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Species of trees inhabit diverse and heterogeneous environments, and often play important 

ecological roles in such communities. As a result of their vast ecological breadth, trees have 

become adapted to various environmental pressures. In this dissertation I examine various 

environmental factors that drive evolutionary dynamics in three Pinus species in California and 

Nevada, USA. In chapter two, I assess the role of management influence of thinning, fire, and 

their interaction on fine-scale gene flow within fire-suppressed populations of Pinus lambertiana, 

a historically dominant and ecologically important member of mixed-conifer forests of the Sierra 

Nevada, California. Here, I find evidence that treatment prescription differentially affects fine-scale 

genetic structure and effective gene flow in this species. In my third chapter, I describe the 

development of a dense linkage map for Pinus balfouriana which I use in chapter four to assess 

the quantitative trait locus (QTL) landscape of water-use efficiency across two isolated ranges of 

the species. I find evidence that precipitation-related variables structure the geographical range 

of P. balfouriana, that traits related to water-use efficiency are heritable and differentiated across 

populations, and associated QTLs underlying this phenotypic variation explain large proportions 



 xx 

of total variation. In chapter five, I assess evidence for local adaptation to the eastern Sierra 

Nevada rain shadow within P. albicaulis across fine spatial scales of the Lake Tahoe Basin, USA. 

Here, genetic variation of traits related to water availability were structured more so across 

populations than neutral variation, and loci identified by genome-wide association methods show 

elevated signals of local adaptation that track soil water availability. In chapter six, I review theory 

related to polygenic local adaptation and literature of genotype-phenotype associations in trees. 

I find that evidence suggests a polygenic basis for many traits important to conservation and 

industry, and I suggest paths forward to best describing such genetic bases in tree species. 

Overall, my results show that spatial and genetic structure of trees are often driven by their 

environment, and that ongoing selective pressures driven by environmental change will continue 

to be important in these systems. 
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    Chapter 1.  
Introduction 

 

Forested systems cover roughly 31% of Earth’s total land area (Costanza et al. 1997; FAO 

2010), accounting for approximately 90% of terrestrial biomass (Whitaker 1975), and provide 

habitat to the vast majority of Earth’s terrestrial biodiversity. Additionally, many valuable 

ecosystem services are carried out in forests such as the production of seeds, leaves, and bark 

for wildlife forage, forest cover, the production of oxygen, carbon sequestration, the mitigation of 

droughts and floods, air and water filtration, timber for building and other materials, as well as the 

reduction of erosion, protracting snowmelt, and desertification. Thus, identifying the factors that 

shape evolutionary dynamics of tree species is of the utmost importance to conservation, 

management, and industrial agencies. However, the large size and long generation times of many 

tree species have limited the study of a number of aspects of their evolution. Some of the earliest 

studies employed common gardens and reciprocal transplants to understand how aspects of the 

environment shape properties of survival and growth, most often with the goal of delineating 

populations for conservation management or for optimizing yield from industrial plantations. Up 

until the last two decades, however, evolutionary insight at the DNA sequence level have been 

largely out of reach, due in part to the cost of producing molecular markers and the large genome 

size of many trees. Even so, recent reductions in the cost of molecular data, alongside an 

increasing number of molecular resources, have provided novel opportunity for evolutionary 

insight within and among tree species. In this dissertation, I aim to take advantage of such 

resources to better understand how environmental change (either from anthropogenic or natural 

sources) influences the evolutionary dynamics of tree populations, and in particular to identify the 

underlying genetic components conferring adaptive responses to the environment. To do so, I 

take advantage of three different study systems, Pinus lambertiana Dougl. (Pinaceae) in a fire-
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suppressed mixed-conifer forest in the Sierra Nevada mountains of California, P. albicaulis 

Engelm. (Pinaceae) in upper montane forests of the Lake Tahoe Basin overlapping California and 

Nevada, and P. balfouriana Grev. & Balf. (Pinaceae) of high-elevational forests of the Klamath 

and Sierra Nevada mountains of California. 

Factors affecting tree evolutionary dynamics 

Gene Flow, Mating System, and Dispersal 
Gene flow is a considerable factor shaping the evolutionary dynamics of populations, and 

of trees in particular. Gene flow, in the context of trees, can be defined as the sharing of genetic 

material between populations through the dispersal of seed or pollen that survive to contribute 

genetic material to subsequent generations. The extent to which populations are genetically 

differentiated across the landscape, due to a number of causes (discussed below), is ultimately 

influenced by gene flow, which, when sufficiently strong, or without other acting factors, will 

homogenize allele frequencies across populations resulting in little to no detectable genetic 

differentiation (Haldane 1930; Wright 1931; Slatkin 1987). However, the extent of gene flow 

between two given populations of trees will often depend, in part, on their degree of geographic 

isolation, as the dispersal distances of seed and pollen are often limited (Savolainen et al. 2007). 

When this is the case, spatially varying degrees of isolation can lead to isolation-by-distance (IBD) 

where populations with lesser degrees of isolation will be more genetically similar than 

populations with greater degrees of isolation where allele and genotype frequencies across 

populations experience higher degrees of independence. In these cases, geographically based 

genetic differentiation is referred to as spatial genetic structure (SGS).  As hinted at previously, 

SGS is not only influenced by the degree of gene flow between populations. In many cases, 

instances of SGS can be due to serial colonization, genetic drift (random allele frequency 

fluctuations due to the finite number of meiotic products and individuals or offspring), 

geographically based differences in selection pressures or strengths, nonrandom mating, as well 

as with differences in mutation rate, allele frequencies among sexes, mating system (i.e., the 
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degree of outcrossing), reproductive output or success, patterns of genetic recombination, 

violations to the independent assortment of multiple loci during gamete formation, and, more often 

than not, some combination of these factors. 

Ultimately, SGS will impact the probability of persistence of populations. At local scales 

this is particularly true, especially in circumstances in which dispersal is limited, where the degree 

of relatedness among individuals can impact aspects of the mating system and the effective levels 

of consanguineous breeding (i.e., inbreeding) which can often be deleterious due to the union of 

rare recessive alleles. In some cases, gene flow can rescue populations by introducing genetic 

variation and can further facilitate the rate of adaptation through the gain of adaptive alleles from 

other populations, but this is not always the case as gene flow may in some cases swamp selected 

alleles from contributing to local adaptation (Haldane 1930), particularly at range margins (García-

Ramos & Kirkpatrick 1997). At local spatial scales, however, dispersal ability is the greatest factor 

influencing fine-scale SGS within populations. For wind pollinated trees, gene flow resulting from 

the movement of seeds and pollen can be estimated through analysis of maternally-inherited 

mitochondrial DNA (mtDNA), paternally-inherited chloroplast DNA (cpDNA), or from biparentally-

inherited nuclear DNA. Using such data has led to findings that suggest that dispersal distances 

of pollen are often orders of magnitude higher than that of seeds (e.g., Ennos 1994; see Table 2 

in Petit & Hampe 2006). Further, it is often the case that tree species exhibit little genetic 

differentiation between populations (Howe et al. 2003; Alberto et al. 2013) due to extensive gene 

flow among populations (Slavov et al. 2004; Savolainen et al. 2007) generally to a higher degree 

than most herbaceous plants (Hamrick et al. 1992). Alongside parentage analysis, which can 

estimate fine-scale gene flow (e.g., Moran & Clark 2011), quantification of pollen pools from local 

trees can also be used to estimate aspects of pollen movement (e.g., Smouse et al. 2001). 

The mating system of a given species can have profound effects on the degree of SGS 

within and across populations. The mating system not only defines the mode of genetic 

transmission between generations, and thus levels of inbreeding, but in concert with levels of 
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dispersal can influence effective population sizes (the number of individuals from a Wright-Fisher 

population that would result in similar patterns of drift and/or genetic variation as that within a 

realized population), and the degree of subdivision due to genetic drift and selection (Schoen and 

Brown 1991; Holsinger 2000). Conifers often exhibit mixed mating systems and while outcrossing 

rates within coniferous species varies between populations, individuals, and between years 

(Mitton 1992), the majority of those species studied are outcrossed and have low levels of selfing 

(<10%, O’Connell 2003). At fine spatial scales, the degree of correlated paternity (i.e., the 

proportion of full sibs among maternal progeny) will further influence patterns of SGS, potential 

levels of kin competition, and inbreeding depression of subsequent generations (Hardy et al. 

2004). For example, increased inbreeding rates within Pinaceae have been associated with 

reduced seed set and germination (Kärkkäinen et al. 1999). Deleterious alleles of large-effect 

have caused inbreeding depression in early life stages (e.g., embryo abortion) while those alleles 

of lesser effect tend to interact with quantitative characters such as growth and fecundity during 

maturity (Sorensen 2001).  

Various aspects of the biology of a given species will ultimately impact the (effective) 

mating system as well. For instance, the density of mature conspecifics (in some cases influenced 

by silvicultural practices), manner of pollination (e.g., insect- or wind-dispersed, or iso- versus 

aniosotropic dispersal patterns), phenological partitioning (e.g., flowering synchrony, seed drop), 

and phenotype (e.g., height, reproductive effort) will also affect mating patterns and SGS of trees 

across the landscape (El-Kassaby et al. 2003; Robledo-Arnuncio et al. 2004; Geremew et al. 

2018). As pointed out by Kärkkäinen & Savolainen (1993), the degree of selfing in conifers can in 

some cases be prevented (though not completely) through spatial or temporal isolation of male 

and female function. Further, selfing should be more common in isolated trees where higher 

degrees of selfing are due to decreased concentration of pollen from other trees, and less 

common for trees with lower reproductive output (Kärkkäinen & Savolainen 1993). The findings 

from past studies are mixed, however, as there have been instances of sparse populations 
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exhibiting higher degrees of selfing (e.g., Farris & Mitton 1984; Knowles et al. 1987) as well as 

other instances where no pattern was found despite large differences in densities (e.g., Neale & 

Adams, 1985; Furnier & Adams, 1986) while relationships between outcrossing rates and pollen 

output have been weak (Shea 1987; Denti & Schoen 1988). In any case, such demographic 

patterns and life history consequences will ultimately influence standing genetic variation, and 

thus the potential for adaptation, or extirpation, of constituent populations. 

Population size and density 
 The number of individuals in a population (i.e., the population size) will determine many 

aspects of evolutionary dynamics of a given species. Specifically, the effective population size 

(defined above) was introduced by Sewall Wright (1931; 1933; 1938; 1969) and extended by 

others to facilitate calculations for evolutionary rates of change caused by genetic drift (defined 

above; Charlesworth 2009). This distinction is important, as it was found very early on that census 

population sizes often differ, sometimes dramatically, from effective population sizes (Frankham 

1995; Hough et al. 2013) such that evolutionary expectations will differ from reality if not taking 

these disparities into account. A number of factors will influence the effective population size, 

such as a disproportionate number of individuals between sexes, variability in reproductive output, 

non-random mating, the degree of overlap between generations, temporal changes in population 

size, unequal contributions from populations to the migrant pool, as well as both spatial and 

genetic structure of individuals across the landscape (Charlesworth 2009; Laporte & Charlesworth 

2002). While estimates differ by species, many clades of trees exhibit large effective population 

sizes, which ultimately impacts the efficacy of selection (see Figure 2 in Hough et al. 2013). 

 With respect to tree species, the density of conspecifics and continuity of populations will 

also impact evolutionary outcomes. Indeed, many aspects of conifer biology are affected by their 

surrounding environment as well as the density of hetero- and conspecifics. For instance, 

outcrossing rates of conifer species are often tied to population density (Farris & Mitton 1984) and 

surrounding tree heights (O’Connell et al. 2003), while removal of proximal individuals can 
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increase pollen and gene flow distances by reducing potential mates and removing once impeding 

vegetation (Dyer & Sork 2001). Thus, disturbance, sensu lato, has the potential to alter 

contemporary demographic and reproductive dynamics through both direct (population- level) and 

indirect (ecological-level) impacts (Mouillot et al. 2013). For instance, stand density is positively 

correlated with outcrossing rate of ponderosa pine (Pinus ponderosa, Farris & Mitton 1984) and 

Scots pine (P. sylvestris, Robledo-Anuncio et al. 2004). Conversely, Sork & Smouse (2006) 

demonstrate that for many plant species habitat fragmentation and physical isolation do not 

impede (and can occasionally increase) pollen flow. Because pollen and seed dispersal decrease 

exponentially with distance, and the outcrossing rate is dependent upon genotypic patterns of 

conspecifics and the spatial density of community structure as a whole, there is strong evidence 

to suggest that alteration of the community through disturbance may change existing mating 

patterns. 

Selection and Genetic Architecture 
When selection pressure is strong, populations must adapt or migrate to avoid extirpation. 

The spatial extent and strength of selection will likely covary with both biotic and abiotic 

environmental variation, in some cases considerably. In cases where spatially varying selection 

causes local adaptation, local populations will have higher fitness than genotypes introduced from 

elsewhere (see Fig. 1a in Savolainen et al. 2013). While phenotypic differences can be indicative 

of spatially heterogeneous selection, in t hese cases serial colonization and other demographic 

causes (e.g., IBD) must be ruled out. For the genera considered for this dissertation, dissecting 

fitness into aspects of survival and reproduction can in some cases be difficult, given the long-

lived nature of such species, as well as the representativeness of seedling phenotypes for total 

lifetime fitness. However, for many plant taxa, selection pressures are expected to be strongest 

for variation in survival during the juvenile stages of development (Donohue et al. 2010), 

particularly for those taxa with high reproductive output, as is the case for many tree species. As 

such, juvenile stages in plants have been found to contribute substantially to total lifetime fitness 
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(Postma and Ågren 2016). Phenotypic traits associated with juvenile survival have thus received 

the majority of genetic research focus in trees. Such studies have led to insights gained through 

a long history of common garden experimentation (Langlet 1971; Morgenstern 1996). For 

example, traits such as growth (e.g., height and diameter), form (e.g., specific gravity, 

straightness), phenology (e.g., bud flush, bud set), juvenile performance (e.g., germination rate, 

seed traits), and physiology (e.g., cold hardiness, water use efficiency) have all been shown to be 

under moderate to high genetic control (reviewed in Cornelius 1994; Howe et al. 2003; Alberto et 

al. 2013). Despite the vast majority of neutral variation remaining within populations (Howe et al. 

2003; Neale and Savolainen 2004), quantitative genetic variation for these traits is often 

partitioned more so among populations than these neutral expectations (Lind et al. 2018; Chapter 

6). Thus there exists ubiquitous evidence that many populations of trees are adapted to their 

environments (Savolainen et al. 2007; Alberto et al. 2013; Sork et al. 2013; Boshier et al. 2015; 

Prunier et al. 2015; Holliday et al. 2017) even across fine spatial scales where gene flow is 

expected to be a particularly prevalent driving force (e.g., Mitton 1989; 1999; Budde et al. 2014; 

Csilléry et al. 2014; Vizcaíno et al. 2014; Eckert et al. 2015; Holliday et al. 2016; Roschanski et 

al. 2016) providing further support that fine spatial scales are relevant to adaptation (Richardson 

et al. 2014). However, uncovering the genetic basis for these adaptive traits will often depend not 

only on available resources, but upon the neutral and non-neutral evolutionary history of the 

populations under consideration as well as the underlying genetic architectures of the dissected 

traits (i.e., the mutli-dimensional relationship between genotype and phenotype through causative 

variants, their relative location within a genome, expression, pleiotropic effect, environmental 

influence, and degree of dominance, epistasis, and additivity). In Chapter 6, I review current 

theory regarding polygenic local adaptation and how past evolutionary history can have a 

profound effect on underlying genetic architectures. I use this synthesis to remark on the current 

state of the genomics of local adaptation in trees and identify available resources and the path 

forward for this field. 
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Summary 
Throughout their evolutionary history, species of trees have occupied vast and heterogeneous 

landscapes (e.g., as evidenced from pollen and fossil records; Hewitt 1999; Willis & van Andel 

2004). As such, heterogeneous selection has led to many instances of local adaptation (Hereford 

2009; Boshier et al. 2015; Lind et al. 2018), where recent selection occurring over periods of post-

glacial colonization has been a predominate influence of current spatial patterns of quantitative 

genetic differentiation (Savolainen et al. 2013). With this in mind, management of tree species 

across fine and broad spatial scales will need to consider the past evolutionary history of 

constituent species, and how natural and anthropogenic influences can drive future evolutionary 

dynamics. In this dissertation, I aim to take advantage of such circumstances to understand how 

natural and anthropogenic influence affects evolutionary processes in Pinus species native to 

California and Nevada, USA. 

Objectives 
The main aims of this dissertation were to understand how natural and anthropogenic 

forces can influence tree evolutionary dynamics, and gear results and conclusions to be used 

towards economic and conservation applications. With this in mind, three study systems were 

chosen, 1) Pinus lambertiana in the southern Sierra Nevada mountains of California, 2) P. 

balfouriana in the southern Sierra Nevada and Klamath Mountains of northern California, and, 3) 

P. albicaulis in the central Sierra Nevada mountains. The species used in this dissertation, while 

all with range extents within California and small portions of Nevada, represent a variety of the 

myriad forest ecosystems of the western United States, particularly those that receive 

considerable management attention, and thus have broad application of the results and 

conclusions to management considerations elsewhere. Further, the publications resulting from 

these studies exemplify the utility of modern genomic and analytical approaches to non-model 

organisms.  
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Chapter 2 – Effects of forest management on fine-scale gene flow in Pinus lambertiana 
Dougl.  
Chapter 2 presents an assessment of how forest management affects evolutionary processes 

impacting fitness within fire-suppressed populations of a historically dominant pine species, sugar 

pine (Pinus lambertiana Dougl.). In order to understand impacts on the mating system and fine 

scale gene flow in this ecologically important species, we leverage the infrastructure of Teakettle 

Experimental Forest, a United States Forest Service site that applies treatments of prescription 

fire, a common fuel reduction technique, as well as their interaction to a fire-suppressed forest in 

the southern Sierra Nevada. In this study we addressed the following objectives: 

1) Understand how forest management (fire, thinning, and their interaction) affected 

pollen and seed dispersal from within and out of sampled plots; 

2) Describe how forest management affected spatial patterns of constituent trees; 

3) Describe how forest management affected spatial genetic structure of constituent 

trees. 

 

Chapter 3 – Local adaptation of Pinus albicaulis Engelm. across fine spatial scales 
Past studies quantifying the spatial extent of adaptive variation in trees have historically been 

carried out at broad spatial scales that often represent the geographic ranges of study species. 

However, management agencies are often limited to a subset of the species’ range. There is thus 

a disconnect between the information gained from such studies and the scale at which 

implications of their findings can be addressed and put into practice. In this chapter, and building 

from results from a common garden study, I leverage genetic, climatic, and edaphic data from 

natural stands of whitebark pine (Pinus albicaulis Engelm.) to understand how the environment 

can drive fine-scale local adaptation within the Lake Tahoe Basin Management Unit. The following 

questions were addressed in Chapter 3: 

1) Is there evidence that a long-lived, outcrossing plant species exhibiting high levels of gene 

flow can be locally adapted across fine spatial scales?  
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2) What is the genetic basis and relationship among loci underlying adaptation in such a 

species?  

3) How similar are the genetic bases of fitness-related phenotypes to the loci putatively under 

selection from the environment? 

 

Chapter 4 - Local adaptation and linkage maps I: A first step towards describing genetic 
architectures of complex traits in natural populations 
For non-model organisms, genomic resources needed to fully describe the genetic architecture 

of complex traits can face many hurdles. Because of their large genome size, conifers face many 

challenges in this regard, particularly with respect to the production of physical sequence maps 

with ordered genetic markers. Such resources can be used to test fundamental theory regarding 

the expected genetic architecture underlying adaptive traits under various demographic and 

evolutionary scenarios. To produce such resources, linkage maps are often used to both order 

and elongate blocks of sequence data. Across taxa, such maps were predominately made from 

well understood familial relationships or mating designs, but maps of single trees began 

increasing in numbers in the 1990s. In conifers, maternally derived haploid tissue (i.e., the 

megagametophye) can be used to order markers within individual trees within a fairly 

straightforward framework. This chapter is a first in a series that aims to understand and test 

fundamental theories of local adaptation in a non-model conifer, Pinus balfouriana Grev. & Balf. 

Using individuals collected from populations that historically exhibited gene flow but have 

subsequently become isolated from one another since the last glacial maximum, we address the 

following objective: 

1) Construct a dense linkage map using next-generation sequencing technology in a non-

model organism across both Klamath and Sierra Nevada populations 
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Chapter 5 - The genetic architecture of local adaptation II: The QTL landscape of water-use 
efficiency for foxtail pine (Pinus balfouriana Grev. & Balf.) 
This chapter builds upon Chapter 4 and begins to dissect the genetic architecture of water-use 

efficiency (WUE) in foxtail pine. Using niche modeling and indirect measures of WUE, the ratio of 

carbon isotopes fixed during photosynthesis (vwxC), as well as nutrient utilization, the ratio of 

nitrogen isotopes fixed during leaf-level resource utilization (µgN), we address the following 

objectives: 

1) Explore the importance of water availability as a determinant of geographical range of 

foxtail pine, 

2) Investigate the degree to which variation in vwxC and µgN is genetically based, 

differentiated among populations, and underlain by a genetic architecture with large 

effect loci 

Chapter 6 – The current state and future directions of forest tree genomics 
Knowledge of the loci underlying quantitative traits will benefit both conservation and industrial 

endeavors. Specifically, quantifying geographic variation of adaptive loci will inform planting and 

assisted migration efforts while the identification of these loci can be used in predictive breeding 

techniques. As such, there is great interest within the forest genetics community to identify the 

molecular underpinnings of traits important to adaptation and commercial enterprise. In this 

chapter I address several objectives: First I review the common garden approach and how it can 

be used to build evidence for local adaptation, as well as both heritable and quantitative genetic 

variation. Next, I review evolutionary theory and summarize the expectations of allele frequencies, 

effect size, and genomic organization of adaptive traits as it relates to gene action, negative 

selection, positive selection, and gene flow. I then contextualize the methods and results from 

genotype-phenotype associations with these expectations and conclude with recommendations 

for the field to most efficiently advance our understanding of the genomics of quantitative traits in 

trees.    
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    Chapter 2.  
Effects of forest management  

on fine-scale gene flow in Pinus lambertiana 
 

Abstract 
Frequent, low-severity fires in historic western North American forests were once a major 

driver of ecological patterns and processes, creating resilient systems dominated by widely 

spaced pine species. However, a century of fire-suppression has caused overcrowding, altering 

forest composition to shade-tolerant species while increasing competition, leaving trees stressed 

and susceptible to pathogens, insects, and high-severity fire. Exacerbating the issue, the 

probability of fire incidence is expected to increase with changing climate, while fire season has 

been observed to begin earlier and last longer than historic trends. Consequently, forest thinning 

has been identified as the primary management tool to mitigate these risks. Yet little is known of 

how thinning, fire, or their inevitable interaction affect evolutionary processes of constituent pine 

species, specifically regarding processes that influence fitness and play an important role in the 

opportunity for selection and population persistence. Here we assess management impact on 

fine-scale gene flow in a historically dominant and ecologically important shade-intolerant pine 

species in the Sierra Nevada, Pinus lambertiana Dougl. We find that treatment prescription 

differentially affects fine-scale genetic structure and effective gene flow in this species. 

Specifically, thinning prescriptions in isolation increases relative genetic structure between adults 

and seedlings, and that seed and pollen dispersal respectively increase and decrease as a 

function of increasing disturbance intensity. It is likely that these disequilibrated systems will 

continue to develop with time since a disturbance event, and that future dynamics of such systems 

should be continually monitored to ensure effective management. 
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Introduction 
Many aspects of conifer biology are affected by their surrounding environment as well as 

the density of hetero- and conspecifics. For instance, outcrossing rates of conifer species are 

often tied to population density (Farris & Mitton 1984) and surrounding tree heights (O’Connell et 

al. 2003), while removal of proximal individuals can increase pollen and gene flow distances by 

reducing potential mates and removing once impeding vegetation. Thus, disturbance, sensu lato, 

has the potential to alter contemporary demographic and reproductive dynamics through both 

direct (population-level) and indirect (ecological-level) impacts (Mouillot et al. 2013).  

For many historic forests of the western United States, natural disturbances such as fire 

were commonplace and equilibrated many ecosystem functions and processes (Covington et al. 

1994). Fire regimes in these regions had return intervals on decadal scales (10-17 years), in 

contrast to wetter climates where fire return intervals were (sub)centennial (50+ years; (North et 

al. 2005). Resultantly, these ecosystems experienced frequent, low-severity burns and were 

populated by fire-adapted genera, equilibrating forests dominated by resilient, widely spaced trees 

of various pine species. Yet over the past 150 years, anthropogenic influence has resulted in 

forests that are now fire-suppressed and overgrown by shade-tolerant species, causing increased 

competition, leaving trees stressed and susceptible to fungal and bark beetle attacks (Bonello et 

al. 2006).  

Stand densification has also increased the frequency and probability of contemporary, 

high-severity fires. Between 2012 and 2014 in California alone, 14,340 fires burned 1.1 million 

acres and injured or killed nearly 300 individuals (NIFC 2014). Collectively, fires across California, 

the Great Basin, Southwest, and Rocky Mountain territories have burned a combined 8.8 million 

acres between 2014 and 2015 (NIFC 2015), while Forest Service scientists predict future fires to 

reach unprecedented levels, covering over 12-15 million acres annually (USDA Forest Service 

2016a) requiring the United States Forest Service (USFS) to budget $2,300,000,000 on wildfire 

management, suppression, and preparedness for the 2016 fiscal year (USDA Forest Service 
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2016b). Exacerbating the issue, analyses of fire season length and onset have shown that 

seasons are beginning earlier and lasting longer than historic trends (Westerling 2006) while 

climate models predict extreme weather favorable to fire to become more frequent, and ignited 

fires to increase in severity, size, and required suppression efforts (Miller et al. 2009).  

Because of these contemporaneous trends, large-scale legislative efforts of forest thinning 

have been implemented to simultaneously restore fire-frequent ecosystems to their pre-

settlement resilience as well as to protect urban development and human life, as fuel reduction 

treatments of this type have been shown to be an effective tool in decreasing fire severity and 

ignition probability (Agee & Skinner 2005; Schwilk et al. 2009; Safford et al. 2009). For example, 

the Sierra Nevada Forest Plan Amendment (USDA Forest Service 2004) mandates that 50% of 

initial thinning treatments take place near urban populations, while the remaining thinning take 

place in natural wildland stands. To encourage fire resiliency the USFS has implemented fuel 

reduction treatments across 6.1 million acres of western, fire-suppressed forestland in 2014 

(USDA Forest Service 2016a) while foresters are calling for an overhaul of management policy to 

implement these thinning treatments to a far greater extent (North et al. 2015). While congruent 

with historic forest structure, these actions will orient these already disequilibrated systems on 

trajectories of unknown evolutionary consequence.  

Through timber harvests, land use conversion, and fire suppression, forests have 

undergone systemic shifts in composition, structure, and disturbance regimes that are 

incongruous to the natural and evolutionary histories of the inhabitant species (Collins et al. 2011; 

Larson & Churchill 2012). Consequentially, anthropogenic forest disturbance has been at the 

forefront of conservation attention for decades (Ledig 1988; 1992). The extent of human impact 

on forested land has received particular attention as a result of the empirical expectations 

developed from population genetic theory. Specifically, because of the reduction in individual tree 

density overall, and in particular for larger trees that asymmetrically contribute gametes to 

reproduction (Richardson et al. 2014), harvested forests are thought to be specifically subjected 
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to population bottlenecks, potentially altering existing mating systems or available gene pools 

while decreasing genetic variability within populations and increasing differentiation from native 

stands (Cloutier et al. 2006; Kramer et al. 2008; Lowe et al. 2015). These consequences can have 

considerable influence on the fitness of affected populations, as inbreeding depression can have 

deleterious effects on growth and reproductive potential while drastic changes in gene pool 

availability or mating system can alter a population’s potential to adapt to local conditions. 

Past studies investigating the genetic effects of North American forest management show 

mixed evidence of harvest influence. These studies sub-sample populations and primarily focus 

on diversity consequences across a range of molecular markers (often microsatellites). Nearly 

ubiquitously, management studies of North American conifers compare genotypic diversity 

indices (e.g., HE, HO, allelic richness, etc.) between treatments to detect management influence 

(Cheliak et al. 1988; Gömöry 1992; Buchert et al. 1997; Adams et al. 1998; Rajora et al. 2000; 

Macdonald et al. 2001; Perry & Bousquet 2001; Rajora & Pluhar 2003; El-Kassaby et al. 2003; 

Marquardt et al. 2007; Fageria & Rajora 2013a; b). However, the same diversity values can 

manifest under completely different scenarios and tests of significance between population values 

for a small number of markers may therefore be under-informative, particularly for sub-sampled 

populations, as these differences can result from sampling bias or neutral evolutionary processes 

unrelated to management. Additionally, these investigations also often employ FST analyses to 

assess statistical significance between treated and untreated stands (Thomas et al. 1999; Perry 

& Bousquet 2001; Marquardt et al. 2007; Fageria & Rajora 2013a; b). Though when used in this 

context, this test is simply signifying whether the allelic frequencies in (sub)populations under 

study are likely to have been sampled from the same ancestral population (Holsinger & Weir 

2009). Very often, the treated and untreated stands are physically adjacent (derived of a common 

ancestral population) and only under extreme perturbation should significance be expected. In 

cases where significance is detected, and other than to assess relative diversity between stands, 

such differentiation does little to inform how management is affecting ongoing evolutionary 
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processes affecting fitness as such processes may ameliorate bottlenecks due to management. 

It would therefore be difficult to draw such conclusions without assessing other processes.  

Very seldom in North American studies of forest management are evolutionary processes 

influencing fitness specifically examined (but see Neale & Adams 1985). As such, and despite 

generally nonsignificant findings, authors caution interpretation (Finkeldey & Ziehe 2004; 

Namroud et al. 2012). Very often the scale of sampling (both in terms of numbers of individuals 

and the degree of temporal variation), as well as the lack of investigation into evolutionary 

dynamics have been offered as inadequate, and that further investigation into evolutionary 

consequences of natural and anthropogenic disturbance could give valuable insight to forest 

managers and fill a vital knowledge gap in this regard (Namroud et al. 2012). Indeed, 

incongruence between theoretical predictions and empirical results from studies evaluating 

genetic consequences of forest disturbance has created a paradox within the literature (Kramer 

et al. 2008). Yet as Lowe et al. (2015) point out, we may have been looking in the wrong place. 

They argue that instead of simply assaying mature cohorts to understand the genetic 

consequences of disturbance, future attention should include progeny arrays as well as the 

relative regenerative success across a wide range of influences. Additionally, they contend that 

the type and magnitude of the genetic response itself may be better understood through the 

variation in mating and breeding systems of studied species. Of particular importance, Lowe et 

al. (2015) advise scientists that the most fruitful research endeavors will incorporate quantitative 

approaches to understanding evolutionary mechanisms, specifically those connecting changes in 

pollination to mating systems and evolutionary fitness, and that these efforts will likely generate 

critical knowledge regarding the mechanisms driving the dynamics we observe.  

Given the evidence for the efficacy of thinning treatments’ effect in reducing fire severity 

and ignition potential (Agee & Skinner 2005; Schwilk et al. 2009; Safford et al. 2009), the USFS’s 

continued commitment to implementing these thinning treatments to a far greater extent (North et 

al. 2015; USDA Forest Service 2016a), as well as forecasted inevitability of widespread, large-
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scale future fire incidence in the western United States (Westerling 2006), interactions between 

fire and forest thinning management are certain. To ensure forests are resilient to frequent fire 

and disturbance, and to ensure habitat for public recreation and native wildlife, the interactive 

impact of management and fire must be understood in an evolutionary framework. Here, we 

investigated the evolutionary impact of forest management on fire-suppressed populations of 

sugar pine (Pinus lambertiana Dougl.) within Teakettle Experimental Forest (TEF), a USFS site 

located in the central Sierra Nevada of California. Using microsatellite markers, we employ 

parentage analysis and assess impact upon various processes known to affect fitness such as 

the mating patterns, effective dispersal distances, and fine-scale genetic structure.  

Methods 

Study area, sampling, and focal species 
Teakettle Experimental Forest (TEF) is a fire-suppressed, old-growth forest watershed in 

the central Sierra Nevada mountains of California. The 1300-ha forest ranges from 1900–2600m 

in elevation and consists of five conifer species representative of fire-suppressed forests of the 

Sierra range: white fir (Abies concolor [Gordon] Lindley ex Hildebrand), red fir (A. magnifica A. 

Murray), incense cedar (Calocedrus decurrens [Torr] Florin), Jeffrey pine (Pinus jeffreyi Balf.), 

and sugar pine (P. lambertiana). Historically, fire burned the area every 11-17 years, but had been 

suppressed for 135 years (North et al. 2005) while logging had been completely absent within the 

watershed (North 2002). Six treatments were applied to neighboring 4-ha plots at TEF (each 

200m x 200m, Figure 2.1a) by crossing two levels of burn (no-fire and fire) with three levels of 

thinning (no-thinning, overstory-thinning, and understory-thinning). The understory thinning 

prescription followed guidelines in the California spotted owl (CASPO) report (Verner et al. 1992) 

which is now widely used for fuel management in California (SNFPA 2004). Each treatment was 

replicated three times for a total of 18 plots covering 72ha. Understory-thinning removes all trees 

with a diameter at breast height (DBH) ≥76cm and ≤25cm, while overstory-thinning removes all 

trees >30cm DBH except 18-22 of the largest trees per hectare. Treatments were applied to the 
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Figure 2.1 Teakettle Experimental Forest, California (Latitude: 36.9606, Longitude: -119.0258). (A) Spatial 
arrangement of treatments (BC = burned understory thin; BN = burned no-thin; BS = burned shelterwood thin; UC = 
unburned understory thin; UN = unburned no-thin; US = unburned shelterwood thin). Replicates for each treatment are 
numbered one through three from south to north. (B) Mapped coordinates (Universal Transverse Mercator) and 
elevation (meters) of pre-treatment adults ≥ 5cm diameter at breast height. (green: P. lambertiana, red: P. jeffreyi, gray: 
A. concolor, blue: A. magnifica, orange: C. decurrens, black: Quercus, Salix, and remaining species.). 

 

watershed over 2000 and 2001. Plot inventories of pre-treatment (1999), and post-treatment 

(2001, 2004, and 2011) conditions mapped individual trees on a 3D coordinate system that was 

then translated into Universal Transverse Mercator (colored dots, Figure 2.1b). Only standing 

boles ≥5cm DBH were included in plot inventories, which recorded species, DBH, spatial 

coordinates, and decay class. Post-treatment inventories updated DBH, decay class, and added 

individuals to the dataset once they reached 5cm DBH. Here, seedling and saplings are all pine 

stems <5cm DBH. For these, basal diameter and spatial coordinates were recorded over the 

summers of 2012 and 2013 while collecting needle tissue samples from the full census of all live 

P. lambertiana within plots across all treatments (N = 3,135). Pinus lambertiana is a historically 

dominant member of mixed-conifer forests of the Sierra Nevada, and continues to play important 

ecological roles for numerous taxa. This species is shade-intolerant and is an important focus of 

restoration of forest resilience to pre-settlement conditions of frequent fire. 
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Analysis of tree spatial structure 
Using plot-level P. lambertiana individuals, we estimated spatial structure of seedlings and 

adults across 10-meter distance classes, r, separately using univariate inhomogeneous pair 

correlation functions (>?@ABC(:)) from the spatstat library in R (Baddeley et al. 2015) using an 

isotropic edge correction. This statistic was chosen over Ripley’s K, or its linearized version (L) 

because of advocacy for >?@ABC(:) over these statistics (see spatstat manual). This analysis 

tests the null hypothesis that the 2D spatial arrangement of points (adults or seedlings) is not 

significantly different from complete spatial randomness (CSR; i.e., a Poisson distribution of inter-

point distances with inhomogeneous intensities of points). We calculated null confidence 

envelopes for each test using 199 null simulations of CSR using the same intensity of the pattern 

of individuals analyzed. For trees that coincide with the null model of CSR >?@ABC(:) = 1, with 

spatial aggregation resulting in >?@ABC(:) > 1, and with spatial inhibition resulting in >?@ABC(:) < 1 

(Baddeley et al. 2015); significance was judged using the null confidence envelopes described 

above. We also repeated this analysis for shade-tolerant individuals (i.e., A. concolor and A. 

magnifica grouped together). Further, we extended the univariate inhomogeneous pair correlation 

function to its bivariate equivalent, >?@ABC,?,|(:), to test for spatial affinity between two groups i 

and j, using similar methods as above for edge correction and null confidence envelopes. We 

calculated >?@ABC,?,|(:) between unique combinations of P. lambertiana adults, P. lambertiana 

seedlings, and shade-tolerant individuals. Hypothesis testing and interpretation of bivariate 

>?@ABC,?,|(:)  was carried out as with univariate  >?@ABC(:). Results from these analyses will allow 

us to compare standing spatial structure of trees against spatial genetic autocorrelation (see 

below) and make inferences about ecology of these species as well as how treatments at TEF 

are affecting ongoing evolutionary dynamics.  

DNA extraction, microsatellite amplification 
Total genomic DNA was extracted according to manufacturer’s protocol using the DNeasy 

96 Plant Kit (Qiagen, Germantown, MD) from finely ground P. lambertiana samples within a 



 

 

 

20 

subset of the factorial treatments at TEF: unburned-no-thin control plots (hereafter UN), 

understory-thin (CASPO) plots without burn application (hereafter UC), and burned understory-

thin plots (hereafter BC) for a total of 1,348 individuals. For each individual, three chloroplast 

(paternally inherited, Wofford et al. 2014: pt71936, pt87268, pc10) and four nuclear (biparental 

inheritance, Echt et al. 1996: rps50, rps02, rps12, rps39) microsatellite markers were amplified 

(using fluorescent dyes NED, PET, VIC, and FAM) per the original publications with minor 

modifications using BIO-RAD iProof high fidelity DNA polymerase. Specifically, for all chloroplast 

markers (Wofford et al. 2014) we ran an initial denaturation step of 98°C for 30s, where the next 

36 cycles consisting of a denaturation step of 10s at 98°C, an annealing step at 58°C for 30s, and 

an extension step at 72°C for 30s, followed by a final extension step at 72°C for 10mins. For 

nuclear markers RPS12 and RPS39 (Echt et al. 1996), we ran an initial denaturation step of 98°C 

for 30s followed by eight cycles of a denaturation (98°C for 10s), annealing (60°C for 30s) and an 

extension (72°C for 30s), which were subsequently followed by six cycles of denaturation (98°C 

for 10s), annealing (60°C for 30s; which decreased 0.5°C every step until reaching 57°C), and 

extension (72°C for 30s), with a final extension of 72°C for 10mins. For nuclear marker RPS50 

(Echt et al. 1996), this procedure was similar to that of RPS12 and RPS50 except that the second 

cycles cycled 20 times and the annealing step decreased 0.5°C until reaching 50°C. For RPS02 

(Echt et al. 1996) we ran the second set of cycles for 10 cycles where the annealing step 

decreased 0.5°C until reaching 55°C. The chloroplast markers were chosen for their primer 

conservation across Pinus, Trifoliae, Parrya, and Quinquifolia subsections of the Pinus genus 

(Wofford et al. 2014) while the chosen nuclear markers have been amplified in eastern white pine 

(P. strobus L., Echt et al. 1996) and both sets successfully amplified on a subset of individuals at 

TEF as a proof-of-concept judged by gel electrophoresis. Multiplexed individuals (one fluorescent 

dye per well) were analyzed using the Applied Biosystems 3730xl fragment analyzer at Cornell 

University (http://www.biotech.cornell.edu/brc/genomics-facility) and genotypes were called using 
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GeneMaker v2.6.7 (see Supplemental Information XXXX; 

http://www.softgenetics.com/GeneMarker.php).  

