
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2018 

An INNOVATIVE USE of TECHNOLOGY and ASSOCIATIVE An INNOVATIVE USE of TECHNOLOGY and ASSOCIATIVE 

LEARNING to ASSESS PRONE MOTOR LEARNING and DESIGN LEARNING to ASSESS PRONE MOTOR LEARNING and DESIGN 

INTERVENTIONS to ENHANCE MOTOR DEVELOPMENT in INTERVENTIONS to ENHANCE MOTOR DEVELOPMENT in 

INFANTS INFANTS 

Tanya Tripathi 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Physical Therapy Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/5364 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/754?utm_source=scholarscompass.vcu.edu%2Fetd%2F5364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5364?utm_source=scholarscompass.vcu.edu%2Fetd%2F5364&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 
 

 
 

©Tanya Tripathi                2018 

All Rights Reserved 



 
 

 
 

AN INNOVATIVE USE OF TECHNOLOGY AND ASSOCIATIVE LEARNING TO ASSESS 

PRONE MOTOR LEARNING AND DESIGN INTERVENTIONS TO ENHANCE MOTOR 

DEVELOPMENT IN INFANTS 

 

A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy in 

Rehabilitation and Movement Science at Virginia Commonwealth University. 

 

 

 

 

 

 

by 

 

Tanya Tripathi 

Bachelor in Physical Therapy, Manipal University, India, 2012  

Diploma in Rehabilitation (Physical Therapy), AIIPMR, India, 2013 

 

Director: Dr. Stacey C Dusing, PT, Ph.D.  

 Associate Professor, Department of Physical Therapy 

 

 

 

 

 

 

 

 

Virginia Commonwealth University 

Richmond, Virginia 

April 2018 



ii 
 

 
 

Acknowledgement 

 

 

Firstly, I would like to express my sincere gratitude to my advisor Dr. Stacey C Dusing 

for the continuous support of my Ph.D. study and related research, for her patience, motivation, 

and immense knowledge. Her guidance helped me in all the time of my research and writing the 

dissertation. Many thanks to Dr. Dusing for being an inspiration for me to progress in research 

and academia.  

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Pete 

Pidcoe, Dr. Daniel Riddle, Dr. Mary Shall and Dr. Yaoying Xu, who kept me on path to the 

completion. My sincere thanks to my thesis committee for their insightful comments and 

encouragement, but also for the hard questions to get me thinking about broaden my research 

from various perspectives 

I want to thank Dr. Pete Pidcoe and his lab members for instrumenting the Prone Play 

Activity Center and their ongoing support during the data collection period of the study. Without 

their precious support it would not be possible to conduct this research. 

My heartfelt gratitude to Dr. Sheryl Finucane, director of the Rehabilitation and 

Movement science doctoral program, for making sure I am on track with the program 

requirements and for the constructive feedback.  

I thank my fellow lab mates – Emily, Gullnar, Kayla, Lauren, Ali, Audrey and Sonia, and 

the clinical physical therapist – Dr. Solano, Shaaron and Cathy who are a part of the Motor 

Development Lab, for setting an example for me of excellent work ethics that I will look up to 

allmy life. The last four years in the Motor Development Lab passed in the blink of an eye as I 

was surrounded by colleagues who over the years have become dear friends of mine. 



iii 
 

 
 

Special thanks to VCU Health System day care staff for their support on spreading the 

word about my study and for providing space in the daycare to conduct the study. I am extremely 

thankful to parents and babies who participated in the study for their enthusiasm and time. 

Finally yet importantly, I would like to extend my immense gratitude to my family. I feel 

blessed to be born in a family that has always encouraged me to be independent and supported 

my education. I would also like to thank my friends who are the family I got to choose for 

myself. Smrutee, Mauli, Emely, Suma, Suchandra, Vinay, Michelle and Meghan; you all are 

amazing and beautiful people. 



iv 
 

 
 

Table of Contents 

 

 

 

 

Abstract                                                                                                                                          vii 

Chapter 1: Introduction                                                                                                                   1 

Importance of Prone Play                                                                                                    2 

Prone play and motor development                                                                         2 

           Theoretical justification of the change in prone play routine impacting            

prone motor skills model                                                                                         6 

Musculoskeletal implications of reduced prone play                                              7 

Positional plagiocephaly and positional torticollis                                      7 

Shoulder retraction                                                                                      9 

Back to Sleep, Prone to Play Campaign                                                                            10 

Factors contributing to lack of prone play in infants’ routine: current            

practices and barriers                                                                                             10 

Infant-parent related barriers                                                                      11 

Health care provider related barriers                                                          13 

Learning in Infancy                                                                                                            14 

Learning based theories of motor development                                                     14 

Associative learning                                                                                   16 

Operant conditioning and associative learning paradigms in infants                                18  

Technology and Learning-Based Interventions in Infants                                                 19 

Paper 1: Prone Play Activity Center – An Instrumented Play Gym to Assess and  

Enhance Prone Motor Learning in Infants: Conception, Iteration and Innovation            21 

Paper 2: Feasibility of High and Low Tech Interventions to Enhance Motor  

Development   and Prone Tolerance in 3-6 Months Old Infants: A Randomized Trial    21 

Paper 3: A Motor Learning Paradigm Combining Technology and Associative     

Learning to Assess Prone Motor Learning in Infants                                                        22



v 
 

 
 

Chapter 2: Prone Play Activity Center – An Instrumented Play Gym To Assess and Enhance 

Prone Motor Learning in Infants: Conception, Iteration And Innovation                                     23 

Abstract                                                                                                                              24 

Introduction                                                                                                                        25 

Methods                                                                                                                              26 

            Discussion                                                                                                                          33 

References                                                                                                                          34 

Tables                                                                                                                                 36 

Figures                                                                                                                                38 

Appendix A                                                                                                                        39 

Appendix B                                                                                                                        46 

Chapter 3: Feasibility of High and Low Tech Interventions to Enhance Motor Development     

and Prone Tolerance in 3-6 Months old Infants: A Randomized Trial                                          47 

Abstract                                                                                                                              48 

Introduction                                                                                                                        50 

Methods                                                                                                                              52 

Results                                                                                                                                59 

Discussion                                                                                                                          62 

            References                                                                                                                          67 

            Tables                                                                                                                                 70 

Figures                                                                                                                                75 

Chapter 4: A Motor Learning Paradigm Combining Technology and Associative Learning to 

Assess Prone Motor Learning in Infants                                                                                        82 

Abstract                                                                                                                              83 

Introduction                                                                                                                        84 

Methods                                                                                                                              86 

Results                                                                                                                                91 

Discussion                                                                                                                          93 

References                                                                                                                          98 

Tables                                                                                                                               100 

Figures                                                                                                                              103 

Chapter 5: Conclusion                                                                                                                  107 

Theme 1: Significance and Innovation                                                                            108 

Theme 2: Quantification of Motor Learning in Prone                                                     110 



vi 
 

 
 

Theme 3: Integration of Principles of Motor Learning in Intervention Practices            111 

Theme 4: Next Steps                                                                                                        112 

References                                                                                                                                    115 

Vita                                                                                                                                               128 



 
 

 
 

 
 
 
 

Abstract 
 
 
 
 

AN INNOVATIVE USE OF TECHNOLOGY AND ASSOCIATIVE LEARNING TO ASSESS 

PRONE MOTOR LEARNING AND DESIGN INTERVENTIONS TO ENHANCE MOTOR 

DEVELOPMENT IN INFANTS 

 

 

By Tanya Tripathi, BPT, DR (PT) 

 

 

A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy in 

Rehabilitation and Movement Science at Virginia Commonwealth University. 

 

 

Virginia Commonwealth University, 2018 

 

 

Major Director: Dr. Stacey C. Dusing, PT, Ph.D. 

Associate Professor, Department of Physical Therapy 

 

 

 

 

Since the introduction of the American Academy of Pediatrics Back to Sleep Campaign infants 

have not met the recommendation to “incorporate supervised, awake “prone play” in their 

infant’s daily routine to support motor development and minimize the risk of plagiocephaly”. 

Interventions are needed to increase infants’ tolerance for prone position and prone playtime to 

reduce the risk of plagiocephaly and motor delays. Associative learning is the ability to 

understand causal relationship between events. Operant conditioning is a form of associative 

learning that occurs by associating a behavior with positive or negative consequences. Operant 

conditions has been utilized to encourage behaviors such as kicking, reaching and sucking in 



 
 

 
 

infants by associating these behaviors with positive reinforcement. This dissertation is a 

compilation of three papers that each represent a study used to investigate a potential play based 

interventions to encourage prone motor skills in infants. The first paper describes a series of 

experiment used to develop the Prone Play Activity Center (PPAC) and experimental protocols 

used in the other studies. The purpose of the second study was to determine the feasibility of a 

clinical trial comparing usual care (low tech) to a high-tech intervention based on the principles 

of operant conditioning to increase tolerance for prone and improve prone motor skills. Ten 

infants participated in the study where parents of infants in the high tech intervention group 

(n=5) used the PPAC for 3 weeks to practice prone play. Findings from this study suggested the 

proposed intervention is feasible with some modifications for a future large-scale clinical trial. 

The purpose of the third study evaluated the ability of 3-6 months old infants to demonstrate AL 

in prone and remember the association learned a day later. Findings from this study suggested 

that a majority of infants demonstrated AL in prone with poor retention of the association, 24 

hours later. Taken together these 3 papers provide preliminary evidence that a clinical trial of an 

intervention is feasible and that associative learning could be used to reinforce specific prone 

motor behaviors in the majority of infants.  
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Chapter 1: Introduction 
 
 
 
 

The “Back to Sleep, Prone to Play” campaign by the American Academy of Pediatrics is 

a public health intervention, specifically aimed at encouraging parents to 1) place their infant(s) 

in supine position for sleep to prevent Sudden Infant Death Syndrome (SIDS) and 2) practice 

supervised, awake prone play, every day to support their infant’s development and minimize the 

risk of positional plagiocephaly. The “Back to Sleep” arm of this campaign has been successful 

in reducing the incidence of SIDS from 130.3 deaths per 100,000 live births in 1990 to 39.4 

deaths per 100,000 live births in 2015.(Jantz, Blosser & Fruechting, 2011) Similar success is not 

seen in response to the campaign’s “Prone to play” recommendations. Approximately 70 % of 4-

5 months old infants are spending more time in supine position, supported sitting or being held ( 

mean (M) = 8.9, standard deviation (SD) = 1.26) compared to prone position (M = 1.2, SD = 1.1) 

during a 10 hour awake period.(Dudek-Shriber & Zelazny, 2007) Lack of prone play in an 

infant’s routine can be associated with several factors ranging from parent’s awareness and 

attitude towards AAP’s “Prone to play” recommendations to the challenges they face while 

implementing it. The purpose of this perspective paper was to: 1) discuss the importance of 

prone play in an infant’s routine 2) why prone play is a challenging activity and 3) efficacy of 

existing strategies that are in use to improve prone play in an infant’s routine and 4) propose a 

conceptual model describing the use of associative learning and motor learning strategies to 

improve the implementation of prone play to guide future research. 
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Importance of Prone Play 

The “Back to Sleep” (BTS) campaign was initiated in 1992 to encourage safe sleep 

practices during infancy and reduce the incidence of Sudden Infant Death Syndrome (SIDS). 

SIDS is sudden, unexplained death usually during sleep of a seemingly healthy infant less than 1 

year of age.(Luca & Hinde, 2016) Sleeping in a prone position has been identified as one of the 

main factors contributing to SIDS and parents are advised to not to put their infant to sleep in 

prone position.(Galland, Taylor, & Bolton, 2002) The “Back to Sleep” campaign was successful 

in reducing the incidence of SIDS but it caused an unanticipated change in infants’ play 

routine.(Bronfin, 2001; Jones, 2004) A significant decrease in time spent in prone position in 

comparison to other play positions has been documented in 0-6 month old infants.(Jones, 2004; 

Kuo, Liao, Chen, Hsieh, & Hwang, 2008; Leung, Mandrusiak, Watter, Gavranich, & Johnston, 

2017; Russell, Therapy, Kriel, & Physiotherapy, 2009; Zachry & Kitzmann, 2011) This shift in 

play routine of infants led to numerous reports of poor performance in motor developmental 

measures seen in infants with no prior history or risk factors for developmental delays. In 

addition to the reports of developmental delays, an increase in the incidence of three 

musculoskeletal conditions, plagiocephaly, torticollis and shoulder retraction was seen following 

the “Back to sleep” campaign.(Jones, 2004) In the following subsections, the impact the “Back 

to sleep” campaign had on infants’ gross motor development and musculoskeletal system is 

discussed in detail. 

Prone play and motor development. A retrospective analysis of 343 typically 

developing infants’ published in 1997 described the primary sleep position and scores on a motor 

development measure administered at their 4 or 6 months of age follow up checkup.(Davis, 

Moon, Sachs, & Ottolini, 1998) The Denver Development Screening Test- Revised (DDST-R) 

was used to screen infants to quantify the extent of their motor development. Findings from this 
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report suggested that infants who slept in supine or side lying position had a delay in rolling over 

at 4 months of age.  

Tarabulsy and colleageus used parent reports to determine infants’ primary sleep position 

at 1 month of age and administered a questionnaire based on the DDST-R to evaluate infants’ 

developmental status at 6 and 18 months of age. Findings from this study suggest that infants 

who slept predominantly on their backs were not performing optimally in certain gross-fine 

motor skills such as transferring small objects between hands and social domains of development 

at 6 months of age.(Hunt, Fleming, Golding, & the ALSPAC Study Team, 1997) However, no 

statistically significant developmental disadvantages for supine sleepers were seen at 18 months 

of age.  

 Both the research reports weighed their findings against the adverse effects of putting 

infants to sleep in prone position, and the risk of SIDS associated with prone sleeping was 

suggested to be a much higher risk than the risk of developmental delay. Thus, none of these 

reports proposed a change in the AAP’s “Back to Sleep” recommendations existed in their time. 

Even though the initial reports of developmental delays observed after the “Back to sleep” 

campaign were inconclusive they did raise questions and concerns on 1) what mechanism led to 

the un-anticipated sequelae observed in development of infants born during and after the “Back 

to Sleep campaign” and 2) long term consequences imposed by delays in gross motor 

development, even though transient in nature, on infant’s exploration during the critical periods 

of learning present early in development.  

To address these concerns Salls, Silverman and Gatty (2002) asked 66 parents of 2 ,4 and 

6 months old infants to document their infant’s 1) sleep position (supine, side lying or prone) and 

2) duration of each play position their infant spends in during the wakeful period of the day. 
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They found that a majority of parents who are practicing AAP’s safe sleep recommendations i.e 

putting their infants to sleep in supine position are avoiding prone position even during the day. 

A comparison of the gross motor development of infants who spent less than 15 minutes and 

those who spent greater than 15 minutes of awake prone time.(Salls, Silverman, & Gatty, 2000) 

showed that those infants spent more than 15 minutes of awake prone time had better 

performance in certain motor milestones (holding head steady – 45ᵒ and 90ᵒ in prone and sitting) 

compared to infants who spent 15 minutes or fewer of awake prone time.  

 In 2008, American Physical Therapy Association (APTA) carried out a national survey of 

400 pediatric physical and occupational therapist, where two thirds of the PTs and OTs reported 

motor delays seen in infants who spend too much time on their backs while awake.(Newswire, 

York, & York, 2008) This survey suggested that infants’ poor tolerance for prone and 

uncertainty of parents on how to practice tummy time were prime contributors of limited tummy 

time in an infant’s routine placing them at the risk of motor delays.  

While healthy typically developing infants are at risk of mild developmental delays and 

plagiocephaly due to limited prone play, a larger impact is seen on infants with a pre-existing 

risk of developmental delays, like infants born at preterm.(Fetters, Huang, 2007) Barlett & 

Fanning determined if a relationship exists between infants least “favorite” play position, 

duration of equipment use and motor development in 8 months old infants born at preterm. Their 

findings suggests that due to prone being the least “favorite” position infants spend less amount 

of time in prone and perform poorly in motor skills in prone compared to other play positions. In 

addition, excessive use of a swing where the infant is positioned predominantly in supine was 

related to poor performance in prone motor skills.(Bartlett & Fanning, 2003) Infants born 

preterm have a different development trajectory than infants born at term.(Butler & Als, 2008) In 
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addition to reports of poor prone play routine of preterm infants at home, around 65% and 33% 

of preterm infants prefer to position their head to one side at term equivalent age and 6 months of 

AA, respectively.(Nuysink et al., 2013) Prolonged stay in the NICU, history of mechanical 

ventilation, and multiple births are identified as factors that may contribute towards positional 

preference commonly seen in preterm infants.(Nuysink et al., 2013) Positional preference can 

cause an asymmetry in the strength of the neck musculature and have an impact on infants’ 

ability to raise their head in prone. This can further add on to the biomechanical challenges 

imposed by prone position on infants. 

When I put the above findings together it presents a model explaining the mechanism that 

may have driven the relationship between infants who sleep on their back and their poor 

performance in developmental measures. This relation is under the influence of parents avoiding 

prone play in their infant’s routine either due to fear of SIDS or lack of awareness of the 

importance of prone play and infant’s intolerance towards prone play (Figure 1).  

Figure 1.  Mechanism of change in play routine of infants due to Back 

to Sleep recommendations 



 
 

6 
 

Theoretical justification of the change in prone play routine impacting prone motor 

skills model. The Dynamic system theory (DST) provides an inclusive perspective to why lack 

of prone play in infants’ routine impacts their gross motor development. According to this 

theory, infant motor development is a product of interactions between multiple intrinsic (central 

nervous system and musculoskeletal system) and extrinsic (environment, demands of task) 

elements.(Thelen, 1995a) Environment plays a crucial role in an infant’s development as it 

provides motor and cognitive opportunities such as the position in which the infant is placed and 

the toys available for exploration and interaction.(Lobo, Harbourne, Dusing, & Mccoy, 2013) 

For example, infants learn to kick their feet and bring their feet to their hands while supine 

through practice and accidental success, which strengthens abdominal and hip flexor muscles, 

and gradually transitions to goal oriented movements. The “Back to sleep” campaign has an 

unanticipated effect on the play environment of infants. Fear of SIDS discourages parents and 

caregivers from placing from positioning their infant in prone even during waking hours.(Salls et 

al., 2000) Limited prone play practice results in young infants not having a play position in 

which they can visualize the world in front of them, practice early weight shifting to free an arm 

for reaching, and limits opportunities to learn prone mobility such as commando crawling 

through their spontaneous leg movements. Consistent with the DST, the lack of these early 

experiences could contribute to delays in visual perceptual skills, understanding of cause and 

effect, and reduced experience of independent discovery or practice leading to acquisition of a 

novel motor skill in prone. The potential impact of lack of prone play on infants’ ability to learn 

a task in prone has not been tested. 
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Musculoskeletal implications of reduced prone play. 

Positional plagiocephaly and positional torticollis. Since the implementation of the 

“Back to Sleep” campaign in 1992, a rise in the incidence of PP and PTC has been observed. 

