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PATTERNS OF MOLECULAR POPULATION GENETIC AND PHENOTYPIC VARIATION 

ASSOCIATED WITH URBANIZATION IN THE WESTERN BLACK WIDOW SPIDER 

 

By Lindsay S. Miles, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2018. 

 

Major Director: Dr. Brian Verrelli, Graduate program director, Integrative Life Sciences 

Doctoral Program 

 

In urban population genetic studies, the "urban fragmentation model" predicts that 

urbanization acts as a barrier that isolates native populations, and can lead to reduced gene flow 

and increased genetic drift between populations. The “urban facilitation model” predicts urban 

areas act as corridors to increase dispersal among urban areas, and can lead to higher genetic 

diversity within and lower differentiation between urban areas. 

In a review of the current literature, we found that there is no consistent signature of 

reduced within-population genetic diversity or increased between-population genetic 

differentiation. Analyses that investigate the urban barriers to gene flow also found no consistent 

results. Thus, the response to urbanization may be species and city specific.  

We used social network genetic analyses, which can identify connections that both 

fragment and facilitate gene flow, to investigate the impact of anthropogenic disturbance on 



 
 

 
 

connectivity in a model urban pest of significant medical-relevance, the Western black widow 

spider, Latrodectus hesperus. In comparison to non-urban locales, urban locales have higher 

within-population genetic diversity, lower between-population genetic differentiation, and higher 

overall estimates of genetic connectivity. We found that not all cities are highly connected, with 

specific urban hubs driving gene flow among historically isolated non-urban locales. 

We compared and contrasted our previous broad-scale patterns of urban gene flow with a 

new fine-scale locale sampling from within three Southwestern U.S. cities. Urban areas have 

significantly different patterns of connectivity to the overall network that generate contrasting 

patterns of within- and between-city genetic diversity. There is significant heterogeneity among 

the fine-scale city samples, such that certain urban hubs are impacting the network of urban and 

non-urban locales on the whole. 

We examined differences in gene expression between three paired urban and non-urban 

populations from the cephalothorax (metabolism), ovary (fertility), and silk glands (web 

architecture). There is significant differential expression in each tissue type observed between 

urban and non-urban locales, among both urban and among non-urban locales, and specific to 

geographic locations independent of urban or non-urban habitat. These results imply that not all 

cities are created equal with respect to demographic and gene flow patterns, but also with 

phenotypic patterns.
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Chapter 1: URBANIZATION EFFECTS ON GENE FLOW ACROSS TAXA, A REVIEW OF 

PRIOR WORK 

 

 

Introduction 

Currently, over half the human population lives in urban areas (United Nations, 2015). 

With an ever-growing urban population at the global level, these urban areas fragment and 

eliminate natural habitat, which results in the loss of biodiversity (Seto et al. 2011, 2012). The 

loss of biodiversity can have negative impacts on conservation and invasion biology, as well as 

on ecosystems services that provide resources to humans (McKinney, 2002, 2006; Keyghobadi, 

2007; McDonald et al., 2008; Alberti, 2015; Donihue and Lambert, 2015; McDonnell and Hahs, 

2015). Recently, there have been an abundance of empirical studies that seek to address the eco-

evolutionary dynamics that arise from organisms living in the novel urban environment (Alberti 

2015; Donihue and Lambert, 2015; McDonnell and Hahs, 2015). Studies have addressed the 

phenotypic changes resulting from urbanization and, more recently, there is a surge in studies 

that seek to identify whether these changes are phenotypically plastic or have an underlying 

genetic explanation consistent with adaptation (Alberti 2015; Donihue and Lambert, 2015; 

McDonnell and Hahs, 2015; Johnson & Munshi-South, 2017; Schell, 2018). In fact, there has 

been a steady increase in molecular population and evolutionary genetic studies conducted in 

urban areas with the advent of affordable next-generation sequencing technologies for non-
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model organisms (Ekblom and Galindo, 2011; Andrews et al., 2016). However, despite this 

emergence, it is still unclear what impact urbanization has had on gene flow, which is a key force 

behind both urban adaptive and non-adaptive evolution, and is the focus of this review. 

The impact that urbanization has on organisms has recently been studied through the lens 

of population genetics, which tends to come at this problem from multiple directions. For 

example, conservation genetics looks at the level of genetic diversity within populations, with 

the intent that it can be used to interpret inbreeding or management units (Frankham & Ralls, 

1998; Hoglund, 2009). Landscape genetics tends to focus on measures of genetic diversity within 

and between populations with the intent to examine correlations with biotic and abiotic features 

in identifying landscape barriers to gene flow (Manel et al., 2003; 2013). Evolutionary genetics 

use measures of genetic diversity to focus on making conclusions about the relative contributions 

that evolutionary forces of gene flow, drift, mutation, and selection make in explaining patterns 

of diversity on both temporal and spatial scales (e.g., Wright, 1982; Oyler-McCance et al., 2016; 

Lowry et al., 2017). These fields can have different questions and analyses, which will ultimately 

alter our perception of the impact of urbanization on evolution. For example, conservation and 

landscape genetic studies are usually "individual-based" to learn something about how 

individuals are related (conservation) or impacted by barriers (landscape), whereas, evolutionary 

genetics studies focus on analyses of populations, as these are the evolutionary units of selection, 

gene flow, drift and mutation.  

While these disciplines have different questions that they address, they incorporate 

similar data and analyses (Dyer, 2015). Specifically, for urban population genetic studies, there 

is an interest in how genetic diversity may be decreased within urban areas as a result of 

fragmentation of the landscape, an ideology long adopted in urban ecology as the "urban 
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fragmentation model". This model predicts that urbanization acts as a barrier that isolates native 

populations, and can lead to ecological divergence through reduced gene flow, reduced effective 

population (Ne) sizes, and increased genetic drift among populations (Keyghobadi, 2007; 

Hoderegger & Di Giulio, 2010; Munshi-South & Kharchenko, 2010; Parks et al., 2015; Xuereb 

et al., 2015; Fuirman et al., 2016). This model is typically associated with detrimental fitness 

consequences, in part due to the fragmentation and isolation of populations that leads to 

increased drift and inbreeding (Cheptou et al., 2008; Brady, 2012; Mueller et al., 2013). 

A contrasting view to this urban fragmentation model is that organisms have adapted to 

these urban environments as “urban adapters” (Blair, 1996; Shochat, 2004). These urban 

adapters possess traits that enable them to successfully thrive in urban ecosystems, in part due to 

human movement among urban areas that facilitates gene flow for them (Blair 1996; McKinney 

& Lockwood, 1999; Holderegger & DiGiulio, 2010, Crispo et al., 2011). This proposed model of 

“urban facilitation” rivals the traditional model of urban fragmentation in that it predicts that 

urban areas can act as corridors to increase dispersal within and between urban areas, resulting in 

higher genetic diversity within and lower differentiation between urban areas (Crispo et al., 

2011).  

In testing the hypotheses set by each of these competing models of urban gene flow, 

multiple disciplines have also approached landscape barriers using a similar population genetic 

framework. For example, a standard population genetic model is isolation-by-distance (IBD, 

Wright, 1943; Slatkin 1993), such that as geographic distance between populations increases, so 

does genetic differentiation. On the other hand, isolation-by-resistance (IBR, McRae, 2006) 

models predict that in addition to geographic distance, other factors, such as urbanization, can act 

as barriers under “urban fragmentation”, or even as conduits to gene flow under “urban 
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facilitation” (Holderegger & DiGiulio 2010; Crispo et al., 2011; LaPoint et al., 2015; deGroot et 

al., 2016; Tang et al., 2016). In the latter case, it is expected that urbanization increases genetic 

connectivity among urban adapter populations, and this increased gene flow may lead to 

increased connections among even previously isolated non-urban populations. Given the 

polarizing outcomes for conservation priorities predicted by models of urban fragmentation vs. 

facilitation, population genetic studies are necessary to distinguish among these models in the 

face of continued urban growth (McDonnell & Hahs, 2015).  

The effects of urbanization on evolutionary processes have become the focus of several 

recent reviews (e.g., Johnson and Munshi-South, 2017). However, with the growing use of 

population genetic studies in urban areas, we review evidence mounting for the competing 

models of fragmentation and facilitation, with an overall goal to determine if cities have 

predictable effects on non-adaptive evolutionary processes across taxa. With these two models in 

mind, in this review, we focused on three specific questions:  

1) What effects does urbanization have on within-population genetic diversity?  

2) What effects does urbanization have on between-population genetic differentiation?  

3) How have studies explored barriers, both biotic and abiotic, to gene flow in urban 

environments? 

 

Trends in urban gene flow studies 

We used Google Scholar and ISI Web of Science to search for studies which included the 

following terms: “genetic drift”, “genetic diversity”, “landscape genetics”, “population genetics”, 
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or “gene flow” together with the terms “urban” or “city”. We define “urban” as human-modified 

landscape with human dwellings which can include towns, cities, and metropolitan areas, 

whereas a “city” is a distinct unit within an urban area with human defined borders. We 

identified 160 empirical research articles that met these criteria. For each study, we identified 

variables that we hypothesized could influence population genetic structure between urban and 

nonurban populations, as related to our aforementioned questions. These included: the study 

organism, the number of urban and nonurban populations sampled, the number of cities sampled, 

and the type of genetic marker (e.g., microsatellite, SNPs) used to measure population structure.  

 

Taxon sampling 

The biology and life history of an organism are necessary to consider when making 

conclusions about the overall impact of urbanization. These considerations include the organisms 

range (does it occur in an urban area or in multiple urban areas?) and the ability for movement 

(see review Medina et al., 2018). Urban studies have covered a variety of taxa, including 

mammals (N = 62), arthropods (N = 48), amphibians (N = 21), plants (N = 20), birds (N = 15), 

reptiles (N = 15), and viruses (N = 3), with several studies sampling multiple taxa. The most 

common type of organism studied is mammals, dominating the current literature at 38%. The 

lack of taxonomic diversity in urban evolution studies has been discussed in several recent 

reviews (Holderreger & DiGiulio, 2010; Johnson & Munshi-South, 2017; Schell 2018). This 

dominance of mammals in the urban gene flow literature is likely due to the contribution of 

conservation genetic studies as large mammals are considered “flagship species” in conservation 

(Schipper et al., 2008; Francis et al., 2010; Zachos & Hacklander, 2011). Additionally, rodents 

are commonly studied in urban areas (N = 19) due to their prevalence within urban areas and 
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their pest concerns (Johnson & Munshi-South, 2017). Arthropod studies are also quite prevalent 

in urban literature, accounting for 30% of the taxa represented. Similar to mammals, arthropods 

such as bees are of conservation concern because of their role in pollination in both wild plants 

and agricultural crops (Estoup et al., 1996; Cameron et al., 2011). Additionally, arthropods such 

as mosquitoes, bed bugs, and cockroaches are also studied because of their prevalence in urban 

areas as human commensals, but more specifically because of the medical concerns as pest 

species (reviewed in Johnson & Munshi-South 2017). While both species of conservation and 

pest concerns are important to study in urban environments, interestingly, these reflect the 

extreme outcomes of anthropogenic effects on species, with species of conservation concern 

becoming extirpated in urban areas and species of pest concern thriving in urban areas.  

There are different expectations of gene flow for different types of organisms, regardless 

of conservation or pest delimitation. For example, in vertebrate species, those that fly (e.g., birds) 

have fewer geographic barriers to gene flow than those that move on the ground (e.g., pumas) 

and thus have different patterns of gene flow between them (Medina et al., 2018). Furthermore, 

plants, which are vastly underrepresented in urban gene flow studies, are expected to be sensitive 

to urban fragmentation because of their sessile habit, but may also overcome fragmentation 

because of life history traits such as wind-dispersed pollen (Young et al., 1996; Cresswell, 2005). 

Given these differences, when we are evaluating different models of urban gene flow, we must 

consider this organismal diversity so as not to bias our conclusions.  

 

Genetic marker sampling 
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Studies have used a several types of molecular markers including microsatellites (N = 

126), mitochondrial DNA (N = 26), allozymes (N = 14), genome-wide SNPs (N = 10), AFLPs (N 

= 6), and ISSRs (N = 4), with only a total of 13 studies using multiple markers (e.g., 

microsatellites and mitochondrial DNA). Not surprisingly, most studies used microsatellite 

markers as traditionally these markers have been easier to develop and less expensive to apply to 

large samples, especially when most organisms in these studies are non-model ones (Ekblom and 

Galindo, 2011; Andrews et al., 2016). This approach is largely be reflective of the conservation 

genetics discipline interest in urban ecological research. Microsatellite markers, while they are 

rapidly evolving and can reflect recent or contemporary gene flow, have caveats in that they can 

violate various population genetic assumptions of identity-by-descent and with widely varying 

mutation rates (Hartl & Clark, 1997). Some of these conclusions have little bearing on simple 

estimates of genetic diversity contrasted within and between populations, but do have 

implications for evolutionary genetic modeling of demographic and adaptive scenarios. 

 

Geographic sampling 

We identified two urban-specific variables which we hypothesized could be related to 

how urbanization alters genetic diversity within and between populations: city area (km2) of the 

city(ies) sampled and human population size. Because these two variables were often not 

included in the study details we estimated these variables from population censuses (US Census 

2014; United Nations, 2015). We found that 32 studies sampled non-urban habitats that occur 

near urban areas, and because the sampling was not specific to within an urban area, we did not 

identify the nearby urban area size or human population for these studies. The remaining 128 

studies that sampled within urban areas, had urban areas that range from 0.37 km2 to 809,000 
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km2. These urban areas have human population sizes as small as 222 to as large as 21 million. 

Most of the studies reviewed here were conducted in North America and Europe (N = 103), with 

temperate zones within these areas overrepresented. Although from a broad perspective, cities 

are often considered replicates of each other (Pickett et al., 2016; Alberti et al., 2017), they have 

clear differences in ecological, climatic, anthropogenic, temporal, and spatial characteristics 

(Grimm et al., 2008; Alberti, 2015). For example, cities in the tropics and deserts have different 

climactic conditions than those in temperate regions, therefore, in this review, we address how 

the response to these vastly different urban areas may be quite different.  

Geographic extent and human population size can both be used as proxies to the level of 

urbanization (see Munshi-South et al., 2016) and therefore can differ in the extent that 

urbanization has fragmented the habitat and reduces gene flow. For example, Leidner & Haddad 

(2010) sampled individuals from a small urban area (17 km2 and 701 human population size), 

and identified that urbanization was not a barrier to gene flow, but instead identified that ocean 

inlets were driving patterns of genetic structure. On the other hand, Wang et al (2010) sampled 

individuals from a large urban area (16,000 km2 and 2.15 million human population size) and 

identified that urbanization was a barrier to gene flow. However, Desender et al. (2005) sampled 

two different urban areas with similar geographic and population size, Brussels and Birmingham, 

and found that genetic diversity in dung beetles was significantly higher in Brussels and 

differentiation was greater in Birmingham. Additionally, when multiple cities are sampled across 

a broad geographic scale to look at connectivity among them, some cities can act as hubs of 

genetic connectivity regardless of their relative size, driving gene flow across the landscape 

(Miles et al., 2018). Therefore, it is likely that the size and level of urbanization of a city does not 



 
 

9 
 

always impact genetic connectivity in the same way, and in fact, as discussed in this review, can 

have different implications for fragmentation or facilitation of gene flow. 

 

Genetic diversity in urban environments 

The primary measures of genetic diversity in these urban population genetic studies were 

observed (HO) and expected heterozygosity (HE), allelic richness (Ar), and the inbreeding 

coefficient (FIS) from microsatellite studies, with a few using π or the average pairwise 

nucleotide differences among SNPs. Given the few number of studies using SNPs, we found that 

18 studies measured π, with only three using NGS nuclear data, and the remaining 15 using 

mtDNA data. Only two studies that measured π compared urban to non-urban populations, 

reporting the differences in π between them. For both studies, π was lower in urban compared to 

non-urban, although not statistically significant (Hirota et al., 2004; Asgharian et al., 2015). With 

the majority of the studies using microsatellite markers (N = 126) the standard measures of 

diversity were broken down as: HO = 111, HE = 98, Ar = 91, FIS = 50. Of these studies, there 

were 47 that sampled at least one urban and one non-urban locale to perform a paired contrast 

(only 29% of the overall studies).  

While identifying the level of genetic diversity within urban areas is a valuable 

benchmark in assessing the current standing genetic variation of urban populations, without a 

background estimate from a "non-urban" sample as a paired contrast, it is unclear whether or not 

a reduction of diversity in these samples is associated with urbanization. To address the overall 

differences in genetic diversity between urban and non-urban populations, we used a multi-

model averaging approach to identify the best fitting model implemented using the dredge 
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function in the R package MuMIn (Barton, 2015), then performed an ANOVA on each response 

variable, using the corresponding best-fitting model from the dredge output (see Supplemental 

Methods for model fitting). We found that Ar was 12.69% lower in urban populations compared 

to non-urban populations (F1, 143.22 = 7.37, p = 0.007). Although there was a trend towards 

decreased HO (1.57%), HE (9.38%), and FIS (22.14%), in urban populations, this trend was not 

statistically significant (p > 0.05). Measures of genetic diversity for microsatellite markers are 

strongly influenced by the number of microsatellites used, the number of alleles per locus, and 

the sample size (Bashalkhanov et al., 2009; Hale et al., 2012; Landguth et al., 2012). While these 

factors may play a role in estimates of diversity using microsatellite markers, given the large 

number of studies sampled here, it is not clear that this explanation can account for the lack of a 

pattern. In this respect, after accounting for diversity in several factors including taxon sampling, 

the data do not support a drop in genetic diversity in urban areas, which would be predicted by 

the urban fragmentation model.  

 

Genetic differentiation in urban environments 

To address the overall differences in genetic differentiation between urban and non-urban 

populations, we used the same multi-model averaging approach identified above. The most 

common measure of genetic differentiation among urban population genetic studies was FST (N = 

118), with the majority (N = 77) having calculated FST between populations in different cities and 

9 studies calculating FST between populations within the same city. Although high FST values 

might reflect low gene flow, they do not necessarily reflect a reduction in gene flow due to 

urbanization. For example, many urban studies have shown high estimates of FST in both plants 

and animals (e.g., Hitchings & Beebee, 1997; Saenz et al., 2012; Ascunce et al., 2013; Munshi-
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South et al., 2013; Bartlewicz et al., 2015; Booth et al., 2015; Johnson & Munshi-South, 2017). 

However, without background estimates of population structure and population differentiation 

outside of urban areas, it is unclear whether these values truly represent gene flow reduction or 

just simply high population differentiation for the species. For example, Miles et al. (Chapter 2) 

found that the average FST between urban populations of the Western black widow spider was as 

high as 0.42, however, this was statistically significantly lower than the average FST between 

non-urban populations (FST = 0.56). In our review of the literature, 33 studies that calculated FST 

sampled both urban and non-urban locales. Although FST was higher in pairwise analyses of 

urban populations (FST = 0.12 ± 0.16) compared to pairwise analyses of non-urban populations 

(FST = 0.07 ± 0.06), this trend was non-significant (χ2
1 = 0.403, p = 0.525). Therefore, both 

sampling design and urban influences appear to play a large role in our ability to detect 

significant differences in genetic differentiation between urban and non-urban populations. 

Indeed, the lack of significance in comparing urban to non-urban population genetic 

differentiation suggests that while urbanization may sometimes lead to increased differentiation 

between populations as predicted by the urban fragmentation model of gene flow, this is not 

always the case, and may be taxon-specific. 

Although the most common measure used in urban studies was FST, there are several 

different measures of genetic differentiation, including GST (Nei and Chesser, 1983), G'st 

(Hedrick, 2005) and D (Jost, 2008), one of the caveats to FST is that the pairwise distance 

between two populations does not account for the genetic variation present among populations 

on the whole. Other measures such as conditional genetic distance (cGD, Dyer & Nason, 2004) 

take into account shared variation across all sampled populations at once and can outperform FST 

when describing the spatial distribution of genetic diversity (Dyer et al., 2010). Additionally, 
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there is no consensus on what is considered a significantly high value of FST (see value bins in 

Hartl & Clark, 1997; Frankham et al., 2002, 2010; Lowe & Allendorf, 2010). For example, when 

FST = 0.18, this is evidence for low differentiation for a mosquito (Cuclex pipens, Asgharian et 

al., 2015), however it is evidence for significantly high differentiation for an Arroyo chub 

(Benjamin, et al., 2016) and an ocelot (Janecka et al., 2011). Therefore, these differences in 

significant high or low differentiation are are complex and related to the life history of an 

organisms, and thus conclusions about these values alone may not reflect the impact of urban 

fragmentation, but rather a specific species’ estimated genetic differentiation.  

 

Barriers to gene flow in urban environments 

Both the urban fragmentation and facilitation models of gene flow explore barriers and 

conduits for dispersal in urban environments. We recorded the number of studies which explored 

isolation-by-distance (IBD) and/or isolation-by-resistance (IBR) in urban environments, and 

found that 108 studies examined the role that environmental factors can play in shaping gene 

flow. In order to test for the relationship between genetic and geographic distance (IBD 

approach), researchers calculate the genetic distance as pairwise FST and the geographic distance 

is measured as Euclidean distance (km) between sampled locales. Of the 108 studies that tested 

IBD, 88 studies conducted a Mantel test, and 57 of those studies reported a measure of associated 

(i.e., the Mantel r2). Of the 57 studies that reported Mantel r2, 22 sampled only urban locales and 

the remaining 35 studies combined both urban and non-urban measures of genetic and 

geographic distance in their IBD analyses. For the studies that sampled urban locales only, 

Mantel r2 ranged from 0.0001 to as high as 0.79 (average = 0.12 ± 0.19), and was not statistically 

significant (χ2
2 = 4.96, p = 0.08), which could be due to the relatively small sample size. 
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Nonetheless, the pattern is still in the opposite direction (i.e. low IBD) than expected under an 

IBD model. Interestingly, signatures of IBD may be weak under both the urban fragmentation 

model and the urban facilitation model. The former predicts higher genetic differentiation among 

urban populations even at small geographic scales, whereas the latter predicts lower genetic 

differentiation among urban locales at all spatial scales. Therefore the lack of significance of 

IBD within studies may be due to either model of gene flow, and thus it is necessary to identify 

potential barriers or conduits that may be reducing the strength of IBD. 

In testing IBR, resistance variables for both urban and natural/non-urban are calculated to 

tease apart the relative contributions of these landscapes to patterns of gene flow. Resistance 

variables that are associated with urbanization include percent impervious surface (higher % is 

more urbanization), canopy cover (values inversely related to urbanization), road density, and 

human population density (Grimm et al., 2008; Nowak and Greenfield, 2012; Alberti, 2015, 

Alberti et al., 2017). Resistance variables that are associated with the natural landscape that can 

also impact gene flow included land-use types (e.g., forest), canopy cover (higher canopy cover 

for natural landscape), and rivers (Manel et al., 2003; Manel and Holderegger, 2013). There were 

47 studies that specifically tested IBR in an urban context that employed linear regression 

analyses. There were no consistent trends that identified urbanization as a barrier to gene flow 

both within and between studies. For example, Emaresi et al. (2011) identified forest, urban, and 

orchard landscape classifications as barriers to gene flow for the alpine newt (Mesotriton 

alpestris). In fact, several studies found both urban and natural barriers to gene flow (Unfried et 

al., 2013; Parks et al., 2015; Nagamatsu et al., 2016; Oritz et al., 2017). Other studies found no 

significant urban or natural barriers to gene flow (Gortat et al., 2015, 2017). Urban land-use was 

identified as a statistically significant barrier for many of the remaining IBR studies, but had 
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varying degrees of correlation. For example, Delaney et al., (2010) sampled three lizard species 

and one bird species from the same urban locales and identified roads as barriers to gene flow, 

but that the strength of the barrier varied from 0.09-0.16. Therefore, given the lack of consistent 

trends both within and between studies, the urban fragmentation model of gene flow which 

identifies urban land use as a barrier to gene flow is unlikely to explain these differences in 

patterns of gene flow. There appears to be support for both the urban fragmentation and the 

urban facilitation models of gene flow, which are study specific, and no one model explains all 

patterns of gene flow in urban environments.   

Although genetic distances measured as pairwise FST and geographic distances measured 

between samples have been the standard for these IBD/IBR analyses, both the statistical method 

to assess significance and the landscape variables used in these analyses are not consistent across 

studies. Traditionally, Mantel and partial Mantel tests were used to identify a significant 

correlation between these measures. However, recently Legendre et al (2015) criticized the use 

of Mantel tests for use in spatial analyses because the null of the Mantel is the absence of a 

relationship between two dissimilarity matrices and thus the Mantel R2 should not be considered 

the same as an R2 of correlation. Thus while many researchers have used general linear models 

(GLMs) prior to the Legendre et al. (2015) criticism, the use of GLMs has since increased. 

However, there is a lack of consistency on what results (e.g., AIC, r2) of these GLMs are 

reported. For example, similar to the results in Mantel tests, when a GLM is not significant, 

neither the AIC nor the r2 values are reported. Additionally, landscape variables that are modeled 

into these GLMs are not always consistent across studies. For example, when modeling historic 

land-use vs contemporary urban land-use researchers have used "time since urban/park 

establishment" (Munshi-South & Nagy, 2014; Lourenco et al., 2017) and others have used 
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historic GIS layers that run multiple models based on urban resistance via Circuitscape (Jha & 

Kremen, 2013). These differences in statistical modeling and land use as urbanization proxies 

make the identification of consistent urban patterns difficult to compare. Currently, the paucity 

of studies that used a GLM approach (N = 47) have not all reported the same statistics. However, 

the increased popularity of using GLMs to analyze spatial data, if reporting results becomes 

consistent, may allow future analyses to have the statistical power to detect potential differences 

in the signature IBD/IBR among urban population genetic studies.  

 

Overall Synthesis 

Although the conventional wisdom has been that urbanization acts as a barrier to reduce gene 

flow, decrease within population diversity and increase between population diversity, here, in a 

review of 160 urban population genetic studies, we found that there is no consistent signature of 

reduced within-population genetic diversity or increased between-population genetic 

differentiation. In addition, a further review of analyses that investigate the urban barriers to gene 

flow also found no consistent results. Urban gene flow studies need more organism and 

environment diversity to understand the diverse impacts that urban evolution can have. For 

example, German cockroaches have been found in many major urban areas and have experienced 

human-mediated dispersal across the globe (Booth et al 2011). However, there are species such 

as pumas that are only in remnant patches near urban habitats and have experienced extreme 

isolation in part due to road mortality (Lee et al., 2012). These organisms are vastly different in 

their biology and life history, and thus we may expect to find differences in the signature of gene 

flow between them. However, even when organisms have similar life history traits, there are still 

very different responses to urbanization. For example, although different bee species were 
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sampled in several studies, some bee species are unable to disperse through urban areas and have 

lower genetic diversity and higher genetic differentiation for urban populations, consistent with 

the urban fragmentation model of gene flow (Davis et al 2010; Jha & Kremen 2013). However, 

other bee species were able to disperse through urban areas, making use of local urban gardens, 

and have higher genetic diversity and lower genetic differentiation in urban populations, 

consistent with the urban facilitation model of gene flow (Chapman et al., 2003; Soro et al 2017). 

