rewrite the above as

∇µRρµ =
1

2
Rgµρ∇µ . (2.5.30)

Factoring out the covariant derivative and renaming indices (ρ→ ν) we can write

∇µ(Rµν −
1

2
Rgµν) = 0 . (2.5.31)

Then we define the Einstein tensor or the trace-reversed Ricci tensor to be the

part in parenthesis above

Gµν ≡ Rµν −
1

2
Rgµν . (2.5.32)
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The Einstein tensor is also symmetric due to the symmetry of the Ricci tensor. For

later use, we can rewrite the twice-contracted Bianchi identity in the form

∇µGµν = 0 . (2.5.33)
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2.6 The Einstein Field Equations

With a means to describe the curvature of spacetime, we next need an under-

standing of how this curvature arises as a result of the presence of matter and energy

density. The equations that provide this description are called the Einstein Field

equations, and are the fundamental equations governing general relativity. They can

be thought of as the curved-spacetime analog of Poisson’s equation for the Newtonian

potential.

Before describing the physical motivation for arriving at the particular form of

the field equations, we will first need a tensorial description of the matter-energy

density at a point in spacetime. The object which provides this description is the

stress-energy tensor. This tensor represents the four-momentum density seen by

any observer, and can be represented in matrix form as

T µν =



ρ j1 j2 j3

j1 S11 S12 S13

j2 S21 S22 S23

j3 S31 S32 S33


. (2.6.1)

In the above, ρ represents relativistic mass density, the ji represent flux of relativistic

mass across the xi surface, and the Sij represent the flux of the i th component of

linear momentum across the xj surface.

A particular form of matter that is often used as a heuristic tool is the perfect

fluid, which is comprised of many point-particles that are affected by gravitation,

but do not interact with one another. This perfect fluid has a very tidy stress energy

tensor associated with it, which is often used in simplified calculations to elucidate
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the properties of a spacetime. The stress energy tensor for a perfect fluid is given by

T µν =



ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


, (2.6.2)

where p represents pressure of the fluid.

The stress energy tensor is always symmetric in general relativity, and obeys a

conservation equation wherein the covariant divergence of the stress energy tensor

vanishes

∇νT
µν = 0 . (2.6.3)

With a working definition of the matter-energy density through a region of space-

time in tow, we next demonstrate a method for postulating the Einstein field equa-

tions. Since the stress energy tensor is rank 2, it is reasonable to guess that wee seek

a tensor equation involving two-index objects with the stress energy tensor on one

side, and some combination of curvature tensors on the other. This equation must

reduce to Poisson’s equation for the Newtonian potential

∇2φ = 4πGρ , (2.6.4)

in the non relativistic limit. One such tensor equation is

Rµν = κTµν . (2.6.5)

While this equation does reduce to Poisson’s equation in the non-relativistic limit,

there is a problem in the fact that the right hand side must obey the conservation

equation (2.6.3). This means that the left hand side has additional constraints given
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by

∇νR
µν = 0 , (2.6.6)

which creates an overdetermined and unsolvable system. There is another rank two

curvature-related tensor, however, which involves both the Ricci curvature tensor

and the metric tensor: the Einstein tensor. From (2.4.33) we already know that the

Einstein tensor obeys the requisite conservation equation that the stress energy tensor

must also obey, and thus no additional constraints are imposed on the system. It is

therefore reasonable to propose a field equation of the form

Gµν = κTµν . (2.6.7)

Choosing κ appropriately will allow the above to collapse into Poisson’s equation

in the non-relativistic flat space limit. A little calculation shows that we must take

(in c = 1 or ”geometrical” units) κ = 8πG and the Einstein field equations can then

be written as

Rµν −
1

2
Rgµν = 8πGTµν , (2.6.8)

where the G on the right hand side of the above is the Newtonian gravitational

constant (not the trace of the Einstein tensor).

We can take the trace of the above equation to find that R = −8πGT Substitut-

ing this result and moving the trace term to the right hand side of the equation we

can recast the field equations as

Rµν = 8πG(Tµν −
1

2
Tgµν) . (2.6.9)

In vacuum, where Tµν = 0, the right hand side of the above vanishes and we can

write the vacuum Einstein field equations as

Rµν = 0 . (2.6.10)
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2.7 The 3+1 split

As should be expected with a set of relativistic equations, the Einstein field

equations treat space and time on equal footing. While this is mathematically natural,

it is sometimes more physically understandable to separate space and time. Among

other things, this allows one to treat time as an informal ”line” along which three

dimensional cross sections or ”snapshots” of space can be ”slid”. These foliations of

an n dimensional manifold into a collection of (n− 1) dimensional submanifolds are

called hypersurfaces.

We can then identify three possible types of hypersurfaces in general relativity. A

spacelike hypersurface is a hypersurface whose normal vector points in a timelike

direction, a timelike hypersurface is a hypersurface whose normal vector points in

a spacelike direction, and lastly a null hypersurface is a hypersurface whose normal

vector points in the null direction. This definition for a null hypersurface can be a

bit misleading, though, since a normal vector to a null surface is also tangent to that

surface. This is because k · k = 0 for a null vector and so the concepts of normal

and tangent become slightly obscured for the null case. What we really want is for a

normal vector k to satisfy k · ` = 0 for any vector ` on the surface.

This splitting of spacetime into surfaces of constant time has been done in a

few different ways with various goals in mind. The 3+1 formalism happens to be

the most common, and is often used in setting up and solving initial value problems

in numerical relativity for the purpose of studying the dynamics of certain systems.

While this thesis is not directly concerned with numerical relativity, the formalism of

the 3+1 split will help later to clearly illustrate the behavior of warp drives, along

with another formalism (discussed in the final chapter) which separates spacetime into

light cones. An additional clarification of notation should be made at this point: As

32



Fig. 2.7.1.: The 3+1 split formalism. The line to
(
xi
)′

represents the normal line of the Eulerian observers, while the

line to xi represents the constant coordinate line.

in many standard texts on relativity, we will assume Latin indices are purely spatial

(1,2,3), while Greek indices include both space and time components (0,1,2,3).