During infancy the cranial bones are membranous and thin in density, joined by sutures that gets 

ossified at 20-24 months of age.(Bronfin, 2001) The space between the cranial bones known as 

fontanelles allows the cranial bones to overlap and pass through the birth canal. The fontanelles 

accommodates for the changes in skull shape that happens due to the rapid growth of the brain 

during infancy.(Williams, 2008) Since, infant’s cranial bones are soft and not ossified if the first 

months of life their shape is highly adaptable and can undergo deformation in response to the 

application of an external force/pressure. Positional plagiocephaly (PP) (also known as 

deformational plagiocephaly) refers to an acquired flattening of one side of the parieto-occipital 

region of the skull causing a compensatory anterior shift of the ipsilateral ear and bulging of the 

ipsilateral forehead in infants.(Klimo et al., 2016b; Linz, Kunz, Boehm, & Schweitzer, 2017) In 

2013, an estimated 20 % of the almost 4 million infants born in the United States experienced 

some degree of positional deformation of the skull.(Klimo et al., 2016a) Positional torticollis 

(PTC) is a musculoskeletal condition commonly seen in infants with PP.(Martiniuk, Vujovich-

Dunn, Park, Yu, & Lucas, 2017) PTC is described as tightening of the sternocleidomastoid 

muscle resulting in lateral flexion of infant’s neck to the affected side and rotation to the opposite 

side. PTC can occur alone or in association with PP. However, a higher incidence is seen in 

infants with PP then in the general population.(Losee, Mason, Dudas, Hua, & Mooney, 2007) 

Around 50 % and 37% of preterm infants are identified to have PP at 3 and 6 months of adjusted 

age, respectively. Linz et al, 2017 in their review on etiological factors leading to PP, identified 

limited intrauterine space due to multiple births, restricted cervical spine mobility due to 
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congenital torticollis, prematurity, developmental delays, excessive supine lying, limited prone 

play time, positional torticollis, and preference to hold the head to one side as the risk factors 

associated with PP.  

 Clinicians considered PP as just a cosmetic condition seen in pediatric population. In the 

last decade, evidence of infants with PP experiencing subtle developmental delays has 

increased.(B. Collett, Breiger, King, Cunningham, & Speltz, 2005; Kennedy, Majnemer, Farmer, 

Barr, & Platt, 2009) In 1992-1999, right after the “Back to Sleep” campaign began in the United 

States, a drastic six-fold increase was seen in the referral rate of PP to craniofacial specialists, 

pediatric plastic surgeons and neurosurgeons.(Argenta, David, Wilson, & Bell, 1996; Kane, 

Mitchell, Craven, & Marsh, 1996; Turk, McCarthy, Thorne, & Wisoff, 1996)  

Martiniuk et al, 2017 in their systematic review evaluated the association between 

plagiocephaly and developmental outcomes in 0-24 months old infants.(Martiniuk et al., 2017) 

Nine out of 11 studies indicated an association between PP and developmental delays in 7-8 

months old infants. Infants with PP had low scores in the motor domain of the Bayley Scale of 

Infant Development (BSID)(B. R. Collett et al., 2013; Brent R. Collett et al., 2011, 2012; Speltz 

et al., 2010) and were identified to have low and variable muscle tone in the Hammersmith Infant 

Neurological Examination (HINE) compared to their same age group peers without PP.(Fowler 

et al., 2008) In addition to the neurodevelopment screening tools (BSID and HINE), structural 

measures such as brain asymmetry evaluated using MRI was positively correlated with 

plagiocephaly.(Brent R. Collett et al., 2012) An intersection between findings of brain 

asymmetry identified in MRI and motor development delay diagnosed using BSID-3rd edition 

was seen in 7.9 months old infants with plagiocephaly.(Brent R. Collett et al., 2012) To 

summarize, evidence suggests that there exists a relation between PP and developmental delays, 
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however Collet et al, in their studies specified that there is not a casual relation between PP and 

developmental delays. PP is suggested to be a “marker” indicating factors such as underlying 

brain pathology, prematurity, an over use of positioning devices, limited prone play time and 

excessive supine lying that can cause a delay in the development of infants.(B. Collett et al., 

2005)  

  In addition, PP can be stressful for some parents as they are worried about their infant’s 

appearance and any impact PP may have on their infant’s development.23-25,37,38 In today’s era of 

quick and easy access to information, parents and caregivers are inclined to use the internet sites 

to seek information on issues concerning their infant’s development.(Kaplan, Coulter, & Fetters, 

2013) Although parents may find the vast variety of resources present in the internet about PP 

and PTC of use, it can be overwhelming for them to comprehend these resources.(Ohman, 

Nilsson, Lagerkvist, & Beckung, 2009) As will be discussed in the “current prone play practices 

and barrier” section, there are no clear guidelines for how much prone play is needed or how to 

conduct it.  

  Shoulder retraction. Infants who spend a majority of their time in supine have a 

tendency to position their shoulders in external rotation, scapular retraction and scapular 

abduction when placed in prone position.(Hunter & Malloy, 2002; Jones, 2004) This atypical 

posture is referred to as “W” position of the arms when the infant is in prone position. Georgieff 

& Bembaum45 demonstrated that 46 % of infants born at preterm were identified to exhibit 

shoulder retraction at the NICU follow up visits during the first year of life.(Georgieff & 

Bernbaum, 1986) Shoulder retraction in preterm infants have been attributed to tone 

abnormalities that exacerbates if supine is the position an infant prefers to be in. Infants feel 

“stuck” in the “W” position of the arms  as it can 1) affect hand-to-mouth exploration, often used 
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for self-calming by infants 2) cause excessive arching of the neck and trunk and 3) makes 

forearm propping in prone a challenging activity and reducing functional play and visual 

explorations.(Georgieff & Bernbaum, 1986; J. C Heathcock, Lobo, & Galloway, 2008; Hunter & 

Malloy, 2002; Monfort & Case-Smith, 1997; Vaivre-Douret, Ennouri, Jrad, Garrec, & Papiernik, 

2004)  

Back to Sleep, Prone to Play Campaign  

 As the importance of prone play on infant development and head shape was recognized, 

American Academy of Pediatrics (AAP) in 2002 extended the “Back to sleep” campaign to 

“Back to Sleep, Prone to Play” educational campaign.(Zachry & Kitzmann, 2011) With this 

campaign AAP encouraged parents and caregivers to not only follow safe sleep practices but also 

incorporate supervised, awake “prone play” time in their infant’s daily routine to facilitate 

development and minimize the occurrence of positional head deformities and other associated 

musculoskeletal conditions in infants”.(Chizawsky & Scott‐Findlay, 2005)  

Factors contributing to lack of prone play in infants’ routine: current practices and 

barriers. The current practice to encourage prone play in an infant’s routine focuses on 

educating parents about the AAP’s recommendations and use of positional supports such as u- 

shaped pillow to make prone play less of a challenge. The “Back to Sleep and Tummy to Play” 

campaign  encourages parents and caregivers to  include prone play in their infant’s routine, 2 to 

3 times a day for short periods (3-5 minutes) starting in the first days of life.(“Tummy Time -

AAP.org,” 2018) AAP recommends parents progress gradually by increasing the duration and 

frequency of prone play as their infant shows interest and enjoys prone play. For infants who do 

not like prone play, parents are encouraged to position themselves or place a toy in view of the 

infant or place the infant on the parents chest as this position may encourage the infant to raise 
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his/her head and use the arms to push up to see the parents face.(“Back To Sleep, Tummy To 

Play,” 2008) 

The “Back to Sleep and Prone to Play” campaign has been successful in increasing 

parents” awareness towards the importance of prone play in infants’ routine. The majority 

(~75%) of parents have reported awareness of prone play recommendations and the 

complications of development delays and plagiocephaly that may occur due to limited prone play 

time. Yet, most parents report 15 minutes or less of prone play time per day in their infants 

routine.(Koren, Reece, Kahn-D’angelo, & Medeiros, 2010a; Zachry & Kitzmann, 2011) The 

barriers identified in the literature that may contribute towards lack of prone play can be grouped 

under 2 categories: 1) Infant- parent related barrier and 2) health care provider related barrier.   

1) Infant - parent related barriers. Around 53 % of parents have reported that their 

infant does not tolerate prone position and they are able to incorporate < 10 minutes of prone 

play in a day.50 Infants are born with weak neck and trunk muscles and their body is top-heavy 

due to large heads, which displaces their center of gravity near the center of the sternum. This 

creates a biomechanical challenge for infants when they lift their upper body in prone to look 

around and explore. For infants with large heads, weak muscles, or limited practice, prone is an 

unpleasant position for play.(Hunter & Malloy, 2002) Due to infants’ intolerance for prone 

position, some parents find it challenging to incorporate prone play in their infant’s daily 

routine.(Dudek-Shriber & Zelazny, 2007) A short term solution to this problem is parents may 

decide to move infants out of prone play to a position that is not challenging such as supine or 

put them on a swing/seat. In the long term, parents may perceive practicing prone play with 

their infant as a burden and completely discontinue the practice of prone play in their infants’ 

routine.(J. Guidetti, Wells, Worsdall, & Metz, 2017) This corresponds to Pin, Eldridge & 
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Galea (Pin, Eldridge, & Galea, 2007) findings where parents have reported their infant 

spending ~ 75% of the wakeful period of the day either being held or in an equipment such as a 

seating device that may limit learning opportunities. Thus, though prone play is important, 

infants’ intolerance towards it makes it a challenging activity for infants to practice and for 

parents to implement.  

Parents are looking for ways to increased tummy time with 48 percent of parents 

reporting the use of commercially available prone positional supports including u-shaped 

pillows, towel rolls, and play gyms to encourage tummy time.(Jantz, Blosser & Fruechting 

2011), In a recent study, infants using u-shaped pillows were found to be more tolerant to prone 

in comparison to infants lying on a flat blanket.(J. Guidetti et al., 2017) This finding suggests 

that that equipment such as Boppy pillows are making prone play less challenging for infants 

as they provide additional support and reduces the efforts required from infants to raise their 

head. None of these toys reinforce infants self-directed movements to lift higher and raise their 

head and upper body for a longer period of time in prone. Abbott & Barlett(Abbott & Bartlett, 

2001; Bartlett & Fanning, 2003) suggested that even though infants are in a positive state using 

positional supports, they are not actively working on developing their prone motor skills. 

Research has demonstrated that families using equipment that do not provide any 

reinforcement makes the infant passive and results in poor performance in measures assessing 

motor development.(Abbott & Bartlett, 2001; Bartlett & Fanning, 2003) Without positive 

reinforcement during prone play, infants may disengage, fuss or roll into supine, as there is no 

motivation to lift their heads higher and stay in prone. Current education programs and “tummy 

time toys” do not address the need for easily implemented prone play strategies that can be 

implemented by parents or daycare teachers.  
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2) Healthcare provider related barriers. A Koren, Reece, Kahn-D’angelo, & Medeiros, 

2010(Koren, Reece, Kahn-D’angelo, & Medeiros, 2010b) studied  healthcare providers 

(physician, nurses and focus groups) awareness and attitude towards prone play 

recommendations and its inclusion in their practices. Their findings suggests that there exist a 

wide variability in information related to prone play provided by the healthcare providers. The 

amount of prone play time the providers in their study recommended to parents ranged from 2 to 

15 minutes per day with a frequency of “few times per day”.(Koren et al., 2010a)  Such 

recommendations lack clarity and may confuse parents while they are working on developing a 

prone play routine for their infant. At the well-child visits, information on preventing SIDS was 

covered at every visit but this was not the case with educating parents on implementing prone 

play. The age at which prone play guidelines were discussed the first time ranged from 2 - 6 

months. A lack of formal prone play educational protocol for  practices across the nation adds on 

to the inconsistency seen in the knowledge about prone play among healthcare providers. With 

the internet being an easy to access source of information for the general population, around 75 

% of mothers use social media for parenting related information.(Duggan, Lenhart, Lampe, & 

Ellison, 2015) The content covered on prone play on the parenting web sites is inconsistent and 

misses out on information on minimum prone play time ( >30 minutes/day) required to gain 

developmental benefits.(Koren et al., 2010b; Zachry & Kitzmann, 2011b)  

Current approaches to encourage prone play i.e educational programs and use of prone 

positional supports lack scientific rigor. Their focus is on supporting the infant’s trunk in prone 

to make prone play less challenging for infants. These positional supports do not positively 

reinforce the infant’s attempts to lift their head higher or for a longer period. While commercial 

play gyms may have toys on the positional supports, the toy’s activity is not related to infant’s 
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movement. Likewise, the toys are often accessible with the head down in prone or in supine or 

sitting as well. Without positive reinforcement during prone play, infants may disengage, fuss or 

roll into supine. An evidence based intervention approach is needed to address this significant 

gap in supporting the development of typically developing infants and those at the highest risk 

of disabilities.  

Learning in Infancy  

During the first year of life, substantial changes are seen in the motor and cognitive skills 

of human infants.(Thelen, 1995) Although the various motor and cognitive developmental 

milestones during infancy are well described in the literature, our understanding of the learning 

mechanisms underpinning their emergence is still evolving. A contemporary view of 

development focuses on understanding how a child is learning a developmental skill and 

disagrees with the traditional view of motor/cognitive skills being “hard wired” responses to 

growth and maturation. One purpose of this section is to briefly review the two most accepted 

theories of child development: Dynamic Systems Theory (DST) and the Ecological Systems 

Theory (EST). The second purpose is to discuss my perspective on translating the knowledge I 

have gained from these theoretical frameworks in designing research paradigms, assessments and 

interventions to quantify and improve development in infants with or at risks of motor delays. 

Third purpose is to discuss how technology can be utilized to achieve the second purpose. Last 

present the application of a learning based assessment and intervention model to enhance prone 

motor development and boost tolerance for prone play during infancy.  

Learning based theories of motor development. Learning based theories of motor 

development are a group of abstract ideas about the nature and acquisition of motor skills in 

infants. According to DST and EST, interaction of multiple sub systems within the infant, task, 
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and environment provide a context for infants to learn motor skills.(Thelen, 1995) Infants are 

considered as active learners who, through exploration, are constantly engaging with the 

environment.(Adolph & S. Kretch, 2015) Since movement is the ultimate function of motor 

development, DST and EST view motor development under the construct of movement. Human 

movements are organized as actions that have a purpose and are guided by the knowledge or 

perception of the movement itself and the environment. For instance, Kurjak et al(Kurjak et al., 

2005) studied motor behaviors from fetal to neonatal period and found that the frequency of hand 

to mouth and hand to face exploration is higher in fetuses  >27 weeks of gestation compared to 

neonates. This finding emphasizes the role played by the environment where the ability to move 

the hand to mouth/face was afforded in the intrauterine environment due to no constraint of 

gravity but was limited after birth. 

 Motor learning is described in the literature as “set of processes associated with practice 

or experience leading to relatively permanent change in the capability for producing skilled 

actions”.(Shumway-Cook & Woollacott, 2007) Elsner and Hommel proposed a two-stage model 

explaining the mechanism of acquisition of motor skills in infants. Stage 1 is described as the 

perception stage where infants through their exploration perceive properties of the environment 

and their body and Stage 2 involves the selection of the most appropriate movement strategy by 

associating the information gained in Stage 1 to a movement plan. For example, infants spend 

hours and hours moving their legs spontaneously. But when presented with an overhead mobile 

that moves in response to their kick, infants learn to discover this association and transition from 

Stage 1 to Stage 2 of the motor skill acquisition model. Such learning is referred as perceptual 

learning, discovery learning or associative learning in the literature. On this premise I have 

turned my focus on associative learning which is a widely studied learning mechanism in 
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developmental psychology. The field of developmental psychology proposes that the construct of 

“associative learning” is one of the basic learning mechanisms required to develop complex 

cognitive abilities across development.(Angulo-barroso et al., 2016; Grossberg, 1980; Jill C 

Heathcock, Bhat, Lobo, & Galloway, 2004a; Jongbloed-pereboom, Janssen, Steenbergen, & 

Sanden, 2012; Reeb-sutherland, Levitt, & Fox, 2012; Street, Washington, Hagen, & Ph, 2008)   

Associative learning. Associative learning can be described as the ability to discover a 

relationship between two or more events.(Dickinson, 2001) It is further characterized into two 

behavioral learning principles: 1) Classical conditioning and 2) Operant conditioning.(Learning 

and memory : a comprehensive reference, 2008) Classical conditioning as described by Pavlov is 

“a learning process that occurs when two stimuli are repeatedly paired; a response that is only 

elicited by the second stimulus is eventually elicited by the first stimulus alone”. (Fitzgerald & 

Brackbill, 1976) A paradigm used commonly to assess classical conditioning in infants is the eye 

blink conditioning (EBC) paradigm. In this paradigm the stimulus that elicits closure of eyes is a 

gentle puff of air in the eye (unconditioned stimulus); this stimulus is paired and presented 

repeatedly after a visual (light) or auditory (tone) event (conditioned stimulus) for associating the 

conditioned stimulus with the closure of eyes elicited by the unconditioned stimulus. The learned 

conditioned response is closure of the eyes when exposed to the conditioned stimulus (visual or 

auditory stimulus), without the presentation of the unconditioned stimulus.(Reeb-sutherland et 

al., 2012) The second associative learning principle, Operant conditioning is described as “a 

behavior that can be encouraged or suppressed by associating the behavior with a positive or 

negative reinforcement respectively”.(Gerhardstein, Kraebel, & Tse, 2006; C. Rovee-Collier, 

1987; Tarabulsy, Tessier, & Kappas, 1996) A paradigm commonly used to assess associative 

learning in infants is the Rovee- Collier mobile (RCM) paradigm.(C. Rovee-Collier, 1987; C. K. 
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Rovee-Collier & Gekoski, 1979) In the RCM paradigm an infant’s leg is tethered to an overhead 

mobile to make the mobile move when the infant kicks. Movement of the mobile in response to 

the infant’s kicks, positively reinforces an infant to increase the frequency of the kicks. Findings 

from the RCM paradigm suggests that infants as young as 2 months of age can learn and 

remember to kick more with the leg that is tethered to an overhead mobile compared to the 

untethered one as the tethered leg makes the mobile move.(Campanella & Rovee-collier, 2005; 

DeFrancisco & Rovee-Collier, 2008; Hartshorn & Rovee-collier, 1997; Hsu, Rovee-Collier, Hill, 

Grodkiewicz, & Joh, 2005; Rovee-collier, 2016) Infants’ ability to learn the association between 

their leg movements and the mobile provided a premise for researchers to modify the original 

mobile paradigm and learn about the kinematics and motor control properties of infant’s leg 

movements. The modern mobile paradigm developed by combining technology and the 

traditional mobile paradigm together is more challenging and complex where infants are required 

to kick above a virtual threshold in a specific movement pattern. In the modern mobile paradigm 

infants need to modify their typical kicking response of the hip and knee moving in a single unit 

to a pattern that requires the hip to move in flexion and knee in extension.(Y. Chen, Fetters, Holt, 

& Saltzman, 2002; Sargent, Reimann, Kubo, & Fetters, 2015; Sargent, Scholz, Reimann, Kubo, 

& Fetters, 2015; Sargent, Schweighofer, Kubo, & Fetters, 2014) This adaptation in the typical 

kicking response of infants was introduced to assess if infants could discover through their 

routine play the need to change their lower limb control and make this changes to receive the 

positive reinforcement. The modern mobile paradigms have incorporated various intrinsic 

(additional body weights) and extrinsic constraints such as temporal and spatial constraints to 

detect the changes in the limb and joint coordination as expected while performing a novel 

task.(Angulo-kinzler & Horn, 2001; Y. Chen et al., 2002; Watanabe & Taga, 2009) It is 
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important to note that there exist a key difference between the classical and operant conditioning 

paradigms, in operant conditioning the behavioral response is under volitional control as opposed 

to the reflexive control in classical conditioning. Thus, operant conditioning is a higher 

behavioral principle than classical conditioning.  

 Operant conditioning and associative learning paradigms in infants. Tarabulsy, 

Tessier & Kappas(Dunst, Bruder, Trivette, & Hamby, 2006; Tarabulsy et al., 1996) suggested 

that a behavior based association is developed when infants learn the association between their 

own behaviors and influences on the environment. Infants’ ability to learn the association 

between their kicks to the movement of a mobile is an example of a behavior based association. 