Genetic diversity measures 
Treatment-specific diversity measures (total number of alleles, AT; mean number of alleles 

per locus, A; effective number of alleles per locus, Ae; observed and expected heterozygosity for 

nuclear markers, respectfully Ho, He; average number of private alleles, AP; and overall means for 

each category) were calculated for each treatment and averaged across loci in order to compare 

dynamics at TEF to studies within the literature. For estimates of Ho and He, only nuclear markers 

were used. To quantify variation in these measures we also report standard deviation. We also 

calculated hierarchical multi-locus }"# according to Weir & Cockerham (1984) for nuclear markers 

using the hierfstat package in R (Goudet & Jombart 2015) and calculated treatment-specific 

}"# in a similar manner in order to compare fixation indices across treatments. Further, single- 

and multi-locus exclusion probabilities for parentage analysis (see below) were calculated using 

python scripts modified from gstudio (v1.5.0; Dyer 2016).  

Analysis of spatial genetic structure  

To quantify spatial genetic autocorrelation at a distance class (lag) h (hereafter :MA), we 

used functions from the PopGenReport package in R (Adamack & Gruber 2014). Specifically, 

using multi-locus genetic distances (Smouse & Peakall 1999) and Euclidean geographic 

distances among spatial coordinates of individuals, we calculated :MA across distances classes h 

corresponding to approximately 10-meter bins for P. lambertiana seedlings, P. lambertiana adults, 

as well as a bivariate approximation for the clustering of P. lambertiana adult genotypes to those 

of seedlings. For a given distance class, h, spatial patterning of multi-locus genotypes are 

unrelated to (i.e., random relative to) the spatial patterns of individuals if :MA = 0, aggregated if :MA 

> 0, and dispersed if :MA < 0. We estimated null confidence intervals by taking the 2.5th and 97.5th 

quantiles of M = 1000 estimates of :M,CA , where 999 of these estimates were computed by randomly 
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permuting individual genotypes across empirical spatial coordinates, with the Mth permutation 

being the empirical estimate of :MA itself (Smouse & Peakall 1999). We created correlograms for 

nuclear and chloroplast markers both in isolation and in combination, but present only those using 

full genotypes as correlograms by marker type showed similar patterns as full genotypes. We 

used these correlograms to quantify spatial aggregation of genotypes so that conclusions based 

on treatment effects could be compared and contextualized with ongoing evolutionary dynamics 

at TEF. 

Parentage analysis  
To quantify fine-scale gene flow at TEF, we conducted parentage analysis using our 

genetic markers. Joint estimation of parentage and dispersal parameters (i.e., mean dispersal 

distances of seed and pollen) were achieved by expanding methods of Moran & Clark (2011). 

This method simultaneously estimates parentage and mean dispersal distances for seed and 

pollen within a Bayesian framework, taking into account genotyping error and variation in 

individual fecundity while treating dispersal processes inside and outside of the mapped areas in 

a coherent manner, which is critical if the dispersal kernel is to reflect both long- and short-

distance movement. Here, all sampled adults are characterized by a multi-locus genotype and a 

mapped coordinate. Additionally, there exists a sample of seedlings, each of which has not only 

a genotype and location, but an estimated pedigree as well, which can consider any adult as 

either mother or father, or of a selfing event (though we excluded possible selfing events from 

analyses). The probability of the pedigree considering two in-plot parents, before incorporating 

information regarding genotype, is estimated from the probability of pollen to mother movement 

over the given distance and of seed movement over the distance between mother and seedling, 

as well as the parental prior distribution for fecundity and pollen production. For the study here, 

pollen production was considered proportional to fecundity (as in Moran & Clark 2011) and was 

estimated by fitting a 2nd-order power polynomial regression to data from Figure 6 in Fowells & 

Schubert (1956) where Cone Count = 0.0098(dbh2) - 0.4811(dbh) + 10.651. After calculating cone 
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counts using this regression, we set fecundity for all adults <25cm DBH to zero given observed 

cone counts from Fowells & Schubert (1956). For dispersal priors, we set the seed dispersal 

kernel shape parameter, Td, to 253.31, corresponding to a mean dispersal distance of 25m (Millar 

et al. 1992; Fowells & Schubert 1956) while the pollen dispersal kernel shape parameter prior, 

T~, was set to 2279.72, corresponding to a mean pollen distance of 75m (Wright 1976; Neale 

1983; Millar et al. 1992). For priors to the standard deviation of mean dispersal we set seed 

(pollen) to 1013.21 (9118.90) corresponding to standard deviations of 50m (75m). 

Given that either parent could have produced the offspring the likelihood that this pair is 

the true parents relative to all other possible parent pairs depends on the dispersal kernel priors 

for seed and pollen, and the seed and pollen production of all trees both inside and outside of the 

plot (the fraction of all possibilities; Moran & Clark 2011). To evaluate the probability of an offspring 

having one parent in the plot and the other outside of the plot, a set of potential out-of-plot parent-

densities, R;w,…,	R;�Ä, each 10m progressively outside of the plot is considered (see 

supplemental figure S3.1 in Moran & Clark 2011). Pollen and seed movement into the plot is 

approximated by assuming first that all seed/pollen produced within each quarter-polygon, Å, 

originates from a tree located R;Ç meters from the midpoint of each side outside of the plot. The 

expected out-of-plot pollen (seeds) reaching an in-plot mother (a seedling’s location) from each 

quarter-polygon outside of the plot is calculated based on the average density and average 

fecundities of trees outside of the plot and then multiplied by the probability of dispersal to the 

point within the plot. Summing over each distance class over each side gives the total expected 

out-of-plot pollen/seed dispersal to points inside of the plot. However, to calculate the probability 

of an in-plot versus an out-of-plot father, the expected pollen arriving at an out-of-plot mother from 

another out-of-plot father must first be calculated using the concentric circles around the sampled 

plot and the distance classes described above. The fraction of rings falling outside the plot 

determines the fraction of pollen received from each distance class, R;Ç, expected to come from 
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outside trees. Once error rates (-w) and dropout rates (-�) of genotyping are calculated through 

regenotyping individuals (see supplemental information), the probability of a pedigree, seed and 

dispersal parameters given the offspring genotype, distances, error rates, and pollen/seed 

production can be estimated (Moran & Clark 2011). Very rarely have previous studies 

investigating effects of forest management (or using parentage analysis towards such goals) 

incorporated error and dropout rates into subsequent inferences.  

For the current study, out-of-plot densities were extrapolated for each side of the six plots 

used at Teakettle from densities and DBH distributions (our proxy for fecundity) revealed in pre-

treatment surveys (North 2002). Due to the proximity of the treated plots, all adult trees and 

seedlings across UC, BC, and UN treatments were considered simultaneously for parentage 

assignment. Our methods therefore extend Moran & Clark (2011) from a single plot of sampled 

individuals to multiple plots across the landscape by accounting for out-of-plot polygonal 

boundaries (distance classes) that would have overlapped existing plots, instead using the 

standing structure of neighboring plots in estimating probabilities of parentage and excluding area 

outside of a given plot that overlaps any other plot (and is thus probabilistically considered via 

existing genotypes). Additionally, instead of considering any given pedigree as symmetrical (i.e., 

with no consideration for which tree was the pollen or seed donor) we utilize genotyped markers 

separately to consider whether a given pedigree is for a mother-father pair, or for a father-mother 

pair (i.e., we only considered nuclear markers for a potential mother, and all markers for a potential 

father). The most probable pedigree for each seedling was identified by assessing the proportion 

of the proposed pedigree across chains in the Gibbs sampler (as in Moran & Clark 2011). This 

method was further modified to improve computational efficiency by multiprocessing appropriate 

elements of the script by utilizing custom python scripts run on the VCU Center for High 

Performance Computing cluster (CHiP) and the SNOW library (v0.4-2; Tierney et al. 2016) in R 

(v3.3.3; R Core Team 2017).  
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Using parentage analysis to further quantify fine-scale geneflow 
In addition to estimates of the mean seed and pollen dispersal from parentage analysis 

(see above), we used these parentage assignments to further classify fine-scale gene flow at 

TEF. Using the full set of most probable pedigrees identified from parentage analysis, we first 

quantified the number of in-plot vs. out-of-plot dispersal events averaged across each treatment 

replicate. Then, using the most probable parentage assignment for each offspring, we quantified 

mean dispersal distances from sampled mothers to seedlings, as well as between sampled 

fathers to sampled mothers. To better account for uncertainty in parentage assignment (i.e., to 

account for fractional parentage assignment), we also calculated mean dispersal distance by 

treatment by considering all pedigrees with known individuals weighted by the probability of 

assignment. Specifically, for mean seed dispersal, for each seedling we calculated the weighted 

average of mother-offspring distances across pedigrees of non-zero probability that included 

known mothers. Here, each weight was the probability of assignment, ;IJJK,ÉJK?MÑJJ , divided by 

the probability of assignment of this seedling to a known mother (1 - ÖÜ) where ÖÜ is the sum of 

the probabilities across all non-zero pedigrees that included an unsampled mother. Treatment-

level averages were then calculated across these weighted distances. For pollen dispersal, for 

each seedling we considered only pedigrees of non-zero probability where both the mother and 

father were known, weighting each distance by the probability of assignment, ;IJJK,ÉJK?MÑJJ, 

divided by the probability of assignment to known parents (1-ÖIJJK,ÉJK?MÑJJ) where ÖIJJK,ÉJK?MÑJJ  

is the sum of the probabilities across all non-zero pedigrees that included at least one unsampled 

parent. Treatment-level averages were then calculated from these weighted distances.  

Scripts used in analyses described above can be found in IPython notebook format (Pérez 

& Granger 2007) at https://github.com/brandonlind/teakettle. 
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Results 

Analysis of tree spatial structure 
Univariate Analysis 

Across treatments, P. lambertiana adults generally exhibited spatial aggregation at 

distance classes less than 20 meters, where this signal decreased with increasing disturbance 

intensity with UN plots showing the greater magnitudes of >(ab/c(:) than UC or BC plots at these 

small distance classes (Figure 2.2). For adult shade-tolerant species (A. magnifica and A. 

concolor combined), the extent of spatial aggregation at large distance classes decayed with 

increasing disturbance intensity (Figure 2.3) where UC treatments generally exhibited greater 

magnitudes of >(ab/c(:) than BC treatments in small distance classes. For P. lambertiana 

seedlings, UN treatments generally had significant aggregation and much larger magnitudes of 

>(ab/c(:) at larger distance classes than other treatments, while seedlings in BC treatments 

exhibited greater magnitudes of >(ab/c(:) across small distance classes than either UC or UN 

plots (Figure 2.4). 

Bivariate Analysis 

The spatial affinity of P. lambertiana seedlings to P. lambertiana adults, 

>?@ABC,IJJKL?@M,NKOLP(:), generally tended from randomness (>?@ABC,IJJKL?@M,NKOLP(:) = 1) to spatial 

inhibition (>?@ABC,IJJKL?@M,NKOLP(:) < 1) with decreasing intensity of disturbance (i.e., from 

undisturbed UN plots, to thin-only UC plots, to thinned-and-burned BC plots). UN plots tended to 

show consistent inhibition across distance classes greater than about 15m, whereas observed 

>?@ABC,IJJKL?@M,NKOLP(:) for UC plots tended to align with the lower extent of the confidence interval 

with fewer instances of significant inhibition between adult and seedlings (Figure 2.5). A similar 

trend for increasing spatial inhibition between P. lambertiana seedlings and shade-tolerant adults 

(>?@ABC,IJJKL?@M,NKOLP(:)), as well as for P. lambertiana adults and shade-tolerant adults  
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Figure 2.2 Univariate analysis of adult P. lambertiana (PiLa) spatial structure, >

?@ABC(Ñ)
, by treatment 

replicate for each distance class, :. Gray : null confidence envelope; Solid black line : observed >
?@ABC

(:). 
Red dashed line : null expectation of complete spatial randomness, >

?@ABC
(:) = 1. Individuals are 

aggregated if >
?@ABC

(:) > 1, inhibited if >
?@ABC

(:) < 1. BC1 was below the threshold sample size allowed by 
spatstat.  
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Figure 2.3 Univariate analysis of adult shade tolerant (A. magnifica and A. concolor; ShadeTol) spatial 
structure, >

?@ABC
(:), by treatment replicate for each distance class, :. Gray : null confidence envelope; Solid 

black line : observed  >
?@ABC

(:). Red dashed line : null expectation of complete spatial randomness,  
>
?@ABC(Ñ)

 = 1. Individuals are aggregated if  >
?@ABC

(:) > 1, inhibited if  >
?@ABC

(:) < 1. 
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Figure 2.4 Univariate analysis of P. lambertiana (PiLa) seedling spatial structure, >

?@ABC
(:), by treatment 

replicate for each distance class, :. Gray : null confidence envelope; Solid black line : observed  >
?@ABC

(:). 
Red dashed line : null expectation of complete spatial randomness,  >

?ABC
(:) = 1. Individuals are 

aggregated if  >
?@ABC

(:) > 1, inhibited if  >
?@ABC

(:) < 1. 
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Figure 2.5 Bivariate analysis of spatial structure between P. lambertiana seedlings (seed) and P. 
lambertiana adult, >

?@ABC,IJJKL?@M,NKOLP
(:), by treatment replicate for each distance class, :. Gray : null 

confidence envelope; Solid black line : observed >
?@ABC,IJJKL?@M,NKOLP

(:). Red dashed line : null expectation 
of complete spatial random-ness, >

?@ABC,IJJKL?@M,NKOLP
(:) = 1. Individuals are aggregated if 

>
?@ABC,IJJKL?@M,NKOLP

(:) > 1, inhibited if  >
?@ABC,IJJKL?@M,NKOLP

(:) < 1. 
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Figure 2.6 Bivariate analysis of spatial structure between P. lambertiana seedlings (seedling) and adult 
Abies spp. (shadetol), >

?@ABC,IJJK,IANKJPBL
(:), by treatment replicate for each distance class, :. Gray : null 

confidence envelope; Solid black line : observed >
?@ABC,IJJKL?@M,IANKJPBL

(:). Red dashed line : null expectation 
of complete spatial random-ness, >

?@ABC,IJJKL?@M,IANKJPBL
(:) = 1. Individuals are aggregated if 

>
?@ABC,IJJKL?@M,IANKJPBL

(:) > 1, inhibited if  >
?@ABC,IJJKL?@M,IANKJPBL

(:) < 1. 
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Figure 2.7 Bivariate analysis of spatial structure between P. lambertiana adults (PiLa-Adult) and adult Abies 
spp. (shadetol), >

?@ABC,t?áNàNKOLP,IANKJPBL
(:), by treatment replicate for each distance class, :. Gray : null 

confidence envelope; Solid black line : observed >
?@ABC,t?áNàNKOLP,IANKJPBL

(:). Red dashed line : null 
expectation of complete spatial random-ness, >

?@ABC,t?áNàNKOLP,IANKJPBL
(:) = 1. Individuals are aggregated if 

>
?@ABC,t?áNàNKOLP,IANKJPBL

(:) > 1, inhibited if  >
?@ABC,t?áNàNKOLP,IANKJPBL

(:) < 1. 
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(>?@ABC,IJJKL?@M,NKOLP(:)), was also observed (Figure 2.6-Figure 2.7) where UN treatments 

generally had a greater inhibition than UC or BC plots, though BC plots also exhibited some 

evidence of spatial inhibition between groups. The results from the uni- and bivariate analyses of 

spatial patterns at TEF suggest that pines are generally clustered with other pines, shade-tolerant 

individuals are clustered with other shade-tolerant individuals, but spatial patterns of shade-

tolerant adults generally show spatial inhibition with pine individuals of both classes. Further, 

together with the univariate spatial clustering of P. lambertiana seedlings at small distance 

classes, these bivariate results suggest there may be ecological drivers influencing realized 

patterns of seedlings across microenvironments at TEF (e.g., perhaps sites with decreased 

competition for [or ideal levels of] nutrients or light). 

Diversity measures  
 To compare our results with measures often used across the literature to investigate 

genetic effects of forest management we calculated various genetic diversity measures (see 

Methods). Genetic diversity measures (Table 2.1) seemed to be most influenced by census size 

across the various measures we estimated here. For instance, census size increased from BC 

(109 individuals) to UN (557 individuals) to UC (682 individuals) where related diversity measures 

of ,#, ,, ,J, and ,t followed this trend. Observed heterozygosity was greatest for UN plots, 

followed by BC and UC plots, while expected heterozygosity decreased from UC to BC to UN 

(Table 2.1). Thus, no trend was observed between diversity measures and increasing disturbance 

treatment at TEF.  

 Hierarchical F-statistics were calculated with nuclear markers to compare the extent of 

fixation within and across treatment types, with individuals nested in replicates, replicates nested 

in treatments, and treatments nested within TEF. The overall multilocus }"# (}ÑJÉ,âäã) at TEF was 

0.075, consistent with estimates of many Pinus species across various spatial scales (Howe et 

al. 2003) suggesting that the vast majority of genetic variation was partitioned more so within plots 

than between plots. The }ÑJÉ,äã for individual markers varied across markers: rps02 (}ÑJÉ,âäã  =  
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Table 2.1 Genetic diversity measures (standard deviation) by treatment. N : census number of individuals 
[adults, seedlings]; 	,

â
 : total number of alleles; , : mean number of alleles per locus; ,

J
 : effective number 

of alleles (harmonic mean across loci); .
B
, .

J
 : respectfully observed and expected heterozygosity for 

nuclear markers; ,
t
 : average number of private alleles. For ,, ,

J
, .

B
, and .

J
, values indicate averages 

across loci, where values for each locus were calculated across all three treatment replicates 
simultaneously. .

B
 and .

J
 used only nuclear markers, whereas other genetic diversity columns considered 

all loci.  

 

0.019), rps12 (}ÑJÉ,âäã  = 0.037), rps39 (}ÑJÉ,âäã  = 0.148), rps50 (}ÑJÉ,âäã  = 0.103). Considering 

only genotypes across replicates of a given treatment, treatment-level estimates of }å0~,fç also 

varied (}å0~,éq = 0.011, }å0~,éè = 0.109, }å0~,êè = 0.035) but showed no pattern with increasing 

disturbance intensity. Pairwise }å0~,fç comparisons between treatments were calculated by con-

sidering genotypes across two treatments simultaneously and were used to compare the extent 

of fixation across disturbance intensity. Here, the three comparisons ranged from 0.050 (UC and 

UN) to 0.055 (BC and UC) to 0.075 (BC and UN) indicative of increasing relative fixation with 

increasing disparity for the intensity of disturbance for a given comparison. 

Analysis of spatial genetic structure 
 Analysis of spatial genetic autocorrelation (sensu Smouse & Peakall 1999) was carried 

out at TEF to better understand how treatment affects standing genetic structure (P. lambertiana 

adults x P. lambertiana adults), how this standing genetic structure affects genetic structure of 

seedlings (P. lambertiana seedlings x P. lambertiana seedlings), and the tendency of alike 

genotypes to be aggregated or inhibited across the treatments as the stands continue to develop 

after treatment (P. lambertiana adults x P. lambertiana seedlings). In all comparisons, spatial 

genetic structure in BC treatments did not differ significantly from a random spatial distribution of  

 

Treatment p ,# , ,0 ./ .0 ,1 

UN 557 [236,321] 180 25.71 (6.50) 3.23 (1.58) 0.87 (0.06) 0.77 (0.06) 46 

UC 682 [307,375] 210 30.00 (7.76) 6.20 (3.07) 0.57 (0.30) 0.84 (0.10) 73 

BC 109 [42,67] 107 15.29 (6.80) 4.80 (2.46) 0.82 (0.08) 0.82 (0.07) 5 

Mean 449 [195,254] 165.67 23.67 4.74 0.75 0.81 41.3 
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UN        UC           BC 

 

 
 

 
 
Figure 2.8 Analysis of spatial genetic structure (sensu Smouse & Peakall 1999) between P. lambertiana 
adults (first row), P. lambertiana seedlings (second row), and between P. lambertiana adults and seedlings 
(third row) by treatment (columns) across distance classes within plots (main panel) or across TEF (insets). 
Values of :

M

A = 0 indicate random spatial patterns of genotypes, :
M

A > 0 indicate clustering of alike genotypes, 
and :

M

A < 0 indicate spatial inhibition of alike genotypes. 
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genotypes (last column Figure 2.8), perhaps due to the relatively small sample sizes (Table 2.1) 

in distance-class bins. However, there seems to be an effect of treatment on the spatial patterning 

of genotypes of adults in the UC and UN stands (first row Figure 2.8). While the natural fire-

suppressed stands (UN) exhibited small but significant spatial genetic structure for most distance 

classes up to 200m, UC stands resulted in significant aggregation of adult genotypes at a greater 

degree than UN up to 150m, where genotypes became spatially inhibited up to the maximum 

distances in stands (200(√2)m; Figure 2.8). These patterns resulted in spatial distributions of 

seedling genotypes that were randomly distributed except for very short distance classes in UN 

treatments, and for UC seedlings, resulted in the general pattern observed for UC adults albeit to 

a higher degree of both aggregation and inhibition (second row Figure 2.8). As a result, alike 

genotypes between adults and seedlings were aggregated up to 150m in UC plots, whereas this 

relationship in UN treatments resulted in negative values of :
M,NKOLP,IJJK

A  that bordered the 

confidence envelope for spatial inhibition but were not significantly different from a random spatial 

distribution of genotypes (third row of Figure 2.8). While the genetic structure of adults is due to 

the interaction of the effect of treatment on pretreatment conditions, the long-term dynamics of 

these stands will be influenced by seedling ingrowth. These results suggest that UC treatments 

may, in the long term, increase the relatedness of individuals across short spatial scales less than 

150m relative to either BC or UN treatments. 

Quantifying fine-scale gene flow  
In-plot vs. out-of-plot dispersal events 

 To better understand how relative gene flow across plots is influenced by treatment, we 

quantified the number of in-plot and out of plot dispersal events from the pedigrees identified as 

most probable from our parentage analysis. To account for sample size differences, we also 

calculated the ratio of these values. The number of in-plot and out-of-plot dispersal events  
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Figure 2.9 Mother-offspring dispersal events by treatment for (A) dispersal between in-plot individuals, (B) 
dispersal into plot from an out-of-plot mother, and (C) the ratio of these values. There were no events in 
which a known mother dispersed seed to another plot, therefore B is utilizing information from parentage 
analysis that indicated the mother of a given seedling was not sampled. Orange letters within each plot 
show significant differences between medians, as inferred from separate Kruskal-Wallis tests (see main 
text of Results). Vertical lines indicate standard deviations.  
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between mother and offspring differed by treatment (Figure 2.9A-B) but not significantly so (p > 

0.4297). The ratio of these values differed by treatment as well (Figure 2.9C), with UC having the  

greatest proportion of in-plot dispersal events but overall there were no significant differences 

among treatments (p = 0.1926). 

We next quantified the number of in-plot and out-of-plot dispersal events of pollen from 

the most probable pedigrees identified from parentage analysis. In these cases, out-of-plot pollen 

dispersal events were tallied as an in-plot mother receiving pollen from an unsampled or out-of-

plot father. As with mother-offspring dispersal events we also calculated a ratio of these values. 

The UC treatment exhibited the most in-plot pollen dispersal events, followed by UN and BC 

(Figure 2.10a), though these comparisons were not significant (p = 0.5073). UN and UC 

treatments exhibited similar levels of out-of-plot dispersal events (Figure 2.10B), which differed 

(though not significantly, p = 0.1376) from BC out-of-plot events. The ratio of in-plot vs. out-of-plot 

dispersal events increased with increasing disturbance (Figure 2.10C) but did not differ 

significantly (p = 0.1030). 

Median dispersal distances by treatment 

 Considering the most probable parentage from our model, we calculated the median seed 

dispersal distances between offspring and known mothers, as well as between the median pollen 

dispersal between known mothers and fathers (see Methods). Median seed dispersal varied by 

treatment, being greatest for UN and decreasing with increasing disturbance intensity (Figure 

2.11a). Results from a Kruskal-Wallis test indicated significant differences between groups (p = 

0.048), with post hoc tests indicating significant differences between UN and BC (H = 4.34, p = 

0.0372) but not between UN and UC (H = 2.77, p = 0.0959) or between UC and BC (H = 2.75, p 

= 0.0970; Figure 2.11a). Median pollen dispersal also varied by treatment, being greatest for BC 

treatments, followed by UN and UC treatments, which did not differ significantly (p = 0.1381; 

Figure 2.11b). These realized distances were roughly in line with mean, but smaller than, 

dispersal distances estimated from dispersal kernel shape parameters in the parentage analysis:  
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Figure 2.10 Father-mother dispersal events by treatment for (A) dispersal between in-plot individuals, (B) 
dispersal into plot from an out-of-plot mother, and (C) the ratio of these values. Plot-level tallies were those 
of in-plot mothers receiving pollen from either an in-plot father (A) or an out-of-plot (sampled or unsampled) 
father (B). Orange letters within each plot show significant differences between medians, as inferred from 
separate Kruskal-Wallis tests (see main text of Results). Vertical lines indicate standard deviations. 
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Figure 2.11 Dispersal distances for seed (A) and pollen (B) calculated from the most probable pedigree 
from parentage analysis, considering only pedigrees with known mothers (A) or known parents (B). Orange 
letters within each plot show significant differences between medians, as inferred from separate Kruskal-
Wallis tests for mother-offspring and father-mother dispersal distances (see main text of Results). 

mean seed dispersal = 65m (95% credible interval: 57-75); mean pollen dispersal = 170m (95% 

CI: 150-190; Figure 2.12). 

 To take into account uncertainty in parentage assignment, we calculated weighted 

average dispersal distances for seed and pollen dispersal (see Methods). Assignment to mothers 

of out-of-plot adults were less common than for assignments to in-plot fathers, as can be seen 

from the blocks (replicates) within treatment of Figure 2.13. Using this set of fractional parentage, 

 
Figure 2.12 Fitted 2D-t dispersal kernel for seed (red) and pollen (black) using shape parameters inferred 
from parentage analysis (Moran & Clark 2011). Dashed lines show the 95% credible interval. This figure is 
truncated at the maximum distance within plots (200√2m) to focus on differences at short distances.  
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Figure 2.13 Fractional parentage across parentage analysis cycles for (A) maternal assignment and (B) 
paternal assignment (see Methods) with adult individuals along x-axes and seedling individuals along y-
axes. Each cell represents the fraction of the cycles a particular seedling was assigned to a given adult 
(black ~ 0 to red to orange to yellow to white ~1). 
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we calculated weighted average distances for each seed and nested these distances within 

treatments (see Methods). We first considered mother-offspring and father-mother dispersals 

from fractional parentage where the identified adults could originate in any treatment at TEF. 

Distances differed significantly by treatment (Figure 2.14A; H = 7.91, p = 0.0191) where UN and 

UC were significantly different (H = 8.11, p = 0.0044) but not between any other comparison (H 

range = [0.0042,0.6755], p > 0.4111). Father-mother distances (Figure 2.14B) also differed by 

treatment (H = 41.16, p = 1.15E-9), with median dispersal distance decreasing from BC to UN to 

UC, where all pairwise considerations were also significant (H range = [5.21,27.18], p range = 

[1.85E-07, 0.0224]).  

Because the proximity of the treatment replicates at TEF may interact with dispersal 

distance estimates, we also considered dispersal distances within plot tallied within treatments 

using weighted distances as described above. Median values of mother-offspring in-plot distances  

decreased with increasing disturbance intensity (Figure 2.14C) and differed by treatment (H = 

47.10, p = 5.91E-11), but only between UN and UC (H = 4.29, p = 0.0382) and between UN and 

BC (H = 5.83, p = 0.0253) and not between UC and BC treatments (H = 0.95, p = 0.3291). In-plot 

father-mother distances (Figure 2.14D) were significantly different across treatments (H = 13.89, 

p = 0.0010), with BC having greater distances that either UN (H = 5.83, p = 0.0157) or UC (H = 

5.07, p = 0.0242), and UC exhibiting greater distances than UN (H = 5.00, p = 0.0253). 

Discussion 
 Frequent fires were commonplace in historical forests of the Sierra Nevada, where forests 

exhibited relatively lower tree densities and a higher proportion of pine species (Knapp et al. 2017; 

North et al. 2005). Yet post-settlement fire suppression has led to forest densification that has 

caused instability in these systems and has increased the chances of uncharacteristic high-

severity wildfire. As a result, thinning prescriptions have been put forth as a means by which to 

increase the resilience of constituent stands (SNFPA 2004; Agee & Skinner 2005; Schwilk et al. 

2009; Safford et al. 2009). However, while these prescriptions can mimic the density-reducing  
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Figure 2.14 Dispersal distances between mothers and offspring (first column) and between fathers and 
mothers (second column) using assigned adults from any location (A-B) and for only in-plot individuals (C-
D). Orange letters within each plot show significant differences between medians, as inferred from separate 
Kruskal-Wallis tests (see main text of Results).  
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effects of fire, and reduce subsequent fire severity, it is currently unknown how thinning, in 

isolation or through its interaction with inevitable wildfire, will alter evolutionary dynamics of 

ecologically important species such as P. lambertiana (SNEP 1996). We characterized spatial 

and genetic structure of a fire-suppressed forest treated with a common thinning prescription in 

the Sierra and compared this with its interaction with fire and with a no-thin-no-fire control 

treatment. Our results suggest that spatial structure of constituent species is a result of the 

interaction between treatment and ecology where pines are often clustered with other pines, 

shade tolerant trees are often clustered with other shade tolerant trees, and pine seedlings often 

are inhibited by both adult pine and shade tolerant individuals. While genetic diversity statistics 

are informative of stand-level diversity, they are under-informative regarding ongoing evolutionary 

dynamics as a result of treatment as they do little to predict inbreeding of future generations nor 

the scale at which mating events occur. From the analysis of spatial genetic structure (Smouse & 

Peakall 1999), and despite spatial inhibition between adults and seedlings across treatments, our 

results suggest that unburned thinned stands (UC treatments) result in the increase of fine-scale 

similarity of adult to seedling genotypes relative to control (UN treatments) or thinned stands 

which were subsequently burned (BC treatments). Parentage analysis offered additional 

quantification of fine-scale gene flow and suggested that effective seed (pollen) dispersal within 

plots generally decreased (increased) with the increasing intensity of disturbance, perhaps due 

to an increase in microsite suitability for P. lambertiana (and the availability of potential mates). 

Our results were measured from individuals remaining or regenerating 13 years post-treatment, 

very near the historical fire return interval for this area. Thus, ongoing dynamics should be 

monitored, and will likely change through time, as either stands continue to develop post-

treatment, or in response to subsequent disturbances such as fire.  
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The genetic effects of forest management 

 With some exceptions, studies investigating the genetic consequences of forest 

management have centered around the impact on genetic diversity indices (see Table 1 in 

Ratnam et al. 2014). This focus is likely due to the fact that highly outcrossing tree species often 

suffer from elevated inbreeding depression, where survival and reproduction of subsequent 

generations may be impacted. In such cases, genetic diversity has been used as an index for 

evolutionary potential, likely attributable to the consequences of the relative contribution of 

additive genetic variance to phenotypic variance (i.e., narrow-sense heritability) in the breeder’s 

equation (Lynch & Walsh 1998), where the use of heritability itself as a measure of evolvability 

comes with important caveats (e.g., see Hansen et al. 2011). Further, such diversity indices have 

been used to assess the relative reduction of alleles due to harvest intensity, where the removal 

of individuals from stands will likely reduce the diversity of alleles present. Here, management 

resulting in population bottlenecks is of concern. While these premises are important to 

investigate, the use of genetic diversity indices as the sole method for inference of management 

impact are limiting with regard to evolutionary potential. If the focus is to be on management 

impact on evolutionary processes, processes that influence evolutionary fitness should be 

investigated instead (e.g., mating systems, effective dispersal, fecundity, spatial genetic structure, 

pollen pool heterogeneity, juvenile survival), as argued by Lowe et al. (2015). Importantly, many 

of the traits with fitness consequences in trees are of a polygenic basis (Lind et al. 2018), where 

any given underlying locus has minimal influence on the trait. In such cases, fixation (as measured 

by a handful of putatively neutral markers) at some of the underlying loci can be ameliorated by 

selection for combinations of alleles at other loci. Therefore, while alleles with little to no effect on 

fitness are informative for demographic processes, these should not be conflated with loci under 

selection, particularly loci under strong negative selection with important implications for 

inbreeding depression. Such neutral markers could be better utilized in assessing consequences 
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within process that directly affect fitness, as argued above. However, in cases where spatial 

relatedness is increased as a result of management, or individuals become increasingly sparse, 

wasted reproductive effort (e.g., embryo abortion, or high juvenile mortality) due to increased 

instances of consanguineous or self mating events may play an important role in ongoing 

population dynamics (Kärkkäinen et al. 1999; Sorensen 2001), particularly when seed rain of 

heterospecifics exceeds effective reproductive output of historical or ecologically important 

species (e.g., as for P. lambertiana at TEF, Zald et al. 2008).  

 

Dispersal dynamics of tree species 

 The analysis of spatial genetic structure and gene flow within and across populations of 

trees can elucidate ongoing evolutionary dynamics, as this spatial structure is a result of selective 

and neutral processes acting across temporal and spatial scales (Hardy & Vekemans 1999; 

Oddou-Muratorio et al. 2004; Robledo-Arnuncio et al. 2004; Oddou-Muratorio et al. 2011). Thus, 

quantifying dispersal and mating system is an important component in understanding such 

patterns. There are multiple biological and ecological factors that shape dispersal dynamics and 

resulting mating systems, such as population density, degree of fragmentation, manner of 

pollination (e.g., anemophily, entomophily, or zoophily), relative reproductive output, phenotype 

such as crown shape or height, interannual climatic variation, as well as stochastic variables such 

as wind direction and strength (Burczyk et al. 1996; Dow & Ashley 1998; Robledo-Arnuncio et al. 

2004, Burczyk et al. 2004; O’Connell et al. 2004). Compared with herbaceous and annual plants, 

trees have more extensive gene flow (Hamrick et al. 1992), though such distances are 

idiosyncratic to a given population, species, and system. For instance, estimates of pollen 

dispersal for Pinus sylvestris varied from between 17-29m based on paternity assignment 

(Robledo-Arnuncio et al. 2004) to 136m (Robledo-Arnuncio & Gil 2005) using the TwoGener 

method (Smouse et al. 2001) where 4.3% of mating events came from pollen dispersed over 

30km (Petit & Hampe 2006; Savolainen et al. 2004). Seed dispersal distances can also vary 
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idiosyncratically, particularly for winged seeds or those that are also dispersed by animals, such 

as with P. lambertiana.  

Spatial genetic structure will be a function of these dispersal consequences as well as 

their ecological interaction with the environment. While much of the quantification of such 

structure in trees has been carried out at regional or continental scales, examples exist for 

investigations at fine spatial scales below a few hundred meters. For instance, Marquardt et al. 

(2007) assessed spatial genetic structure of eastern white pine (Pinus strobus L.) as a function of 

management influence at Menominee Indian Reservation in northeastern Wisconsin. While 

spatial genetic structure within 100m differed by population, the strongest autocorrelation 

occurred at the least disturbed site (Marquardt et al. 2007), however while they sampled both 

adults and natural regeneration they did not distinguish these two groups when inferring spatial 

genetic structure. Conversely, in Norway spruce (Picea abies L. Karst.) populations of northern 

Italy, Scotti et al. (2008) assessed spatial genetic structure of mitochondrial (maternally inherited) 

and chloroplast (paternally inherited) across both adults and saplings. While chloroplast 

haplotypes were uncorrelated across most distance classes up to 90m for both classes, the 

maternally inherited mitochondrial markers showed strong affinity below 30m, where this affinity 

was greater for saplings than for adults. This pattern was seen for P. lambertiana individuals at 

TEF as well, where both adults and seedlings were genetically structured at small distance 

classes in UC treatments, though seedling genotypes were clustered to a higher degree than 

adults (Figure 2.8). To our knowledge however, few instances in the literature compare both 

spatial structure of trees with spatial genetic structure of tree genotypes. At TEF, seedlings were 

clustered across all treatments likely due to microsite suitability, but were only clustered 

genetically in UC treatments. As such, conclusions without genotypic data may lead to spurious 

conclusions where it may be assumed that clustering of individuals also indicates clustering of 

genotypes. Further, ingrowth of P. lambertiana in UC treatments will likely be more related to 
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nearby individuals which may cause inbreeding to a greater degree in subsequent generations 

than in other treatments at TEF. 

 

The implications of fine scale genetic structure 

Our results suggest that management is affecting dispersal through the availability of 

suitable microsites for seedling establishment, as well as through the reduction of available mates. 

As disturbance intensity increased at TEF, mean effective seed dispersal generally decreased 

while effective pollen dispersal generally increased (Figure 2.14A-B), likely due to the proximity 

of suitable microsites and the availability of potential mates, respectfully. Inferences gained from 

the estimation of the dispersal kernels from parentage analysis, however, allow us to quantify the 

proportion of dispersal events across small distance classes throughout the TEF watershed 

(Figure 2.12). Using the inferred dispersal kernels (Figure 2.12), the vast majority of dispersal 

occurs across small distance classes, with the estimated probability of dispersal of pollen below 

150m accounting for more than 90.2% of pollen dispersal events, while dispersal of seed below 

50m (150m) accounts for 87.3% (99.2%) of dispersal events across the TEF watershed. Such a 

dispersal tendency will drive spatial genetic structure and will interact with environment (including 

management) to ultimately determine the patterns we observe across the landscape. Because 

UC treatments generally resulted in an increased spatial affinity of alike genotypes between adults 

and seedlings (Figure 2.8), short-term dynamics (decadal scales) may be dominated by mating 

events between related individuals. While this may be true, long-term dynamics will likely affect 

this structure as well. As pointed out by Oddou-Muratorio et al. (2004), the strong levels of spatial 

genetic structure observed in seedlings have been shown to decrease in adult stages because of 

self-thinning processes in other tree species (Hamrick  et al. 1993; Epperson & Alvarez-Buylla 

1997; Chung  et al. 2003), where this may occur at TEF as well. Even so, such consequences 

are dependent upon initial structure which may vary to differing degrees in undisturbed stands, or 
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across the landscape. Thus, to monitor these effects, long-term dynamics should be observed as 

these stands continue to develop and respond to contemporaneous ecological pressures. 