Begin by considering a spacetime with metric gµν and two adjacent spacelike

hypersurfaces Σt and Σt+dt From Figure 2.7.1, which demonstrates the foliation of

spacetime into spacelike hypersurfaces, we can determine the geometry of spacetime

between the two hypersurfaces with three pieces of information:

1. The three dimensional metric γij measuring distances within the hypersurface

itself

dσ2 = γijdx
idxj . (2.7.1)

2. The lapse of proper time dτ between the hypersurfaces as measured by an

observer moving along the direction normal to the hypersurfaces

dτ = α(t, xi)dt , (2.7.2)

where α is called the lapse function and such observers are called Eulerian
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observers.

3. The relative velocity βi between the Eulerian observers and the lines of constant

spatial coordinates

xit+dt = xit + βi(t, xj)dt , (2.7.3)

where the 3-vector βi is called the shift vector.

With these three pieces of information specified, and using the above figure we

can write the 3+1 split metric in general form

ds2 = (αdt)2 + γij(β
i + dxi)(βj + dxj) , (2.7.4)

or equivalently

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj . (2.7.5)

Additionally from the figure we can write the four velocity of the Eulerian observers

as the timelike unit vector normal to the hypersurfaces

nµ =

(
1

α
,−β

i

α

)
, nµ = (−α, 0, 0, 0) . (2.7.6)
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2.8 Projection Tensors and Extrinsic Curvature

Up to now, we have mostly considered the curvature of Riemannian manifolds

without mention of any kind of embedding in a higher dimensional space. In differen-

tial geometry we often avoid embeddings in order to keep the mathematics as general

as possible. With the 3+1 split, however, knowledge of embeddings or ”slices” of

spacetime is required.

When a manifold is embedded in a higher dimensional space there are actually

two kinds of curvature that can be distinguished: intrinsic curvature and extrinsic

curvature. Intrinsic curvature is the curvature that has been discussed up to this

point, and does not depend on any particular kind of embedding. This curvature is

measurable by ”inhabitants” of the surface, and is also detectable by inhabitants of a

higher dimensional space; take for example the curvature of a two-sphere. Extrinsic

curvature, on the other hand, is only detectable by inhabitants of the higher dimen-

sional embedding space. An example of an object with purely extrinsic curvature (no

intrinsic curvature) would be a cylinder.

As we have seen, the intrinsic curvature is defined in terms of the metric tensor.

The extrinsic curvature, on the other hand, is defined as a measure of the change of

a normal vector nµ to the hypersurface under parallel transport. For a mathematical

treatment of the extrinsic curvature, we first define the projection operator or

projection tensor, which projects arbitrary vectors onto the hypersurfaces, as

P µ
ν ≡ δµν + nµnν . (2.8.1)

The projection tensor can also be written in fully covariant form as

Pµν = gµν + nµnν . (2.8.2)
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The projection tensor has a few interesting properties aside from the ability to

project vectors onto hypersurfaces. First, given two vectors V µ and W ν that are

already tangent to the hypersurface, the projection tensor will actually act just like

the metric tensor, via

PµνV
µW ν = gµνV

µW ν + nµnνV
µW ν . (2.8.3)

The second term above vanishes due to orthogonality and we simply have

PµνV
µW ν = gµνV

µW ν . (2.8.4)

Additionaly it can be shown from the original definition that the projection

tensor is indempotent, which means that acting two or more times produces the

same result as only acting once, i.e.

P µ
αP

α
ν = P µ

ν (2.8.5)

The projection tensor is also known as the first fundamental form of the

hypersurface. Additionally, due to the first property discussed, the projection tensor

is none other than the spatial metric γij from the 3+1 split formalism (for spacelike

hypersurfaces).

Defining the extrinsic curvature as a measure of the change of a normal vector

nµ under parallel transport, it becomes clear that we can characterize this curvature

mathematically with a covariant derivative. It tells us how the orientation of the

surface changes from place to place, via

Kµν ≡ −Pα
µ∇αnν = −(∇µnν + nµn

α∇αnν) . (2.8.6)

The extrinsic curvature is purely spatial as defined above, and also happens to be
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symmetric. The extrinsic curvature can also be defined in terms of the Lie derivative

and the spatial metric γij from the 3+1 split via the equation

Kµν = −1

2
£nγµν . (2.8.7)

Since the Lie derivative is linear such that

£φnγµν = φ£nγµν (2.8.8)

we can write

Kµν = − 1

2α
£αnγµν = − 1

2α
(£t −£β)γµν , (2.8.9)

where t is a timelike vector and β is the shift vector from the 3+1 split metric. We

can then make use of an adapted coordinate system £t → ∂t to write

∂tγij −£βγij = −2αKij . (2.8.10)

Expanding using the definition of the Lie derivative we have

∂tγij = −2αKij +Diβj +Djβi , (2.8.11)

where Di represents covariant differentiation only with respect to the spatial metric

γij. In fact, this derivative can be defined in terms of the projection of the the full

covariant derivative as Dµ ≡ Pα
µ∇α. The above can then be rearranged to read

Kij =
1

2α
(Diβj +Djβi − ∂tgij) . (2.8.12)
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2.9 Energy Conditions

Considering the right hand side of the Einstein field equations, one sees that

there is no built-in restriction on the type of matter/energy described by the stress

energy tensor Tµν . It is clear that the metric serves the role of solution to the field

equations, but there is no way to specify which metrics lead to realistic descriptions of

spacetime. Indeed, one could simply pick an arbitrary metric, compute the relevant

curvature components and then demand that the Einstein tensor be equal to the

stress energy tensor. The spacetime described may or may not make any practical

sense, however. Thus, we can see the motivation for the energy conditions, which

are coordinate invariant restrictions on the stress energy tensor, and define what a

”realistic” source of energy and momentum should be.

The energy conditions are not physical laws, but instead they are a set of as-

suptions about how any reasonable form of matter/energy density should behave. As

such, there are many formulations of the energy conditions. Most commonly they are

presented in the form:

1. Weak Energy Condition (WEC): The energy density seen by all observers

is non-negative, so that

Tµνu
µuν ≥ 0 (2.9.1)

for any timelike unit vector uµ .