Learning paradigms developed to measure behavior based associations, pairs a behavior of 

interest with a purpose that is measurable. For eg: The RCM and the modern mobile paradigm 

pairs the kicking behavior of infants with an overhead mobile. It consists of a baseline phase 

where the movement of the mobile is not associated with infant’s kicks. This phase is followed 

by the acquisition phase where the mobile moves when the infant kicks. Both traditional and 

modified mobile paradigms have been extended to assess learning abilities of infants with or at 

risk of developmental delays.(C. Y. Chen, Harrison, & Heathcock, 2015; Jill C Heathcock, Bhat, 

Lobo, & Galloway, 2004b, 2005; Me & Heathcock, 2005; Sargent, Kubo, & Fetters, 2017) 

Findings from these paradigms suggests that infants as young as 2 months of age can discover, 

learn and remember the association between their kicks and activation of an overhead mobile.(Y. 

Chen et al., 2002; Jill C Heathcock et al., 2005; C. K. Rovee-Collier, Sullivan, Enright, Lucas, & 

Fagen, 1980; Sargent, Reimann, et al., 2015) During the associative learning process infants kick 

at a higher rate to receive the positive reinforcement of making the mobile move.(Dunst, 

Trivette, Raab, & Masiello, 2008; C. K. Rovee-Collier & Gekoski, 1979) The modern mobile 
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paradigm has provided the evidence on infants ability to change their hip-knee-ankle 

coordination patterns and select a pattern that keeps the mobile ON for a long period of time.(Y. 

Chen et al., 2002; Sargent, Reimann, et al., 2015; Sargent, Scholz, et al., 2015; Sargent, 

Schweighofer, Kubo, & Fetters, 2014a; Sargent et al., 2014) An adaptation of the RCM 

paradigm is used to assess if infants can associate the movement of their arms with the mobile by 

tethering infant’s wrist to the mobile. Paradigms developed to assess infants’ ability to associate 

their arm movements with the mobile suggest that during the associative learning process infants 

learn to reduce the degrees of freedom of the arm that is tethered to the mobile and move the arm 

in a specific pattern that makes the mobile move.(Watanabe & Taga, 2009, 2011) 

Technology and Learning-Based Interventions in Infants 

 The paradigms discussed in the above section suggests that a variety of infant behaviors 

can be encouraged by pairing it with positive or negative reinforcements. At Research Summit 

IV “Innovations in Technology for Children with Brain Insults: Maximizing Outcomes” hosted 

by the Academy of Pediatric Physical Therapy of the APTA, an expert in the field of 

rehabilitation science, asserted that, “in order to maximize motor gains and clinical outcomes, 

researchers must design and test innovative and targeted interventions tailored to the individual 

child”.(Christy et al., 2016) Developmental researchers combine technology with operant 

conditioning to assess motor learning and optimize interventions. I propose that innovative 

technology can be developed that holds the potential to assess infants’ ability to demonstrate 

associative learning in prone and utilize the principles of motor learning for intervention. In 

order to assess associative learning in prone, technology need to create an environment that 

provides positive reinforcement to infants’ exploratory movements in prone such as pushing the 

upper body up to look around and explore. As suggested by the DST, “for a change to occur in 



 
 

20 
 

any developmental system, the system should lose stability for new patterns to develop”.(Thelen, 

1995a) Infants in prone position turn their head to a side to breathe freely and often get "stuck" in 

that prone motor skill due to the biomechanical constraints imposed by their head size and weak 

neck muscles. Based on the principles of motor learning and operant conditioning, believe by 

using technology to provide positive reinforcement to infants’ initial efforts to play in prone 

there potential for improving time spent and quality of prone play. For infants to progress their 

prone motor skills there is a need to utilize the principles of motor learning and set goals that are 

not too easy or too difficult for the infant to the achieve. Consistent with motor learning theory 

and shaping, the “Just Right” challenge may allow for regular success and feedback on meeting 

an intermediary goal while working towards an ultimate goal. Technology holds the potential to 

deliver such targeted intervention. The use of technology combined with a training protocol may 

also facilitate the individualized challenge of the intervention.   

Infants learn through their interaction with the environment. Motor learning and 

associative learning can be coupled in infancy through training. While there is limited evidence 

of the use of these devices and protocols as intervention tools, theoretical frameworks provide a 

foundation for such innovations. 

In the next three chapters I have highlighted 1) the process of building and pilot testing a 

intervention 2) The feasibility of an intervention that is guided by principles of associative and 

motor learning and 3) Our findings from a protocol developed for the assessment of associative 

learning in prone. 
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Paper 1: Prone Play Activity Center – An Instrumented Play Gym to Assess and Enhance 

Prone Motor Learning in Infants: Conception, Iteration and Innovation 

Today, advances in technology have empowered movement specialists to build 

rehabilitation devices that have the potential to assess and optimize functions. From sensor 

onesies(Rogers, Polygerinos, Walsh, & Goldfield, 2015) designed to promote early movements 

in infants with developmental delays to exoskeletons such as Hybrid Assistive Limb 

Cyberdyne(Matsuda, Mataki, & Mutsuzaki, 2018) developed to promote locomotion in 

individuals with spinal cord injury, technology has shown promise in adapting to our growth and 

functional abilities. Two objectives were set for this study: (a) build an assessment tool with the 

use of technology to quantify associative learning in prone (b) conduct pilot studies to develop a 

protocol to assess associative learning in prone and develop an intervention program. Four pilot 

studies were conducted that included the development of the PPAC, test AL protocols used in the 

mobile paradigms studies to quantify AL in prone, set criteria to identify infants who learned the 

association in prone, and develop guidelines for an intervention program to encourage prone 

motor skills. Findings from the preliminary work led to two independent but related studies.  

Paper 2: Feasibility of High and Low Tech Interventions to Enhance Motor Development 

and Prone Tolerance in 3-6 Months Old Infants: A Randomized Trial 

Prone play is important for infants to develop strength and coordination in the muscles of the 

neck, trunk and upper extremities. Encouraging prone play in infants’ routine is important to 

avoid the risks of plagiocephaly and motor delays. Two research questions were examined in this 

study: (a) to assess the feasibility of a clinical trial comparing usual care (low tech) to a high tech 

intervention based on the principles of OC and (b) to explore factors that may influence prone 

motor skills during the intervention period and need to be considered in the potential mechanism 
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of action in future efficacy studies. Findings from this study were needed to determine if larger 

scale research on the intervention was warranted and feasible.  

Paper 3: A Motor Learning Paradigm Combining Technology and Associative 

Learning to Assess Prone Motor Learning in Infants 

Assessment of associative learning in prone position in infants is important to understand 

the motor learning properties of infants’ prone motor behaviors. Two research questions were 

examined in this study: (a) Can infants demonstrate short term learning of an association 

between their upper body movements with the activation of a toy while in prone position and (b) 

retain the association learned on day 1, 24 hours later.  The findings from this study were needed 

to critically evaluate the ability of infant to learn an association in prone in order to determine if 

this learning strategy could be used in future intervention studies. 
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Abstract 

Advances in technology have empowered movement specialists to build rehabilitation devices that have 

the potential to assess and optimize movement and function in infants. The broader goals of our 

research are to 1) understand the learning mechanisms underpinning the development of prone 

motor control in both typically developing infants and infants with developmental delays and 2) 

develop interventions to improve their tolerance for prone play and positively impact motor 

development. Through a combination of principles of motor leaning with technology, we have 

developed the Prone Play Activity Center (PPAC). The purpose of this paper is to present the 

rationale behind why preliminary work was needed to develop the PPAC. Second, discuss 

findings from the preliminary work done to develop a functional prototype, set protocols to 

assess associative learning in prone and develop an intervention program to improve prone 

tolerance and prone motor skills. 

 

Key words: Prone, Prone play, Associative learning, Rehabilitative technology 
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Introduction 

The broader goals of our research are to 1) understand the learning mechanisms underpinning the 

development of prone motor control in both typically developing infants and infants with 

developmental delays and 2) develop interventions to improve their tolerance for prone play and 

positively impact motor development. Rehabilitation devices have the potential to both assess 

and optimize infant movement and functions. From sensor onesies1 designed to promote early 

movements in infants with developmental delays to exoskeletons such as Hybrid Assistive Limb 

- Cyberdyne2 developed to promote locomotion in individuals with spinal cord injury, 

technology has shown promise in adapting to our growth and functional abilities. At Research 

Summit IV “Innovations in Technology for Children with Brain Insults: Maximizing Outcomes” 

by American Physical Therapy Association3,physical therapy (PT) researchers were encouraged 

to conduct studies that utilizes the advances in technology to enhance the effectiveness of PT 

assessments and interventions for child development and learning. In line with the suggestions 

by APTA, we have instrumented a device - Prone Play Activity Center (PPAC) developed to 

achieve our research goals. PPAC is based on the principles of associative learning described as 

the ability to discover causal relationships between two or more events.4,5 Infants as young as 8 

weeks of age have demonstrated the ability to understand the association between their kicks and 

the activation of an overhead mobile.5–11 The construct of associative learning extends to the 

principles of operant conditioning according to which a behavior can be encouraged by 

associating it with a positive experience or reinforcement.5,7,12 Encouragement of motor 

behaviors in infancy through positive reinforcement is not a new concept and has been utilized to 

increase sucking, vocalization, kicking and reaching in both typically developing infants and 

infants with motor delays.7 For instance, by using a pacifier that plays the voice of the infant’s 

mother when sucked at a certain pressure, physical therapists and nurses in the NICU were able 
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to improve the rate of sucking and feeding outcomes in infants born preterm and facilitate early 

discharge.13,14 In another study, toys that moved and sounded only upon contacts encouraged 3 

months old infants to contact more and practice reaching and object exploration.15 With a strong 

proof of concept provided by studies that have used operant conditioning to modify motor 

behaviors, we aim to teach infants to change in their prone motor behavior. In this paper, first we 

would present the rationale behind why preliminary work was needed. Second, discuss findings 

from the preliminary work done to develop a functional prototype, set protocols to assess 

associative learning in prone and develop an intervention program to improve prone tolerance 

and prone motor skills.   

Methods  

Areas of uncertainty: rationale for preliminary work. To our knowledge associative learning 

has never been tested in prone position in infants. Motor behaviors that have been studied most 

commonly with the use of associative learning paradigms in infants are kicking and reaching.5 These 

behaviors share some properties such as infants early in development move their upper and lower limbs 

spontaneously in a rhythmic manner.16 The mobile paradigm originally developed with kicking as the 

behavior of interest was adapted to understand the skill of reaching in infants.17 However, with limited 

research on the mechanics of infant’s prone motor behaviors, adaptation of the mobile paradigm in prone 

in itself was a challenge. Assessment of associative learning in prone required us an artificial environment 

where infant’s prone motor behavior is precisely associated with an effect. Use of movement sensors 

seemed to be a plausible option for building a device that can associate infants’ upper body movements in 

prone with a positive reinforcement. Some common factors identified in the literature that are responsible 

for the decline of technology in pediatric rehabilitation are the technology being bulky, not aesthetically 

pleasing, parents feel their child is wired up and the child grows out of it.3 It was important to build a 

device that is parent and child friendly which would, in theory, lead to better parent and child adherence 

as compared to older systems. The goals of the preliminary work were to: (1) build an assessment tool to 
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assess the construct of associative learning in prone; (2) use pilot data from the device to define the 

learning criteria to categorize individual infants as learners and non-learners; (3) start to determine 

whether infants can learn the association between lifting their head to a certain level and activate a toy; 

(4) validate the Matlab code developed to process and analyze the data; and (5) determine the “just right” 

prone play level for infants with poor tolerance for prone play.  

Pilot 1: Development of the prone play activity center. To assess associative learning in 

pronelying in 3-6 months old infants, we built the “Prone Play Activity Center” (PPAC) through a series 

of three iterations. During the iterative processes two different types of sensors were evaluated and sensor 

validation was completed.  For our first iteration we used one infrared sensor, mounted above the infant’s 

head to locate head position in space (Figure 1a). We pilot tested the first iteration on 4 full term healthy 

infants, 3 – 6 months of age. During pilot testing, we found a delay in the sensitivity of the sensor to 

activate a toy when infants’ raised their head to a certain height. We observed that above a certain height 

the sensor would not sense infants’ head position in space. Insensitivity of the infrared sensor suggested 

the sensors’ sensing area being too small. Most sensors have a detection area that is cone shaped. If the 

conical detection area of the sensor is not wide enough, the infant’s head will move out of the sensor area 

as infants are raising their head in prone higher and getting closer to the sensor in prone. To resolve the 

issue of insensitivity of the infrared sensor we switched to three ultrasonic sensors during 2nd iteration 

testing (Figure 1b) and mounted the sensors to a height, high enough to provide a wide cone shaped 

sensor area in the 3rd iteration (Figure 1c). The final iteration of the PPAC was tested on 3 infants to 

finalize the following components for the future experiments (Figure 1c): 1) ultrasonic sensors 2) Arduino 

Uno microcontroller 3) dancing/singing toy. The sensors locate the position of infants’ head in space and 

records the heads’ distance from the floor (HH) every 90 milliseconds (msecs). The microcontroller 

compares the HH to the controller settings and activates the toy if conditions are met. For example, if the 

microcontroller is set to activate the toy when the infant’s head is ≥ 10 cm off the floor, the toy will turn 

on when the head is ≥10 cm and turns off when the infant lowers his head to < 10 cm. The PPAC has two 

modes: 1) Continuous mode 2) Interval mode. In the continuous mode the toy will activate when the 
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infant’s head is at or above the threshold and will turn off when the infant’s head is below the threshold. 

In the interval mode, the same conditions must be met to turn the toy on, but the toy will turn off after a 

certain period of time or interval length even if the infant’s head is above the threshold or when the 

infants head goes below the threshold, which ever happens first. For example. For example, if the interval 

mode is ON and is set at 10 seconds. The toy will activate when the infant’s head is at or above the 

threshold (AT) and will turn off when the infant is below the threshold or after 10 seconds of time with 

the toy on, even if the infants head is above the threshold. To reactivate the toy, the infant needs to lower 

her/his head and then raise her/his head to the threshold again. The microcontroller is connected to a 

computer that records the following data every 90 msecs: (1) Head lift height (HH), distance from the 

highest point on the infant’s head to the floor;  (2) Average head lift height (AHH), average HH during 

the trial; (3) Frequency of infant achieves AT (FAT); (4) Total duration the infant achieves AT; and the 

(5) total duration the PPAC toy was on (DTO) (refer to Table 1 for description of additional terms that 

were calculated from the raw data acquired from the PPAC).  

Pilot 2: development of the associative learning criteria. Four infants were tested with a 

variety of associative learning protocols to assess the feasibility of each protocol, determine the ideal 

length of each testing phase and establish the height at which the threshold should be set. Consistent with 

the Rovee-collier mobile paradigm5,6 we started out testing a 2 minute baseline, and 10 minute 

acquisition. However, all 4 infants could not complete the 12 minutes of testing (2 min baseline plus 10 

minute acquisition phase). By the end of the 9th minute in a 10 minutes learning trial, infants were crying 

or fussing and there was a decrease in their head lift height, suggesting fatigue. When an infant did not 

complete the full testing all their data was lost. So, we opted for an 8 minutes learning trial and divided it 

in 4, 2 minutes blocks with a 10 second rest period between the blocks in order to allow us to capture each 

block individually. Figure 2 represents the final, 2 consecutive days of testing protocol. Day 1 of testing 

consists of a 30 seconds pre-baseline phase followed by a 2 minutes baseline and 8 minutes of acquisition 

phase. In the pre-baseline phase, infants were positioned prone lying in the PPAC for 30 seconds. At the 

end of the 30 seconds, the PPAC calculated the AHH. The AHH was used to set the TH due to the 
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following reasons: (1) if the threshold is too high the infant may not activate the toy frequently enough 

during the learning trial to determine that it is his/her act of lifting the head that is activating the toy; and 

(2) if the threshold is too low the infant may activate the toy once and not be able to reactivate the toy 

considering the high eccentric control required to lower the head and upper body below the level of the 

threshold. Thus, a too high or a too low threshold may fatigue the infant and interrupt the associative 

learning process. In the Baseline phase, infants were positioned in prone in the PPAC for 2 

minutes. The PPAC toy did not activate in response to infants’ movements during this period. 

The purpose of the baseline phase was to provide information about the infants’ head lift height 

not associated with the activation of the PPAC toy. In the Acquisition phase, the PPAC toy was 

activated in response to an infant’s raising his/her head to a height equivalent to or greater than 

the TH. The toy remained on for a maximum of 10 seconds or turned off anytime the infants’ 

head was below the AT. We included the “10 seconds rule” as we found infants would hold their 

head up at or above the TH to keep the toy ON for the whole acquisition period and will not have 

the opportunity to explore the association between their movement and the toy activation. While 

this protocol is different than the traditional associative learning paradigm with the use of blocks 

rather than continuous practice as during our pilot testing we observed that by providing 

intermittent breaks between the acquisition phase most of the infants completed the acquisition 

phase of testing.  

Pilot 3: Testing the planned associative learning protocol.  Five infants, 3-6 months old were 

tested in the PPAC for associative learning using the proposed protocol (see procedure section below for 

details). Data from these infants were used to set a priori learning and retention criteria for the proposed 

study. Table 2 and Figure 3 represents the baseline and learning trial data for an infant tested during pilot 

work 3. In Figure 3, note how the infant is holding her head at various heights during the baseline and 1st 

acquisition, but then holds the head right around the TH that activates the toy in 2nd and 3rd acquisition 
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blocks. In addition, during testing the toy was set at a 10 second interval length. The toy would turn off 

after 10 seconds even if the infant is maintaining her head AT. The infant had to cross the TH again to 

activate the toy. During the baseline and 1st block of acquisition the Frequency of toy reactivations (FTR) 

(see Table 1 for term definitions) is 2 but by the 2nd block of acquisition the FTR’s are at 7. Thus, by the 

2nd block of acquisition there is 3.5 times increase in the FTRs. So, by 2nd block of acquisition the infant is 

activating the toy, maintaining the head at the TH and reactivating the toy after 10 seconds.    

In the process of deciding the associative learning and retention criteria for the proposed 

study we analyzed our preliminary data from the 5 infants using multiple criteria that are either 

present in the literature or are based on our understanding of the paradigm.(refer Table 1) The 

Rovee Collier learning criteria5,6 categorizes an infant as a learner of the mobile paradigm if the 

infant’s frequency of  kicks for any two consecutive 2 minutes during acquisition is 1.5 times 

greater than the within day baseline kicking frequency. Translating the Rovee Collier criteria 

into the prone paradigm an infant would need to lift their head 1.5 time more than baseline for 4 

minutes. None of the five infants learned our paradigm. With the Rovee Collier learning criteria 

we are only taking into consideration the frequency of AT. However, the motor pattern for 

kicking is highly repetitive and there is not a duration associated with the response, as a single 

kick activated the mobile and the mobile stopped when the kicking stopped. We believe that 

infants who will learn our paradigm will not only learn to activate the toy but also keep the toy 

ON for a longer period and reactivate it when it turns off. This can be calculated using the 

duration the toy was ON at the end of each trial (DTO) and FTR being the dependent measures.  