 

Conclusion 
 With the forecast of future fire severity, size and required suppression efforts (Miller et al. 

2009), and with fire seasons beginning earlier and lasting longer than historic trends (Westerling 

2006), understanding how thinning prescriptions intended to decrease fire severity and restore 

system resilience influence evolutionary dynamics of historically dominant and ecologically 

important pine species is of paramount significance, as well as how these prescriptions interact 

with fire to affect such dynamics. Here we have shown that treatment of fire-suppressed 

populations of P. lambertiana differentially affects fine-scale spatial and genetic structure, and 

that seed and pollen dispersal respectfully increase and decrease with the intensity of 

disturbance. Such dynamics are likely to remain unequilibrated in the short term, and therefore 

management would benefit from further monitoring of evolutionary dynamics that affect fitness in 

these forests. Further monitoring across broader spatial scales would also inform how these 

management prescriptions affect dynamics across a greater extent of environmental 

heterogeneity and how these evolutionary dynamics vary by locality. Such information will allow 

management to prescribe treatments in a regionally specific manner. 
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    Chapter 3.  
Local adaptation of Pinus albicaulis Engelm.  

across fine spatial scales of the Lake Tahoe Basin, USA 
This work has been published in the following papers: 

Lind, BM; CJ Friedline, JL Wegrzyn, PE Maloney, DR Vogler, DB Neale, AJ Eckert (2017) Water 
availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis 
Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. Molecular Ecology 26 
(12): 3168-3185. doi: http://doi.wiley.com/10.1111/mec.14106  

 

Abstract 
Patterns of local adaptation at fine spatial scales are central to understanding how evolution 

proceeds, and are essential to the effective management of economically and ecologically 

important forest tree species. Here, we employ single and multilocus analyses of genetic data (E 

= 116,231 SNPs) to describe signatures of fine-scale adaptation within eight whitebark pine (Pinus 

albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous 

Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (}"# = 0.0069) 

there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra 

Nevada. Specifically, we build upon evidence from a common garden study and find that allele 

frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental 

variables (mean = 99 SNPs), and those detected through genetic differentiation (E = 110 SNPs) 

exhibit significantly higher signals of selection (covariance of allele frequencies) than could be 

expected to arise, given the data. We also provide evidence that this covariance tracks 

environmental measures related to soil water availability through subtle allele frequency shifts 

across populations. Our results replicate empirical support for theoretical expectations of local 

adaptation for populations exhibiting strong gene flow and high selective pressures, and suggest 

that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be 

constrained by the lack of genetic variation. Even so, some populations exhibit low levels of 

heritability for the traits presumed to be related to fitness. These instances could be used to 
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prioritize management to maintain adaptive potential. Overall, we suggest that established 

practices regarding whitebark pine conservation be maintained, with the additional context of fine-

scale adaptation. 

Introduction 
The study of local adaptation has been an integral part of evolutionary biology as a whole, as 

local adaptation influences a wide variety of biological patterns and processes (reviewed in 

Savolainen et al. 2013). Trees in particular have received much attention in this regard because 

many species are ecologically and economically important, and high outcrossing rates (Neale & 

Savolainen 2004) result in large effective population sizes (which increase the effectiveness of 

selection) as well as weak neutral genetic differentiation (which decreases the confounding effects 

of selection and population structure). Together, these circumstances create ideal conditions in 

which to detect selective processes in nature (Savolainen & Pyhäjärvi 2007). Investigators 

seeking to explain the genetic basis of local adaptation in trees, and plants in general, have been 

motivated by observations of significant differentiation for quantitative genetic variation across 

populations (e.g., QST) where the underlying loci may be differentiated among populations as well 

(Endler 1977; reviewed in Storz 2005, Haasl & Payseur 2016). In these cases, loci contributing to 

local adaptation could be identified through genetic indices of differentiation, or by targeting trait- 

or environmentally-associated loci that stand out above background demography. Yet, theoretical 

(Latta 2003; Le Corre & Kremer 2003) and empirical (Hall et al. 2007; Luquez et al. 2007) 

investigations have shown that discordance between ë"# and }"# of causative loci can occur 

under adaptive evolution. Moreover, as the number of underlying loci increases, the divergence 

between these indices increases as well, and the contribution of }"# to any individual underlying 

locus decreases. In cases that exhibit strong diversifying selection and high gene flow, this 

adaptive divergence results from selection on segregating genetic variation (Hermisson & 

Pennings 2005; Barret & Schluter 2008) and is attributable to the among-population component 

of linkage disequilibrium (Ohta 1982, Latta 1998). In the short term, local adaptation will be 
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realized through subtle coordinated shifts of allele frequencies across populations causing 

covariance (i.e., LD) among many underlying loci (Latta 1998; Barton 1999; Latta 2003; McKay & 

Latta 2002; Kremer & Le Corre 2012; Le Corre & Kremer 2012), such that adaptation need not 

take place through numerous fixation events or sweeping allele frequency changes (MacKay et 

al. 2009; Pritchard & di Rienzo 2010). Over many thousands of generations, these shifts can lead 

to concentrated architectures of large-effect loci with a reduction of those with small effect 

(Yeaman & Whitlock 2011). For studies investigating continuous phenotypes such as those often 

related to fitness, even among populations with highly differentiated phenotypic traits sampled 

under a robust design (Lotterhos & Whitlock 2015), it may be difficult to identify many of the loci 

underlying the quantitative trait in question. Thus, for many species, specifically across fine spatial 

scales, the signal of local adaptation within much of current genetic data may go largely 

undetected using only single-locus approaches (Latta 1998; 2003; Le Corre & Kremer 2003; 

Yeaman & Whitlock 2011; Kemper et al. 2014), resulting in calls for theory and empiricism that 

move beyond single-locus perspectives (Pritchard & di Rienzo 2010; Sork et al. 2013; Tiffin & 

Ross-Ibarra 2014; Stephan 2015).  

Populations of forest trees, particularly conifers, have a rich history of common garden, 

provenance tests, and genecological studies that demonstrate abundant evidence for local 

adaptation among populations, even over short geographic distances (e.g., Mitton 1989; 1999; 

Budde et al. 2014; Csilléry et al. 2014; Vizcaíno et al. 2014; Eckert et al. 2015; Holliday et al. 

2016; Roschanski et al. 2016) providing further support that fine spatial scales are relevant to 

adaptation (Richardson et al. 2014). This extensive history has also revealed the highly polygenic 

nature of adaptive traits (Langlet 1971; Holland 2007). Even so, the majority of these 

investigations have been limited to single-locus perspectives using either candidate genes (e.g., 

González-Martínez et al. 2008; Eckert et al. 2009) or a large set of molecular markers (e.g., Eckert 

et al. 2010) to explain the genetic basis of local adaptation. In most cases, a few loci underlying 

the adaptive trait in question are identified and generally explain a small to moderate proportion 
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of the overall heritability of the trait (Neale & Savolainen 2004; Savolainen et al. 2007; Ćalić et al. 

2016). Yet because of the presumed polygenic nature underlying these adaptive phenotypic traits, 

and because past investigations have generally applied single-locus perspectives, informative 

biological signals may therefore be overlooked, and it is likely that a majority of the genetic 

architecture of local adaptation in trees remains undescribed (Savolainen 2007; Sork et al. 2013; 

Ćalić et al. 2016).  

Spurred in part by the advance of theory and availability of genome-wide marker data, 

attention has been refocused to describe underlying genetic architectures from a polygenic 

perspective. This transition began in model organisms (e.g., Turchin et al. 2012) and has 

expanded to other taxa such as stick insects (Comeault et al. 2014; 2015), salmon (Bourret et al. 

2014), and trees (Ma et al. 2010; Csilléry et al. 2014; Hornoy et al. 2015). Indeed, species that 

occupy landscapes with high degrees of environmental heterogeneity offer exemplary cases with 

which to investigate local adaptation. Near its southern range limit, whitebark pine (Pinus 

albicaulis Engelm.) populations of the Lake Tahoe Basin (LTB) inhabit a diversity of environmental 

conditions. As exemplified by the strong west to east precipitation gradient (see Figure 3.1), many 

of the environmental characteristics of the LTB vary over short physical distances (<1km) and 

have the potential to shape geographic distributions of P. albicaulis at spatial scales below those 

typically investigated (i.e., range-wide studies) for forest trees. Local spatial scales are of 

particular interest to resource and conservation agencies as this is the scale at which most 

management is applied. Here, we build upon past work from a common garden (Maloney et al. in 

review) to investigate the genetic architecture of fine-scale local adaptation across P. albicaulis 

populations of the LTB by exploring the relationships between genotype, 18 environmental 

variables, and five fitness-related phenotypic traits using both single and multilocus approaches. 

Specifically, we use the P. albicaulis populations of the LTB to address the following three 

questions: (i) Is there evidence that a long-lived, outcrossing plant species exhibiting high levels 

of gene flow can be locally adapted across fine spatial scales? (ii) What is the genetic basis and  
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Figure 3.1. Populations used for sampling P. albicaulis within the Lake Tahoe Basin (dark outline). Annual 
precipitation is given for each population to demonstrate the west-east rain shadow experienced across 
fine spatial scales. Asterisks indicate populations in the common garden study.  
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relationship among loci underlying adaptation in such a species? (iii) How similar are the genetic 

bases of fitness-related phenotypes to the loci putatively under selection from the environment? 

Using this information, we will contextualize how instances of fine-scale adaptation have 

management implications. This study highlights the advantages of a polygenic perspective and 

investigates signatures of local adaptation using a large set of null markers to determine the 

extremity of allele covariance among putatively adaptive loci where others have relied on 

simulation or null candidate genes. Furthermore, this work provides additional empirical evidence 

for theoretical predictions of covariance among adaptive loci found by other studies in trees. 

Methods 

Focal species, study area, and sampling 
A foundation species of subalpine, high elevation forests in California and Nevada, P. 

albicaulis plays a vital role in ecosystem function and services including food resources for wildlife, 

forest cover, watershed protection, protracting snowmelt, and biodiversity (see references in 

Mahalovich & Strich 2013, Tomback et al. 2016). It is threatened by fire-suppression, climate 

change, the non-native pathogen white pine blister rust, caused by Cronartium ribicola J.C. Fisch., 

and mountain pine beetle, Dendroctonous ponderosae Hopkins (Tomback & Achuff 2010; 

Mahalovich & Stritch 2013). 

The LTB lies within California and Nevada and experiences a Mediterranean climate. 

Precipitation falls during the winter months, most often in the form of snow, with a strong west-

east gradient (Figure 3.1). Each of the eight study populations (three subplots per population) 

were located in a distinct watershed and distributed around the Basin to capture variation in the 

physical environment (e.g., climate, geology, and topography). Needle tissue was sampled in 

2008 from 244 P. albicaulis trees (Table 3.1). From these eight populations, six populations were 

chosen to sample cones from 88 of the 244 trees that were sampled for needle tissue. All samples 

were collected from trees separated by 30 to 1000m, with an average interpopulation distance of  
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Table 3.1. Population location and associated attributes. Population size – total (maternal trees with seedlings in common garden). Climatic values 
were ascertained from data spanning 1971-2000. Ann. precipitation – annual precipitation; AWC – available water capacity at 25!" or 50!" soil 
depth; CEC – cation exchange capacity; GDD – growing degree days above 5°#; Max solar rad input – maximum solar radiation input; WC-15$%& 
– water capacity at -15$%& (wilting point); WC-⅓$%& – water capacity at -⅓$%& (field capacity). Asterisks indicates populations from which seeds 
sampled from cones were planted in a common garden. Environmental variables are averaged across subplots. 

 Dick’s Pass* Freel Peak* Heavenly Little  
Round Top* 

Mt.  
Rose Ophir* 

Rifle 
Peak* 

Snow  
Valley Peak* 

West  
Shore Peaks 

Population size 25 (15) 48 (19) 25 (0) 25 (14) 49 (11) 24 (15) 24 (14) 24 (0) 
Ann. precipitation (mm) 1686 1019 782 1221 1186 1281 869 1585 
AWC-25cm (kPa) 1.66 1.57 1.12 1.97 1.95 1.89 2.66 1.20 
AWC-50cm (kPa) 2.75 2.38 2.00 2.93 2.75 3.11 4.22 2.02 
CEC (cmol. ∙ kg-1) 0.00 1.45 0.00 12.50 2.90 0.00 0.00 0.00 
Clay (%) 6.50 4.50 6.70 14.60 3.00 6.75 6.80 6.00 
Elevation (m) 2806 2865 2851 2875 2717 2819 2740 2780 
GDD Aug (days) 295 190 276 211 296 235 289 279.5 
GDD May (days) 0 0 6 0 11 0 2 1 
Max solar rad input (%) 83.59 79.03 78.40 80.09 90.61 93.28 71.70 76.43 
Max Temp – July (°C) 21.1 21.6 23.2 21.5 22.9 22.7 23.4 21.8 
Min. Temp – Jan (°C) -6.5 -8.8 -7.5 -8.0 -7.4 -7.4 -7.7 -6.6 
Rock coverage (%) 31.00 18.67 25.00 14.67 7.00 30.00 26.67 42.67 
Sand (%) 77.67 87.80 83.50 66.20 90.60 74.00 64.50 85.00 
Silt (%) 15.8 7.7 9.7 19.1 6.4 19.2 28.7 9.0 
WC-15 bar (kPa) 6.6 4.0 3.3 3.6 5.5 8.7 14.0 2.5 
WC-⅓ bar (kPa) 9.7 8.0 8.4 7.3 9.8 11.4 14.4 6.2 
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31km. Universal Transverse Mercator coordinates, elevation, slope, and aspect (USDA FS 

FHTET) were used with the PRISM climatic model (Daly et al. 1994) to determine climatic 

parameters of sampled areas from 1971-2000, while soil survey data (USDA NRCS 2007) were 

used to describe the edaphic conditions of the LTB (Table 3.1). 

Common gardens and phenotypic measurements 
Fitness-related traits related to survival, especially during seedling and juvenile stages, are 

an important component of total lifetime fitness (e.g., Postma & Ågren 2016), particularly for forest 

trees, and are likely to be composed of phenotypic traits related to growth, phenology, resource 

allocation patterns, water-use efficiency, and disease susceptibility. In order to estimate early-

lifetime phenotypes of mother trees, seeds sampled from 11 to 19 maternal trees (# = 88) located 

in six of the eight populations were established in a common garden (Table 3.1) using a random 

block design (for further details see Maloney et al. in review). Growth (height), phenology (date of 

bud flush), water-use efficiency (d13C), and resource allocation [root:shoot biomass, N($g)] were 

measured when seedlings reached ~2 years in age (see Maloney et al. in review for details). 

Height was recorded in April and October 2011, while 2 seedlings per family per block were 

harvested, clipped above the root collar, dried, and weighed to determine root and shoot biomass. 

For d13C and N($g) analysis, needle tissue from 1 seedling per family per block was harvested, 

coarsely ground, and dried at 60°C for 96 hours. Between 2-3mg of tissue per sample was sent 

to the Stable Isotope Facility at UC Davis for isotope analyses 

(http://stableisotopefacility.ucdavis.edu/). 

DNA extraction, sequencing, and analysis 
Total genomic DNA was isolated from needle tissue sampled from 244 trees across all eight 

populations using the Qiagen DNEasy 96 Plant kit according to protocol (Qiagen, Germantown, 

MD). Restriction site-associated double digests of total genomic DNA using MseI and EcoRI 

enzymes (ddRADSeq, Peterson et al. 2012) were used to prepare three multiplexed, barcoded  
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Table 3.2. Signatures of allele frequency shifts associated with environmental distance. Significant Mantel 
tests (9999 permutations) from comparisons among '()*+(-.) matrices from SNPs associated with 
environment (first column) against environmental Euclidian distance (second column). Environmental 
variables as in Table 3.1. † indicates a comparison in which at least one variable is water-related, or was 
associated with annual precipitation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

libraries of up to 96 individuals each, as in Parchman et al. (2012). Using the QIAquick Gel 

Extraction Kit (Qiagen), amplified fragments were then isolated near 400bp of pooled PCR 

product separated in an agarose gel. Single-end sequencing of libraries was carried out on the 

Illumina HiSeq 2500 platform with a single library per flowcell lane. For added coverage, each 

library was sequenced twice using 50bp reads and twice for 150bp reads, except Library 3 which 

was sequenced 4x for 150bp reads to increase optimality of the mapping reference individual. All 

sequencing was performed at the DNA Sequencing Facility of the University of California at 

Berkeley (https://mcb.berkeley.edu/barker/dnaseq/home). After calling genotypes, SNPs, and further 

filtering (see Supporting Information), we judged the veracity of our sequence data by mapping 

'()*0(12) Environmental Euclidian Distance Mantel’s r p-value 
†Ann. precipitation 

precitip 

Ann. precipitation 0.7135 0.0027 
†Longitude Longitude 0.6522 0.0024 
†Longitude Ann. precipitation 0.7716 0.0016 

†Rock coverage Ann. precipitation 0.5542 0.0221 
†Tmin-Jan Ann. precipitation 0.5765 0.0132 
†Longitude Latitude -0.4257 0.0347 

†Rock coverage Longitude 0.5566 0.0284 
†Tmin-Jan Longitude 0.4822 0.0273 
†WC-15bar Tmax-July 0.3490 0.0309 
†WC-⅓bar WC-⅓bar 0.4806 0.0361 
†WC-⅓bar Tmax-July 0.4539 0.0037 
†WC-⅓bar AWS0-25 0.4329 0.0384 
†WC-⅓bar AWS0-50 0.4538 0.0464 
†WC-⅓bar WC-15bar 0.5126 0.0335 
GDD-May GDD-May 0.8480 0.0013 

Rock coverage Rock coverage 0.5124 0.0145 
Sand Sand 0.5574 0.0046 

Tmin-Jan Tmin-Jan 0.5791 0.0137 
Sand Clay 0.5345 0.0232 
Silt Sand 0.4408 0.0238 
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the empirical set of SNPs against the sugar pine (P. lambertiana Dougl.) reference genome (v1.0) 

using 85% similarity and 50% length coverage thresholds (http://dendrome.ucdavis.edu/). 

Identifying focal sets of loci 
To identify genotype-environmental associations, we implemented bayenv2 (v2.0; Coop et 

al. 2010; Günther & Coop 2013), a Bayesian single-locus approach that accounts for population 

history and gene flow before performing association analysis (Coop et al. 2010). To ensure 

convergence, we ran five independent chains of bayenv2 using the empirical SNPs (n = 

116,231), with 100,000 iterations for each SNP within each chain. MCMC convergence across 

chains was inspected using the coda library in R. For each SNP, we calculated the harmonic 

mean across chains for the Bayes factor (789999) and absolute value of Spearman’s ρ (hereafter :;999). 

When calculating 789999, if a particular SNP returned Bayes factors greater than one for at least 3/5 

chains, we would take the harmonic mean from this subset to avoid underestimation of the Bayes 

factor. However, if this was not the case (BF > 1 in ≤ 2/5 chains), we would take the harmonic 

mean from the values that were less than or equal to one. We identified focal SNPs by the 

intersection between the upper tail (99.5th percentile) of 789999 and the upper tail (99th percentile) of 

the absolute value of :;999, as recommended in the bayenv2 manual (v2.0; page 4).  

To associate genotype with phenotype, we implemented a Bayesian sparse linear mixed 

model (BSLMM) from the GEMMA software package (Zhou et al. 2013). BSLMM is a hybrid of LMM 

and Bayesian variable selection regression (BVSR) that also offers considerable statistical 

advantages over single-locus GWAS approaches (Guan & Stephens 2011; Ehret et al. 2012; 

Zhou et al. 2013; Moser et al. 2015). Specifically, to describe the underlying genetic architecture, 

BSLMM uses priors (described below) and attributes of the genetic data to estimate the number 

of underlying SNPs (<;=>), the posterior inclusion probability (γ, hereafter ?@?) for individual SNPs 

as well as the proportion of phenotypic variance explained by the polygenic and sparse effects of 

each SNP (?AB). 

Before input to GEMMA, the empirical set of SNPs was reduced to include only those individuals 
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with seedlings in the common garden (n = 88), and loci which had MAF below 0.01 due to this 

reduction were eliminated alongside monomorphic SNPs. For each phenotype, we ran four 

independent chains for the BSLMM, with 1,000,000 warm-up steps and 50,000,000 steps in the 

MCMC, sampled every 1000th step. Priors for ?AB by the model, ℎ, were set as [0.01,0.9], and 

the log10 inverse number of SNPs, logFG(1/'), [-3.0,0.0], which equates to between 1 and 300 

underlying loci (<;=>). Convergence of the MCMC across chains was inspected using the coda 

library in R. To summarize the GEMMA output, we report means and 95% credible intervals for ?AB 

and <;=> from the posterior distributions. To assess significance of association of a SNP to a 

phenotype, we used the ?@? from all four independent chains to calculate the harmonic mean 

(?@?99999) and chose SNPs that were greater than or equal to the 99.9th percentile of ?@?99999 (n ≈ 116 

SNPs/phenotype) for each phenotype. We also explored SNPs with ?@?99999 ≥ 99.8th percentile (n ≈ 

232/phenotype). 

We implemented the program OutFLANK (Whitlock & Lotterhos 2015) to investigate loci 

identified as outliers based on population genetic structure (e.g., 8;K). Using this approach and 

excluding loci with expected heterozygosity values below 10% with subsequent trimming of the 

lower and upper 5% of empirical 8;K values, we inferred a null distribution of 8;KL  and identified 

outlier loci with a false discovery rate of 5% from the empirical set of SNPs. 

Inferring signatures of local adaptation 
To determine if individual sets of focal loci (identified from GEMMA, bayenv2, and OutFLANK 

analyses) collectively exhibited elevated signatures of selection acting across multiple loci, we 

investigated the level of allele frequency covariance among all SNP pairs within each focal set. 

For instance, to calculate the covariance of allele frequencies across populations between two 

SNPs, SNP- and SNP., within a focal set of SNPs associated with a particular phenotype in GEMMA, 

we used the global minor allele of each SNP, P, according to the interpopulation component of 

linkage disequilibrium, 
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                                )*Q(RS) = 	∑
WX
WY ZP-,YP.,Y − P-P.]                     Eq. (1) 

where #Y is the number of individuals in population ^, # is the global population size, P-,Y is the 

allele frequency of the 1th SNP in population ^,	P.,Y is the allele frequency of the 2th SNP in 

population k, while P- and P. are the respective global allele frequencies of the 1th and 2th SNP 

across ^ = 6 populations (Storz & Kelly 2008, their Equation 2; Ma et al. 2010, their Equation 3). 

Because we chose the allele to use in comparisons based on global minor allele frequency, all 

calculations of )*Q(RS) are therefore referenced to the global minor allele haplotype for a pair of 

SNPs. For populations that experience high levels of gene flow and divergent phenotypic optima 

due to selection, )*Q(RS) is expected to be positive between allele frequencies of loci conferring a 

positive effect on the phenotype, negative between those conferring opposite effect, and zero 

between (conditionally) neutrally loci (eq. [6] in Latta 1998). Because we were not able to discern 

the direction of effect for alleles within each population (as in e.g., Gompert et al. 2015), and to 

facilitate comparison among analyses, we identified selective signatures by calculating the 

absolute value of )*Q(RS) for each locus pair. We also calculated )*Q(RS) for focal SNPs associated 

with environmental variables from bayenv2 and those identified as outliers from OutFLANK. In 

these two cases, we used allele frequencies across all eight populations. 

 To be able to discern if the level of covariance of allele frequencies among SNPs within a 

set identified by GEMMA (or another method; hereafter focal SNPs) was greater than that from 

SNPs randomly chosen from our dataset (i.e., than expected given the data), we first separated 

all SNPs in the dataset by their expected heterozygosity into bins of 0.01 ranging from 0 to 0.50 

(e.g., a SNP with _` of (0.000-0.010] would be binned into the first bin, while an _` of (0.490-

0.500] would be binned into the 50th). We then created a set of SNPs from which to take 

randomized draws by subtracting the focal SNPs from the full set of SNPs. Next, based on the 

occupancy of heterozygosity bins for a given focal set, we randomly selected remaining SNPs to 

create a null set. We chose SNPs randomly in this way, 1000 times, each time calculating the 



 

 

 

62 

absolute value of )*Q(RS) among SNP pairs within each set. From each of these 1000 distributions, 

we calculated 1000 median absolute )*Q(RS) values to create a null distribution for use in comparison 

to the median absolute )*Q(RS) from the focal set of SNPs. If the median )*Q(RS) is greater among our 

focal SNPs than the 95th percentile of the null distribution of 1000 medians, we will conclude that 

the signature of selection among loci within our focal sets is greater than could have arisen by 

chance, given the data.  

To infer signatures of allele frequency shifts associated to environment, we implemented an 

approach similar to Equation 1 but instead of estimating )*Q(RS) across all populations we estimated 

)*Q(RS) across populations in a pairwise fashion (hereafter '()*Q(RS)) using focal SNPs from a given 

method. In this case, we calculated global allele frequency (P- or P.) based on the frequency of 

allele P across the ^ = 2 populations ('b'c and 'b'd) under consideration (where #c + #d = #). 

From these estimates, we created a symmetric matrix of '()*Q(RS) with columns and rows for 

populations, and distances within the diagonal set to zero. We then implemented Mantel tests 

(Mantel 1967) using '()*Q(RS) matrices against other population pairwise distance matrices such 

as geographic distance inferred using great circle distances (km) following Vincenty’s method, 

and Euclidian distance matrices for each of the five phenotypes and 18 environmental variables. 

Because we chose to take absolute values of '()*Q(RS) for each locus pair (as with )*Q(RS)) we note 

that the sign of the correlation coefficient, f, from Mantel tests may reflect the opposite 

directionality for any given SNP pair. Mantel tests were run with 9999 iterations using the skbio 

package (v0.4.2) in Python. Each environmental or phenotypic value was centered and 

standardized across populations before calculating Euclidian distances, but not for '()*Q(RS) or 

geographic distance matrices. For each set of focal SNPs associated with phenotype or 

environment, we also quantified the mean allele frequency differences across populations and 

compared this to 1000 sets of random SNPs chosen by HE.  
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Results  

SNP filtering and characterization 
After calling genotypes, SNPs, and filtering (see results section of Supporting Information), 

we retained 116,231 imputed SNPs for use as the empirical set in downstream analyses (Table 

S3.1). Of these contigs, 107,354 (92.4%) mapped to the P. lambertiana reference genome, thus 

lending authenticity to our sequence data. However, we avoid further discrimination of loci for 

(proximity to) genic regions until a future genome update with increased curation and density of 

annotation.  

Overall, populations show little genetic structure with plots accounting for less than 1% of the 

variance in allele frequencies (8ghij,jijQh = 0.00687; 95% credible interval: 0.0067-0.0070). Of this 

variation, 56.6% was accounted for by populations (8gig,jijQh = 0.00389; 95% CI: 0.0038-0.0040) 

with the remainder due to plots within populations (8ghij,gig= 0.00299; 95% CI: 0.0029-0.0031). 

We found similar patterns among the locus-specific estimates of 8;K (Figure S3.1). Moreover, we 

found no discernable clustering of populations using PCA, respectively accounting for 5.6% and 

1.2% of the variance in allele frequencies (Figure S3.1). To further address applicability of the 

island model used for calculation of )*Q(RS) and '()*Q(RS), we analyzed population pairwise 8;K 

according to Weir & Cockerham (1984) using the hierfstat package in R. Results show little 

differentiation among populations (mean = 0.005, max = 0.016) with no evidence of isolation by 

distance (Mantel’s f = 0.0990, ' = 0.2310). 

Genotype-environment analysis 
To explore the degree of association among environmental variables between populations, 

we used Mantel tests between Euclidian environmental distance matrices. In most cases, we 

found significant correlations with many of the edaphic variables measured for this study, as well 

as between latitude and elevation (f = 0.3988, ' = 0.0490), longitude and annual precipitation (f = 

0.7145, ' = 0.0030), and between percent maximum solar radiation and latitude distances (f = 

0.4629, ' = 0.0370; Table S3.2). Additionally, geographic distance among populations was only 
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associated with latitude (f = 0.9631, ' = 0.001), percent maximum solar radiation input (f = 

0.3992, ' = 0.0468), and elevation (f = 0.4062, ' = 0.0452), the three of which were correlated 

environmentally (Table S3.2), but not to any of the remaining environmental variables (Mantel 

tests ' > 0.3131, data not shown). 

Through the intersection of the top 0.5% of 789999 and top 1% of :;999, bayenv2 analysis revealed 

between 14 (CEC) and 157 (GDD-Aug) focal SNPs associated with environment (Table S3.3). 

However, when calculating the 789999 for each SNP, it was never the case that more than two of the 

five chains produced BF > 1, of which chains with large values were driven primarily by seed 

number (we used additional seed numbers for a small subset of the data during exploration, data 

not shown). The range of :;999	 across all focal SNPs across all environments varied from a minimum 

of 0.138 to a maximum 0.345 (Table S3.3). Additionally, the focal SNPs identified by bayenv2 

displayed a bias towards SNPs with low values of _` (Figures S3.3-S3.4, see results section of 

Supporting Information) when compared to the distribution from the full set of SNPs (Figure S3.5). 

As such, our environmental associations should be interpreted with caution, as we did not have 

any SNPs with 789999 > 1 nor do our harmonic mean nonparametric correlations exceed 0.35. Even 

so, when we compared absolute estimates of )*Q(RS) among focal SNPs against the corresponding 

1000 null sets of loci, we found that for all focal sets the median )*Q(RS) was always greater than 

the 100th percentile of the null distribution (Figure 3.2, Table S3.3). The magnitude of this 

difference varied across environmental variables, being the smallest for percent clay (1.17x) and 

largest for annual precipitation (5.10x, Table S3.3). Upon comparison of focal and null sets in both 

the distribution of single-locus and multilocus 8;K, focal sets were representative of single-locus 

estimates of the null sets (Figures S3.6-S3.7), and generally greater than the distribution of 

multilocus 8;K than the null (Figures S3.8-S3.9). Single-locus results suggest that many focal 

SNPs are unlikely outliers for 8;K, while multilocus comparisons exemplify the elevated frequency 

covariance of SNPs in focal sets. This data demonstrates that for most environmental variables 
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the focal SNPs show higher degrees of )*Q(RS) than could be expected, given the data, despite 

having low 789999 and :;999. 

Through the examination of patterns of allele frequency shifts ('()*Q(RS)) across loci associated 

with environment we found no significant associations with geographic distance using Mantel 

tests (p > 0.1116). While this suggests the absence of linear allelic clines, it does not necessarily 

preclude the presence of environmental gradients or correlated patches as suggested by 

environmental distance associations (Table S3.2). When we investigated the association between 

'()*Q(RS) matrices against the eponymous environmental distance matrix, we found significant 

association for annual precipitation, GDD-May, longitude, percent rock coverage, percent sand, 

minimum January temperature, and field capacity (WC-⅓bar; all f	> 0.4806; ' = 0.0361; Table 

3.2). Additionally, we examined relationships between a particular '()*Q(RS) matrix and the 17 

remaining environmental distance matrices and found significant associations in an additional 13 

comparisons (Table 3.2), with five of these comparisons having '()*Q(RS) associated  

 
Figure 3.2. Allele frequency covariance ()*+(-.)) among loci associated to environment by bayenv2. In white 
are the median values from )*+(-.) calculated among focal SNPs associated to environment. Black bars 
display the 95th percentile of the null distribution of median )*+(-.). Environmental variables are grouped by 
those related to soil (CEC through WC-1/3k0f) and those related to climate or geography (Annual 
precipitation through T-min Jan), with variables related to water availability grouped together in the center 
of the figure (AWC-25cm through Annual precipitation). All sets of focal loci had median )*+(-.) greater than 
the 100th percentile of the null distribution, as indicated by two stars (**). Environmental variables as in Table 
3.1. 



 

 

 

66 

with either annual precipitation or longitudinal Euclidian distance. We also observed shifts of 

alleles associated with longitude or soil water capacity across six of the remaining eight significant 

associations (Table 3.2), with the remaining two significant associations among edaphic 

conditions of sand, silt, or clay. The magnitude of the mean allele frequency difference across 

populations of focal SNPs was subtle as expected (range 0.018-0.029) and were generally slightly 

larger than that predicted from random SNPs of the same heterozygosity (Figures S3.10-S3.11). 

Overall, our results indicate that the vast majority of subtle allele frequency shifts among loci 

associated with environment ('()*Q(RS)) have significant associations related to interpopulation 

distances of water availability (Table 3.2). 

Genotype-phenotype analysis 
Phenotypic traits were heritable and structured across populations (bud flush ℎl = 0.3089, m;K 

= 0.0156; d13C ℎl = 0.7787, m;K = 0.0427; height ℎl = 0.0608,	m;K = 0.0418; N($g) ℎl = 0.3525, 

m;K = 0.0191; root:shoot ℎl = 0.3240, m;K = 0.0110; Table S3.4) and were correlated with 

environmental variables (both climate and soil) in ways unexplainable by neutral evolutionary 

forces (Maloney et al. in review). Additionally, bud flush and d13C had significant m;K > 8;K 

(Maloney et al. in review, using the genetic data presented herein). We used a subset of the 

empirical set of SNPs for use in genotype-phenotype analysis, after filtering we retained 115,632 

SNPs. PCA revealed a similar pattern to the empirical set of SNPs (data not shown). Using three 

significant axes of population structure identified through Tracy-Widom tests, we associated SNPs 

to phenotypes with BSLMM (Zhou et al. 2013) using the top 99.9th and 99.8th percentiles of ?@?99999 

(Figure 3.4, Table S3.5, Figure S3.12). From observations of density and trace plots, we 

concluded that the posterior distributions across chains were converging (not shown). The _` of 

focal loci were generally representative of the empirical set (Figures S3.13-S3.14).  

Overall, the genetic variance of SNPs included in the polygenic model explained between 

14.4% [N($g)] and 37.6% (root:shoot) of the variance in the phenotypes measured in our study 
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(?AB, Figure 3.3, Table S3.4).  For many of the measured phenotypes, a considerable proportion 

of the narrow sense heritability estimated previously was therefore accounted for in the estimates 

of ?AB (Table S3.4), as should be the case with sufficient genetic sampling (Gompert et al. 2016). 

Interestingly, in the case of height, ?AB exceeded the upper confidence interval of the estimated 

h2 (Table S3.4). 

To acquire estimates of ?AB from genotype-phenotype associations using single-locus 

approaches, we used univariate linear mixed models implemented in GEMMA (see Supporting 

Information, Table S3.6). Across all phenotypes, there were no loci that exceeded the adjusted 

threshold for inclusion calculated from q-values with an FDR of 0.05 (Storey et al. 2015; v2.4.2), 

with the minimum P-value across SNPs within phenotypes ranging between 0.2046 (d13C) and 

0.9999 [N($g)] (Table S3.6). Except for root:shoot biomass, the maximum likelihood estimates of 

?AB differed drastically from the estimates from BSLMM, with ?AB never exceeding 1.08e-06 

suggesting that a larger proportion of the heritable genetic variation for the traits measured here 

is explained by multiple SNPs than by individual SNPs alone. Finally, to determine if LMM loci 

near the threshold were captured by the BSLMM for a particular phenotype, we isolated the loci 

from univariate LMM above a reduced threshold of – ln('q+cr) ≥ 10 (see Figure S3.15, 

Supporting Information). By this reduced threshold we identified one unique locus for both bud 

flush and N($g), four unique loci for both height and root:shoot biomass, and five unique loci for 

d13C (15 unique loci overall). We examined the focal loci sets identified from the 99.9th percentile 

of ?@?99999 in BSLMM for these LMM reduced-threshold loci and found 1 of the 4 LMM loci for both 

root:shoot biomass and height, and 2 of the 5 loci for d13C. When we assessed the set of loci in 

the 99.8th percentile of BSLMM ?@?99999, we recovered all LMM reduced-threshold loci for bud flush 

and N($g) (n = 1), 1 of 4 loci for root:shoot biomass, 3 of 4 loci for height, and 3 of 5 loci for d13C. 

To determine if focal loci associated with phenotype by BSLMM exhibited evidence of 

selection, we estimated allele frequency covariance ()*Q(RS)) among focal SNPs and compared   
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Figure 3.3. Violin plots for the kernel density estimator of the posterior distributions (light grey) taken from 
Bayesian sparse linear mixed models (BSLMM) executed in GEMMA for (A) the proportion of variance 
explained by SNPs included in the model (?AB) and (B) the number of SNPs underlying the phenotypic 
trait (<uvw). Priors for <uvw and ?AB were [1,300] and [0.01,0.9], respectively. Dark grey vertical bars display 
the first through third interquartile range, with the median represented by the white dot. 

 

these estimates to 1000 null sets of SNPs. We found evidence for elevated covariance among 

the 99.9th percentile of ?@?99999 loci associated with bud flush and root:shoot biomass (Figure 3.4a, 

Table S3.5), with the latter exceeding the 100th percentile of the null distribution. To consider 

larger numbers of loci representative of the number of underlying loci estimated by BSLMM, we 

also isolated SNPs from the top 99.8th percentile of ?@?99999. In these sets, we found evidence for 

elevated signatures of selection acting across multiple loci for all phenotypes except for height, 

which did not produce a focal median )*Q(RS) greater than the 95th percentile of null distribution of 

)*Q(RS) (Figure 3.4b, Table S3.5). When focal and null sets of SNPs were compared, focal sets were 

representative of single-locus (Figure S3.16) and multilocus (Figure S3.17) 8;K estimates of the 

null sets. 