We may expect that certain groups, such as mammals, may be expected to follow the urban 

fragmentation model. However, we note that urban pests do follow the urban facilitation model, 

but some pests are mammals (e.g., mice, rats). Additionally, some animals of conservation 

concern (e.g., tarantulas, Machkour-M'Rabet et al., 2012) follow urban facilitation model of gene 

flow.  Therefore, whether an organism experiences urban fragmentation or urban facilitation of 

gene flow, our current understanding is that these are highly taxon specific, where certain taxa 

are no more susceptible to urban fragmentation than others. 

While the response to urbanization is likely taxa-specific, it may also be city- and 

environment-specific. With the current literature dominated by North American and European 

temperate zones, our understanding of the interaction between urbanization and environmental 

conditions is lacking. However, even though the literature reviewed here is in similar 

environmental regions, we still find that there are differences in response to urbanization that 

may be city-specific. For example, studies of salamanders show reduced gene flow in Baltimore, 

MD (Gardner-Santana et al., 2009; Garcia-Gonzalez et al., 2012); however, salamanders in 

Montreal did not experience reduced gene flow (Noel & Laponte, 2010). Given that the 

amphibians in these studies have similar life history traits and the cities are both in temperate 

zones, it is likely that the response to gene flow is due to differences in these cities. Future 
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studies are needed that incorporate cities in more diverse ecological, climatic, anthropogenic, 

temporal, and spatial characteristics (Grimm et al., 2008; Alberti, 2015). For example, the 

Western United States has recently become highly urbanized (US Census 2014) and has a 

diversity of ecoregions including deserts, plains, Mediterranean-like chaparrals, forested 

mountains, and coastal forests (Western Ecology Division EPA, 2018). These areas need to be 

investigated if we are to learn not only how these unique ecological regions are impacted by 

urbanization, but also if we are to learn how contemporary and recent urban growth evolves with 

respect to local biodiversity.  

We found that 78% of the studies we identified have used microsatellite markers, which 

as noted above, have been historically easier to generate and less expensive and have utility in 

measuring more recent changes in genetic diversity. However, recent advances in next 

generation sequencing (NGS), have recently made it possible to collected genome-wide SNPs. In 

fact, NGS has recently become more affordable and available for non-model organisms, which 

allows researchers to estimate genome-wide nucleotide diversity (Ekblom and Galindo, 2011; 

Andrews et al., 2016). The number of single nucleotide polymorphisms (SNPs) that can be 

examined using next generation sequencing (NGS) are magnitudes higher than the number of 

microsatellite markers traditionally used (Allendorf et al., 2010; Andrews et al, 2016). The 

genome-wide putatively neutral SNPs that are genotyped by NGS data provide ample genetic 

variation in which researchers can detect differences between populations even at small 

spatiotemporal scales (Ekblom and Galindo, 2011; Richardson et al., 2014). Therefore, in the 

next 10 years, we will have enough studies that have used these NGS markers in urban studies 

that we will be able to identify urban impacts on genetic diversity at multiple spatiotemporal 

scales.  
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In the review of the studies' "Introductions", N = 118 studies (73%) hypothesized that 

urban fragmentation was the primary mechanism which altered patterns in gene flow and drift in 

their study system while N = 11 (7%) hypothesized human-mediated facilitation was the 

mechanism which altered patterns non-adaptive evolution. Interestingly, the 11 studies that 

hypothesized that urbanization facilitates gene flow are all studies investigating human-health 

pests. The remaining 20% of the studies were descriptive-driven studies investigating general 

patterns of gene flow/structure of organisms in urban environments. These differences in 

hypotheses have influenced how researchers set up their study design, what analyses they will 

use, and thus the conclusions they will make. For example, when a study hypothesizes that 

urbanization creates a barrier to gene flow, individuals can be sampled from only one urban area 

and do not require a non-urban comparison. When genetic diversity estimates are “low” and 

genetic differentiation estimates (FST) are “high”, one may conclude that urbanization is acting as 

a barrier to gene flow. However, as noted previously, without a non-urban comparison, these 

values may be indicative of a species-specific signature of gene flow. For example, bed bugs, 

which are globally distributed, human-commensal pests, have high genetic diversity within urban 

populations but also high genetic differentiation (FST=0.68) between populations due to their 

infestation patterns (Saenz et al., 2012). While pest species typically experience human-mediated 

gene flow, some species of conservation concern have signatures of urban facilitated gene flow, 

even though researchers hypothesized that they experience urban fragmentation. These patterns 

are not taxon-specific; studies have indicated human-mediated dispersal in conserved species 

such as tarantulas (Machkour-M'Rabet et al., 2012), pine martens (deGroot et al., 2016), and 

even a brushland plant (Roberts et al., 2007). Thus, as mentioned previously, the response to 

urbanization, either fragmentation or facilitation, is likely taxon-specific.  
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 The urban fragmentation and facilitation models of gene flow explore barriers and 

conduits for dispersal in urban environments, which are reliant on resistance models. Resistance 

models are really in their infancy given that the field of landscape genetics has only emerged 

since 2003 (Manel et al., 2003), resistance models such as Circuitscape were introduced in 2006 

(McRae, 2006), and the widespread use of GLMs to detect significant resistances has blossomed 

since 2015 (Legendre et al., 2015). Additionally, we have only recently started getting at 

different organisms that allow us to look at different resistors. For example, if we have been 

focused on large mammals, then maybe we do nott have the power and geographic distances to 

have the resolution to test IBR, whereas, other studies of global organisms such as birds, bees, 

spiders, and roaches have enabled such ideas to develop. Nonetheless, we are also just starting to 

build consistent ways to test IBR. For example, while many have looked at single cities and 

within these cities for IBR, we learn very different things than when we have multiple cities, 

different geographic scales, and vastly different resistors. Indeed, this has been the case for the 

rat, the black widow spider, and trees (Aplin et al., 2011; Miles et al., in review; Noreen et al., 

2016). Therefore, the sampling of a diversity of organisms, different locales, populations, and 

markers, now technically changes the questions we can ask with regards to urban fragmentation 

or facilitation of gene flow. 

 Although there is a trend towards decreased genetic diversity and increased genetic 

differentiation, the response to urbanization may not always be negative. Indeed many have 

proposed the urban fragmentation model of gene flow as the primary response to urbanization. 

However, the urban facilitation model of gene flow is equally as common a response to 

urbanization. For the studies that have identified barriers to gene flow, the loss of genetic 

variation in cities could hinder the ability of urban populations to adapt to the new urban 
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environment (Barrett & Schluter, 2007). However, if gene flow is reduced between urban and 

non-urban populations, but sufficient genetic diversity remains, urbanization may be facilitating 

local adaptation through the isolation of these urban populations (e.g., Wright, 1982). 

Additionally, if gene flow is reduced between urban and non-urban populations, but is facilitated 

between urban populations, an urban “ecotype” may emerge (Krtinic et al., 2012; Schapira & 

Boutsika, 2012). Therefore, populations may be able to adapt and persist in these human-

dominated landscapes. 
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Supplemental Methods 

Database construction 

We used Google Scholar and ISI Web of Science to search for studies which included terms such 

as “genetic drift”, “genetic diversity”, “landscape genetics”, “population genetics”, or “gene 

flow” together with the terms “urban” or “city”. From these studies, we extracted estimates of 

genetic diversity, including observed (HO) and expected heterozygosity (HE), allelic richness 

(Ar), and the inbreeding coefficient FIS. We extracted estimates of FST as a measure of population 

genetic differentiation. We also recorded the number of studies which observed evidence of 

isolation-by-distance (IBD) and/or isolation-by-resistance (IBR) in urban environments. We also 

extracted other measures of diversity and differentiation (e.g., π, N = 21), but give the low 

sample sizes we excluded them from our statistical analyses.  

For each study, we identified variables which we hypothesized could influence population 

genetic structure between urban and nonurban populations. These included data on basic features 

of the studies, such as the kingdom of the study organism, and the year the study was published. 

We included data on the experimental design of the study, such as the number of urban and 

nonurban populations sampled, the number of cities sampled and the type of marker used to 

measure population structure (e.g., microsatellite, SNPs, etc). We also identified two variables 

which we hypothesized could be related to how urbanization alters genetic structure: city human 

population size and city area (km2) of the city sampled. Because these final two variables were 

often not included in the study details we obtained these data from population censuses (US 

Census 2014; United Nations, 2015).  

Statistical Analyses 
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All data were analyzed in R v. 3.4.1 (R Development Core Team, 2016). To address questions 1 

and 2, we tested if urbanization explained variation in the five response variables: HO, HE, FIS, 

and Ar (question 1), and FST (question 2), using linear mixed model regression analysis. To 

address questions 3, we used linear mixed model regressions to compare the Mantel r2 values of 

studies, which found evidence of IBD. For each response variable, we built two models, a simple 

model which only contained urbanization as a predictor variable (i), and a more complex model 

which contained urbanization and covariates as predictor variables (ii). For HO, HE, Ar, and IBD 

(Mantel r2 (Mantel, 1967) we ran each response using a normal distribution, and we ran FIS and 

FST using a generalized mixed model on a binomial distribution. We used the following linear 

equation models: 

Response = intercept + urbanization + study ID + error           (i) 

and 

Response = intercept + urbanization + year + kingdom + marker + number of    (ii) populations 

+ city area + city population + native + study ID + error 

Year, number of populations, city area, and city population were treated as continuous predictor 

variables and were transformed to normalize the distribution of the residuals. Urbanization was 

treated as a categorical fixed effect variable with two levels (urban or nonurban), marker was 

treated as a categorical fixed effect with 8 levels (ALFPs, allozymes ISSRs, microsatellites, 

mitochondrial genes, RAPD, or SNPs), and native was treated as a categorical variable with two 

levels (native or non-native). Study ID was included as a random factor to prevent 

pseudoreplication for studies that included multiple marker types or organisms. 
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To determine which variables best predicted the species response to urbanization, we used a 

multi-model averaging approach to identify the best fitting model implemented using the dredge 

function in the R package MuMIn (Barton, 2015). The dredge function tests all possible 

combinations of models and ranks best-fitting models based on their AICc weights. We used a 

model selection approach to determine whether any additional variables were important to 

include in the final model. We took weighted-averages from all models <2 ΔAICc scores of the 

best model, with better fitting models weighted more heavily, to determine final model-averaged 

parameters. We interpreted parameter outputs from the more conservative ‘full’ model output of 

the analysis rather than the ‘conditional’ output, because the conditional output tends to be 

biased away from zero, which can inflate type I error rates (Barton, 2015). 

In addition to using model averaging, we also performed an ANOVA on each response variable, 

using the corresponding best-fitting model from the dredge output. For HO, HE, Ar, and IBD 

(Mantel r2) the significance of fixed effects were estimated using the LmerTest package 

(Kuznetsova et al., 2017), which uses sums-of-squares III to calculate partial F-tests. The 

denominator degrees of freedom were estimated using the Satterthwaite correction for finite 

sample sizes (Kenward and Roger, 1997). For FIS and FST, we assessed significance of fixed 

effects using type III sums-of-squares run using a Wald’s Chi-square distribution to account for 

non-normal residuals. We present the ANOVA results described here in tables included in the 

main text, and the results from multimodel averaging approach in the supplementary materials. 
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Chapter 2: URBANIZATION AS A FACILITATOR TO GENE FLOW IN A HUMAN 

HEALTH PEST 

 

 

Introduction 

By 2050, two-thirds of the human population are predicted to live in urban areas (United 

Nations, 2014). In the United States the most rapid urban growth occurs in the West, where 

urban centers expand outward into pristine natural habitat (US Census, 2010; Seto et al., 2011, 

2012). The loss of these natural habitats reduces local and global biodiversity, which has 

implications for conservation and human health (McKinney, 2002, 2006; Keyghobadi, 2007; 

McDonald et al., 2008). Although negative eco-evolutionary consequences of urbanization have 

been documented (McKinney, 2006; McDonald et al., 2008; Shochat et al., 2010; Faeth et al., 

2011; McDonnell & Hahs, 2015; Johnson & Munshi-South, 2017), we know very little about 

species that thrive in urban ecosystems, known as urban adapters (Blair, 1996; Shochat, 2004). 

Urban adapters thrive in urban areas because they are able to take advantage of new or more 

abundant resources, and also have increased opportunities for higher population connectivity, or 

gene flow on the landscape, due to human-mediated transport (Crispo et al., 2011). Although 

urban adapters can have demonstrated benefits for humans, many are pests that cause structural 

damage, mental anguish, and human health concerns (Crissman et al., 2010; Booth et al., 2012; 

Puckett et al., 2016). As urban areas and human population size continue to expand, an 

understanding of what factors influence how urban pests disperse across and adapt to the urban 

landscape is necessary for the control and management of pest species (Hauser & McCarthy, 
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2009; Crissman et al., 2010; Menke et al., 2010; Booth et al., 2012; Saenz et al., 2012; Puckett et 

al., 2016).  

From an eco-evolutionary perspective, the urban fragmentation model of gene flow 

predicts populations become isolated because of urbanization fragmenting the landscape 

(Debinski & Holt, 2000; Trizio et al., 2005; Allendorf & Luikart, 2007; Keyghobadi, 2007; 

Vandergast et al., 2007, 2009; Holderegger & Di Giulio, 2010; Storfer et al., 2010). These 

isolated populations have reduced dispersal between patches that leads to reduced gene flow, 

which is expected to lead to increased drift, reducing genetic diversity within patches and 

increasing genetic differentiation among them (Keyghobadi, 2007). For example, white-footed 

mice (Peromyscus leucopus) in urban parks experience high genetic differentiation between 

parks, and as canopy cover decreases with increasing impervious surfaces, genetic diversity is 

reduced (Munshi-South & Karchenko, 2010; Munshi-South, 2012). This trend is consistent 

across a variety of taxa, including both vertebrates and invertebrates (Booth et al., 2007; Davis et 

al., 2010; Beninde et al., 2016; Lourenco et al., 2016). However, as urban adapters may take 

advantage of these new urban habitats as corridors to dispersal, studies have invoked the 

alternative urban facilitation model that predicts increased dispersal within and between urban 

areas (Crispo et al., 2011). Under this model, not only would higher gene flow among urban 

areas be expected compared to that among non-urban areas (Crispo et al., 2011), but evidence of 

isolation-by-distance (IBD) is expected to be weak as urban-mediated human transportation can 

result in adapter populations that are distantly geographically separated being more genetically 

similar. For example, human commensals such as bed bugs and German cockroaches show low 

population structure across global geographic areas due to their high association with human 

expansion and colonization (Booth et al., 2012, 2015; Vargo et al., 2014). Thus, while urban 
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fragmentation studies have dominated the literature, our understanding of how urbanization 

facilitates gene flow and increases genetic diversity is particularly poor despite the utility this 

model has for urban adapter pests and applications to conservation and human health.  

In characterizing gene flow patterns on variable spatial and temporal scales, 

interdisciplinary approaches in landscape, population, and evolutionary genetics have emerged 

(Dyer 2015). For example, traditional pairwise measures such as FST are typically used to impart 

information on genetic differentiation between sampled populations. However, measures such as 

conditional genetic distance (cGD), which is derived from population networks that are 

generated under principles of network theory, inform about connections among all sampled 

populations, and in fact, outperform other genetic distance metrics (Dyer & Nason, 2004; Dyer et 

al., 2010). Social network theory has gained significant exposure in disciplines such as sociology 

(Easley & Kleinberg, 2010), economics (Seiler et al., 2014), ecology (Greenbaum et al., 2015), 

and evolutionary biology (Pickrell & Pritchard, 2012; Greening & Fefferman, 2014); however, 

this approach has been unexplored in the context of the human impact of urbanization, despite 

urban areas being models of social networks that reflect human interactions. Instead of simply 

identifying evidence of population structure overall, these analyses would be invaluable to our 

understanding of how urban areas act as a biological network with specific connections 

identified that both fragment and facilitate gene flow among urban pest populations.  

The Western black widow spider, Latrodectus hesperus, is a perfect urban eco-

evolutionary model because it (i) inhabits an area of rapid Western U.S. urbanization, (ii) is 

recognized as an urban adapter due to its recent expansion and success in urban areas from its 

native desert habitat, (iii) maintains a large geographic distribution among multiple urban and 

non-urban areas (Fig. 1), and (iv) is an urban pest with significant medical-relevance, which has 
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implications for the evolving social and physical interactions between humans and our natural 

environment. We have previously documented urban ecological differences in fertility, behavior, 

web-building, and diet (Johnson et al., 2012; Trubl et al., 2012), as well as more dense urban 

aggregations, which are of health concern given its highly toxic venom (Vetter & Ibister, 2008). 

There is sex-biased dispersal in this species where adult female widow spiders are the sedentary 

sex, build a web as a juvenile, and only migrate when resources are depleted; whereas, males and 

spiderlings have the potential for aerial “ballooning” dispersal (Chamberlin & Ivie, 1935). 

Although there are well-documented ecological differences between urban and non-urban 

Western black widow spiders, we know little about the evolutionary potential of these ecological 

differences and how they may impact humans, especially as secondary contact among these 

habitats continues to be inevitable. In this respect, evolutionary population genetic analyses are 

needed to address how urbanization fragments or facilitates gene flow for this pest species.  

Here, we used social network genetic analyses to investigate the impact of anthropogenic 

disturbance on connectivity in a model urban pest with human health concerns. Specifically, we 

conduct population structure, phylogeographic, genetic connectivity, and network analyses of the 

Western black widow spider across multiple urban and non-urban locales using both 

mitochondrial and genomewide nuclear ddRAD-seq markers. Although a null model of urban 

fragmentation is typically invoked, we also consider whether urban areas have acted to facilitate 

gene flow (e.g., via human-mediated transport). If the urban facilitation model drives evolution 

for urban adapter pests like the Western black widow spider, then we hypothesize that urban 

locales have higher genetic diversity, experience less population structure, more recent 

admixture, higher phylogeographic similarity, higher genetic connectivity and overall lower 

isolation-by-distance in contrast to non-urban locales.  
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Materials and methods 

Sampling 

The Western black widow spider (L. hesperus) is a nocturnal web-building predator that is both 

asocial and highly cannibalistic in all life stages. In urban areas, populations can be densely 

aggregated with abundant food resources of crickets and cockroaches in open xeric-landscaping; 

whereas, their non-urban distribution is very patchy, isolated, and associated with arid, rocky-

outcrops and dry river-bed banks that are highly-sheltered. In considering these distributions, the 

difficulty in access to Western black widow spider habitat, and our objective in making contrasts 

between multiple urban and non-urban locales, we assembled a sample of 210 individuals from 

11 urban and 10 non-urban locales (10 individuals from each locale) spanning the Western U.S. 

(Fig. 1, Table S1). Each locale constituted an area of ~0.5 km sq. As males are significantly 

smaller and rarely found, our sample is almost completely of females (<10 males). For 

comparative phylogenetic analyses, we also sampled three Southern black widow spiders (L. 

mactans) from Richmond, VA to be used as an outgroup as this species is the sister taxon to L. 

hesperus (Garb et al., 2004). After collection, samples were immediately stored in 90% EtOH, 

and then placed at -20°C. 

 

DNA sequence collection 

Both mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) were collected to tease apart 

temporal and spatial characteristics of gene flow from demographic contributions, i.e., 

maternally-inherited and more-rapidly evolving mtDNA provides the opportunity to test for 

patterns of potentially further reduced gene flow independent of urbanization. Using tissue 
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dissected from individuals’ legs, DNA was extracted using the DNeasy Blood & Tissue kit 

(Qiagen). For both L. hesperus and L. mactans, the mtDNA ND1 region was collected from 

PCR-amplified fragments of 480 bp using previously published primers (Hedin, 1997). PCR 

products were purified by treatment with Exonuclease I and Shrimp Alkaline Phosphatase (US 

Biochemicals), and then sequenced using an Applied Biosystems 3730 capillary sequencer. 

Sequences were aligned and edited manually using SEQUENCHER v3.1.1 (GeneCodes).  

For both L. hesperus and L. mactans, genome-wide nuDNA fragments were generated 

from double digest RAD sequencing (ddRADseq) according to the protocol outlined in Peterson 

et al. (2012). Each pool of 20 individuals was sequenced on a single-end, 100bp Illumina HiSeq 

2500 lane. The Illumina reads were processed to identify and genotype loci across all individuals 

using the STACKS v1.44 pipeline (Catchen et al., 2011, 2013) with program parameters set to 

default unless otherwise noted. The raw fastq files were demultiplexed, filtered for quality 

(Phred quality score >10) and the presence of barcodes, trimmed to 90 bp in length, and filtered 

for reads that did not contain the EcoRI recognition site using process_radtags. Because a well-

annotated genome is not yet available for L. hesperus or a closely related species, a de novo 

assembly of raw reads into RAD tags was generated using ustacks, with the minimum number of 

reads set at m=5. Next, a catalog of consensus loci was generated using cstacks with the number 

of mismatches allowed between tags set to n≤5. After alleles were identified for each individual 

against the catalog using sstacks, the data were further filtered using populations with a 

minimum coverage of 5x per allele for each individual. One SNP per fragment was randomly 

chosen to reduce effects of locus-specific natural selection and clustering due to LD. Genotype 

data were exported from STACKS in each of the formats needed for subsequent analyses. 
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Data analyses 

Estimates of nucleotide diversity as the average number of pairwise differences (π), the number 

of polymorphic sites (S), and distributions reflecting contrasts between these two (Tajima’s D, 

1989) were estimated within all locales and for our groupings of urban and non-urban samples. 

For estimates of genetic differentiation, standard pairwise FST estimates and tests for statistical 

significance were calculated between all locales, as well as for comparisons of urban and non-

urban samples. Principal component analysis (PCA) was used to make inferences about 

clustering and structure of individuals, and urban and non-urban locales, as this analysis is 

model-free (Jombart 2008; Novembre & Stephens 2008; Novembre et al. 2008; Jombart et al. 

2009, 2010). The PCA was generated in the gstudio package (Dyer et al., 2010) in R.  

The program BEAST v2.4.5 (Bouckaert et al., 2014) was used to generate L. hesperus 

haplotype tree topologies, with our L. mactans samples as an outgroup, to estimate 

phylogeographic relationships among urban and non-urban individuals and locales. All analyses 

were performed using a TrN+G model of substitution, identified here as the appropriate model 

using JModelTest (Posada, 2008), on the basis of the Akaike Information Criterion (AIC). To 

calibrate the mtDNA tree, BEAST v2.4.5 was first run using published CO1 mtDNA sequence 

data and mutation rate estimates (Garb et al., 2004), and the fossil calibration divergence of the 

Latrodectus clade estimated at ~65 MYA (as in Dimitrov et al., 2012). Using a similar iterative 

approach employed by others using fossil calibrations (Dornburg et al., 2012; Heled & 

Drummond, 2012; Valente et al., 2012; Boykin et al., 2013; Qu et al., 2014), our initial BEAST 

run used the relaxed uncorrelated lognormal clock estimate and speciation yule process model, 

with five chains for 5000000 generations (with the first 5000 discarded as burn-in), and logging 

every subsequent 5000. Once the estimate for divergence between the L. hesperus and L. 
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mactans clade was generated, and because mtDNA regions are inherently linked, we set the 

TMRCA at the node estimated from the published CO1 data for our ND1 sequence data here. This 

run used the lognormal relaxed clock (uncorrelated) estimate and coalescent constant size model, 

with five chains for 50000000 generations (with the first 5000 discarded as burn-in) and logging 

every subsequent 5000. All runs were checked for convergence of the chains in the program 

TRACER 1.5 (Drummon & Rambaut, 2007). Log files for each run were combined using 

LogCombiner and a consensus tree was summarized using TreeAnnotator v1.6.1 (Drummon & 

Rambaut, 2007). For our nuDNA tree, we again used BEAST with our L. mactans samples as an 

outgroup. We used the same run parameters as above (except for mutation rate, Masta, 2000) and 

visualized both the mtDNA and nuDNA datasets using FigTree (Rambaut, 2012). 

To further place our phylogenetic results in a demographic perspective (e.g., temporal 

changes in population size), the program ms (Hudson, 2002) was used to generate simulations 

under a coalescent model (i.e., given sample sizes and estimates of θ in overall sample). We 

simulated multiple models of migration between and among urban and non-urban locales, by 

varying migration rates and population sample sizes. Within these simulations, we also varied 

the coalescent time for urban populations. Since black widow spiders have approximately one 

generation per year (Herms et al., 1935), and urbanization in the Western U.S. emerged ~200-

500 years ago (US Census, 2010), we set the number of generations since divergence to between 

200 and 500. After each set of simulations, we calculated all pairwise FST values as well as other 

summary statistics of nucleotide diversity, and determined statistically significant differences by 

comparing observed and simulated data using an in-house R script. 

Genetic connectivity among sampled locales was estimated from the conditional genetic 

distance statistic cGD (Dyer & Nason, 2004), which is estimated from the genetic covariance 
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among locales. This measure of genetic covariance among all locales can be visualized as a 

popgraph using the popgraph R package (Dyer et al., 2010), where nodes represent sampled 

locales and edges represent genetic connections among locales. Popgraph topology is not only a 

visualization of cGD as genetic covariance but also of social network parameters that define the 

popgraph. Our social network analyses evaluate genetic relationships among locales and relative 

contributions of key “actors” using mathematical graph theory (Wasserman & Faust, 1994), 

which here, visually represent gene flow among all sampled locales to identify hubs of higher 

connectivity on the landscape. Social network node-specific parameters including closeness, 

degree, betweenness, and eigenvector centrality were estimated from the popgraphs using the 

popgraph R package. “Closeness” measures the degree to which a node is genetically similar to 

all other nodes in the network, where higher closeness values indicate further genetic distance to 

the next node. “Degree” is the number of edges a node has connecting it to other nodes. 

“Betweenness” is the sum of the shortest paths (i.e., the combination of edges among multiple 

nodes), where higher betweenness values indicate more paths that pass through a node. 

Eigenvector “centrality” computes the extent to which each node is centrally located among all 

other nodes within the popgraph topology. To identify statistical differences and congruence 

between mtDNA and nuDNA popgraph topologies, as well as differences within these topologies 

with respect to urban and non-urban contrasts, we performed t-tests for all of these network 

parameters, with Bonferroni corrections for multiple comparisons.  

Finally, to test for signatures of isolation-by-distance (IBD), Euclidian geographic 

distances were estimated from latitude and longitude coordinates using the fields package 

(Nychka et al., 2015) in R and genetic distances were calculated as cGD (see above). Mantel 

tests were performed on the geographic and genetic distances in R. 
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Results 

We generated >100K single nucleotide polymorphisms (SNPs), from which a filtered high-

quality dataset of 40,533 SNPs from nuDNA and 124 SNPs from mtDNA sequences were 

analyzed. Estimates of nucleotide diversity for both marker types (Table S2) are high and 

consistent with arthropod studies (Garb et al., 2004; Burns et al., 2017). Genetic diversity for the 

overall urban sample was lower than for the non-urban sample, and this was true for both 

mtDNA and nuDNA datasets. However, we find a significant excess of rare alleles for the urban 

sample in both the mtDNA (Taj D = -1.44, p<0.01) and nuDNA (Taj D = -1.57, p<0.01) datasets. 

In fact, when we examined how variation is distributed within locales, we found that although 

average locale mtDNA diversity was similar for urban and non-urban samples (t16 = 0.83, p = 

0.42), the average nuDNA diversity was significantly higher within urban locales compared to 

within non-urban locales (t14 = -1.66, p = 0.02).  