Associative learning and retention criteria in prone. Based on the pilot testing results 

we established a criteria to quantify learning using the PPAC.  Individual infants were 

categorized as short term learners if their FTR and DTO in any 2 consecutive phases of the final 

3 acquisition phases was 1.5 times higher than the FTR and DTO of the baseline on day 
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1.Retention of the association learned on day 1 was identified if infants FTR and DTO in any 2 

consecutive phases of the final 3 acquisition phases on 2nd day of testing was 1.5 times the FTR 

and DTO of the baseline phase on day 1. Pilot 3 confirmed the adequacy of the testing protocol 

as we were able to capture change seen in the FTR and DTO between the baseline and 

acquisition phase of testing. Our ability to use the PPAC successfully to assess associative 

learning on all 5 infants who participated in pilot 3, verified the feasibility of using PPAC to 

follow the testing protocol.   

Pilot 4 Matlab code developmental and validation. The purpose of pilot 4 was to 

validate the Matlab code developed to calculate the FTRs and DTOs. The FTRs and DTOs are 

the parameters used to categorize infants as learners and non-learners. Data of the 5 infants in 

pilot 3 was processed using 2 methods: Manual and Matlab. The manual method involved the 

use of functions in Microsoft Excel to clean the raw data and block the segments where the 

infant re-activated the toy after the toy had been activated for the whole IL by the infant (10 

seconds used in the protocol). These segments were counted to determine the FTRs. To calculate 

the DTOs the block of time when the infant activated the toy determined by the head height 

above the threshold height was marked and summed for the total duration. The manual method 

was time intensive as the size of each data file ranged from 400-600 KB. The manual method 

also required multiple checks to ensure accuracy. To improve the efficiency of our data 

processing method a Matlab code was developed. To validate the Matlab code we compared the 

FTRs and DTOs calculated manually to the data calculated by the Matlab code. We found a 

100% agreement between both the methods of data processing and decided to use the Matlab 

code, which is a more time efficient method to process big data files.  
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Pilot 5: Defining the intervention protocol. The purpose of pilot 5 was to operationally define 

the “just right” level of prone play for infants with poor tolerance of prone position. This was required to 

guide our intervention developed to support motor development and prone tolerance during infancy. The 

“just right challenge” of play is described in the literature as setting a play environment that is not too 

easy or too difficult for infants to learn and advance their skills.18–20 For example: to encourage 

exploration and reaching in an infant who has visual difficulties, the “just right” level to introduce objects 

would be at the level of the eye, so not too close to the eye or too far from it, for the infant to reach and 

interact. The “just right” level of prone play would guide parents during the intervention period to set the 

threshold at which infants will be able to activate the toy in the PPAC. With this pilot work we wanted to 

operationally define three levels of prone play – easy, moderate and challenging. Based on the mobile 

paradigm studies, the AHH would be considered to be an “easy” level of prone play; however, we 

selected the AHH to be a “moderate” level as infants who could tolerate prone play well could not stay at 

the AHH in the PPAC for more than 8-10 minutes per session (pilot 2-3). Since the intervention 

guidelines asked parents to begin at the easy level and practice prone play for at least 30 minutes/day 

(paced in 4-5 sessions if needed) it would be challenging for parents to comply with the intervention 

guidelines if the AHH was selected as the easy level of prone play. We decided the easy level to be below 

the AHH and standardized it to be 25 % below the AHH. The AHH of 3-6 months old infants who 

participated in pilot 3 was at the range of 8 – 12 inches. The easy level of prone play for an infant with an 

8 inches of AHH would be 6 inches. Any AHH below 6 inches will make the PPAC sensors less sensitive 

towards infant’s head position and movements as the sensors captures the head position at its best from 5 

– 17 inches above the floor. Thus, three “just right” levels of prone play were decided based on our 

findings from pilot 1-3: Easy = 25% below the AHH, Moderate = AHH and Challenging = 25 % above 

the AHH.  
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Discussion 

The preliminary work supported the conception of an instrument play gym that can be 

used to assess associative learning in prone and develop interventions based on operant 

conditioning. Through multiple testing, we were able to determine an assessment protocol that is 

feasible to administer in infants. Findings from the preliminary work were used to conduct two 

research projects discussed in chapter 3 and chapter 4.  
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Tables 

 

Table 1: Terms and abbreviations used in the protocol 

Term (abbreviation) Definition How obtained/calculated 

Head lift height (HH) Distance from the highest 

point on the infant’s head to 

floor.  

Calculated by the PPAC 

Average head lift height 

(AHH) 

Infant’s average head lift 

height during the trial.  

Calculated from the data 

from PPAC 

Threshold height (TH) Height set by the 

experimenter at which the 

toy turns ON.  

Equals AHH during the Pre-

baseline trial 

At or Above Threshold (AT) Infant’s head is equal to or 

higher than a threshold 

height 

 

Frequency of AT (FAT) Number of times infant 

achieves AT 

Calculated of the data from 

PPAC 

Duration AT (DAT) Duration of  an episode of 

AT during the trial 

Calculated of the data from 

PPAC 

Total DAT  Sum of all DAT during the 

trial 

Calculated of the data from 

PPAC 

Average DAT Average duration of time 

infant achieves AT during 

the trial 

Total DAT /FAT 

Interval Length(IL) Maximum duration of toy 

activation per AT 

Set by the experimenter 

during the Interval mode 

Duration of Toy ON (DTO) Duration of a continuous 

episode of AT during the 

trial with a maximum 

equivalent to the IL.  

DTO = DAT with a 

maximum of IL 

Frequency of toy 

reactivations (FTR) 

Frequency of reactivations 

after meeting the IL 

 

Matlab was used to calculate 

the FTR 

Learning criteria   

Frequency based  learning 

criteria 

 FTR_baseline*1.5 

<FTR_AQ ( any 2 of the 

final 2 acquisition phases) 

Duration based learning 

criteria 

 DTO_baseline*1.5 < 

DTO_AQ( any 2 of the final 

3 acquisition phases) 
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Figure 1: Three iterations of the Prone Play Activity Center (PPAC) 

 

1c 

 

1b 

 

1a 

Figure 2: Associative learning in prone testing protocol 
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Appendix A  

 

Prone play activity center – Matlab code 

 

%-------------------------------------------------------------------------- 
%   
% 
%  This program is designed to (1)plot PPAC data, (2)allow the user to  
%  select data to be processed,and (3)plot, compute, and store appropriate 
%  performance metrics.  
% 
%  Pidcoe 042617 
%-------------------------------------------------------------------------- 
 
clear all                                %clear all variables 
close all                                %close all windows and files 
prgm = sprintf('PROGRAM = PPAC3.m');       %program name for storage files 
% sampling_rate = 250;                     %set to 250Hz 
% T = 1 / sampling_rate;                   %period 
PLOT = 1;                                %set plotting flag 
 
%-------------------------------------------------------------------------- 
%  query input file name 
%-------------------------------------------------------------------------- 
root_name=input('Select File to Run: ','s'); 
in = strcat(root_name, '.asc');  % append extension 
%OPEN FILE 
fid = fopen(in);            %open file 
C = fread(fid);             %read array 
D = C';                     %transpose column to row 
 
%-------------------------------------------------------------------------- 
%  create output file 
%-------------------------------------------------------------------------- 
out=strcat(root_name,'.out');   %open a file to store % activation results 
fid_out = fopen(out, 'w'); 
fprintf(fid_out,'%s\r\n',prgm); fprintf(fid_out,'\r\r\n'); 
fprintf(fid_out,'FILE = %s\r\n',strcat(root_name,'.txt')); 
fprintf(fid_out,'\r\n'); 
 
%-------------------------------------------------------------------------- 
%  FIND 'RESETTING...' string 
%-------------------------------------------------------------------------- 
    r = findstr(D,'Resetting System...');   %search for start of trial 
    s = findstr(D,'time2=');                %search for beginning of data 
 
%-------------------------------------------------------------------------- 
%  FIND 'TIME2=' string AFTER RESETTING... string 
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%-------------------------------------------------------------------------- 
    start = zeros(length(r),1); 
    for i=1:length(r) 
        for j=1:length(s) 
            if s(j) > r(i) 
                start(i) = s(j); 
                break; 
            end 
        end 
    %    fseek(fid,r(i)-1,'bof'); %move to reset string location 
    %    s = findstr(D,'time2='); %search for beginning of data 
    %    start(i) = s(1);         %store first element 
    end 
 
%-------------------------------------------------------------------------- 
%  DETERMINE LARGEST ARRAY SIZE (and store each file length) 
%-------------------------------------------------------------------------- 
    frewind(fid); 
    i = 1; 
    max = 0; 
    SIZE = zeros(99,1);     %store the size of each trial 
    while ~feof(fid) 
        fseek(fid,start(i)-1,'bof'); 
        ftell(fid); 
        [T, position]=textscan(fid,'%s %f %s %s %d %s %s %f %s %d %s %d %s %d'); 
        SIZE(i) = length(T{1,1}); 
        if SIZE(i) > max 
            max = length(T{1,1}); 
        end 
        i = i+1; 
    end 
 
%-------------------------------------------------------------------------- 
%  INITIALIZE STORAGE ARRAYS 
%-------------------------------------------------------------------------- 
    xtime = zeros(max,i-1); 
    trig  = zeros(max,i-1); 
    crnt  = zeros(max,i-1); 
    iflag = zeros(max,i-1); 
    RAW_iflag = zeros(max,i-1); 
    idur  = zeros(max,i-1); 
    itime = zeros(max,i-1); 
 
%-------------------------------------------------------------------------- 
%  RECOVER DATA INTO MATRICES - note varying lengths and zero padding 
%-------------------------------------------------------------------------- 
    frewind(fid); 
    i = 1; 
    while ~feof(fid) 
        fseek(fid,start(i)-1,'bof'); 
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        ftell(fid); 
        [T, position]=textscan(fid,'%s %f %s %s %d %s %s %f %s %d %s %d %s %d'); 
 
        %have to transfer one at a time due to file length differences 
        for j=1:length(T{1,2})-1 
            xtime(j,i) = T{1,2}(j,1); 
            trig(j,i)  = T{1,5}(j,1); 
            crnt(j,i)  = T{1,8}(j,1); 
            RAW_iflag(j,i) = T{1,10}(j,1); 
             
            if (T{1,10}(j,1) == 2)  %create ON/OFF plotting array 
              iflag(j,i) = 2; 
            else 
              iflag(j,i) = 0; 
            end 
                 
            idur(j,i)  = T{1,12}(j,1); 
            itime(j,i) = T{1,14}(j,1); 
        end 
 
        i = i+1; 
    end 
 
TRIALS = i-1; 
 
%-------------------------------------------------------------------------- 
%  PROCESS DATA - need to loop for the number of trials detected  
%-------------------------------------------------------------------------- 
for k=1:TRIALS 
    str = sprintf('TRIAL = %d',k); 
    idx = ~isstrprop(str,'wspace'); % detect spaces 
    idy = idx | [idx(2:end),true]&[true,idx(1:end-1)]; % ignore single space 
    und = char(32*~idy); % define output spaces 
    und(idy) = '-'; % add whatever character to use as the underline 
    fprintf(fid_out,'\n%s\n\r\r',str) % print 
    fprintf(fid_out,'\n%s\n\r\r',und) % print 
 
    %-------------------------------------------------------------------------- 
    % plot raw data and let user input start and stop points for analysis 
    % 
    % NOTE that istart and istop are now created from floating point values to  
    % increase the resolution of the selection 
    %-------------------------------------------------------------------------- 
    TIME_plot = xtime(5:SIZE(k)-5,k);             %load current time data 
    RAW_plot = crnt(5:SIZE(k)-5,k);               %load current distance data 
    iflag_plot = iflag(5:SIZE(k)-5,k);            %load iflag data 
    RAW_iflag_plot = RAW_iflag(5:SIZE(k)-5,k);    %load RAW toy ON/OFF data 
    trig_dist = trig(1,k);                        %load current trigger value 
    file_len = SIZE(k)-10; 
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    if PLOT == 0 
        user_begin=1; 
        user_end=file_len-1; 
    end 
 
    if PLOT == 1 
        scrsz = get(0,'ScreenSize'); 
        L = scrsz(3)/8;           %left 
        B = scrsz(4)/8;           %bottom 
        W = scrsz(3) - (2*L);     %width 
        H = scrsz(4) - (2*B);     %height 
        str = sprintf('TRIAL = %d',k);  
        figure('Name',str,'NumberTitle','off',... 
            'Position',[L B W H])    %title and position figure 
 
        subplot(2,1,1);                 %define subplot area 
        hold on 
        plot(TIME_plot,RAW_plot,'b')    %plot raw data 
        plot(TIME_plot,iflag_plot,'k')  %plot ON/OFF data 
         
        str = sprintf('RAW'); 
            title(str) 
            xlabel('Time (s)') 
            ylabel('Head Height (in)') 
        y = [trig_dist trig_dist];         %define trigger distance 
        plot(xlim,y,'g')                   %plot trigger distance 
 
        %graphically locate start and stop points for analysis 
        [x,y] = ginput(2); 
        user_begin = x(1); 
            if (user_begin < 0) user_begin = TIME_plot(1); end 
        user_end = x(2); 
            if (user_end < user_begin) 
               user_end = TIME_plot(file_len+1); 
            end 
            if (user_end > TIME_plot(file_len+1)) 
               user_end = TIME_plot(file_len+1); 
            end 
 
    end 
 
    %display selected values 
    hold on; 
        itemp = [user_begin user_begin]; 
            plot(itemp,ylim,'r');                        %ylim = axis limits 
        itemp = [user_end user_end]; 
            plot(itemp,ylim,'r');                        %ylim = axis limits 
 
    %determine array locations for user_begin and user_end 
    istart = 0; istop = 0;                               %preset values to 0 
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    for i=1:file_len+1 
        if (TIME_plot(i) >= user_begin && istart == 0) 
            istart = i; 
        end 
        if (TIME_plot(i) >= user_end && istop == 0) 
            istop = i; 
        end 
    end 
 
    fprintf(fid_out,'\nTotal file length = %.2fsec',... 
        TIME_plot(length(TIME_plot))); 
    fprintf(fid_out,'\n -- Selected data from %.2f to %.2f sec\n\r\r',... 
        TIME_plot(istart),TIME_plot(istop)); 
 
    %-------------------------------------------------------------------------- 
    %  create temporary arrays from indices 
    %-------------------------------------------------------------------------- 
    a = TIME_plot(istart:istop,1); 
    b = RAW_plot(istart:istop,1); 
    c = iflag_plot(istart:istop,1); 
    d = RAW_iflag_plot(istart:istop,1); 
     
    %-------------------------------------------------------------------------- 
    %  compute metrics 
    %-------------------------------------------------------------------------- 
    % number of toy triggers 
    freq_cnt = 0; 
    dur_toyON = 0; tSTART = 0; 
    for i=2:length(c) 
%         sprintf('i = %d  c = %d freq_cnt = %d',i,c(i),freq_cnt) 
        if (c(i) == 2 && c(i-1) == 0)  %ON transition 
            freq_cnt = freq_cnt + 1; 
            tSTART = a(i); 
        end 
        if (c(i) == 0 && c(i-1) == 2 && tSTART ~= 0)  %OFF transition 
            tSTOP = a(i); 
            tDIFF = tSTOP - tSTART; 
            dur_toyON = dur_toyON + tDIFF;  %duration of toy ON            
        end 
    end 
    fprintf(fid_out,'\ntrigger total = %d\n\r\r',freq_cnt); 
 
    % average head height 
    fprintf(fid_out,'\naverage head height= %.2f±%.2f\"\n\r\r',... 
        mean(b),std(b)); 
     
    % duration of toy ON 
    fprintf(fid_out,'\ntrigger height = %.2f\"\n\r\r',trig_dist); 
    fprintf(fid_out,'\n\tduration of toy ON = %.2fs\n\r\r',... 
        dur_toyON); 
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    % duration of head above trigger 
    dur_headABOVE = 0; tFLAG = 0; 
    for i=2:length(b) 
        if (b(i) >= trig_dist && tFLAG == 0)  %ABOVE trigger 
            tSTART = a(i); 
            tFLAG = 1; 
        end 
        if (b(i) < trig_dist && tFLAG == 1)   %BELOW trigger 
            tSTOP = a(i); 
            tDIFF = tSTOP - tSTART; 
            dur_headABOVE = dur_headABOVE + tDIFF;  %duration ABOVE trigger            
            tFLAG = 0; 
        end 
    end 
     
    if (tFLAG == 1)     %clean up last above trigger time 
        tSTOP = a(i); 
        tDIFF = tSTOP - tSTART; 
        dur_headABOVE = dur_headABOVE + tDIFF;  %duration ABOVE trigger            
        tFLAG = 0; 
    end 
         
    fprintf(fid_out,'\n\tduration of head above trigger = %.2f\n\r\r',... 
        dur_headABOVE); 
     
    % number of toy time-outs followed by re-triggers 
    freq_cnt = 0; 
    tflag = 0; 
    for i=2:length(d) 
        if (d(i) == 3 && d(i-1) == 2)  %time-out (toy OFF transition) 
            tflag = 1; 
        end 
        if (d(i) == 2 && d(i-1) == 0 && tflag == 1)  %re-trigger (toy ON) 
            freq_cnt = freq_cnt + 1; 
            tflag = 0; 
        end 
    end 
    fprintf(fid_out,'\nre-trigger total (learning) = %d\n\r\r',freq_cnt); 
     
    %-------------------------------------------------------------------------- 
    %  plot data 
    %-------------------------------------------------------------------------- 
    subplot(2,1,2);                         %define subplot area 
        hold on 
        title('PROCESSED') 
        plot(a,b,'b') 
        plot(a,c,'k') 
        xlabel('Time (s)'); ylabel('Head Height (in)'); 
        y = [trig_dist trig_dist];         %define trigger distance 
        plot(xlim,y,'g')                   %plot trigger distance 
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    %-------------------------------------------------------------------------- 
    %  fit data with linear regression and plot 
    %-------------------------------------------------------------------------- 
    ftemp = polyfit(a,b,1);           %1st order fit of head height data 
    e = zeros(length(a),1); 
 
    for i=1:length(a)                 %create and plot arrays 
        e(i) = (ftemp(1)*a(i)) + ftemp(2); 
    end 
        plot (a,e,'r') 
 
    fprintf(fid_out,'\nRegression values are m= %.2f to b= %.2f\n\r\r',... 
        ftemp(1),ftemp(2));     
 
    %-------------------------------------------------------------------------- 
    %  store metrics to file 
    %-------------------------------------------------------------------------- 
 
     
     
    %-------------------------------------------------------------------------- 
    %  annotate plot 
    %-------------------------------------------------------------------------- 
    str = sprintf('Slope = %s',num2str(ftemp(1)));  
    text(mean(a),mean(b)-1,str,'HorizontalAlignment','center') 
     
%     pause 
     
    %-------------------------------------------------------------------------- 
    %  clear vectors for next iteration 
    %-------------------------------------------------------------------------- 
    clear a; 
    clear b; 
    clear c; 
    clear d; 
    clear e; 
    hold off; 
     
    fprintf(fid_out,'\n\n\r\r'); 
 
    pause; 
     
end 
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Appendix B 

 

Prone Play Activity Center components 

Arduino Uno  

Display  

Protoshield  

Relays 

Screw terminals  

10K potentiometer  

Knobs  

USB cable  

Battery holder  

Barrel connector  

RCA Panel mnt  

RCA Male plugs  

Sonar sensors  

Fiberglass rods  

Cable/wire  

3 D print material  

Toys  
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Abstract 

Background: The American Academy of Pediatrics recommends “parents and caregivers 

incorporate supervised, awake “prone play” in their infant’s daily routine to support motor 

development and minimize the risk of plagiocephaly”. Purpose: To determine the feasibility of a 

clinical trial comparing usual care (low tech) to a high-tech intervention to increase tolerance for 

prone and improve prone motor skills. The proposed high tech intervention has two key 

elements: (1) providing reinforcement to infants to raise their head above a target threshold to 

activate a toy; and (2) challenging infants to raise their heads higher each time they achieve a 

target. Methods: Ten full-term infants with poor prone tolerance were randomized to the high-

tech or the low-tech, education group. Parents and infants in each group participated in a 3 week 

intervention with 4 PT visits and 15 parent sessions.  Intervention frequency and parent feedback 

data were used to determine the feasibility of the high-tech intervention. Effect sizes were 

calculated for motor and prone tolerance measure at baseline and end of intervention. Results: 

Infants received an average of 93% of the anticipated high-tech intervention sessions. Parents 

had high adherence to one of the 2 key components of the intervention and independently used 

the high technology for a mean of 18 (7) minutes per day. Effect sizes were large for the motor 

development and prone tolerance measures and in the anticipated direction. Conclusion: The 

proposed high-tech intervention is found to be feasible and appropriate for a future large-scale 

clinical trial.  