To identify signatures of allele frequency shifts among focal loci associated with phenotype 

('()*Q(RS)), we ran Mantel tests of '()*Q(RS) matrices against geographic distance and 

environmental Euclidian distance matrices. When considering SNPs identified by the 99.9th 

percentile of ?@?99999, we see substantial evidence for allele frequency shifts of loci associated with  
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Figure 3.4. Allele frequency covariance ()*+(-.)) among loci associated to phenotype by GEMMA. In white 
are the median values from )*+(-.) calculated among focal SNPs associated to phenotype. Black bars display 
the 95th percentile of the null distribution of median )*+(-.). (A) SNPs identified in the top 99.9th percentile of 
?@?99999, (B) SNPs identified in the top 99.8th percentile of ?@?99999. One star (*) indicates that the median focal )*+(-.) 
was greater than the 95th percentile of the null distribution, whereas two stars (**) indicate that the focal 
median )*+(-.) was greater than the 100th percentile of the null distribution. 

 

bud flush to Euclidian distances of GDD-May, GDD-Aug, percent maximum radiation input, and 

minimum January temperature (Table 3.3). Additionally, when we consider the 99.8th percentile 

of ?@?99999, we show evidence for allele frequency shifts among loci associated with bud flush, height, 

and d13C with Euclidian distances of annual precipitation, as well as for N($g) loci with elevation, 

and bud flush loci with both longitude (a correlate of annual precipitation) and percent maximum 

radiation input (as in the 99.9th ?@?99999 set). The strong signal from bud flush and water-related 

variable in Table 3.3 is intriguing, as bud flush and d13C were the only two phenotypic traits to 

have significantly larger mux than 8ux (Maloney et al. in review). The magnitude of the mean focal 

allele frequency differences across populations were subtle as expected (range: 0.054-0.087) and 

representative of unassociated SNPs of similar _y  (Figure S3.18). 

z{| outlier analysis 
OutFLANK analysis revealed 110 focal loci as outliers for 8uxL  (range: 0.069-0.118). Expected 

heterozygosity values among the outlier SNPs (Figure S3.19) varied across the distribution from   
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Table 3.3. Signatures of allele frequency shifts associated with environmental distance. Significant Mantel 
tests (9999 permutations) from comparisons among allele frequency shifts ('()*+(-.)) of SNPs associated 
with phenotype (second column) against environmental Euclidian distance (third column). Selection 
Criterion refers to the process used to identify SNPs associated with phenotype. † indicates a comparison 
in which at least one variable is water-related, or was associated to annual precipitation. 

 

the full set of SNPs (Figure S3.5). Upon analysis of patterns of covariance ()*Q(RS)) among the 

OutFLANK focal SNPs, we found that the median focal )*Q(RS) (6.08e-03) was 10.6x greater than 

the 100th percentile of the null distribution of )*Q(RS) (5.74e-04). However, when we analyzed these 

outlier SNPs for signatures of allele frequency shifts ('()*Q(RS)) we found no significant 

associations with geographic or environmental distances. 

Assessing possible artefactual signals of high }*~(�Ä) 

It was of interest to determine if the elevated )*Q(RS) inferred for focal sets of loci identified from 

bayenv2 and OutFLANK were artifactual. For instance, loci identified by either method will likely 

covary in frequency as a result of the allele frequency differences among populations, perhaps 

elevating )*Q(RS) within focal sets. To assess this possible artifact, we randomized individuals across 

populations 100 times while maintaining original sample sizes for each population, and reran 

OutFLANK to classify outliers, as described previously. We found that outlier SNPs for all 100 

randomizations displayed an elevated )*Q(RS), as was the case with the original data. To determine 

if the magnitude of the )*Q(RS) estimate from our original OutFLANK results was greater than 

expected, we constructed a distribution by calculating this magnitude from each of the random 

Selection criterion '()*Q(RS) Environmental Euclidian Distance Mantel’s r p-value 
99.9th ?@?99999 Bud flush GDD August 0.5804 0.0181 
 Bud flush GDD May -0.5190 0.0458 
 Bud flush Max. radiation input -0.5486 0.0482 
 Bud flush ÅÇRÉ January 0.6984 0.0191 
99.8th ?@?99999 †Bud flush Annual precipitation 0.4309 0.0140 
 †Bud flush Longitude 0.5532 0.0405 
 Bud flush Max. radiation input -0.6312 0.0127 
 N($g) Elevation 0.5334 0.0246 
 †Height Annual precipitation 0.7210 0.0320 
 †d13C Annual precipitation 0.5952 0.0195 
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runs by dividing the median focal )*Q(RS) from the outlier set by the 100th percentile of the same 

run’s null distribution. Using this distribution of 100 magnitudinal differences, we found that the 

elevated )*Q(RS) calculated from our original set (10.6x greater than 100th percentile of the null) was 

4.81 standard deviations from the mean of the distribution, and 1.25x greater than the 100th 

percentile. This suggests that our original focal set from OutFLANK still displayed significantly 

greater )*Q(RS) even after methodological artifacts were taken into account. We did not perform a 

similar analysis with bayenv2 because this was computationally prohibitive, but we expect similar 

patterns to have emerged. If we instead use the original results (Figure 3.2) as a surrogate for 

null expectations, we find that the magnitudinal difference between focal and null )*Q(RS) (as calc-

ulated above) for annual precipitation is 2.11 standard deviations from the mean of the distribution 

of differences from environmental associations. If we exclude the top three environmental 

variables with the largest differences (annual precipitation, GDD-Aug, and Tmin-Jan; Figure 3.2, 

Table S3.3), the difference for annual precipitation increases to 3.97 standard deviations from the 

mean. Because the signal for elevated )*Q(RS) remains after accounting for artifacts, and given the 

other biological signals from our dataset, we conclude that the results presented here are 

consistent with expected signals of local adaptation driven by water availability in this system. 

Intersection of SNPs within and across methods 
We examined overlap of focal SNPs among the various methods employed in this study 

(Table S3.7). While there was considerable overlap of loci found between methods, overall there 

was more overlap of loci associated with multiple phenotypes or with multiple environments than 

found across methods. For sets of loci associated with environmental variables, the overlap of 

loci among environments seemed to be driven by the correlations among soil properties, for when 

ordered by the number of loci within the intersection, 12 of the top 15 comparisons were among 

edaphic conditions (Table S3.7). Additionally, climate-related variables relating to maximum 

radiation input, degree growing days, minimum and maximum temperature generally shared loci 
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among soil variables relating to water availability while annual precipitation shared 18 loci with 

longitude, among other variables. Very few of the loci identified by bayenv2 would have been 

detected through conventional 8;K outlier approaches (Figures S3.20-S3.21). Even so, 

OutFLANK captured between 1 to 3 (n = 18) of the loci identified across 10 of the 18 environmental 

associations from bayenv2, many of which were water-related (e.g., annual precipitation), and 

captured 4 of the loci identified in the 99.8th percentile of ?@?99999, but not for any of the loci identified 

from the reduced threshold of LMM. Among loci associated with phenotype (99.8th ?@?99999), there 

were between one and three loci which were found in the intersection among pairwise phenotypic 

comparisons, yet none of these overlap loci were those identified from LMM. Finally, 15 loci 

associated with environment overlapped with the 99.8th percentile of ?@?99999 (including two between 

d13C and longitude, a correlate of annual precipitation) while environmental associations did not 

capture any of the reduced-threshold loci from univariate LMM (Table S3.7). 

Discussion 

The spatial extent of local adaptation, particularly in conifers, has generally been investigated 

at regional scales (Neale & Savolainen 2004; Savolainen et al. 2007; Ćalić et al. 2016). While 

informative for range-wide inference, management and conservation agencies are often limited 

to local scales spanning only tens to several hundreds of square kilometers. While there is an 

expectation that high gene flow (i.e., migration load) exhibited by many conifers can lead to 

swamping of adaptive alleles, there is mounting empirical evidence that adaptation to the 

environment can still occur at relatively fine spatial scales (Mitton 1989; 1999; Budde et al. 2014; 

Csilléry et al. 2014; Vizcaíno et al. 2014; Eckert et al. 2015; Holliday et al. 2016; Roschanski et 

al. 2016). Thus, studies which investigate adaptation at scales amenable to management may be 

of relatively greater importance (especially for endangered and threatened species) to reforesta-

tion applications such as those carried out through seed sourcing (sensu McLane & Aitken 2012) 

and replanting efforts. Previously, we provided evidence that measured fitness-related pheno-
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types are heritable, that population explains a significant proportion of phenotypic variation, and 

m;K was significantly greater than 8;K for bud flush and δFÖC (Maloney et al. in review). Here, our 

genetic analyses indicate selective pressures of P. albicaulis are likely driven by water availability 

(e.g., precipitation gradients) as well as interactions and correlates of soil properties, which lends 

replicative support to both theoretical and empirical predictions for the patterns of loci underlying 

quantitative traits undergoing selection with gene flow. For instance, Ma et al. (2010) assessed 

evidence for diversifying selection within European aspen (Populus tremula L.) across 23 

candidate genes of the photoperiodic pathway using the covariance of allelic effects among loci, 

albeit across a geographic region of Sweden spanning 10 latitudinal degrees. From this candidate 

set, they identified high degrees of covariance among phenotypic effects as predicted from theory 

(Latta 1998), despite minimal allele frequency differentiation among sampled populations. More 

recently, Csilléry et al. (2014) assessed 53 climate-related candidate genes within European 

beech (Fagus sylvatica L.) providing evidence that covariance among loci is attributable to 

epistatic selection (sensu Ohta 1982) across fine spatial scales of less than 100kml. While 

varying across spatial scales, these studies replicate evidence for a signal of local adaptation in 

trees through elevated among-population linkage disequilibrium between adaptive loci. 

Standing genetic variation for fitness related traits 
The populations under study appear to have extensive gene flow, recent divergence, or both. 

Variation of allele frequencies among populations accounts for less than 1% of the variance 

observed, which was less than that found for P. lambertiana populations within the LTB (Eckert 

et al. 2015), or among isozymes sampled from populations across the Northern P. albicaulis range 

(Krakowski et al. 2003). Inspection of PCs showed no distinctive clustering of populations (Figure 

S3.2) while population pairwise 8;K did not exceed 0.016 and a test for isolation by distance was 

not significant. Consequently, the mean allele frequency differences between populations for focal 

SNPs were also subtle. Biologically, such a pattern of extensive sharing of alleles across 

populations has likely resulted from a combination of long-distance pollen movement, and seed 
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dispersal by Clark’s nutcracker (Nucifraga columbiana Wilson) which is known to disperse seeds 

at distances similar to those between our sampled populations (Tomback 1982; Richardson et al. 

2002 and references therein). Given this pattern of structure, the island model with symmetric 

migration used to describe the interpopulation component of linkage disequilibrium among loci 

()*Q(RS)) and allele frequency shifts ('()*Q(RS)) is likely suitable to investigate our dataset for 

signatures of selection across multiple loci. 

While bayenv2 did not identify any loci strongly associated with environment, as given from 

small values of Bayes factors (all 789999 < 1.0, Table S3.3), there is a strong biological signal for 

adaptation to soil water availability in our dataset (discussed below), evidence that other white 

pines within the LTB are also being structured by precipitation differences among populations 

(Eckert et al. 2015), and elevated signals of selection among focal loci associated to annual 

precipitation which would be unlikely to arise, given the data and methodological artifacts. Thus, 

it seems unlikely that the focal sets of SNPs associated to annual precipitation, and perhaps GDD-

Aug and Tmin-Jan, are driven solely by false positives. However, if the majority of loci associated 

to environment are not an artifact of the method (i.e., are within or in linkage with causative sites), 

one possible explanation for elevated covariance is that the structure of environmental variables 

across populations captured variation for unmeasured phenotypic traits which were largely repre-

sentative of total lifetime fitness (Schoville et al. 2012). Structure of unmeasured fitness-related 

traits is also likely to explain the high covariance of OutFLANK loci. Future work could provide 

validation through functional analyses of loci or from similar patterns found in other systems. 

Water availability as a driver of local adaptation 
The strongest signal for local adaptation among P. albicaulis populations of the LTB came 

from evidence of adaptation to soil water availability (Figures 3.2 and 3.4; Tables 3.2-3.3). Indeed, 

water availability is a critical component shaping standing variation across plant taxa (Vicente-

Serrano et al. 2013), including the distributions of tree species in general (van Mantgem et al. 

2009; Allen 2010), and southern populations of P. albicaulis specifically (Bower & Aitken 2008; 
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Chang et al. 2014). During the Pleistocene-Holocene transition (10,000-12,000yr BP), shifts from 

mesic to xeric conditions caused proximal P. albicaulis populations of the Western Great Basin 

(~50km distant) to shift from 1380m in elevation to their current position about 1100m down-slope 

(Nowak et al. 1994; cf. Table 3.1). Such shifts in climate and local edaphic conditions in the last 

10,000yr may in part explain recent (relative to 4<à generations), and ongoing, selective 

pressures on P. albicaulis populations of the LTB. Because of climatic constraints imposed on the 

southern range of P. albicaulis, phenotypic traits affected by precipitation, soil water availability, 

or soil water capacity likely have fitness-related consequences for this species. Additionally, with 

climatic models predicting warmer temperatures, reduced snow accumulation, and earlier spring 

melt across the western USA, it is likely that P. albicaulis populations of the Sierra Nevada will 

continue to face selective pressures of this kind. Even so, many of P. albicaulis populations of the 

LTB exhibit substantial genetic variation for the fitness-related traits measured, suggesting that 

the majority of ongoing adaptation within the LTB will likely be unconstrained by the lack of genetic 

variation. Instead, other biotic factors (e.g., white pine-blister rust infection) that can lead to 

negative population growth rates may be of more immediate concern (see Maloney et al. 2012). 

Implications to whitebark management 
As pointed out by McLane & Aitken (2012), distribution models of many species predict habitat 

suitability to shift with climate in the upcoming century, leaving great uncertainty that tree species 

in particular will be able to track suitable environments through natural migration and 

establishment, as the rate of many of these geographic shifts would far exceed observed post-

glacial rates of migration (Davis & Shaw 2001; McLachlan et al. 2005). Exacerbating this issue, 

the presence of C. ribicola, and climate-driven outbreaks of mountain pine beetle (D. ponderosae) 

create further challenges to the conservation of P. albicaulis (Tomback & Achuff 2010; Mahalovich 

& Stritch 2013). Without intervention, such cases could lead to population collapse, extirpation, 

or extinction. As such, assisted gene flow, replanting, or restoration efforts will need to continue 

to take current and future selective pressures into account (e.g., genetic variation, resistance to 
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C. ribicola, etc.), as has generally been the standard of practice (Keane et al. 2012; Maloney et 

al. 2012; McLane & Aitken 2012).  

At the same time, the choice of seed source will also need to take into account local adaptation 

at fine spatial scales. While a small proportion of the neutral genetic variation (8;K) is found among 

most tree populations (often less than 5%, Neale & Savolainen 2004), this does not necessarily 

mean that seeds from within an established seed zone will be optimal for any given constituent 

environment, particularly if the seed zone exhibits high environmental heterogeneity (such as in 

montane regions), or if the seed zone is relatively broad compared to these environmental 

gradients, as is the case in California (see Buck et al. 1970). Weak neutral genetic differentiation 

can be misleading in this way, as polygenic traits influenced by selective processes in the face of 

gene flow may lead to divergent local adaptation through the covariance of alleles among 

populations without the buildup of substantial genetic differentiation at any given locus. 

Particularly in cases where there is evidence of local adaptation, and when ethical (McLachlan et 

al. 2007), appropriate (considering e.g., ecological or demographic factors), or plausible, seed 

source should come from local sources (i.e., relative to scales of geography and environmental 

gradients) to maximize adaptive potential (McKay & Latta 2002).  This is particularly important 

when maximal fitness (e.g., reproductive output) is a priority for established trees, as while many 

genotypes may survive, realized phenotypes related to fitness may be suboptimal for a given 

environment. In cases where local seed sourcing is not plausible, perhaps due to isolation, or with 

prohibitively small population sizes, sources likely to perform well are also likely to come from 

highly correlated environments, particularly if the populations are not highly diverged. In contrast, 

local seed source may be of lesser importance for populations existing over broad, relatively 

homogeneous environments. Optimal sources in these cases will also likely come from recently 

diverged populations (McKay & Latta 2002). With this taken into consideration, management may 

be able to prioritize populations for restoration through estimates of trait heritability, either through 

common garden experimentation or estimated from marker data, as estimates of genetic variation 
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alone may be misleading. For instance, heritability for d13C was near zero for the Rifle Peak 

population, as was the case for root:shoot ratio in Freel Peak and Little Roundtop, N($g) in Rifle 

Peak, and height for four of six populations. While this could mean the presence of recent, strong 

natural selection, or, conversely, that these traits do not convey an overwhelming adaptive 

advantage in these populations, candidate traits with substantial evidence for contributing to total 

lifetime fitness should be monitored nonetheless. In appropriate cases, introducing compatible 

variation would stand to improve adaptive potential in such populations. While there is no one 

specific solution to conserve populations of P. albicaulis across its range, taking into consideration 

fine-scale local adaptation in addition to established strategies will likely aid in such endeavors. 

Limitations and concluding remarks 
While we described associations among genotype, phenotype, and environment that 

collectively represent strong evidence for adaptive responses of P. albicaulis populations to the 

environment, we acknowledge several limitations. First, our study design was limited in statistical 

power which could have been improved by increasing the number of individuals sampled, the total 

number of populations, or both, given an ideal sampling regime (Lotterhos & Whitlock 2015). This 

would have facilitated use of other methodologies for uncovering evidence of polygenic local 

adaptation (e.g., Berg & Coop 2014). Second, while we measured fitness-related traits among 

seedlings of a species whose lifespan differs by several orders of magnitude, establishment 

success is one of the primary factors influencing dynamics of forest populations, and early life 

stages of plants have been shown to be a major component of total lifetime fitness (Postma & 

Ågren 2016). Third, much of the statistical signal for the association of allele frequency shifts to 

environment would be lost with correction for multiple tests. However, we leverage the fact that, 

of the few significant '()*Q(RS) associations, the majority were related to d13C, annual precipitation, 

its correlate of longitude, or measures of soil water availability, which is an outcome highly unlikely 

by chance alone. Fourth, while we provide evidence for statistical signals predicted by theory, our 

methodology limited us from making conclusions regarding local adaptation sensu stricto as we 
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utilized just a single common garden without reciprocal transplants and were unable to quantify 

functional differences of putative loci among populations. Finally, a more fully curated, well-

annotated genome assembly and accompanying linkage map would have aided in the detection 

of physical linkage among SNPs, proximity to genomic regions of estimated effect, and detection 

of false positives. For instance, the P. lambertiana genome used to judge authenticity of sequence 

data does not yet have the density of annotation needed to draw inferences on the causative sites 

likely within or linked to the loci described here, as its assembly and curation are still ongoing. We 

cannot, therefore, conclude that elevated covariances inferred for focal loci are not an artifact due 

to distant linkage with causative sites of larger effect. For this artifact to be true, however, our 

results would indicate that many of the loci in focal sets of SNPs would all have to be linked to the 

same smaller number of larger-effect loci, or that many large-effect loci underlie the measured 

traits, both unlikely outcomes given the expectations of quantitative traits and the coverage from 

ddRADseq methods found in other white pines (e.g., Friedline et al. 2015). Lastly, while we may 

not have solely identified causative sites, but instead those linked to causative genomic regions, 

linked sites can still maintain signals of evolutionary processes (McVean 2007). Future work could 

address these limitations and lead to the corroboration of our results, particularly in describing 

patterns exhibited by underlying loci in similar systems. 

Our inferences were synthesized from prevailing signals across multiple phenotypic, 

environmental, and taxonomic (cf. Eckert et al. 2015) lines of evidence. The results reported here 

suggest that focal loci collectively show elevated allele frequency covariance (a signal expected 

between loci undergoing selection with gene flow) across multiple loci than could have been 

expected to arise from the data by chance or artifact, and that interpopulation levels of allele 

frequency covariance are often associated with interpopulation distances of soil water availability. 

Our results further explain a considerable proportion (?AB) of the additive genetic variation (ℎl) 

of the quantitative traits under study from a polygenic perspective, as should be the case with 

sufficient genetic sampling (Gompert et al. 2016). Thus, we can posit that the general mode of 
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adaptation for P. albicaulis across the LTB is facilitated by selection on standing levels of genetic 

variation that is extensively shared throughout the basin and likely improves performance in early 

life stages. Finally, if soil and climatic variables continue to influence the extant populations within 

the LTB as evidenced from our analyses, it is likely that these variables will continue to be 

important to the long-term success of this threatened keystone species. 
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    Chapter 4.  
Local adaptation and linkage maps I:  

A first step towards describing genetic architectures  
of complex traits in natural populations 

This work has been published in the following papers: 

Friedline CJ, Lind BM, Hobson EM, et al. (2015) The genetic architecture of local adaptation I: 
the genomic landscape of foxtail pine (Pinus balfouriana Grev. & Balf.) as revealed from a 
high-density linkage map. Tree Genetics & Genomes 11:49. doi: 10.1007/s11295-015-0866-x 

Abstract  

Explaining the origin and evolutionary dynamics of the genetic architecture of adaptation 

is a major research goal of evolutionary genetics. Despite controversy surrounding success of the 

attempts to accomplish this goal, a full understanding of adaptive genetic variation necessitates 

knowledge about the genomic location and patterns of dispersion for the genetic components 

affecting fitness-related phenotypic traits. Even with advances in next-generation sequencing 

technologies, the production of full genome sequences for non-model species is often cost- 

prohibitive, especially for tree species such as pines where genome size often exceeds 20 to 30 

Gbp. We address this need by constructing a dense linkage map for foxtail pine (Pinus balfouriana 

Grev. & Balf.), with the ultimate goal of uncovering and explaining the origin and evolutionary 

dynamics of adaptive genetic variation in natural populations of this forest tree species. We 

utilized megagametophyte arrays (n = 76–95 megagametophytes/tree) from four maternal trees 

in combination with double digest restriction-site associated DNA sequencing (ddRADseq) to 

produce a consensus linkage map covering 98.58 % of the foxtail pine genome, which was 

estimated to be 1276 cM in length (95 % CI, 1174 to 1378 cM). A novel bioinformatic approach 

using iterative rounds of marker ordering and imputation was employed to produce single-tree 

linkage maps (507–17,066 contigs/map; lengths, 1037.40– 1572.80 cM). These linkage maps 

were collinear across maternal trees, with highly correlated marker orderings (Spearman’s ρ > 

0.95). A consensus linkage map derived from these single-tree linkage maps contained 12 linkage 

groups along which 20,655 contigs were non-randomly distributed across 901 unique positions 



 

 

 

81 

(n = 23 contigs/position), with an average spacing of 1.34 cM between adjacent positions. Of the 

20,655 contigs positioned on the consensus linkage map, 5627 had enough sequence similarity 

to contigs contained within the most recent build of the loblolly pine (Pinus taeda L.) genome to 

identify them as putative homologues containing both genic and non-genic loci. Importantly, all 

901 unique positions on the consensus linkage map had at least one contig with putative 

homology to loblolly pine. When combined with the other biological signals that predominate in 

our data (e.g., correlations of recombination fractions across single trees), we show that dense 

linkage maps for non-model forest tree species can be efficiently constructed using next-

generation sequencing technologies. We subsequently discuss the usefulness of these maps as 

community-wide resources and as tools with which to test hypotheses about the genetic 

architecture of local adaptation. 

Introduction 

Evidence for adaptive evolution among populations of plants is commonly documented at 

the phenotypic and molecular levels (Kawecki and Ebert 2004; Pannell and Fields 2013), and as 

such some of the best examples of adaptive evolution within lineages come from the field of plant 

genetics (e.g., Antonovics and Bradshaw 1970). Despite this evidence, relatively little work has 

focused explicitly on the genomic organization of loci contributing to these patterns (Hoffmann 

and Riesberg 2008), which likely stems from a lack of genomic resources for plants relative to 

animals. Adaptive evolution has been extensively documented for forest trees, especially conifers, 

with many instances of local adaptation clearly documented over the past century (White et al. 

2007; Neale and Kremer 2011). Despite great advances in experimental technology, empirical 

focus has remained almost fully on the number, effect size, type, and interactions among loci 

contributing to adaptive evolution (Neale and Kremer 2011; Alberto et al. 2013). A thorough 

examination of the genetic architecture of fitness-related traits, however, should also include an 

examination of the genomic organization of the loci contributing to trait variation. We leverage this 
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idea in the first of a series of papers dissecting the genetic architecture of fitness-related traits in 

a non-model conifer species, foxtail pine (Pinus balfouriana Grev. & Balf.). 

The genomic organization of loci contributing to variation in fitness-related traits would 

follow naturally from the production of a sequenced genome (i.e., a physical map). For many taxa, 

especially those with small to modest genome sizes, this is monetarily and computationally 

feasible using next-generation DNA sequencing technologies (Koboldt et al. 2013). For taxa with 

large or complex genomes, however, even the advent of next-generation DNA sequencing does 

not solve the complexity and cost hurdles associated with the production of a finished genome 

sequence. Conifers have large and complex genomes (Murray 1998; Ahuja and Neale 2005), with 

estimated average genome sizes in Pinus in the range of range 20–30Gbp. Several genome 

projects, each of which involves large consortia, are either underway or have been completed 

(Mackay et al. 2012). Even these efforts often initially result in limited information, however, as for 

example, the current assemblies of the Norway spruce (Picea abies L.) and loblolly pine (Pinus 

taeda L.) genomes contain millions of unordered contigs with average sizes in the thousands of 

base pairs (Nystedt et al. 2013; Neale et al. 2014). An alternative, but not mutually exclusive, 

approach to describing the genome of an organism is that of linkage mapping. In this approach, 

genetic markers are ordered through observations of recombination events within pedigrees. This 

approach dates to the beginning of genetics and the logic has remained unchanged since the first 

linkage maps were created in Drosophila (Sturtevant 1913). 

Renewed interest in linkage maps has occurred for two reasons. First, linkage maps are 

often used to order contigs created during genome sequencing projects (Mackay et al. 2012; 

Martínez-García et al. 2013). In this fashion, link- age maps are used to help create larger contigs 

from those generated during the assembly. It is these larger contigs that create the utility that 

most practicing scientists attribute to genome sequences. Second, linkage maps are easy to 

produce and provide a rich context with which to interpret population and quantitative genetic 

patterns of variation (e.g., Eckert et al. 2010a, b, 2013, Yeaman 2013). They can also be used to 
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test explicit hypotheses about the organization of loci contributing to adaptive evolution. For 

example, Yeaman and Whitlock (2011) developed theoretical predictions about the genomic 

organization of loci underlying patterns of local adaptation as a function of gene flow, so that loci 

contributing to local adaptation have differing spatial structure within genomes as a result of 

differing regimes of gene flow. The relevant scale (sensu Houle et al. 2011) in these mathematical 

formulations is that of recombinational distance among loci, so that when matched with an 

appropriate study system, linkage maps provide the impetus to test basic evolutionary 

hypotheses. In this context, future additions of finished genome sequences would add to the 

interpretation of results. 

Construction of linkage maps have a long history within forest genetics, mostly through 

their use in quantitative trait locus mapping (Ritland et al. 2011). Conifers in particular are highly 

amenable to linkage mapping, with approximately 25 different species currently having some form 

of linkage map completed (see Table 5-1 in Ritland et al. 2011). Much of the amenability of 

conifers to linkage mapping stems from the early establishment of breeding populations in 

economically important species and from the presence of a multicellular female gametophyte (i.e., 

the megagametophyte) from which the haploid product of maternal meiosis can be observed 

(Cairney and Pullma 2007). Indeed, many of the first linkage maps in conifers were generated 

from collections of megagametophytes made from single trees (Tulsieram et al. 1992; Nelson et 

al. 1993; Kubisiak et al. 1996). Continued advancements in genetic marker technologies have 

facilitated rapid development of linkage maps across a diversity of species (e.g., Acheré et al. 

2004; Kang et al. 2010, Martínez-Garcíaetal.2013). The development of biologically informative 

markers for non-economically important conifers, however, is hampered by production costs 

associated with the creation of characterized genetic markers (i.e., those with a known DNA 

sequence and/or function). The majority of this cost is in the two-step approach needed to 

generate biologically meaningful markers: polymorphism discovery via DNA sequencing followed 

by genotyping of those polymorphisms (cf., Eckert et al. 2013). As a result, the vast majority of 
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linkage maps outside of economically important species are created with uncharacterized genetic 

markers (e.g., Travis et al. 1998). Much of the knowledge about the genetic architecture of fitness-

related traits, out- side of a handful of well-studied conifer species, therefore, encompasses the 

number and effect size of uncharacterized genetic markers (Ritland et al. 2011). Cost restrictions, 

however, have largely disappeared. It is now feasible to jointly discover polymorphisms and 

genotype samples using high-throughput DNA sequencing approaches, such as restriction-site 

associated DNA sequencing (RADseq; e.g., Peterson et al. 2012). 

The generation of linkage maps from RADseq data is a complex endeavor due to the 

inherent stochasticity and error-prone nature of these data. Recent examples in several crop 

species highlight the difficulties that must be overcome with respect to missing data and errors in 

calling polymorphic sites and the resulting genotypes (Pfender et al. 2011; Ward et al. 2013). 

Despite these difficulties, RADseq has been successively applied to samples taken from natural 

populations of non-model conifer species (Parchman et al. 2012), but has yet to be applied to 

linkage mapping in these species. An exploration of these methods to linkage mapping in the 

large and complex genomes of conifers is thus warranted. Here, we take this approach using 

megagametophyte arrays from four maternal trees of foxtail pine to generate maternal linkage 

maps. There are currently no published linkage maps for this species, which is only distantly 

related to loblolly pine (Eckert and Hall 2006), nor any within the subsection Balfourianae. We 

subsequently discuss the utility of our inferred linkage maps to tests of evolutionary theory 

addressing local adaptation and its genetic architecture. 

Materials and Methods 

Focal species 
Foxtail pine is a five-needle species of Pinus classified into subsection Balfourianae, 

section Parrya, and subgenus Strobus (Gernandt et al. 2005). It is one of three species within 

subsection Balfourianae (Bailey 1970) and generally is regarded as the sister species to Great 

Basin bristlecone pine (P. longaeva D. K. Bailey; see Eckert and Hall 2006). The natural range of  
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Figure 4.1. Geographical locations of foxtail pine samples used to construct a common garden located in 
Placerville, CA. Circles denote the 15 unique locations from which 4 to 17 maternal trees were sampled. 
Circles enclosed in squares denote locations from which maternal trees used in linkage mapping were 
sampled. Photo credits: lower: T. Burt; upper: A. Delfino Mix.  

 

foxtail pine encompasses two regional populations located within California that are separated by 

approximately 500 km: the Klamath Mountains of northern California and the Sierra Nevada of 

southern California (Figure 4.1). These regional populations diverged approximately one million 

years ago (mya), with current levels of gene flow between regional populations being 

approximately zero (Eckert et al. 2008). Within each regional population, levels of genetic diversity 

and the degree of differentiation among local stands differ, with genetic diversity being highest in 

the southern Sierra Nevada stands and genetic differentiation being the highest among the 

Klamath stands (Oline et al. 2000; Eckert et al. 2008). These two regional populations have also 

been recognized as distinct subspecies based on numerous quantitative traits, with P. balfouriana 

subsp. balfouriana located in the Klamath region and P. balfouriana subsp. austrina located in the 

southern Sierra Nevada mountains (Mastrogiuseppe and Mastrogiuseppe 1980). The two 
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regional populations of foxtail pine thus represent a powerful natural experiment within which to 

examine the genomic organization of loci contributing to local adaptation. The first step in using 

this system to test evolutionary hypotheses is the production of a dense linkage map (cf., Pannell 

and Fields 2013). 

Sampling 
Seed collections from 141 maternal trees distributed throughout the natural range of foxtail 

pine were obtained during 2011 and 2012. Of these 141 maternal trees, 72 were sampled from 

the Klamath region while 69 were sampled from the southern Sierra Nevada region. These 141 

families were divided among 15 local stands (n = 4 to 17 trees/stand), with eight stands in the 

Klamath region and seven stands in the southern Sierra Nevada. Approximately, 50 seeds were 

germinated from each seed collection and 35 of those 50 seedlings were planted in a common 

garden located at the USDA Institute of Forest Genetics, Placerville, California (Figure 4.1). The 

common garden was established using a randomized block design and involved three separate 

plantings of seeds spanning approximately 1 year (June 6, 2012 until May 20, 2013). Four of the 

141 maternal trees were selected at random (n = 2 from the Klamath region and n = 2 from the 

southern Sierra Nevada) for linkage analysis. Libraries were color-coded and are referred to as 

red (southern Sierra Nevada), green (southern Sierra Nevada), blue (Klamath), and yellow 

(Klamath). For each of these trees, 75 to 100 seeds were germinated and planted in the common 

garden. Upon germination, haploid megagametophyte tissue was rescued from each seedling, 

cleaned by removing soil and other extraneous materials with water, and stored for further 

analysis in 1.5-mL Eppendorf tubes at −20◦C. 

Library preparation and sequencing 
Total genomic DNA was isolated from each rescued megagametophyte using the DNeasy 

96 Plant kit following the manufacturer’s protocol (Qiagen, Germantown, MD). RADseq (Davey 

and Blaxter 2010; Parchman et al. 2012; Peterson et al. 2012) was used to generate a genome-

wide set of single nucleotide polymorphism (SNP) markers for linkage mapping following the 
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protocol outlined by Parchman et al. (2012). In brief, this protocol is a double digest RADseq 

(ddRADSeq) approach based on digestion of total genomic DNA using EcoRI and MseI followed 

by single-end sequencing on the Illumina HiSeq platform. Single-end sequencing was chosen for 

reasons related to cost. Paired-end sequencing would have improved the reference assembly, 

which would have likely improved construction of the linkage map. Since the insert size we 

selected would have resulted in non-overlapping reads from each end, the improvement to 

genotype calls is unclear. Following digestion, adapters containing amplification and sequencing 

primers, as well as barcodes for multiplexing, were ligated to the digested DNA fragments. We 

chose to multiplex 96 samples using the barcodes available from Parchman et al. (2012). One of 

these samples, per set of 96, was a pseudo-diploid constructed by pooling five 

megagametophytes sampled from the same maternal tree, although there is a probability of 0.54 

= 0.0625 that the genotype for any given SNP will be mistakenly called homozygous due to the 

five megagametophytes all being of the same allele (see Morris and Spieth 1978). These 

barcodes are a mixture of 8, 9, and 10bp tags that differ by at least four bases. Following ligation, 

successfully ligated DNA fragments were amplified using PCR and amplified fragments were size 

selected using gel electrophoresis. We selected fragments in the size range of 400bp (300 to 

500bp) by excising and purifying pooled DNA from 2.5% agarose gels using QIAquick Gel 

Extraction Kits (Qiagen). Further details, including relevant reagents and oligonucleotide 

sequences, can be found in File S1. All DNA sequencing was performed on the Illumina HiSeq 

2000 or 2500 platform at the VCU Nucleic Acids Research Facility (http://www.narf.vcu.edu/). 

DNA sequence analysis 
There are multiple steps involved with the processing of raw DNA sequence reads into a 

set of SNP genotypes that are useful for linkage mapping: (1) quality control, filtering, and 

demultiplexing; (2) assembly to generate a reference sequence for mapping reads; (3) mapping 

of reads to call SNPs and genotypes for each sample; and (4) filtering of SNPs and the resulting 

genotypes for data quality and biological meaning. 
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DNA sequence reads were demultiplexed into sample-level fastq files, following quality 

control and filtering. The filtering pipeline was adapted from Friedline et al. (2012). Briefly, reads 

containing any N beyond the first base were excluded; however, reads having N as the first base 

were shifted by one base to the right to exclude it (i.e, a read starting with NTGC would become 

a read starting with TGC). Additional quality filtering ensured that all reads in the resulting set for 

downstream processing had a minimum average quality score of 30 over 5-bp sliding windows 

and that not more than 20% of the bases had quality scores below 30. Reads passing the quality 

control steps were demultiplexed into sample-specific fastq files by exact pattern matching to 

known barcodes. Reads that did not match a known barcode were excluded. 

The individual with the largest number of reads across all four maternal trees was 

assembled using Velvet (Zerbino, version 1.2.10), with hash length (k) optimized using parameter 

sweeps of k through the contributed VelvetOptimiser (http://www.vicbioinformatics.com, 

version 2.2.5) script (for odd k on k = [19, 63]). Assembly robustness was evaluated in each case 

using the LAP likelihood framework (Ghodsi et al. 2013), version 1.1 (svn commit r186) following 

mapping of the original reads to the assembly with Bowtie2 (Langmead and Salzberg 2012) (--

local --very-sensitive-local). The assembly with the maximum likelihood value was 

chosen as the reference for SNP calling. 

SNPs were called for all individuals against the reference using the following methodology. 

First, reads were mapped to the reference with Bowtie2 (--local --very-sensitive-

local). The resulting sam files were converted to their binary equivalent (e.g., bam) using 

samtools version 0.1.19 (view, sort, index) (Li et al. 2009). SNPs were called using 

bcftools and filtered using vcfutils to exclude SNPs with less than 100× coverage. The 

resulting variant call files (vcf) were further processed using vcftools version 0.1.11 (Danecek et 

al. 2011) to remove indels, exclude genotype calls below a quality threshold of 5, and output as 

a matrix (--012) the haploid genotype of each megagametophyte for each SNP. 
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We used several thresholds to filter called SNPs for link- age mapping. First, we excluded 

SNPs using a χ2 test of homogeneity against an expectation of 1:1 segregation. This segregation 

pattern was expected because the maternal tree had to be a heterozygote to detect a SNP, and 

Mendel’s first law guarantees that the segregation ratio for this SNP should be 1:1. Significance 

of each test was assessed using a Bonferroni-corrected significance threshold of α = 0.05, where 

α was corrected using the number of SNPs tested. As reads from each family were mapped 

against a single reference assembly, we performed the χ2 test and corrections on a family-wise 

basis. Second, for each family, we filtered the resulting SNPs based on the genotype of the 

pseudo- diploid sample in that family, so as to keep only those SNPs where the pseudo-diploid 

was either (1) called a heterozygote or (2) had a missing genotype call. Lastly, we filtered the 

resulting SNPs, so as to keep only those that had a mini- mum of five genotype calls for each of 

the alternate alleles. These filtering steps were taken to minimize the presence of genotyping 

errors arising from technical (e.g., read mapping and alignment) and biological (e.g., paralogy) 

reasons. Previous research within conifer genomes has documented the presence of a large 

number of paralogues (Keeling et al. 2008; Nystedt et al. 2013; Neale et al. 2014). Although we 

did not explicitly quantify the degree of paralogy consistent with our data, the filters used during 

the analysis of DNA sequence reads should flag paralogous loci preferentially. The resulting 

subset of SNPs was then used as the input to linkage analysis. 