The average FST of all pairwise comparisons for mtDNA and nuDNA was 0.53 ± 0.02 

and 0.23 ± 0.01, respectively, and these two estimates were significantly different (t391 = -9.85, 

p<0.001; Fig. S1). Although FST estimates are significantly high for both the urban and non-

urban datasets, urban locales are significantly less-genetically differentiated from each other for 

mtDNA variation, in contrast to that observed between non-urban locales (FST = 0.42 ± 0.04 vs. 

0.56 ± 0.05; t96= -1.33, p<0.01). Although the overall level of differentiation is lower than that 

seen with mtDNA variation, the nuDNA variation shows the same significant pattern in the 

contrast of urban vs. non-urban locales (FST = 0.15 ± 0.03 vs. 0.03 ± 0.04; t90 = -0.99, p<0.05). 

The PCA of SNP genotypes for each marker dataset identified different patterns of 

genetic structure among individuals. For mtDNA, urban locales are predominantly clustered 
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(Fig. 2a), while non-urban locales are individually more isolated, shown by PC1 and PC2 

explaining 55% of the genetic variance (Fig. 2b). Further PCs explain significantly less variance 

with no additional separation of urban or non-urban locales. The nuDNA variation exhibits far 

less genetic clustering for both urban (Fig. 2a) and non-urban (Fig. 2b) locales compared to 

mtDNA variation, with PC1 and PC2 explaining only 27% of the genetic variance. Further 

inspection of PCs resulted in far less variance explained, and even less separation compared to 

that seen with the mtDNA dataset. 

Our phylogenetic analysis (Fig. 3) of mtDNA haplotype variation shows that an ancestral 

clade is dominated by monophyletic groups of non-urban locales with deeper evolutionary 

divergence. In contrast, urban locales form a predominant phylogenetic clade of mixed lineages 

more recently derived from non-urban ones. In fact, our ms simulations under different 

demographic scenarios indicate that observed urban genetic diversity is significantly more 

comprised of rare rather than common haplotypes (Taj D = -2.05, p<0.001), compared to non-

urban locales (Taj D = -0.92, ns). On the other hand, the phylogenetic analysis of the nuDNA 

dataset resulted in no statistical support for any clade structure, whether they correspond to urban 

or non-urban locales.  

Our popgraph topologies for mtDNA and nuDNA datasets show contrasting patterns of 

genetic connectivity (Fig. 4). Although our cGD estimate was significantly higher in overall 

mtDNA than nuDNA dataset (t68 = 9.50, p<0.0001), this estimate among urban locales is higher 

than among non-urban locales for both marker types (mtDNA t55 = 3.30, p<0.001; nuDNA t97 = 

1.70, p<0.05). The Mantel tests found weak associations for IBD analyses for both the mtDNA 

(r2 = 0.030, p = 0.02) and nuDNA (r2 = 0.008, p = 0.15) datasets. When Mantel tests were applied 

individually to the urban and non-urban datasets, no significant patterns of IBD emerged.  
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The social network parameters underlying the popgraph also have contrasting patterns 

between mtDNA and nuDNA datasets (Table S3). “Closeness” is significantly higher in the 

mtDNA popgraph for non-urban than urban locales (t15 = -2.50, p <0.001) and is also higher 

(which again, means greater distance) overall in the mtDNA popgraph than the nuDNA 

popgraph (t20 = -18.18, p<0.00001). Overall there are a fewer number of connections, and even 

more visible disconnections, in the mtDNA popgraph compared to the nuDNA popgraph. This 

result is evidenced by the parameter “degree” being significantly higher in the nuDNA than the 

mtDNA popgraph (t20 = -3.50, p<0.0001); however, we note “degree” is not significantly 

different between urban and non-urban locales for mtDNA or nuDNA popgraphs. We found no 

significant results for the "betweenness" parameter analyses overall; however, non-urban locales 

are among the highest ranked values in the mtDNA popgraph, whereas, multiple urban locales 

are among the highest values in the nuDNA popgraph. The results of "degree" and 

"betweenness" indicate that while urban locales have higher network connections overall, urban 

locales do not drive genetic connectivity similarly. In fact, our analyses of "centrality" or hub 

determinism, which is a function of the aforementioned social network parameters combined, 

identifies Phoenix (PHX), Reno (RNO), and Las Vegas (LVN) as major urban hubs of 

connectivity, whereas, urban locales Albuquerque (ABQ), Davis (DAV), and Denver (DEN) 

show little to no influence on popgraph network structure. 

 

Discussion 

With the Western black widow spider as an urban pest model, this study set out to specifically 

test two competing hypotheses, that urbanization primarily acts as a barrier to gene flow, or 

instead, that urbanization facilitates gene flow for this urban adapter likely due to human-
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mediated transport. From multiple perspectives of population, phylogenetic, and network 

analyses, the primary observations here are that in comparison to non-urban locales, urban 

locales have higher within-population genetic diversity, lower between-population genetic 

differentiation, and higher overall estimates of genetic connectivity. We discuss these results in 

light of their support for an urban facilitation model, and how these evolutionary approaches help 

our perception of conservation and human health in an ever-growing urban environment. 

The urban fragmentation model predicts that urbanization acts as a barrier to dispersal 

(e.g., Holderegger & DiGiulio, 2010; Storfer et al., 2010), which inherently predicts that 

measures of Western black widow spider genetic differentiation among urban areas would be 

elevated. Our FST values at first glance are significantly high for both the mtDNA and nuDNA 

datasets. In fact, these measures rival that of multiple studies in both plants and animals (e.g., 

Hitchings & Beebee, 1997; Saenz et al., 2012; Ascunce et al., 2013; Munshi-South et al., 2013; 

Bartlewicz et al., 2015; Booth et al., 2015; Johnson & Munshi-South, 2017). However, while 

high dissimilarity indices such as FST might reflect low gene flow, it is not necessarily a 

reduction in gene flow due to urbanization. In fact, our measures of genetic differentiation 

among multiple geographically dispersed non-urban locales, are significantly greater than that of 

measures among urban locales for both mtDNA and nuDNA datasets. Thus, the contrasts of 

these patterns actually prove to be more consistent with gene flow being relatively facilitated, 

and not reduced among urban locales.  

Consistent with the pattern of lower between-locale genetic differentiation observed 

among urban locales, estimates of genetic diversity and phylogeographic history of Western 

black widow spiders also support the urbanization facilitation model. Although the overall non-

urban population has greater genetic diversity than the overall urban population for both mtDNA 
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and nuDNA datasets, on average, urban within-locale genetic diversity is significantly higher 

than that seen within non-urban locales. These results are surprising given that urban population 

genetic studies more often identify reduced genetic diversity within urban locales. As gene flow 

reduces, classic theoretical and empirical studies in population genetics predict that while 

individual non-urban locales may suffer from reduced effective population sizes, increased 

inbreeding, and higher probability of fixation of alleles by drift alone, this process happens 

randomly across locales. This process results in possibly even higher levels of allelic diversity 

maintained in the overall non-urban population (e.g., Dobzhansky, 1937; Wright, 1982). On the 

other hand, the urban population maintains higher within-locale diversity expected from 

relatively higher gene flow, but a lower overall level of genetic diversity as expected if it was 

more recently derived from non-urban areas. Our phylogenetic analysis and demographic 

simulations support this exact hypothesis. While the nuDNA dataset provides little phylogenetic 

information owing to the likely higher level of admixture and diversity of biparental variation 

(more below), the maternally-inherited mtDNA preserves the phylogenetic history showing older 

and ancestral clades of seemingly more evolutionarily isolated non-urban locales, in contrast to 

the urban locales that form a larger, more homogenous and recently derived clade. Thus, while 

we expected a signature of colonization of urban areas from non-urban areas, what is more 

interesting and potentially concerning is that our demographic simulations identify a signature of 

a recent population expansion (i.e., a significant excess of rare alleles) associated with the 

movement of Western black widow spiders into urban locales. These observations demonstrate 

not only that these organisms are successfully invading urban environments and maintaining 

high genetic diversity, but that they do so in rapidly spreading across large geographic areas; 
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these patterns should be noted as a unique molecular signature of an urban adapter and pest 

(Booth et al., 2012, 2015; Vargo et al., 2014).  

Our final set of analyses that examine population clustering and network characteristics 

show the most demonstrable evidence of urban facilitation with higher genetic connectivity 

overall driven by urban locales. The PCA results show very little clustering for nuclear variation 

(as noted above, and discussed more below), whereas, for the mtDNA haplotypes, patterns are 

again consistent with the historical isolation of non-urban locales compared to the large 

clustering of urban locales, consistent with our phylogenetic analysis. However, not seen 

previously are non-random patterns of urban and non-urban haplotypes clustering, which hints at 

how certain locales influence introgression and gene flow more than others. Our popgraph 

topologies test these hypotheses, as unlike dissimilarity measures based on pairwise contrasts 

such as FST, they capture the genetic covariance among all populations sampled at once to 

demonstrate where and how gene flow moves through the network. For example, while our 

mtDNA and nuDNA popgraphs indicate fewer and greater connections among locales, 

respectively (as expected by their demographic histories, more below), overall, urban locales 

have significantly more connections and have higher genetic proximity to other locales than non-

urban locales do. Furthermore, this degree of high urban connectivity results in the surprising 

observation that several non-urban locales are connected to each other only via gene flow 

through certain urban locales on the landscape. This surprising pattern has potentially negative 

evolutionary impacts for the phenotypes within these historically isolated non-urban locales. In 

fact, our IBD analysis shows a consequence of urban facilitation is that Western black widow 

spiders, even from non-urban locales, are more genetically similar than expected given their 

geographically distant separation. Altogether, this popgraph evidence clearly shows that urban 
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facilitation increases gene flow overall, even hinting at certain urban areas as drivers of this 

increased genetic connectivity through both urban and non-urban locales.  

With a pattern of urban facilitation having emerged, a final step is to test hypotheses of 

what specific locales and potential factors may influence urban genetic connectivity. Our social 

network analyses that take a unique look at topologies identified Phoenix, Reno, and Las Vegas 

as major urban hubs, whereas, other urban locales such as Denver have little influence on genetic 

connectivity. Thus, while we find urbanization overall may facilitate gene flow, not all urban 

locales behave the same in this role. Multiple urban features have been implicated as factors 

driving urban gene flow such as percent impervious surface, canopy cover, or human population 

size (Alberti, 2015; McDonnel & Hahs, 2015; Johnson & Munshi-South, 2017). However, these 

studies are often focused on fine-scale gene flow within a single urban area (Emaresi et al., 2011; 

Munshi-South et al., 2012; Van Buskirk, 2012; Sacks et al., 2016), whereas, our study uniquely 

focused on characterizing broad-scale genetic connectivity among multiple urban locales. With 

this in mind, we expect human population size to be a mitigating factor, as human-mediated 

transport among these areas may be tied to the simple volume of humans in each urban area. 

That said, there is no such association here; specifically, while Phoenix and Denver have high 

population sizes, they have contrasting high and low influence on genetic connectivity, 

respectively; yet Reno and Albuquerque have low population sizes, but have high and low 

influence on genetic connectivity, respectively (U.S. Census, 2014; Table S3). Interestingly, 

these four urban areas also differ with respect to age of colonization and population expansion, 

as well as their proximity along urban corridors. These social network analyses help identify not 

only drivers of gene flow, but help test hypotheses of how features interact in complex ways in 
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helping us understand how urban development and movement among these areas impacts 

biodiversity on large spatial scales. 

The overall population genetic pattern shown here is consistent with an urban facilitation 

model, nonetheless, we still observe clear signatures of sex-biased dispersal patterns. Compared 

to nuDNA, the mtDNA dataset for non-urban locales reveals patterns of reduced gene flow, 

including lower within-locale genetic diversity, higher between-locale differentiation, and higher 

locale clustering. The phylogenetic analyses show strong evidence of population and temporal 

structure consistent with ancestral non-urban isolation and more derived urban expansion, but 

only for the mtDNA dataset, which validates life history observations of females being the 

sedentary sex (Chamberlin & Ivie, 1935). One possible problem in urban landscape studies is 

that sex-specific spatial autocorrelation, when not accounted for, may result in erroneously 

concluding that urbanization reduces dispersal distances (as shown by Brashear et al., 2015). In 

fact, high site-fidelity is common for the majority of web-building spiders (Foelix, 2014), so 

without different genetic markers to contrast, it is possible that sex-biased dispersal does dampen 

signatures of urban facilitation overall. As our sample is almost completely derived from 

females, our comparative datasets of mtDNA- and nuDNA-specific patterns enable us to identify 

strong signatures of urban facilitation despite high-site fidelity for females. In addition, our 

network analyses found that higher gene flow among urban areas has had significantly less 

influence on mtDNA than nuDNA variation. Under an urban facilitation model for sedentary 

females, this pattern makes sense as maternally-inherited genetic material is less impacted by 

higher rates of gene flow in contrast to bi-parentally inherited genetic material. Thus, although 

sex-biased dispersal may be looked at as a caveat in gene flow studies, altogether, our results 

make clear that comparative marker and network approaches can indeed reveal the impact that 
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sex-dispersal and urban facilitation each independently have on genotypic and phenoptypic 

variation. 

The impacts this model of urban facilitation have on the evolutionary ecology of urban 

adapters can be speculated on given our choice of the Western black widow spider here. In fact, 

the majority of spider species are able to aerially disperse through ballooning as spiderlings (Bell 

et al., 2005), and this dispersal mechanism that enables them to successfully colonize new areas 

makes spiders ideal models for studying gene flow into novel urban habitats. Although this is the 

case, there is a paucity of studies that have investigated urbanization impacts in arachnids. For 

one species of wolf spider, urbanization appears to act as a barrier to gene flow (Reed et al., 

2011), while for another, urbanization appears to facilitate gene flow (Colgan et al., 2002). 

Additionally, another has shown that an endangered species of tarantula experiences human-

mediated gene flow (Machkour-M’Rabet et al., 2012). Given the polarizing outcomes for 

conservation priorities predicted by models of urban fragmentation vs. facilitation, population 

genetic studies need to target urban adapters on broad geographic scales to document the impact 

of continued urban growth. To this point, our study is the first that has used this approach, and 

despite the inherent limited dispersal in females, we show a significant association between 

urbanization and higher gene flow and genetic diversity in the Western black widow spider.  

This specific urban facilitation scenario can abruptly alter the fitness landscape, 

especially since we show that non-urban locales appear to have been historically isolated, with 

some showing very little within-locale diversity. That is, it is unknown to what extent the 

varying degrees of population divergence identified here among non-urban locales has led to 

local adaptation (e.g., Wright, 1982), and how the now recent secondary contact among these 

locales, ushered in by rapid urban networking at geographically distant scales, has altered these 
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phenotypes. In fact, if selective pressures differ sufficiently among urban and non-urban, and 

even among non-urban environments, “urban ecotypes” may evolve and easily sweep across 

geographically distant urban areas as a result of human-mediated transport (Krtinic et al., 2012; 

Schapira & Boutsika, 2012). As one example previously noted, our group has already 

documented Western black widow spider phenotypic differences in behavior between urban and 

non-urban habitats, where urban spiders are more densely aggregated, larger, and are more 

aggressive (Johnson et al., 2012, 2017; Trubl et al., 2012). Our research here shows that these 

behavioral changes together with the potentially lethal venom these spiders wield present one 

such urban ecotype. These ecotypes may be the result of coadapted gene and phenotype 

complexes that are emerging in urban environments due to increased gene flow among urban 

areas.  

 

Conclusions 

Our integrated approach examining urban and non-urban locales across a broad landscape scale 

raises several larger questions with respect to both population genetics and functional 

evolutionary ecology in urban settings. One thought is with respect to how cities are true 

“replicates” of each other. They do share some characteristics, but they can vary in how they 

impact gene flow, including effects of human population size. Without the use of popgraphs and 

social network analyses that identify specific hubs that increase and decrease gene flow, we 

argue that we cannot even begin to understand what features act as barriers and conduits. 

Differences in urbanization effects among different cities have been documented previously 

(e.g., Thompson et al., 2016); however, without multiple contrasts of urban and non-urban areas, 

we would erroneously conclude patterns are consistent with an urban fragmentation model. This 
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point begs the question of how common urban facilitation is, especially with respect to urban 

adapters that give us the best chance at understanding urban evolution. Currently, urban 

population genetic studies tend to focus on fine-scale within city boundaries or on broad-scale 

between cities, and our work argues that studies combining genomewide sampling at both scales 

is necessary. Specifically, while previous population genetic studies have studied pest invasion, 

we find that with added social network analyses that we can pinpoint hubs that have an influence 

on pests’ spread on the natural landscape. Together with future phenotypic studies across 

multiple urban environments, this network approach would enable us to identify those traits most 

associated with urban adaptation, as we seek to reduce spread of pests with negative medical 

impacts, or on the other hand, increase dispersal of organisms currently under conservation 

management.  
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Figure 2.1. Western black widow spider geographic distribution. Distribution of the 

sampling locales, available from the geographic range of the Western black widow spider across 

the Western U.S. Abbreviations highlighted in blue and yellow reflect urban and non-urban 

locale sampling, respectively (Table S1). 
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Figure 2.2. PCA biplot. a, PCA of mtDNA (left) and nuDNA (right), with urban samples 

highlighted, and b, PCA of mtDNA (left) and nuDNA (right), with non-urban locales 

highlighted. Each circle size reflects relative number of individual samples at that point (see 

Table S1 for locale abbreviations). 
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Figure 2.3. Phylogenetic tree. BEAST analysis of 210 mtDNA haplotypes with highlights in 

blue and yellow reflecting urban and non-urban locale sampling, respectively. Major node 

support as posterior probabilities above 70% are noted as red asterisks. 
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Figure 2.4. Social network popgraph analysis. a, mtDNA popgraph and b, nuDNA popgraph 

among urban (yellow) and non-urban (blue) locales (Table S1). The size of each locale node 

reflects the amount of genetic variance within the locale, and length of connections between 

nodes is proportional to cGD (conditional genetic distance) as a measure of genetic covariance 

reflecting gene flow among locales. 
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Table S2.1. Sampling locales of Western black widow spiders 

Locale Name Locale Abbreviation Latitude Longitude Habitat 

Agua Fria, AZ AGF 34.192 -112.101 non-urban 

Albuquerque, NM ABQ 35.084 -106.621 urban 

Big Bend, TX BBP 29.329 -103.208 non-urban 

British Columbia, Canada BCC 48.581 -123.374 non-urban 

Blythe, CA BLY 33.616 -114.598 urban 

Pine National Forest, CO PNF 39.543 -105.163 non-urban 

Flagstaff, AZ FLG 35.192 -111.645 urban 

Great Basin, NV GBP 39.010 -114.123 non-urban 

Jornada Basin, NM JRN 32.366 -106.525 non-urban 

Lower Creek River, OR LCR 44.135 -120.813 non-urban 

Las Vegas, NV LVN 36.003 -115.289 urban 

Peralta, AZ PER 33.403 -111.348 non-urban 

Phoenix, AZ PHX 33.454 -112.065 urban 

Red Rock, NV RED 36.144 -115.406 non-urban 

Reno, NV RNO 39.530 -119.814 urban 

San Acacia, NM SAN 34.206 -107.027 non-urban 

Santa Barbara, CA SBC 34.736 -120.134 urban 

Tucson, AZ TUC 32.180 -111.014 urban 

Davis, CA DAV 38.537 -121.746 urban 

Saint George, UT SGU 37.209 -112.980 urban 

Denver, CO DEN 39.722 -104.969 urban 
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Table S2.2. Population diversity summary statistics for mtDNA and nuDNA  

Marker Habitat Locale Abbreviation θπ (%) θs (%) TajD 

mtDNA 

 

All 2.20 3.48 -1.14 

 

Urban All 1.60 1.47 -1.44 

  

ABQ 0.00 0.00 0.00 

  

BLY 0.48 0.64 -1.01 

  

DEN 0.45 0.83 1.95 

  

FLG 2.40 4.79 1.44 

  

LVN 0.64 1.87 -0.64 

  

RNO 0.22 0.42 1.64 

  

SBC 0.25 1.04 -1.39 

  

TUC 0.61 1.87 -0.82 

  

UCD 0.04 0.21 -1.11 

  

VBP 1.65 7.08 -1.90 

  

SGU 0.47 1.67 -0.92 

 

Non-urban All 2.63 2.69 -0.07 

  

AGF 0.95 1.27 -1.40 

  

BBP 0.32 1.46 -1.57 

  

BCC 0.00 0.00 0.00 

  

GBP 2.70 5.83 0.62 

  

JRN 0.30 0.36 -0.78 

  

LCR 2.30 2.50 -0.62 

  

PER 0.09 0.41 -1.36 

  

PNF 0.45 0.83 1.95 

  

RED 0.34 0.46 -1.08 

  

SAN 2.46 2.70 -1.45 

nuDNA 

 

All 0.30 0.14 3.39 

 

Urban All 0.13 0.25 -1.57 

  

ABQ 0.06 0.28 -2.60 

  

BLY 0.39 0.27 1.77 
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DAV 0.44 0.36 -2.55 

  

DEN 0.66 0.30 5.33 

  

FLG 0.11 0.27 -2.46 

  

LVN 0.33 0.27 1.03 

  

PHX 0.43 0.33 1.33 

  

RNO 0.03 0.27 -1.62 

  

SBC 0.05 0.26 0.18 

  

SGU 0.24 0.27 1.64 

  

TUC 0.05 0.30 -0.35 

 

Non-urban 

 

All 0.24 0.12 3.17 

  

AGF 0.11 0.27 -3.33 

  

BBP 0.28 0.28 0.01 

  

BCC 0.17 0.27 -1.70 

  

GBP 0.22 0.29 -1.08 

  

JRN 0.28 0.26 0.18 

  

LCR 0.11 0.30 -2.86 

  

PER 0.05 0.34 -3.64 

  

PNF 0.04 0.27 -0.75 

  

RED 0.06 0.26 1.07 

  

SAN 0.04 0.27 -0.76 

  

SAN 0.04 0.27 -0.76 
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Table S2.3. Social Network Node Parameters 

Marker Locale closeness betweenness degree eigenCent Type 

mtDNA AGF 0.0025 16 3 0.11 non-urban 

 

BBC 0.0022 24 3 1.00 non-urban 

 

BBP 0.0019 0 2 0.44 non-urban 

 

GBP 0.0020 0 1 0.01 non-urban 

 

JRN 0.0019 10 3 0.48 non-urban 

 

LCR 0.0026 29 5 0.46 non-urban 

 

PER 0.0025 0 3 0.11 non-urban 

 

PNF 0.0025 0 2 0.35 non-urban 

 

RED 0.0029 4 4 0.00 non-urban 

 

SAN 0.0018 0 1 0.07 non-urban 

 

ABQ 0.0023 10 3 0.04 urban 

 

BLY 0.0029 9 4 0.00 urban 

 

DEN 0.0025 0 2 0.35 urban 

 

FLG 0.0026 28 4 0.99 urban 

 

LVN 0.0029 15 3 0.00 urban 

 

PHX 0.0028 0 3 0.00 urban 

 

RNO 0.0027 12 2 0.00 urban 

 

SBC 0.0023 0 1 0.00 urban 

 

TUC 0.0027 0 2 0.00 urban 

 

UCD 0.0024 7 2 0.00 urban 

 

SGU 0.0028 2 3 0.00 urban 

nuDNA AGF 0.0117 36 4 0.45 non-urban 

 

BBP 0.0153 9 5 0.34 non-urban 

 

BCC 0.0120 16 5 1.00 non-urban 

 

GBP 0.0090 0 1 0.06 non-urban 

 

JRN 0.0168 7 7 0.15 non-urban 
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LCR 0.0104 19 3 0.57 non-urban 

 

PER 0.0155 36 5 0.84 non-urban 

 

PNF 0.0121 2 3 0.53 non-urban 

 

RED 0.0167 18 5 0.03 non-urban 

 

SAN 0.0173 11 6 0.14 non-urban 

 

ABQ 0.0095 0 2 0.06 urban 

 

BLY 0.0154 0 3 0.02 urban 

 

DEN 0.0131 10 4 0.63 urban 

 

FLG 0.0098 0 2 0.05 urban 

 

LVN 0.0174 28 4 0.08 urban 

 

PHX 0.0157 37 5 0.86 urban 

 

RNO 0.0193 76 8 0.62 urban 

 

SBC 0.0163 11 4 0.33 urban 

 

TUC 0.0156 0 4 0.06 urban 

 

UCD 0.0158 0 4 0.58 urban 

 

SGU 0.0158 14 4 0.05 urban 
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ABQ BLY DEN FLG LVN RNO SBC TUC DAV PHX SGU AGF BBP BCC GBP JRN LCR PER PNF RED SAN 

ABQ - 0.17 0.73 0.08 0.14 0.20 0.18 0.16 0.21 0.53 0.09 0.11 0.14 0.21 0.16 0.17 0.17 0.55 0.73 0.13 0.15 

BLY 0.92 - 0.64 0.12 0.07 0.13 0.17 0.10 0.07 0.17 0.05 0.13 0.12 0.11 0.14 0.16 0.15 0.17 0.64 0.08 0.11 

DEN 0.16 0.39 - 0.68 0.63 0.74 0.74 0.67 0.65 0.85 0.51 0.69 0.66 0.74 0.72 0.74 0.74 0.88 0.00 0.62 0.68 

FLG 0.49 0.64 0.45 - 0.10 0.16 0.16 0.12 0.16 0.39 0.07 0.09 0.12 0.15 0.13 0.15 0.13 0.37 0.45 0.10 0.12 

LVN 0.91 0.03 0.90 0.63 - 0.09 0.11 0.07 0.10 0.24 0.04 0.10 0.08 0.11 0.10 0.10 0.12 0.25 0.90 0.05 0.08 

RNO 0.96 0.45 0.93 0.66 0.43 - 0.10 0.13 0.15 0.53 0.06 0.16 0.12 0.20 0.15 0.13 0.20 0.57 0.74 0.09 0.12 

SBC 0.96 0.34 0.93 0.65 0.36 0.21 - 0.13 0.19 0.53 0.07 0.15 0.11 0.20 0.14 0.10 0.19 0.56 0.74 0.10 0.11 

TUC 0.91 0.00 0.90 0.64 0.02 0.42 0.33 - 0.13 0.36 0.04 0.12 0.08 0.15 0.12 0.12 0.16 0.39 0.67 0.07 0.09 

DAV 0.99 0.47 0.95 0.67 0.46 0.30 0.03 0.43 - 0.16 0.08 0.17 0.16 0.14 0.18 0.20 0.19 0.15 0.65 0.12 0.15 

PHX 0.77 0.01 0.81 0.54 0.05 0.20 0.15 0.00 0.19 - 0.15 0.44 0.37 0.46 0.49 0.54 0.52 0.48 0.85 0.27 0.41 

SGU 0.93 0.00 0.91 0.64 0.07 0.37 0.22 0.01 0.36 0.01 - 0.06 0.05 0.07 0.06 0.07 0.08 0.15 0.51 0.04 0.05 

AGF 0.33 0.72 0.30 0.31 0.70 0.76 0.76 0.71 0.79 0.56 0.73 - 0.11 0.16 0.13 0.14 0.15 0.42 0.69 0.10 0.11 

BBP 0.96 0.50 0.25 0.70 0.49 0.70 0.65 0.40 0.76 0.23 0.50 0.79 - 0.15 0.10 0.08 0.14 0.39 0.66 0.07 0.07 

BCC 1.00 0.93 0.46 0.64 0.91 0.97 0.96 0.91 0.99 0.79 0.93 0.79 0.95 - 0.18 0.19 0.21 0.50 0.74 0.11 0.15 

GBP 0.42 0.28 0.63 0.22 0.27 0.33 0.30 0.27 0.33 0.16 0.27 0.13 0.35 0.57 - 0.13 0.14 0.53 0.63 0.09 0.11 

JRN 0.96 0.38 0.93 0.68 0.39 0.65 0.58 0.29 0.72 0.14 0.38 0.78 0.05 0.96 0.33 - 0.18 0.57 0.93 0.09 0.08 

LCR 0.24 0.64 0.65 0.22 0.62 0.65 0.65 0.63 0.67 0.52 0.64 0.05 0.70 0.62 0.16 0.68 - 0.58 0.65 0.12 0.15 

PNF 0.16 0.39 0.00 0.68 0.63 0.95 0.94 0.89 0.98 0.74 0.91 0.30 0.25 0.46 0.72 0.74 0.74 - 0.93 0.29 0.44 

PER 0.83 0.91 0.93 0.43 0.89 0.93 0.93 0.90 0.95 0.81 0.91 0.05 0.94 0.98 0.35 0.94 0.11 0.88 - 0.62 0.68 

RED 0.94 0.03 0.92 0.65 0.13 0.49 0.38 0.01 0.53 0.00 0.05 0.74 0.47 0.95 0.28 0.34 0.65 0.93 0.92 - 0.07 

SAN 0.90 0.04 0.89 0.63 0.10 0.34 0.23 0.01 0.34 0.00 0.02 0.70 0.26 0.90 0.26 0.11 0.63 0.88 0.89 0.02 - 

                      