Key words: Prone tolerance, prone motor skills, prone play, high-tech intervention, prone play 

and technology. 

  



 
 

49 
 

Introduction 

The American Academy of Pediatrics (AAP) recommends that “parents and caregivers 

should incorporate supervised, awake “prone play” in their infant’s daily routine to support 

motor development and minimize the risk of positional head deformities.”1,2 However, 

approximately 70% of 4-5 months old infants are spending more time in supine, supported sitting 

or being held (x = 8.9 hours, SD = 1.26) compared to prone position (x = 1.2 hours, SD = 1.1) 

during the day.3 It was estimated that 20 % of infants 4 million infants born in 2013 would 

experience some degree of positional skull deformation.4 Studies have suggested excessive 

supine lying (β= 2.8; 95% CI: 2.23– 3.32) and limited prone play time (β = .9; 95% CI: 1.53–

0.22) in infants’ routine as factors associated with the risk of positional plagiocephaly.5,6 

Infants’ poor tolerance for prone position, biomechanical challenges imposed by prone on 

the musculoskeletal system and parents’ hesitation towards prone play likely lead to minimal 

practice of motor skills in prone (Figure 1). According to the ecological theory of motor learning, 

practice along with knowledge of performance (feedback received during the movement) and 

knowledge of results (feedback received after the movement) is beneficial for motor learning.9 

For infants to develop prone motor skills it is necessary to gain strength through practice.8 Due to 

infants’ intolerance for prone lying, parents, including those  familiar with AAP’s “back to sleep 

and prone to play” recommendations, find it challenging to incorporate prone play in their 

infant’s daily routine.3,7  

Current approaches to increase prone motor skills and improve tolerance for prone play 

include educating parents through brochures and using commercially available prone positional 

supports such as U shaped pillows and play gyms. Lack of scientific rigor in the prone play 

recommendations leads to poor implementation of prone play during infancy as health care 

providers and parents are not clear about the guidelines.12 To our knowledge, there are no studies 
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done on the efficacy of play-based intervention programs developed to improve tolerance for 

prone and prone motor skills of infants.  

 While healthy typically developing infants are at risk of mild developmental delays and 

plagiocephaly due to limited prone play, a larger impact is seen on infants with a pre-existing 

risk of developmental delays, like infants born at preterm.17  Prone lying is often reported to be 

the “least favorite” play position of infants born at preterm placing them at higher risk of 

developmental delays and positional plagiocephaly.17–19 Infants at risk of developmental delays 

perform poorly in prone skills compared to motor skills in a supine position.19,22-23 Current 

education programs and “tummy time toys” do not address the need for an easily implemented 

prone play strategy for parents or daycare centers. There is need for an evidence-based 

intervention that can be used by physical therapists, early intervention providers, parents and 

daycare centers to increase tolerance for prone play and improve prone motor skills.   

The intervention evaluated in this feasibility study utilizes technology to enhance infant’s 

poor tolerance and prone motor skills using 2 key principles: (1) Positive reinforcement; and (2) 

the “Just Right” Challenge. The principle of positive reinforcement is derived from Operant 

conditioning (OC) which is a form of associative learning. OC proposes that  a certain behavior 

can be encouraged by associating it with positive reinforcement.22 OC techniques have been used 

with interventions to enhance sucking, vocalization, smiling, head turning, and reaching in 

infants.23–25 For instance, by using a pacifier that plays mother’s voice when sucked at a certain 

pressure, physical therapists and nurses in the NICU were able to encourage sucking and 

improve feeding outcomes in infants born preterm and facilitate early discharge.26,27 In another 

study, toys that moved and made sound only upon contacts encouraged 2.9 months old infants to 

contact more and practice reaching and object exploration.28 Our novel intervention harnesses 

the benefits of OC to encourage motor behaviors in prone. The Prone Play Activity Center 
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(PPAC) is rehabilitation device developed by the research team to provide positive reinforcement 

in the form of a toy activation in response to a head lift and will be used to implement the 

proposed intervention. The second principle of the intervention is the utilization of the “Just 

Right Challenge” which refers to the need for challenging the infant to work towards a goal just 

beyond their currently ability. Constraint induced movement therapy (CIMT) and bi-manual 

therapy are examples of proven, evidence based interventions utilizing the principles of motor 

learning.29,30 Shaping is one of the principles of CIMT that emphasizes increasing the difficulty 

level of the training as the performance improves for maximum functional gains.31,32 Consistent 

with motor learning theory and shaping, the “Just Right” challenge allows for regular success 

and feedback on meeting an intermediary goal while working towards an ultimate goal. Using a 

variable threshold on the PPAC the “Just Right” Challenge threshold can be adjusted daily by 

parents to ensure ongoing positive reinforcement and challenge.   

The purpose of this study was to conduct a pilot trial to assess the feasibility of two home 

based interventions (one high-tech and one low-tech) using positive reinforcement strategies to 

improve tolerance for prone positioning and positively impact motor development in 3-6 months 

old infants. Specifically, the aims of this feasibility trial were to determine the feasibility of 

delivering the proposed interventions and evaluate if the proposed outcome measures are able to 

detect change in motor skills and prone tolerance in infants. The study also which factor(s), in 

addition to the key elements of the interventions, may influence prone motor skills during the 

intervention period and as such need to be considered as potential mechanisms of action in future 

efficacy studies.  
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Methods 

Participants and setting. A convenience sample of 10, 3 to 6 months old infants born at 

term (50% female; mean age = 4.19 months, SD = 0.7 months) were recruited. Infants were 

identified from the community and parents provided informed consent for all infants. The 

university’s institutional board approved the study. Infants who participated in this study 

received an age-appropriate infant toy at the end of the study. Infants were recruited from 

September 2017 – February 2018.   

 Full term infants with poor prone motor skills and poor prone tolerance were eligible for 

the study. Poor prone motor skills were defined as a score of 2 to 6 in the prone subsection of 

Alberta Infant Motor Scale (AIMS).  Poor prone tolerance was identified as fussing/crying for 

more than 30 seconds during a five minute period in prone, and validated by parents’ statement 

that the infant did not enjoy prone play. Fussing  and crying was defined using the descriptors 

from Brazelton infant behavioral state (state 6).33,34 Infants born with brain injury or any 

neurological event associated with a risk of neurodevelopmental disabilities, musculoskeletal 

deformity, genetic syndromes, visual and hearing problems, or any other disorders or medical 

complications limiting participation in assessments and intervention were excluded from the 

study.   

All infants enrolled in the study participated in the same assessment schedule, regardless 

of group assignment. Post baseline assessment and collection of demographics and socio-

economic status information, infants were randomized to the High-technology group (HTG) or 

the Low-technology group (LTG). All assessment sessions were conducted either in the infant’s 

home or at the Motor Development Lab at Virginia Commonwealth University based on parent’s 

choice. Visits were scheduled during a time of the day when a parent indicated that the infant 

was usually awake and playful 
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Intervention  

The high-technology intervention. Infants in the HTG participated in a 3 week, home-

based intervention program led by parents to improve their infant’s prone tolerance and promote 

motor development (Figure 3). The active ingredients of the intervention are to 1) positively 

reinforce infant’s initial efforts to lift their head in prone and to 2) progress the intervention to 

provide the “just right” challenge for prone play daily. The active ingredients were administered 

by the use of the Prone Play Activity Center (PPAC) (Figure 4) in the infant’s play routine. The 

PPAC is a rehabilitation device developed by the investigators and that has the following 

components: 1) ultrasonic sensors 2) Arduino Uno microcontroller 3) dancing/singing toy. The 

sensors locate the position of the infant’s head in space and records distance from the infant’s 

head to the floor. The microcontroller compares the infant’s head height to preset settings and 

activates the toy if conditions are met. For example, if the microcontroller is set to activate the 

toy when the infant’s head is ≥ 10 cm off the floor the toy will turn on when the head is ≥10 cm 

and turns off when the infant lowers his head to < 10 cm. On day 1 of the intervention, the 

researcher educated the parent on the importance of prone play with the use of “Back to sleep, 

Tummy to Play” brochure from AAP.35 This was followed by a demonstration of the features 

and functions of PPAC. The researcher coached the parents to set the PPAC to elicit toy 

activation at their infant’s “just right” challenge of prone play. Parents were oriented to the 

intervention model so they understood when their infant lifts his/her head to the established 

threshold, the toy would activate and sing and dance until the infant’s head drops below the 

threshold. A four step coaching model was used to support parent’s ability to understand the 

concept of “just right” challenge of prone play: Step 1: Researcher determined the 3 “just right” 

challenge levels of prone play (easy, moderate and challenging) using infant’s average head lift 

height (AHH) calculated on the first day of intervention. Based on our pilot data, the average 
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height was used to calculate the “just right” prone play activity levels: a) “Easy” level – 

threshold height is set at 25 % below the day 1 average head lift height b) “Moderate” - threshold 

height equals the day 1 average head lift c) “Challenging” level- threshold height is 25% above 

the day 1 average head lift height. Step 2: Researcher wrote down the easy, moderate and 

challenging threshold heights in an intervention manual for parents to refer to during the 

intervention period. All parents were asked to begin the intervention using the “Easy” prone play 

activity level. This approach facilitated infant’s first experiences using the PPAC and allowed 

them the opportunity to activate the toy multiple times, to learn the association between their 

head movement and toy activation. The moderate and challenging levels were used to continue 

to positively reinforce the head lift as the infant improved their ability to raise the head and as 

tolerance prone lying improved. Step 3: Parents were asked to administer at least 30 minutes of 

prone play with PPAC over 15 days 3 week time period. Parents had 24 hour access to the PPAC 

in the home and could pace the intervention in 4 to 5 short periods (6-8 minutes) to avoid fatigue 

and gradually increase the duration based on their infant’s behavioral state. Step 4: Parents were 

coached to advance to the next “just right” challenge level of prone play when their infant’s 

performance met the increment criteria. The increment criterion was “the infant is able to 

complete at least 30 minutes of prone play in the PPAC during a 24 hour period without crying 

and activating the toy at least once”. If the parent perceived their infant met the criterion they 

advance to the next level (moderate or challenging) based on the threshold levels provided by the 

interventionist at the first visit. Along with the PPAC, parents received an intervention manual 

and an activity log, both paper and electronic versions. The manual included an orientation to the 

PPAC and how to adjust the “just right “challenge prone play level. The manual also included 

the infant’s individually determined “Just Right” Challenge thresholds so the parent could adjust 

the threshold knob as directed. The activity log was designed to capture the number of times per 
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day and total time the infant played in prone. The interventionist conducted an in-person session 

with a parent of each child on Day 7 and Day 14 of the intervention period to discuss any issues 

with PPAC, talk about the intervention key ingredients and ask parents to demonstrate the 

intervention and how they determined the “just right challenge” level for that day’s session.   

The low technology intervention. Parents of infants in the EG received the same “Back 

to sleep, Tummy to Play” brochure as the HTG. Parents were asked to incorporate at least 30 

minutes of prone play in their infant’s daily routine, 15 days over 3 weeks. Parents were advised 

to pace the intervention in 4 to 5 short periods (6-8 minutes) to avoid fatigue and gradually 

increase the duration based on their infant’s behavioral state. Using the brochure as a guide, 

parents were provided with tips to encourage prone play including by placing themselves or toys 

in front of the infant or holding the infant on their chest and talking to the infant. Use a towel roll 

or u-shaped pillow under the infant’ chest was described and demonstrated by the researcher. On 

day 1 of the intervention, parents received an intervention manual outlining the goal of 30 

minutes of prone per day and an activity log with the same questions as the HTG to document 

time in prone. An investigator met with the parent on Day 7 and Day 14 of the intervention 

period to discuss their infant's prone play routine and any issues encountered in administering 

prone play or completing the activity log, thus matching the frequency of researcher parent 

contacts between groups.  

Assessments. To assess feasibility of completing a clinical trial of the proposed High 

technology intervention to advance prone motor skills, we evaluated enrollment and outcome 

assessment completion statistics.  To estimate the enrollment and retention rate, the number of 

parents who expressed interest in the study through a phone call or email to the research team, 

number screened for eligibility, enrolled, and retained were tracked.   
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Adherence of parents and the interventionist to the HTG and EG interventions was 

evaluated by tracking the frequency of intervention visits completed and key intervention 

principles administered by the interventionist and parents. After 7-day and 14-day intervention 

visit for both groups, the interventionist recorded the principles utilized during the session to 

self-assess her adherence to the intervention procedures. To describe differences in the HTG and 

EG, information from the activity log was used to document the number of session parents used 

the PPAC (HTG only), amount of time per day infants’ spent in prone, and amount of time per 

day the parent-infant dyad spent in face to face interaction in prone. A video of the Day 7 and 

Day 14 intervention session was used to evaluate parents’ adherence to the interventions. Videos 

were scored by the interventionist using a similar intervention principles checklist used to score 

interventionist’s adherence. These values were compared with the anticipated feasibility 

thresholds (Data analysis section) to determine parent’s adherence in both the interventions. 

For the identification of change in infants’ tolerance to prone lying, we developed a 

measure of Prone Tolerance. Infants were placed in prone lying by the researcher for a maximum 

15 minutes to assess prone tolerance. The testing began as soon as the examiners hands left the 

infants body and ended after 15 minutes or stopped any time the infant cried for more than 30 

seconds. Crying was defined using the descriptors from Brazelton infant behavioral state (State 

6).33,34 The time lapse between the start and end of the trial was calculated as a measure of the 

infant’s tolerance towards prone position. The score ranges from 0.5-15 minutes, where a score 

of 0.5 represents that the infant cried for 30 seconds immediately after being placed in prone 

position and a score of 15 represents the infant did not cry for more than 30 seconds during the 

15 minutes of testing. The Smallest Detectable Change (SDC) calculated for this measure is 4.6 

minutes calculates using the standard error of measurement of prone tolerance scores of infants 

in this feasibility study. This measure has not been validated yet.  
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Outcome measures. AIMS and Gross Motor Function Measure (GMFM) – 88 were 

completed at baseline and end of the intervention (EOI) period (Day 0 and Day 22). These 

measures were assessed for feasibility and sensitivity to determine which will be used in future 

studies. While the measures were administered by the same person who completed the 

intervention (Ms. Tripathi) a blinded, and reliable assessor scored the video tapes of the 

assessments. The AIMS is a reliable and valid observational assessment scale used to measure 

gross motor abilities in infants from birth through independent walking.36,37 It consists of 58 

items organized into four positions: 21 prone items, 9 supine items, 12 sitting items and 16 

standing items. Each item is scored as either “observed” or “not observed”. The “least mature” 

and “most mature” item observed is marked for each of the four position. The items observed 

between the least mature and most mature item in a position represents the “window” of current 

skills for that position. The AIMS raw score for each position is the credit infant receives for sum 

of all the items before the window and for each items observed with in the window. The sum of 

the raw score in each position is the total AIMS score. AIMS evaluates three aspects of motor 

performance- weight-bearing, posture and anti-gravity movements. It can be completed within 

15-30 minutes. The Smallest Detectable Change (SDC) for AIMS is 3.88 raw score points.38 The 

GMFM-88 is a valid and reliable clinical measure designed to evaluate changes in gross motor 

function in children of 0-5 years of age with cerebral palsy (CP).39 While the validity and 

reliability of GMFM has been evaluated for children with CP and Down syndrome, we decided 

to use it for typically developing children as: 1) GMFM - 88 does a detailed sampling of motor 

skills that are “typical” of normal development and 2) in our future studies we may include 

children who are at high risk of cerebral palsy, making it an appropriate measure for this 

feasibility trial. GMFM- 88 consists of 88 items under 5 dimensions: Lying and Rolling, Sitting, 

Crawling & Kneeling, Standing and Walking, Running and Jumping. It uses a 4 point scoring 
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system to score each item on the scale of 0- 3 where (0 = does not initiates, 1= initiates, 2 = 

partially completes and 3 = completes). The sum of the score on each item is the total GMFM 

score and represents the percent of the test items the child could complete. The SDC for GMFM-

88 is 3.02 points in children with a mean age of 3.7 years.40 Percentage of infants who reached 

SDC was calculated to compare the sensitivity of the AIMS and GMFM-88.41A standardized set 

of toys were used for both AIMS and GMFM to motivate infants to demonstrate a particular 

skill, if the skill was not observed during free play. 

Implementation of the intervention. To document that parents were completing the 

intervention as planned during the non-supervised sessions, it was important to determine how 

much time the infants spent in prone each day. Parents selected one of the following options on 

the activity log to report the amount of time the infant was in prone every day: < 15 minutes, 15 

– 30 minutes and > 30 minutes of prone time. This information was used to determine the 

percent of days the total sample practiced prone for <15 minutes, 15 to 30 minutes or greater 

than 30 minutes out of the total expected parent reports (5 reports per week for each participant; 

for HTG (4 x 5) 20 and for EG (5 x 5) 25 total parent reports). If the log was not completed or no 

record of time spent in prone was made in the activity log, no prone time was assumed for that 

day and a duration of 0 was included in calculations for that day. To determine if infants in the 

HTG progressed through the “Just right” levels of prone play, each week’s prone play level 

(easy, moderate and challenging) was tracked using the activity log and parent reports during the 

weekly visits.   

Data analysis.  Descriptive statistics were used to describe the study sample and 

feasibility thresholds were determined apriori. We consider enrollment and retention feasible if 

75% of the eligible infants are enrolled and 90% are retained. The intervention was considered 

feasible if the interventionist reviews 90% of the key principles of the intervention with the 
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parents, parent completes 30 minutes of prone play on at least 85% of planned session (in the 

PPAC for the HTG), and parents correctly sets the “Just Right” level of prone play 100% of the 

time. We considered the prone tolerance measure to be feasible if more than 90% of the time the 

infants completed the measure without achieving the lowest or highest score. To determine if 

AIMS and GMFM- 88 are sensitive to change over time, we compared the percent of infants 

from the total sample whose change on the AIMS and GMFM- 88 from baseline to end of 

intervention reached the SDC. In addition, to evaluate if AIMS and GMFM-88 are sensitive to 

detect differences in the HTG and EG we calculated the percent of infants in each group who 

improved more than the SDC on each measure. The measure with the greater sensitivity to detect 

group difference will be used in future studies. We also calculated Cohen’s d effect sizes with 95 

% confidence interval (CI) for the total sample and on the group differences in the AIMS, 

GMFM-88, and prone tolerance changes scores from baseline to end of intervention for use in 

planning for the future studies. Consistent with the CONSORT guidelines 42 a formal sample size 

calculation was not performed for this feasibility study but the results of this study will allow for 

sample size calculations in future studies.  