2. Strong Energy Condition (SEC): The energy density plus the sum of the

principal pressures must be non-negative, so that

Tµνu
µuν + T/2 ≥ 0 , (2.9.2)

for an any timelike unit vector uµ, with T ≡ T µµ . For a perfect fluid this
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becomes ρ+ 3p ≥ 0 . The Einstein field equations imply that this statement is

equivalent to

Rµνu
µuν ≥ 0 . (2.9.3)

3. Null Energy Condition (NEC): The energy density plus any of the principal

pressures must be non-negative, so that

Tµνk
µkν ≥ 0 , (2.9.4)

for any null vector kµ . For a perfect fluid this becomes ρ+p ≥ 0, which implies

that the energy density can be negative so long as there is a compensating pos-

itive pressure. Through the field equations it can be shown that this statement

is equivalent to

Rµνk
µkν ≥ 0. (2.9.5)

There are two additional common energy conditions, the Dominant Energy

Condition (DEC) and the Null Dominant Energy Condition (NDEC). The

DEC includes the WEC as well as the additional requirement that Tµνu
µ be a non-

spacelike vector, so that

TµνT
ν
λu

µuλ ≥ 0 . (2.9.6)

This implies for our perfect fluid model that ρ ≥ |p| so that the energy density must

be non-negative and greater than the magnitude of the pressure.

The NDEC is the DEC for null vectors. It states that for any null vector kµ that

Tµνu
µ must be a non-spacelike vector, so that

TµνT
ν
λk

µkλ ≥ 0 . (2.9.7)
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CHAPTER 3

WARP DRIVE SPACETIMES

With the relevant mathematical frameworks reviewed, we move to a discussion of

the past and current literature regarding warp drives. We begin with a summary of

the orignal paper by Alcubierre introducing the warp drive metric[11], and a method

of rewriting it[12], then discuss an example trip in a spaceship using this metric

as a guideline[13], and finally move to a discussion of the literature that spawned

surrounding it.

There are a number of physical problems regarding the nature of warp drives,

which can be described using a few different viewpoints of relativistic physics. This

chapter will essentially be a review of these problems as seen through these differ-

ent ”lenses”. Note that other theoretical methods of superluminal travel, such as

traversable wormholes and Krasnikov tubes [14, 15], exist and even have some simi-

larities to warp drives, but are not discussed in detail.

3.1 The Alcubierre Warp Drive

An important idea to reiterate and expand upon at this point is that the speed

of light is only the local speed limit in general relativity. As we have seen, there is

no natural way to compare two vectors or tensors at different points on a manifold,

since they exist in separate tangent spaces. We cannot compare the velocity at

point A to the velocity at point B unless points A and B happen to be sufficiently

close together that the curvature in their vicinity vanishes. This is the limiting case

where general relativity collapses to special relativity, and is a great approximation
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for measurements in laboratories. Across larger distances, within the framework of

general relativity, the cosmic speed limit has no fundamental definition, and so warp

drive spacetimes can be feasibly considered.

Ordinarily, when one seeks a solution of the Einstein field equations, one would

assume a reasonable distribution of matter (probably following the conventions of the

energy conditions) and then work out the resulting curvature induced on spacetime.

The Alcubierre metric is an example of doing just the opposite: we assume a particular

form of the curvature to achieve the desired effect (superluminal travel), only to find

that the matter-energy distribution giving rise to this spacetime does not obey the

energy conditions. While the fact that warp drives and related spacetimes violate

the energy conditions[11, 16–19] classically limits the possibility of actually building

them, we can nonetheless use them as a tool for probing the theoretical foundations

and limits of general relativity. We will see in later sections that the possibility of

negative energy densities is not forbidden in the framework of quantum field theory;

and so the warp drive spawned considerable interest in exploring quantum restrictions

in this context[20–25].

The first mention of a warp drive spacetime in the context of general relativity

was by Miguel Alcubierre in 1994 [11]. The basis for the idea is that, since the cosmic

speed limit need only be obeyed locally in general relativity, in principle one could

move from point A to point B (separated by a proper distance D) in a coordinate

time T <
D

c
, given an appropriate spacetime structure. Alcubierre’s initial insight

was to realize that one could contract spacetime in front of a spaceship and expand

spacetime behind it in order to simultaneously push the ship away from point A and

pull the ship toward point B. Alcubierre achieved this effect by starting with the
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general 3+1 split metric

ds2 = −dτ 2 = −(α2 − βiβi)dt2 + 2βidx
idt+ γijdx

idxj . (3.1.1)

Assuming the spaceship moves purely along the x axis of a cartesian coordinate system

one can then use the definitions

α = 1 (3.1.2)

βx = −vs(t)f(rs(t)) (3.1.3)

βy = βz = 0 (3.1.4)

γij = δij , (3.1.5)

where

vs(t) =
dxs(t)

dt
rs(t) = [(x− xs(t))2 + y2 + z2]1/2 , (3.1.6)

and where

f(rs(t)) =
tanh(σ(rs +R))− tanh(σ(rs −R))

2 tanh(σR)
(3.1.7)

is called the shape function; with xs(t) an arbitrary fucntion describing the tra-

jectory along which the spaceship is pushed, and with R > 0 and σ > 0 arbitary

parameters. Using the above definitions, the metric can be written in the simple

form

ds2 = −dt2 + (dx− vs(t)f(rs)dt)
2 + dy2 + dz2 . (3.1.8)

From the definition of the 3-metric γij = δij we see that the 3-geometry of the

hypersurfaces is flat. Since the lapse is simply α = 1 , it can be seen that the

”Eulerian observers” (those whose 4-velocity is normal to the hypersurfaces) are in

free-fall, i.e. that timelike curves normal to the hypersurfaces are geodesics. Since

the shift vector is non-uniform, the spacetime is not overall flat; however it can be

shown that the shift vector vanishes for rs � R and thus that far away from the
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Fig. 3.1.1.: The expansion of a cross section of spacetime in the Alcubierre metric with σ = 3 and R = 2.2

region centered at (xs(t), 0, 0) the spacetime will be essentially flat. This region with

radius ∼ R corresponds to the radius of the ”warp bubble”, inside of which would be

the spaceship. The parameter σ can be thought of as being inversely proportional to

the thickness of the warp bubble’s walls.