                      

Figure S2.1. FST matrix of mtDNA and nuDNA for 11 urban and 10 non-urban locales. The top half of the matrix 

consists of nuDNA pairwise FST, the bottom half of the matrix consists of mtDNA pairwise FST. Highlighted in light 

grey are urban by urban pairwise FST, highlighted in dark grey are non-urban by non-urban pairwise FST 
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Chapter 3: URBAN HUBS OF CONNECTIVITY: CONTRASTING PATTERNS OF GENE 

FLOW WITHIN AND AMONG CITIES IN THE WESTERN BLACK WIDOW SPIDER 

 

 

Introduction 

 While the global human population continues to grow, the regions most impacted by this 

growth are urban areas, where half of the human population already resides (United Nations, 

2014). This urban growth fragments and eliminates the surrounding natural habitat, and can have 

negative effects on local flora and fauna (McKinney, 2006; Keyghobadi, 2007). From an eco-

evolutionary perspective, the urban fragmentation model of gene flow predicts populations 

become isolated because natural corridors are fragmented by urbanization, which reduces 

dispersal and gene flow (Debinski & Holt 2000; Trizio et al., 2005; Allendorf & Luikart, 2007; 

Vandergast et al., 2007, 2009; Holderegger & Di Giulio 2010; Storfer et al., 2010). These 

isolated patches are vulnerable to increased genetic drift, reduced genetic diversity within 

patches, and increased genetic differentiation among them (Keyghobadi, 2007). However, urban 

adapters, which thrive in the urban habitats and can be pests of human health concern (Blair, 

1996; Shochat, 2004), may use these novel urban habitats and human transportation as corridors 

to increase dispersal (Crispo et al., 2011). In this respect, the alternative urban facilitation model 

of gene flow predicts populations become more connected because of these artificial corridors 

(Crispo et al., 2011). These urban adapters are necessary models for understanding the 

evolutionary success of urban adaptation juxtaposed with the many negative accounts of 
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urbanization; however, there is a paucity of population genetic studies that have focused on these 

models. Additionally, urban population genetic studies have traditionally focused either on fine-

scale, within single-city patterns of gene flow (Munshi-South 2012, Munshi-South & Karchenko 

2010; Munshi-South et al., 2013) or on broad-scale global, between-city patterns (Booth et al., 

2012, 2015; Vargo et al 2014). A perspective that bridges fine- and broad-scale patterns of urban 

connectivity is necessary given that the eco-evolutionary changes that emerge within and 

between urban areas will differ depending on the organism and the growing realization that cities 

are not replicates of the processes that lead to urban adaptation (Grimm et al., 2008; Johnson & 

Munshi-South 2017). 

Across broad-scales, cities have some similarities such as buildings and impervious 

surfaces since they have been designed specifically to meet the needs of humans (McKinney, 

2006); however, it is unclear the extent to which heterogeneity both within and between cities 

impacts genetic connectivity (Grimm et al., 2008; Holderegger & DiGiulio 2010; Storfer et al., 

2010). Urban population genetic studies have been dominated by analyses within temperate 

ecosystems and in older, developed cities (Johnson & Munshi-South, 2017), where urban 

expansion is typically upon the backbone of landscapes that are human-modified, and thus, much 

of the eco-evolutionary dynamic has already been established (Alberti, 2015; McDonnell & 

Hahs, 2015). More than any other region of the U.S., urban expansion has been significantly 

rapid in the West (US Census, 2014). This urban growth is unique as much of the increased 

urban areas are built upon natural landscapes, have the highest increase in human population 

size, and represent a new urbanization model. In fact, the Southwestern U.S. is further unique as 

an urban model in that growth is in arid regions where supplemental water use and increased 

artificial urban heat island temperatures greatly impact local biodiversity (Chow et al., 2014; 
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Bateman et al., 2015; Wang et al., 2016). These new urban models are perfect habitats for 

invasive urban adapters, and thus, our need to determine the similarities and differences in how 

these unique urban areas impact genetic connectivity is even more imperative given their recent 

and rapid growth.  

In characterizing evolutionary changes on multiple spatial scales, interdisciplinary 

approaches in landscape, population, and evolutionary genetics have emerged that provide 

measures of how gene flow moves across the network as a whole (Dyer et al., 2010). Additional 

social network approaches that compare fine- and broad-scale connectivity increase our 

understanding of how cities act as a biological network with connections that not only fragment 

but also facilitate gene flow among them (Wasserman & Faust, 1994). From a classical 

population genetic perspective, when gene flow is sufficiently high between locales, genetic 

diversity within individual locales can be maintained at high levels (Dobzhansky, 1937; Wright, 

1982). While previous studies have characterized dispersal patterns of pest species and their 

associated patterns of genetic diversity (Crissman et al., 2010; Booth et al., 2012, 2015; Vargo et 

al., 2014), the use of population genetic and social network analyses that specifically identify 

urban hubs of connectivity, which maintain genetic diversity and stable population structure, are 

critical for management of both endangered and pest species (Paupy et al., 2008; Piccinali et al., 

2009). 

The Western black widow spider, Latrodectus hesperus, is an ideal eco-evolutionary 

model for examining urban gene flow across both fine- and broad-scales. Our previous 

population genetic work (Chapter 2) focused on this organism as it maintains a large geographic 

distribution across the arid Western U.S., inhabiting multiple urban and non-urban areas, and 

most importantly, is an urban adapter and pest with medical-relevance. Specifically, we and our 
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colleagues have previously documented ecological differences between urban and non-urban L 

hesperus for changes in fertility, behavior, web-building, and diet (Johnson et al 2012, 2014; 

Trubl et al., 2012), with dense aggregations in urban areas (Trubl et al., 2012), all of which have 

health concerns given its highly toxic, vertebrate-specific venom (Vetter & Isbister, 2008). Our 

previous sampling of thousands of genomewide mitochondrial and nuclear SNPs from 11 urban 

and 10 non-urban locales found urban-specific patterns of higher within-locale genetic diversity, 

lower between-locale genetic differentiation, and higher genetic connectivity, all of which are 

predicted by the urban facilitation model of gene flow (Chapter 2). Additionally, we found that 

not all cities are highly connected, with specific urban hubs driving gene flow among historically 

isolated non-urban locales. While this study provides needed support for our understanding of 

urban facilitation models and urban pest adaptation, as previously noted, how this higher gene 

flow on the urban landscape impacts genetic diversity and gene flow within different cities as 

replicates in the urban network is still unknown.  

Here, we combine fine-scale and broad-scale population genetic and social network 

analyses to test the hypothesis that urban areas show similar levels of genetic diversity. 

Alternatively, because we have previously documented patterns of higher population structure 

associated with non-urban locales, and that urban locales differentially contribute to genetic 

connectivity on broad-scales, we predict that cities more connected to the urban network will 

tend to have higher levels of within-city genetic diversity. We compare and contrast our previous 

broad-scale patterns of urban gene flow (Chapter 2) with a new fine-scale locale sampling from 

within three Southwestern U.S. cities. Our novel social network approach enables us to 

determine how patterns of genetic connectivity within multiple cities are consistent, as well as to 

determine whether these patterns are predicted by their connectivity to the overall urban network. 
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These population genetic networks have implications for applied urban development, 

management of both endangered and pest species diversity within and across cities, and human 

health management across different local and global urban areas. 

 

Methods 

Sampling 

 We used our previously collected samples and published data (Chapter 2) from the 

Western black widow spider distributed across its geographic distribution of 11 urban and 10 

non-urban locales (Fig. 1). From this previous study, we chose three Southwestern U.S. cities 

(Albuquerque, NM; Las Vegas, NV; Phoenix, AZ) that had non-urban locale counterparts as 

samples. These three cities are each located within an arid landscape, with recent human 

population and geographic size expansion. However, these three cities also have varying 

urbanization histories in the Southwest with respect to colonization time, geographic size, and 

human population size (US Census 2014), with which to contrast the impact of urbanization on 

genetic connectivity within urban areas (Fig. 2). Albuquerque is the smallest and oldest of the 

three cities founded in 1706, and covers 490 km2 with a current human population of 560,000; 

Las Vegas is the most recently founded in 1905, covers 1600 km2, and is one of the fastest 

growing metropolitan areas with a population of 1.9 million; Phoenix is the largest of the three, 

having been founded in 1881, covers 235000 km2 and has a population of 4.5 million as the 12th 

largest metropolitan area in the US. Although the size of Albuquerque has remained relatively 

small, likely due to it being bounded by the Sandia Mountains on the East and Native American 

land on the West, Phoenix and Las Vegas have been two of the fastest growing metropolitan 

areas, expanding over 45% in the last 30 years (US Census 2014).  
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 In urban areas, populations of Western black widow spiders are typically densely 

aggregated in open xeric-landscaping (Trubl et al., 2012); whereas, their non-urban distribution 

is very patchy and isolated associated with arid, rocky-outcrops and dry river-bed banks that are 

highly-sheltered (Chamberlin & Ivie, 1935), making their discovery and sampling very difficult. 

We sampled 330 Western black widow spider individuals from each of the three urban areas 

(Albuquerque, Las Vegas, and Phoenix), with each having samples of 10 urban locales to 

address our main focus here of within-city diversity, and then 1 non-urban locale as a contrast 

(Fig. 2, Table S1). Herein, the 11 single urban and 10 single non-urban locales are referred to as 

the "broad-scale" sample, whereas, the 10 urban and 1 non-urban locales from each of the 3 

urban areas are referred to overall as the "fine-scale" sample. After additional collection of the 

fine-scale samples for this study, individuals were placed in 90% EtOH and stored at -20° C. 

 

Data collection 

 Genomic DNA was extracted from tissue dissected from one front and one hind leg of 

each spider using the DNeasy Blood and Tissue Kit (Qiagen). We collected genomewide nuclear 

DNA (nuDNA) sequence fragments by generating reduced representation, double-digest RAD 

sequencing (ddRADseq) libraries according to previous protocol (Peterson et al., 2012). 

Extracted DNA was digested with MseI and EcoRI (New England Biolabs), ligated with adapters 

containing Illumina amplification and sequencing primers and unique barcodes (Petersen et al., 

2012), and then PCR amplified. Barcoded individuals were pooled (20 per library), then size 

selected using gel electrophoresis for fragments ranging from 300-500 bp. Fragments were 

excised and purified using QIAquick Gel Extraction Kits (Qiagen). Each library was sequenced 
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in one lane of an Illumina HiSeq 4000 (150bp, single end) at the VCU Nucleic Acids Research 

Facility. 

 The STACKS v1.44 de novo pipeline (Catchen et al., 2011, 2013) was used to 

demultiplex, quality filter, and call genotypes with the following programs' parameters set to 

default unless otherwise noted: process_radtags, ustacks, cstacks, sstacks, and populations. 

Process_radtags demultiplexed reads and filtered for both quality and the presence of barcodes, 

then trimmed reads to 90 bp in length. The ustacks minimum number of reads was set at m=5. 

The cstacks number of mismatches allowed between tags was set to n≤5. The populations 

minimum coverage was set to 5x per allele for each individual. For analyses not dependent upon 

estimates of nucleotide site diversity (e.g., population structure), only one SNP per fragment was 

randomly sampled as a standard way to reduce impact of linkage disequilibrium and selection. 

Genotype data were exported from STACKS in each of the formats needed for analyses. 

 

Data analysis 

 Our analyses include 48 locales, which include 10 non-urban locales from the broad-scale 

sample, and 38 urban locales, 30 of which are from the 3 cities for our fine-scale sample. 

Estimates of genetic diversity within and between cities, within and between non-urban locales, 

and between urban and non-urban locales within urban areas were performed. Estimates of 

genetic diversity were calculated as the average number of pairwise differences (π), the number 

of polymorphic sites (S), and the distributions reflecting contrasts between these two (Tajima’s 

D, 1989). We used standard pairwise FST measures of overall genetic differentiation between all 

locales, as well as for measures of genetic differentiation among urban locales within each city to 

contrast across cities. To examine hierarchical partitioning of genetic variance within and 
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between cities, we performed an AMOVA in R using the adonis function in the vegan package 

(Oksanen et al., 2017). To identify potential population clustering, principal component analyses 

(PCA) were performed in the gstudio R package (Dyer, 2016). These PCAs were performed for 

each of the three urban areas individually including their non-urban locale, as well as for the 

combined broad-scale and fine-scale samples of a total of 48 locales. 

 Genetic connectivity among sampled locales was determined from the conditional genetic 

distance statistic cGD (Dyer & Nason, 2004), which is estimated from the genetic covariance 

among locales. This measure of genetic covariance derived from all locales can be visualized as 

a popgraph using the popgraph R package (Dyer 2017), where nodes represent sampled locales 

and edges represent genetic connections among locales. Popgraph topology is not only a 

visualization of cGD as genetic covariance but also of social network parameters that define the 

popgraph. Our social network model evaluates genetic relationships among locales and relative 

contributions of key “actors” using mathematical graph theory (Wasserman & Faust, 1994), 

which here, visually represent gene flow among all sampled locales to identify hubs of higher 

connectivity on the landscape. Social network node-specific parameters including closeness, 

degree, betweenness, and eigenvector centrality were estimated from the popgraphs using the 

popgraph R package. “Closeness” measures the degree to which a node is genetically similar to 

all other nodes in the network, where higher closeness values indicate further “distance” to the 

next node. “Degree” is the number of edges a node has connecting it to other nodes. 

“Betweenness” is the sum of the shortest paths (i.e., the combination of edges among multiple 

nodes), where higher betweenness values indicate more paths that pass through a node. 

Eigenvector “centrality” computes the extent to which each node is centrally located among all 

other nodes within the popgraph topology. To test competing hypotheses, a popgraph was 
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generated for each of the three urban areas of the fine-scale sample, independently, as well as for 

the combined overall 48 locale dataset. To identify statistical differences and congruence 

between popgraph topologies, we performed t-tests for network parameters noted above, with 

Bonferroni corrections for multiple comparisons. 

 From a spatial perspective, patterns of gene flow even on a fine-spatial scale within cities 

may be due to geographic distance when dispersal distance is low, and this is typically expected 

in web-building spiders (Foelix, 2014). Therefore, we test a simple isolation-by-distance (IBD) 

model for each of the three cities. As this analysis is specifically contrasting patterns of gene 

flow within and across cities, we excluded the non-urban sample from each of the three analyses. 

Euclidian geographic distances were estimated from latitude and longitude coordinates using the 

fields package in R (Nychka et al., 2015), and genetic distances were calculated as cGD (see 

above). Mantel tests were performed on the geographic and genetic distances in R. To compare 

with this analysis of geographic distance, we also used percent impervious surface (PIS) as a 

standard resistance distance proxy (Storfer et al., 2010; Johnson & Munshi-South, 2017; Alberti, 

2015) for the degree of urbanization (national land cover database: 

https://www.mrlc.gov/finddata.php). As in Dyer et al. (2012), we performed a permutation 

analysis using the gstudio package in R to test for significant relationships between PIS and 

genetic connectivity. In the permutation analysis, each sample locale, or node, was fixed on the 

landscape of the popgraph. The connections among the nodes, or edges of the popgraph, were 

overlaid on the raster maps of PIS to generate the observed mean and variance resistance 

distances. We simulated 1,000 popgraphs with the observed number of nodes fixed on the 

landscape and the edges randomized among these popgraphs to generate a null distribution for 

https://www.mrlc.gov/finddata.php
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both the mean and variance of PIS. Statistical significance was assessed by determining the 

probability of the observed popgraph values compared to our simulated distributions. 

 

Results 

 After quality filtering, the final dataset included 1.9 million SNPs for the 48 locales, 

which includes the broad-scale and fine-scale samples. Estimates of Western black widow spider 

genetic diversity in the entire sample (Table S3) are consistent with estimates of arthropod 

nuclear genetic diversity in general (Burns et al., 2017). For the fine-scale analysis, within-locale 

estimates of genetic diversity are on average significantly lower for Albuquerque locales (πave = 

0.07) than Las Vegas (t-test p<0.001) and Phoenix (t-test, p<0.001) locales, with Las Vegas and 

Phoenix having similar estimates (πave = 0.20 and 0.20, respectively). Although estimates of 

within-city locale genetic differentiation (i.e., among locales within a city) are moderately high, 

Albuquerque has the statistically highest average pairwise FST (FST = 0.29, Fig. S1a) compared to 

each of Las Vegas (FST = 0.19, t-test p<0.01, Fig. S1b) and Phoenix (FST = 0.22, t-test p<0.01, 

Fig S1c). In the combined dataset of 48 locales, urban locales are statistically significantly less 

genetically differentiated from each other than non-urban locales (FST = 0.15 vs. 0.30; t-test, 

p<0.01, Fig S2). When combining the 10 locales within each city as a sampled unit, there is 

statistically significantly less genetic differentiation (t-test, p<0.01) between Las Vegas and 

Phoenix (FST = 0.06) when compared to Albuquerque and each of these two cities (vs. Las 

Vegas, FST = 0.12; vs. Phoenix FST = 0.18). Each of the three cities has a statistically significant 

negative Tajima’s D value, although these values are not significantly different from each other 

(Table S3). Finally, the AMOVA resulted in 8.2% variance explained by city and 20.4% 

variance explained by locale, with the remaining 71.4% among individuals. That is, the majority 



 
 

76 
 

of the genetic variance is found among individuals, and overall, more genetic variance is found 

among locales within cities than is found between cities.  

 The first 10 PCs for each urban area are statistically significant and account for 52% 

(Albuquerque), 44% (Las Vegas), and 47% (Phoenix) of the genetic variance among individuals 

(Fig. 3). The previous PCA of the broad-scale sample had shown significant independent non-

urban clusters, with the majority of urban individuals forming a single cluster (Chapter 2). With 

the independent PCAs of the fine-scale samples, we see that each of the three urban areas show a 

pattern of no clustering of specific urban locales, and apparent clustering for the non-urban 

individuals, with Phoenix showing the strongest cluster. In the combined PCA of 48 locales, the 

locales for each of the three cities show some weak clustering in PC1-2 (29% variance 

explained), with most of this variance among the three cities here, and in other PCs, explained by 

Albuquerque locales (Fig. S3).  

 For our popgraph analyses, although the number of edges or connections do not 

significantly differ among the three cities’ networks (Fig. S4), the measures of cGD and 

“closeness” are statistically significantly higher in Albuquerque and Phoenix than in Las Vegas 

(Table S4). Each of the three cities' popgraphs have contrasting patterns of “betweenness” such 

that this parameter is statistically significantly different between all three cities (Table S4). 

Specifically, the Albuquerque popgraph has one locale (BEL) with the highest betweenness 

value, whereas Las Vegas has nearly each node equally weighted, and Phoenix has two equally 

weighted locales (BRO & GCC) that have the highest value (Table S5). When combining all 48 

locales into one popgraph (Fig. 4), Albuquerque locales have the highest connection distances 

(least "central") from all other locales in the network, whereas, Phoenix and Las Vegas locales 

are centrally connected with all other urban locales in the broad-scale sample. Except for the 
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Albuquerque non-urban locale, all non-urban locales are peripherally-linked outside of the 

network, which at its core are urban locales, and many non-urban locales are only connected via 

urban locales. The analysis of “centrality” identified ERN (Las Vegas), CHU (Albuquerque), and 

BUC (Phoenix) as the top three major hubs of connectivity in the entire network. On the other 

hand, non-urban locales have the least influence on connectivity in the overall network; in fact, 7 

of the 10 non-urban locales sampled have the lowest “centrality” of all 48 locales in the network 

(Table S6). 

 The Mantel tests found both Albuquerque and Phoenix have statistically significant 

patterns of IBD (r2=0.18 and r2=0.17, respectively, both p<0.01), whereas, Las Vegas shows no 

such pattern (r2=0.01, p=0.49; Fig. S5). For our PIS resistance distance analyses, the mean and 

variance for PIS in each of the three cities showed no statistical significant association with 

genetic connectivity (Fig. S6). 

 

Discussion 

 Our previous work on the Western black widow spider as an urban pest model 

documented population genetic signatures consistent with the urban facilitation model of gene 

flow on a broad geographic scale, yet it raised questions about how this model explains patterns 

on fine-scales within cities. While many studies have focused on fine-sampling of a single city 

and its surrounding areas to document genetic diversity and gene flow patterns in testing 

hypotheses about impacts of urbanization (Munshi-South & Karchenko, 2010; Munshi-South 

2012; Booth et al., 2012, 2015; Munshi-South et al., 2013; Vargo et al., 2014), here, we used a 

unique analysis of fine-scale sampling of Western black widow spider genetic variation from 

three Southwestern cities in combination with our previous broad-scale urban and non-urban 
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sampling. The primary observation is that urban areas have significantly different patterns of 

connectivity to the overall network that generate contrasting patterns of within- and between-city 

genetic diversity. We discuss these results as they challenge the use of cities as replicates of 

urban eco-evolution, and have implications for conservation and human health in a rapidly 

growing urban habitat. 

 The observations of significantly higher within-locale genetic diversity, lower between-

locale genetic diversity, and most interestingly, higher connectivity among 11 urban locales 

compared to 10 non-urban locales were all patterns consistent with the urban facilitation model 

(Holderegger & DiGiulio, 2012; Crispo et al., 2011) for our previous analysis of Western black 

widow spiders (Chapter 2). These patterns are overall consistent with the fine-scaled analyses of 

30 locales from three Southwestern U.S. cities, whether independently analysed or in 

combination with the previous broad-scale sample, indicating at the outset that broad-scale and 

fine-scale analyses were not reflecting different general urban evolutionary forces. In fact, the 

hierarchical variance analysis of these broad-scale and fine-scale samples shows that overall, 

urban facilitated gene flow both within and among cities results in more genetic diversity being 

distributed among locales within cities than is found between cities. As we have previously noted 

(Chapter 2), these patterns should be expected in emerging studies as signatures of urban 

facilitated gene flow for urban adapter and pest species (Booth et al., 2012, 2015; Vargo et al., 

2014). 

 Underlying this urban facilitation model, the most interesting find is the significant 

heterogeneity among the fine-scale city samples. Specifically, the locales sampled from within 

each of Las Vegas and Phoenix show similar levels of within- and between-locale genetic 

diversity, similar population clustering, and significantly higher connections to the urban 
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network; however, Albuquerque has significantly lower within-locale and higher between-locale 

diversity compared to the other two cities. In fact, Albuquerque locales share more in common 

with the 11 geographically distributed non-urban locales, which appear to have been relatively 

isolated with lower diversity and higher population structure (Chapter 2), and from our popgraph 

here of all 48 locales, show significantly reduced connectivity to the urban network at large. 

Thus, while urban and non-urban areas are different with respect to genetic diversity, even urban 

areas cannot be classified as a single group with respect to effects of urbanization. 

 Our previous broad-scale analysis first revealed that certain urban areas act as "drivers" 

of the overall higher genetic connectivity of the Western black widow spider population network, 

with surprisingly, even non-urban locales becoming more connected via urban areas (Chapter 2). 

With the popgraph analysis of the overall 48 locales here, our fine-scale samples are consistent 

with this initial observation, yet now reveal how urban areas specifically drive connectivity. For 

example, our social network analysis finds that while Las Vegas and Phoenix locales overall are 

still highly connected to the network, Phoenix has multiple locales identified as "hubs" of 

connectivity, whereas, Las Vegas locales each equally drive gene flow. Alternatively, 

Albuquerque locales, which overall are significantly disconnected from the network, have one 

identified hub, but note that this hub simply connects the other nine Albuquerque locales to the 

network. Therefore, while certain urban hubs are impacting the network of urban and non-urban 

locales on the whole, other urban hubs only connect peripheral populations, albeit loosely, to the 

network. These results reveal one of the powerful characteristics of using conditional genetic 

distances (cGD) in that the addition or removal of populations alters the covariance across the 

network, as seen from contrasts of individual city popgraphs to the overall popgraph (Dyer et al., 

2010; Koen et al., 2013; Naujokaitis-Lewis et al., 2013). Thus, social network analyses are 
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ideally suited for investigating evolutionary changes across multiple urban environments, in 

modeling how the applied management of specific urban hubs may alter and especially create 

corridors on multiple spatial scales.  

Given the underlying urban facilitation model here, we may predict that broad- and fine-

scale patterns of urban genetic connectivity predict patterns of within-urban area genetic 

diversity, which can be a long-term measure of sustainability (Debinski & Holt 2000; Trizio et 

al., 2005; McKinney, 2006; Allendorf & Luikart, 2007; Keyghobadi, 2007; Vandergast et al., 

2007, 2009). In testing this hypothesis in the 38 urban locales, we initially find a negative 

correlation between connectivity (as the parameter betweenness) and genetic diversity. However, 

this analysis revealed multiple statistical outliers with high genetic diversity that all 

coincidentally have the lowest measures of connectivity of all 38 locales. In fact, when these 

three outliers were removed, the correlation became significantly positive (r2 = 0.20, p<0.01). 