Given the nature of this study as a feasibility trial the individual infant’s age, AIMS, 

GMFM – 88 and prone tolerance scores at baseline, weekly progression of the duration of prone 

play, change in the AIMS, GMFM-88 and prone tolerance scores at the end of the study are 

evaluated descriptively (Table 3).  

Results 

 Of the infants screened for eligibility, 76 % infants were eligible for participation. The 

24% not eligible were either not in the age range or had prone motor skills and prone tolerance 

above the required range for inclusion. All infants who met the eligibility criteria consented to 

participate in the study and completed the baseline testing, resulting in a sample of 10 infants, 5 
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in each group. Infant characteristics are shown in Table 1. All 5 infants in the EG completed the 

study. Of the 5 infants in the HTG, one infant was lost to follow up after baseline testing. The 

parent of the infant who was lost to follow-up shared the concern of not being able to use the 

PPAC due to sibling interference.  

Parent and interventionist adherence. The interventionist completed 95% of the total 

required intervention session with 100% adherence to the key principles. One session was missed 

due to one infant dropping out of the study after the baseline visit.   

High technology group. Of the anticipated 15 days of parent reported intervention, 96 % 

of the time parents reported information on prone play in the activity log. One parent did not 

complete the log after a week the infant spent most of the days in a daycare facility. Parents of 

infants in the HTG reported using the PPAC on 93 % of the 15 anticipated intervention days. 

Only 30 % of the 15 anticipated sessions, parents in the HTG group used the PPAC for > 30 

minutes per day during the study. The average duration of PPAC used per day was 18(7) 

minutes as reported by parents in the activity log (Table 2). Of the planned 15 sessions of 

prone play, 93 % of the time infants practiced prone play. Parents reported their infant 

practiced 15 – 30 minutes and > 30 minutes of prone play 27 % and 47 % of the time 

respectively (Table 3, Figure 5). Parents in the HTG identifying the “Just Right” level of prone 

play 100% of the time when asked the weekly visits (Table 2). However, 75 % of parents 

progressed their infant to a higher level than the one recommended.  These parents reported 

that the suggested level was too easy for their infant. Parents often reported that completing 30 

minutes in any prone play level is challenging due to infants’ poor tolerance after a certain 

period. They would increase the difficulty level to provide the infant with an opportunity to 

practice pushing up their upper body to a higher level until the infant fatigued and became 

intolerant of prone.  
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Education group. Of the anticipated 15 days of parent reports, 69 % of the time parents 

reported information on prone play in the activity log. Fifty three percent of the eligible days, 

parents reported that their infants practiced prone play. On 46 % of the reported days the infant 

practiced prone play for 15 – 30 minutes and only 4 % of the time for at least 30 minutes per day 

(Table 3, Figure 5).   

Prone tolerance and motor development. The prone tolerance measure developed for 

this study is a feasible measure. A high percent of infants (95 %) completed the prone tolerance 

measure without achieving the lowest (0.5 minutes) or highest (15 minutes) score on the 

measure. 

Sensitivity of outcome measures to change over time. Eighty eight % (total sample 8 of 

9) of infants had a positive change in their prone tolerance score, 66 % of infants had a change in 

prone tolerance scores greater than SDC. While 100 % and 88 % (total sample 8 of 9) of infants 

had a positive change in their GMFM-88 and AIMS score respectively, only 44% (total sample 4 

of 9) of infants had a change in the AIMS more than its SDC and 78 % (total sample 4 of 9)  had 

a change more than the GMFM-88’s SDC. A Cohen’s d of 1.91, 95% CI (0.72 – 2.92) for prone 

tolerance score, 1.31, 95% CI (0.24, 2.26) for GMFM- 88 score and 1.42, 95 % CI (0.39 – 2.46) 

for AIMS score was found for the total sample from baseline to end of intervention (Figure 6-8).    

Sensitivity of measures to detect group differences. In order to measure the sensitivity of 

the outcome measures to different interventions we calculated group differences. This is not a 

measure of efficacy of the intervention. While prone tolerance increased in both groups, all 

infants in the HTG and 40% of infants in the EG had an increase in their prone tolerance scores 

greater than SDC (Figure 6, Table 4). In the HTG and EG, 100 % and 60 % of infants 

respectively had a change in their GMFM-88 score more than the SDC (Figure 7, Table 3). All 

infants in the HTG had a change in their AIMS score more than SDC; however, none of the 
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infants in the EG had a change in their AIMS score that achieved the SDC. (Figure 8 and Table 

3). A Cohen’s d of 1.71, 95 % CI (0.03 – 3.01) for prone tolerance score, 0.98, 95% CI (-0.50, 

2.25) for GMFM-88 score and 2.97, 95% CI (0.84 – 4.43) for AIMS score was found for the 

differences in the change scores between the groups. 

Description of potential factors influencing prone play time in an infant’s routine. 

There was a variability in the rate of progression in duration of prone play between and within 

groups. For example, infants 1, 2 and 3 appeared to make greater gains in all outcome measures 

than infant 4 in HTG (Table 3). However, infant 4 does not appear to have difference in the 

baseline scores and is of a similar age at baseline to those that improved the most. The only 

notable difference is that infant 4 did not progress in the time she spent in prone based on parent 

report as quickly as infants 2 and 3. Infant 9 in the EG had the lowest motor development scores 

at baseline and also made the least progress in the duration of prone play at home in the EG. 

However, infants with similar scores made improvements in the HTG. Thus, age does not appear 

to be related to outcome scores.   

Discussion  

Our feasibility trial suggests that the use of a high tech intervention to enhance prone 

tolerance and motor development is feasible for use in future studies. Families were eager to 

participate as reflected in the 100% enrollment and 90% retention rate. The only parent who 

opted out of participation from the HTG arm of the study conveyed the concern of not being able 

to use the PPAC due to sibling intrusion. The PPAC is a light weight device that is easy to carry 

and move but it can be time consuming for a parent to put all the components together. 

Considering this we advised parents to not to take it apart resulting in a challenge for this parent 

to keep a 2 year old away from the novel device. In future research this issue can be solved by 

creating an easy to collapse and mount iteration of the PPAC so parents can put away the device 
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between play sessions. Future iteration of the PPAC should also include an automatic shut off to 

prevent batteries from running down when a parent forgets to turn off the device which occurred 

frequently.  

Both interventions were feasible to teach parents with the interventionists covering all 

needed material at the sessions. While the interventions could be taught to parents, and the 

parents in the HTG clearly understood how to adjust the Just Right Challenges, there were some 

challenges in adhering to the recommended dose of the intervention. Parents of infants in both 

the groups demonstrated understanding of the intervention guidelines, however they had 

difficulty practicing at least 30 minutes of prone play (in PPAC for infants in the HTG) per day. 

A parent reported “30 minutes a day is too much and difficult to achieve but… we are trying to 

get through it”. A possible explanation for not being able to get through at least 30 minutes of 

prone play could be infants’ poor tolerance to pronelying. The average tolerance of infants to 

prone position in the beginning of the study was 2.6 minutes for the HTG and 4.2 minutes for the 

ED. Expecting parents to implement at least 30 minutes of prone play per day in a group of 

infants with extremely low tolerance for prone might be impractical even when asked to spread 

the intervention out over multiple times per day. However, parents in both the groups 

incorporated prone play into their infant’s routine during the study on almost all days they 

completed the log (93 % in HTG and 53 % in EG). The total time spent in prone each day 

increased in both groups. In future studies we will consider making a staged goal for increasing 

prone. For example 15 minutes in week 1, 20 minutes in week 2, 30 minutes in week 3. Thus 

parents would be encouraged to reach a target that was consistent with the infants improving 

prone tolerance. Parent’s poor adherence to completing the activity log was a common finding 

among both the groups. Parents often reported that the activity log is too long and even with the 

electronic version they tend to miss the notification to complete the activity log on some days 
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during the 3 week intervention period. Parents suggested adding a feature in the electronic 

version that allows them to track the number of times they filled the log and to fill out missed 

entries up to 24 hours later. In the future, the PPAC should also be modified to add a data storage 

unit that can be used to track the amount of time the PPAC was used and information on the 

activity of infants in the PPAC. To summarize our findings in terms of comparing it to the 

feasibility threshold set apriori, none of the parents of infants in HTG and EG met the threshold 

of providing at least 30 minutes of prone play time on 85 % of the days during the intervention 

period. The feasibility threshold of 100 % set at parents’ ability to identify the “Just Right 

Challenge” correctly was achieved by parents in the HTG group. While 50% of the goals were 

achieved, we continue to believe the intervention is feasible with some modifications as 

suggested by participants.  

Majority of infants in the study had a positive change in their AIMS and GMFM-66 

scores. Each of these measures had the same number of infants from the total sample (4 out of 9) 

that had a change in their scores more than the SDC. This finding suggests that both measures 

were equally sensitive to change over time for the total sample from baseline to end of 

intervention. Although we found a large effect size for both the motor development and prone 

tolerance measures to change over time in the total sample, the lower bound of the CI for 

GMFM-66 overlapped zero which means that this measures may not be sensitive to change in a 3 

week period. In terms of discussing our findings on the sensitivity of the measures to detect 

group differences, in the HTG, both the AIMS and GMFM- 66 exhibited change over time 

suggesting either measure was sensitive to change in this group.  However, only GMFM-66 was 

sensitive to change over time in the infants in the EG, as no infant in the EG had an increase on 

the AIMS score more than the SDC. AIMS had a promising effect size and CI compared to 

GMFM-66. This reflects that the AIMS may be a more sensitive measure to detect group 
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differences in response to the proposed intervention. However, the insensitivity of AIMS in 

detecting change in motor skill in EG over time as seen by GMFM-66 should not be ignored. 

Thus it continues to be unclear which measures, the AIMS or GMFM-66, is more sensitive to the 

changes that can be reported after a 3 week intervention. 

The prone tolerance measure developed for this study is a feasible measure to administer; 

however, the ability of this measure to detect group differences in the change in prone tolerance 

needs to be investigated more due to the lower bound of CI approaching the value of zero, 

indicating no real change. An increases in prone tolerance appear to be seen in infants whose 

parents also reported an increase in prone play duration at home. The 2 infants (infant 2 and 

infant 3 in Table 3) with the greatest increase in prone tolerance also were reported to spend 

more than 30 minutes in prone at home more than any other infants and had an increase in the 

motor skills higher than the SDC on the GMFM-66. These findings, while preliminary, provide 

support for the use of this measure.  

Our findings show preliminary support for the “active ingredients” of the HTG 

intervention administered using the PPAC. Of the 4 infants who completed the HTG 

intervention, the 2 infants who used the PPAC for the longest duration per day and reached the 

challenging level of the “Just Right Challenges” had the greatest positive, meaningful change in 

their motor development and prone tolerance (Table 2 and Table 3). As we explored the potential 

mediators, we did not see infant’s age, motor skills and prone tolerance at baseline modify the 

relationship between the intervention and infants’ motor skills and prone tolerance (Figure 3). 

However, infants who had a gradual increase in time spent in prone and practiced > 30 minutes 

of prone play at home had the maximum gain in prone tolerance and a real change seen in their 

motor skills (Table 3). While not conclusive given the feasibility status of this study, the 

preliminary findings support the theoretical model underpinning the intervention (Figure 3). 
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Future studies should continue to quantify the “Just Right Challenges” and the daily duration of 

PPAC utilization to measure the active ingredients in the HTG. In addition, inclusion of the daily 

duration of any prone play will allow for quantification of the changing prone opportunities and 

could serve as a mediators. It would be valuable to conduct a mediation analysis to confirm the 

mechanism of change and determine if changing prone opportunity, rather than the defined 

active ingredients, contributes to the change in motor skills.  

Our research shares the goals discussed at Research Summit IV “Innovations in 

Technology for Children with Brain Insults: Maximizing Outcomes” by American Physical 

Therapy Association, of conducting innovative studies that collaborate with other disciplines 

such as biomedical engineers and use technology to promote structural and behavioral change in 

infants. By “hacking” a commercially available toy and using cost effective sensors to track 

movements we built a device that combines technology with the principles of associative 

learning. Using our knowledge of infant development and physical therapy intervention 

combined with this device we have developed a feasible intervention that shows promise for 

improving motor skills in early infancy. During this process we ensured that parents and infants 

can utilize the device in their natural environment to maximize the prospects of functional gains 

in infants. 

Conclusion 

Our study demonstrates the feasibility of the proposed high technology intervention. An 

efficacy clinical trial is needed to determine whether this novel intervention has the potential to 

influence prone tolerance and development in full term infants with poor prone tolerance and low 

prone motor skills as well as those at risk for developmental delays.  
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Tables 

Table 1: Participants demographics 

 HTG EG 

Age m(SD) 3.24 (2.37) months 4.1 (0.49) months 

Female 25 % 60 % 

Not Hispanic or latino 75 % 100 % 

White 100% 100 % 

Primary caregiver age   

26-35 years 75 % 60 % 

36-45 years 25 % 40 % 

Primary caregiver education 

level 

  

Bachelor’s  80 % 

Master’s 100 % 20 % 

Primary caregiver 

employment status 

  

Keeping house 50% 40 % 

Working full time 50 % 60 % 

Abbreviations: HTG – High Technology group; EG – Education group 
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Table 2: High technology group intervention “active ingredients” descriptors 

HTG Average PPAC use 

(mins/day) 

“Just Right” prone play level 

Wk 1 Wk 2 Wk 3 Wk 1 Wk 2 Wk 3 

Infant 1 11 NR NR Easy Moderate Moderate 

Infant 2 13 17 25 Easy Easy-Moderate Moderate-

Challenging 

Infant 3 12 34 30 Easy Easy-Moderate Moderate-

Challenging 

Infant 4 16 16 17 Easy Easy Easy-moderate 

NR = no report.  
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Table 4:  Descriptive statistics of motor development and prone tolerance outcome measures  

 Total Sample (n=9) High Technology Group 

(n =4) 

Education Group (n =5) 

 

Outcome 

measure 

Baseline End of 

Intervention 

Baseline End of 

Intervention 

Baseline End of 

Intervention 

AIMS raw 

score 

16.5 (2.4) 20.3 (2.5) 16.3 (2.2) 

 

 

22.3 (2.0) 

 

 

14.2 (3.0) 

 

 

15.8 (2.4) 

 

GMFM – 

88 total 

score 

25.1 (2.7) 27.5 (3.4) 25.5 (2.02) 29.4 (3.67) 25.0 

(2.02) 

26.7 (1.85) 

Prone 

tolerance 

(in 

minutes) 

3.5 (1.0) 9.9 (4.5) 2.6 (0.9) 

 

 

 

12.7 (2.9) 

 

 

4.2(1.5) 

 

 

 

7.7 (4.5) 
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Figures  

Figure legends 

Figure 1: Contributor(s) –lack of prone play.  

Figure 2: Prone play using A) commercial play gym and B) towel roll and toys. 

Figure 3: High technology group intervention- Mechanism of change Note: the yellow 

boxes represents the active ingredients of the intervention. 

Figure 4: Prone play using Prone Play Activity Center 

Note: The translucent triangle represents a not on scale area of the ultrasonic sensors, 

sensing the position of infant’s head in space. The red line represents the height of the 

virtual threshold. 

Figure 5: Group comparison of progression in prone play over 3 weeks of intervention.  

Figure 6: Change in prone tolerance score from Baseline to End of intervention of the 

total sample. 

Figure 7: Change in AIMS score from Baseline to End of intervention of the total sample. 

Figure 8: Change in GMFM-88 score from Baseline to End of intervention of the total 

sample. 

Figure 9: Change in Prone tolerance score from Baseline to End of intervention of infants 

in High tech and Education group. 

Figure 10: Change in AIMS score from Baseline to End of intervention of infants in High 

tech and Education group. 

Figure 11: Change in GMFM-88 score from Baseline to End of intervention of infants in 

High tech and Education group. 
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B) 

Figure 1: Contributor(s) –lack of prone play 

A) 

Figure 2: Prone play using A) commercial play gym and B) towel roll and toys 
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Figure 4: Prone play using Prone Play Activity Center 

Note: The translucent triangle represents a not on scale area of the ultrasonic sensors, 

sensing the position of infant’s head in space. The red line represents the height of the 

virtual threshold. 
 

Figure 3 – High technology group intervention- Mechanism of change. 

Note: the yellow boxes represents the active ingredients of the intervention 
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Figure 8:  Change in GMFM-88 score from Baseline to End of intervention of the 
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Figure 10:  Change in AIMS score from Baseline to End of intervention of 
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Abstract 

Background: Associative learning can be described as the ability to discover a causal 

relationship between two or more events. In this study we combined the principles of associative 

learning with technology to develop a paradigm to assess associative learning in prone. Purpose: 

This project is designed to understand if 3-6 months old infants can demonstrate 1) short term 

learning of an association between their upper body, head and torso movements and activation of 

a toy while in prone position and 2) retention of the association learned on day 1, 24 hours later. 

Methods: Twenty eight, 3 – 6 months old, typically developing infants were tested for 2 

consecutive days on their ability to learn that lifting their head in prone would activate a toy. An 

instrumented play gym was used for 2 consecutive days using the same protocol on each day: 1) 

Baseline phase (2 minutes), toy won’t activate in response to infant movement 2) Acquisition 

phase (8 minutes), toy activates for maximum of 10 seconds if the infant’s head is above a 

threshold. Infants were categorized as 1) short term learners if the frequency of toy reactivations 

(FTR) or total duration toy was on (DTO) during Acquisition was 1.5 times Baseline and 2) 

retainers of the association learned on day 1, if FTR or DTO on day 2 was 1.5 times day 1’s 

Baseline. Results: Of the 28 infants, data of 22 infants was included for analysis. Fourteen 

infants were categorized as short term learners on day 1. Of the short term learners on day 1, 3 

infants demonstrated retention of the association. Conclusion: Our findings supports that when 

3-6 months old infants born at full term are presented with a task of raising their head to a certain 

height to activate a toy, a majority of infants tend to learn the association of their movement with 

the activation of the toy. 

Key words: Associative learning, Discovery learning, prone, motor learning 
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Introduction 

During the first year of life, substantial changes are seen in the motor and cognitive skills 

of human infants.1-3Although the various motor and cognitive developmental milestones during 

infancy are well described in the literature, our understanding of the learning mechanisms 

underpinning their emergence is still evolving.  

A contemporary view of infant/child development combines three constructs together: 

action, cognition and perception to understand how a child is learning a developmental skill. 2,3 

Human movements are organized as actions that have a purpose and are guided by the 

knowledge or perception of the movement itself and the environment. For instance, Rovee-

Collier4 found that infants as young as 2 months of age can learn and remember to kick more 

with the leg that is tethered to an overhead mobile compared to the untethered one as the tethered 

leg can make the mobile move (mobile paradigm).5,6 Infants’ ability to learn the association 

between their leg movements and the mobile provided a premise for researchers to modify the 

original mobile paradigm and learn about the kinematics and motor control properties of infant’s 

leg movements. The modern mobile paradigm developed by combining technology and the 

traditional mobile paradigm together is more challenging and complex where infants are required 

to kick above a virtual threshold in a specific movement pattern.7,8 Some 3 – 4 months old 

infants have demonstrated the ability to change their kicking pattern and learn the association 

between the mobile and their kicks in the modified version of the mobile paradigm. Both 

traditional and modified mobile paradigm have been extended to assess learning and motor 

control abilities of infants with or at risk of developmental delays.9–13 This line of research has 

served as a “proof of concept” for the current work. The present study is designed to understand 

if infants can learn an association between their upper body, head and torso movements and 

activation of a toy while pronelying. 
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 According to operant conditioning (OC), a behavior can be encouraged or suppressed by 

associating it with a positive or negative consequence (rewards/punishments).14 Operant 

conditioning is not a new practice. Operant conditioning techniques has been frequently used 

with sucking, vocalization, smiling, head turning, kicking and reaching as the target behaviors in 

infants.15 For instance, by using a pacifier that plays mother’s voice when sucked at a certain 

pressure, physical therapists and nurses in the NICU were able to improve feeding outcomes in 

infants born preterm and facilitate early discharge.16,17  In another study, toys that moved and 

sounded only upon contacts encouraged 3 months old infants to contact more and practice 

reaching and object exploration.18 Shaping, one of the basic component of constrained induced 

movement therapy, capitalizes on the use of operant conditioning in overcoming the “learned 

non-use” of the affected upper extremity in individuals with hemiparesis.19 Through providing a 

series of rewards that provide positive reinforcement, therapist “shape” the upper limb 

movements required to successfully complete a task. Thus, operant conditioning seems to be a 

promising approach in encouraging motor behaviors.  