Linkage analysis 
The production of a linkage map requires three main steps: (1) calculation of pairwise 

distances between all pairs of loci, (2) clustering (i.e., grouping) of loci based on these pairwise 

distances, and (3) ordering of loci within each cluster (Cheema and Dicks 2009). A variety of 

software packages exist to carry out these steps (e.g., Van Ooijen 2011). Traditional software 

packages for linkage mapping, however, are not amenable to large amounts of missing data and 

frequent errors in genotype calls. The former causes issues with all aspects of analysis, while the 

latter primarily affects the genetic distances between markers (Hackett and Broadfoot 2003; 
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Cartwright et al. 2007). We thus followed the approach of Ward et al. (2013), which was designed 

specifically for RADseq data. 

In brief, this method can be described as follows. Pair- wise distances were estimated and 

loci were clustered using a custom R script (R Core Team 2013). We used MSTmap (Wu et al. 

2008a) to infer marker order and Maskov (Ward et al. 2013) to impute and correct genotypes. 

The algorithms available in MSTmap can also be used to impute and correct genotype errors (see 

Wu et al. 2008a), but the amount of missing data and putative genotyping errors in our RADseq 

data far surpassed those used to develop this software. These two programs were used in an 

iterative fash- ion. MSTmap was used initially to order markers, which was followed by the use of 

Maskov to impute and correct putative genotype errors conditional on this initial marker ordering. 

A last round of ordering was performed using MSTmap conditional on the imputed and error-

corrected genotype data. This general schema was followed for each of the four maternal trees 

independently. 

The relevant pairwise distance for linkage mapping in our haploid case is defined as the 

probability of observing a recombination event between two haplotypes. This prob- ability can be 

calculated for a set of biallelic loci using the Hamming distance (di,j). The Hamming distance is 

the number of differences separating two binary strings (Hamming 1950), which are in this case, 

the haploid genotypes for a set of two megagametophytes. This distance, scaled by the number 

of positions (i.e., di,j/n), is the maximum likelihood estimate of the probability of a recombination 

event with respect to a pair of haplotypes in a double haploid design (Wu et al. 2008a). It is also 

an estimate of the recombination fraction, so that these distances can be transformed into LOD 

scores (see Morton 1955). Missing data were dealt with in a pairwise manner, so that each 

pairwise comparison had missing data removed prior to estimation of di,j/n. When values of di,j/n 

exceeded 0.5, which is the theoretical maximum value given the expected 1:1 segregation 

pattern, they were set to 0.5. The di,j/n values were used to construct the pairwise distance matrix 

between all possible pairs of loci passing our quality thresholds. 
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Loci were clustered hierarchically based on the pair- wise distance matrix using Ward’s 

method as the linkage function (Ward 1963). The values of di,j/n were squared prior to use of 

Ward’s method in hierarchical clustering. We explored groupings (K) based on clustering on the 

interval K = [8, 16]. This interval was chosen because it brackets the haploid chromosome number 

of foxtail pine (1N = 12). This entailed cutting the resulting dendrogram at a specific height, so 

that the desired number of groups resulted. Solutions were compared using silhouette widths for 

each locus (Rousseeuw 1987). The value of K which maximized the fraction of loci for which the 

silhouette width was maximal across the different values of K was selected as optimal. 

Ordering of loci within clusters was carried out using MSTmap (Wu et al. 2008a). This 

method takes a full, undirected graph where nodes are loci and edges are based on the values 

of di,j/n and finds the correct order of markers based on the minimum-weighted traveling salesman 

path (TSP). Wu et al. (2008a) showed that the minimum-weighted TSP can be found using a 

minimum spanning tree approach and that it corresponds to the correct order of the loci if the 

minimum spanning tree on the full, undirected graph is unique. We employed MSTmap using the 

maximum likelihood objective function, grouping turned off, imputation of missing data turned off, 

and the Kosambi mapping function (Kosambi 1944). The resulting ordering of loci within each 

cluster, along with the distances (i.e., cM) in each cluster, were taken as the initial linkage map 

from which data were error-corrected and imputed. 

Data were subsequently imputed and corrected for errors using Maskov (Ward et al. 

2013). A full account of the mechanics used in the algorithm of Maskov can be found in Text S1 

from Ward et al. (2013). For our purposes, the accuracy of the imputation and error correction 

depends upon two choices: (1) the threshold for missing data for a given megagametophyte and 

(2) the number of contiguous loci where genotype errors can occur. We chose a value equal to 

90% for the amount of missing data across megagametophytes for the former and a value of 5% 

of the number of loci in the initial map for each cluster for the latter (cf., Ward et al. 2013). 
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A final round of ordering was conducted with the imputed and error-corrected data using 

MSTmap as described previously. Imputation and error correction resulted in many loci where 

di,j/n = 0. These co- segregating markers were thus mapped to the same bin (Wu et al. 2008a). 

The collection of resulting ordered clusters was taken as the final linkage map for each of the four 

maternal trees. The end result of the linkage analysis was thus four independent linkage maps, 

one per maternal tree. 

Consensus map construction and biological interpretation 
We took a two-step approach to the inference of the consensus linkage map. First, the 

four linkage maps, one for each maternal tree, were combined into a framework linkage map 

using MergeMap (Wu et al. 2008b). We constructed a set of weights with which to rank SNP 

orderings from each map as more or less probable based on the average amount of missing data, 

where a higher weight meant that the genotype data used to infer the linkage map had fewer 

instances of missing data (red: 0.05, green: 0.40, blue: 0.15, yellow: 0.40). Second, the remaining 

SNPs were added to the framework map by using the weighted average of the observed 

recombination fractions across libraries and constructing a linkage map as described previously 

based on these weighted average values. Consistency in the positioning and relative distances 

among framework markers was assessed using Spearman (1904) and Mantel (1967) correlations. 

Specifically, pairwise distances (cM) among framework markers were extracted from each linkage 

group on the framework map built using MergeMap as well as the map resulting from use of the 

weighted average recombination fractions in MSTmap. A Mantel correlation was used to test the 

null hypothesis that these distances were not correlated using a Bonferroni-corrected significance 

threshold of α = 0.05. Separate tests were performed for each of the 12 linkage groups. All 

analysis was con- ducted in the R ver. 3.0.2 statistical computing environment (R Core Team 

2013). 

Framework markers on the resulting consensus linkage map were used to estimate the 

size (Chakravarti et al. 1991) and coverage (Lange and Boehnke 1982) of the foxtail pine genome. 
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The contigs from the assembly used to discover SNPs that appeared on the consensus linkage 

map were annotated using BLAST tools (Altschul et al. 1990) and the most recent release of the 

loblolly pine (Pinus taeda L.) genome sequence (v. 1.01, annotation V2). Each contig from the 

assembly was queried against the set of scaffolds comprising the loblolly pine genome using 

BLASTN. The hits from each comparison were retained, and these top hits were filtered based 

on query coverage and the per- cent identity. As thresholds, we used a minimum of 50 % for the 

query coverage and 75% for the percent identity. The percent identity for the query coverage was 

set according to the expected number of substitutions between two sequences (2μt, see Nei 

1987), where the mutation rate (μ) was assumed to be 1 × 10−9 substitutions/site/year and the 

divergence time (t) was assumed to be 8×10−7 years (Willyard et al. 2007). This translated into an 

average expectation of 16% divergence between any two DNA sequences of loblolly and foxtail 

pines. We rounded down to 75% to account for a portion of the variance around this expecta- 

tion. Hits that exceeded these thresholds were transferred as annotations, as obtained from the 

annotation gff files, to the contig appearing on the consensus linkage map for foxtail pine. The 

resulting GO annotations were visualized and analyzed with ReviGO (Gene Ontology monthly 

release 10/2014; UniProt-to-GO mapping 9/30/2014) (Supek et al. 2011) allowing a similarity of 

50 % across terms. 

Results 

DNA sequence analysis 
The raw number of reads varied across libraries from a minimum of 71,834,280 (red) to a 

maximum of 206,365,836 (green), with an average of 153,082,376 ± 49,855,941. All raw reads 

were either 102bp (green, yellow) or 110 (red, blue) in length, depending on sequencing 

technology (HiSeq 2500 vs 2000, respectively). In general, the libraries run on the Illumina HiSeq 

2500 platform had a 1.65-fold greater number of reads than those run on the Illumina 2000 HiSeq 

platform. Processing of reads for quality reduced these numbers by approximately 1.66-fold, with 

a range of a 2.56-fold (red) to a 1.33-fold (yellow) reduc- tion. After filtering, the average length of  
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Figure 4.2. Sharing of contigs across maternal tree maps from which the consensus map was constructed. 
Counts in each cell represent the number of unique contigs appearing on the final consensus map. Unique 
contigs for the yellow and green maternal trees were largely discarded to make estimation of pairwise 
recombination fractions computationally feasible (see Materials & Methods section). KM Klamath 
Mountains, SN Sierra Nevada. 

 

reads was 88 ± 13 bp, with a range of 40 to 102 bp across libraries. The number of quality-filtered 

reads per megagametophyte also varied 19,741-fold (±27,069-fold) on average across libraries, 

with average minimums of 753 ± 603 bp to average maximums of 3,421,571 ± 2,070,990 bp. After 

quality filtering, this translated into an average total of 8,137,663,036 ± 3,658,147,958 bp 

generated per library, ranging from 2,436,531,265 bp (red) to 11,643,165,529 bp (yellow). 

The largest number of reads (n = 6, 838, 986) was obtained for a single megagametophyte 

in the green library. These reads were used to create an assembly against which all other data 

were mapped for SNP calling and genotype determination. Optimization of assembly parameters 

(k = 31, ln(L) = −110.071) resulted in an assembly of 231,053 contigs, with an average length of 

89 ± 12 bp per contig (range, 61 to 312 bp), and an average per-contig base coverage of 4.5X to 

20.0X (range, 1.5X to 5069X). This assembly represented approximately 0.07% of the genome 

of foxtail pine, which was assumed to be approximately 30 Gbp in size (Murray 1998). 

Using this assembly, 349,542 putative SNPs were called (Table 4.1). These 349,542 

SNPs were located in 83,051 unique contigs (35.94 % of the total), with a mean of 4 SNPs per  
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Table 4.1. Attributes of the data structure related to maternal tree.  

 

contig (range, 1 to 32). Filtering these SNPs by expected segregation patterns, consistency with 

heterozygous calls for the psuedo-diploid sample, and minimum sample sizes for genotype calls, 

resulted in 983, 34261, 21594, and 35304 SNPs for the red, green, blue, and yellow libraries, 

respectively. The vast majority of SNPs eliminated were for violation of the 1:1 expected pattern 

of segregation (259,801–268,621), with approximately 95% of these dropped SNPs shared 

across families. The counts for the yellow and green libraries were also trimmed so as to remove 

all but a handful (n = 2 for the yellow and n = 6 for green libraries) of the unique contigs not found 

as polymorphic in the other libraries. This was done to facilitate the efficiency of the calculation of 

pairwise recombination fractions. These SNP counts represented 507, 16925, 10967, and 17066 

contigs for the red, green, blue, and yellow libraries, respectively. Patterns of shared polymorphic 

contigs, as well as SNPs, were as expected given the among-region magnitude of genetic 

differentiation (Figure 4.2, see Eckert et al. 2008), with libraries comprised of megagametophytes 

sampled from maternal trees located in the same geographical area sharing more polymorphic 

contigs and SNPs than comparisons of maternal trees from different geographical regions 

(nonparametric permutation analysis: P < 0.0001, see Supplemental Text). On average, 

megagametophytes in the filtered data set had 79.40% (±14.7%) missing data (i.e., a missing 

haploid genotype) across SNPs (range, 1.3 to 99.8%), with the green library having the smallest 

Attribute Yellow Blue Red Green 
Region Klamath Klamath Sierra Nevada Sierra Nevada 

Latitude 44.7483 41.1959 36.4481 36.4481 

Longitude −123.1332 −122.7922 −118.1706 −118.1706 

Illumina platform HiSeq 2500 HiSeq 2000 HiSeq 2000 HiSeq 2500 
No. of megagametophytes 95 95 76 73 

Reads (total) 174,516,834 159,612,555 71,834,280 206,365,836 

Reads (filtered) 131,540,433 80,498,688 28,041,978 129,396,774 
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(74.3 ± 18.9%) and the red library having the largest average amount of missing data per 

megagametophyte (84.4 ± 15.2 %). 

Linkage mapping 
Individual linkage maps were constructed for each maternal tree separately using an 

iterative approach based on imputation. All filtered SNPs for each maternal tree, regardless of 

being located in the same contig, were assessed for pat- terns of linkage followed by grouping 

and ordering of SNPs. Redundant SNPs were filtered post hoc and used to test for biases in our 

analysis pipeline. 

Grouping of pairwise recombination fractions via hierarchical clustering was consistent 

with 12 linkage groups. This corresponded to a minimum pairwise LOD score of approximately 

5.5 for each maternal tree for markers to be placed within the same linkage group. Inspection of 

the distribution of silhouette values for values of K ranging from 8 to 16 revealed that K = 12 was 

the best clustering solution for each of the four maternal trees (Figure S4.1). This was confirmed 

by comparison of pairwise LOD scores for SNPs within versus among the 12 linkage groups. 

Comparisons within linkage groups were on average 3.2-fold larger than among linkage groups, 

which was significantly greater than expected randomly (n = 1000 permutations/maternal tree, P 

< 0.015). 

Marker ordering within putative linkage groups using MSTmap resulted in extremely long 

linkage maps (e.g., >50,000 cM) for each maternal tree. This translated into an average number 

of recombination events which exceeded 100 per megagametophyte. This pattern is consistent 

with problems of inference due to missing data and genotyping errors (Ward et al. 2013). To verify 

this assumption, data for the blue library were split into two sets of 35 megagametophytes—those 

with the least amount of missing data and those with the largest amount of missing data. As 

expected, the inferred recombination distances were 3.5-fold smaller for the maps inferred using 

the megagametophytes with less missing data. Thus, we followed the approach of Ward et al. 

(2013) to impute and error correct data based on our initial marker orderings. 
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Table 4.2. Attributes of single-tree and the consensus linkage maps. Values for ratio variables are totals 
and are not averaged across linkage groups (see Tables S4.1–S4.5). 

 

Imputation and error correction of genotype data for each linkage group for each maternal 

tree was carried out using Maskov. This process drastically reduced the number of inferred 

recombination events, including double crossovers, from >100 per megagametophyte to 

approximately 1 to 2 per megagametophyte. This reduction was controlled by setting a parameter 

in Maskov so as to produce a number of recombination events per megagametophyte that 

mirrored those observed previously for linkage mapping within conifers (Eckert et al. 2009; 

Martínez-García et al. 2013). Changing this parameter had no effect on the downstream ordering 

of SNPs within linkage groups but only changed the spatial resolution of the resulting linkage map. 

The resulting linkage maps for each maternal tree were aligned manually based on the 

presence of shared contigs. Overall, there was excellent agreement among maps, with only 115 

SNPs being mapped to conflicting linkage groups across maternal trees. All 115 SNPs with 

conflicting group assignments were unique to the red library. These were dropped from further 

consideration. Within linkage groups, SNPs present in multiple libraries were ordered similarly  

 (pairwise Spearman’s ρ > 0.956, P < 0.001), with conflicting orderings having average differences 

of 5.91 cM (±5.64 cM). Inferred linkage maps for each maternal tree also resulted in SNPs from 

the same contig largely being mapped to the same position, with an average of only 5.8% of SNPs 

from the same contig being mapped to a different position. Approximately 94 % of the time, these 

different positions were adjacent on the linkage map. For those SNPs from the same contig that 

did not map to the same position, the average difference in positioning was 1.64 cM (±3.01 cM), 

Attribute Yellow Blue Red Green Consensus 
Contigs 17,066 10,967 507 16,925 20,655 
Positions 728 1101 296 839 901 
Contigs/position 23 10 2 20 23 
Total bp 
mapped 

1,596,325 1,025,088 47,222 1,583,269 1,931,700 

Total length 
(cM) 

1037.40 1263.46 1572.80 1287.48 1192.10 

cM/position 1.43 1.15 5.31 1.53 1.32 
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with no instances of SNPs from the same contig being located on different linkage groups. We 

thus pruned multiple SNPs per contig by randomly selecting one SNP per contig from the data 

set and re-estimated the link- age maps for each maternal tree as described previously. The 

resulting four linkage maps were taken as the final estimates of linkage relationships among 

polymorphic contigs in each of the four maternal trees. 

The final four linkage maps varied in total length from 1037.40 to 1572.80 cM, with an 

average of 1290.29 cM (±219.5 cM; Tables 4.2, S4.1, S4.2, S4.3, and S4.4; Figures 4.3, S4.2, 

S4.3, S4.4, S4.5, S4.6, and S4.8). In total, 20,655 unique contigs representing 1,931,700 bp of 

DNA were mapped to a position within at least one linkage map. The number of contigs varied 

33.66-fold across linkage maps, with a minimum of 507 (red) to a maximum of 17,066 (yellow). 

These contigs were organized into an average of 741 (±335) unique positions, separated on 

average by 1.77 cM (±2.36 cM), across linkage maps, with the fewest number of unique positions 

observed in the linkage map for the red maternal tree (n = 296) and the largest number in the 

linkage map for the blue maternal tree (n = 1101). With respect to average distances between 

adjacent positions, the linkage map for the red maternal tree had the largest (5.53 ± 6.11 cM), 

while that for the blue maternal tree had the lowest (1.16 ± 0.77 cM). This translated into an 

average of 15 (±27) contigs per position on average, with the linkage map for the red maternal 

tree having the fewest contigs per position on average (2 ± 2) and the linkage map for the yellow 

maternal tree the most contigs per position on average (27 ± 35). Contigs were also non-randomly 

distributed across positions for all linkage maps except that for the red maternal tree (P < 0.0001, 

see Supplemental Text), with elevated contig counts typically occurring at the ends of linkage 

groups (Figure 4.3). 

Consensus map construction and biological interpretation 
A set of 507 framework SNPs were devised from those contigs shared across at least 

three of the four linkage maps. These 507 SNPs were used to construct a framework map using 

MergeMap. The resulting linkage map had an overall length of 1572.80 cM. Comparison of this 
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map with those for each maternal tree revealed a strong similarity in positioning for each linkage 

group (Spearman’s ρ > 0.98, P < 0.001). Using an expanded set of SNPs present in at least three 

families, two of which had to be the green and yellow families, confirmed these patterns, with 

pairwise correlations among maps on the order of 0.92 or greater. Given this overall similarity, we 

incorporated the remaining markers into the map by using weighted averages of observed 

pairwise recombination fractions across maternal trees and inferred a consensus linkage map as 

outlined previously. Inferred marker positions and distances for the framework markers were 

highly correlated across linkage groups in this map relative to that inferred using MergeMap and 

only the framework markers (Mantel’s r :> 0.95, P < 0.001). We used this as evidence in support 

of our approach, and the inferred consensus linkage map was taken as the final consensus 

estimate of linkage relationships for the 20,655 unique contigs located in the four maternal tree 

linkage maps. 

As with the individual tree maps, K = 12 linkage groups was most consistent with the 

averaged data. This corresponded to a minimum pairwise LOD score of approximately 5.5 for 

each maternal tree for markers to be placed within the same linkage group. The consensus 

linkage map was 1192.00 cM in length, with linkage groups varying in length from 88.44 to 108.76 

cM (Table S4.5, Figures 4.3, S4.9). There were 901 unique positions across the 12 linkage groups 

for this map, so that the average number of contigs per position was 23 (±35). These 901 positions 

were separated on average by 1.34 cM (±0.50 cM). As with the individual maternal tree linkage 

maps, contigs were non- randomly distributed across positions (P < 0.0001, see Supplemental 

Text), with notable enrichment at the ends of inferred linkage groups. Using the 507 framework 

SNPs and the final consensus linkage map, the estimated genome size of foxtail pine is 1276.04 

cM (95% confidence interval, 1174.31–1377.77 cM). As such, the estimated coverage of the 

genome is 98.58% (LOD threshold = 5.5; maximum dis- tance among adjacent framework 

markers, 13.4 cM; number of framework markers, 507; K = 2694). 
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Figure 4.3. Consensus linkage map of 12 linkage groups, derived from SNPs among individuals of four 
populations. Working inward from the outermost section of the figure, for each linkage group: (1) the solid 
black bars represent the span of recombination distances (in cM) for markers; (2) the individual tick marks 
show the locations of the markers, and the colors represent the density of annotation of the SNPs at that 
position (≥50 % = green, ≥25 % = red, <25 % = black) to homologous locations in lobolly pine); (3) The 
black density plot represents the counts of SNPs from all four families mapping to a specific position in the 
linkage group; (4) the colored density plots show the contribution SNPs from the individual families to the 
markers on the map at each position and are shown in order by total read count in the library, with yellow 
having the most and red having the least amount of reads. Linear plots of linkage groups comprising the 
consensus map are given in Figure S4.9. 

 

Of the 20,655 contigs in the reference assembly which contained SNPs, 5627 (27.2%) 

contained BLASTN hits (n = 5853) which passed the filtering threshold of 50% query length and 
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75% identity. The averages of query length (bp), query coverage percentage, and identity 

percentage were 94 ± 7 bp, 86.4 ± 13.0 %, and 90.1 ± 3.9 %, respectively. We found 2802 (48.9%) 

instances of SNPs mapping to putative genic regions in the loblolly pine genome (n = 587 

scaffolds) representing 303 unique GO terms. More detailed annotation information (e.g., InterPro 

IDs and GO terms) can be found in the supplemental file S1. 

Discussion 

The genetic architecture of fitness-related traits has been a major focus of geneticists for 

over a century (reviewed by Ellegren and Sheldon 2008). Early efforts to understand the genetic 

architecture of fitness-related traits focused primarily on the number and effect size of the loci 

underlying heritable, phenotypic variation (Fisher 1918). Recent work has extended this line of 

research, with a multitude of studies linking phenotypic with genetic variation through linkage 

mapping, both within pedigrees (Mauricio 2001; Neale and Kremer 2011; Ritland et al. 2011) and 

within natural populations (Ingvarsson and Street 2011; Eckert et al. 2013), or through quantitative 

genetic experimentation (Anderson et al. 2014, 2013; Fournier-Level et al. 2013). Relatively little 

empirical work outside of model organ- isms, other than polyploidization or the characterization 

of genomic islands of divergence (e.g., high FST), has focused on the genomic organization of 

loci contributing to fitness differences among individuals (but see Stevison et al. 2011). This is 

despite clear theoretical predictions relating the evolution of the genetic architecture underlying 

fitness-related traits to the genomic organization of the loci comprising this architecture 

(Kirkpatrick and Barton 2006; Yeaman and Whitlock 2011; Yeaman 2013; Akerman and Bu ̈rger 

2014). 

Here, we have provided a high-density linkage map rep- resenting over 20,000 unique 

contigs distributed throughout the 30 Gbp genome of foxtail pine that can be used to aid in the 

discovery and study of loci contributing to local adaptation. To our knowledge, it represents one 

of the most dense linkage maps ever produced within forest trees, although the number of unique 

positions is much less than the number of mapped contigs (i.e., about 1/20th). Approximately 25% 
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of these contigs had significant similarity to sequences within the draft loblolly pine genome. 

Importantly, our markers are dispersed in both genic and non-genic regions of the genome. The 

latter are often ignored in studies of local adaptation utilizing markers based on sequence capture 

(e.g., Neves et al. 2014) and SNP arrays (e.g., Eckert et al. 2010b), yet it is known that non-genic 

regions are often involved with adaptation (e.g., Studer et al. 2011). This linkage map, moreover, 

was created using affordable next- generation sequencing technologies in combination with freely 

available methods of analysis, which highlights the feasibility of this approach to non-model 

conifers, where full genome sequencing and assembly are still not quite fea- sible given realistic 

research budgets. With regard to map integrity, recombination fractions for pairs of SNPs segre- 

gating in multiple trees were highly correlated (Mantel’s r > 0.90 for all comparisons across linkage 

groups). This allowed for the creation of a robust consensus linkage map, as well as highlighted 

the biological signal of linkage appar- ent even in noisy ddRADseq data. When coupled with the 

other biological signals in our results (e.g., trees from the same regional population sharing SNPs 

more often), we can be confident that our inferred linkage maps are based primarily on biological, 

as opposed to statistical, signals. In further support of this claim, randomly subsampling our data 

to represent 10,000 contigs and performing linkage mapping as described previously resulted in 

a consensus linkage map that was indistinguishable from that pictured in Figure 4.3 (Spearman’s 

ρ = 0.997, P < 0.0001). 

The linkage map produced here is valuable in numerous ways. First, it provides a dense 

resource for quantitative trait locus (QTL) mapping. Our next step using this link- age map is to 

link fitness-related phenotypic variation with genotypes at mapped markers. We are currently 

mapping QTLs for δ13C to accomplish this goal (cf., Hausmann et al. 2005). Importantly, this will 

represent one of the first QTL maps in the clade of soft pines outside of section Quinquefoliae. 

Second, the framework provided here is optimal for imputation and phasing of data during 

population genomic inferences utilizing samples from natural populations (Scheet and Stephens 

2006). Third, our linkage map is the foundation upon which theoretical expectations can be tested. 



 

 

 

103 

For example, the theory of Yeaman and Whitlock (2011) predicts that the loci contributing to local 

adaptation should be differentially clustered in genomes as a function of rates of gene flow among 

populations. Magnitudes of gene flow among stands differ dramatically within the regional 

populations of foxtail pine, and pairwise plots of synteny across maternal trees revealed several 

instances of differential marker orderings between regional populations consistent with areas of 

the genome with structural differences (see Figures S4.7 and S4.8). These areas, however, were 

the exception, as marker orderings across trees were highly correlated. Fourth, knowledge about 

the physical ordering of loci allows patterns of linkage disequilibrium (LD) within natural 

populations to be better characterized. The role of LD in local adaptation has long been 

recognized (see Akerman and Bürger 2014), yet empirical studies of its role are difficult without 

some knowledge of physical relation- ships among loci. This is because LD among physically 

linked markers is expected to some degree, whereas LD among physically unlinked markers must 

have originated from some evolutionary process (e.g., genetic drift, natural selection, migration). 

Patterns of LD across non-genic regions of pine genomes are currently unknown (but see 

Moritsuka et al. 2012), so additional data in combination with the linkage map provided here allow 

for rigorous investigations of these patterns. Lastly, continued production of linkage maps across 

the Pinaceae will aid comparative genomics and evolutionary inference through study of synteny 

and the evolution of genome structure (Ritland et al. 2011; Pavy et al. 2012). 

Despite numerous indicators of biological signals dominating our dataset, caution is still 

needed when interpreting our results. First, we used novel analysis methods that have not been 

tested using simulations. For example, the form of hierarchical clustering used here is not 

employed to our knowledge in any of the available software packages used for linkage mapping. 

Its utility on data of smaller or larger sizes than that presented here is unknown. Consistency of 

results across maternal trees, however, indicates that our methods are likely appropriate for our 

data (see also Tani et al. 2003). Second, error correction and imputation were used, which could 

have affected marker ordering and distances. Marker order, however, did not change with 
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increasing stringency of error correction. Only marker distances changed with increased 

stringency, thus creating clumped distributions of makers. This was also apparent in the total map 

length, which is at the lower end expected for conifers (cf., Ritland et al. 2011), which is indicative 

of being conservative with error corrections. The effect of marker clumping on downstream uses 

of this linkage map, however, is likely to be minimal (e.g., bias in QTL intervals), as this bias would 

affect QTL size and not necessarily inference of QTL presence or absence. The relative 

importance of imputation and error correction is to some degree affected by experimental 

conditions. We did not standardize the total amount of DNA for each megagametophyte prior to 

construction of libraries (concentration ranges, 10 to > 50 ng/$l), which likely affected the average 

19,741-fold variation in the number of reads across megagametophytes. Future studies would 

benefit from considering this prior to library construction. Related to this issue was the poor 

performance of the red family. In general, the library for this family exhibited signs of low sequence 

quality, with it having the largest fraction of reads eliminated during quality filtering (Table 4.1), 

the largest fraction of pseudo-diploid genotypes called as homozygous or missing (99.5%), and 

the largest fraction of loci deviating from expected segregation patterns (76.8%). This is consistent 

with lower overall coverage driven by low-quality sequence data, which could have resulted from 

any of the numerous laboratory steps during creation of the multiplexed libraries (i.e., DNA 

extractions, restriction digests, ligation, and PCR). Third, we used a form of hierarchical clustering 

that required the number of groups to be defined subjectively. Post hoc analysis indicated that 

our clustering solution corresponded to a LOD threshold of approximately 5.5 and that 12 was an 

optimal number of groups (Figure S4.1). Selection of a larger or smaller number of groups, 

moreover, did not change marker ordering within groups substantially. Typically, changing K to a 

larger value broke existing linkage groups into more pieces, whereas changing K to smaller values 

merged existing linkage groups. Marker orderings within these broken or merged groups, 

however, did not change. Fourth, we did not explicitly quantify error rates. In theory, error rates 

can be calculated from summaries derived from the mpileup in samtools. Given the relatively 
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low coverage and limited reference assembly for this species (cf., Nystedt et al. 2013; Neale et 

al. 2014), estimation of error rates would likely be biased. Thus, we preferred to acknowledge the 

presence of errors, as indicated by the extremely long initial single-tree linkage maps, and use 

statistical methods to minimize their influence. As next-generation data accumulate for this 

species, and other conifers in general, precise estimation of error rates will become feasible. 

Lastly, our sample sizes were not large enough to resolve linkage relationships beyond distances 

of approximately 1.0 cM (but see Neves et al. 2014). Increased number of sampled 

megagametophytes would have allowed higher resolution, which could aid in downstream uses 

of our linkage map. Despite this level of resolution, however, we have produced one of the densest 

linkage maps to date for a forest tree species (Eckert et al. 2010a; Martínez-García et al. 2013; 

Neves et al. 2014). 

Conifer genomics is emerging as a mature scientific field (Mackay et al. 2012). Draft 

sequences of genomes and transcriptomes for several species have been released and more are 

planned. As shown here, production of high-density linkage maps is a fruitful endeavor to 

accompany this maturation. The results presented here are promising and also provide guidance 

for future attempts in additional species. Specifically, linkage maps provide ample information 

about genomic structure that is needed for the study of local adaptation in natural populations (cf., 

Limborg et al. 2014). Here, we have produced a high-density linkage map for foxtail pine using 

methods applicable to any non-model conifer species, thus opening the door for further studies 

of genome structure and the genetic architecture of local adaptation in this rather understudied 

clade of pines, as well as the Pinaceae as a whole. 
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    Chapter 5.  
Local adaptation and linkage maps II:  

The QTL landscape of water-use efficiency in Pinus balfouriana 
This work has been made publicly available in the following preprints: 

Eckert AJ, Harwood DE, Lind BM, et al. (2016) The genetic architecture of local adaptation II: The 
QTL landscape of water-use efficiency for foxtail pine (Pinus balfouriana Grev. & Balf.). bioRxiv 
1–52. doi: https://doi.org/10.1101/038240  

 
Abstract 

Water availability is an important driver of the geographic distribution of many plant species, 

although its importance relative to other climatic variables varies across climate regimes and 

species. A common indirect measure of water-use efficiency (WUE) is the ratio of carbon isotopes 

(δ13C) fixed during photosynthesis, especially when analyzed in conjunction with a measure of 

leaf-level resource utilization (Nitrogen content, Nμg). Here, we test two hypotheses about the 

genetic architecture of WUE for foxtail pine (Pinus balfouriana Grev. & Balf.) using a novel mixture 

of double digest restriction site associated DNA sequencing, species distribution modeling, and 

quantitative genetics. First, we test the hypothesis that water availability is an important 

determinant of the geographical range of foxtail pine. Second, we test the hypothesis that variation 

in δ13C and Nμg is genetically based, differentiated between regional populations, and has genetic 

architectures that include loci of large effect. We show that precipitation-related variables 

structured the geographical range of foxtail pine, climate-based niches differed between regional 

populations, and δ13C and Nμg were heritable with moderate signals of differentiation between 

regional populations. A set of large-effect QTLs (n = 11 for δ13C; n = 10 for Nμg) underlying δ13C 

and Nμg variation, with little to no evidence of pleiotropy, was discovered using multiple-marker, 

half-sibling regression models. Our results represent a first approximation to the genetic 

architecture of these phenotypic traits, including documentation of several patterns consistent 

with δ13C being a fitness-related trait affected by natural selection. 
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Introduction 

Descriptions of the genetic components underlying fitness-related phenotypic variation 

have been a focus of quantitative genetics for over a century (Shull 1908; Fisher 1918; Mather 

1941; Ford 1975; Mackay et al. 1994; Ritland et al. 2011 and references therein). These 

descriptions have progressed from identifications of the genetic elements affecting trait variation 

(e.g. Jermstad et al. 2001) to analysis of interactions among these elements with one another and 

the environment (e.g. Jermstad et al. 2003). Uniting all these descriptions are foundational 

questions about the structure, function, and evolution of genotype-phenotype maps in natural 

populations. For forest trees, these descriptions historically addressed traits of economic 

importance such as specific gravity of wood (e.g. Groover et al. 1994), microfibril angle (e.g. 

Sewell et al. 2000), growth (e.g. Wu 1998), and phenology (e.g. Pelgas et al. 2011), with the 

ultimate goals of marker-assisted breeding (Neale and Savolainen 2004) and trait prediction from 

genotypic data (Grattapaglia and Resende 2011). These traits, while economically important, 

often also affect fitness (especially phenology, see Sorensen 1983), so that these efforts can also 

be leveraged to understand the genetic basis of ecologically relevant trait variation. The linkage 

between traits measured in common gardens and fitness in natural populations, however, is 

usually assumed post hoc, which can lead to storytelling (Barrett and Hoekstra 2011) and 

oversimplification of the ecological ramifications of quantitative genetic results. Here, we address 

this disconnect through simultaneous use of species distribution modeling and quantitative trait 

locus (QTL) mapping to dissect the genetic architecture of an ecologically important phenotypic 

trait for foxtail pine (Pinus balfouriana Grev. & Balf).  

The spatial and temporal distribution of all viable individuals across the Earth’s landscape 

for a given species is defined as its geographical range (Brown et al. 1996). Evolution of range 

sizes and structural attributes of these ranges have been studied for a variety of taxa for many 

decades (e.g. Mayr 1963; Antonovics 1976; Brown et al. 1996; Gaston 2003; Eckert et al. 2008; 

Sheth and Angert 2014). The common thread underlying these interests is the assumption that 
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fitness of individuals within species is related to the known geographical range for each species 

based on the environments defined by this range, other selective pressures (i.e. competition) 

across this range, and the phylogeographic history that resulted in the current geographical range 

(Hutchinson 1957; Pulliam 2000; Chuine 2010). For example, relative fitness values within plant 

populations tend to be highest in their home environments and lower in novel environments at the 

margin or outside of known geographical ranges (reviewed in Leimu and Fischer 2008). 

Regardless of the relationship between this pattern and evolutionary concepts such as local 

adaptation, it is clear that current geographical ranges are to some degree projections of 

ecological niches (i.e. realized versus fundamental niches), or at least some aspect of these 

niches, onto geographical space (Pulliam 2000; Ettinger et al. 2011). Knowledge of the 

environmental and climatic drivers of geographical ranges can therefore be informative about 

links between traits responsive to these drivers and fitness. 

Species distribution models (SDMs) are commonly utilized as predictive tools with which 

to assess the importance of environmental variables to current geographical ranges of species 

(Elith et al. 2006). At a minimum, these models are built from known occurrences of a certain 

species and the environmental and ecological attributes of these locations derived from either 

field measurements or information stored in geographical information systems (GIS) layers. 

Numerous approaches are available with which to build models from these data (Segurado and 

Araujo 2004; Elith et al. 2006; Phillips et al. 2006). Once constructed, SDMs are often used 

subsequently to study the evolutionary development of ranges (e.g. McCormack et al. 2010), as 

well as the effects of continued climate change on current geographical ranges (e.g. Pearson and 

Dawson 2003). However, there are limitations to equating SDMs, even those with good predictive 

abilities of current geographical ranges, with realized ecological niches and hence measures of 

fitness limits (Hampe 2004; Soberon and Peterson 2005; Warren and Seifert (2011). For example, 

individuals used to create SDMs are considered exchangeable, so that fitness variation among 

individuals is ignored (Hampe 2004). Some of these issues, especially those related to 
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exchangeability of individuals within species, can be addressed through a careful matching of 

modeling units (e.g. genetically differentiated populations within species; sensu Davis et al. 2005), 

geographical scale (e.g. the geographical scale relevant to the genetically differentiated 

populations), and the research questions of interest.  

Water is crucial to the survival of all plant species (e.g. Sorenson 1983), although its 

importance relative to other environmental factors varies depending upon the environmental 

factors that are most limiting within local environments (Dudley 1996). The intrinsic efficiency by 

which plants use water (WUE) is defined as the ratio of net assimilation of carbon from CO2 during 

photosynthesis to the loss of water during transpiration (Bacon 2004). Carbon isotopic 

composition (δ13C) is an indirect measure of intrinsic WUE and is based upon the ratio of two 

isotopes of carbon (13C and 12C) within plant tissue standardized to a reference. This ratio is 

related to WUE because it has been demonstrated that the discrimination by C3 plants of 13CO2 

relative to 12CO2 is correlated to the ratio of carbon assimilation during photosynthesis to stomatal 

conductance (Farquhar et al. 1982; Farquhar and Richards 1984; e.g. Zhang and Marshall 1994). 

The physiological and environmental mechanisms, however, driving the linkage between δ13C 

and intrinsic WUE at various levels of biological organization are numerous, so that the expected 

linear relationship between δ13C and WUE may not always hold (Seibt et al. 2008). For example, 

differences in δ13C across individual plants at the leaf level can result from changes in carbon to 

nitrogen allocation during carboxylation, variation in leaf structure and morphology, and/or 

variation in available CO2 (Seibt et al. 2008). Within a common environment, however, it is 

assumed that variation in available amounts of atmospheric CO2 is negligible. Variation for δ13C 

across individual plants in these common environments should therefore reflect variation for 

intrinsic WUE. Indeed, previous research in conifers has established that variation in δ13C across 

individual plants is heritable (Seiler and Johnsen 1988; Cregg 1993; Brendel et al. 2002; Baltunis 

et al. 2008; Cumbie et al. 2011), is polygenic, yet comprised of a mixture of large and small effect 

loci (Brendel et al. 2002; Gonzalez-Martinez et al. 2008; Cumbie et al. 2011; Marguerit et al. 
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2014), and that it often reflects variation for intrinsic WUE through leaf level assimilation (Zhang 

and Marshall 1994; Brendel et al. 2002; Cumbie et al. 2011; Marguerit et al. 2014).  

Water availability is an important driver of tree distributions (Stephenson 1990 and 

references therein), especially in Mediterranean climates (e.g. Baldocchi and Xu 2007; Lutz et al. 