Since the 3-geometry of the hypersurfaces is flat, the curvature of the spacetime

is purely extrinsic. From the definition of the spatial metric γij the expression for the

extrinsic curvature reduces to just

Kij =
1

2
(∂iβj + ∂jβi) . (3.1.9)

Next, to describe the expansion θ of the volume elements of the Eulerian observers

we take the trace of the extrinsic curvature according to

θ = −αKi
i = vs

xs
rs

df

drs
. (3.1.10)
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The expansion has been visualized using software in Figure 3.1.1, taking the ship

to be moving in the x direction and the parameters to be σ = 3 and R = 2.2 .

It is also mentioned in Alcubierre’s paper that making the substitution xs(t) =

x into the metric provides the result dτ = dt, which implies that the spaceship

moves along a timelike curve, and furthermore that the spaceship experiences no

time dilation as it moves.

Another, less encouraging fact about the Alcubierre metric is that it violates the

weak, strong, and dominant energy conditions. Using the fact that the (timelike)

4-velocity of the Eulerian observers is given by

uµ =
1

α
(1,−βi) uµ = −(α, 0) , (3.1.11)

one can then calculate the Einstein tensor and show that the energy density seen by

these observers would be

T µνuµuν = α2T 00 =
1

8π
G00 = − 1

8π

v2
s(x

2 + y2)

4r2
s

(
df

drs

)2

. (3.1.12)

The above expression is always negative, which shows that the weak and dominant

energy conditions are violated. In a similar fashion, it can be shown that this space-

time also violates the strong energy condition. Calculations of the Einstein tensor

components and the subsequent violations of the energy conditions are detailed in

the appendices of a 2004 paper by Lobo and Visser[26], and in the review text by

Lobo[13]. The energy density has been visualized in Figure 3.1.2

44



Fig. 3.1.2.: The matter/energy density of the alcubierre metric. Note that both regions are negative, violating the
weak energy condition

3.2 The Zero-Expansion Warp Drive

Earlier it was stated that the assumed mechanism by which the warp drive oper-

ates is the contraction/expansion of the space ahead/behind the spaceship, and this

expansion was visualised in Figure 3.1.1. While this expansion of volume elements

may be a feature of the Alcubierre metric, José Natário[12] has demonstrated that it

is not necessarily a fundamental feature of warp drive spacetimes. To briefly illustrate

this concept, begin by considering a more general warp drive metric of the form

ds2 = −dt2 +
3∑
i=1

(dxi −X idt)2 , (3.2.1)

where the vector field X is given by

X = X i ∂

∂xi
= X

∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
. (3.2.2)
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The above vector field can be thought of as simply a time dependent vector in Eu-

clidean space. Thus, the warp drive metric above is uniquely specified by the choice

of this vector field. We can think of this metric as just the Alcubierre metric, but with

the ship capable of moving in an arbitrary direction. The curvature of this spacetime

will still be purely extrinsic, and we can recover the Alcubierre metric by choosing

appropriate components for the vector X, namely

X = vs(t)f(rs) , Y = Z = 0 , (3.2.3)

with vs(t) and rs defined the same as the Alcubierre metric, and f(rs) any smooth

function approximating a step function in a neighborhood of the origin and equal to

zero in the neighborhood of infinity.

Next note that the expansion of the volume element associated with the Eulerian

observers is given by

θ = Ki
i = ∂iX

i = ∇ ·X . (3.2.4)

This means that if X has vanishing divergence, then the expansion/contraction of

spacetime also vanishes. To demonstrate an example of this, assume the warp bubble

moves with velocity vs(t)
∂

∂x
and adopt spherical coordinates with

er ≡
∂

∂r
, eθ ≡

1

r

∂

∂θ
, eφ ≡

1

r sin θ

∂

∂φ
. (3.2.5)

Choosing X = Xrer + Xθeθ + Xφeφ and f(r) =
1

2
for large r and f(r) = 0

for small r it can be shown that the relevant components of the extrinsic curvature

become

Krr = −2vsf
′
cos θ , (3.2.6)

Kθθ = vsf
′
cos θ , (3.2.7)
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and

Kφφ = vsf
′
cos θ . (3.2.8)

The expansion is then the sum of these components

θ = Krr +Kθθ +Kφφ = 0 , (3.2.9)

and so we see that the expansion vanishes due the contraction in the radial direction

being compensated by expansions in the angular directions. Note, however that

although the expansion has been made to vanish, when one works out the energy

density as seen by Eulerian observers, the expression is still everywhere negative

and thus the energy conditions are still violated for this expansionless warp drive

spacetime. These calculations are laid out in detail in the appendices of a 2004 paper

by Lobo and Visser[26].
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3.3 A Journey Through Space

With the basics of the warp drive laid out, let us take a moment to ignore the

physical problems with this concept and enjoy an example trip from our solar system

at point A to some distant star system at point B, as described in [11, 13].

Consider two stars A and B separated by a distance D in a flat spacetime. At

time t0 the spaceship moves away from A at speed v < 1 (of course we are still using

the usual relativistic convention that c = 1) using its conventional rocket engines.

When the ship is a safe distance d away from the Earth, it can then come to rest

and engage its warp engine (using its ample supply of ”Unobtanium”) to set up an

appropriate disturbance in spacetime according the the Alcubierre metric. We will

assume that R � d � D where R is the radius of the warp bubble. Since the

spaceship starts from rest, vs = 0 and the disturbance will develop smoothly from

the otherwise flat spacetime.

When the ship is halfway between the two stars, the disturbance would need to

be modified such that the coordinate acceleration (recall that the ship experiences no

proper acceleration) switches quickly from a to −a. The spaceship would then find

itself at rest a distance d away from star B, and could use its conventional rocket

engines to move through flat spacetime to its destination.