The outlier locales are all from the broad-scale sample (BLY, DAV, DEN; Table S3), and reflect 

different human population and geographic sizes. Thus, this observation reveals that while a 

proportion of Western black widow spider genetic diversity within urban locales can be 

predicted by how well-connected these locales are to the urban network, underlying this 

correlation is significant heterogeneity among urban areas that reveals multiple "urban 

signatures". More to the point, several designated "urban" areas (e.g., Albuquerque) mimic even 

non-urban areas in that they have similarly low levels of genetic diversity and connectivity due 

to their isolation on the landscape. Thus, while urbanization appears to facilitate gene flow 

among even geographically distant populations (as evidenced by the IBD results), some urban 

locales do show the effects of reduced connectivity further rejecting urban areas as simple 

replicates of the same urbanization process.  
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Under an urban facilitation model of gene flow, it has often been proposed that the 

similarities among cities, such as human population size, canopy cover, and human 

transportation networks, can be dispersal corridors (Hoderegger & DiGiulio, 2010; Crispo et al., 

2011; Alberti, 2015; McDonnell & Hahs, 2015; Johnson & Munshi-South, 2017). Our previous 

investigation of human population size (Chapter 2) and this study's investigation of PIS as 

potential drivers of genetic connectivity for broad- and fine-scale samples, respectively, were not 

statistically significant for the Western black widow spider. However, the contrast in patterns of 

connectivity across scales shown here further emphasizes the importance of identifying corridors 

and barriers that evolve differently, especially for cities that vary in size, timing and magnitude 

of human habitation. For example, while PIS was not a significant predictor of within-city 

connectivity, we note that not only are the PIS distributions different among cities, but they do 

not show a predictable pattern (i.e., cities with high PIS do not have the lowest genetic 

connectivity). Thus, as we characterize patterns of genetic connectivity within and among 

multiple urban areas for multiple organisms, only then will we be able to successfully model how 

landscape features that are typically implicated as factors driving urban gene flow (Hoderegger 

& DiGiulio, 2010; Crispo et al., 2011; Alberti, 2015; McDonnell & Hahs, 2015; Johnson & 

Munshi-South, 2017), interact in complex ways both within and across cities.  

One of the predictions of this urban facilitation model is that an "urban ecotype" sweeps 

across not only urban areas, but invades non-urban areas as well given the patterns of overall 

connectivity we have observed (Krtinic et al., 2012; Shapira & Boutsika, 2012). While our 

previous broad-scale analyses hinted at this speculation, our popgraph network analyses here 

find that only specific urban locales may have the opportunity to drive and spread phenotypes 

into specific urban and non-urban locales (i.e., a standard source-sink dynamic). This model 
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would predict that not only would we see divergent phenotypes each locally-adapted between 

urban and non-urban environments, but that even multiple urban and non-urban phenotypes 

emerge (Thompson et al., 2016), possibly due to local adaptation, and as predicted by the urban 

network of gene flow. For example, our group has already documented Western black widow 

spider behavioral differences between urban and non-urban habitats, where urban spiders are 

significantly more densely aggregated and are more aggressive towards prey and conspecifics 

(Johnson et al., 2014; Trubl et al., 2012), as well as gene expression differences among even 

urban habitats related to metabolism and fertility (our data unpublished). Thus, as the field of 

urban eco-evolution is focused on characterizing the adaptive traits that define invasion into 

human habitats, it must consider not only how these traits differ from ancestral habitats, but also 

how multiple urban ecotypes emerge in response to the heterogeneity of urbanization selective 

pressures on different spatial scales.  
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Figure 3.1. Geographic distribution of the broad-scale sampled locales of the Western black 

widow spider across the Western U.S. (see Table S2). Highlighted locales in blue and yellow 

reflect urban and non-urban samples, respectively.  
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Figure 3.2. Geographic distribution of the fine-scale sampled locales of the Western black 

widow spider from three urban areas. Color-scale represents the percent of impervious surface 

for the cities and surrounding non-urban areas of (a) Albuquerque, (b) Las Vegas, and (c) 

Phoenix. Triangles represent non-urban locales (see Table S1 for sampling locales). 
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Figure 3.3. PC1 and PC2 biplots of individual genotypes are shown for fine-scale sampled 

locales within (a) Albuquerque, (b) Las Vegas, and (c) Phoenix urban areas. The left and right 

panels reflect urban samples highlighted (color-scheme) and non-urban samples highlighted 

(yellow), respectively (see Table S1). 
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Figure 3.4. Social network popgraph analysis among urban (blue) and non-urban (yellow) 

locales for the broad-scale sample (see Figure 1), as well as the fine-scale sample from 

Albuquerque (black), Las Vegas (light grey), and Phoenix (dark grey) cities (see Table S1, S2). 

The relative size of each node reflects the locale-specific genetic variance, and the length of the 

edges is proportional to the conditional genetic distance (cGD, see Methods) between locales.  
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(a) ABQ DOW OLD BEL CHU COR GYM MAN EAA OSO SAN 

ABQ  0.44 0.56 0.58 0.38 0.53 0.53 0.57 0.51 0.55 0.32 

DOW   0.48 0.33 0.43 0.29 0.34 0.44 0.40 0.31 0.29 

OLD    0.32 0.56 0.31 0.30 0.33 0.51 0.31 0.54 

BEL     0.57 0.25 0.27 0.27 0.39 0.28 0.60 

CHU      0.49 0.55 0.62 0.45 0.55 0.25 

COR       0.24 0.29 0.30 0.30 0.57 

GYM        0.28 0.38 0.26 0.54 

MAN         0.50 0.26 0.55 

EAA          0.35 0.30 

OSO           0.57 

SAN            

            

(b) ABC ART DIC ERN JAM KIT LUC LVN PHL RIC RED 

ABC  0.21 0.20 0.23 0.20 0.19 0.16 0.34 0.19 0.19 0.36 

ART   0.24 0.24 0.23 0.20 0.17 0.34 0.20 0.21 0.38 

DIC    0.24 0.24 0.20 0.17 0.34 0.20 0.22 0.38 

ERN     0.24 0.22 0.22 0.24 0.21 0.24 0.26 

JAM      0.21 0.17 0.34 0.21 0.21 0.38 

KIT       0.17 0.31 0.19 0.20 0.33 

LUC        0.33 0.17 0.16 0.36 

LVN         0.29 0.34 0.10 

PHL          0.20 0.31 

RIC           0.37 

RED            

            

(c) ANT BRO BUC CHA GCC HRP TBD TEM PHX WHY PER 

ANT  0.27 0.16 0.19 0.26 0.24 0.37 0.19 0.33 0.43 0.34 

BRO   0.26 0.27 0.19 0.22 0.22 0.26 0.30 0.23 0.33 

BUC    0.17 0.25 0.22 0.34 0.17 0.30 0.41 0.25 

CHA     0.26 0.24 0.37 0.19 0.33 0.44 0.35 

GCC      0.21 0.27 0.26 0.32 0.29 0.37 

HRP       0.30 0.24 0.32 0.35 0.37 

TBD        0.36 0.45 0.34 0.49 

TEM         0.32 0.41 0.31 

PHX          0.47 0.52 

WHY           0.55 

PER            

 

Figure S3.1. Pairwise FST values of urban and non-urban locales for the fine-scale samples of (a) 

Albuquerque, (b) Las Vegas, and (c) Phoenix city areas. Locale abbreviations found in Table S1. 
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Figure S3.2. Pairwise FST values for urban and non-urban locales for all 48 locales including the 

broad-scale locales and fine-scale locales of Albuquerque (black), Las Vegas (light grey), and 

Phoenix (dark grey) city areas. Locale abbreviations found in Table S1 and S2. 
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Figure S3.3. PCA biplots for PC1-6 of urban (circles) and non-urban (triangles) locales within 

(a) Albuquerque, (b) Las Vegas, (c) Phoenix, and (d) combined broad- and fine-scale samples of 

48 locales. 
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Figure S3.4. Social network popgraph analyses for each of the fine-scale sampled (a) 

Albuquerque, (b) Las Vegas and (c) Phoenix city areas, with urban (grey-scale) and non-urban 

(yellow) locales highlighted (locale abbreviations found in Table S1). For each network, the 

relative size of each node reflects the locale-specific genetic variance and the length of the edges 

is proportional to the conditional genetic distance (cGD, see Methods) between locales.  
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Figure S3.5. Isolation-by-distance analysis for locales within (a) Albuquerque, (b) Las Vegas, 

and (c) Phoenix cities. 
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Figure S6. Permutation distribution of percent impervious surface (PIS) between locales 

presented as mean (left) and variance (right) for (a) Albuquerque, (b) Las Vegas, and (c) Phoenix 

cities. The arrows point to the observed PIS value within each simulated distribution.  
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Table S3.1. Fine-scale sample locales of Western black widow spiders. 

City Locale Abbreviation Latitude Longitude Habitat 

Albuquerque, NM San Acacia SAN 34.205844 -107.027108 non-urban 

 Albuquerque ABQ 35.083183 -106.625317 urban 

 Bellehaven BEL 35.098728 -106.546769 urban 

 Church CHU 35.176675 -106.625486 urban 

 Cortez COR 35.227547 -106.610217 urban 

 Downtown DOW 35.096331 -106.667097 urban 

 Elementary EAA 35.033394 -106.709769 urban 

 Gymnasium GYM 35.196158 -106.667831 urban 

 Manzano  MAN 35.062433 -106.524894 urban 

 Oldtown OLD 35.086997 -106.649681 urban 

 Oso OSO 35.151983 -106.575333 urban 

Las Vegas, NV Red Rock Park RED 36.144175 -115.405719 non-urban 

 Bonanza ABC 36.178333 -115.171700 urban 

 Arthur  ART 36.178067 -115.110550 urban 

 Dickens DIC 36.260317 -115.092067 urban 

 Ernest  ERN 36.254433 -115.234217 urban 

 James JAM 36.046367 -115.074950 urban 

 Kitty KIT 36.313517 -115.219783 urban 

 Lucille LUC 36.088367 -115.284433 urban 

 Las Vegas LVN 36.003439 -115.289411 urban 

 Paradise PHL 35.992033 -114.975983 urban 

 Richard RIC 36.194267 -115.268633 urban 

Phoenix, AZ Peralta Park PER 33.402600 -111.348410 non-urban 

 Anthem ANT 33.874583 -112.155622 urban 

 Brown BRO 33.437014 -111.736914 urban 

 Buckeye BUC 33.437958 -112.495933 urban 

 Chandler CHA 33.179380 -111.570640 urban 

 Glendale GCC 33.571044 -112.190178 urban 

 Horse Ranch  HRP 33.647860 -111.984920 urban 

 Thunderbird  TBD 33.617722 -112.065208 urban 

 Tempe TEM 33.365439 -111.954681 urban 

 Phoenix PHX 33.454456 -112.064992 urban 

  Whyman WHY 33.424422 -112.294017 urban 
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Table S3.2. Broad-scale sample locales of Western black widow spiders. 

Locale Abbreviation Latitude Longitude Habitat 

Agua Fria, AZ AGF 34.192 -112.101 non-urban 

Albuquerque, NM ABQ 35.084 -106.621 urban 

Big Bend, TX BBP 29.329 -103.208 non-urban 

British Columbia, Canada BCC 48.581 -123.374 non-urban 

Blythe, CA BLY 33.616 -114.598 urban 

Pine National Forest, CO PNF 39.543 -105.163 non-urban 

Flagstaff, AZ FLG 35.192 -111.645 urban 

Great Basin, NV GBP 39.010 -114.123 non-urban 

Jornada Basin, NM JRN 32.366 -106.525 non-urban 

Lower Creek River, OR LCR 44.135 -120.813 non-urban 

Las Vegas, NV LVN 36.003 -115.289 urban 

Peralta, AZ PER 33.403 -111.348 non-urban 

Phoenix, AZ PHX 33.454 -112.065 urban 

Red Rock, NV RED 36.144 -115.406 non-urban 

Reno, NV RNO 39.530 -119.814 urban 

San Acacia, NM SAN 34.206 -107.027 non-urban 

Santa Barbara, CA SBC 34.736 -120.134 urban 

Tucson, AZ TUC 32.180 -111.014 urban 

Davis, CA DAV 38.537 -121.746 urban 

Saint George, UT SGU 37.209 -112.980 urban 

Denver, CO DEN 39.722 -104.969 urban 
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Table S3.3. Population diversity summary statistics for 48 sampled locales. 

Scale City Habitat 

Locale 

Abbreviation θπ (%) θs (%) TajD 

both Albuquerque, NM non-urban SAN 0.04 0.27 -0.76 

both Albuquerque, NM urban ABQ 0.06 0.28 -2.60 

fine-scale Albuquerque, NM urban BEL 0.06 0.33 -3.65 

fine-scale Albuquerque, NM urban CHU 0.11 0.32 -2.78 

fine-scale Albuquerque, NM urban COR 0.06 0.33 -3.66 

fine-scale Albuquerque, NM urban DOW 0.11 0.32 -2.79 

fine-scale Albuquerque, NM urban EAA 0.06 0.34 -3.80 

fine-scale Albuquerque, NM urban GYM 0.06 0.31 -3.44 

fine-scale Albuquerque, NM urban MAN 0.06 0.31 -3.44 

fine-scale Albuquerque, NM urban OLD 0.06 0.42 -4.78 

fine-scale Albuquerque, NM urban OSO 0.06 0.31 -3.44 

both Las Vegas, NV non-urban RED 0.06 0.26 1.07 

fine-scale Las Vegas, NV urban ABC 0.22 0.32 -1.30 

fine-scale Las Vegas, NV urban ART 0.17 0.31 -1.90 

fine-scale Las Vegas, NV urban DIC 0.17 0.33 -2.18 

fine-scale Las Vegas, NV urban ERN 0.22 0.30 -1.09 

fine-scale Las Vegas, NV urban JAM 0.17 0.33 -2.18 

fine-scale Las Vegas, NV urban KIT 0.22 0.36 -1.84 

fine-scale Las Vegas, NV urban LUC 0.22 0.31 -1.17 

both Las Vegas, NV urban LVN 0.33 0.27 1.03 

fine-scale Las Vegas, NV urban PHL 0.22 0.33 -1.44 

fine-scale Las Vegas, NV urban RIC 0.04 0.36 -1.84 

both Phoenix, AZ non-urban PER 0.05 0.34 -3.64 

fine-scale Phoenix, AZ urban ANT 0.17 0.31 -1.96 

fine-scale Phoenix, AZ urban BRO 0.28 0.32 -3.90 

fine-scale Phoenix, AZ urban BUC 0.22 0.32 -1.30 

fine-scale Phoenix, AZ urban CHA 0.17 0.32 -2.14 

fine-scale Phoenix, AZ urban GCC 0.28 0.34 -0.88 

fine-scale Phoenix, AZ urban HRP 0.22 0.31 -1.18 

both Phoenix, AZ urban PHX 0.43 0.33 1.33 

fine-scale Phoenix, AZ urban TBD 0.03 0.36 -2.55 

fine-scale Phoenix, AZ urban TEM 0.03 0.32 -2.04 

fine-scale Phoenix, AZ urban WHY 0.17 0.27 2.55 

broad-scale - non-urban AGF 0.11 0.27 -3.33 

broad-scale - non-urban BBP 0.28 0.28 0.01 

broad-scale - non-urban BCC 0.17 0.27 -1.70 

broad-scale - non-urban GBP 0.22 0.29 -1.08 

broad-scale - non-urban JRN 0.28 0.26 0.18 

broad-scale - non-urban LCR 0.11 0.30 -2.86 

broad-scale - non-urban PNF 0.04 0.27 -0.75 

broad-scale - urban BLY 0.39 0.27 1.77 

broad-scale - urban DAV 0.44 0.36 -2.55 

broad-scale - urban DEN 0.66 0.30 5.33 

broad-scale - urban FLG 0.11 0.27 -2.46 

broad-scale - urban RNO 0.03 0.27 -1.62 

broad-scale - urban SBC 0.05 0.26 0.18 

broad-scale - urban SGU 0.24 0.27 16.40 

broad-scale - urban TUC 0.05 0.30 -0.35 
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Table S3.4. Fine-scale sample social network analysis parameter t-tests.  

Comparison cGD closeness betweenness degree centrality 

Albuquerque x Phoenix -1.68 1.79 2.61 0.89 -0.52 

Albuquerque x Las Vegas 6.47 10.78 2.64 0.88 -1.64 

Phoenix x Las Vegas 6.74 5.75 3.19 0.08 -0.94 

Values represent student's t, bold italics are significant after Bonferroni correction. 
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Table S3.5. Fine-scale sample social network node-specific parameters. 

City Locale closeness betweenness degree centrality Habitat 

Albuquerque, NM ABQ 0.07371 0 2 0.57941 urban 

 BEL 0.14066 19 5 0.11921 urban 

 CHU 0.10743 6 3 0.48827 urban 

 COR 0.11900 0 3 0.02292 urban 

 DOW 0.13028 16 3 0.26432 urban 

 EAA 0.09713 1 3 0.62193 urban 

 GYM 0.13659 15 3 0.05351 urban 

 MAN 0.11748 1 3 0.01389 urban 

 OLD 0.11461 7 3 0.62998 urban 

 OSO 0.11087 0 2 0.01303 urban 

 SAN 0.07002 0 4 1 non-urban 

Las Vegas, NV ABC 0.03903 3 4 1 urban 

 ART 0.03833 2 3 0.75970 urban 

 DIC 0.03914 5 4 0.98724 urban 

 ERN 0.03831 3 3 0.53032 urban 

 JAM 0.03828 2 3 0.74011 urban 

 KIT 0.03764 1 2 0.52250 urban 

 LUC 0.03896 5 3 0.59082 urban 

 LVN 0.01007 0 1 0.00001 urban 

 PHL 0.03943 4 4 0.97933 urban 

 RED 0.01007 0 1 0.00001 non-urban 

 RIC 0.03824 2 2 0.30785 urban 

Phoenix, AZ ANT 0.08933 0 1 0.00015 urban 

 BRO 0.13690 30 4 0.01670 urban 

 BUC 0.11620 14 2 0.13750 urban 

 CHA 0.11538 9 3 0.00163 urban 

 GCC 0.11444 9 3 0.00168 urban 

 HRP 0.08988 0 1 0.00014 urban 

 PER 0.05616 0 3 1 non-urban 

 TBD 0.11116 13 2 0.03151 urban 

 TEM 0.08760 9 3 0.74286 urban 

 PHX 0.04924 0 2 0.87681 urban 

 WHY 0.09329 6 2 0.37036 urban 
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Table S3.6. Social network node-specific parameters for 48 locales. 

Locale closeness betweenness degree centrality Habitat 

ABC 0.010 33 8 0.015 urban 

ABQ 0.005 2 3 0.132 urban 

AGF 0.004 2 4 0.570 non-urban 

ANT 0.010 77 7 0.030 urban 

ART 0.010 76 9 0.098 urban 

BBP 0.009 94 9 0.047 non-urban 

BCC 0.005 0 6 1.000 non-urban 

BEL 0.007 5 4 0.001 urban 

BLY 0.009 33 10 0.195 urban 

BRO 0.010 36 8 0.029 urban 

BUC 0.010 122 10 0.058 urban 

CHA 0.009 24 6 0.054 urban 

CHU 0.009 124 8 0.020 urban 

COR 0.006 4 2 0.001 urban 

DAV 0.008 3 7 0.028 urban 

DEN 0.003 2 4 0.990 urban 

DIC 0.009 11 9 0.100 urban 

DOW 0.008 68 8 0.048 urban 

EAA 0.007 28 6 0.010 urban 

ERN 0.010 127 11 0.025 urban 

FLG 0.006 13 4 0.123 urban 

GBP 0.004 0 2 0.135 non-urban 

GCC 0.010 61 10 0.193 urban 

GYM 0.008 18 6 0.004 urban 

HRP 0.009 35 9 0.067 urban 

JAM 0.009 18 8 0.013 urban 

JRN 0.009 16 9 0.026 non-urban 

KIT 0.009 7 8 0.029 urban 

LCR 0.004 2 5 0.923 non-urban 

LUC 0.010 86 10 0.016 urban 

LVN 0.010 53 11 0.036 urban 

MAN 0.007 21 5 0.001 urban 

OLD 0.008 38 6 0.010 urban 

PER 0.005 2 4 0.524 non-urban 

PHL 0.009 24 9 0.034 urban 

PHX 0.006 2 7 0.673 urban 

PNF 0.004 40 2 0.139 non-urban 

RED 0.009 35 7 0.017 non-urban 

RIC 0.009 10 9 0.015 urban 

RNO 0.009 31 11 0.014 urban 

SAN 0.009 46 9 0.021 non-urban 

SBC 0.008 7 8 0.016 urban 

SGU 0.009 12 9 0.021 urban 

TBD 0.010 50 10 0.040 urban 

TEM 0.007 109 7 0.411 urban 

TUC 0.009 17 7 0.011 urban 

WHY 0.009 67 9 0.102 urban 
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Chapter 4: DIFFERENTIAL EXPRESSION BETWEEN URBAN AND NON-URBAN 

WESTERN BLACK WIDOW SPIDERS 

 

 

Introduction 

By 2050, two-thirds of the human population are predicted to live in urban areas (United 

Nations, 2014). In the United States, the most rapid urban growth in the last 30 years has taken 

place in the Western U.S. (US Census, 2010). This urban expansion eliminates natural pristine 

habitats, the fragmentation of which reduces genetic connectivity among most populations, and 

reduces local and global biodiversity (McKinney, 2002; Keyghobadi, 2007). Conservation of 

species diversity is seen as a cost to land and resource development profit; however, the loss of 

endemic biodiversity also has direct negative impact on ecosystem services that provide for 

human survival (Wu, 2008). Conservation efforts need to use an evolutionary perspective to 

determine how, not whether, species locally adapt to these novel landscapes that we have 

generated. 

One overlooked perspective in this urban eco-evolutionary model is that of “urban adapters” 

(Blair 1996), a term given to species that have increased population densities and show 

phenotypic modifications in urban compared to their natural, or non-urban habitats. Some have 

proposed the urban facilitation model of gene flow, which suggests that this adaptation is 

facilitated by gene flow among previously isolated populations via human-mediated transport or 
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the provision of alternate habitat patches (Hoderegger & Di Giulio, 2010; Crispo et al., 2011). 

While most research in urban areas has focused on the urban fragmentation model of gene flow 

that describes landscape fragmentation and declining species diversity, the urban adapter model 

and its potential to facilitate population persistence has largely been ignored. 

The Western black widow spider, Latrodectus hesperus, is considered an urban adapter 

(Johnson et al., 2012; Trubl et al., 2012), and is an excellent test case for understanding how 

evolutionary change occurs in urbanized environments. This species is found across the Western 

U.S., primarily in the desert landscape, within and outside of urban areas. In natural habitats, L. 

hesperus feed on diverse prey, including insects, crustaceans, and small lizards that become 

trapped in their webs (Salomon, 20017), but they experience reduced prey diversity in urban 

areas (predominantly crickets and cockroaches, Trubl et al., 2012). In comparison to non-urban 

spiders, urban spiders also make smaller webs, and have higher population densities, but females 

have significantly lower body mass and fewer eggs per egg sac (Johnson et al., 2012). Prey 

capture by spiders involves two protein-based secretions, venom and silk. L. hesperus venoms 

are composed of a wide variety of toxic proteins used to immobilize prey, including multiple 

latrotoxins with variable phyletic specificity (Haney et al., 2014). Black widows also use 

multiple protein-based silk fiber types and glues to capture prey in webs and physically wrap 

them (Foelix, 2011). The abundance or identity of venom and silk proteins can vary during an 

individual’s lifetime, or over evolutionary timescales, in response to dietary changes (Tso et al, 

2005; Gibbs et al., 2011; Morgenstern & King, 2013), where interspecific associations between 

diet and both silk and venom composition have been linked to niche adaptation (Daltry et al., 

1996; Binford, 2001; Sanz et al., 2006; Remigio & Duda, 2008; Zevenbergen et al., 2008; Boutry 

& Blackledge, 2008; Blamires et al., 2010, 2012).  
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These life history and behavioral observations predict that a suite of traits involved in diet 

and metabolism, venom and silk production, and fertility have been recently altered by urban 

selective pressures. For example, the reduced diversity, but relatively higher abundance of prey 

in urban environments suggests that urban spiders may not require such complex venoms or web 

architecture. In addition, relaxed predation, increased population densities, and more abundant 

resources in urban environments may also select for altered egg development both in size and 

number. If this is the case, we may expect to see signatures of phenotypic variation associated 

with these specific traits, specifically in differential gene expression in contrasts of urban and 

non-urban populations. As there have recently been L. hesperus transcriptome analyses 

documenting hundreds of transcripts that exhibit tissue-specific expression (Clarke et al., 2014, 

2015; Haney et al., 2014), there is a valuable resources already available with which to test these 

hypotheses. Characterizing this urban adapter model requires bringing together genetic 

connectivity results with phenotypic trait analyses to shed light on the potential signatures of 

urban adaptation. 

 Given the polarizing outcomes for conservation priorities predicted by models of urban 

fragmentation vs. facilitation, population genetic studies targeting urban adapters on broad 

geographic scales are necessary to document the impact of continued urban growth (McDonnel 

& Hahs 2015). In addressing urban patterns of gene flow, we have conducted the only study of 

Western black widow population genetic connectivity. We sampled thousands of genomewide 

mitochondrial and nuclear SNPs from 11 urban and 10 non-urban locales and found urban-

specific patterns of higher within-locale genetic diversity, lower between-locale genetic 

differentiation, and higher genetic connectivity, all of which are predicted by the urban 

facilitation model of gene flow. One interesting find was that although urbanization appears to 
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facilitate gene flow, even among non-urban areas, that not all cities are highly connected in the 

population network, with specific urban hubs driving gene flow among both urban and 

historically isolated non-urban locales. To further investigate how this higher gene flow on the 

urban landscape impacts genetic diversity and gene flow in the urban network, we analysed 1.9 

million genomewide SNPs, with an additional 30 urban locales from three Southwestern cities. 

As urban population genetic studies focus on single urban vs non-urban contrasts or within-urban 

locale diversity, this second study served as the first to sample multiple pairs of urban and non-

urban locales, with fine-scale sampling within urban locales, to test hypotheses of how 

urbanization uniquely impacts population diversity across multiple spatial scales. The primary 

observation is that urban areas have significantly different patterns of genetic connectivity to the 

overall urban network, and this result also generates contrasting patterns of within- and between-

city genetic diversity. The most interesting implication here is that not all cities can be assumed 

to be “replicates” of the urbanization process and its effects on the eco-evolutionary changes 

within them. Therefore, given the patterns of heterogeneity in gene flow found within and among 

urban and non-urban populations, it is likely that there is heterogeneity in how phenotypes have 

evolved within and among urban and non-urban locales in response to urbanization. 

Here, we will characterize differential gene expression in tissues associated with urban 

phenotypes of the Western black widow spider. Specifically, we will examine differences in 

gene expression between urban and non-urban populations from the cephalothorax (metabolic 

processes), ovary (fertilization and egg development), and silk glands (web architecture, prey 

capture, egg protection) to test for the presence of an “urban ecotype” (Kritinic et al., 2012; 

Schapira & Boutsika, 2012). We use our unique sampling of multiple pairs of urban and non-

urban populations to test the model of an urban ecotype, which we predict would be the result of 
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an overall phenotype that shows consistent differences in gene expression patterns between these 

multiple pairs of locales. This model is in contrast to one that predicts urban locales are 

sufficiently different from each other in their gene expression responses as a result of 

demographic history and connectivity in the urban network, as well as the different selective 

pressures that exist among urban areas on the landscape. 

 

Methods 

Sampling  

In September of 2016, we collected 10 live adult female spiders from each of 3 urban and 3 non-

urban paired locales: Phoenix (AZ), Las Vegas (NV), and Denver (CO) (Fig. 1), for a total of 60 

individuals. Spiders were transferred to -80 C within 48 hours of collection.  