2010). This importance is evident through increased tree mortality as a function of both direct and 

indirect consequences associated with changing water availability (van Mantgem et al. 2009; 

Allen et al. 2010). Regional and local water availability will likely be altered, either through changes 

to annual precipitation totals or the seasonality of precipitation, under most climate change 

scenarios, especially in ecosystems dependent on residual summer snow-packs (Barnett et al. 

2005). The ability of natural populations of forest trees to respond to changing water availability 

is linked to segregating genetic variation for traits responsive to water availability (Aitken et al. 

2008). Knowledge of the genetic architecture of such traits, therefore, provides an important 

resource for assessing forest health, as well as the genetics of adaptation (Neale and Kremer 

2011). Here, we test two hypotheses about the genetic architecture of WUE for foxtail pine – (i) 

water availability is an important determinant of the geographical range of foxtail pine and hence 

fitness and (ii) variation in δ13C and Nμg is genetically based, differentiated between regional 

populations, and has genetic architectures that include loci of large effect. We subsequently 

discuss how the integration of results from disparate fields of research (i.e. genomics, ecology, 

and quantitative genetics) provides information useful to foundational tests about the genetic 

architecture of local adaptation and its evolution (cf. Friedline et al. 2015). 

Materials and methods 

Focal species 
Foxtail pine is one of three species classified within subsection Balfourianae of section 

Parrya within subgenus Strobus. It is generally regarded as the sister taxon to Great Basin 

bristlecone pine (P. longaeva D. K. Bailey; see Eckert and Hall 2006). The distribution of this 

species is relegated to the high elevation mountains of California, with all known occurrences  
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Table 5.1 Summary of the families (n=5) used for QTL mapping. Sibling counts represent the numbers of 
siblings genotyped and phenotyped for each family. Additional siblings for each family are still growing 
within the common garden (see Materials & Methods). 

 

being in either the Klamath Mountains of northern California or in the high elevations of the 

southern Sierra Nevada (Figure S5.1). These two regions are separated by approximately 500 

km and differ in climate, soils, and forest composition (Ornduff 1974; Eckert and Sawyer 2002; 

Barbour et al. 2007). 

Common garden 
A common garden representing 141 maternal foxtail pine trees was established at the 

Institute of Forest Genetics (Placerville, CA) during 2011 and 2012 using a randomized block 

design. Cones were collected from 141 maternal trees sampled range-wide, with 72 sampled from 

the Klamath Mountains and 69 from the southern Sierra Nevada region. For each maternal tree,  

35 – 100 seeds were germinated and grown in standard conditions as outlined in Eckert et al. 

(2015). More information about the common garden can be obtained from Friedline et al. 2015). 

Of these 141 maternal trees, offspring, assumed to be half-siblings, from five were selected for  

analysis of water-use efficiency (see Phenotype determination, Table 5.1). The 

megagametophyte associated with each germinated seed from these five maternal trees was 

rescued and used to construct a high-density linkage map based on four of the five maternal trees 

(Friedline et al. 2015). The seedlings from each maternal tree were allowed to grow for a full year 

 Red Green Purple Blue Yellow 

Latitude 36.448075 36.448075 41.319871 41.195910 41.748267 

Longitude -118.170611 -118.170644 -122.479184 -122.792240 -123.133233 

Elevation(m) 3352.80 3352.80 2397.56 2103.12 2103.12 

Siblings 35 40 34 40 32 

Locality Cottonwood 

Pass 

Cottonwood 

Pass 

Mt. Eddy East Boulder 

Lake 

Lake Mountain 

Region SN SN KM KM KM 
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after which needles were sampled (n = 32 to 40/maternal tree) for determination of phenotypes 

and genotypes. As done by Friedline et al. (2015), families were named using colors (i.e. these 

were the colors of family identifier tags in the common garden), with families sampled from the 

Klamath Mountains being labeled as blue, yellow, and purple and families sampled from the 

southern Sierra Nevada being labeled as red and green. 

Phenotypic determination 
Two phenotypic traits were measured from needle tissue sampled from each growing 

seedling – carbon isotope discrimination (δ13C) and foliar nitrogen content (Nμg). These were 

chosen because (δ13C) is a proxy for intrinsic WUE (Farquhar et al. 1982; Farquhar and Richards 

1984), while Nμg is a proxy for plant growth and resource utilization during photosynthesis 

(Prasolova et al. 2000). Tissue was sampled in year 1 of growth, which was also prior to formation 

of randomized blocks in the common garden. Given the age of the seedlings, sampling of enough 

needle tissue for determination of phenotypes and genotypes was destructive. Thus, only a 

subset of the seedlings per maternal tree was used. For these seedlings, all available needles 

were sampled, cleaned and separated into those used for genotype determination and those used 

for phenotype determination. For phenotype determination, needles were placed into a mortar 

with liquid nitrogen and coarsely ground by hand using a pestle. The resulting needle tissue was 

then transferred into 20 ml glass vials and oven-dried at 60°C for 96 hrs. Approximately, 2 to 3 

mg of ground and dried needle tissue from each seedling was subsequently placed into individual 

wells comprising a 96 well microtiter plate. Samples were analyzed for δ13C and Nμg at the Stable 

Isotope Facility at UC Davis  (http://stableisotopefacility.ucdavis.edu/). Data are presented as 

carbon isotope ratios for δ13C (‰) and weight for Nitrogen (Nμg). 

Sequence analysis and genotype determination 
Total genomic DNA was extracted from the remaining needles from each sampled 

seedling using Qiagen DNeasy 96 Plant Kits following the manufacturer’s protocol. The resulting 

total genomic DNA for each seedling was quantified using spectrophotometry as implemented 



 

 

 

113 

with a Thermo Scientific NanoDrop 8000. Following quantification, samples were prepared for 

double digest restriction site associated DNA sequencing (ddRADseq) following the protocols of 

Parchman et al. (2012) as implemented for foxtail pine by Friedline et al. (2015). All samples had 

concentrations of total genomic DNA in the range of 15 to 60 ng/µL. In brief, this protocol proceeds 

via restriction digests of total genomic DNA for each sample using EcoR1 and Mse1, ligation of 

adapters that include the Illumina primer, universal M13 primers, and 8 – 10 bp barcodes, PCR 

amplification, and size selection of the PCR amplified and ligated restriction digests. In our 

protocol, multiplexing (i.e. pooling) occurred post PCR and size selection was carried out using 

1.0% agarose gels run for 1 hour at 110 volts in 1X TAE buffer. All data are based on sequencing 

fragments in the size range of 300 to 500 bp on the Illumina HiSeq 2500. DNA sequencing was 

performed at the VCU Nucleic Acid Research Facility (http://www.narf.vcu.edu/index.html). 

Raw FASTQ sequences were quality-checked and filtered as in Friedline et al. (2015). 

Briefly, reads must pass a three-stage filtering procedure to be retained for downstream analysis. 

First, if the average quality for all bases in the read was below 30, the read was discarded. 

Second, a five-base pair sliding window was evaluated along each raw sequence. Consecutive 

windows were retained if their mean quality was greater-than or equal-to 30. If the mean score of 

a window fell below this threshold, the read was trimmed at this point. If the length after trimming 

was at least 50% of the original read length, the read was kept, otherwise it was discarded. Finally, 

if 20% of the bases in the original read had quality scores below 30, the entire read was discarded, 

even if its average quality met the inclusion threshold. The reads that passed quality filtering were 

demultiplexed and assigned to individual trees in one of five families: Blue, Green, Purple, Red, 

or Yellow. 

Sequences were aligned to the linkage map assembly (Friedline et al. 2015) and read 

groups were added using Bowtie2 version 2.2.4 (Langmead and Salzberg 2012) using the – 

very-sensitive-local set of options. Each alignment was checked and marked for PCR 

artifacts using Picard (http://picard.sourceforge.net, svn 03a1d72). Variants were called using 
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species distribution modeling the mulitallelic caller from samtools version 1.1 (Li et al. 2009), 

specifying diploidy for all individuals. The resulting VCF file was processed using VCFtools 

version 0.1.12.b (Danecek et al. 2011) , retaining only bialleleic SNPs that mapped to positions 

on the linkage map defined in Friedline et. al (2015) with quality (--minQ) of at least 20. All read 

processing and variant calling pipeline code, Python 3.4.3 and R version 3.2.0 (R Core Team 

2015), can be found as IPython (Pérez and Granger 2007) notebooks and associated files at 

http://www.github.com/cfriedline/foxtail_wue. 

Once genotypes were called for all loci on the linkage map of Friedline et al. (2015), we 

selected one SNP per position on the linkage map based on minimizing the amount of missing 

data and being polymorphic in the most families. Missing genotype data were subsequently 

imputed for each linkage group using the default settings of the program fastPHASE ver. 1.2 

(Scheet and Stephens 2006), with families used as populations. To account for uncertainty in 

genotype imputation, we estimated posterior probabilities of each possible genotype (i.e. 0, 1, or 

2) at each locus using 1,000 haplotype reconstructions provided by fastPHASE, which were used 

subsequently used as weights in a weighted average of the minor allele count. These weighted 

averages were then rounded to the closest value (0, 1, or 2) following normal rounding rules (i.e. 

round downward if the tenths position is less than five, otherwise round up). 

Species distribution modeling 
We used species distribution models (SDMs) to justify water-use efficiency as a fitness- 

related trait and to quantify niches of each regional population relative to one another. The former 

provides an a priori justification for the measured traits as ecologically relevant, while the latter 

provides an estimate of niche differentiation between regional populations comparable to the 

effect of region on trait differentiation (see Quantitative Genetic Analysis). Species distribution 

models were used to assess the relative importance of precipitation-related and temperature-

related variables to the distribution of foxtail pine. We utilized the approach of maximum entropy 

(MaxEnt; Phillips et al. 2006) to construct SDMs. Known quantitative genetic analysis locations of 
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foxtail pine within each regional population (n = 93 Klamath Mountains, n = 207 southern Sierra 

Nevada) were gathered from digitized herbarium records available through the Jepson Herbarium 

located at the University of California, Berkeley (http://ucjeps.berkeley.edu/). When the latitude 

and longitude of locations associated with these herbarium records were missing, visual 

inspections of maps from Google Earth were used to find the best approximation to the locality 

described on the herbarium sample. Climate data for each regional population were obtained from 

WordClim (http://www.worldclim.org/) and are represented as 19 bioclimatic variables, which are 

functions of temperature and precipitation variables (Table S1), given at a resolution of 30 arc-

seconds (~1 km). The generic grid files available from the WorldClim website were trimmed for 

each climate variable using the raster library in R and the following geographical extent: minimum 

longitude: -124.0°, maximum longitude: -117.5°, minimum latitude: 35.0°, maximum latitude: 

42.5°. Using these trimmed grid files and the location information pruned of duplicate observations 

(npruned = 65 Klamath Mountains, npruned = 144 southern Sierra Nevada), the MaxEnt software 

version 3.3.3k (https://www.cs.princeton.edu/~schapire/maxent/) was used to build a SDM for 

each regional population. MaxEnt was run using the cross-validation option for model 

assessment, 10 replicates, a maximum number of background points of 10,000, and jackknife 

analysis to evaluate variable importance. Measures of variable importance (i.e. variable 

contribution and permutation importance scores) and the results of the jackknife analyses were 

used to assess the relative roles of temperature-related and precipitation-related variables to each 

SDM. 

We used also used SDMs to quantify niche differentiation between regional populations 

of foxtail pine (Warren et al. 2008). We tested two null hypotheses. First, we tested the null 

hypothesis that the two SDMs were based on a single, underlying SDM common to each regional 

population. Second, we tested the null hypothesis that the two SDMs are no more differentiated 

than those randomly drawn from a common SDM with non-overlapping geographical distributions 

for each regional population. Both tests are based on the D and I statistics given by Warren et al. 
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(2008). The former null hypothesis was tested using the niche.equivalency.test function 

in the phyloclim library in R, while the latter null hypothesis was tested using the 

bg.similarity.test function in the same R library. Both tests were based on n = 100 

permutations to derive null distributions of test statistics. 

Quantitative genetic analysis 
We performed two sets of analyses to dissect the genetic basis of water-use efficiency for 

foxtail pine. First, we demonstrated that variation for the measured traits was genetically based 

using standard methods to decompose trait variance into effects of families, regions, and 

environment (Lynch and Walsh 1998). Second, we fit single and multiple QTL models to dissect 

the genetic basis of each trait into their genetic components using the regression methods of 

Knott et al. (1996).  

The genetic basis for each measured trait was assessed using linear models. We fit three 

different linear models to the observed data for each trait: (1) a fixed effect model containing only 

a grand mean (i.e. intercept), (2) a linear mixed model with a grand mean as a fixed effect plus a 

random effect of family, and (3) a linear mixed model of a grand mean as a fixed effect plus a 

random effect of region plus a random effect of family nested within region. Uncertainty in 

parameter estimates from each model was assessed using parametric bootstrapping (n = 1,000 

replicated simulations) as carried out with the simulate function in R. Models were compared 

using the Akaike Information Criterion (AIC), with Akaike weights used to assess the conditional 

probabilities for each model (Burnham and Anderson 2002). If models containing random effects 

for families or models containing random effects for regions and families nested within regions fit 

the data better than a model with only a grand mean, then we concluded that there were non-zero 

heritabilities for these traits. If we assume that all offspring within each family were half-siblings, 

we could estimate narrow-sense heritability as h2 = 4σ2
fam/(σ2

fam + σ2
res), where σ2

fam is the 

variance due to family nested within region and σ2
res is the residual variance. Given the small 

number of families, however, we avoided this estimation, as we were interested only in detecting 
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non-zero heritability and not precise estimation of its magnitude. Linear models with fixed effects 

were fit using the lm function, while linear mixed models were fit using maximum likelihood as 

employed in the lmer function of the lme4 library of R. Log-likelihood and AIC values were 

extracted for each fitted model using the logLik and AIC functions in R, respectively. 

The genetic basis of each trait was dissected using the least squares regression approach 

of Knott et al. (1996) for outbred, half-sibling families, where probabilities of allelic inheritance due 

to the common parent were used as predictors for each trait. Significance of the regression model 

was determined using a F-test calculated at 1-cM intervals, with the distribution of this statistic 

under a null model of no QTLs generated via a permutation scheme (Churchill and Doerge 1994). 

The common parent in our analyses was the maternal tree, we assumed that all offspring per 

maternal tree were half-siblings, and we used 1,000 permutations to generate null distributions of 

F-statistics. Permutations were used to create null distributions for F-statistics at the level of the 

entire genome (i.e. all linkage groups) and for each chromosome (i.e. linkage group) separately. 

We initially fit models of one QTL per linkage group using three significance thresholds: (1) α = 

0.05 at the level of the entire genome (major QTL), (2) α = 0.01 at the level of a particular 

chromosome (minor QTL), and (3) α = 0.05 at the level of a particular chromosome (suggestive 

QTL). For each QTL, we estimated the percent variance explained (PVE) as PVE = 4[1 – 

(MSEfull/MSEreduced)], where MSEfull and MSEreduced are the mean square errors of the full and 

reduced models, respectively (cf. Everett and Seeb 2014). Following Knott et al. (1996), estimates 

of PVE were scaled by (1 – 2r)2, where r is the recombination frequency between the marker and 

QTL (i.e. r = 0.01 for a 1-cM scan of each linkage group). Uncertainty in the position of the QTL 

was assessed using bootstrapping (n = 1,000 replicates). For each linkage group with a 

statistically significant QTL, we subsequently fit a model of two QTLs using the same approach, 

with the only differences being the use of asymptotic null distributions to test the statistical 

significance of the observed F-statistics and the lack of adjustments to estimates of the PVE for  
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Table 5.2 Mean (standard deviation) of read metrics by family. 

Family Number of reads Length (bp) Quality % Aligned 

Blue 1,092,446 (319,903) 89.0 (8.28) 38.0 (1.05) 31.00 (4.881) 

Green 691,141 (119,272) 87.6 (10.32) 37.5 (1.16) 26.08 (1.614) 

Purple 724,998 (126,585) 88.1 (9.98) 37.6 (1.15) 24.81 (1.398) 

Red 1,289,156 (304,551) 89.0 (8.10) 38.1 (1.05) 33.14 (3.577) 

Yellow 952,597 (377,357) 88.6 (9.17) 37.8 (1.12) 28.89 (4.185) 

 

multiple QTL models. All analyses were conducted with the HSportlets module on GridQTL 

ver. 3.3.0 (Seaton et al. 2006; Allen et al. 2012) using the linkage map for foxtail pine reported by 

Friedline et al. (2015). 

Results 

Sequence analysis and genotype determination 
From two lanes of HiSeq sequencing, we obtained 148,685,598 and 160,770,417 reads 

from lane 1 (length = 101 bp, %GC = 40) and lane 2 (length = 101 bp, %GC = 41), respectively. 

Following read filtering, we retained 77,568,370 (length = 49 - 101 bp, %GC = 40) reads from 

lane 1 and 107,372,313 (length = 49 - 101, %GC = 40) reads from Lane 2. A summary of the 

sequencing output and quality can be found in Table 5.2. The highest quality and most reads 

came from the Blue and Red families, while the Green family produced the smallest number of 

reads. Similarly, the Blue and Red families had the highest percentages of reads mapping to the 

assembly. The quality of reads across all families was sufficiently high, with average quality of 

any base of approximately 38. Graphical summaries of missing data and quality metrics are 

available in Figures S5.2 and S5.3. We filtered SNPs at the same position on the linkage map 

down to a set of 843 loci with the least amount of missing data and polymorphism in the most 

families. At these 843 SNPs, missing data averaged 58.0% (0% - 95.6%). Missing data were 

subsequently imputed using the marker ordering from Friedline et al. (2015) and fastPHASE. 
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Species distribution modelling 
Species distribution models were good predictors of the current geographical ranges for 

each regional population of foxtail pine (Figures 5.1, S5.1). Estimates of the area under the 

receiver operating characteristic curves (ROC curves) were near 1.0 for each model for both the 

training and test set of samples (Figure S5.4). Exceptions to this pattern included low to moderate 

probabilities of occurrence outside the current geographical distribution for the Klamath  

 

Figure 5.1 Species distribution models (SDMs) created using MaxEnt are good predictors of the current 
geographical range of foxtail pine (inlaid maps; AUC = area under the receiver operating characteristic 
curve). Precipitation and temperature-related variables are differentially important, as measured by variable 
contributions to each model, to the SDM of each regional population of foxtail pine, with precipitation-related 
variables more important for the Klamath Region and temperature-related variables more important for the 
southern Sierra Nevada. Variable contribution scores (+/- 1 standard deviation derived from 10 replicated 
runs of MaxEnt per SDM) are uncorrelated (Spearman’s ρ = -0.065). For symbols without apparent error 
bars, the diameter of the circle was greater than the standard deviation. 
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Mountains, which were centered on the northern Sierra Nevada, and a slightly expanded range 

north and south of the known range limits in the southern Sierra Nevada. Foxtail pine is known to 

be absent from these regions. In both cases, the probabilities of occurrence were less, often much  

less, than 0.40. The SDM based on the Klamath Mountains predicted a near zero probability for 

cells within the range of the southern Sierra Nevada and vice versa.  

Foxtail pine inhabits the cooler portions of each region in which it is currently located 

(Figures S5.5 – S5.6). For precipitation-related variables, however, foxtail pine in the Klamath 

Mountains inhabits slightly wetter localities relative to background localities, while in the southern 

Sierra Nevada foxtail pine inhabits drier localities relative to background localities. The climates 

inhabited by foxtail pine in each region also differ. In general, differences between the climates 

inhabited by each regional population were consistent with the Klamath Mountains being warmer, 

yet less variable in temperature throughout the year, and wetter, yet slightly more variable in 

precipitation throughout the year, relative to the southern Sierra Nevada. For example, mean 

annual precipitation was almost twice as high in the Klamath Mountains as in the southern Sierra 

Nevada (1179 mm versus 650 mm, respectively), yet the distribution of precipitation was slightly 

more variable throughout the year (e.g. precipitation of the driest month: 11.78 mm versus 12.41 

mm, respectively; coefficient of variation across months: 65.86 versus 65.02, respectively). 

Bioclimatic variables used to predict occurrences of foxtail pine within each regional 

population were highly correlated with one another (Figure S5.7). Sets of correlated variables are 

difficult to evaluate as contributing to SDMs (Warren and Seifert 2011). We, therefore, used 

several different measures of variable importance. Inspection of variable contribution scores 

revealed that temperature-related and precipitation-related variables were differentially important 

across SDMs for each region (Figure 5.1; Table S5.2). Temperature-related variables, specifically 

mean diurnal range (Bio2), isothermality (Bio3), and maximum temperature of the warmest month 

(Bio5), were most important for the southern Sierra Nevada population, whereas precipitation-
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related variables, specifically precipitation of the driest quarter (Bio17) and precipitation of the 

wettest quarter (Bio16), were most important for the Klamath Mountains population. This pattern, 

however, was reversed when using permutation importance scores, despite a moderate 

correlation between rankings of importance based on variable contribution and permutation 

importance scores (Figures 5.2, S5.8; Table S5.4). Temperature-related variables became more 

important for the Klamath Mountains, specifically annual temperature (Bio1), while precipitation- 

related variables became more important for the southern Sierra Nevada population, specifically 

precipitation seasonality (Bio15) and mean temperature of the wettest quarter (Bio8). Jackknife  

 

Figure 5.2 Ranks of variable importance (low rank = more important) based on variable contribution (VC) 
scores and permutation importance (PI) scores to the SDM for each regional population are moderately 
correlated (r = Spearman’s ρ). Variable types are denoted using filled circles, with black used for 
temperature-related variables, white for precipitation-related variables, and gray for variables related to both 
temperature and precipitation. 
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analysis of variable importance based on AUC, test gain, and regularized test gain, however, 

were consistent with both temperature-related and precipitation- related variables as being 

important for the Klamath Mountains population (Figures S5.9 – S5.11). For example, mean 

annual temperature (Bio1), maximum temperature of the warmest quarter (Bio5), mean 

temperature of the driest quarter (Bio9), mean temperature of the warmest quarter (Bio10), 

precipitation of the driest quarter (Bio17), and precipitation of the warmest quarter (Bio18) all 

contributed significantly to the SDM for the Klamath Mountains population (Figure S5.11), 

although no one variable contained much information that was not present in at least one of the 

others. In contrast, jackknife analysis of variable importance based on AUC, test gain, and 

regularized test gain were consistent with primarily temperature-related variables, specifically 

mean annual temperature (Bio1), mean diurnal range (Bio2), maximum temperature of the 

warmest month (Bio5), and the mean temperature of the warmest quarter (Bio10), driving the 

SDM for the southern Sierra Nevada population (Figures S5.12 – S5.14). As with the SDM for the 

Klamath Mountains population, however, no one variable contained information that was not 

present in at least one of the others (Figure S5.14). 

Predicted niches based on SDMs for each regional population were dissimilar, with 

estimates of D (0.072) and I (0.258) being much closer to zero (dissimilar) than to 1 (similar) 

(Figure S5.15). These differences were significant enough to reject a null model of a single shared 

SDM common to both regional populations (P < 0.01 for D and I). Even if differences were 

accounted for in the background environments of each regional population (Figure S5.5), the 

predicted niches were statistically different (P < 0.05 for both D and I). Replicating the analyses 

for climate variables related only to temperature or only to precipitation revealed that niche 

divergence was stronger for precipitation-related variables (Dprecip = 0.074; Iprecip = 0.271) relative 

to temperature-related variables (Dtemp = 0.124, Itemp = 0.376). Therefore, regional populations of 

foxtail pine have divergent climatic niches, with precipitation-related variables more differentiated 

than temperature-related variables. 
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Table 5.3 Attributes of linear mixed models used to estimate familial and regional effects for each 
phenotypic trait. Values in parentheses are 95% parametric bootstrap confidence intervals (see Materials 
and Methods). 

 

Quantitative genetic analysis 
Variation across siblings measured within the common garden was genetically based for 

each trait (Table 5.3). Family identifiers nested within regional populations accounted for sizeable 

portions of the total variance for δ13C (σ2
fam/[σ2

reg+ σ2
fam+ σ2

res] = 24.76%) and Nμg (σ2
fam/[σ2

reg+ 

σ2
fam+ σ2

res] = 24.45%). This was consistent with the differences among predicted family means 

for both traits (Figure 5.2), which were positively correlated (Figure 5.4), but not significantly so 

(Pearson’s r = 0.415; P = 0.487). Regional identifiers, however, were differentially important 

across traits, with these identifiers accounting for marginally more variance than family identifiers 

for δ13C (26.01%) but less than 10% of the total variance for Nμg (Figure 5.2). The joint effect of 

family and regional identifiers (i.e. the total genetic effect = [σ2
reg + σ2

fam]/[σ2
reg+ σ2

fam+ σ2
res]), 

however, was large for each trait (δ13C: 50.78%; Nμg: 29.75%). Comparisons of linear models 

progressing from intercept only to an intercept plus families nested within regions using AIC, 

revealed that a linear mixed model with an intercept and families was the best fit (AIC = 310.29 

for δ13C; AIC = 1031.26 for Nμg; Table 5.4). Comparison to other models using AIC weights, 

however, revealed that the most complex model of an intercept plus region plus families nested 

within regions had a reasonably high conditional probability (AIC weight = 0.36 δ13C; AIC weight 

= 0.28 for Nμg; Table 4) relative to those for the best model (δ13C = 0.64; Nμg = 0.72) for each 

phenotypic trait. 

Model Attribute δ13C Nμg 

logL -151.705 (-167.029 – -130.520) -512.587 (-528.588 – -491.444) 

Intercept -30.755 (-31.439 – -30.075) 21.519 (18.615 – 24.596) 

Family variance component (σ2fam) 0.159 (0.002 – 0.432) 7.826 (0.000 – 17.521) 

Region variance component (σ2reg) 0.167 (0.000 – 0.538) 1.696 (0.000 – 9.933) 

Residual variance component (σ2res) 0.316 (0.249 – 0.384) 22.486 (17.927 – 27.912) 
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Table 5.4 Comparisons of linear mixed models using the Akaike Information Criterion (AIC) by trait were 
used to select the best model (bolded text). In these models, the intercept was a fixed effect, while families 
nested within regions and regions were random effects. The AIC weight is calculated using the standardized 
relative likelihoods, where the relative likelihood is given as e(-0.5 x ΔAIC). For this calculation, ΔAIC is the 
difference between the AIC for each model and the AIC for the best model (bolded text), where the best 
model is the one with the lowest AIC. The weights are then calculated as each of relative likelihoods over 
the sum of the relative likelihoods, thus making the sum of the weights equal to 1. Akaike weights can also 
be considered as the conditional probabilities for each model. 

 

 

 

 

 

 

We dissected the genetic basis of the heritable variation evident for each trait from the 

linear mixed model analysis using the regression-based approach to QTL mapping of Knott et al. 

(1996). Application of one-locus models (i.e. a maximum of one-locus per linkage group) resulted 

in a set of 11 QTLs across all linkage groups and both traits (Table 5.5; Figure 5.6). For δ13C, six 

QTLs were discovered, with two discovered at the most stringent significance level (genome-wide 

permutation-based α = 0.05) and four at the least stringent significance level (linkage group 

specific permutation-based α = 0.05). Effect sizes for these QTLs were large to moderate, with 

the percent variation explained (PVE) ranging from 47.807% to 24.066%. For Nμg, five QTLs were 

discovered, with one QTL at the most stringent significance level, two at the intermediate 

significance level (linkage group specific permutation-based α = 0.01), and two at the least 

stringent significance level. Effect sizes for these QTLs were also large to moderate, with PVE 

varying from 39.773% to 25.058%. There was moderate autocorrelation for the F-statistic at a 

resolution of 6 cM or less for δ13C and 3 cM or less Nμg (Figure S5.16), but there was no 

correlation between F-statistics for each trait (Pearson’s r: -0.014, P = 0.734; Figure S17). In 

general, 95% confidence levels of positions for each QTL were large (Table 5.5). 

 δ13C Nμg 

Model AIC AIC weight AIC AIC Weight 

Intercept 408.10 3.66 x 10-22 1071.76 1.16 x 10-9 

Intercept + family 310.29 0.64 1031.26 0.72 

Intercept + family + region 311.41 0.36 1033.17 0.28 
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Figure 5.3 Familial and regional level means (+/- 1 standard error) by trait (left: δ13C, right: Nμg) are 
differentiated across families and regions relative to the global mean. Dashed gray lines give global means 
across all families for each trait. Estimates for the Klamath Mountains (KM) are given as filled circles, while 
estimates for the southern Sierra Nevada (SN) are given as filled triangles. Familial names are given as 
colors (see Materials and Methods). 

 

For the 11 QTLs detected using one-locus models, 10 were consistent with multiple QTLs 

using two-locus models (Table 5.6). In general, the QTLs from the one-locus models were one of 

the pair of QTLs detected in the two-locus models. There were four exceptions to this pattern, 

with two of these exceptions being a minor modification in position of the original QTL equal to 

1.0 cM. The other two exceptions included significant changes to the position of the original QTL, 

with the QTL on linkage group 3 for Nμg changing from 93.0 cM to 52.0 cM and 35.0 cM and the  
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Table 5.5 Summary of QTLs for each trait that survive multiple test corrected significance thresholds at 
either the level of the whole genome (α = 0.05 for G0.05) or a chromosome (α = 0.01 for C0.01, α = 0.05 for 
C0.05). aLG, Linkage group, bPVE, percent variance explained; PVEc, corrected percent variance explained, 
cThe threshold value for the F-statistic under the null model as determined using the listed value of α (0.05 
or 0.01) and permutations following Churchill and Doerge (1994) for either individual linkage groups (C) or 
the entire genome (G). d95% CI, 95% confidence interval determined through bootstrap analysis (n = 1,000 
replicates) 

 

QTL on linkage group 6 for δ13C changing from 0.0 cM to 46.0 cM and 56.0 cM (Tables 5.5 and 

5.6). The average spacing between QTLs on the same linkage group was 29.4 cM, with a 

minimum of 3 cM to a maximum of 85 cM. The multi-QTL PVE for each trait ranged from a 

minimum of 42.685% to a maximum of 71.315%, with only one instance of positional overlap in 

QTLs for each trait (linkage group 3 at 34.0 cM for δ13C and 35.0 cM for Nμg). On average, there 

was a negative relationship between distance (cM) and the correlation of family effects (Pearson’s 

r) between QTLs on the same linkage group (Figure S18), so that strong positive correlations of 

family effects were observed when QTLs were close together (<15 cM) and strong negative 

correlations when QTLs were farther apart (>20 cM). QTL effects from the one-locus QTL models 

were consistent with differentiation between regional populations, with family effects opposite in 

Trait LGa Position (cM) F PVEb (PVEc) Thresholdc 95% CId (cM) 

Nμg 1 0.0 4.422 26.540 (25.489) 3.818 (C0.05) 0.0 – 97.0 

δ13C 1 98.0 7.506 49.778 (47.807) 5.803 (G0.05) 13.0 – 99.0 

δ13C 2 78.0 6.040 39.139 (37.589) 5.803 (G0.05) 3.0 – 78.0 

δ13C 3 34.0 4.356 26.092 (25.058) 3.456 (C0.05) 13.0 – 93.0 

Nμg 3 93.0 4.475 27.065 (25.993) 3.725 (C0.05) 14.0 – 93.0 

δ13C 5 64.0 4.659 28.625 (27.491) 4.008 (C0.05) 17.0 – 103.0 

δ13C 6 0.0 4.198 24.825 (23.842) 3.835 (C0.05) 0.0 – 85.0 

Nμg 7 62.0 6.351 41.413 (39.773) 6.091 (G0.05) 16.0 – 89.0 

Nμg 8 72.0 5.784 37.182 (35.710) 5.559 (C0.01) 1.0 – 100.0 

Nμg 9 95.0 5.924 38.237 (36.809) 4.958 (C0.01) 9.0 – 95.0 

δ13C 12 23.0 4.105 24.066 (23.113) 4.072 (C0.05) 15.0 – 91.0 
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Figure 5.4 The relationship between traits based on family means (+/- 1 standard error) is positive 
(Pearson’s r = 0.415), although statistically non-significant at α = 0.05 (P = 0.487). Dashed gray lines give 
global means across all families for each trait. 

 

sign more often than expected by chance for δ13C (Fisher’s exact test: odds ratio = 0.113, P = 

0.009), but not for Nμg (Fisher’s exact test: odds ratio = 1.319, P = 1.0). Trait differentiation was  

similarly structured (Tables 5.3 and 5.4), with the clearest signal of differentiation for δ13C. The 

same patterns were observed for family effects in the two-locus models for the original QTL from 

Table 5.5, but not for the second QTL (P > 0.05 for both δ13C and Nμg). 
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Figure 5.5 The distributions of the F-statistic derived from single QTL models across each linkage group 
for carbon isotope discrimination and nitrogen content of needles reveals the isolated nature of QTLs. The 
dashed horizontal line in each panel is the genome- wide significance threshold (α = 0.05) for the F-statistic 
based on the permutation scheme (n = 1,000 permutations) suggested by Churchill and Doerge (1994). 
Significant QTLs are denoted with filled circles (α = 0.05, genome-wide), filled triangles (α = 0.01, 
chromosome-wide) or filled squares (α = 0.05, chromosome-wide). 

 

Discussion 

Climate is one of the main drivers for the distribution and diversification of forest tree species 

(MacArthur 1972; Royce and Barbour 2000; Ettinger et al. 2011; Alberto et al. 2013). The relative 

importance of specific climate variables as drivers of natural selection, however, is often assumed. 

For example, if a phenotypic trait is correlated to water availability in one species, the same trait 

is often studied in a different focal species without documenting water availability as having a 

large impact on fitness variation in the latter. The problem lies in the assumption that this 

correlation is also indicative of similar fitness consequences across species. Here, we address 

this issue for foxtail pine using a novel combination of species distribution modeling and pine and 

quantitative genetics. We illustrate the importance of water availability to the distribution of foxtail  
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Table 5.6 Summary of two QTL models fit to each significant QTL from Table 4. Bolded P-values are less 
than 0.05. aLG, Linkage Group; bPVE, percent variance explained by both QTLs 

 

pine and hence fitness, as well as describe the genetic architecture of WUE, a phenotypic trait 

responsive to water availability, so that this trait and the markers correlated to it can be used to 

test hypotheses about local adaptation and its genetic architecture. 

Climate drivers of the current geographical distribution and WUE 
In many situations, drivers of geographical distributions for tree species are obvious. For 

example, links between light availability, temperature, precipitation, and phenological traits are 

commonly noted for forest trees (Howe et al. 2003; Chuine 2010). In other situations, however, 

climate drivers are less clear, so that quantification of the relative importance for a suite of climate 

variables is needed. For foxtail pine, the drivers of its current geographical distribution appear to 

be a mixture of temperature-related and precipitation-related variables, with a clear pattern that 

precipitation-related variables are necessary to explain the current geographical range. This 

implies that phenotypic traits correlated to precipitation-related variables likely have fitness 

Trait LGa Position (cM) Position 2 (cM) F P PVEb 

Nμg 1 0.0 79.0 3.89 0.0023 54.518 

δ13C 1 98.0 13.0 2.92 0.0149 64.725 

δ13C 2 78.0 66.0 3.76 0.0030 61.685 

δ13C 3 34.0 14.0 3.18 0.0091 44.459 

Nμg 3 93.0 35.0 4.24 0.0012 57.594 

δ13C 5 64.0 88.0 1.81 0.1135 37.745 

δ13C 6 0.0 56.0 3.84 0.0026 48.892 

Nμg 7 62.0 80.0 4.69 0.0005 71.315 

Nμg 8 72.0 68.0 2.57 0.0287 49.661 

Nμg 9 95.0 64.0 2.90 0.0155 53.602 

δ13C 12 23.0 43.0 3.20 0.0088 42.685 
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consequences for foxtail pine, as precipitation-related variables appear to structure its current 

range. Additionally, the importance of these drivers is differentiated between regional populations, 

with precipitation-related variables more differentiated than temperature-related variables, which 

mimicked differentiation of phenotypic trait values. Thus, if we leverage the correlations between 

δ13C and water availability, a crucial component of survival and hence fitness, observed in other 

plant species (Ehleringer et al. 1993) and the conclusion that precipitation-related variables are 

important for the distribution of foxtail pine, it is likely that δ13C variation in foxtail pine is linked 

with fitness. 

In general, increases in δ13C reflect higher WUE (Farquhar et al. 1982). Inspection of 

mean values for δ13C for each region (see Figure 5.3), in light of the documented precipitation 

patterns, however, appears contradictory. On average, maternal trees in the Klamath Mountains 

had higher δ13C values, which suggests higher WUE, yet precipitation is much higher in the 

Klamath Mountains than in the southern Sierra Nevada. It is well known, however, that soil 

properties, such as coarseness and depth to bedrock, affect available soil moisture. For example, 

small differences in soil texture observed across the Southern Sierra Nevada Critical Zone 

Observatory, a site not far removed from the regional population of foxtail pine in the southern 

Sierra Nevada, result in large differences in the available soil moisture (Bales et al. 2011). Soil 

texture also varied by elevation, with soils at the highest elevations being coarser and less 

developed. As such, water availability in these soils was more limited even though snowfall was 

typically higher. Soils between regional populations of foxtail pine are fundamentally different, and 

so is the local distribution of foxtail pine. In the Klamath Mountains, soils are primarily ultramafic, 

while in the southern Sierra Nevada they are largely granitic. Foxtail pine grows near tops of local 

peaks in the Klamath Mountains, whereas in the southern Sierra Nevada it is distributed broadly 

across large swathes of high elevation sites. Thus, one explanation for the apparent contradiction 

is that soil properties are different, so as to create patterns of soil moisture not reflective of regional 

mean precipitation patterns. Foxtail pine in the Klamath Mountains often inhabits areas with high 
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levels of boulder cover (Eckert and Sawyer 2002; Eckert 2006), which are expected to house soils 

with less capacity to hold water over long periods of time. When coupled with the higher average 

temperatures in the Klamath Mountains, this suggests that water may be more limited throughout 

the year (e.g. summer drought) than expected based on annual precipitation totals. Additional 

work, however, would be needed to quantify trait variation within each regional population and 

correlate it to both climate and soil characteristics. 

Genetic architecture of water-use efficiency 
Both δ13C and Nμg were consistent with non-zero heritabilities. Families and regions 

accounted for approximately 50% of the total phenotypic variance for δ13C and 30% for Nμg. 