If the changes in acceleration are more or less instantaneous, then the total

coordinate time T elapsed in the one way trip is just

T = 2

(
d

v
+

√
D − 2d

a

)
. (3.3.1)

The above coordinate time will also be the proper time elapsed from the view-

point of the stars A and B, since they remain in flat space. The proper time measured
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on the spaceship, however, is given by

T = 2

(
d

γv
+

√
D − 2d

a

)
, (3.3.2)

where γ =
1√

1− v2
. This demonstrates that the only time dilation in this situation

comes from the initial and final parts of the trip, where the ship is not using the warp

engine. Maintaining the assumption that R � d� D we can write the proper time

as

τ ≈ T ≈ 2

√
D

a
. (3.3.3)

It is then clear to see that T can be made arbitrarily small by making a arbitrarily

large. The proper time from both reference frames is then arbitrarily small and the

spaceship can effectively travel faster than light. As has been shown before, the

spaceship will always be on a timelike trajectory and inside its local light cone. That

is, light itself will be pushed along by the distortion of spacetime. Note that moving

a distance d before the warp engine is engaged is not necessary, but does ensure

that the stars remain unaffected by the disturbance in spacetime, and therefore do

not experience any related time dilation. This scenario of course assumes that we

have some method of generating the warp bubble and ignores many other physical

problems with the metric, some of which will be discussed in the next sections.
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3.4 Classical Energy Estimations and Quantum Inequalities

As we saw in previous sections, the Alcubierre and Natário drives appear to

require negative energy density in order to achieve the desired curvature of spacetime,

something that is classically forbidden. In the regime of quantum field theory (QFT)

however, violations of the classical energy conditions are abound, and have even been

experimentally verified in the case of the Casimir effect.

The Casimir effect is a purely quantum mechanical phenomenon wherein con-

ducting objects (the usual example being parallel conducting plates) at close distances

experience a force between them, due to the change in the zero point energy of the

electromagnetic field between the objects compared to the large vacuum surrounding

them. What this translates to for our purposes is that small regions of negative en-

ergy density are indeed possible, and in theory could produce something resembling

the curvature of a warp drive. The question to ask, then, is how much negative mass

can we produce and for how long? We will first answer this question from a classical

viewpoint, and then move on to a quantum inequality that gives upper bounds on

the negative mass based on an energy-time uncertainty argument.

To first find a classical approximation of how much energy condition violating

mass is needed to produce a warp bubble of a given size, thickness, and velocity, begin

with the expression for the matter density of the warp bubble in terms of the stress

energy tensor

ρwarp = Tµνu
µuν , (3.4.1)

where uµ is the four-velocity of the Eulerian observers. To get the total mass in the

bubble integrate this expression to get

Mwarp =

∫
Tµνu

µuν d3x . (3.4.2)
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Recall that the energy density (in units of G = c = 1) is given by

ρ = T µνuµuν = T 00 =
1

8π
G00 = − 1

8π

v2
b (x

2 + y2)

4r2
s

(
df

drs

)2

, (3.4.3)

where f is the Alcubierre shape function and vb represents the (approximately con-

stant) velocity of the warp bubble. Substituting this into the integral we have

Mwarp = − v2
b

32π

∫
x2 + y2

r2
s

(
df

drs

)2

r2 dr d2Ω , (3.4.4)

or equivalently

Mwarp = −v
2
b

12

∫ (
df

dr

)2

r2dr . (3.4.5)

The above integral can be approximated[26] using the Alcubierre shape function to

get the result

Mwarp ≈ −v2
bR

2σ . (3.4.6)

Since σ is inversely proportional to the thickness of the warp bubble, we see

that as the thickness decreases, the negative mass becomes greater. Additionally,

exceeding the speed of light becomes more and more difficult based on this estimate.

Moving to the realm of QFT, an estimate of the lower bound on the negative

energy density of a warp bubble was found by Pfenning and Ford[25] using results

from work by Ford and Roman[27]. This work placed a limit on the magnitude and

duration of the negative energy density experienced by an observer, in the form of a

”quantum energy inequality” (QEI), given by

τ0

π

∫ ∞
−∞

〈Tµνuµuν〉
τ 2 + τ 2

0

dτ ≥ − 3

32π2τ 4
0

, (3.4.7)

where τ is an inertial observer’s proper time and τ0 is an arbitrary sampling time.

This places a limit on the magnitude and duration of the negative energy density seen

by an observer. This inequality was originally derived for a massless scalar field in
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Minkowski spacetime, but it can be argued[24] that it applies for curved spacetime if

the sampling time is of or below the order of the smallest local radius of curvature.

First define the thickness ∆ of the warp bubble by rewriting the original Alcubierre

shape function into the form

fp.c.(r) =


1 R < R− ∆

2

− 1

∆
(r −R− ∆

2
) R− ∆

2
< r < R +

∆

2

0 r > R +
∆

2

(3.4.8)

We can find a relationship between ∆ and σ by setting the two functions equal

to one another at r = R, so that

∆ =

[
1 + tanh2(σR)

]2
2σ tanh(σR)

. (3.4.9)

In the limit of large σR we have ∆ ∼ 2

σ
. Substituting the expression for the energy

density and integrating as done by Pfenning and Ford[25] provides the interesting

intermediate result

∆ ≤ 102vbLPlanck , (3.4.10)

where ∆ is the thickness of the warp bubble, and LPlanck is the Planck length.

Thus it can be seen that the wall thickness cannot be much above the Planck

scale unless the velocity of the warp bubble is extremely large. Pfenning and Ford

then go on to assume a bubble radius of 100 meters and find that the total negative

energy required is approximately

E ≤ −3× 1020 Mgalaxyvb , (3.4.11)

where Mgalaxy is the mass of a typical galaxy. This means that even traveling at just

the speed of light vb = 1 the warp bubble appears to require negative energy ten

52



orders of magnitude greater than the total mass of the entire visible universe.

This astounding number was reduced greatly in a paper by Van de Broeck[28] by

rewriting the metric and effectively splitting the original Alcubierre drive into a few

regions, some of which have positive energy and some of which have negative energy.