These three cities have each experienced recent human population and geographic size 

expansion. However, these three cities also have varying urbanization histories in the Southwest 

with respect to colonization time, geographic size, and human population size (US Census 2014), 

with which to contrast the impact of urbanization on genetic connectivity within urban areas 

(Fig. 2). Denver was founded in 1858 oldest of the three cities founded in 1858, and covers 402 

km2 with a current metropolitan area human population of 2.8 million. Las Vegas is the most 

recently founded in 1905, covers 1600 km2, and is one of the fastest growing metropolitan areas 

with a population of 1.9 million. Phoenix is the largest of the three, having been founded in 

1881, covers 235000 km2 and has a population of 4.5 million as the 12th largest metropolitan 

area in the US. Phoenix and Las Vegas have been two of the fastest growing metropolitan areas, 

expanding over 45% in the last 30 years (US Census 2014). Phoenix and Las Vegas are also in 
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arid, desert climates (Sonoran and Mojave deserts, respectively) with similarly high summer 

temperatures reaching 43°C. In contrast, Denver is located at the highest elevation of the three 

cities, as well as being the highest major city in the United States, at 1609 meters above sea level 

with a semi-arid climate, but still experiences significant precipitation and much cooler 

temperatures.  

 

RNA-seq Data collection 

The cephalothorax, ovaries, and silk glands were dissected from each of the 60 individuals, after 

which total RNA was isolated from the tissue samples in TRIzol (Invitrogen), purified using the 

RNeasy kit (Qiagen), and any contaminating DNA was removed with Turbo DNase (Ambion). 

RNA yield and purity were analyzed using an Agilent 2100 Bioanalyzer (Santa Clara, USA). The 

cDNA library for each individual tissue sample (n=180) was generated with the TruSeq RNA 

Sample Preparation Kit (Illumina), followed by paired-end, 150 bp sequencing in single lanes of 

HiSeq 4000 (Illumina) by Novogene. The reads were cleaned using Trim Galore! (version 0.3.7) 

with FastQC (version 0.11.2) that removed Illumina adaptors and low quality reads. 

 

Differential Expression Analyses: 

We used Bowtie2 (Version 2.2.6) to align the sequence reads to a previously published 

Latrodectus hesperus transcriptome that covered 28 individual-based libraries (Haney et al 

2014), followed by estimation of expected read counts per transcript with RSEM (version 1.2.19, 

Li & Dewey, 2011), which accounts for the possibility of a single read mapping to multiple 

transcripts. Read counts for each individual in each tissue type were used to determine 
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differential expression (DE) using a general linear model (GLM) in edgeR (Robinson et al., 

2010; Ritchie et al., 2015). This DE analysis was used to contrast (1) the pair of urban and non-

urban locales for each of the three geographic locations of Phoenix, Las Vegas, and Denver, (2) 

the three urban locales from the three geographic locations, and (3) the three non-urban locales 

from the three geographic locations. In addition, to compare differences in the pattern of 

differential expression among these comparisons, we used a Mann-Whitney U statistic as a non-

parametric test with the assumption that the differences in gene expression log-fold change do 

not follow a normal distribution and have unequal variance.  

 

Results 

Sequencing and de novo assembly 

Transcriptomes were successfully generated from 59 cephalothorax, 58 ovary, and 52 silk gland 

cDNA libraries. For each of the 169 libraries, 35M-63M raw sequence reads were collected, and 

98% of clean reads were retained after pre-processing (e.g., adaptor removal, quality trimming, 

“N” removal). 

 

Differentially expressed transcripts 

To identify differentially expressed transcripts between urban and non-urban, and among 3 

geographic regions, cephalothorax, ovary, and silk tissues were compared. For each tissue type 

individuals’ overall gene expression profiles cluster by geographic location, regardless of habitat 
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origin (urban vs non-urban). While this geographic clustering was the case, Denver samples 

clustered independently of a cluster of both Phoenix and Las Vegas samples together (Figure 2). 

 

Tissue-specific DE between urban and non-urban pairs 

For the cephalothorax, there were 99 significant up- and 225 significant down-regulated gene 

isoforms in Phoenix, 33 significant up- and 35 significant down-regulated gene isoforms in Las 

Vegas, and 166 significant up- and 174 significant down-regulated gene isoforms in Denver 

(Figure 3). For the ovary, there were 87 significant up- and 49 significant down-regulated gene 

isoforms in Phoenix, 197 significant up- and 129 significant down-regulated gene isoforms in 

Las Vegas, and 230 significant up- and 246 significant down-regulated gene isoforms in Denver 

Figure 3). For the silk glands, there were 15 significant up- and 29 significant down-regulated 

gene isoforms in Phoenix, 4 significant up- and 4 significant down-regulated gene isoforms in 

Las Vegas, and 14 significant up- and 3 significant down-regulated gene isoforms in Denver 

(Figure 3). Table 1 presents the top 20 significantly up- and down-regulated gene isoforms for 

each of the cephalothorax, ovary, and silk gland tissues across the three geographic locations.  

 

Tissue-specific DE among urban and non-urban locales  

For the cephalothorax tissue, for Phoenix compared to Las Vegas, regardless of habitat type, 

there are less differentially expressed genes than when Denver is compared to Phoenix or Las 

Vegas (Figure 4). Similarly for the ovary tissue, for Phoenix compared to Las Vegas, regardless 

of habitat type, there are less differentially expressed genes than when Denver is compared to 

Phoenix or Las Vegas (Figure 5). Finally, for silk glands, again, for Phoenix compared to Las 
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Vegas, regardless of habitat type, there are less differentially expressed genes than Denver 

compared to Phoenix or Las Vegas (Figure 6). The least differential expression in silk occurs 

between Phoenix and Las Vegas urban samples. For all three tissue types, the top 20 most 

significantly differentially expressed genes have higher fold changes (both for up- and down-

regulated genes) when comparing Denver to either Phoenix or Las Vegas, regardless of habitat 

type (Table 2). In fact, when comparing the patterns of log fold changes in statistically 

significant differentially expressed gene isoforms in our comparisons of urban to urban and non-

urban to non-urban, we find statistically significant differences across geographic locations, such 

that Denver samples, regardless of habitat type, are significantly differentiated from both 

Phoenix and Las Vegas samples across all tissue types (Table 3, Mann-Whitney U tests). 

 

Discussion 

We utilized RNA-seq to investigate the phenotypic variation associated with differential gene 

expression in genes associated with urban phenotypes of the Western black widow spider, 

Latrodectus hesperus. Specifically, we tested the hypothesis that there may be differences in 

differential expression between urban and non-urban areas for different tissue types and that 

these genes are related to phenotypes we have previously identified among urban and non-urban 

locales. Our main finding is that there is significant differential expression in each tissue type of 

cephalothorax (metabolic processes), ovary (fertilization and egg development), and silk glands 

(web architecture, prey capture, egg protection) that is observed between urban and non-urban 

locales, among both urban and among non-urban locales, as well as specific to geographic 

locations independent of urban or non-urban habitat. We discuss these results in light of the 
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hypothesis that urban locales may consistently select for an urban ecotype, and the assumption 

that cities are replicates in urban eco-evolutionary research. 

Our previous work on the Western black widow spider as an urban pest model 

documented population genetic signatures consistent with an urban facilitation model of gene 

flow on both a broad- and fine-scale (Chapters 2 & 3). Previously, our group has documented 

several urban phenotypes in the Western black widow spider, including dense aggregations and 

increased egg sac production compared to non-urban population (Johnson et al., 2014; Trubl et 

al., 2012). One of the predictions of the urban facilitation model that is supported by our 

previous work is that an "urban ecotype" could potentially sweep across urban areas (Krtinic et 

al., 2012; Shapira & Boutsika, 2012) dispersing these urban phenotypes to all locales; however, 

this would only be the case if urban areas had consistent and similar local selective pressures. 

Although it is the case that we find some gene expression patterns that are shared among urban 

areas, the majority of our results are consistent with patterns specific to individual urban and 

non-urban areas, which may be explained by multiple demographic and selective pressures. 

One consistent pattern that we observed is that transcription factors are up-regulated in 

the cephalothorax in all three urban areas, which is consistent with our initial hypotheses related 

to metabolism, fertility, and web architecture and prey availability. This upregulation in 

transcription factors within the cephalothorax tissue may be increasing a suite of genes involved 

in metabolism given the increased food availability and consumption in urban compared to non-

urban habitats. In the ovaries, there are significantly up-regulated gene isoforms involved in 

cellular transport that may be indicative of cellular proliferation of eggs. For example, in Las 

Vegas “zinc transporter ZIP9” is three times more expressed in urban compared to non-urban 

locales and is involved in cell growth and proliferation (Taniguchi et al., 2003), which is 
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consistent with proliferation of new eggs in the ovary that increases overall fertility. There is an 

up-regulation trend in silk proteins across each of our urban to non-urban comparisons. For 

example, “egg case silk protein-1” is 8.5 times higher expressed in Denver urban than non-urban 

samples. This upregulation of genes that are involved in cell proliferation and growth in the 

ovaries, and the egg case silk protein in the silk glands may be related to previous observations 

of increased egg production in urban locales, and was predicted by us, as the potential for 

increased fertility would be high with increased population densities of black widow spiders in 

urban locales 

While we found similar functional groups of genes up-regulated in urban compared to 

non-urban samples, there is no significant overlap in the specific gene isoforms that are 

differentially expressed. For example, “succinate dehydrogenase [ubiquinone] flavoprotein 

subunit”, which is involved in the citric acid cycle and the electron transport chain, is 6 times 

more expressed in Denver urban compared to Denver non-urban individuals. This specific gene 

isoform is not found to be significantly differentially expressed in contrasts between urban and 

non-urban populations in Las Vegas and Phoenix. Therefore, while certain genes are shared 

across urban areas, and even across geographic regions, there are genes that are differentially 

expressed specific to urban locales. This phenotypic variation mirrors that of genetic variation 

and connectivity that our previous work has found. For example, there is significant variation in 

genetic connectivity across urban and non-urban locales that reflects urban facilitated gene flow 

across urban locales, where a few urban locales act as hubs of genetic connectivity, and into a 

few non-urban locales (Chapter 2; Miles et al. 2018). Additionally, we have found that genetic 

variation on a fine-scale varies between cities and that some of the locales within cities drive 

overall connectivity on the landscape, such that there is both shared variation among urban 
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locales and certain urban locales are less connected to the genetic connectivity network (Chapter 

3). These patterns of genetic connectivity and phenotypic variation support the conclusion that 

there can be both shared and locale specific variation in spider populations.   

Given the differences that we see between our urban and non-urban comparisons, the 

genes found differentially expressed in each of the three cities are simply a reflection of the 

individual contrasts with their non-urban counterparts. Previously, we found that non-urban 

populations reflect ancestral genetic diversity in that they are significantly more differentiated 

from each other on the landscape due to the sedentary nature of female black widow spiders 

(Chapter 2; Miles et al. 2018). Thus, it is likely that we would find differences among our non-

urban populations here not only because of this historical demography, but also due to the 

differences in environments between the sampled areas. Here, we found that there are 

consistently different patterns of expression among each of our three cities, but some of the non-

urban environments are more similar to each other than to non-urban environments. For 

example, in the cephalothorax, one of the most significantly up-regulated genes in Denver 

individuals was associated with multiple variants of "nose resistant to fluoxetine protein 6", 

which is responsible for the uptake of lipids and transporting lipids to the reproductive tract 

(Choy et al., 2006; Dzitoyeva et al., 2003). Additionally, we identified an up-regulation in 

Denver individuals for "Long-chain-fatty-acid--CoA ligase 6" which is used in fatty acid 

metabolism (Dai et al., 2015). Both of these genes are related to fat metabolism, and their 

upregulation is common for high-altitude populations (Kennedy et al., 2001; Simonson et al., 

2010; Palmer & Clegg, 2014). Denver is not only at a significantly high elevation in general, it is 

also higher elevation than both Phoenix and Las Vegas (USGS, 2018). In ovary tissue, we 

identified down-regulation in Denver for "THO complex subunit", which is involved in cell 
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proliferation and required for proper export of heat-shock mRNAs under heat stress (El Bounkari 

et al., 2009; Yu et al., 2012). Given the higher elevation of Denver compared to Las Vegas and 

Phoenix, temperatures and their variance over the year are significantly higher and lower, 

respectively, which could explain the reduced expression in genes related to heat shock. In silk 

glands, we find “ATPase family AAA domain-containing protein 3” is significantly up-regulated 

in Denver compared to Phoenix and Las Vegas. This gene acts as a molecular chaperone in many 

cellular activities, such as membrane fusion, cell-cycle regulation, and stress response (Bolbaatar 

et al., 2002). This up-regulation is likely linked to increasing productivity of silk strands required 

to capture prey in the non-urban, colder and more variably climatic habitat where fewer prey 

types and numbers are available. Overall, when comparing differential expression patterns 

between non-urban locales, much of the differences are related to environmental features 

associated with their geographic locations. 

Interestingly, we find that there are also significant differences in the pattern of gene 

expression across urban locales. There are more differentially expressed genes, and the most 

differentially expressed genes are shared when comparing Denver to either Phoenix or Las 

Vegas, regardless of habitat type. For example, in the cephalothorax, there are 2129 significantly 

differentially expressed gene isoforms between Phoenix and Las Vegas urban locales but there 

are 6183 and 5455 significantly differentially expressed gene isoforms between Denver and 

Phoenix and between Denver and Las Vegas urban locales, respectively. Additionally, each of 

the genes noted previously that are shared across non-urban samples, are also shared across 

urban samples. Currently, much of the urban-eco-evolutionary literature assesses that urban areas 

are likely replicates of each other (Chapter 1; Alberti, 2015). However, given that the urban 

locales here have significant differential expression between them that is largely due to local 
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environmental differences, and our previous work has shown significant differences in genetic 

connectivity between urban locales (Chapter 2; Miles et al., 2018; Chapter 3), cities may not be 

the replicates that were previously assumed. Therefore, while we find that several species are 

able to thrive in multiple urban areas, they may be responding to these multiple urban 

environments in different ways.  

Additionally, these results indicate that there is hierarchical variation in gene expression, 

such that geography plays the strongest role in patterns of differential expression, followed by 

habitat type, and finally by comparisons of urban and non-urban pairs. For example, “aqueous 

glue droplet peptide” is significantly down-regulated in Phoenix, compared to Las Vegas in both 

urban and non-urban comparisons. This gene is involved in both web-building to adhere silk to a 

substrate and is used as part of a defense mechanism (Foelix, 2014). Therefore, there are 

significant differences in web building and defense among Phoenix and Las Vegas. Interestingly, 

the aqueous glue droplet protein is also significantly up-regulated in urban compared to non-

urban spiders in Las Vegas. These differential patterns at both the geographic and local scale 

imply that Western black widow spiders not only have to respond to different environments, but 

they also have to respond to different environments associated with different cities.  

 

Conclusion 

The existence of consistencies and differences in gene expression profiles between urban 

and non-urban Western black widow spiders, suggests they are shared by both adaptive and non-

adaptive processes. While urban eco-evolutionary studies have been limited by considering only 

a single pair of urban and non-urban populations, the current study has explored differences at 
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both the geographic environmental level and local conditions that vary between urban and non-

urban pairs. Several of the up-regulated gene isoforms were in accordance with previous 

ecological and behavioral studies in black widow spiders. For example, many genes linked to 

fertility were expressed at higher levels in urban compared to non-urban populations, suggesting 

that there is an overall increase in egg production overall, even though black widow spiders 

produce less eggs per egg sac, they produce significantly more egg sacs than non-urban spiders 

(Johnson et al., 2014). However, many of the differentially expressed gene isoforms between 

urban and non-urban pairs are locale specific. Thus, while we find evidence to support the 

phenotypic differences identified in previous studies, these phenotypes may not be consistent 

across all urban areas. Indeed, we have found that several urban locales can acts as hubs of 

genetic connectivity across a broad-scale (Chapter 2; Miles et al., 2018) and that even on a fine-

scale, genetic connectivity varies within cities. Therefore, these results imply that not all cities 

are created equal with respect to demographic and gene flow patterns, but also with phenotypic 

patterns. Future studies should aim to address the fitness consequences related to this variation in 

expression to determine the role that these varying urban and non-urban environments have in 

shaping adaptation. 
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Figure 4.1. Geographic distribution of the broad-scale sampled locales of the Western black 

widow spider across the Western U.S. Highlighted locales in blue and yellow reflect urban and 

non-urban samples, respectively. Boxed locales are the paired urban and non-urban samples for 

Denver, CO, Las Vegas, NV, and Phoenix, AZ.  
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Figure 4.2. Multidimensional scaling plot of the overall differential expression for each 

individual for a) cephalothorax, b) ovary, and c) silk tissue transcripts. Highlighted individuals 

reflect Denver (“purple”), Las Vegas (“blue”), and Phoenix (“green”), respectively. Shapes 

represent urban (“x”) and non-urban (“o”) samples. 
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Figure 4.3. Volcano plot of the differential expression between urban and non-urban locales for 

each of a) cephalothorax, b) ovary, and c) silk tissue transcripts. Highlighted within each plot are 

gene isoforms that are significantly up-regulated (“red”) and significantly down-regulated 

(“blue”), with bars reflecting one log fold change in expression. Each row reflects the 

comparison between urban and non-urban pairs in Phoenix, Las Vegas, and Denver, respectively. 
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Figure 4.4. Volcano plot of the differential expression in the cephalothorax. Highlighted within 

each plot are gene isoforms that are significantly up-regulated (“red”) and significantly down-

regulated (“blue”), with bars reflecting one log fold change in expression. Each row reflects 

comparisons between urban and non-urban locales, respectively. Each column reflects 

geographic area comparisons of Phoenix vs. Las Vegas, Denver vs Phoenix, and Denver vs Las 

Vegas, respectively. 
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Figure 4.5. Volcano plot of the differential expression in the ovary. Highlighted within each plot 

are gene isoforms that are significantly up-regulated (“red”) and significantly down-regulated 

(“blue”), with bars reflecting one log fold change in expression. Each row reflects comparisons 

between urban and non-urban locales, respectively. Each column reflects geographic area 

comparisons of Phoenix vs. Las Vegas, Denver vs Phoenix, and Denver vs Las Vegas, 

respectively. 
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Figure 4.6. Volcano plot of the differential expression in the silk. Highlighted within each plot 

are gene isoforms that are significantly up-regulated (“red”) and significantly down-regulated 

(“blue”), with bars reflecting one log fold change in expression. Each row reflects comparisons 

between urban and non-urban locales, respectively. Each column reflects geographic area 

comparisons of Phoenix vs. Las Vegas, Denver vs Phoenix, and Denver vs Las Vegas, 

respectively. 
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Table 4.1 Top 20 differentially expressed gene isoforms for non-urban compared to urban 

locales in Phoenix, Las Vegas, and Denver. 

Tissue Comparison Accession BLAST identity 

Log 

FC 

Log 

CPM P-Value FDR 

Cephalothorax PHX_UvN XP_015905503.1  PREDICTED: protein transport protein Sec24C-like  2.40 3.84 4.16E-10 4.18E-06 

  

KFM68364.1  Transposable element Tcb1 transposase  2.39 4.69 8.53E-08 2.14E-04 

  

KFM62172.1 Histone-arginine methyltransferase CARMER  1.50 4.14 8.05E-10 5.77E-06 

  

XP_003396019.1  PREDICTED: septin-2  1.34 4.91 3.89E-08 1.22E-04 

  

XP_015928295.1  PREDICTED: 60S ribosomal protein L13a-like  -1.17 4.86 6.02E-08 1.68E-04 

  

XM_016067859 

PREDICTED: gamma-soluble NSF attachment protein-

like -1.25 4.79 1.32E-08 6.16E-05 

  

ADV40094.1  ribosomal protein L32 isoform B -1.32 4.96 1.58E-08 6.16E-05 

  

XP_015930827.1  PREDICTED: glutathione peroxidase-like isoform  -1.51 5.34 5.09E-10 4.25E-06 

  

OBS80197.1  hypothetical protein A6R68_21600 -1.51 4.37 7.29E-09 4.06E-05 

  

HQ005863 clone CV93 putative 60S ribosomal protein L5 -1.79 5.13 8.57E-11 1.08E-06 

  

XP_013775155.1  PREDICTED: 60S ribosomal protein L11 -1.79 7.18 4.99E-09 3.13E-05 

  

XM_016050316 PREDICTED: ras-related protein rab7  -1.84 5.15 7.84E-08 2.07E-04 

  

AII97591.1  BLTX194 -1.87 6.72 7.44E-12 1.24E-07 

  

ADV40088.1  nucleoside diphosphate kinase -1.89 5.76 3.79E-08 1.22E-04 

  

NA 

 

-2.30 5.32 5.69E-08 1.68E-04 

  

XM_024094244 PREDICTED: keratin, type I cytoskeletal 9 -2.69 3.31 1.60E-08 6.16E-05 

  

ADV40094.1  ribosomal protein L32 isoform B -2.80 3.48 1.48E-08 6.16E-05 

  

KFM61120.1  Transitional endoplasmic reticulum ATPase TER94 -4.66 3.81 2.60E-08 9.32E-05 

  

NA 

 

-6.94 2.36 3.38E-13 1.50E-08 

  

KFM62591.1  hypothetical protein X975_04353 -8.11 3.48 5.98E-13 1.50E-08 
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LVN_UvN KFM61963.1  Lysosome-associated membrane glycoprotein 5 5.92 2.65 3.89E-07 3.13E-03 

  

XM_003900080 PREDICTED: CDC42 small effector 2  5.18 1.86 1.19E-09 5.99E-05 

  

XP_017758189.1  

PREDICTED: general transcription factor II-I repeat 

domain-containing protein 2-like  5.13 1.94 8.85E-08 8.88E-04 

  

XM_015753358 PREDICTED: DNA topoisomerase 1  4.71 1.68 9.52E-09 2.39E-04 

  

XP_015921979.1  PREDICTED: uncharacterized protein  4.48 1.56 4.28E-08 7.16E-04 

  

NA 

 

4.00 1.45 5.03E-07 3.15E-03 

  

XP_015931144.1  PREDICTED: uncharacterized protein  3.93 1.44 1.19E-06 4.27E-03 

  

XP_015925596.1  PREDICTED: uncharacterized protein 3.93 1.43 8.78E-07 4.20E-03 

  

KFM71996.1  Speckle-type POZ protein B 3.84 1.45 8.66E-07 4.20E-03 

  

XP_015905468.1 

PREDICTED: mitochondrial 2-oxoglutarate/malate 

carrier protein-like  3.78 5.61 3.96E-06 1.05E-02 

  

KFM62227.1  hypothetical protein X975_10841 3.06 2.68 1.84E-06 5.44E-03 

  

NA 

 

2.46 2.25 9.48E-07 4.20E-03 

  

XP_015928112.1  PREDICTED: ceramide synthase 1-like isoform X1 -1.10 4.14 1.09E-06 4.20E-03 

  

BAD91058.2  Pt1-cadherin  -1.19 4.46 4.37E-07 3.13E-03 

  

KFM80688.1  

putative sodium-coupled neutral amino acid transporter 

7 -1.50 2.50 4.47E-06 1.12E-02 

  

XM_016062946 PREDICTED: sal-like protein 1  -1.70 4.45 2.03E-06 5.65E-03 

  

XP_015919728.1  PREDICTED: laminin subunit alpha-like  -1.72 3.34 1.59E-06 4.98E-03 

  

JX978171 clone 28K13 aciniform spidroin 1 (AcSp1) gene  -1.77 9.08 1.04E-06 4.20E-03 

  

JX978171 clone 28K13 aciniform spidroin 1 (AcSp1) gene  -1.77 7.79 1.35E-06 4.53E-03 

  

XP_015919728.1  PREDICTED: laminin subunit alpha-like -1.87 3.69 8.34E-08 8.88E-04 

 

DEN_UvN XM_004493118 PREDICTED: DNA ligase 1  6.96 4.13 4.02E-11 1.01E-06 

  

AAZ15706.1 egg case fibroin 6.92 3.21 6.97E-08 2.06E-04 
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XP_015785335.1  

PREDICTED: succinate dehydrogenase [ubiquinone] 

flavoprotein subunit, mitochondrial 6.50 6.80 2.02E-16 1.02E-11 

  

WP_051068643.1  hypothetical protein  6.46 2.28 3.15E-08 1.49E-04 

  

FJ973621 pyriform spidroin 1 mRNA 6.42 2.32 1.24E-09 1.56E-05 

  

AAZ15706.1 egg case fibroin 6.38 3.26 1.33E-08 7.39E-05 

  

EF595245 clone 46B18 major ampullate spidroin 2 (MaSp2)  6.32 4.25 6.38E-08 2.00E-04 

  

XM_021866677 PREDICTED: basic proline-rich protein-like  6.12 2.21 6.98E-10 1.17E-05 

  

AMK48676.1  aggregate spidroin 1 6.01 2.22 1.31E-08 7.39E-05 

  

AFP57565.1  aggregate gland silk factor 1 5.87 1.97 4.81E-08 1.86E-04 

  

ADV40352.1  hypothetical protein 5.63 1.98 5.82E-08 1.95E-04 

  

ADV40263.1  hypothetical protein 5.49 1.77 3.26E-08 1.49E-04 

  

ADV40380.1  putative nidogen 1  5.31 1.90 9.00E-08 2.51E-04 

  

ADV40263.1  hypothetical protein 4.99 1.58 1.28E-07 2.91E-04 

  

ADV40308.1  putative fibropellin 3.38 4.49 3.80E-08 1.59E-04 

  

XP_015929207.1  

PREDICTED: vascular non-inflammatory molecule 3-

like  1.94 6.05 1.15E-07 2.91E-04 

  

ADV40088.1  nucleoside diphosphate kinase 1.87 5.76 5.21E-08 1.87E-04 

  

XM_017153543 PREDICTED: suppressor protein SRP40-like  -2.74 3.24 7.48E-09 5.36E-05 

  

HQ006005 clone CV174 putative secreted salivary gland peptide  -4.48 2.81 4.13E-09 4.14E-05 

  

XM_016056140 

PREDICTED: coiled-coil domain-containing protein 

149 -5.61 4.95 6.97E-09 5.36E-05 

        
Ovary PHX_UvN EF595245 clone 46B18 major ampullate spidroin 2 (MaSp2)  8.97 3.83 3.67E-08 3.68E-04 

  

EF595245 clone 46B18 major ampullate spidroin 2 (MaSp2)  8.64 5.85 3.42E-07 1.43E-03 

  

ABR68858.1 major ampullate spidroin 2 7.73 2.90 3.54E-09 9.42E-05 

  

ABY67425.1  major ampullate spidroin 1 locus 7.72 2.94 3.75E-09 9.42E-05 
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EF595245 clone 46B18 major ampullate spidroin 2 (MaSp2)  7.55 2.78 7.64E-07 2.94E-03 

  

NA 

 

7.15 7.19 1.61E-07 8.29E-04 

  

EF595245 clone 46B18 major ampullate spidroin 2 (MaSp2)  7.11 5.86 1.65E-07 8.29E-04 

  

ABR68855.1 major ampullate spidroin 2  6.01 2.38 1.40E-07 8.29E-04 

  

ADV40223.1 hypothetical protein 4.46 2.16 9.19E-07 2.94E-03 

  

JAT05635.1  hypothetical protein g.5631  4.08 2.02 7.77E-09 1.30E-04 

  