Models with effects due to families or families nested within regions were also strongly preferred 

over models without these effects (Table 5.4). The effect of region, however, was highest in 

magnitude for δ13C, with the variance component for region larger than that for family. This is 

consistent with previous estimates of quantitative genetic parameters for these phenotypic traits 

in other conifers. For example, δ13C and Nμg are both heritable in a variety of pine species 

(Brendel et al. 2002; Baltunis et al. 2008; Gonzalez-Martinez et al. 2008; Cumbie et al. 2011; Joao 

Gaspar et al. 2013; Marguerit et al. 2014; Eckert et al. 2015). Populations within many species 

are also often differentiated for δ13C, but not for Nμg (e.g. Eckert et al. 2015; Maloney et al. 

unpublished). Further work, however, would be needed to precisely estimate the level of 

differentiation for these traits, as well as to test whether this level of differentiation is larger than 

that expected for neutral loci (i.e. if this pattern is consistent with local adaptation). 

Estimates of narrow-sense heritabilities (h2) resulted in values greater than 1.0 for each  

phenotypic trait no matter which model with a family effect was used (i.e. families or regions plus 

families nested within regions). This could be due to tissue sampling occurring prior to formation 

of randomized blocks in the common garden, as family groups would be confounded with micro-

environmental variation. Use of data from Eckert et al. (2015) and Maloney et al. (unpublished 

data) for sugar pine (P. lambertiana Dougl.), western white pine (P. monticola Dougl.), and 



 

 

 

132 

whitebark pine (P. albicaulis Engelm.) grown at the same facility in the same experimental 

conditions, however, reveals that block effects for δ13C were present only for the relatively fast 

growing western white pine (Type III Wald F-tests with Kenward-Rogers degrees of freedom; 

sugar pine: F1,416.49 = 3.5166, P = 0.06146; western white pine: F1,630.24, P = 0.00068; whitebark 

pine: F1,452.75 = 0.0147; P = 0.9037). In contrast, block had a statistically significant effect on Nμg 

for sugar pine and western white pine (P < 0.001), but not whitebark pine (F1,429.22 = 1.6252, P = 

0.20305). Thus, our results should be taken with caution, but family effects estimated here were 

similar in magnitude to those from Eckert et al. (2015) and randomized blocks tended to have no 

effect on the same phenotypic traits measured in whitebark pine at the same facility, a species 

with a similar pattern of early slow growth (McCune 1988). 

If our results are indicative of true signal, effect sizes could be over-estimated on average 

due to the small number of sampled families (Beavis 1994). To illustrate this effect, we re-

analyzed the data from Eckert et al. (2015) for sugar pine, which was grown in a common garden 

at the same facility and measured for δ13C using the same methodology, by resampling smaller 

numbers of families (n = 108 families resampled in decreasing numbers from 108 to three families) 

and estimating h2. As the number of sampled families decreased, estimates of mean h2 became 

larger (Figure S5.19), with a 1.5-fold increase in the mean h2 as the number of sampled families 

dropped from 108 to three. This is likely also the case for foxtail pine and for Nμg. Regardless of 

the precise value of h2, it is clear that at least a moderate amount of segregating genetic variation 

exists for this trait in natural populations of foxtail pine. There was also a moderate, but statistically 

insignificant, positive correlation between δ13C and Nμg (Figure 5.4). This has been noted in other 

species, such as loblolly pine (Cumbie et al. 2011), although general patterns in the sign of the 

correlation are lacking. In this context, positive correlations could indicate that WUE is determined 

primarily through leaf-level assimilation (e.g. Johnson et al. 1999; Prasolova et al. 2005), while a 

negative correlation could indicate that WUE is determined primarily through stomatal 

conductance. Despite the observed positive correlation, little evidence of pleiotropy was detected, 
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with only a single QTL on linkage group 3 shared between traits. The lack of pleiotropy for these 

traits has been noted in several other conifer species (e.g. Marguerit et al. 2014). Correlations 

between δ13C and Nμg, or growth traits more generally, can also be driven environmentally and 

can change depending on water availability. For example, Joao Gaspar et al. (2013) have shown 

that in water limiting environments δ13C correlates with survival, but in less water limited 

environments δ13C correlates with height growth for maritime pine (P. pinaster Ait.). A similar 

case might be occurring for foxtail pine, where in the wetter Klamath Mountains δ13C variation is 

correlated with overall growth and in the more xeric southern Sierra Nevada it is correlated with 

survival. In this context, WUE would be realized through leaf-level assimilation in the Klamath 

region (as in Weih et al. 2011 for Salix), and through stomatal conductance in the southern Sierra 

Nevada. Sampling more families, measurement of other traits (e.g. growth), and experimentation 

in multiple environments, however, would be needed to test these ideas. Importantly, δ13C should 

be measured within natural populations to assess correspondence between inferences from 

common gardens and natural populations. 

Using one-locus QTL models, the observed segregating genetic variance for δ13C was 

dissected into two major QTLs and four suggestive QTLs (Table 5.5, Figure 5.6). Each QTL 

explained a large fraction of total phenotypic variance (23.113% to 47.807%), which suggests that 

the genetic architecture of this fitness-related trait includes loci of large effect. Under many models 

of adaptation, however, is difficult to separate QTLs composed of a single, large-effect locus from 

those composed of several small-effect loci (Yeaman and Whitlock 2011). The observed large 

values of PVE may also be over-estimated (Beavis 1994), although there is precedence for large 

effect QTLs for δ13C in other species of Pinus, especially those distributed in water-limited 

regions displaying moderate levels of genetic differentiation among populations. For example, 

Marguerit et al. (2014) identified a QTL explaining 67% of phenotypic variance for δ13C in 

maritime pine, which is distributed across the Mediterranean regions of Europe and has moderate 

levels of genetic structure across this range (Eveno et al. 2008). For foxtail pine, water availability 
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is an important driver of its current geographical distribution and genetic structure is moderate to 

high between regional populations and among stands within regional populations (Eckert et al. 

2008, but see Oline et al. 2000). Furthermore, family effects for these QTLs were consistent with 

differentiation among regions, so it is plausible that the architecture discovered here for δ13C 

largely represents genomic regions underlying trait divergence between the regional populations. 

If this is the case, this architecture has evolved since the divergence of the regional populations 

from their common ancestor on the order of one million years ago (Eckert et al. 2008). 

Summaries of the results from two-locus QTL models were largely consistent with those 

from the one-locus models. For the 11 QTLs reported in Table 5, 10 were consistent with at least 

two segregating QTLs. This brings the total number of QTLs to four major and seven suggestive 

QTLs for δ13C and two major, four minor, and four suggestive QTLs for Nμg. Interestingly, the 

correlation of family-level effects for the two QTLs on the same linkage group was negatively 

related to the distance between these QTLs, so that QTLs close together tended to have similar 

patterns of family-level effects, whereas QTLs at larger distances tended to have opposite family-

level effects (Figure S5.14). This trend was uncorrelated with the difference in effect sizes 

between QTLs. When added to the observation that family effects were often consistent within 

regions and differentiated between regions, a likely explanation for this pattern is some form of 

natural selection driving clustering of loci dependent on consistency of their effects on a fitness-

related trait. The fitness benefit of clustering, however, is related to the level of gene flow (Yeaman 

and Whitlock 2011), so that clustering of adaptive alleles is expected under high levels of gene 

flow, reduced recombination, and strong magnitudes of selection. This is especially pronounced 

when genomic rearrangements are common. Inspection of the family- level linkage maps from 

Friedline et al. (2015), however, reveled little evidence for clustered QTLs displaying differing 

marker orders across families more so than random positions on the linkage map. This 

explanation, however, is complicated given that gene flow is approximately zero between these 

regions (Eckert et al. 2008) and populations of foxtail pine are unlikely to be at selection – 
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migration equilibrium due to large effective population sizes and long generation times. For 

example, patterns of segregating ancestral variation after divergence are similar to those 

predicted by gene flow (Pamilo and Nei 1988), so that it becomes difficult to separate pattern from 

process with regard to the effects of gene flow on adaptive genetic architectures. Additional work 

within natural populations, including fine mapping of trait values in the linkage bins defined by 

Friedline et al. (2015), would be needed to test these ideas further. 

We leveraged the annotations of contigs at or near (± 3 cM) the estimated QTL positions 

to search for putatively functional genes as the drivers of the genotype-phenotype correlations for 

each QTL (Table S3). Annotations for foxtail pine contigs were derived through similarity searches 

against the loblolly pine genome. Annotations were obtained from any locus on a loblolly pine 

scaffold containing a significant hit to a RADtag from foxtail pine, with significance justified by the 

estimated substitution rate and divergence time between these species (Friedline et al. 2015). 

Several statistically significant QTLs had no annotation information available. For example, the 

QTL on linkage group 1 for δ13C had no annotations available within a 6-cM window 

encapsulating the QTL, despite 24 of 76 RADtags having significant similarity to scaffolds in 

loblolly pine. This is consistent with reports of gene densities reported for conifers (Nystedt et al. 

2013; Neale et al. 2014). For the QTL related to δ13C on linkage group 2 (Table 5), however, two 

of the 18 RADtags for foxtail pine had sequence similarity to loblolly pine scaffolds, with annotated 

InterPro domains suggestive of loci encoding stress responsive proteins (Table S3; Toka et al. 

2010; Karijolich et al. 2015). Another example of potentially biologically informative results 

included the QTL on linkage group 9 for Nμg where putative homologs for proteins with domains 

such as ribosomal protein L38e, cytochrome P450, and thiolase were present. Proteins containing 

these domains have been implicated in lipid turnover during leaf senescence (Troncoso-Ponce et 

al. 2013), as well as plant growth and drought stress response (Tamiru et al. 2015). Care should 

be taken in interpreting these results, however, as QTL intervals were wide, annotations were 

based on statements of homology with gene predictions in an early release of the loblolly pine 
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genome sequence (Wegrzyn et al. 2014), and post hoc explanations linking gene products to 

phenotypic traits is prone to storytelling (Barrett and Hoekstra 2011; Pavlidis et al. 2012). It is 

important to note, however, that these concerns are with interpretations of putative functions of 

genes located within the QTL as sensible in their effect on the measured phenotypic trait, and not 

with the biological signal of linkage driving the discovery of the QTL. 

Conclusions 

We have used a mixture of species distribution modeling and quantitative genetics to 

test two hypotheses about WUE, as measured by δ13C and Nμg, for foxtail pine. We showed 

that precipitation-related variables structured the geographical range of foxtail pine, that climate- 

based niches differed between regional populations, and that similar patterns were apparent for 

δ13C, which was also demonstrated to be heritable. We subsequently dissected this heritability 

into a set of large-effect QTLs (n = 21 total, with 11 for δ13C and 10 for Nμg), which we interpret 

in light of population genetic theory about local adaptation. While we cannot definitely say that 

WUE, as measured by δ13C, contributes to local adaptation, we have described to a first 

approximation its genetic architecture, while noting several patterns consistent with δ13C being 

a fitness-related trait affected by natural selection. These are useful results with which to 

generate further hypotheses about the evolution of genetic architecture contributing to local 

adaptation in natural populations (e.g. Holliday et al. 2015). Our results also shed light on 

ecologically relevant phenotypic trait variation useful for management decisions and predictions 

for range shifts under changing climates. 
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    Chapter 6.  
Current state and future directions of forest tree genomics 

This work has been published in the following papers: 

Lind, BM; M Menon, CE Bolte, TM Faske, AJ Eckert (2018) The genomics of local adaptation in 
trees: Are we out of the woods yet? Tree Genetics & Genomes 14 (2): 29. doi: 
https://doi.org/10.1007/s11295-017-1224-y  

 

Abstract 

There is substantial interest in uncovering the genetic basis of the traits underlying adaptive 

responses in tree species, as this information will ultimately aid conservation and industrial 

endeavors across populations, generations, and environments. Fundamentally, the 

characterization of such genetic bases is within the context of a genetic architecture, which 

describes the mutlidimensional relationship between genotype and phenotype through the 

identification of causative variants, their relative location within a genome, expression, pleiotropic 

effect, environmental influence, and degree of dominance, epistasis, and additivity. Here, we 

review theory related to polygenic local adaptation and contextualize these expectations with 

methods often used to uncover the genetic basis of traits important to tree conservation and 

industry. A broad literature survey suggests that most tree traits generally exhibit considerable 

heritability, that underlying quantitative genetic variation (QST) is structured more so across 

populations than neutral expectations (FST) in 69% of comparisons across the literature, and that 

single-locus associations often exhibit small estimated per-locus effects. Together, these results 

suggest differential selection across populations often acts on tree phenotypes underlain by 

polygenic architectures consisting of numerous small to moderate effect loci. Using this synthesis, 

we highlight the limits of using solely single-locus approaches to describe underlying genetic 

architectures and close by addressing hurdles and promising alternatives towards such goals, 

remark upon the current state of tree genomics, and identify future directions for this field. 

Importantly, we argue, the success of future endeavors should not be predicated on the 
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shortcomings of past studies and will instead be dependent upon the application of theory to 

empiricism, standardized reporting, centralized open-access databases, and continual input and 

review of the community’s research. 

Introduction 

Trees are plants with an arborescent habit, which is loosely defined as a tall-statured 

growth form usually producing wood (reviewed by Petit & Hampe 2006). Approximately 15% to 

25% of plant taxa are classified as trees (Oldfield et al. 1998; Grandtner 2005; Wortley & Scotland 

2004), with forested ecosystems accounting for approximately 30% of terrestrial vegetation 

(Costanza et al. 1997) and providing habitat for terrestrial biodiversity. Indeed, trees play 

important ecological roles in diverse communities across the globe, such as vertical structural 

habitat, seeds for wildlife forage, forest cover, the production of oxygen, carbon sequestration, air 

and water filtration, as well as the reduction of erosion, protracting snowmelt, and desertification. 

Of these, biological roles are ultimately defined by a set of life history characteristics common to 

most tree species (Petit & Hampe 2006). These include predominantly outcrossing mating 

systems with high levels of gene flow and fecundities, as well as long lifespans and generation 

times (Loehle 1988; Mitton & Williams 2006; Savolainen et al. 2007), although these may differ 

in, for example, clades of tropical trees. As a result, tree species typically have large effective 

population sizes, moderate to high levels of genetic diversity, and frequent occurrences of locally 

adapted ecotypes (Savolainen et al. 2007; Alberto et al. 2013; Sork et al. 2013; Boshier et al. 

2015; Prunier et al. 2015; Holliday et al. 2017). Across species, however, rates of morphological 

and molecular evolution tend to be slow (reviewed in De La Torre et al. 2017). Additionally, 

genome size varies enormously across species of trees, ranging from 0.4Gbp to 31Gbp (reviewed 

in Neale et al. 2017). Recent sequencing efforts in gymnosperms, which represent the largest 

tree genomes, reveal that much of genome size variation is due to transposable element 

dynamics and gene family evolution (Leitch & Leitch 2012; Morse et al. 2009; Nystedt et al. 2013; 

Prunier et al. 2015; Neale et al. 2017) where duplication events of select gene families may 
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contribute to the ability of trees to colonize marginalized habitats (Leitch & Leitch 2012; Prunier 

et al. 2015; Neale et al. 2017).  

In trees, the general presence of large geographical ranges and extensive gene flow also 

provides an ideal setting to disentangle neutral from selective evolutionary processes (Neale & 

Kremer 2011). Indeed, their longevity and wide and heterogeneous geographical distributions 

lend trees suitable for addressing several key evolutionary questions about the importance of 

historical climatic fluctuations, and local adaptation involving shifts in allele frequencies (Lotterhos 

& Whitlock 2014; Savolainen et al. 2007, 2013; Platt et al. 2015).  As we detail in subsequent 

sections, evidence consistent with local adaptation in trees is ubiquitous, even across fine spatial 

scales where it had been hypothesized that gene flow may overcome selection of locally favored 

alleles (e.g., Mitton et al. 1998; Budde et al. 2014; Csilléry et al. 2014; Vizcaíno-Palomar et al. 

2014; Eckert et al. 2015; Holliday et al. 2016; Roschanksi et al. 2016; Lind et al. 2017).  

Quantitative phenotypes are often used as a proxy for total lifetime fitness, which is com-

posed of two broad components: survival and reproduction. Since most quantitative traits are 

related to some component of total lifetime fitness, they are often used to assess potential for 

local adaptation. For many plant taxa, selection pressures are expected to be strongest for vari-

ation in survival during the juvenile stages of development (Donohue et al. 2010), particularly for 

those taxa with high reproductive output, as is the case for many tree species. As such, juvenile 

stages in plants have been found to contribute substantially to total lifetime fitness (Postma & 

Agren 2016). Phenotypic traits associated with juvenile survival have thus received the majority 

of genetic research focus in trees, particularly due to their long-lived nature. Such studies have 

led to intriguing insights gained through a long history of common garden experimentation 

(Langlet 1971; Morgenstern 1996). For example, traits such as growth (e.g., height and diameter), 

form (e.g., specific gravity, straightness), phenology (e.g., bud flush, bud set), juvenile 

performance (e.g., germination rate, seed traits) and physiology (e.g., cold hardiness, water-use 

efficiency) have all been shown to be under moderate to high genetic control (reviewed in Corn-
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elius 1994, Howe et al. 2003, Alberto et al. 2013; this review). Variation for these traits is also 

often partitioned among populations (this review), despite the vast majority of neutral variation 

remaining within populations (Howe et al. 2003; Neale & Savolainen 2004). With few exceptions 

(e.g., major gene resistance in the white pine-blister rust pathosystem; Kinloch et al. 1970; Liu et 

al. 2017), variation for these traits forms a continuum across individuals, thus implying that the 

underlying genetic architecture is composed of a large number of small to moderate effect loci 

(i.e., a polygenic architecture; concept reviewed in Savolainen et al. 2007, 2013; Gagnaire & 

Gaggiotti 2016; Hoban et al. 2016; Timpson et al. 2017). There is some uncertainty, however, 

concerning the properties of the effect size distributions comprising polygenic architectures 

(sensu Fisher 1930, Kimura 1983, and Orr 1998), the relative importance of various forms of gene 

actions (e.g., dominance, epistasis) in producing trait variation (Crow 2010, Hansen 2013), how 

these interact to affect the evolution of polygenic architectures in natural populations (Hansen 

2006), and how these factors will ultimately influence evolutionary processes and outcomes in 

forest trees (Savolainen et al. 2007; Sork et al. 2013; Prunier et al. 2015). Considerable strides, 

made in the past through genotype-phenotype-environment studies (sensu Sork et al. 2013), have 

contributed intriguing insight into the genomic basis of local adaptation for tree species. However, 

given the large genome size of many tree species, such methods have been criticized as lacking 

in power and sufficient coverage needed to detect small effect loci, which is further exacerbated 

by rapid decay of linkage disequilibrium (LD) in most forest trees (Mackay 2009; Savolainen et al. 

2007). Despite these limitations, association studies have been moderately successful in linking 

genotypes and phenotypes, including providing information for making inferences about local 

adaptation.  

In this review, we set out to summarize theory related to polygenic local adaptation and, 

using these expectations, contextualize the progress of describing the genetic architectures 

underlying traits important to conservation and industry in undomesticated tree species. We first 

highlight the extensive evidence for local adaptation in trees by reviewing transplant designs often 
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used in investigations of quantitative genetic differentiation. Using an extensive literature survey 

across both gymnosperm and angiosperm species, we provide an overview of these transplant 

methods, give examples of each, and quantify the distribution of narrow sense herita-bility and 

QST estimates across various trait categories. We further use this survey to establish patterns of 

comparative quantitative and neutral genetic differentiation (i.e., QST-FST tests) which until this 

review had not been suitably synthesized in trees. Before we transition into discussing common 

methods used to uncover loci underlying adaptation, we establish expectations for the genetic 

architecture of polygenic, fitness-related traits by reviewing the theory available to date. We then 

provide an extensive review of genotype-phenotype associations in trees and provide the 

distribution of the percent phenotypic variance explained by empirically associated loci. Using this 

distribution, we underscore the limitations of using solely single-locus approaches to uncover the 

loci underlying local adaptation in tree species. Given this synthesis, we highlight exemplary 

genomic resources available to fill knowledge gaps, identify promising avenues of future research, 

identify key benchmarks and necessary steps towards truly integrating studies of trees into the 

genomic era, and address our primary question, “Are we out of the woods yet?”.  

 

Identifying heritable phenotypic variation 

Trees have evolved numerous adaptations as a result of their vast ecological breadth. As such, it 

has long been the goal of forest scientists to understand the traits important to viability and 

persistence. Among the most frequent designs used, common gardens and reciprocal transplants 

have aimed at describing genetically based differentiation of measured phenotypes among various 

source populations of varying sizes and across various geographic scales. Across these designs, 

investigators seek to better understand the phenotypes relevant to local adaptation and the 

selective pressures influencing these phenotypes. The exact design chosen, however, is 

generally based on the questions driving the research endeavor and often by the availability of 

resources (Morgenstern 1996; Blanquart et al. 2013; de Villemereuil et al. 2015). In this section, 
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we briefly review these designs, identify relevant questions and inferences, highlight some of the 

important practical applications of these techniques, and discuss examples of past investigations 

in various tree species. 

There is a rich history of forest scientists using the common garden approach dating back 

hundreds of years (Langlet 1971; Mátyás 1996). In a broad sense, a common garden design is 

used to test for differentiation among genetically distinct groups in a homogeneous environment. 

These groups can be clonal replicates or sibships (families) derived from species or hybrids 

sampled from various populations, provenances, varieties, cultivars, or agricultural accessions 

(Cheplick 2015). When individuals from various origins are grown together under the same 

conditions, the observed phenotypic differentiation is expected to reflect underlying gen-etic 

variation, especially when maternal effects are assumed or shown to be absent. Common garden 

and provenance trial designs can also establish evidence that the phenotypes under study are 

heritable, a prerequisite for an adaptive response to selective agents (Supplemental Box S1), and 

that populations exhibit quantitative genetic differentiation (i.e., m;K; Spitz 1993). When driven by 

questions related to differentiation alone, a single common garden approach can be used to 

describe levels of quantitative genetic variation within and among genetically dis-tinct groups. In 

these cases, no environmental variables are manipulated, and thus, unequivocal evidence for 

trait divergence among groups, and the contributing factors influencing this diver-gence (e.g., 

neutral or selective processes), is often limited because conclusions must be based on post hoc 

inferences about source environments for the materials established in the common garden. Even 

so, single common garden approaches can be a powerful tool to demonstrate evidence congruent 

with local adaptation. For instance, the white carob tree (Prosopis alba Griseb., Leguminosae) 

growing in Argentina is an ideal multipurpose tree that has potential for use in reforestation and 

afforestation applications in the region. However, this genus is known to invade other regions, 

encroach on farmland and waterways, and has a thorny growth habit that can cause sepsis in 

livestock. To better understand how forestry applications can balance the benefits of production 
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and forest protection, Bessega et al. (2015) used a single common garden representing eight 

provenances of P. alba to compare estimates of neutral genetic patterns to the quantitative 

genetic variation of life history traits related to economic importance. They found that for most 

traits there existed considerable underlying genetic variation (m;K99999 = 0.139). Additionally, source 

environments were often correlated with measured trait variation in the common garden, 

suggesting that the observed differentiation was driven by temperature, precipitation, wind speed, 

and sunshine fraction, with signals of divergent selection corroborated across m;K-8;K 

comparisons and tests for selection (e.g., S test, sensu Ovaskainen et al. 2011). Bessega et al. 

(2015) concluded that the signal of non-neutral differentiation was indicative of divergent 

phenotypic optima across populations, and that this variation could be used to direct future 

breeding programs across the region. 

When there is evidence that environmental differences among source populations may be 

driving adaptive divergence, strong environmental candidates can be manipulated (artificially or 

via site selection) in a multiple common garden design to further investigate hypotheses of differ-

entiation and adaptation. For instance, the sweet chestnut (Castanea sativa Mill., Fagaceae), also 

known for its edible fruit, is distributed across much of Minor Asia and southern Europe and is an 

ecologically important component of many Mediterranean systems. Castanea sativa exhibits 

ecological, physiological, morphological, and genetic variability as the range overlays a climatic 

transition from xeric Mediterranean conditions to wetter Euro-Siberian environments (see refs in 

Lauteri et al. 2004). Previous common garden experiments carried out by Lauteri and col-leagues 

have indicated that populations across this transition are further differentiated by water use 

efficiency (the ratio of plant carbon gain to water loss) and carbon isotope discrimination, ∆. To 

further explore variability of drought-related traits, Lauteri et al. (2004) used an ex situ multiple 

common garden design using two water and temperature treatments in individual climatic 



 

 

 

144 

chambers to assess differentiation among six populations across Spain, Italy, and Greece. They 

found treatment and population x treatment effects were significant, suggesting variation in 

drought adaptation across populations. Additionally, populations originating from dry sites 

generally exhibited higher values of ∆, which was also composed of significant additive genetic 

variation (ℎl= 0.15-0.52), and suggests that genetic and physiological mechanisms of drought 

adaptation confer a capacity to colonize a wide arrange of environmental conditions, while strong 

negative relationships between ∆	and growth-related traits is suggestive of strong evolutionary 

constraints at juvenile stages.  

While ex situ common gardens approaches (e.g., Lauteri et al. 2004) can provide strong 

evidence of adaptive divergence among populations, and in some cases corroborate putative 

drivers of observed differentiation, these studies can often exclude key environmental factors, 

possibly leading to confounding signals of adaptation (Kawecki & Ebert 2004). When in situ 

experimentation is feasible, site selection can be used to test for environmental drivers of local 

adaptation. For example, Evans et al. (2016) investigated traits related to growth and phenology 

in juvenile narrowleaf cottonwood (Populus angustifolia James, Salicaceae) by planting families 

from nine populations across the native range into three common gardens, one each at the 

northern, southern, and interior extent of the range. Using m;K-8;K comparisons and clinal 

analyses alongside the quantitative genetic analyses, Evans et al. (2016) concluded that climate 

cues played a major role in structuring adaptive variation across the range of P. angustifolia, and 

that future industrial and conservation applications should utilize this information to inform source 

environments for optimal outcomes. 

As both in situ and ex situ common garden trials can include multiple environmental 

influences in their design, reciprocally transplanting to all source environments is not necessarily 

a requirement to decompose genetic variation underlying adaptive traits or to provide evidence 

for, or the drivers of, differentiation among populations. Thus, these designs may preclude 
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inferences regarding local adaptation sensu stricto. To produce such evidence, source 

populations can be planted in a (full- or incomplete-factorial) reciprocal transplant design and 

allow for traits related to fitness to be assessed across native and non-native environments. If a 

population is locally adapted, individuals exposed to their native environments should show 

increased growth, survival, and reproduction relative to non-native genotypes (Kawecki & Ebert 

2004; Leimu & Fischer 2008; Hereford 2009; Savolainen et al. 2013). For example, with the goal 

of delineating conservation units based on molecular and quantitative trait differentiation, 

Rodríguez-Quilón et al. (2016) used four reciprocally-transplanted common gardens to assess 

height and survival of samples from 35 natural populations of maritime pine (Pinus pinaster Aiton, 

Pinaceae). For both traits, m;K was consistently larger than 8;K across the four sites, a pattern 

suggestive of divergent selection. Six distinct gene pools based on evolutionary history of neutral 

markers were identified, and because high quantitative differentiation (m;K) was found within these 

pools, hierarchical analyses were used to further identify ten adaptive population groups for use 

in conservation and breeding approaches.   

Available evidence suggests that many populations of tree species have substantial 

heritable genetic variation, and that the quantitative traits under study often show signals of 

divergent selection across both broad and fine spatial scales. But how broadly can we apply this 

statement? Are there overall patterns of heritability and quantitative genetic structure across tree 

species? Because estimates of heritability and m;K are often only applicable to a specific set of 

populations, for a specific set of environments, at any specific point in time (e.g., see Figure 6.2D), 

a large sample of these estimates is therefore necessary to synthesize the current literature with 

regard to patterns across taxa. To accomplish this aim, we synthesized estimates from 129 

published studies with estimates of narrow sense heritability (n = 114) from replicated progeny 

trials and/or estimates of quantitative genetic differentiation (m;K; n = 37). However, we excluded 

papers that have been cited for estimates of m;K or heritability that were calculated post hoc from 
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variance components (i.e., we only recorded estimates that were explicitly reported as ℎl or m;K 

in the original publication). For comparison, we further grouped measured traits into 14 broad 

categories: cold hardiness, disease resistance, drought hardiness, form, growth, herbivore and 

insect resistance, leaf and needle properties, phenology, plant secondary metabolites, 

reproduction, resource allocation, seed and early germination properties, survival, and wood 

properties. Because sample size can influence the precision of both heritability and m;K, for each 

trait category we used a weighted average where weights were equal to the number of families 

used to estimate variance components for each estimate of ℎl and m;K. 

In agreement with Cornelius (1994), our survey found that many of the traits important to 

conservation and industry exhibit non-zero narrow sense heritability (ℎl999 = 0.367; File S1; Figures 

S6.1-S6.4) and are thus amenable to selection. The mean weighted m;K across traits groups from 

our survey (Table S6.1; File S6.1) was between 0.10-0.28, except for drought hardiness (0.06) 

and disease resistance (0.04), with median values from the unweighted distribution generally 

falling below the weighted average for each trait group (Figure 6.1). This suggests that over 

various geographic and environmental distances, population histories, and species, there is a 

general pattern of substantial genetic variation underlying measured traits. Given our synthesis 

of m;K estimates in trees, we were curious of the evidence for adaptive divergence among 

populations (m;K > 8;K). Of the 37 articles reporting m;K estimates in our review, 23 compared m;K 

with 8;K or ã;K estimated from the same populations under study (however, we excluded studies 

that used 8;K measurements taken from the literature, e.g., as in McKay & Latta 2002; Alberto et 

al. 2013). Indeed, as pointed out by Crnokrak & Merilä (2002), comparisons of mux and 8ux 

estimated from different populations and/or at different time points are uninformative. Of these 23 

studies, 18 compared m;K and 8;K in a statistical framework while the remaining five studies 

compared m;K and 8;K numerically. Across numerical and statistical comparisons combined, 67% 

(254 of 381 traits) exhibited higher m;K than 8;K, with 69% (170 of 246 traits) exhibiting significantly 
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higher m;K than 8;K. Although we did not tally instances where m;K was reported to be less than 

8;K (statistically or otherwise), as this was not the focus of our review, there were some instances  

in which this was the case. For instance, Lamy et al. (2011) found such patterns when quantifying 

population genetic differentiation of cavitation resistance across the species range of maritime 

pine (Pinus pinaster Aiton, Pinaceae), while Mahalovich et al. (2011) also found that m;K  < 8;K for 

traits related to white pine-blister rust resistance in inoculated seedlings of whitebark pine (Pinus 

albicaulis Engelm., Pinaceae). While various explanations for such patterns were outlined by 

Lamy et al. (2011), canalization was argued as the most likely process driving the observed 

patterns, while Mahahlovich et al. (2011) offered similar arguments for selection favoring the same  

Figure 6.1. Average QST for each of 14 trait categories from literature review calculated by weighting each 
estimate by the number of families used in the estimation. Error bars represent the standard deviation of 
the weighted averages. Numbers above error bars represent total number of estimates, with total number 
of unique species in parentheses. Asterisks indicate median values of the unweighted QST distribution. 
ColdH = cold hardiness, DisRes = disease resistance, DroughtH = drought hardiness, HaIR = herbivore 
and insect resistance, LaNP = leaf and needle properties, Phen = phenology, PSM = plant secondary 
metabolites, Reprod = reproduction, ResAllo = resource allocation, SaSP = seed and seedling properties, 
WoodProp = wood properties. 
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genotype in different environments (see Lamy et al. 2012 for more regarding this aspect). 

Despite neutral genetic differentiation partitioned primarily within populations, adaptive 

genetic variation seems to be structured to a greater degree across populations, more often than 

not, for the various fitness-related traits reviewed here. Such a pattern is indeed consistent with 

local adaptation, assuming that (among other considerations such as the recency of selection) 

mutation rates are considerably lower than migration rates in these populations (Whitlock 1999; 

Hendry 2002; Leinonen et al. 2013). In any case, given an extensive literature supporting the local 

adaptation hypothesis in trees, our results appear consistent with patterns of selective forces 

acting on abundant, heritable genetic variation across populations, even in the face of gene flow 

(discussed further in the next section). 

Expectations for the loci underlying quantitative traits 

The homogenous environments of the common garden and reciprocal transplant designs are 

ideally suited to test hypotheses of local adaptation in trees (Sork et al. 2013). However, 

uncovering the genetic basis and contributory influence of specific loci underlying these adaptive 

traits is a sizable endeavor on its own, and the success of such pursuits will be determined, in 

part, by the trait’s underlying genetic architecture (i.e., the number, effect size, type, location, 

expression, pleiotropic effect, environmental influence, and interaction of under-lying loci), which 

is generally not known a priori (Stinchcombe & Hoekstra 2008; Rellstab et al. 2015; Savolainen 

et al. 2013; Hoban et al. 2016; Burghardt et al. 2017; Wadgymar et al. 2017). Much of our early 

understanding of the architectures of complex traits came shortly after Nilsson-Ehle (1909) and 

East (1910) independently demonstrated evidence for multiple-factor inheritance, where Fisher 

(1918) laid the groundwork for quantitative genetics by incorporating the additive properties of 

variance to partition phenotypic variation into components tractable to a model of Mendelian 

inheritance. It was this work, and that of Fisher’s geometric model (1930), which founded the 

basis for attributing continuous variation of phenotypes to a polygenic model of many underlying 

heritable components of mainly small effect. From this model, Fisher (1930) concluded that 
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mutations of small effect were the main drivers of adaptation, suggesting large-effect substitutions 

to contribute little to adaptation due to negative pleiotropic effects constraining effect size. 

Therefore, the fate of a given locus would be conditioned on its average, marginal effect on fitness 

calculated across the species, with non-additive deviations from this linear model of 

inconsequential influence. This micro-mutationist view, to a large extent, remained the dominant 

thought for nearly half a century (Orr 2005). It was then that Kimura (1983) established that for an 

allele to contribute to adaptation, it would need to survive the stochastic nature of drift. Thus, new 

mutations of low frequency and effect were less likely to contribute substantially to adaptive 

evolution. Considering the adaptive contribution probability of large and small effect loci, Kimura 

concluded that mutations of moderate effect would be the most plausible. Years later, Orr (1998) 

showed that over the entire bout of selection via an adaptive walk, the distribution of fixed 

substitutions resembles an exponential distribution, with effect size decreasing with the proximity 

to the phenotypic optimum. In addition, the distribution of fitness effects of beneficial mutations is 

also expected to be exponential (Orr 2003; for more discussion on this aspect, see also Orr 2006; 

Eyre-Walker & Keightley 2007; Martin & Lenormand 2008, Kopp & Hermisson 2009b; Keightly & 

Eyre-Walker 2010, Dittmar et al. 2016). Despite major advances in theory and technology, there 

still remains substantial uncertainty regarding the exact number of loci underlying many adaptive 

traits, the effect size distribution of these loci, and how the number of underlying loci and effect 

distribution may change under various evolutionary regimes (Orr 2001; Slate 2005; Hansen 2006; 

Mackay et al. 2009). In this section, we describe how various factors can contribute to the 

(perhaps, effective) number of causative loci, and the distribution of effects underlying 

continuously distributed adaptive traits, beginning first with aspects of the architecture itself (gene 

action), and concluding with explanations of how various processes (e.g., selection) play an 

influential role in the evolution of underlying genetic architectures. Establishing these expectations 

is essential for assessing common approaches and guiding future directions. In the next section 

we then compare these expectations with methods used in, and results from, genotype-phenotype 
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associations in trees. While we discuss these examples in isolation, we highlight the fact that the 

underlying biological processes are often not independent. 

Gene action 
The classical genotype-phenotype map is largely one of additive effects, and is represented by a 

statistical regression of the phenotype on genetic content, as developed by Fisher (1918) and 

extended by others (e.g., Cockerham 1954; Kempthorne 1954). Indeed, much of the work done 

in trees has relied on such additive effects to describe heritable and quantitative genetic variation 

(see previous section). In this model, the phenotypic variance is partitioned into orthogonal (i.e., 

independent) contributions from the genetic variance (σG), environmental variance (σE), and the 

variance due to interaction between genotype and environment (σGxE; Figure 6.2; see 

Supplemental Box S6.1). Further, σG is also the sum of orthogonal variance components, each 

term representing a different form of gene action. The additive, dominance, and epistatic terms 

respectfully designate the associated variance contribution of independent alleles, the non-

additive contribution to variance of interactions among alleles at the same locus, and the 

contribution to variance of non-additive interactions among alleles at different loci (the latter of 

which can take one of many forms such as additive-by-additive, additive-by-dominance, etc.; 

Lynch & Walsh 1998). As a result, non-additive gene action is minimized as non-linear 

contributions to the overall phenotype (Moreno 1994; Whitlock et al. 1995) which contributes little 

to the distinction of the different forms of dominance and epistasis (Cheverud & Routman 1995; 

Hansen & Wagner 2001; Hermisson et al. 2003; Hansen 2006; Mackay 2014) nor towards the 

inference of aspects of the underlying genetic architecture in general (Nelson et al. 2013; Huang 

& Mackay 2016).  

These statistical conveniences afforded by Fisher and others led to the notion that such 

non-additive effects were transient (i.e., are due to LD, which will decay with the relaxation of 

selection), or that trends of statistical epistasis were representative of functional epistasis in 

general, and therefore epistasis was unimportant to evolutionary dynamics (e.g., Bulmer 1980; 
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Crow 2008, 2010; Hill et al. 2008). While minimized in a statistical regression, this does not 

necessarily mean that epistasis and dominance will not have a profound impact on the genetic 

architecture, or towards a given population or species’ long-term evolutionary trajectory, even if 

statistical epistatic or dominance variance is minimal (Goodnight 1988; Chevrud & Routman 1995; 

Hansen & Wagner 2001; Hansen 2013; Nelson et al. 2013; Griswold 2015; Paixão & Barton 

2016). Indeed, parameterizing a model in which the type I sums of squares is determined by non-

additive parameters, as opposed to additive variance in the conventional regression model, the 

majority of genetic variation is still captured by the primary effect in the model regardless of the 

underlying architecture (Huang & Mackay 2016). Given the prevalence of evidence for non- 

additive contributions (e.g., Phillips 2008; de Visser et al. 2011; see also references in 

Hansen2013), it is likely that non-additive effects will play a role in evolutionary outcomes. For 

instance, Huber et al. (2017) showed that the degree of dominance in Arabidopsis is an outcome 

based upon functional importance and optimal expression level. Further, Carter et al. (2005) show 

that, relative to a purely additive trait (or with non-directional epistasis) under directional selection, 

positive and negative epistasis can respectfully increase or decrease the additive genetic 

variance, and thus increase or decrease the rate of phenotypic response to selection (see also 

Le Rouzic & Álvarez-Castro 2016). As Jones et al. (2014) show, for a two-trait phenotype 

controlled by pleiotropic and epistatic effects, epistasis in the presence of selection can also affect 

the mutational architecture of complex traits, where the average allelic effect evolves to be 

negatively correlated with the average epistatic coefficient, the strength of which is greater in 

larger population sizes. Yet, as described by Barton et al. (2016), and further discussed by Barton 

(2017) and Paixão & Barton (2016), the infinitesimal model can be generalized to include epistatic 

effects, particularly when the number of underlying loci is large and selection on individual loci is 

weak. In the case of non-systematic, weak pairwise epistasis, and without mutation or 

environmental noise, the infinitesimal model holds to a good approximation (Barton et al. 2016). 