It is demonstrated that the negative energy required for this spacetime (for vb = 1)

is roughly

E ≤ −1.4× 1030 kg , (3.4.12)

which is of the order of magnitude of a solar mass. This result is interesting, but

brings up a bigger and more important question: If we can simply rewrite the existing

metric and change the energies involved by such massive amounts, how can we be

certain that any calculated numbers are reliable? This illustrates the fundamental

motivation for attempting to consider warp drive spacetimes, or indeed any other

spacetimes, in a coordinate-independent manner. In the next few sections we continue

to briefly review other attempts to ”break” the warp drive spacetime, some of which

are actually coordinate-independent.
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3.5 Linearized Warp Drives

Linearized gravity[7] is an approximation method for weak-field gravitation that

has been used to describe gravitational radiation where the source is far away from

the field being considered. The first step is to rewrite the metric as

gµν = ηµν + hµν , (3.5.1)

where ηµν represents the Minkowski metric and hµν << 1 is a small perturbation on

the background flat space. Next adopt the Hilbert-Lorentz gauge (also known by

many other names)

∂ν h̄
νµ = 0 , (3.5.2)

where

h̄µν = hµν −
1

2
ηµνh (3.5.3)

is the trace-reverse of the perturbation hµν . Then we can write the linearized Einstein

equations as

�h̄µν = −16πGTµν , (3.5.4)

where � = ∂µ∂
µ = hαβ∂

α∂βhµν . We can equivalently write this in terms of the

trace-reversed stress-energy tensor as

�hµν = −16π GT̄µν , (3.5.5)

where

T̄µν(~y, t̃) = Tµν(~y, t̃)−
1

2
ηµνT (~y, t̃) . (3.5.6)
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This has a formal solution in terms of Greens functions given by

hµν(~x, t̃) = 16πG

∫
d3y

T̄µν(~y, t̃)

|~x− ~y|
, (3.5.7)

where we have defined ~x to be the observation point, ~y to be the source point, and

t̃ = t−|~x− ~y| to be the retarded time, which accounts for travel time from the source

to the observation point.

The implicit assumptions in this solution are that there is no incoming gravi-

tational radiation, and that the global (not just local) geometry of the spacetime is

approximately flat. It is this approximate global flatness that will allow us to break

our earlier rule and compare vectors at completely different points in spacetime, to

a good approximation. Following the argument made by Visser et. al.[16, 17], we

consider a null vector kµ of the unperturbed Minkowski spacetime so that

ηµνk
µkν = 0 . (3.5.8)

This vector has a norm satisfying

|k|2 = gµνk
µkν , (3.5.9)

or equivalently in our linearized theory

|k|2 = ηµνk
µkν + hµνk

µkν = hµνk
µkν . (3.5.10)

Using our general solution for hµν yields

hµνk
µkν = 16πG

∫
d3y

T̄µν(~y, t̃)k
µkν

|~x− ~y|
. (3.5.11)

Assuming the null energy condition holds, and noting that |~x− ~y|−1 is positive

definite, we can see that the integrand itself is positive-definite and therefore the

integral must be positive. Thus, ignoring the case of a completely empty spacetime
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we will have

gµνk
µkν > 0 , (3.5.12)

which shows that a null vector in the background flat metric must be spacelike in the

full perturbed metric. This means that the null cone of the perturbed metric must

everywhere fit inside of the null cone of the flat metric, i.e. the light cones always

contract if the NEC holds. This demonstrates that the local coordinate speed of light

can only decrease, and thus shows in a coordinate-independent manner that a warp

drive could only exist via exotic matter in the weak-field regime.

We could then argue that this should likely hold in the strong field case as well,

since we would expect that ”starting the warp engine” should vary smoothly from flat

space to the strong field perturbation. The catch to this argument, however, is that

we can no longer assume global flatness in the strong field case and must use other

methods to make our comparisons of the light cones, which considerably complicates

the situation.

Using an identical process to our classical estimation for the mass of the warp

bubble, it can be shown[13, 26] that for the linearized warp drive, where the bulk of

the mass in question will just be the mass of the ship Mship the classical inequality is

v2R2σ ≤Mship . (3.5.13)

As one might expect for a weak gravitational effect, any reasonably sized ship will

have its velocity severely limited.
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3.6 Horizon Problems

We now turn to yet another lens through which to examine warp drive spacetimes.

We first examine the light cone structure and show that the pilot of the spaceship in

an Alcubierre metric cannot create or otherwise control in any way the warp bubble;

and then demonstrate that an appropriate coordinate transformation results in a

singularity and event horizon.

Consider the proper reference frame of an observer at the center of a warp bub-

ble. Assume the warp bubble to be moving in the z direction and use a coordinate

transformation z′ = z − z0(t) so that the metric can be simplified to[13]

ds2 = −dt2 + dx2 + dy2 [dz′ + (1− f)vdt]
2

, (3.6.1)

where f = f(r) is the original Alcubierre shape function. A photon emitted along

the +z direction will have ds2 = dx = dy = 0 so that the above can be rearranged to

get

dz′

dt
= 1− (1− f)v (3.6.2)

If the spaceship is at rest at the center of the bubble, then a photon in the ”old”

coordinates will have

dz

dt
= v + 1 (3.6.3)

and in the transformed coordinates (where f = 1 in the center)

dz′

dt
= 1 . (3.6.4)

Now consider what happens when the photon moves to the region where space-

time is warped i.e. the ”edge” of the warp bubble, at some point z′ = z′c. Its

coordinate velocity can, in principle, be any value due to the curvature and so if we
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Fig. 3.6.1.: A photon can approach, but never reach the edge of the warp bubble.

try setting it equal to zero we have

0 = 1− (1− f)v . (3.6.5)

So that when

f = 1− 1

v
(3.6.6)

the photon will be at rest relative to the warp bubble and is trapped within, effectively

defining a horizon at the edges of the warp bubble.

If photons emitted in the interior region will never reach the outer region, then

the outer region must lie outside the future light cone of the spaceship, which renders

the Alcubierre metric quite unfeasible as a method of travel. In the crudest of terms:

you need a warp drive to control your warp drive. Figure 3.6.1 shows a spacetime

diagram of the situation, demonstrating the worldlines of an observer at rest that

encounters the warp bubble; and also the worldline of a photon that is emitted from

the center.

We can illustrate the event horizons of the warp drive metric in a different way by

again considering a warp bubble moving only in the z direction for which dx = dy = 0
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and rewriting the metric in the two dimensional form

ds2 = −(1− v2f 2)dt2 − 2vf dzdt+ dz2 . (3.6.7)

This time we will use our roughly constant bubble velocity vb along with a location

r2 = (z−vbt)2. We can then use a coordinate transformation r = z−vbt or equivalently

dz = dr + vbdt to write the line element as

ds2 = −A(r)

[
dt− vb(1− f)

A(r)
dr

]2

+
dr2

A(r)
, (3.6.8)

where A(r) is the Hiscock function defined as

A(r) = 1− v2
b (1− f)2 . (3.6.9)

We can next diagonalize the metric by using the coordinate transformation

dτ = dt− vb(1− f)

A(r)
dr . (3.6.10)

Then the metric takes the simpler form

ds2 = −A(r)dτ 2 +
dr2

A(r)
. (3.6.11)

By noting that A(r) → 1 for r → 0 we see that τ is just the proper time of the

observer at the center of the warp bubble. Next consider some point r0 toward the

outer edge of the warp bubble (analagous to our earlier point z′c) that satisfies

f(r0) = 1− 1

vb
and A(r0) = 0 . (3.6.12)

At this point, there is a coordinate singularity and event horizon, provided that vb > 1.