XP_015920280.1  

PREDICTED: intraflagellar transport protein 80 

homolog  2.11 3.41 1.28E-06 3.39E-03 

  

XM_021146117 PREDICTED: translocation protein SEC63 homolog  1.89 3.35 8.29E-07 2.94E-03 

  

XP_015905503.1  PREDICTED: protein transport protein Sec24C-like  1.53 5.13 9.38E-07 2.94E-03 

  

XM_021145653 PREDICTED: vigilin  0.52 7.19 2.71E-07 1.23E-03 

  

ADV40298.1 putative tumor differentially expressed protein  -1.11 9.61 7.67E-08 6.42E-04 

  

ADV40298.1 putative tumor differentially expressed protein  -1.14 9.65 3.62E-08 3.68E-04 

  

XP_015919260.1  PREDICTED: nicotinamide N-methyltransferase-like  -2.29 4.07 1.10E-06 3.06E-03 

  

NA 

 

-3.79 5.73 1.39E-06 3.47E-03 

  

XP_015929235.1  PREDICTED: uncharacterized protein isoform X1  -3.99 3.63 1.57E-07 8.29E-04 

  

XM_517686 

PREDICTED: betaine--homocysteine -

methyltransferase  -6.84 4.72 1.06E-06 3.06E-03 

 

LVN_UvN XP_015930929.1  

PREDICTED: nuclear pore complex protein Nup88-

like  4.86 3.57 2.49E-10 2.08E-06 

  

XM_016454989 PREDICTED: zinc transporter ZIP9-like  2.87 2.13 5.38E-11 9.00E-07 

  

ABX75436.1  protein disulfide isomerase 2.35 7.19 2.62E-08 6.58E-05 

  

KFM69666.1  T-complex protein 1 subunit zeta 1.77 5.09 2.15E-08 5.69E-05 

  

XP_014230480.1  PREDICTED: 60S ribosomal protein L10 isoform X1  1.75 4.51 1.52E-10 1.52E-06 

  

XP_013780714.1  PREDICTED: calreticulin-like  0.86 5.97 3.06E-11 7.67E-07 
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ABX75466.1  ribosomal protein l24  0.85 5.14 3.56E-10 2.55E-06 

  

XP_015920263.1  

PREDICTED: ribosomal L1 domain-containing protein 

1 0.82 5.62 8.72E-09 2.57E-05 

  

XP_015918668.1  PREDICTED: rab11 family-interacting protein 3 0.48 6.54 1.22E-08 3.40E-05 

  

ADV40072.1  60S ribosomal protein l27a 0.36 8.64 5.20E-09 2.01E-05 

  

XP_015909199.1  PREDICTED: T-complex protein 1 subunit zeta-like  0.32 7.94 6.28E-09 2.22E-05 

  

KFM69053.1  Speckle-type POZ protein B -0.70 8.30 7.82E-11 9.80E-07 

  

KFM69053.1  Speckle-type POZ protein B -0.78 9.50 4.82E-12 2.42E-07 

  

XP_015903132.1  PREDICTED: protein bicaudal C homolog 1-like -0.79 9.76 2.10E-09 1.17E-05 

  

ADV40298.1 putative tumor differentially expressed protein  -1.20 9.61 7.67E-09 2.41E-05 

  

ADV40298.1 putative tumor differentially expressed protein  -1.22 9.65 4.20E-09 1.86E-05 

  

ADV40332.1  hypothetical protein -1.79 9.22 2.96E-09 1.49E-05 

  

ADV40332.1  hypothetical protein -1.80 9.25 1.88E-09 1.17E-05 

  

KRZ48411.1  Uncharacterized protein T02_11458  -2.11 8.40 6.65E-09 2.22E-05 

  

KRZ48411.1  Uncharacterized protein T02_11458  -2.12 8.39 4.45E-09 1.86E-05 

 

DEN_UvN KFM56629.1  Tubulin beta-1 chain 6.06 8.52 3.02E-22 1.52E-17 

  

XP_015785335.1  

PREDICTED: succinate dehydrogenase [ubiquinone] 

flavoprotein subunit 5.00 5.35 1.44E-10 1.03E-06 

  

XM_021146242 PREDICTED: organic cation transporter protein-like  4.43 5.44 1.15E-09 4.50E-06 

  

JAT96147.1  putative beta tubulin  3.98 8.50 5.46E-21 1.37E-16 

  

XM_021146099 PREDICTED: uncharacterized 1.46 7.79 2.36E-11 2.96E-07 

  

XM_020534947 

PREDICTED: zinc finger CCCH-type and G-patch 

domain containing (zgpat) 1.27 6.94 5.24E-11 4.38E-07 

  

XP_013789052.1 

PREDICTED: probable serine/threonine-protein kinase 

nek3 1.18 6.24 2.37E-11 2.96E-07 
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XP_015911780.1  PREDICTED: polyadenylate-binding protein 4-like 0.50 7.65 3.06E-10 1.71E-06 

  

XP_015929571.1  PREDICTED: protein transport protein Sec23A-like  -0.49 7.34 6.30E-09 1.58E-05 

  

XP_011405146.1  PREDICTED: transcriptional activator GLI3-like  -0.50 8.30 2.94E-10 1.71E-06 

  

XP_015916635.1 PREDICTED: clathrin heavy chain 1-like -0.55 6.97 2.70E-09 8.46E-06 

  

KFM81532.1  Ubiquitin-conjugating enzyme E2 Z, partial -0.60 6.57 9.34E-10 4.26E-06 

  

XP_015931157.1  PREDICTED: beta,beta-carotene 9',10'-oxygenase-like  -0.63 7.92 6.17E-09 1.58E-05 

  

XP_015921824.1  PREDICTED: fatty acyl-CoA reductase 1-like  -0.73 8.35 1.25E-09 4.50E-06 

  

XP_015922626.1  PREDICTED: uncharacterized protein LOC107451137  -0.82 6.46 3.85E-09 1.14E-05 

  

KFM56803.1  E3 ubiquitin-protein ligase UBR4 -0.93 5.41 4.16E-10 2.09E-06 

  

XP_015910390.1  PREDICTED: oxidation resistance protein 1-like  -1.04 7.87 1.86E-09 6.24E-06 

  

KFM79038.1  hypothetical protein X975_16632 -1.32 4.64 1.24E-09 4.50E-06 

  

XM_016073420 PREDICTED: uncharacterized  -1.60 7.88 5.04E-09 1.40E-05 

  

XP_015929083.1  PREDICTED: uncharacterized protein -6.92 5.20 2.95E-11 2.96E-07 

        
Silk PHX_UvN AFP57561.1  putative integral membrane protein 7.11 2.61 1.21E-06 4.67E-03 

  

NA 

 

6.56 3.23 4.90E-12 2.46E-07 

  

HQ006027 clone GW19 hypothetical protein mRNA  4.22 1.51 5.14E-06 1.36E-02 

  

XP_015926383.1  PREDICTED: bicaudal D-related protein homolog  2.87 5.08 4.09E-06 1.14E-02 

  

XP_013776068.1  PREDICTED: protein Mpv17-like isoform X1  2.71 4.10 6.03E-06 1.51E-02 

  

XM_021144651 PREDICTED: sorting nexin-5-like  2.49 2.38 3.63E-07 3.03E-03 

  

KFM60593.1  DnaJ-like protein subfamily C member 21 2.06 2.49 3.81E-06 1.13E-02 

  

XM_018984297 

PREDICTED: glycine-rich cell wall structural protein-

like  -2.05 7.28 9.70E-07 4.57E-03 

  

XP_003396019.1  PREDICTED: septin-2  -2.09 3.33 4.99E-07 3.58E-03 

  

XM_018984297 

PREDICTED: glycine-rich cell wall structural protein-

like  -2.23 9.89 3.58E-06 1.12E-02 
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XM_021145987 PREDICTED: gastrula zinc finger protein XlCGF71.1  -2.75 2.95 1.07E-06 4.57E-03 

  

JX262195 clone 549 aggregate gland silk factor 1 mRNA -3.92 10.91 2.88E-07 2.89E-03 

  

NA 

 

-5.11 6.06 1.72E-06 6.18E-03 

  

NA 

 

-5.17 4.75 2.51E-07 2.89E-03 

  

NA 

 

-5.29 5.34 8.93E-07 4.57E-03 

  

XP_015926421.1  

PREDICTED: brefeldin A-inhibited guanine 

nucleotide-exchange protein 2-like -5.29 2.63 1.09E-06 4.57E-03 

  

NA 

 

-5.92 1.80 3.04E-06 1.02E-02 

  

XM_517686 

PREDICTED: betaine--homocysteine S-

methyltransferase  -6.05 2.96 6.10E-07 3.83E-03 

  

KP241087 MADS17 (MADS17) gene -6.73 2.65 2.21E-10 5.54E-06 

  

KFM62591.1  hypothetical protein X975_04353 -6.94 2.45 7.34E-09 1.23E-04 

 

LVN_UvN XM_021145598 

PREDICTED: uncharacterized PE-PGRS family 

protein  7.00 5.87 2.88E-06 2.06E-02 

  

NA 

 

3.84 3.66 3.49E-05 1.03E-01 

  

ADV40348.1  hypothetical protein  3.19 10.00 7.83E-11 3.93E-06 

  

NA 

 

2.94 1.68 3.16E-05 1.03E-01 

  

EF153412 aqueous glue droplet peptide (SCP-2)  2.66 5.77 1.39E-06 1.16E-02 

  

NA 

 

2.49 3.98 3.01E-05 1.03E-01 

  

ABO09798.1  aqueous glue droplet peptide  2.34 6.16 3.50E-05 1.03E-01 

  

AC215348 BAC clone CH251-482M21  1.99 6.33 2.77E-05 1.03E-01 

  

XP_015911003.1  PREDICTED: cytochrome P450 3A21-like  1.82 4.73 4.54E-05 1.16E-01 

  

JX262192 clone 2525 aggregate gland silk factor 2 mRNA  1.65 8.75 8.09E-06 5.07E-02 

  

ADV40308.1  putative fibropellin 1.35 3.94 4.08E-05 1.14E-01 

  

XP_015908617.1  PREDICTED: transmembrane protein 214-like  -1.15 4.52 4.60E-05 1.16E-01 
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KRZ48411.1  Uncharacterized protein T02_11458  -2.65 11.43 2.80E-05 1.03E-01 

  

KRZ48411.1  Uncharacterized protein T02_11458  -2.81 11.47 1.25E-05 6.99E-02 

  

XP_015910547.1  PREDICTED: ribosome-binding protein 1-like  -3.02 5.94 4.77E-07 4.78E-03 

  

XP_015912971.1  

PREDICTED: putative polypeptide N-

acetylgalactosaminyltransferase 9 isoform X1  -3.48 4.40 1.76E-08 2.94E-04 

  

KFM79735.1  hypothetical protein X975_26264 -4.28 3.21 3.20E-05 1.03E-01 

  

XM_005924728 

PREDICTED: ADP-ribosylation factor GTPase 

activating protein 1 (arfgap1)  -5.14 2.14 2.98E-05 1.03E-01 

  

KFM78240.1 hypothetical protein X975_22095 -6.78 8.21 1.58E-08 2.94E-04 

  

KFM59877.1  Pre-mRNA-processing factor 17 -7.75 4.35 2.18E-07 2.73E-03 

 

DEN_UvN XP_013915757.1  PREDICTED: long-chain-fatty-acid--CoA ligase 5  8.69 3.67 1.70E-05 4.59E-02 

  

AAX92677.1 egg case silk protein-1  8.50 8.24 1.04E-05 3.25E-02 

  

XP_015926487.1  PREDICTED: FK506-binding protein 2-like 5.80 2.85 3.23E-06 1.62E-02 

  

KFM82954.1  Acetoacetyl-CoA synthetase 5.62 4.06 2.82E-06 1.62E-02 

  

XP_015785335.1  

PREDICTED: succinate dehydrogenase [ubiquinone] 

flavoprotein subunit 5.23 5.59 4.44E-11 2.23E-06 

  

XP_015919953.1  PREDICTED: peroxidase-like isoform X3  4.89 6.83 5.12E-06 2.34E-02 

  

XP_015907595.1  PREDICTED: long-chain-fatty-acid--CoA ligase 5-like  4.40 4.34 3.17E-06 1.62E-02 

  

NA 

 

3.45 5.38 8.10E-06 2.93E-02 

  

XP_015926824.1  PREDICTED: lipase member I-like  3.10 5.49 3.27E-09 8.20E-05 

  

XP_015926824.1  PREDICTED: lipase member I-like 2.80 5.63 5.83E-09 9.75E-05 

  

ADV40128.1  putative lipase precursor 2.69 6.52 1.07E-08 1.35E-04 

  

KFM62623.1  Retrovirus-related Pol polyprotein from transposon 412 2.65 2.85 1.29E-05 3.80E-02 

  

XP_015927416.1  PREDICTED: uncharacterized protein  2.32 4.25 1.83E-05 4.59E-02 
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KM382064 

clone 119_P5 alpha-latrotoxin and latrotoxin-like 

protein genes 2.28 3.76 2.33E-06 1.62E-02 

  

ADV40308.1  putative fibropellin 1.66 3.94 1.41E-06 1.18E-02 

  

XM_016061392 

PREDICTED: glycine-rich cell wall structural protein-

like  -3.61 2.80 8.18E-06 2.93E-02 

  

XM_016049162 PREDICTED: translation initiation factor IF-2  -3.92 6.96 6.27E-06 2.62E-02 

  

EF595245 clone 46B18 major ampullate spidroin 2 (MaSp2)  -4.04 4.55 9.96E-06 3.25E-02 

  

KFM73227.1  60S ribosomal protein L10 -5.14 5.22 2.44E-08 2.45E-04 

  

XM_016050243 PREDICTED: E3 ubiquitin-protein ligase SMURF2  -5.16 2.93 1.82E-05 4.59E-02 

 

*D = Denver, L = Las Vegas, P = Phoenix, U = urban, and N = non-urban 
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Table 4.2 Top 20 differentially expressed gene isoforms for comparisons of locales in Phoenix, 

Las Vegas, and Denver. 

Tissue Comparison Accession BLAST identity 

Log 

FC 

Log 

CPM P-Value FDR 

Cephalothorax LUxPU XP_015923309.1 PREDICTED: hemocyanin A chain-like  6.95 5.43 7.03E-13 2.07E-09 

  

XP_015928477.1 PREDICTED: b(0,+)-type amino acid transporter 1-like  2.66 5.42 3.68E-13 1.23E-09 

  

KFM70302.1 Neuronal acetylcholine receptor subunit alpha-10 2.58 7.84 7.55E-19 7.58E-15 

  

XP_015926011.1 PREDICTED: twitchin-like  2.21 6.49 3.30E-14 1.51E-10 

  

XP_015922437.1 PREDICTED: hexokinase-2-like isoform X1  2.18 4.83 2.44E-17 2.04E-13 

  

KFM62172.1 Histone-arginine methyltransferase CARMER 1.87 4.14 1.07E-14 5.38E-11 

  

XP_015926210.1 PREDICTED: uncharacterized protein  1.71 4.16 6.04E-17 4.33E-13 

  

KFM65083.1 Ryanodine receptor 44F 1.69 7.23 4.19E-19 6.09E-15 

  

NA 

 

1.61 6.96 6.14E-23 3.08E-18 

  

XP_013776029.1 PREDICTED: twitchin-like  1.59 5.85 5.65E-16 3.54E-12 

  

KFM76651.1 4-hydroxybutyrate coenzyme A transferase 1.51 7.01 4.86E-19 6.09E-15 

  

KFM76553.1 Junctophilin-1 1.46 7.84 1.85E-12 4.63E-09 

  

XP_015911478.1 PREDICTED: uncharacterized protein  1.43 4.32 3.08E-13 1.10E-09 

  

KFM65083.1 Ryanodine receptor 44F 1.43 5.63 1.70E-12 4.49E-09 

  

NA 

 

1.35 8.28 4.87E-13 1.53E-09 

  

XP_015920771.1  PREDICTED: serine/threonine-protein kinase fray2-like  1.33 4.57 8.69E-15 4.85E-11 

  

KFM65083.1 Ryanodine receptor 44F 1.27 7.29 1.22E-12 3.40E-09 

  

XP_011262166.1 PREDICTED: furin-like protease 1 1.23 5.55 3.01E-22 7.55E-18 

  

XP_015924135.1 

PREDICTED: LOW QUALITY PROTEIN: furin-like 

protease 1 1.03 5.48 1.24E-13 5.17E-10 

  

XP_015905336.1 

PREDICTED: histone-lysine N-methyltransferase 

SETMAR-like 0.92 5.99 2.32E-13 8.94E-10 

        

 

DUxPU XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like 11.33 7.29 4.96E-49 2.26E-45 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  11.12 7.16 1.83E-51 1.31E-47 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.70 6.92 3.03E-49 1.52E-45 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.04 5.96 8.66E-46 2.90E-42 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  10.04 7.74 5.13E-88 1.29E-83 

  

XP_015913973.1 PREDICTED: nose resistant to fluoxetine protein 6-like  9.14 5.83 1.58E-40 3.95E-37 

  

XP_015927728.1 PREDICTED: fatty acid synthase-like 8.11 4.21 4.00E-45 1.25E-41 

  

XP_015921317.1 

 

8.01 4.45 8.89E-47 3.42E-43 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 7.87 8.51 5.26E-54 5.28E-50 

  

NA 

 

7.71 4.05 4.85E-50 2.70E-46 
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KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 7.57 6.90 9.53E-47 3.42E-43 

  

NA 

 

7.32 3.49 7.07E-45 1.97E-41 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 7.25 7.55 2.32E-47 9.72E-44 

  

ADV40374.1 putative transcription factor XBP-1 7.15 3.71 3.30E-51 2.07E-47 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  7.08 3.48 1.71E-43 4.53E-40 

  

XM_016067092 PREDICTED: stress response protein NST1 5.28 4.31 5.71E-45 1.69E-41 

  

KFM76317.1 hypothetical protein X975_15322 4.77 5.79 3.76E-66 6.29E-62 

  

XM_005831914 CCMP2712 hypothetical protein  4.62 6.86 6.49E-60 8.14E-56 

  

NA 

 

-8.47 4.12 7.36E-53 6.16E-49 

  

KFM76317.1 hypothetical protein X975_15322 -8.63 4.29 

1.10E-

104 5.53E-100 

        

 

DUxLU XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.88 7.29 3.45E-46 1.44E-42 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.84 6.92 9.51E-51 6.82E-47 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  10.68 7.74 

1.98E-

100 4.96E-96 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.66 7.16 3.01E-48 1.68E-44 

  

XP_015913973.1 PREDICTED: nose resistant to fluoxetine protein 6-like  9.76 5.83 1.38E-46 6.31E-43 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  9.36 5.96 1.95E-40 5.15E-37 

  

XP_015921317.1 PREDICTED: uncharacterized protein  7.72 4.45 4.59E-43 1.28E-39 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 7.57 8.51 1.51E-51 1.26E-47 

  

NA 

 

7.44 4.05 5.38E-46 2.08E-42 

  

JAS58553.1 hypothetical protein g.793 7.17 4.45 2.04E-44 7.32E-41 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 7.16 6.90 2.93E-43 8.64E-40 

  

ADV40374.1 putative transcription factor XBP-1 7.08 3.71 1.43E-51 1.26E-47 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 6.88 7.55 3.45E-44 1.15E-40 

  

XM_016067092 PREDICTED: stress response protein NST1 5.67 4.31 3.62E-58 4.54E-54 

  

KFM76317.1 hypothetical protein X975_15322 5.08 5.79 1.26E-78 2.11E-74 

  

XM_005831914 CCMP2712 hypothetical protein  4.01 6.86 8.43E-48 4.23E-44 

  

XM_020289277 

PREDICTED: pumilio RNA binding family member 3 

(PUM3) 3.09 8.17 1.43E-43 4.48E-40 

  

XP_015909736.1 PREDICTED: small nuclear ribonucleoprotein Sm D1  2.75 4.61 2.28E-39 5.73E-36 

  

NA 

 

-5.51 4.12 8.33E-49 5.22E-45 

  

KFM76317.1 hypothetical protein X975_15322 -7.83 4.29 

1.25E-

119 6.28E-115 

        

 

LNxPN NA 

 

4.67 2.36 4.43E-10 2.47E-06 

  

XP_015923755.1 PREDICTED: uncharacterized protein  1.65 5.83 3.39E-18 8.50E-14 
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XP_015920332.1  PREDICTED: uncharacterized protein  1.56 3.85 6.79E-09 2.27E-05 

  

AII97591.1 BLTX194  1.42 6.72 1.52E-08 4.76E-05 

  

XP_015923784.1 

PREDICTED: Down syndrome cell adhesion molecule-

like protein 1 homolog  1.35 4.74 7.18E-20 3.60E-15 

  

XP_015906117.1 PREDICTED: 32 kDa beta-galactoside-binding lectin-like  1.24 4.88 2.88E-08 7.24E-05 

  

XP_015928295.1 PREDICTED: 60S ribosomal protein L13a-like  1.22 4.86 3.41E-10 2.14E-06 

  

XP_015923501.1 PREDICTED: uncharacterized protein  1.16 4.33 1.33E-11 1.66E-07 

  

NA 

 

1.15 6.11 1.73E-10 1.45E-06 

  

KFM65083.1 Ryanodine receptor 44F 1.11 7.23 7.84E-10 3.58E-06 

  

NA 

 

1.04 6.96 1.05E-10 1.05E-06 

  

XP_015920771.1  PREDICTED: serine/threonine-protein kinase fray2-like  0.94 4.57 3.11E-09 1.11E-05 

  

XP_015926208.1 PREDICTED: uncharacterized protein  0.83 5.35 2.97E-09 1.11E-05 

  

XP_015930288.1 PREDICTED: F-box/WD repeat-containing protein 7-like  0.72 6.12 6.75E-12 1.13E-07 

  

XP_015922994.1 PREDICTED: uncharacterized protein  0.72 5.10 1.96E-08 5.19E-05 

  

XP_015927756.1 PREDICTED: bcl-2-like protein 1 0.71 5.61 1.77E-08 5.10E-05 

  

NA 

 

-0.72 6.38 2.40E-10 1.72E-06 

  

ADV40204.1  40S ribosomal protein S9 -0.82 8.16 1.83E-08 5.10E-05 

  

NA 

 

-1.04 5.77 1.15E-09 4.83E-06 

  

NA 

 

-1.27 4.66 5.55E-10 2.78E-06 

        

 

DNxPN XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.43 7.16 2.86E-40 2.39E-36 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.39 7.29 3.92E-37 1.97E-33 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  10.18 7.74 6.94E-82 1.74E-77 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  9.62 6.92 2.34E-35 9.79E-32 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  9.08 5.96 9.91E-33 2.92E-29 

  

XP_015921317.1 PREDICTED: uncharacterized protein  7.93 4.45 1.19E-38 7.47E-35 

  

ADV40374.1 putative transcription factor XBP-1, partial  7.06 3.71 2.37E-40 2.38E-36 

  

NA 

 

7.03 4.05 8.76E-31 2.20E-27 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  6.78 3.48 6.23E-31 1.65E-27 

  

JAS58553.1 hypothetical protein g.793 6.58 4.45 2.22E-31 6.20E-28 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 6.47 6.90 2.54E-34 7.95E-31 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 6.43 8.51 1.14E-38 7.47E-35 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 6.05 7.55 1.14E-34 4.10E-31 

  

XM_016067092 PREDICTED: stress response protein NST1  4.97 4.31 6.96E-38 3.88E-34 

  

KDR18366.1 Reactive oxygen species modulator 1 4.45 4.32 1.06E-34 4.09E-31 

  

XP_015928426.1 PREDICTED: high mobility group protein B2-like  3.88 6.02 1.98E-36 9.05E-33 
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KFM76317.1 hypothetical protein X975_15322 3.52 5.79 3.61E-46 4.53E-42 

  

XP_002433495.1 protein-tyrosine phosphotase 3.38 5.93 1.70E-34 5.68E-31 

  

NA 

 

-7.81 4.12 1.91E-58 3.19E-54 

  

KFM76317.1 hypothetical protein  -8.04 4.29 

1.54E-

122 7.71E-118 

        

 

DNxLN XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.74 7.29 2.65E-39 1.11E-35 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.66 7.16 6.51E-42 5.44E-38 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  10.59 7.74 2.09E-88 5.25E-84 

  

XP_015928808.1  PREDICTED: nose resistant to fluoxetine protein 6-like  10.52 6.92 8.13E-42 5.82E-38 

  

XP_015921317.1 PREDICTED: uncharacterized protein  7.94 4.45 8.22E-39 2.95E-35 

  

NA 

 

7.59 4.05 2.64E-40 1.33E-36 

  

NA 

 

7.55 3.80 4.94E-36 1.24E-32 

  

JAS58553.1 hypothetical protein g.793 7.21 4.45 2.66E-40 1.33E-36 

  

ADV40374.1 putative transcription factor XBP-1 6.95 3.71 3.46E-38 1.16E-34 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 6.69 6.90 2.99E-36 8.83E-33 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 6.52 8.51 1.77E-39 8.07E-36 

  

KFM62484.1 Long-chain-fatty-acid--CoA ligase 6 6.21 7.55 4.70E-36 1.24E-32 

  

XM_016067092 PREDICTED: stress response protein NST1 5.27 4.31 4.10E-45 4.11E-41 

  

KFM76317.1 hypothetical protein  3.60 5.79 1.37E-48 1.71E-44 

  

XM_005831914 CCMP2712 hypothetical protein  3.56 6.86 1.55E-36 4.85E-33 

  

XP_002433495.1 protein-tyrosine phosphotase 3.46 5.93 4.26E-36 1.19E-32 

  

XP_015909736.1 PREDICTED: small nuclear ribonucleoprotein Sm D1  3.17 4.61 2.39E-40 1.33E-36 

  

XM_016070581 PREDICTED: silent chromatin protein ESC1  -2.53 4.63 6.24E-39 2.41E-35 

  

KFM76317.1 hypothetical protein X975_15322 -7.56 4.29 

4.97E-

126 2.50E-121 

  

NA 

 

-8.68 4.12 8.83E-63 1.48E-58 

        

Ovary PUxLU XP_015921819.1 

PREDICTED: glutamine--fructose-6-phosphate 

aminotransferase [isomerizing]  1.26 6.45 6.55E-33 1.83E-29 

  

JAN31158.1 Small ubiquitin-related modifier  -0.75 8.69 3.08E-42 3.86E-38 

  

XP_015918389.1 

PREDICTED: 28 kDa heat- and acid-stable 

phosphoprotein -0.78 7.30 5.20E-36 2.61E-32 

  

XP_015911142.1 PREDICTED: transcription factor BTF3 homolog 4-like  -0.82 7.19 2.70E-32 6.77E-29 

  

ABX75436.1 protein disulfide isomerase -0.88 9.54 1.43E-52 3.58E-48 

  

XP_015928339.1 PREDICTED: 60S ribosomal protein L6-like  -0.93 8.17 6.55E-51 1.09E-46 

  

KFM77976.1  Proteasome subunit alpha type-5 -0.93 6.95 3.22E-33 9.49E-30 

  

XP_015925153.1 PREDICTED: 60S ribosomal protein L23a-like  -0.95 7.78 2.75E-36 1.53E-32 
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XP_015926887.1 