In this study we have combined the principles of associative learning with technology to 

develop a learning paradigm that may be used to enhance prone motor control of infants. The 

American Academy of Pediatrics (AAP) through its “Back to Sleep and Prone to play” campaign 

emphasizes the importance of supervised awake prone play in an infant’s routine to reduce the 

risk of developmental delays and positional head deformities.20,21 Prone play is important for 

infants to develop strength and coordination in the neck, trunk and upper extremities muscles .20 

It provides natural opportunities for the acquisition of head control, reaching, sitting and prone 

mobility. Prone mobility is one of the early forms of locomotion in infants, expanding 

opportunities for them to explore and learn.22 However, the dynamics of prone mobility are 

complex and requires a constant change and adaptations in infants’ prone motor control.22,23   
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The associative learning paradigm developed for this study is designed to quantify if early in 

development infants have the ability to adapt their prone motor control to receive positive 

feedback. 

At Research Summit IV “Innovations in Technology for Children with Brain Insults: 

Maximizing Outcomes” hosted by the Academy of Pediatric Physical Therapy of the APTA24 , 

key research priorities.  This research addressed two of these priorities: (1) what should be 

measured in children to capture slow, subtle changes in development;  and (2) how technology 

can be made to adapt to a child’s growth and changing abilities. The aim of our study was to 

determine if 3-6 months old infants can demonstrate operant conditioning by modifying their 

prone motor control and retaining this response 24 hours later. In order to demonstrate 

associative learning in prone, infants have to modify their existing prone control and adapt to the 

challenges of the associative learning model proposed in this study. We hypothesized that infants 

will demonstrate short term learning of the association in prone by using strategies to lift their 

head using move their upper body and torso to activate a toy 1.5 times more often in the 

acquisition phase compared to the same day’s baseline phase.  Second, we hypothesized that 

infants who learn the association on day 1 will retain the association learned 24 hours later at a 

significantly greater rate as compared to the non-learning subgroup.  

Methods 

This single group experimental design study included 28 typically developing infants 

born at term who participated in this study at 3-6 months of age. Schraber et al suggested that for 

a single group analysis, 10 participants per estimated parameter is accepted as there is no exact 

rule for the participants needed 25. Using this information, we calculated our sample size to be 20 

infants since we estimated to have 2 parameters: Frequency of Toy Reactivations (FTR) and 
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Duration of Toy On (DTO). With a conservative 30-40% of dropout rate we would need 8 more 

infants, so a total of 28 infants was determined as the ideal sample size of the study.  

A convenience sample of infants from the community were recruited from May 2017 – 

February 2018. Infants were required to be born at full term (38-42 weeks of gestation) and to be 

able to lift their head well in prone, but not have the ability to crawl or creep. The prone motor 

skills criterion was established to ensure that infants had the motor abilities required to use the 

PPAC. In addition, infants were required to have prone tolerance (i.e., not fussing or crying 

greater than 30 seconds during the 5-minute period in prone while assessing the Alberta Infant 

Motor Scales -AIMS). This was added to the inclusion criteria to decrease the probability of 

infants dropping out of the study because the testing protocol was too challenging. Infants were 

excluded from the study if they were able to move out of prone or pivot, had a brain injury 

musculoskeletal deformity, genetic syndromes, visual and hearing problems, or other medical 

conditions limiting participation. 

Procedure. All data collection sessions occurred either in the infants’ home, the Motor 

Development Lab at VCU, or the infants daycare center during a time of day the caregiver 

reported the infant was typically awake and playful. After providing an IRB approved written 

informed consent for their infant’s participation, parents were asked to fill out a form providing 

demographic for their child.    

Associative learning paradigm in prone. Infants were assessed for associative learning 

and retention in prone using the Prone Play Activity Center (PPAC) (Figure 1). The PPAC is a 

high technology device that has the following components 1) ultrasonic sensors 2) Arduino Uno 

microcontroller 3) dancing/singing toy. The sensors locate the position of infant’s head in space 

and records the head’s distance from the floor. The microcontroller compares infants head 

height to its preset parameter or height of the threshold and activates the toy if conditions are 
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met. For example, if the microcontroller is set to activate the toy when the infant’s head is ≥ 10 

cm off the floor the toy will turn on when the head is ≥10 cm and turns off when the infant 

lowers his head to < 10 cm. PPAC has two modes: 1) Continuous and 2) Interval mode. In the 

continuous mode the toy activates when the infant’s head height matches with the preset 

parameters and will turn off only when the conditions are not met. In the interval mode, the 

same conditions must be met to turn the toy on, but the toy will turn off after a certain period of 

time or interval length even if the infant’s head is above the threshold.  

The associative learning testing protocol included two consecutive days of data 

collection. Day 1 consisted of the following: (1) Pre-Baseline phase (30 seconds); (2) Baseline 

phase (2 minutes); (3) Acquisition phase (AQ_1,2,3 and 4 each 2 minutes in length). Day 2 was 

identical with the exception of the pre-baseline phase being excluded from the protocol. Parents 

were asked to limit interactions with their infant during the testing to allow the infant to focus on 

the learning task. All parents were advised to be in view of the infant and smile if the infant gets 

fussy. If the infant continues to be distressed, parents were asked to say “I am right here, you are 

doing okay” in an encouraging tone. During the pre-baseline phase, infants were positioned in 

prone in the PPAC for 30 seconds. The position of an infant in the PPAC was standardized to 

ensure that the vertex of the infant’s head was aligned at the center of the area covered by the 

PPAC sensors. A mirror toy was placed at the edge of the mat, in front of the infant for 

motivation. At the end of the 30 seconds, the PPAC calculated the Average head lift height 

(AHH). The AHH was used to set the Threshold head lift height (TH). TH is the height required 

by the infant to raise his/her head to activate the toy and was used for further testing. In the 

Baseline phase, infants were positioned in prone in the PPAC for 2 minutes. The PPAC toy did 

not activate in response to infants’ movements in any way during this period. The purpose of the 

baseline phase was to provide us with information about the infants’ head lift height when not in 
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association with the activation of the PPAC toy. In the Acquisition phase, the PPAC toy was 

activated in response to infants’ raising his/her head to a height equivalent or greater than the 

TH. The toy remained on for a maximum of 10 seconds or turned off anytime the infants’ head 

was below the AT. We implemented “10 seconds rule” based on pilot work demonstrating that 

infants would hold their head up at or above the TH to keep the toy ON for the whole acquisition 

period and would not have the opportunity to explore the association between their movement 

and toy activation. The purpose of the acquisition phase determine the extent to which infants 

would demonstrate associative learning, allowing them the opportunity to learn the association 

through trial and error. Based on pilot testing, few infants could complete 8 consecutive minutes 

in prone without signs of distress. Therefore, at the end of the each 2 minute trial infants were 

rolled to a supine position for a 15 seconds break period. Data collection was paused any time 

during the testing an infant cried continuously for 30 seconds or more. Each phase was re-

attempted once if paused due to behavioral state. Data of infants who did not complete the 

baseline and first three acquisition trials on either day was excluded from the analysis.  

Data processing. A laptop was connected to the PPAC to record the following real time 

data: 1) Threshold height 2) Infant’s head lift height and 3) Toy status – on or off. A simple 

serial port terminal application named CoolTerm was used to export the data from the PPAC in 

an excel file for further processing and testing. Matlab was used to compute - Duration “Toy 

ON” (DTO), and Frequency of toy reactivations (FTR) at the end of baseline and each 

acquisition phase (refer to Table 1 for definition of terms). A short term learning and retention 

criteria was set a priori that categorized infants as short term learners and retainers of the 

association learned on day 1, 24 hours later. Infants were categorized as short term learners if 

their FTR or DTO in any 2 consecutive phases of the final 3 acquisition phases was 1.5 times 

higher than the FTR and DTO of the baseline on day 1.Retention of the association learned on 
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day 1 was identified if infants FTR and DTO in any 2 consecutive phases of the final 3 

acquisition phases on 2nd day of testing was 1.5 times the FTR and DTO of the baseline phase on 

day 1. Functions in Microsoft Excel were used to identify the infants who met the short term 

learning and retention criteria. 

Data analysis. Descriptive statistics were used to describe the study sample. In order to 

determine if 3-6 month old infants demonstrated associative learning, the percentage of infants 

who were categorized as short term learners was calculated from the processed data from day 1 

of testing. The percent of learners meeting the 2 learning criteria were described. In addition, the 

percentage of infants who learned on day 2 was calculated. In order to determine if 3-6 month 

old infants demonstrated retention of associative learning, data from the infants who learned on 

day 1 was used to identify percentage of infants demonstrating retention of the association, 24 

hours later.  

To further understand the infant learning, a post hoc analysis plan was developed to 

evaluate when in the protocol infants began to demonstrate short term learning. Descriptive 

statistics were used to describe differences between the 1) short term learners and non-learners 

and 2) retainers of the association learned and non-retainers. Both the FTR and DTO dataset was 

tested for normality. The FTR data had a poisson distribution thus a non-parametric Friedman 

test was used for analysis conducted to evaluate phase differences in the FTRs within the short 

term learners. Wilcoxon rank-sum was used to compare differences in FTR between the short 

term learners and non-learners. The DTO data was normally distributed hence we used a 

Repeated Measure Analysis of Variance (RMANOVA) to compare the effects of phase of testing 

(Baseline, Acq 1, Acq 2, Acq 3 and Acq 4) on the DTO among the short term learners. An 

independent t test was used to compare differences in the DTO between the short term learners 

and non-learners of the association in prone. Wilcoxon rank-sum test was used to compare the 
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baseline FTRs on day 1 and day 2 of testing of learners, non-learners, retainers and non-retainers. 

Paired sample t test was used to compare the baseline DTO on day 1 and day 2 of testing of 

learners, non-learners, retainers and non-retainers. All the exploratory factors were descriptively 

described. Statistical analyses were completed using SPSS version 24 with alpha level set at 0.05 

for the test statistics values and adjusted using a Bonferroni correction (adjusted α = 0.0125).   

Results 

Twenty eight infants met the inclusion criteria and were enrolled in the study. The 

average age of infants who participated in this study was 5 (0.9) months. The sample was 54 % 

girls, 85 % White and 100 % of non-Hispanic origin (Table 2). A total of 6 infants’ data was not 

included in the analysis; in 3 infants testing was stopped due to crying for more than 30 seconds 

continuously precluding baseline data collection, data from 2 infants was not usable because they 

often moved out of the PPAC sensor’s coverage area by scooting backwards in prone and 1 

infant’s data file was corrupted and could not be processed leaving an analyzable sample of 22 

infants whose data were included in this analysis. 

Sixty four percent (n=14) of the infants met our learning criteria on day 1 and were 

categorized as short term learners of the association in prone positon. (Table 3 and 4) Of the 8 

infants who did not demonstrate operant conditioning based on defined criteria on day 1five of 

these eight infants participated in day 2 testing. Of these, one infant demonstrated short term 

learning on day 2 of testing.   

Of the 14 infants who demonstrated short term learning on day 1 and should have been 

assessed for retention on the second day of testing, 1 infant was sick, 1 infant missed the visit 

and 3 infants did not complete the testing due to excessive crying in the 3rd acquisition phase, 

leaving a sample of 9 short term learners on which to assess retention. Three of nine (33%) of the 

short term learners demonstrated retention from day 1 to day 2. (Table 4)   
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Phase comparison within short term learners and non-learners. Findings from the 

Friedman test suggested a significant difference in the FTRs of short term learners within the 5 

phases of testing. (χ2= 21.48, p = .003). Short term learners increased their FTRs significantly 

from baseline to Acq 1 (χ2= -1.90, p = .007), Acq 2 (χ2= -2.3, p = .001) and Acq 3 (χ2= -2.25, p = 

.001). No significant difference was seen between baseline and Acq 4   ( χ2= -.50, p =.48) for the 

short term learners (Figure: 2). RMANOVA results indicated a significant difference in the DTO 

among the short term learners within the 5 phases of testing [F(4,7) = 7.19, p =.000] . Pairwise 

comparisons revealed that short term learners significantly increased their DTO from baseline by 

an average of 25.6 seconds in Acq 1 (p =.027), 21.4 seconds in Acq 2 (p =.016) and 27.7 seconds 

in Acq 3 (p=.001). Post Bonferonni correction only the difference seen in DTO between baseline 

to Acq 3 survived. No significant difference in the mean DTO was seen between baseline and 

Acq 4 (p=1.0) for the short term learners (Figure: 3).  

In contrast to the short term learners, no significant difference was seen in the FTRs (χ2= 

.364, p = .98) and DTO [F(1,4) = 1.06, p =.40]  within the baseline and acquisition phases of 

testing among the non-learners on day 1 of testing.   

Phase comparisons between the short term learners and non-learners. A direct 

comparison of the learners and non-learners FTR and DTO was used to quantify difference in the 

performance pattern during the testing protocol. The Wilcoxon rank-sum test indicated a 

significant difference in the FTRs between the short term learners and non-learners at Acq 1 (Z = 

-2.62, p = .008), Acq 2 (Z= -2.59, p = 0.01) and Acq 3 (Z = -2.55, p = .01) (Figure 4). No 

significant group difference was found in FTRs at baseline (Z =-.67, p =0.57), and Acq 4 (Z= -

0.83, p = 0.40). For the DTO, t test statistics suggested a significant difference at Acq 1 [t(20) = -

2.86, p = 0.00], Acq 3 = [t(20) = -3.12, p = 0.00] (Figure: 4) and no significant differences 
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between the groups was seen at baseline [t(20)= 1.78, p = 0.08], Acq 2 [t(20) = -0.89, p =0.38] 

and Acq 4 = [t(14) = -0.94, p = 0.36]. 

Day 1 vs day 2 baseline FTRs and DTO comparisons- evaluation of retention of 

learning during day 2 baseline. No significant difference was found between the baseline FTRs 

on day 1 and day 2 of short term leaners (Z = 1.20, p = .22) and non-learners on day 1 of testing 

(Z = 1.50, p = .414). Similar results were seen when the day 1 and day 2 baseline DTO of 

learners [t(11)= -.805, p = 0.44] and non-learners [t(4)= .950, p = 0.39]  were compared against 

each other. However, 40 % of the short term learners had a 1.5 times higher FTRs on the 2nd 

day’s baseline compared to day 1’s baseline.  

No statistical significant difference was seen in the day 1 and day 2 baseline’s FTRs (Z = 

1.84, p = .06) and DTO [t(5)-=.50, p=.64] of short term learners who did not retain the 

association a day later (non retainers). However, 60 % of the non-retainers had a 1.5 times higher 

FTRs on 2nd day’s baseline compared to day 1’s baseline. Similarly, no significant difference 

was seen in the day 1 and day 2 baseline’s FTRs (Z = 1.34, p =.18) and DTOs [t(2) = -.1.91, 

p=.19] of infants who retained the association a day later.     

Exploratory factors impacting learning. A 2 tailed independent t test showed that 

infants’ age (p=.61) and AIMS prone score (p= .19) did not differ between the groups. However, 

a higher percentage of short term learners completed the testing compared to the non-learners 

(Table 5).   

 Discussion 

Our findings support that when 3-6 months old infants born at full term are presented 

with a task of raising their head to a certain height to activate a toy, a majority of infants tend to 

associate their movements with the activation of the toy. Our results are similar with previous 

associative learning studies in which 50 – 80 % of infants showed associative learning with the 
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mobile paradigm at 3-6 months of age9,12,26–28. Our associative learning paradigm in prone is 

most in line with the modern mobile paradigm developed by Sargent et al, 2015. Corresponding 

to the modern mobile paradigm which had a virtual threshold and a “3 seconds rule” our 

paradigm had a virtual threshold set at infants’ AHH and a “10 seconds rule”. The virtual 

threshold allowed infants to independently discover the association as they push themselves up 

on forearms or hands in prone position after the toy automatically turned off even if the infants’ 

head is above the threshold. Infants in our paradigm had to lower than raise their head to the 

height at or above the virtual threshold to activate the toy again. Findings from our study are in 

line with the modern mobile paradigm, where 30 % of infants demonstrated learning on day 1 

and 35 % retained the association on day 2. It is important to note that our criteria to identify 

short term learners and retainers was similar to the work of Sargent on the modern mobile 

paradigm. However, the modern mobile paradigm used different terms than ours. What Sargent 

referred to as “performance” we referred to a “short-term learning”. In the modern mobile 

paradigm, from a total sample of 14 infants only 4 infants performed on day 1 and 10 infants 

performed on day 2. Based on the high performance rate seen on the 2nd day of testing in the 

mobile paradigm, we expected some infants would need more practice and included a 2nd day of 

testing that provides the exact same experience as on the 1st day of testing. Contradictory to our 

expectation, we found a majority of our non-learners did not learn even after an extra day of 

practice. We believe that infants’ tolerance for prone position and motor skills in prone may 

support their ability to learn the association between their upper body movements and the 

activation of a toy. Although we screened infants for their tolerance and motor skills in prone to 

determine eligibility, we had infants who clearly “liked” tummy time as well as infant who 

passed the screening but were tired after 5-6 minutes in to the testing. This may explain a higher 
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percent of non-learners not being able to complete the last acquisition block of testing compared 

to the short term learners.    

The majority of infants did not meet our criteria to be identified as retaining the 

association between their movements and the activation of the toy, 24 hours later. Our second 

finding is in contrast to 3-4 months old infants born at full term retaining the association between 

their tethered leg and movement of the mobile, 24 hours and a week later. However, we saw a 

similar retention rate compared to the modern mobile paradigm where only 35 % of infants had a 

1.5 times higher kicking response compared to the previous day’s baseline. A possible 

explanation to the discrepancy found in the retention rate of infants among different paradigms 

could be due to: 1) the modern mobile paradigm and our paradigm in prone being more 

challenging to learn and retain than the traditional mobile paradigm and 2) obstruction of the 

retention of the short term learning by introducing a contradicting experience of the toy not 

activating in response to the infant’s upper body movements during the baseline on the 2nd day of 

testing 3) our method of providing a break between 2 minute blocks of acquisition. Our paradigm 

in prone and the modern mobile paradigm may be are more cognitively and motorically 

challenging for infants than the traditional mobile paradigm. In both these modern paradigms 

infants had to independently perceive the effect created by their own body’s movement, without 

any external cue, such as the sensory input from the tether. The association presented to infants 

was not simply a cause and effect task. Infants were required to change their movement pattern 

to learn the association and this may make it more difficulty to retain a day later. The criteria we 

used for the categorization of infants as short term learners and retainers did not include an 

infant’s interaction during the baseline phase on 2nd day of testing. However, descriptively we 

saw an increase in the FTRs and DTO in the baseline phase of day 2 of testing (FTR =1.83 ± 

1.72, DTO = 32.89 ± 6.77) compared to day1 (FTR = 0.76 ± .92, DTO = 28.59 ± 13.85) (Table 3 
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and 4). It is possible that infants did associate their movements with the toy in the beginning of 

the 2nd day of testing but lost interest or became frustrated during the baseline period when the 

toy did not move at all.  The finding that the retainers continued to increase their FTR while the 

non-retainers decreased with FTR after baseline 2 support this potential limitation.  