59



CHAPTER 4

GENERALIZED WARP DRIVE SPACETIMES

Up to this point, there has been much discussion of the implications and unphysicality

of the Alcubierre and related metrics, including descriptions of the nature of matter

giving rise to these metrics. Most of the literature regarding warp drives and superlu-

minal travel postulates a particular form of the metric and the resulting spacetime is

then characterized by ”back checking”, looking at the stress energy tensor and doing

related calculations. In principle, we could instead try to define how faster than light

travel should work starting from some simple diagrams and discussion, and charac-

terize the spacetime based on that. The focus of this chapter is on presenting the

foundations for some potentially new ways of thinking about superluminal travel.

First, an alternative means of superluminal travel is described, somewhat anal-

ogous to the ”Krasnikov Tube”[14], which sets the stage for the ”2+2” splitting of

spacetime. This 2+2 split could, in principle, be used to characterize the matter-

energy involved in superluminal travel without the explicit need for a metric. This

formalism utilizes a coordinate system based on the foliation of spacetime into light

cones, which propagate along a timelike worldline. This method has some similarities

with the Newman Penrose formalisim[29].

4.1 The ”Warp Tube”

First assume that before the superluminal device is ”turned on”, that our space-

time is approximately Minkowskian, and can be described through the usual coor-

dinates x, y, z, t . Take the Earth to be located at point A with spatial coordinates
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Fig. 4.1.1.: Spacetime diagram illustrating the boundaries of D+(S)

x = y = z = 0 and the planet Vulcan be located 4 light years away at point B.

Suppose that at time t = 0 we turn on the warp drive, powered by some form of

exotic matter.

On a spacelike hypersurface S at some t < 0 the spacetime is approximately flat

and unaffected by the warp drive, and as such has evolution equations that obey the

local light speed barrier. The future evolution of S is called the future domain of

dependence of S, or D+(S). Because these evolution equations have no way to take

our warp drive into account, they cannot extend into the future light cone of point

A. The boundary of the future light cone of point A is therefore the boundary of

D+(S) and is determined by the initial data on the surface S. The warp drive has no

way of affecting D+(S) and cannot change its boundary. It takes four years for that

boundary to reach point B and so we cannot travel there in less than four years no

matter what the warp drive does within the boundary. This is illustrated in Figure

4.1.1. The instant ”on-demand” warp drive cannot exist without tachyonic matter
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Fig. 4.1.2.: Spacetime diagram illustrating the action of the ”warp tube”

emmiters.

There is a different possibility for defining faster than light travel, however. We

could instead build a ”warp highway” or ”warp tube” which, once built, would allow

us to travel to a specific location in a very short time. This idea was first proposed by

Krasnikov[14] by essentially writing a different version of the Alcubierre metric (which

also happens to violate the energy conditions). In this next example, the future light

cone of the ”turn on” event (Earth at point A) still will not be affected, but an event

at a later time, say t = 3 will have its light cone widened by some exotic matter.

Again take Earth to be at x = y = z = 0 and Vulcan to be four light years away.

This time, however, at time t = 0 we begin to emit some finite amount of exotic

matter, beginning the process of building our superluminal highway. One important

fact to note is that our exotic matter is not travelling faster than light, and therefore

we must wait for it to permeate the space between point A and point B. For the

sake of simplicity, assume that the exotic matter can travel at the speed of light. At
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some later time t = 3, when the exotic matter has had time to (almost) reach the

destination, we can send our spaceship along the warp tube. If the ”warp tube” has

been traveling at the speed of light, then we can reach the other planet at the absolute

minimum time t = 4, with a total trip time of ∆t = 1. Then, since the highway has

been constructed, we can make trips back and forth between the Earth and the other

planet as we please.

We can characterize this behavior using the Einstein clock synchronization method.

Consider a two dimensional surface that includes the world lines of the origin, the

destination, and the spaceship. We can locate events by a pair of null coordinates

u, v. The times and distances that Einstein clock synchronization would assign to

these events would be

t′ = a(u+ v), x′ = a(u− v) , (4.1.1)

where a is some arbitrary constant that could be adjusted for clock rates. If we were

to assume equal travel times, say t1 = t2 then the only way for this prescription for

superluminal travel to work is by shrinking the distance to the destination. This

implies moving solar systems, however, which seems a bit unreasonable.

We could instead think of the coordinate t′ as being misaligned with global time

so that the coordinate description of the outgoing and incoming signals through the

warp tube will be asymmetrical. This effectively means that the warp tube would

provide extremely fast travel one way, and extremely slow travel the other way. A

rudimentary analogy would be to imagine trying to go the wrong way on a moving

walkway in the airport.

One consideration about this description is that if we adjust this diagram for

the frame of a moving observer, they could see up to three copies of the spaceship at

the same time. They would first see the ship waiting at the Earth before departure,
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Fig. 4.1.3.: Spacetime diagram of the warp tube in a moving reference frame. The spaceship’s trip in the tube has
been approximated as a straight. The dashed lines correspond to constant time lines for the moving observer.

then see the event in which the ship arrives (at the same time that it is still waiting).

Then at a later time the observer could simultaneously see the ship waiting before

departure, making the warp tube jump backwards in time, and see the ship waiting

after arrival. This consquence of the relativity of simultaneity is a bit hard to digest,

and has been illustrated in Figure 4.1.3. The ”spaceship-antispaceship annihilation”

event is certainly a problem, but requires a more rigorous analysis than just drawing

spacetime diagrams.
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Fig. 4.2.1.: Light cone coordinates. λ selects a particular worldline, while τ selects a particular light cone.