PREDICTED: eukaryotic translation initiation factor 3 

subunit H-like  -0.97 6.78 5.04E-37 3.61E-33 

  

KFM82963.1 60S ribosomal protein L12 -0.98 7.33 5.98E-34 2.45E-30 

  

HQ006005 clone CV174 putative secreted salivary gland peptide  -1.10 6.79 2.48E-36 1.53E-32 

  

ADV40369.1 putative ribosomal protein S24 -1.13 9.26 2.86E-39 2.39E-35 

  

KFM72359.1 60S ribosomal protein L22 -1.24 7.36 3.16E-41 3.17E-37 

  

XP_015928755.1 PREDICTED: nose resistant to fluoxetine protein 6-like  -1.26 7.89 1.18E-32 3.13E-29 

  

XP_015907976.1  PREDICTED: 40S ribosomal protein S12-like  -1.27 8.31 1.35E-52 3.58E-48 

  

ACH48193.1 40S ribosomal protein S15  -1.29 8.05 2.06E-34 9.38E-31 

  

XP_015909052.1 PREDICTED: uncharacterized protein -1.29 8.57 6.36E-34 2.45E-30 

  

XP_015913298.1 PREDICTED: 60S acidic ribosomal protein P1-like  -1.32 9.72 2.31E-33 7.25E-30 

  

KFM68269.1 Zinc finger protein 330-like protein -1.50 5.59 8.29E-34 2.97E-30 

  

KFM81238.1 DET1- and DDB1-associated protein 1 -2.19 4.40 9.66E-34 3.23E-30 

        

 

DUxPU XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  8.98 6.99 9.45E-68 1.58E-63 

  

NA 

 

7.54 4.00 3.24E-48 1.81E-44 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  7.36 4.74 9.41E-57 9.44E-53 

  

KFM78087.1 Integrator complex subunit 8 7.12 5.23 6.14E-57 7.70E-53 

  

NA 

 

6.45 5.09 5.45E-47 2.28E-43 

  

NA 

 

6.32 5.88 4.72E-48 2.15E-44 

  

XP_015906006.1 

PREDICTED: DNA-directed RNA polymerase I subunit 

RPA2-like  4.62 6.48 1.17E-45 3.93E-42 

  

OEH77433.1 hypothetical protein cyc_01245  4.53 5.40 1.10E-46 4.23E-43 

  

XM_010199706 

PREDICTED: ADP-ribosylation factor-like 14 effector 

protein-like  3.62 6.91 4.50E-46 1.61E-42 

  

KFM71066.1 Serine/threonine-protein kinase TBK1 3.08 5.22 5.24E-42 1.31E-38 

  

NA 

 

2.33 5.54 2.93E-45 9.19E-42 

  

ABX75436.1 protein disulfide isomerase -0.96 9.54 1.68E-56 1.40E-52 

  

AHH29554.1 dynein light chain type 1  -1.43 8.70 9.77E-52 7.01E-48 

  

AHH29554.1 dynein light chain type 1  -1.43 7.28 4.32E-48 2.15E-44 

  

XP_015909052.1 PREDICTED: uncharacterized protein  -1.53 8.57 2.56E-43 7.14E-40 

  

XP_015928561.1 

PREDICTED: ATP-dependent Clp protease ATP-binding 

subunit clpX-like -1.60 6.21 1.08E-49 6.76E-46 

  

NA 

 

-1.61 8.00 3.65E-43 9.64E-40 

  

XP_015924158.1 PREDICTED: coiled-coil domain-containing protein 47 -2.62 4.47 1.86E-43 5.49E-40 

  

XP_002414852.1 THO complex subunit -2.80 8.40 4.48E-70 1.12E-65 

  

KFM76317.1 hypothetical protein X975_15322 -5.91 3.99 8.59E-71 4.31E-66 
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DUxLU XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  9.90 6.99 1.48E-83 7.41E-79 

  

NA 

 

8.75 5.24 1.85E-42 5.45E-39 

  

NA 

 

7.46 4.00 1.16E-45 4.17E-42 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  6.92 4.74 1.66E-46 7.58E-43 

  

KFM78087.1 Integrator complex subunit 8, partial  6.52 5.23 1.28E-44 4.29E-41 

  

NA 

 

6.44 5.88 8.13E-50 5.82E-46 

  

NA 

 

6.07 5.09 1.16E-40 2.91E-37 

  

XM_010199706 

PREDICTED: ADP-ribosylation factor-like 14 effector 

protein-like 4.11 6.91 1.33E-57 1.33E-53 

  

XP_015926048.1 PREDICTED: cytosolic purine 5'-nucleotidase-like  3.77 6.17 3.90E-48 1.95E-44 

  

KFM71066.1 Serine/threonine-protein kinase TBK1 3.06 5.22 6.22E-41 1.64E-37 

  

NA 

 

3.02 8.75 5.20E-46 2.17E-42 

  

XP_015906006.1 

PREDICTED: DNA-directed RNA polymerase I subunit 

RPA2-like  2.75 6.57 4.65E-43 1.46E-39 

  

NA 

 

2.44 5.54 2.68E-49 1.68E-45 

  

XP_015905420.1 

PREDICTED: coiled-coil-helix-coiled-coil-helix domain-

containing protein 5 2.17 8.06 1.03E-45 3.99E-42 

  

XP_015909199.1 PREDICTED: T-complex protein 1 subunit zeta-like  2.11 6.35 2.84E-48 1.58E-44 

  

KFM60678.1 CDGSH iron-sulfur domain-containing protein 1 1.97 6.86 6.62E-60 8.30E-56 

  

KFM76317.1 hypothetical protein X975_15322 1.90 6.22 1.10E-62 1.84E-58 

    

1.21 7.43 1.36E-41 3.80E-38 

  

XP_002414852.1 THO complex subunit -2.41 8.40 1.36E-53 1.14E-49 

  

KFM76317.1 hypothetical protein  -5.61 3.99 5.22E-65 1.31E-60 

        

 

PNxLN KFM62172.1 Histone-arginine methyltransferase CARMER 1.93 4.95 3.71E-23 2.07E-19 

  

KFM83567.1 Protein trapped in endoderm-1 1.24 6.77 7.78E-22 2.44E-18 

  

JAN31158.1 Small ubiquitin-related modifier  -0.62 8.69 2.12E-28 1.33E-24 

  

ADV40369.1 putative ribosomal protein S24 -0.84 9.26 1.41E-22 5.88E-19 

  

XP_009702107.1  PREDICTED: calmodulin-like  -0.84 8.77 8.60E-20 2.16E-16 

  

HQ006005 clone CV174 putative secreted salivary gland peptide  -0.87 6.79 2.52E-22 9.02E-19 

  

KFM82963.1 60S ribosomal protein L12 -0.90 7.33 1.47E-28 1.05E-24 

  

NA 

 

-0.93 7.25 5.33E-23 2.43E-19 

  

XP_015907976.1  PREDICTED: 40S ribosomal protein S12-like  -0.93 8.31 1.16E-28 9.70E-25 

  

KFM72359.1 60S ribosomal protein L22 -1.04 7.36 8.14E-29 9.70E-25 

  

NA 

 

-1.07 10.97 4.98E-23 2.43E-19 

  

XP_015928703.1 

PREDICTED: immediate early response 3-interacting 

protein 1 -1.10 6.12 2.42E-29 4.05E-25 

  

KFM77012.1 hypothetical protein X975_14454 -1.10 5.50 3.95E-20 1.04E-16 
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KFM71106.1 GTP-binding protein 128up -1.11 5.67 1.54E-20 4.29E-17 

  

KFM72542.1 U6 snRNA-associated Sm-like protein LSm3 -1.12 5.52 1.73E-22 6.66E-19 

  

ACH48193.1 40S ribosomal protein S15  -1.17 8.05 9.71E-29 9.70E-25 

  

ADV40204.1  40S ribosomal protein S9 -1.31 7.88 2.12E-33 1.06E-28 

  

NA 

 

-1.45 5.44 4.18E-21 1.23E-17 

  

KFM68269.1 Zinc finger protein 330-like protein -1.46 5.59 1.50E-32 3.76E-28 

  

XP_015914041.1 PREDICTED: flavin reductase (NADPH)-like  -1.46 6.24 3.41E-22 1.14E-18 

        

 

DNxPN NA 

 

8.38 5.09 4.13E-46 1.38E-42 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  7.86 6.99 1.47E-62 1.85E-58 

  

KFM78087.1 Integrator complex subunit 8 7.42 5.23 2.49E-63 4.16E-59 

  

NA 

 

7.12 5.88 6.32E-49 2.88E-45 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  6.57 4.74 8.13E-50 4.08E-46 

  

OEH77433.1 hypothetical protein 6.26 5.40 3.50E-55 2.51E-51 

  

NA 

 

5.79 7.81 3.36E-41 8.88E-38 

  

XP_015926048.1 PREDICTED: cytosolic purine 5'-nucleotidase-like  3.99 6.17 4.87E-46 1.53E-42 

  

KFM71066.1 Serine/threonine-protein kinase TBK1 3.89 5.22 4.17E-57 3.49E-53 

  

XP_015928426.1 PREDICTED: high mobility group protein B2-like  3.62 6.76 4.51E-55 2.83E-51 

  

XM_010199706 

PREDICTED: ADP-ribosylation factor-like 14 effector 

protein-like  3.41 6.91 8.80E-44 2.60E-40 

  

XP_013789052.1 

PREDICTED: probable serine/threonine-protein kinase 

nek3  3.22 6.11 4.27E-48 1.79E-44 

  

NA 

 

2.25 5.54 2.98E-43 8.30E-40 

  

KFM60292.1 hypothetical protein X975_13925 -1.46 6.45 3.56E-41 8.92E-38 

  

M5B4R7.1 

RecName: Full=Translationally-controlled tumor protein 

homolog; Short=GTx-TCTP1 -1.46 8.03 5.13E-48 1.98E-44 

  

NA 

 

-1.52 6.58 5.66E-54 3.15E-50 

  

AHH29554.1 dynein light chain type 1  -1.56 7.28 3.93E-57 3.49E-53 

  

NA 

 

-1.70 8.00 3.34E-47 1.20E-43 

  

XP_002414852.1 THO complex subunit -2.72 8.40 1.66E-66 4.16E-62 

  

KFM76317.1 hypothetical protein  -6.32 3.99 1.70E-73 8.52E-69 

        

 

DNxLN NA 

 

9.14 5.24 1.53E-46 5.47E-43 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  8.73 6.99 2.28E-77 1.14E-72 

  

NA 

 

8.37 5.09 8.01E-46 2.68E-42 

  

NA 

 

7.75 4.74 2.13E-64 3.56E-60 

  

NA 

 

7.29 5.88 1.41E-51 7.88E-48 
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KFM78087.1 Integrator complex subunit 8 6.91 5.23 5.13E-52 3.22E-48 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  6.32 4.74 3.30E-44 8.72E-41 

  

OEH77433.1 hypothetical protein  6.01 5.40 9.51E-50 4.77E-46 

  

XP_015926048.1 PREDICTED: cytosolic purine 5'-nucleotidase-like  4.43 6.17 1.95E-56 1.63E-52 

  

CAC44751.1 hemocyanin subunit 3  4.27 6.94 2.26E-43 5.68E-40 

  

XP_015928426.1 PREDICTED: high mobility group protein B2-like  3.70 6.76 3.63E-57 3.64E-53 

  

KFM71066.1 Serine/threonine-protein kinase TBK1 3.66 5.22 1.59E-48 7.27E-45 

  

XM_010199706 

PREDICTED: ADP-ribosylation factor-like 14 effector 

protein-like  3.44 6.91 1.49E-44 4.39E-41 

  

NA 

 

3.06 8.75 3.80E-47 1.59E-43 

  

NA 

 

2.75 7.10 6.36E-45 1.99E-41 

  

XP_015903573.1 PREDICTED: insulin-degrading enzyme-like 2.53 5.39 2.70E-44 7.52E-41 

  

KFM76317.1 hypothetical protein X975_15322 1.81 6.22 2.07E-52 1.48E-48 

  

KFM60678.1 CDGSH iron-sulfur domain-containing protein 1 1.76 6.86 1.09E-46 4.20E-43 

  

XP_002414852.1 THO complex subunit -2.61 8.40 1.17E-61 1.47E-57 

  

KFM76317.1 hypothetical protein X975_15322 -6.45 3.99 2.48E-70 6.23E-66 

        
Silk PUxLU KFM71801.1 hypothetical protein X975_19628 3.80 4.67 6.63E-07 1.89E-03 

  

KFM62172.1 Histone-arginine methyltransferase CARMER 1.76 4.30 1.92E-08 2.41E-04 

  

XP_015916472.1 PREDICTED: actin-related protein 2  1.25 5.07 1.17E-07 6.03E-04 

  

ADV40152.1  G protein beta subunit-like protein 0.77 9.09 7.33E-08 5.25E-04 

  

NA 

 

-0.99 6.47 2.02E-07 7.92E-04 

  

XP_015909052.1 PREDICTED: uncharacterized protein  -1.46 6.37 9.91E-07 2.62E-03 

  

AFP57562.1 aggregate gland silk factor 2  -1.60 4.28 1.20E-07 6.03E-04 

  

ADV40308.1 putative fibropellin -1.67 3.94 2.85E-07 9.52E-04 

  

JX262195 clone 549 aggregate gland silk factor 1 mRNA  -1.83 7.38 1.29E-06 3.24E-03 

    

-2.15 12.79 1.37E-08 2.29E-04 

  

XM_018984297 PREDICTED: glycine-rich cell wall structural protein-like  -2.35 7.28 1.02E-07 6.03E-04 

  

ADV40223.1 hypothetical protein -2.68 4.12 2.54E-08 2.54E-04 

  

NA 

 

-2.68 3.26 3.79E-07 1.19E-03 

  

EF153412 aqueous glue droplet peptide (SCP-2) -2.96 5.77 2.19E-07 7.92E-04 

  

WP_051068643.1 hypothetical protein  -3.04 9.50 3.28E-11 1.64E-06 

  

NA 

 

-3.34 3.37 1.48E-07 6.74E-04 

  

NA 

 

-4.67 1.82 4.36E-08 3.64E-04 

    

-5.12 1.55 2.21E-07 7.92E-04 

  

WP_051068643.1 hypothetical protein -5.47 10.91 1.70E-10 4.26E-06 
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ABO09798.1 aqueous glue droplet peptide  -7.65 10.13 6.78E-07 1.89E-03 

        

 

DUxPU XM_023423376 PREDICTED: growth/differentiation factor 11-like  12.31 10.49 1.92E-22 8.77E-19 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  9.92 7.61 1.17E-46 5.87E-42 

  

NA 

 

8.57 5.04 1.05E-23 6.61E-20 

  

KFM63144.1 Lysosomal acid lipase/cholesteryl ester hydrolase 8.35 5.88 4.86E-45 1.22E-40 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 7.49 4.06 3.15E-21 1.13E-17 

  

XP_014251251.1 PREDICTED: lipase 3-like  6.94 3.49 3.32E-27 3.33E-23 

  

XM_016067092 PREDICTED: stress response protein NST1 6.73 3.55 2.40E-25 1.72E-21 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  6.14 3.72 1.18E-27 1.48E-23 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 5.71 5.28 1.09E-25 9.14E-22 

  

ADV40374.1 putative transcription factor XBP-1 5.41 4.10 1.64E-42 2.74E-38 

  

XP_015929191.1 PREDICTED: serine/arginine repetitive matrix protein 2 5.20 3.62 1.98E-23 1.11E-19 

  

XP_015905468.1 

PREDICTED: mitochondrial 2-oxoglutarate/malate 

carrier protein-like  4.47 3.53 8.83E-22 3.41E-18 

  

XM_005831914 CCMP2712 hypothetical protein  4.43 5.18 7.17E-23 3.60E-19 

  

KFM67949.1 SPRY domain-containing protein 3 3.60 4.62 6.35E-22 2.65E-18 

  

XP_015904620.1 PREDICTED: protein-tyrosine sulfotransferase 1-like 2.37 4.77 7.69E-19 2.27E-15 

  

NA 

 

1.78 6.31 1.60E-17 4.02E-14 

  

KFM75168.1 hypothetical protein X975_11824 -3.19 7.94 3.91E-18 1.03E-14 

  

NA 

 

-5.33 2.16 3.65E-20 1.14E-16 

  

KFM61703.1 Zinc finger protein 36, C3H1 type-like 1 -6.46 2.21 4.00E-21 1.34E-17 

  

XP_015916914.1 PREDICTED: inositol-3-phosphate synthase-like  -7.97 6.23 1.54E-18 4.31E-15 

        

 

DUxLU XM_023423376 PREDICTED: growth/differentiation factor 11-like  11.46 10.49 2.42E-20 1.21E-16 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  10.23 7.61 4.45E-48 2.23E-43 

  

KFM63144.1 Lysosomal acid lipase/cholesteryl ester hydrolase 8.61 5.88 1.73E-46 4.34E-42 

  

NA 

 

8.48 6.01 8.09E-18 2.39E-14 

  

NA 

 

8.31 5.04 1.37E-21 8.61E-18 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 7.41 4.06 7.53E-20 2.99E-16 

  

XP_014251251.1 PREDICTED: lipase 3-like  6.95 3.49 7.04E-26 7.07E-22 

  

XM_016067092 PREDICTED: stress response protein NST1 6.93 3.55 1.94E-26 2.44E-22 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 5.83 5.28 1.47E-25 1.23E-21 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  5.80 3.72 5.71E-22 4.10E-18 
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ADV40374.1 putative transcription factor XBP-1 5.49 4.10 1.34E-41 2.24E-37 

  

XP_015929191.1 PREDICTED: serine/arginine repetitive matrix protein 2 5.03 3.62 6.88E-20 2.99E-16 

  

KFM83083.1 Solute carrier family 41 member 2 4.46 3.70 2.50E-17 6.26E-14 

  

XM_005831914 CCMP2712 hypothetical protein  4.08 5.18 9.19E-19 2.88E-15 

  

KFM64043.1 Dimethylaniline monooxygenase [N-oxide-forming] 5 3.63 4.70 1.06E-20 5.91E-17 

  

KFM67949.1 SPRY domain-containing protein 3 3.52 4.62 1.43E-19 5.13E-16 

  

ADV40093.1 dehydrogenase/reductase SDR family member 11 3.33 6.23 7.75E-20 2.99E-16 

  

XP_015930588.1 

PREDICTED: elongation of very long chain fatty acids 

protein 7 2.80 4.86 1.25E-17 3.29E-14 

  

NA 

 

2.51 4.62 5.94E-19 1.99E-15 

  

XM_015334535 PREDICTED: targeting protein for Xklp2-like -7.05 2.87 9.96E-18 2.78E-14 

        

 

LNxPN NA 

 

9.68 4.34 2.12E-07 6.52E-04 

  

KP241087 MADS17 (MADS17) gene 6.66 2.65 2.45E-09 3.07E-05 

  

NA 

 

2.17 3.51 1.46E-07 4.90E-04 

  

NA 

 

1.75 6.36 8.07E-09 7.50E-05 

  

XP_015922437.1 PREDICTED: hexokinase-2-like isoform X1  1.63 4.30 9.72E-13 4.88E-08 

  

NA 

 

1.52 3.57 6.58E-08 3.00E-04 

  

XP_015911304.1 PREDICTED: transcriptional coactivator YAP1-like  1.05 5.21 4.04E-08 2.25E-04 

  

XP_971914.1 

PREDICTED: transmembrane emp24 domain-containing 

protein 2  0.99 4.51 2.67E-07 6.52E-04 

  

ADV40376.1 putative galactosyltransferase 0.85 9.32 1.05E-08 7.50E-05 

  

XP_015911478.1 PREDICTED: uncharacterized protein  0.84 5.10 2.60E-07 6.52E-04 

  

XP_015908446.1 PREDICTED: elongation factor 1-beta-like  -0.92 8.41 2.46E-07 6.52E-04 

  

XM_021145653 PREDICTED: vigilin  -1.16 10.57 3.52E-08 2.21E-04 

  

NA 

 

-1.30 6.47 3.02E-12 6.64E-08 

  

XP_015928339.1  PREDICTED: 60S ribosomal protein L6-like  -2.39 3.66 3.97E-12 6.64E-08 

  

XP_015912971.1 

PREDICTED: putative polypeptide N-

acetylgalactosaminyltransferase 9 -3.00 4.40 6.38E-08 3.00E-04 

  

NA 

 

-4.56 1.52 9.92E-08 3.83E-04 

  

XP_015919260.1 PREDICTED: nicotinamide N-methyltransferase-like  -4.63 6.70 8.16E-08 3.41E-04 

  

KFM78240.1 hypothetical protein  -5.47 8.21 1.37E-07 4.90E-04 

  

NA 

 

-5.58 3.23 9.71E-09 7.50E-05 

  

ABO09798.1 aqueous glue droplet peptide  -8.54 10.13 2.39E-07 6.52E-04 

        

 

DNxPN XM_023423376 PREDICTED: growth/differentiation factor 11-like  12.12 10.49 3.12E-24 1.42E-20 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  9.25 7.61 2.08E-49 1.04E-44 
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KFM63144.1 Lysosomal acid lipase/cholesteryl ester hydrolase 9.08 5.88 4.31E-48 7.21E-44 

  

NA 

 

8.30 5.04 8.11E-25 4.52E-21 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 7.55 5.28 5.09E-33 6.38E-29 

  

ADV40374.1 putative transcription factor XBP-1 7.38 4.10 1.67E-48 4.18E-44 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 7.26 4.06 5.50E-22 1.84E-18 

  

XP_014251251.1 PREDICTED: lipase 3-like  6.59 3.49 2.58E-25 1.62E-21 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  6.13 3.72 6.08E-29 6.10E-25 

  

NA 

 

5.82 4.57 1.44E-24 7.22E-21 

  

XM_016067092 PREDICTED: stress response protein NST1 4.76 3.55 3.67E-23 1.42E-19 

  

XP_015926824.1 PREDICTED: lipase member I-like  4.35 5.63 1.03E-20 2.88E-17 

  

XP_015929191.1 PREDICTED: serine/arginine repetitive matrix protein 2 4.35 3.62 1.17E-22 4.21E-19 

  

XP_015905468.1 

PREDICTED: mitochondrial 2-oxoglutarate/malate 

carrier protein 3.95 3.53 2.35E-21 6.93E-18 

  

XP_015931247.1 PREDICTED: uncharacterized protein  3.83 4.06 3.24E-26 2.33E-22 

  

XP_015922025.1 

PREDICTED: ATPase family AAA domain-containing 

protein 3-like  3.59 5.10 1.00E-21 3.15E-18 

  

KFM67949.1 SPRY domain-containing protein 3 3.32 4.62 3.29E-20 8.25E-17 

  

KFM80597.1 Arginine--tRNA ligase, cytoplasmic 2.12 5.95 1.81E-26 1.51E-22 

  

KFM75168.1 hypothetical protein -3.49 7.94 2.73E-20 7.21E-17 

  

XM_015334535 PREDICTED: targeting protein for Xklp2-like  -7.28 2.87 8.89E-24 3.72E-20 

        

 

DNxLN XM_023423376 PREDICTED: growth/differentiation factor 11-like  12.41 10.49 4.64E-25 1.94E-21 

  

XP_015920146.1 PREDICTED: 60S ribosomal protein L36-like  9.73 7.61 3.00E-54 1.51E-49 

  

KFM63144.1 Lysosomal acid lipase/cholesteryl ester hydrolase 9.26 5.88 5.26E-51 1.32E-46 

  

NA 

 

8.68 5.04 2.27E-27 1.90E-23 

  

NA 

 

8.40 6.01 5.73E-20 1.44E-16 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 7.96 5.28 2.36E-37 2.96E-33 

  

XM_023155205 

PREDICTED: CDK5 regulatory subunit associated 

protein 2 (cdk5rap2) 7.47 4.06 1.04E-23 3.74E-20 

  

ADV40374.1 putative transcription factor XBP-1 7.32 4.10 1.05E-47 1.76E-43 

  

XP_014251251.1 PREDICTED: lipase 3-like  6.55 3.49 4.03E-25 1.84E-21 

  

XM_017059456 PREDICTED: glycerophosphodiester phosphodiesterase 1  5.85 3.72 1.53E-25 8.52E-22 

  

NA 

 

5.46 4.57 4.81E-22 1.34E-18 

  

XM_016067092 PREDICTED: stress response protein NST1  5.00 3.55 4.47E-27 3.20E-23 

  

XP_015929191.1 PREDICTED: serine/arginine repetitive matrix protein 2 4.46 3.62 1.41E-24 5.45E-21 
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KFM83083.1 Solute carrier family 41 member 2 4.39 3.70 1.41E-23 4.72E-20 

  

XP_015912092.1 PREDICTED: thioredoxin domain-containing protein 9 4.04 3.62 2.62E-21 6.92E-18 

  

KFM67949.1 SPRY domain-containing protein 3 3.74 4.62 2.40E-26 1.51E-22 

  

XP_015922025.1 

PREDICTED: ATPase family AAA domain-containing 

protein 3 3.60 5.10 3.79E-22 1.19E-18 

  

XP_015931247.1 PREDICTED: uncharacterized protein  3.55 4.06 4.78E-22 1.34E-18 

  

KFM80597.1 Arginine--tRNA ligase, cytoplasmic, partial 2.16 5.95 3.74E-28 3.75E-24 

  

XM_015334535 PREDICTED: targeting protein for Xklp2-like  -7.28 2.87 2.96E-25 1.49E-21 

 

*D = Denver, L = Las Vegas, P = Phoenix, U = urban, and N = non-urban 
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Table 4.3 Mann Whitney U tests for comparisons among urban and non-urban locales down- 

and up-regulated gene isoforms 

Tissue Comparison Down Up 

cephalothorax LUxLN vs PUxPN 2882 1687 

 
LUxLN vs DUxDN 561 0 

 
PUxPN vs DUxDN 2145 0 

    

 
LUxDU vs PUxLU 472430 1547300 

 
LUxDU vs PUxDU 911630 5402500 

 
PUxLU vs PUxDU 414660 66480 

    

 
LNxDN vs PNxLN 70492 325400 

 
LNxDN vs PNxDN 42650 2932300 

 
PNxLN vs PNxDN 35225 19260 

    
ovary LUxLN vs PUxPN 767 1880 

 
LUxLN vs DUxDN 5222 1114 

 
PUxPN vs DUxDN 7652 609 

    

 
LUxDU vs PUxLU 46470 1367300 

 
LUxDU vs PUxDU 1151700 4097600 

 
PUxLU vs PUxDU 836550 1110500 

    

 
LNxDN vs PNxLN 240980 760650 

 
LNxDN vs PNxDN 780160 3378700 

 
PNxLN vs PNxDN 366560 509660 

    
silk LUxLN vs PUxPN 767 32 

 
LUxLN vs DUxDN 25 6 

 
PUxPN vs DUxDN 99 40 
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LUxDU vs PUxLU 12611 7362 

 
LUxDU vs PUxDU 149720 661990 

 
PUxLU vs PUxDU 21542 5577 

    

 
LNxDN vs PNxLN 897030 325210 

 
LNxDN vs PNxDN 434420 680360 

 
PNxLN vs PNxDN 677610 266030 

*values are Mann-Whitney W, bold values denote significance after Bonferonni correction, D = 

Denver, L = Las Vegas, P = Phoenix, U = urban, and N = non-urban 
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