 Tasks that allows for an adequate amount of time for self-initiated, trial and error 

discovery periods may benefit motor learning in prone position.  A gradual increase was seen in 

the FTRs and DTO of infants who learned the association on day 1 of testing. Short term learners 

had the highest learning response between 4 – 8 minutes (Acq 2- 3) (Figure: 1 and 2) in a 10 

minute session. This provides an idea of the practice infants may need before any learning effect 

can be seen. Although 4 minutes of “practice time” may seem to be a short period of time, it is 

important to consider this need for 4 or more minutes of free play when an intervention is 

designed to allow infants to independently explore and discover contingencies around them. 

Limitations  

A potential limitation of our study was the high dropout rate due to infants’ intolerance 

for prone position and wear and tear of the PPAC leading to technical failures during the 

assessments. These issues can be solved in the future by changing the eligibility criteria to 

infants who can tolerate 10 minutes of prone play and improving the efficiency of the technology 

by building a more sturdy prototype. Also, we prioritized the assessment of short term learning 

on the 2nd day of testing and added a baseline phase in the 2nd day of testing. This turned out to 

be a limitation of our protocol to assess retention in infants as we believe by providing an 

experience of toy not activating in response to head lifts on the 2nd day of testing we may have 

interfered with the association learned on day 1. Our small sample size limited our ability to do a 

detailed analysis of the factors such as infants’ age, tolerance for prone, motor skills in prone, 
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problem solving abilities that may predict short term learning of an association in prone position 

in infants.  

Clinical Relevance  

With this study we are providing two avenues for physical therapist to contemplate in 

their practice: 1) The PPAC and an associative learning paradigm may have the potential to 

detect early motor learning delays in infants or the impact of atypical motor control on early 

learning and 2) The ability to measure learning using this prone associative learning paradigm 

may lead to the developmental of associative learning based intervention to train infants to 

modify their motor control in prone.  We certainly need to extensively research these avenues to 

translate them in to practice. This paradigm with some modifications may be useful in providing 

reinforcement specific activity and providing an environment with highly repeatable positive 

reinforcement to increase the dose of practice. The temporal and spatial features of the task 

provides an infant with opportunities to learn the anticipatory and predictive piece of skill 

development consistent with the interplay between motor and cognitive skills in early learning.  
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Tables 

 

Table 1: Terms and abbreviations used in the protocol 

Term (abbreviation) Definition How obtained/calculated 

Head lift height (HH) Distance from the highest 

point on the infant’s head to 

floor.  

Calculated by the PPAC 

Average head lift height 

(AHH) 

Infant’s average head lift 

height during the trial.  

Calculated from the data 

from PPAC 

Threshold height (TH) Height set by the 

experimenter at which the 

toy turns ON.  

Equals AHH during the Pre-

baseline trial 

At or Above Threshold (AT) Infant’s head is equal to or 

higher than a threshold 

height 

 

Duration of Toy ON (DTO) Duration of a continuous 

episode of AT during the 

trial with a maximum of 10 

seconds 

Matlab was used to calculate 

the DTO 

Frequency of toy 

reactivations (FTR) 

Frequency of reactivations 

after meeting a maximum of 

10 seconds 

 

Matlab was used to calculate 

the FTR 

 

 

Table 2 : Demographics of included infants 

(N = 22) 

 

Age  5.0 (0.9) months (3.45 – 5.9 months) 

Gender  

Female  54 % 

Ethnicity  

Not Hispanic or latino 100 % 

Race  

African American 5 % 

Asian 10 % 

White 85 % 
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Table 3: Descriptive statistics of Frequency of toy reactivations in short term learners and non 

learners 

Day 1 testing 

 

Baseline 

M (SD) 

Acquisition 1 

M (SD) 

Acquisition 2  

M (SD) 

Acquisition 3 

M (SD) 

Acquisition 4 

M (SD) 

Short term 

learners     

(n = 14) 

0.76 ( .92) 2.38  ( 1.66) 2.78 (1.42) 2.53 (1.39) 1.3 (1.42) 

Non-

learners      

(n= 8) 

0.75 (1.38) 0.75(1.75) 1.0 (1.19) 0.75 (1.75) 0.8 (1.30) 

Duration of toy ON (in seconds) in short term learners and non learners 

Short term 

learners 

 (n = 14) 

28.59 

(13.85) 

53.13 (13.80) 59.71 (11.48) 50.21( 7.46) 38.01( 17.06) 

Non-

learners 

 ( n= 8) 

37.06 

(21.71) 

39.36 (11.38) 45.68 (21.60) 36.10 (16.88) 32.61( 30.29) 

 

 

 

 

 

 

 

Table 4: Descriptive statistics of Frequency of toy reactivations in retainers vs non retainers 

 

Day 2 

testing  

Baseline 

_FTR 

M(SD) 

Acquisition 

1_FTR 

M(SD) 

Acquisition 

2_FTR  

M(SD) 

Acquisition 

3_FTR 

M(SD) 

Acquisition 

4_FTR 

M(SD) 

Retainers 

 (n = 3) 

1.5 (0.83) 3.0( 1.0) 4.0 (2.16) 3.0 (2.14) 2.0 (1.90) 

Non-

retainers  

(n= 6) 

 

1.83 (1.72) 1.5 (1.37) 1.16 (1.6) 0.6 (1.63) 0.16( 0.40) 

Duration of toy ON (in seconds)  in retainers vs non- retainers 

Retainers  

(n = 3) 

32.44(20.27) 

 

50.62 (6.25) 52.98 (11.25) 47.04 (10.02) 54.23 (21.64) 

Non-

retainers   

(n= 6) 

32.89 (6.77) 49.31(19.37) 34.58 (13.57) 34.93(23.32) 23.56 (14.47) 
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Table 5: Exploratory factors impacting learning 

 Short term Learners Non-learners 

Age in months 

 M(SD) 

4.9 (.75) 5.10 (1.08) 

AIMS prone skills score 

M(SD) 

7.21 (1.12) 6.5 (1.3) 

Percentage of infants who 

completed the last block of 

testing in the acquisition 

phase 

79 % 62 % 
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Figures 

Figure legends 

Figure 1: Prone Play Activity Center. Note: The translucent triangle represents a not on scale 

area of the ultrasonic sensors, sensing the position of infant’s head in space. The red line 

represents the height of the virtual threshold. 

Figure 2: Within group comparison of short term learners FTRs at 5 phases of testing (Baseline, 

Acq 1, Acq 2, Acq 3 and Acq 4 (n = 12). Error bar represents standard deviation 

Figure 3: Within group comparison of the short term learners DTO at 5 phases of testing 

(Baseline, Acq 1, Acq 2, Acq 3 and Acq 4 (n = 12)). Error bar represents standard deviation 

Figure 44: Group comparison between learners and non-learners FTRDTO at 5 phases of testing 

(Baseline, Acq 1, Acq 2, Acq 3 and Acq 4 (short term learner; n = 12 and non learner; n=5)). 

Error bar represents standard deviation 

Figure 5: Group comparison between learners and non-learners DTO at 5 phases of testing 

(Baseline, Acq 1, Acq 2, Acq 3 and Acq 4 (short term learner; n = 12 and non learner; n=5)) 

Error bar represents standard deviation 
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Figure 1: Prone Play Activity Center 

Note: The translucent triangle represents a not on scale area of the ultrasonic sensors, sensing the position of 

infant’s head in space. The red line represents the height of the virtual threshold. 
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Figure 2: Within group comparison of short term learners FTRs at 5 phases of 

testing (Baseline, Acq 1, Acq 2, Acq 3 and Acq 4 (n = 12). Error bar 

represents standard deviation.  
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Figure 3: Within group comparison of the short term learners DTO at 5 

phases of testing (Baseline, Acq 1, Acq 2, Acq 3 and Acq 4 (n = 12)). Error 

bar represents standard deviation 

Figure 4: Group comparison between short term learners and non-learners FTR at 

5 phases of testing (Baseline, Acq 1, Acq 2, Acq 3 and Acq 4 (short term learner; n 

= 12 and non learner; n=5)). Error bar represents standard deviation 
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Chapter 5: Conclusion 

 

 

 

 

 Three independent, but related studies were conducted in partial fulfillment of a 

Doctorate of Philosophy in the Rehabilitation and Movement Sciences Program at Virginia 

Commonwealth University. The purpose of the first was to develop the technology and protocols 

used in the other 2 studies.  The purpose of the second to determine if 3-6 months old infants can 

demonstrate associative learning in prone. The purpose of the third was to evaluate the feasibility 

of using a high technology intervention based on the principles of motor learning and associative 

learning to increase infants’ prone tolerance and improve motor outcomes. Findings from these 

projects suggests that: 1) infants can independently discover the association between their head 

and upper body movements and the activation of a toy, 2) during the discovery/associative 

learning process the majority of infants learned to change their motor behavior in prone to keep 

the toy on for longer periods of time and 3) both the high technology intervention that uses an 

automated play center to positively reinforce the infants head and upper body movements and a 

dose matched low tech educational condition based on usual care are feasible interventions. 4) 

measurement of changes in the infant’s prone tolerance and motor development following the 

intervention is feasible. The purpose of this chapter is to synthesize our findings to guide 

researchers and physical therapists specialized in pediatric rehabilitation.
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We will discuss our contributions to the field of pediatric physical therapy and pediatric research 

under four themes: 1) Significance and Innovation 2) Quantification of motor learning in prone 

3) Combination of technology and motor learning to develop interventions 4) Next steps.  

Theme 1: Significance and Innovation 

The significance of our innovation lies in the importance of understanding prone motor 

behavior of infants and developing strategies to positively impact prone motor skills. Play in 

prone position provides infants with opportunities to develop strength and coordination in the 

neck, trunk and upper extremities musculature.(Dudek-Shriber & Zelazny, 2007; Zachry & 

Kitzmann, 2011a) Prone play is important to counteract the adverse effects of spending an 

excessive amount of time in a supine position or contained in equipment such as seating 

device.(J. Guidetti et al., 2017) Although the importance of prone play is well recognized among 

parents, pediatricians and therapists, prone play is often reported as a challenge for parents and 

therapists to implement in an infants’ routine.(Zachry & Kitzmann, 2011a) Infant’s poor 

tolerance for prone has been identified as a factor contributing towards lack of prone play in an 

infant’s routine. (Dudek-Shriber & Zelazny, 2007; J. M. Guidetti, 2011; J. Guidetti et al., 2017; 

Zachry & Kitzmann, 2011b) Current approaches are ineffective due to inconsistent information 

on dose (“how much” or “how early” to begin prone play) or what “active ingredients” are vital 

to bring a meaningful change in infant’s tolerance for prone and maximize outcomes.(Koren et 

al., 2010b) Thus, it was important to begin to evaluate alternative strategies and interventions 

based on current knowledge of developmental and motor learning theory.  

Today, advances in technology have empowered movement specialists to build 

rehabilitation devices that have the potential to assess and optimize movement interventions. 

From sensor onesies(Rogers et al., 2015) designed to promote early movements in infants with 
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developmental delays to exoskeletons such as Hybrid Assistive Limb Cyberdyne(Matsuda et al., 

2018) developed to promote locomotion in individuals with spinal cord injury, technology has 

shown promise in adapting to our growth and functional abilities. Through our collaboration with 

biomedical engineers and art professionals we built an instrumented play center, Prone Play 

Activity Center (PPAC) with the purpose of enhancing our ability to measure infant learning and 

to provide infants with opportunities to practice a behavior utilizing motor and cognitive skill, 

with reinforcement, which might improve tolerance for prone play and advance their prone 

motor skills.  

The PPAC and our assessment and training protocols are grounded in the theories of 

motor learning. Motor learning is described in the literature as “set of processes associated with 

practice or experience leading to a relatively permanent change in the capability for producing 

skilled action”.(Shumway-Cook, A., & Woollacott, 2007) Based on the contemporary view of 

infant development, infants learn to acquire a skill through their interaction with the 

environment.(Thelen, 1995a, 1998, 2005) Exploration through self-initiated movement provides 

natural opportunities to infants to find a purpose in their actions and gain the knowledge or 

perception of the movement itself and the environment.  

The conception and development of the PPAC was completed through an innovative 

integration of our knowledge of infant development and motor learning with technology to 

advance developmental science and pediatric rehabilitation. Technology development is a time 

intensive process, usually requires multiple iterations, preliminary data to understand its 

applicability/feasibility and high quality research trials to determine efficacy. The development 

and use of the PPAC, an innovative rehabilitation device, allowed us to answer questions that 

would be impossible without this technology.  
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Theme 2: Quantification of Motor Learning in Prone  

Assessment of learning in infants is an ongoing challenge for developmental researchers 

as learning in itself cannot be measured directly; instead, it is inferred based on infant’s 

behavior.(Shumway-Cook, A., & Woollacott, 2007) For the assessment of motor learning, 

learning paradigms are developed to associate a motor behavior of interest with a purpose that is 

measurable. For instance the modern mobile paradigm (Sargent, Reimann, et al., 2015) uses 

wearable sensors to quantify infants’ kicking response and uses computational technology to 

create an effect on a mobile when the infant kicks to a certain height.  

The associative learning paradigm used in this project is a unique measure of motor 

learning in prone, a position of importance to enhance motor development and prevent positional 

deformities. Motor behaviors that have been studied most commonly with the use of associative 

learning paradigms in infants are kicking and reaching.(C. Rovee-Collier, 1987) These behaviors 

share some properties such as infants early in development move their upper and lower limbs 

spontaneously in a rhythmic manner.(Thelen, 1995b) The mobile paradigm originally developed 

with kicking as the behavior of interest was adapted with ease to understand the skill of reaching 

in infants.(Taylor et al., 2013) However, with limited research on mechanics of infant’s prone 

motor behaviors, adaptation of the mobile paradigm in prone in itself was a challenge. Our 

learning paradigm overcame this barrier and opened up possibilities for researchers to utilize this 

paradigm to learn about prone motor control in infants. With the use of this technology and 

paradigm we were able to quantify and evaluate changes in infants’ prone motor behavior in 

response to a motor learning challenge. Interestingly, infants were able to activate the toy a 

minimum of 1.5 times higher than the baseline phase, a phase where the toy activation was not 

associated with infants’ movements. Within a 10 minute session the majority of infants were able 
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to learn the association between their head and upper body movements and the activation of a 

toy. Infants who were able to complete all 8 minutes, 4 blocks of 2 minutes, appeared more 

likely to learn the paradigm than those who fatigued after 3 blocks of 2 minutes. In addition, 

those infants who were more tolerant of prone positioning at baseline were more likely to learn 

the paradigm.  While these finding support the use of the associative learning assessment in 

prone, it also highlights the importance of adequate practice to learn the association.  If verified, 

the understanding that 8 minutes is more effective than 6 minutes to support learning could help 

inform future intervention protocol using this associative learning paradigm.  Our finding that 

most 3-6 months old infants can demonstrate short term learning in prone is valuable as it 

supports the potential for infants to learn a challenging task in prone, early in development. 

Quantification of motor learning in typically development infants helps developmental scientists 

understand the role of infants’ interaction in environment on their learning.   

Theme 3: Integration of Principles of Motor Learning in Intervention Practices  

At Research Summit IV “Innovations in Technology for Children with Brain Insults: 

Maximizing Outcomes” hosted by the Academy of Pediatric Physical Therapy of the APTA, an 

expert in the field of rehabilitation science, asserted that, “in order to maximize motor gains and 

clinical outcomes, researchers must design and test innovative and targeted interventions 

tailored to the individual child”.(Christy et al., 2016) We modified a modern learning 

assessment paradigm to assess associative learning in prone and developed an innovative 

intervention which could be tailored to an individual child’s abilities and is targeted to the need 

of prone play in an infants’ routine.  

The use of the PPAC and our training protocol to promote daily opportunities to enhance 

motor learning through self-directed movements in prone is feasible. While feedback from 
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parents on the feasible dose of intervention will help us modify the protocol, parents were able to 

implement the key components of the intervention – positive reinforcement to infants’ initial 

efforts to play in prone and encourage infants to raise their upper body higher by identifying the 

“Just Right Challenges”. The ability of parents to incorporate a 3 week, home based- high tech 

intervention in their infant’s routine independently is a promising finding for researchers and 

physical therapist who wish to combine technology with their practice. Some common factors 

identified in the literature that are responsible for the decline of technology in pediatric 

rehabilitation are the technology being bulky, not aesthetically pleasing, parents feel their child is 

wired up and the child grows out of it.(Christy et al., 2016) From the conception of the PPAC we 

were cognizant towards the factors that can make the use of technology at home challenging for 

the parent. Through multiple careful adaptations to the design and instrumentation during the 

iteration of the PPAC, we were able to build a parent and child friendly device that is feasible to 

use at home. A high percent of parents in the high tech group of intervention used the PPAC and 

adhered to the active ingredients of the intervention. While preliminary in nature, the changed in 

prone tolerance and motor development are promising and provide the preliminary data needed 

to plan an efficacy study.   

Theme 4: Next Steps  

 The finding from both the study of associative learning and the feasibility of our High-

tech intervention have set the stage for a meaningful line of research.  First, we plan to replicate 

our study of associative learning with slight modifications to the protocol to enhance our ability 

to evaluate retention of learning. We assessed infants for short term learning and retention in our 

study. However, the use of a baseline phase on day 2 may have limited our ability to assess 

retention in some infants who were easily frustrated as the toy would not activate in response to 
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their upper body movements for the first 2 minutes on day 2 of testing. Thus the paradigm may 

need to be different if the goal is to demonstrate learning each day vs evaluating retention.  In the 

motor learning literature, learning is described as a relatively permanent change in behavior. 

Thus, we also need to follow infants for a longer period of time, such as a week after the initial 

learning, to determine if they retain the association in prone.  

Second, we plan to extend our findings from the feasibility study to design a larger study 

to test the efficacy of the high technology intervention to advance prone tolerance and motor 

skills in infants with high and low risk of developmental delays. The feedback from parents and 

experiences using the PPAC have provided valuable feedback on modification to both the device 

and the training protocol.   

Third, a study should be designed to determine the motor control patterns used by in 

infants who learned the paradigm in prone. The use of motion capture systems and/or wearable 

sensors and possible electromyography (EMG) to gain information on coordination of multiple 

head and upper body segments and muscle activation patterns would provide valuable 

information on how an infant’s prone motor control is adapting during associative learning. This 

knowledge may help to modify the technology to support toy activation when movement patterns 

fall within a specific range.  If infants with neurological insults and limited motor control could 

be provided with individualized reinforcement to encourage a specific range of movement during 

self-directed play, this approach could revolutionize the way we provide rehabilitation to infants 

with brain injury.   

Last, future research may consider the implications of learning on the development and 

plasticity of the brain. Thus, assessment of neural mechanisms and structures responsible for 

associative learning or that change through the learning process may be appropriate.   
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Together the steps forward represents a lifetime of work that supports the fields of 

developmental science and pediatric rehabilitation. While at the beginning of my research career, 

I recognize that this dissertation research has supported my skills to develop innovative, precise 

research designs, see the value of collaboration with parents and other disciplines, introduce a 

novel line of research in pediatric rehabilitation and most importantly has solidified my interest 

for science and passion for lifelong learning.  
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