4.2 The 2+2 split

To introduce the 2+2 split, begin by considering a family of future-directed light

cones emanating from a timelike worldline x(τ) where τ is proper time along the

worldline. The boundary of the light cone consists of null geodesics with an affine

parameter λ along each. Each null geodesic can be labeled by the proper time τ

that corresponds to when it was emitted, thus defining a function which assigns to

each point P the emission time τ of the null geodesic that passes through P This is

illustrated in Figure 4.2.1 . The function τ corresponds to the retarded time.

At each point there is a null vector tangent to the null geodesics

k =
∂

∂λ
(4.2.1)
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and a timelike vector

u =
∂

∂τ
. (4.2.2)

The surfaces of constant λ and τ will be homeomorphic to the two sphere S2 so that

we can use spherical coordinates to locate points on them. These are the wavefront

surfaces. We can then label the coordinates according to

x0 = τ, x1 = λ, x2 = θ, x3 = φ . (4.2.3)

The corresponding basis vectors are

e0 = u, e1 = k, e2 =
∂

∂θ
, e3 =

∂

∂φ
. (4.2.4)

So, if we take a fixed value of τ , the fixed λ surfaces will foliate the light cone. Then

the angular coordinates can be propagated from one constant λ surface to the next

along the null geodesics. This effectively defines spherical wavefronts of constant λ , φ.

Since the vector field k is null, it satisfies the constraint

k · k = 0 , (4.2.5)

Since λ is an affine parameter along the null geodesics it follows that we also have

the constraint

Dkk = 0 , (4.2.6)

where Dkk denotes the covariant derivative of k in the direction of k. Since λ is an

arbitrary affine parameter it could differ up to a scaling factor b for a transformation

like λ→ bλ.

Being timelike, the vector field u satisfies

u · u = g00 = −f(τ, λ) , (4.2.7)
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where f(τ, 0) = 1 for any value of τ . Additionally k and u satisfy

[u, k] = 0 . (4.2.8)

If we wish to consider surfaces of constant θ, φ it is helpful to define two coor-

dinate functions

t = τ +
λ√
2

, (4.2.9)

and

r =
λ√
2

. (4.2.10)

In terms of this transformation, we will have

u =
∂

∂t
, (4.2.11)

and

k =
1√
2

(
∂

∂t
+

∂

∂r

)
. (4.2.12)

We can think of the r and t coordinates as just ordinary distance and time. Thus,

surfaces of constant θ , φ correspond to radial spacetime diagrams, where t would be

the time an observer on a world line assigns to events by following the Einstein clock

synchronization procedure. With the definitions of r and t we have effectively defined

a Riemannian normal coordinate system, where r = 0 corresponds to flat space.

Using this fact and assuming zero torsion, we can actually narrow down some

of the metric components by writing them as dot products. Indeed it can be shown

that the metric components can at most be linear in λ and therefore some distinct

components will vanish. The details of this calculation will be skipped for the purpose

of conciseness, but it can be shown that the line element will take the form
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ds2 = dτ
(
−fdτ −

√
2dλ+ 2N2dθ + 2N3dφ

)
+g22dθ

2+2g23dθdφ+g33dφ
2 . (4.2.13)

We can next find an inward pointing null vector ` that generalizes the inward

pointing one in Minkowski space. Being null this vector will satisfy ` · ` = 0. Also we

can assume normalization so that

k · ` = −1 . (4.2.14)

Now consider a vector

û =
1√
2

(k + `) . (4.2.15)

This vector is timelike with magnitude 1 everywhere, so it cannot equal the vector

u everywhere since u is only a unit vector at λ = 0. If we try a less restrictive

assumption

û = u+Bk . (4.2.16)

we can write

u+Bk =
1√
2

(k + `) , (4.2.17)

where B is a constant to be determined. Take the dot product of both sides of this

equation with k to get

u · k =
1√
2

(` · k) = − 1√
2

. (4.2.18)

Then take the dot product with itself yielding

u · u+ 2Bu · k +B2k · k =
1

2
(k · k + 2k · `+ ` · `) . (4.2.19)

These dot products are known, so that

− f + 2B

(
− 1√

2

)
= −1 , (4.2.20)
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− f −
√

2B = −1 , (4.2.21)

or

B =
1√
2

(1− f) . (4.2.22)

Substituting back in we find that

û = u+
1√
2

(1− f) k , (4.2.23)

which becomes u along the original worldline, where f = 1. We can now return to

the equation

û =
1√
2

(k + `) . (4.2.24)

Solving for ` yields

` =
√

2u− fk . (4.2.25)

In order to characterize the curvature of the spacetime, we want to define a

projection tensor, however we will in fact need to use two projection tensors H and

V . This is because we can project either onto the wavefront 2-surfaces (constant τ ,

λ) or onto the radial surfaces (constant θ, φ). For the wavefront projection tensor we

can define

H = 1 + `⊗ g(k) + k ⊗ g(`) , (4.2.26)

with symmetric components

Hµν = gµν + `µkν + kµ`ν . (4.2.27)

The radial projection is just

V = 1−H , (4.2.28)

with components

Vµν = −`µkν − kµ`ν . (4.2.29)
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With further calculations it can be shown that

H =



0 0 0 0

0 0 0 0

0 0 g22 g23

0 0 g32 g33


, (4.2.30)

and similarly

V =



g00 g01 0 0

g10 g11 0 0

0 0 0 0

0 0 0 0


. (4.2.31)
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4.3 Further Goals: The Raychaudhuri Equations

This system of light cone coordinates is convenient in that it is consistent with

our ”warp tube” description. The only part of spacetime that isn’t covered by these

coordinates is the future domain of dependence D+(S), which can’t be affected by

anything we do, regardless. Unfortunately the calculations required to fully character-

ize the spacetime become increasingly complicated and have not yet been completed.

From the projection tensor definitions of the previous section, the plan of attack is

to continue by defining the extrinsic curvature tensors, along with the other curvature

objects to characterize the 2-surfaces. From that point the expansion, vorticity, and

other elements can in principle be written out in order to set up the Raychaudhuri

equations, which can tell us about how a bundle of geodesics will behave. The end goal

is to judge whether geodesics must focus or defocus in the presence of some kind of

matter. The way to use this to characterize superluminal travel is that if the spherical

wavefront surfaces (cross sections of our light cones) are taken to be deforming then

we could infer that the light cones are tilting or stretching in some way, which would

be caused by the presence of some, presumably exotic, matter/energy distrubution.
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