In the case of sparse epistasis with selection and a large number of loci, the change in the trait 
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Figure 6.2. Relevant quantitative genetic concepts are needed to understand the evolution of polygenic 
traits. (A) Additive and non-additive effects at a single locus, where a is defined as the additive effect (also 
known as the average effect of allelic substitution [α] when there is no dominance) and d is defined as the 
dominance deviation. With dominance, α = a[1 + k(p - q)], where k is the degree of dominance (k = 0: 
additive, k = 1: dominance, k > 1: over-dominance, see Lynch & Walsh 1998). (B) Polygenic traits are 
determined by multiple genes, each with additive (shown) and non-additive (not shown) effects. The total 
additive effect is the sum of the additive effects at all causative loci. (C) Additive-by-additive epistasis, where 
the additive effect of an allele at the PHY_A SNP depends on what allele it is paired with at the RPL13 
SNP. In this case, the effects can be thought of as dependent in the following manner using the four possible 
haplotypes at the PHY_A (A/T SNP) and RPL13 (C/T SNP) SNPs – AC: +5, AT: -2, TC: -1, TT: 4. (D) The 
effect of genetic drift on the additive genetic variance as determined by 100 independent, causative loci. 
Each line represents a simulation of genetic drift in a constant sized population (n = 500 diploids) 
conditioned on initial allele frequencies across loci (p1) and effect sizes (α). The expected mean across all 
100 simulations is given by the dashed black line. Any given simulation can deviate strongly from this 
expectation (solid black line). Thus, when the elements of p change over time, in this case due to genetic 
drift, so does the additive genetic variance. See also Supplemental Box S6.1. 
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mean over 100 generations is greater than that under a purely additive architecture, and the 

decrease in additive genetic variance exceeds, to an extent, that of the neutral case after about 

30 generations (which is exacerbated with simpler architectures), with a reduction of the 

frequency of segregating alleles with positive effect on the trait (Barton et al. 2016; Barton 2017).  

Despite an ongoing debate within the literature (Wright 1932; Whitlock 1995; Crow 2008, 2010; 

Gibson 2012; Zuk et al. 2012; Hansen 2013; Hemani et al. 2013; Nelson et al. 2013; Mäki-Tanila 

& Hill 2014; Ávila et al. 2014; Paixão & Barton 2016), and given that there seems to be no general 

prevalence of either positive or negative epistatic interactions (Mackay 2014), the infinitesimal 

model is likely to continue to contribute to our understanding of the evolution of complex traits, as 

exemplified in its application towards breeding applications (Turelli & Barton 1994) and specifically 

those successfully applied to trees (Savolainen et al. 2007; Thavamanikumar et al. 2013; Isik et 

al. 2015; Grattapaglia 2017). Ultimately, the success of such models will be conditioned on the 

context, as well as the distinction between physiological and statistical gene action. Here, (higher 

order) non-additive contributions to phenotypic variance will likely have minimal deviations from 

the limit of the infinitesimal model in the short-term, particularly if this is primarily due to 

independent, low-order interactions, and should thus be applied with this in mind. As such, while 

short-term evolutionary processes are likely to hold in this limit, identifying the non-additive loci 

which underlie the trait, and their respective gene action, may still need further inquiry 

(Grattapaglia  2017). Indeed, it is often argued that non-additive gene action is too often neglected 

in studies of complex traits (e.g., Carlborg & Haley 2004), possibly due to the large sample sizes 

required to detect significant interactions, and lack of statistical power incurred due to multiple 

hypothesis testing (Mackay 2014). Given the recent reduced cost of sequencing technology and 

availability of novel computational and laboratory tools, future studies incorporating investigations 

of epistasis and dominance (where appropriate and feasible) would contribute to our 

understanding of genetic architectures, quantitative trait evolution, and breeding applications in 

trees (Vitezica et al. 2017). For example, breeding applications assessing hybridization across 
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divergent backgrounds, as is also prevalent across species in nature, have shown the importance 

of non-additive effects in phenotypic outcomes (as in Eucalyptus, e.g., Tan et al. 2017, and Pinus, 

e.g., Dungey 2001). Even so, the additive model is still a powerful tool to describe the loci 

underlying adaptive traits. 

Pleiotropy is another considerable factor influencing the expectations of the genetic 

architecture of quantitative traits, its evolution or evolvability, and indeed the genotype-pheno-

type map (Hansen 2003; Orr 2006; Chevin et al. 2010b; Tenallion 2014). While multiple defin-

itions exist across the literature (see Paaby & Rockman 2013), pleiotropy is generally identified 

as a single locus influencing multiple phenotypic traits. Other than linkage disequilibrium, 

pleiotropy is the fundamental cause of genetic covariance among phenotypes (Lande 1980). 

Given that the number of independent traits under selection is likely limited (Barton 1990), 

pleiotropy likely plays a substantial role in evolutionary dynamics. It is expected that as the number 

of traits, n, influenced by a locus increases, the probability of a beneficial mutation will decrease 

with the effect size of a mutation; where the effect size, r, relative to the distance to the phenotypic 

optimum,  , must be (much) less than d in order to be beneficial (Fisher 1930; the so-called ‘cost 

of complexity’: Orr 2000). Yet, empirical data seem to contradict this hypothetical cost, as the 

effect size of mutations often do not scale with pleiotropy in this way, and instead increase with 

the dimensionality of targeted traits (Wagner et al. 2008; Wang et al. 2010). Additionally, universal 

pleiotropy, where all mutations affect all phenotypes, and where there is no net directionality of 

mutations (i.e., mutational isotropy; both aspects as in Fisher 1930), has also been challenged by 

findings which suggest that only a fraction of phenotypic traits are affected by pleiotropic loci 

(Wagner et al. 2008; Wang et al. 2010). Relaxation of such assumptions from Fisher’s geometric 

model have shown that the total number of traits affected by pleiotropy has a relatively decreased 

effect on the rate of evolution in more general models (e.g., Martin & Lenormand 2006; see also 

Simons et al. 2017, and references in Wagner & Zhang 2011 and Tenaillon 2014). It seems that 

if model organisms (e.g., Pickrell et al. 2016, Smith 2016) are taken as a bellwether for 
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expectations in trees, pleiotropy is likely a contributing factor for many quantitative traits. Thus, 

the fraction of beneficial mutations is likely limited when the number of traits influenced is large, 

suggesting that the cost of complexity (or, more precisely, pleiotropy) may be generally robust 

(Welch & Waxman 2003), particularly when a population is close to its phenotypic optimum where 

selection acts against dimensionality of pleiotropic effects (Zhang 2012). Thus, the degrees of 

pleiotropy across underlying loci, distance from phenotypic optima, and covariance among traits 

under selection can have profound effects on evolutionary outcomes (e.g., as in Pinus contorta, 

Lotterhos et al. 2017). This is particularly true for the evolvability of architectures and distribution 

of effect sizes, which further depends on the variational autonomy of the traits affected by 

pleiotropy and the modularity of mutations, the former of which is ultimately determined by the 

direction and size of effect among a set of pleiotropic loci across a set of characters (see Arnold 

1992; Wagner & Altenberg 1996; Hansen 2003, 2006; Wagner et al. 2007; Chevin et al. 2010b; 

Wagner & Zhang 2011; MacPherson et al. 2015).  

In many investigations of local adaptation, the primary interest is in trait evolution and thus 

the underlying genetic components. As such, environmental effects and interactions are not often 

pursued, or perhaps even detected (Yoder & Tiffin 2017), particularly in studies of a single 

common garden or environment, and are instead treated in much the same way as epistatic 

interactions discussed above. Nonetheless, genotypic effects can evolve through genotype-by-

environment interactions with a changing environment just as is the case for the evolution of non-

additive interactions with a changing genetic background (Hansen 2006). Indeed, it is likely that 

consistent fluctuations in the environment would select for environmentally-perceptive responses, 

which seems to be the case across many tree species (Li et al. 2017). The contribution to the 

effect size distribution from GxE interactions will be a function of the variation in selection across 

the environments experienced by the interacting allele(s) as well as the level of gene flow between 

environments and fitness differences among various genetic backgrounds, but to our knowledge 

such information (to the extent of that for e.g., selective sweeps) is lacking within the literature. 
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Negative selection 
Negative selection acts against deleterious mutations that arise within populations. It is one, but 

not the only, mechanism that underlies stabilizing selection, defined at the level of the phenotype 

where deviations from an optimal value are selected against. Optima in this framework can be 

thought of either globally (i.e., across all individuals) or locally (i.e., individuals within a population), 

where the latter can have varying optima across populations. The nature of the optima (i.e., being 

local or global) affects the detectable trait architecture. For example, trait architecture should be 

composed of rare alleles with a negative relationship between effect size and allele frequency (cf. 

Eyre-Walker 2010 and references therein), where this relationship can also be confounded with 

degree of dominance and gene expression network connectivity (Huber et al. 2017), under 

models of a single global optimum. From a population genetic perspective, the ubiquity of negative 

selection is encapsulated in the name background selection, which has extensive reviews about 

its presence in natural systems (Charlesworth 2013), its importance for the neutral and nearly 

neutral theories of molecular evolution (Ohta 1992, 1996), and its contribution to observable 

patterns of hitchhiking (Stephan 2010). Important for the study of polygenic adaptation and its 

architecture, however, is that loci identified using GWAS may also include segregating deleterious 

variation (as argued and hinted at in Eckert et al. 2013b; cf. Yang et al. 2017; Gazal et al. 2017) 

as this creates trait variance, with little known about their prevalence (including differential 

prevalence across traits), differentiation in frequencies across populations (but see Zhang et al. 

2016), and effects on downstream inferences about divergent selection pressures across 

populations. It is sets of GWAS loci, though, that are currently analyzed for signatures of local 

adaptation via spatially divergent (i.e., locally positive) natural selection (e.g., Berg & Coop 2014). 

Recent exemplary work with expression networks in Populus tremula L. (Salicaceae; 

Mähler et al. 2017) and the herbaceous Capsella grandiflora Boiss. (Brassicaceae; Josephs et al. 

2015, 2017a) have revealed intriguing insight into the effects of negative selection on the 

architecture of complex traits in plants, as well as the relationship between network connectivity 
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and the strength of negative selection. In P. tremula, genes with expression levels that were 

significantly associated with sequence variation were found more often in the periphery of the co-

expression network (lower network connectivity) than within network module hubs (higher 

connectivity), while expression-associated SNPs were negatively correlated with network 

connectivity and effect size, a pattern also found between connectivity and expression variance, 

and minor allele frequency and QTL effect size (Mähler et al. 2017). Genes associated with 

sequence variation had less skewed site-frequency spectra (i.e., the frequency distribution of 

allelic variants) and lower estimates of nonsynonymous to synonymous divergence (dN/dS) than 

genes not associated with sequence variation, together suggesting that genes within the 

periphery of co-expression networks are likely under less selective constraint than those genes 

with high network connectivity which likely experience greater intensities of purifying selection. 

These genes thus tend to have more segregating variation and may be those most likely to be 

detected with current sample sizes utilized in GWAS, which has implications for estimation of trait 

architecture and its ‘degree’ of polygenicity. Even so, while there is prevalent evidence of negative 

selection in trees (e.g., Krutovsky & Neale 2005, Palmé et al. 2009, Eckert et al. 2013a,b; De La 

Torre et al. 2017), more inquiry is needed. 

 

Positive selection 
The temporal and spatial heterogeneity of selection can impact the evolution of genetic 

architectures underlying adaptation. These impacts are often thought of on a spectrum of trade-

offs, with one end being antagonistic pleiotropy where allelic effects vary between positive and 

negative on fitness across populations, and the other being conditional neutrality where allelic 

effects on fitness are positive in one or more populations and nearly zero in others (Anderson et 

al. 2012, Savolainen et al. 2013). For instance, alleles incorporated into a population after a shift 

in environmental influence can increase from low to high frequency via positive selection. The 

existence of such a beneficial allele can manifest in several ways: from new mutations, 
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introgression through gene flow, or molecular reorganization through novel recombination, 

inversion, transposition, copy number variation, or insertion-deletion events. If there is strong 

selection acting on this allele (Nes >> 1), it will sweep to high frequency creating a signature of 

reduced polymorphism at neutral sites physically linked to the allele (‘genetic hitchhiking’, 

Maynard Smith & Haigh 1974) resulting in a hard ‘selective sweep’ (Berry et al. 1991). However, 

in structured populations with limited gene flow, this process can take significantly longer to reach 

fixation, resulting in incomplete sweeps (Whitlock 2003). Additionally, Pavlidis et al. (2012) found 

that, in congruence with Chevin & Hospital (2008), a multilocus genotype often prevents the 

trajectories of individual alleles from sweeping to fixation, with an increasing number of loci 

leading to decreasing probability of fixation, and as a result, an altered selective signature at such 

loci (see also Jain & Stephan 2017). As such, hard selective sweeps in a polygenic architecture 

are expected to be rare (but not completely absent) under most circumstances, particularly when 

the shift in environment causes a relatively small deviation from the phenotypic optimum. Thus, 

hard sweeps most likely apply to loci with relatively large effect above a calculated, context-

dependent threshold value (Orr 2005; de Vladar & Barton 2014; Stephan 2015; see specifically 

Jain & Stephan 2015, 2017).  

While early literature (Maynard Smith & Haigh 1974; Kaplan et al. 1989) focused on the 

rapid sweep of an allele incorporated into a population after an environmental shift, research 

within the last few decades have focused on ‘soft sweeps’ resulting from neutral or deleterious 

mutations that are present in the standing genetic variation prior to the change in the selective 

environment, wherein the selection coefficient changes with the environmental shift such that the 

allele(s) become evolutionarily advantageous (reviewed in Hermisson & Pennings 2005, Barret & 

Schluter 2008, Messer & Petrov 2013, and Hermisson & Pennings 2017; see also Jensen 2014). 

These allele(s) could manifest via a single low-frequency variant, multiple variants caused by 

parallel recurrent mutation/reorganization on multiple haplotypes, or multiple unique alleles that 

arise independently within, perhaps multiple, populations. In such cases where selection acts via 
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soft sweeps, the rate of evolution at the phenotypic level is expected to exceed those of hard 

sweeps because the alleles under selection have escaped the stochastic nature of drift to a 

greater degree and are segregating within multiple individuals and genetic backgrounds within 

the population. The extent to which soft sweeps alter the effect size distributions underlying the 

genetic architecture is likely dependent upon both the strength of selection and effect size before 

and after the environmental change (Messer & Petrov 2013; Matuszewski et al. 2015; Jain & 

Stephan 2017), while the frequency before selection influences the likelihood of subsequent 

detection (Innan & Kim 2004). Additionally, if multiple mutations are segregating during the sweep, 

the probability of fixation for any given locus also decreases (Pennings & Hermisson 2006a, 

2006b; Chevin & Hospital 2008; Ralph & Coop 2010). Evidence for hard sweeps in tree species 

exist within the literature, although they are rare (e.g., disease response genes in Pinus taeda 

Ersoz et al. 2010; see also Table 3 in Siol et al. 2010). However, for many species of trees, which 

often experience high gene flow and strong diversifying selection across populations, adaptive 

divergence for polygenic traits is expected to result more often from soft sweeps than hard 

sweeps, affecting phenotypes by subtle allele frequency changes across populations, such that 

allele frequency differences of individual loci across populations for neutral and selective sites will 

often be nearly indistinguishable (Latta 1998, 2003; Barton 1999; Le Corre & Kremer 2012; 

Stephan 2015; Yeaman 2015; Jain & Stephan 2015, 2017). Indeed, the large effective population 

sizes found in most tree species would permit large effective mutation rates (or reorganization 

events) necessary for a soft selective sweep from multiple unique variants, particularly when the 

phenotype is underlain by a large mutational target. Even so, and as highlighted by Stephan 

(2015) and Bailey & Bataillon (2016), the extent to which scientists can detect the influence of 

demographic processes on soft versus hard sweeps, and vice versa, remains challenging (Jensen 

et al. 2005; Chevin & Hospital 2008; Schrider et al. 2015, 2016; Schrider & Kern 2016; Hermisson 

& Pennings 2017). 
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While discrete directional selection events are likely to be a common evolutionary 

influence across taxa, fluctuating or sustained directional selection (i.e., moving optima) are also 

likely to be contributory factors influencing the genetic architecture of quantitative traits (reviewed 

in Kopp & Matuszewski 2013; see also McCandlish & Stoltzfus 2014). For a sustained moving 

optimum, the effect size distribution of beneficial alleles is expected to be dependent upon the 

effect distribution of standing or de novo mutations as well as the strength of selection: if the rate 

of change is dramatic, adaptation from new mutations is expected to occur through intermediate 

to large-effect loci (Kopp & Hermisson 2009a; Matuszewski et al. 2014) or from small-effect loci 

when adaptation occurs via standing variation (particularly when epistasis is considered, 

Matuszewski et al. 2015). Under lesser rates of environmental change, adaptation is expected to 

proceed through mainly alleles of small-effect (Collins et al. 2007; Kopp & Hermisson 2009a, 

2009b) where intermediate effects will dominate the long-term distribution of effect sizes (Kopp & 

Hermisson 2009b). In the case of fluctuating environments, outcomes often depend directly on 

the degree of temporal autocorrelation of the changing environment. In such cases of stochastic 

fluctuation around a linear trend of environmental change, extinction risk increases relative to that 

of the strictly linear trend (Bürger & Lynch 1995) where local adaptation lags, to some degree, 

behind any given contemporaneous scenario. In comparison, and similar in some ways, 

stochastic fluctuations around a constant mean are expected to resemble the dramatic 

environmental change scenario described above, characterized by strong selection pressures, 

maladaptation between generations, and a large lag load (Bürger 1999; Chevin 2012; Kopp & 

Matuszewski 2013). In the case of autocorrelated shifts, the ‘predictability’ of such fluctuations 

may decrease the possibility of extinction, increase probability of local adaptation, and lead to 

similar scenarios as discussed for gradual changes in the environment (Kopp & Matuszewski 

2013).  
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Gene flow 
Gene flow, to the extent that would be appreciable to that found in trees (reviewed in Savolainen 

et al. 2007), is also an important component shaping quantitative expectations. Indeed, since the 

early 1900s we have known that gene flow can disrupt adaptation if selection is not strong enough 

to overcome the loss of beneficial alleles (Haldane 1930; Wright 1931; Slatkin 1987; reviewed in 

Felsenstein 1976, Lenormand 2002, Savolainen et al. 2007, 2013, Feder et al. 2012a, and Tigano 

& Friesen 2016). Particularly when gene flow is asymmetric between core and peripheral 

populations, adaptation can be inhibited in marginal habitats (Kirkpatrick & Barton 1997; Kawecki 

2008). Even so, there is abundant evidence that gene flow can promote adaptation and maintain 

polymorphisms within populations, including white sand lizards (Laurent et al. 2016), stick insects 

(Comeault et al. 2014, 2015), cichlid fishes (Meier et al. 2017), Darwin’s finches (Lamichhaney et 

al. 2015), and lodgepole pine (Yeaman & Jarvis 2006).  

The magnitude of gene flow between populations can also impact the distribution of effect 

sizes, for when gene flow falls below a critical threshold, and over many thousands of generations, 

there is an increase in the probability of establishment and persistence times of large-effect 

alleles, thus reducing the proportion of the polymorphism due to small-effect loci (Yeaman and 

Otto 2011; Yeaman and Whitlock 2011). These dynamics are further influenced by the 

susceptibility of alleles to ‘swamping’ (Slatktin 1975; Bürger & Akerman 2011; Lenormand 2002; 

Yeaman 2015; sensu Haldane 1930). For alleles that are prone to swamping, adaptive phenotypic 

divergence depends on genetic variation and is driven by allelic covariance among populations 

particularly when the underlying architecture is highly polygenic, the mutation rate is high, and the 

number of loci underlying the trait exceeds the number needed to achieve the local optimum 

phenotype (genetic redundancy; Yeaman 2015). Conversely, when there is little genetic 

redundancy underlying the trait, limited divergence is observed unless the effect size of a given 

swamping-prone allele exceeds the critical migration threshold. In these cases where swamping-

prone alleles contribute to adaptive divergence, the genetic architecture is transient and any given 



 

 

 

162 

locus contributes ephemerally to phenotypic divergence, even for loci of relatively large effect 

(Yeaman 2015). In the case of swamping-resistant alleles, the evolved architecture is enriched 

for large-effect loci and adaptive divergence can be maintained with little genetic variation or input 

from mutation. Yet while the contribution from such loci can last many thousands of generations, 

the architecture can again become transient as the genetic redundancy or mutation rate increases 

(Yeaman and Whitlock 2011; Yeaman 2015).  

 Physical linkage and reduction of recombination between adaptive loci can also play a 

considerable role in adaptive processes in the face of gene flow (Feder & Nosil 2010; Feder et al. 

2012a,b; Yeaman 2013; references therein). In such cases, loci that are tightly linked to other loci 

already under selection will have an increased probability of contributing to local adaptation, both 

because of physical linkage as well as by reducing the effective recombination among loci within 

the sequence block. For instance, Yeaman & Whitlock (2011) showed that under divergent 

selection with gene flow, the number of contributing loci decreases with increasing recombination 

while small effect loci tend to cluster in groups that act as a single large effect locus (see also 

Remington 2015), and strong selection can maintain these clusters of linked loci over greater map 

distances than can weak selection. More recently, Yeaman (2013) employed individual-based 

simulations to provide evidence that the clustering of alleles throughout a bout of adaptation is 

unlikely to be driven mainly by divergence hitchhiking alone, and that instead competition between 

genetic architectures and chromosomal rearrangements occurring throughout adaptive 

processes under a range of environmental fluctuation scenarios can lead to the evolution of tightly 

clustered adaptive loci which persist in the event of gene flow, unlike the clusters identified by 

Yeaman & Whitlock (2011). Yeaman (2013) found that the level of clustering was a function of 

the temporal fluctuation period, the rate of rearrangement itself is an important determinant on 

the evolution of clustered architectures, and clusters can in some cases be evolutionarily 

disadvantageous. Together, these results suggest that genomic rearrangements (reviewed in 

Ortiz-Barrientos et al. 2016), including inversions (Kirkpatrick & Barton 2006; reviewed in Hoffman 



 

 

 

163 

& Rieseberg 2008), which decrease the effective rates of gene flow among adaptive sequences 

can be an essential component of local adaptation, and indeed some cases of speciation, in the 

face of gene flow. 

 

Summary 
While we provided an overview of the factors that can influence the genetic architecture of local 

adaptation, we acknowledge that it is far from exhaustive. Because the phenotypes used in 

studies of local adaptation (particularly those assumed or corroborated to be a compo-nent of 

total lifetime fitness) often have a continuous distribution, and are thus quantitative in nature, the 

underlying genetic basis for these traits is likely polygenic and is predicted to be underlain by 

multiple (often many) segregating loci, many of which may confer small phenotypic effects (and 

are thus unlikely to be detected using single-locus approaches). Even so, a contin-uum exists, 

where the true genetic architecture (the number of contributing loci, as well as their relative 

locations within the genome, phenotypic effects, and interactions) underlying a given complex 

trait is itself determined by a combination of evolutionary forces that encompass an interplay 

between the strength, timing, and direction of (background) selection against the homogenizing 

effects of gene flow and recombination, disruptive effects of drift, linkage, trans-position, inversion, 

and mutation, interactions between underlying loci as well as between these loci and the 

environment, structural variation, relationship to gene expression networks, as well as other 

factors related to life history. Consequently, the contemporary genetic architecture is a result of 

past evolutionary processes, while the adaptive response to future evolutionary dynamics is 

influenced in part by the contemporary architecture and genetic variance at hand. 

The genomics of local adaptation in trees 

Common approaches used to identify adaptive loci 
Across taxa, and specifically in trees, the predominant association and outlier methods for 

uncovering sets of loci underlying local adaptation have relied upon single-locus population 
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genetic approaches. Putatively adaptive loci are often identified by elevated allele frequency 

differences among populations relative to patterns genome-wide. Yet, as revealed in the previous 

section, loci underlying polygenic traits will often be indistinguishable from non-causative sites in 

this way. Further, outlier tests based on FST (sensu Lewontin & Krakaur 1973) do not incorporate 

information regarding putative phenotypic targets of selection nor environmental drivers of 

differentiation, often do not correct for neutral population structure (but see Lotterhos & Whitlock 

2015), and will inevitably isolate a biased set of candidate loci (Hermisson 2009; Cruickshank & 

Hahn 2014). In the case of single-locus genotype-environment associations (reviewed in Rellstab 

et al. 2015; see also De Mita et al. 2013), information about possible environmental drivers is 

incorporated by assessing the association between allele frequencies and environmental 

heterogeneity, yet without information regarding traits hypothesized to be influenced by selection 

(Schoville et al. 2012). Single-locus genome wide association studies (see next section; 

Supplemental Box S3) and quantitative trait loci (QTL) experiments (reviewed in Ritland et al. 

2011, Hall et al. 2016) have also been used in trees, quantifying the differential effects of typed 

alleles on a given phenotype. Despite the shortcomings of these methods, such studies provide 

candidate loci that can be investigated in further detail (Tiffin & Ross-Ibarra 2014), which is 

particularly advantageous when resources are limited. Indeed, as discussed below, these 

approaches dominate the methods used to uncover complex traits (adaptive or otherwise) in 

trees. 

Current progress in trees 
In light of the expectations outlined above for the architecture of quantitative traits under various 

evolutionary regimes, and the methods commonly used to detect these loci, we reviewed the lit-

erature of single-locus genotype-phenotype associations (GPAs, which included associations to 

gene expression levels) from studies in forest trees. In doing so, we identified 52 articles across 

10 genera and 24 species with a total of 2113 GPAs (Supplemental Table S6.2, Supplemental 

File F6.2). Because most studies in trees do not report phenotypic effect sizes of individual loci 
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(i.e., regression coefficients), we report r2 values which can be used to quantify the percent 

phenotypic variance explained by the associated locus. In cases where multiple SNPs from a 

given locus (e.g., a gene or scaffold) were associated to a trait, we averaged the r2 values for that 

locus. As with our review of trait heritability and QST, we grouped phenotypic traits used in 

associations into twelve broad categories (in this case, no phenotypes fell into Survival or Seed 

and Seedling Properties groups). If traits important to tree conservation and industry are often of 

a polygenic basis, we would expect small to moderate effects from loci empirically associated to 

phenotype. Indeed, across the trait groups considered here, the mean r2 was 0.039, where 

80.79% (n = 1707) of recorded estimates had r2 values less than 0.05, 18.78% (n = 397) of r2 

values falling between [0.05,0.22], and nine values of r2 greater than 0.22, which were all related 

to Cronartium ribicola resistance in Pinus monticola Douglas ex. D. Don (Figure 6.3a).  

Of the twelve trait groups, all but those traits relating to both reproduction and herbivore 

and insect resistance had r2 estimates greater than 0.10, with traits relating to disease resistance, 

growth, leaf and needle properties, phenology, and wood properties each contributing over 10% 

of these outliers (Figure 6.3b). These small effects tend to also not account for much of the 

observed heritability, but can explain sizeable fractions in some instances (e.g., primary 

metabolites in Eckert et al. 2012). Of the loci associated with expression levels, r2 estimates were 

between 0.05 and 0.152 in all but one case (n = 54). We also assessed the propensity of individual 

loci to be associated to more than one phenotype or expression level across our literature review. 

Without correcting for the multiple associations of a locus to yearly phenotypes (e.g., bud flush 

2009, bud flush 2010), we found that the average number of loci associated to multiple 

phenotypes per study was 6.00, while after correcting for multiple years the average number 

decreased to 5.42. The median number of SNPs utilized for association per study was 206, where 

75% (39/52) of studies used less than 1,000 SNPs, eight studies using between 1,000-10,000 



 

 

 

166 

Figure 6.3. Insights from genotype-phenotype literature review. (A) Counts of per-locus percent variance 
explained (r2) estimates from single-locus genotype-phenotype associations from literature review. Note 
logarithmic x-axis. (B) Distribution of per-locus r2 values for individual trait groups within genotype-
phenotype literature review. Values along x-axis are total number of estimates and number of species 
across estimates. Not shown are nine outliers for disease resistance to Cronartium ribicola in Pinus 
monticola (range = [0.402, 1.0]) from Lui et al. 2017. Abbreviations as in Figure 6.1. 
 

SNPs, four studies using between 29,000-35,000 SNPs, and one study utilizing 2,822,609 SNPs 

for association (all studies with greater than 10,000 SNPs were from either Pinus or Populus 

species). 

 

Are we out of the woods yet? 
From insight gained from the literature review of genotype-phenotype associations it seems that 

the vast majority of the genetic architecture of local adaptation and complex traits in trees remains 

largely unexplained using common GWAS methods (see also Box 1), a consistent pattern across 

the past decade of research in trees (Neale & Savolainen 2004; Savolainen et al. 2007; Ćalić et 

al. 2015; Hall et al. 2017). Furthermore, it is likely that the estimates for percent variance explained 

are inflated due to a combination of QTLs that break down into smaller effect loci (Remington 

2015), the Beavis effect (Beavis 1994; Xu 2003), and the Winner’s Curse (Görning et al. 2001; 

Zöllner & Pritchard 2007) where locus effects are inflated by using the same data for both gene 

identification and phenotypic prediction (see Box 1 in Josephs et al. 2017b for a detailed synopsis 

of these biases). Such a pattern suggests that, indeed, many of the traits important to 

A B 
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evolutionary, breeding, and conservation insight in trees are likely of a polygenic basis and that 

future studies must take this into account when seeking to identify the underlying loci. 

Even within studies of model organisms, missing heritability is nothing new. Across taxa, 

missing heritability is less frequent within phenotypes of mono- to oligogenic bases (as seen for 

the Cr2 major-gene resistant locus in Pinus monticola, Liu et al. 2017), as would be expected, 

and is a recurrent, pervasive shortcoming from genotype-phenotype associations of complex 

traits, particularly those maintaining single-locus perspectives. A number of explanations have 

been put forth to explain the missing heritability, such as epistasis (Hemani et al. 2013) and its 

inflationary effect on heritability estimates (Zuk et al. 2012), environmental or epigenetic inter- 

actions (Feldman & Lewontin 1975) as well as their inflationary effect on heritability estimates 

(Zuk et al. 2012), (unmeasured) low-frequency variants of large effect (Dickson et al. 2010), gen- 

etic or variance heterogeneity of individual alleles (Leiserson et al. 2013; cf. Box 1 in Nelson et 

al. 2013), or common variants with effect size below detection thresholds (Yang et al. 2010). As 

such, here we avoid supporting one causative hypothesis over another, particularly given the 

ongoing discussion within the literature, for which strengths and weakness for any viewpoint are 

apparent (e.g., Gibson et al. 2010), and because of the progress yet to be made in trees. 

Indeed, the dissection of the genetic architectures underlying complex traits in trees is still in its 

nascency compared to the progress of model organisms (for which missing heritability is still an 

issue), and beyond issues of coverage, genomic saturation, and genomic resources (discussed 

below in The Path Forward), we must approach this issue with all possibilities in mind. Given the 

unique properties of the life histories, genome size and organization of many tree species, and 

the limited numbers of studies with large sets of molecular markers, causative sources of the 

missing heritability should be ruled out, or supported, as with any other hypothesis, particularly 

as we gain information from contemporary studies of trees that address shortcomings of those in 

the past. Further, we must keep in mind differences between functional and statistical gene action 

(Álvarez-Castro et al. 2007; Nelson et al. 2013; Huang & Mackay 2016; Huber et al. 2017). In any 
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case, it seems that sample sizes of single-locus approaches will need to be increased (Hall et al. 

2016), albeit with diminishing returns (Boyle et al. 2017; Simons et al. 2017), to discover a higher 

proportion of the underlying loci in trees due to small to moderate additive effects. Alongside 

suggestions outlined in The Path Forward, incorporating investigations into such aspects of 

epistasis, dominance, pleiotropy, expression, GxE effects, and network analyses (when 

appropriate), may be a worthwhile complement (e.g., Lotterhos et al. 2017, Mähler et al. 2017, 

Mizrachi et al. 2017; Tan et al. 2017).   

While the infinitesimal model will continue to prove to be immensely useful for breeding 

programs and for short-term evolutionary predictions, and we may find that the missing heritability 

in trees is truly due to consequences of the infinitesimal regime (as is often cited to be the majority 

consensus across taxa for missing heritability), it has been argued that the analysis paradigm for  

such studies is near its limits in describing the functional genetic architecture of quantitative traits, 

and that it is therefore necessary to move beyond single-locus perspectives and reconsider 

common practices (Pritchard & Di Rienzo 2010; Nelson et al. 2013; Sork et al. 2013; Tiffin & Ross-

Ibarra 2014; Wadgymar et al. 2017). At this stage, it seems that we investigators seeking to 

describe the genetic architecture of quantitative traits in trees have some ways yet to go before 

we are truly out of the woods. In the next section, we describe the path forward to describing 

genetic architectures from a polygenic and functional perspective, identify resources available to 

advance our knowledge and fill knowledge gaps, as well as future directions for this research 

area. 

The path forward 

As we have outlined, there is still ample room for improvement in our description and 

understanding of the genetic architecture of quantitative traits in trees (see Table 6.1 and Box 

6.1). Importantly, methods used to uncover causative loci should take into consideration the 

expected degree of polygenicity, the relative contributions of various forms of gene action, as well 

as how past evolutionary phenomena has likely shaped current adaptive expectations. In this 
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  Box 6.1: A step in the right direction: Synergism between GWAS and Genomic Selection  
Early simulations showcased the promise of predicting breeding values from marker data to accelerate 

domestication and breeding of plants and animals (Meuwissen et al. 2001; Bernardo & Yu 2007; Heffner 

et al. 2009; Zhong et al. 2009), and particularly under the framework of genomic selection (GS) in trees 

(Wong & Bernardo 2008; Grattapaglia & Resende 2011; Iwata et al. 2011; defined and reviewed by 

Grattapaglia 2017). Much of the early exploration into the applicability of GS in trees discounted the utility 

of marker-assisted selection (MAS) because of the small estimated effects for the few loci significantly 

associated via single-locus approaches at the time, as well as having concerns related to replication 
because of the identification of markers across limited parental (genetic) backgrounds (Grattapaglia & 

Resende 2011; Iwata et al. 2011; Resende et al. 2012a, 2012b). Based on these arguments and results 

from simulations, genomic selection was identified as a more promising endeavor than MAS, particularly 

if the breeding cycle can be reduced via efforts such as grafting (Grattapaglia & Resende 2011) or somatic 

embryogenesis (Resende et al. 2012a).  

While GS techniques often can explain a considerable proportion of narrow sense heritability, current 

implementation of GS in trees is often on par with, or marginally better than, traditional phenotypic 

selection when evaluating potential within the same generation and environment (see Table 9.1 in 
Grattapaglia 2017). Further, the predictive accuracy of various models are a function of underlying 

architecture (Resende et al. 2012c; Grattapaglia 2017). As pointed out by Grattapaglia (2017), current 

marker densities have produced satisfactory results due to the capture of relatedness between training 

and validation populations. Here, this success is likely due to the ability of markers to reasonably represent 

large haplotype blocks (and thus cumulative action of causative effects) due to the high level of relatedness 

between training and validation populations. Even so, Grattapaglia (2017) recommends higher marker 

densities so that markers also capture true marker-QTL LD and thus sustain long-term accuracies across 

generations and environments. We also believe GWAS applications (in the broadest sense) in trees will 
also see improvements through increased marker densities, the results of which can then be used to 

further test specific hypotheses regarding underlying architectures and to increase predictive accuracies 

of GS as well. Incorporating markers that putatively underlie the trait of interest into model prediction may 

spur opportunities that do not require high degrees of relatedness between training and validation 

populations, perhaps to the extent of incorporating material from outbred stands using predictive 

approaches (sensu Bérénos et al. 2014; Bontemps 2016) and heritability validation (sensu Castellanos et 

al. 2015) in the field.  
In the end, the realized progress of our understanding regarding the genomics of complex traits in trees 

will therefore be enhanced by the deposition of data from both GS and GWAS (as well as other ‘omics’) 

approaches into a centralized open-access database hub such as TreeGenes (treegenesdb.org). Future 

meta-analyses can then synthesize past inquiry to summarize our current understanding of underlying 

genetic architectures, ultimately incorporating this knowledge towards future applications in industry and 

conservation (see The Path Forward; Table 6.1). 



 

 

 

170 

  Table 6.1. Where to next? The Path Forward identifies meaningful ways in which we can progress our 
understanding of the architecture underlying complex traits in trees. Here we outline some questions that 
can be used to guide future inquiry as the number of markers and sequence length increase, and annotation 
becomes more precise and specific to tree biology. 

1) Composition and evolution of genetic architectures in trees 
a. How prevalent are non-additive contributions to underlying genetic architectures in trees? 

Are there patterns across similar phenotypes or regulatory networks? Is there evidence that 
such non-additive effects have either constrained or facilitated local adaptation? 

b. Are adaptive loci most prevalent in areas of low recombination or repetitive sequences 
(e.g., retrotransposons, clustered gene families)? Do loci of similar effect sizes, expression 
profiles, or pleiotropic effect (Lotterhos et al. 2017) experience elevated LD within the 
genome? Should genome size influence our expectations for underlying architectures (Mei 
et al. 2017)? 

c. At what frequency does local adaptation result in fitness tradeoffs across environments 
(Tiffin & Ross-Ibarra 2014; Wadgymar et al. 2017)? And does this interact with demo-
graphic history in trees? 

d. Does pleiotropy play a predictable role in underlying tree genetic architectures (Lotterhos 
et al. 2017)? 

e. Which aspects of genetic architectures in trees are likely to exhibit deleterious variation? 
And how much of this signal are we capturing in genotype-phenotype applications? 

2) Inter- and intraspecific variation of genetic architectures in trees 
a. Which aspects of the genetic architecture should we expect to vary across populations or 

environments? 
b. Under what conditions in trees are we likely to observe genomic reorganization across 

species or ecotypes (e.g., physical linkage or dispersion)? Will reference genomes be 
suitable to assess this question across species or diverged populations, or can long-read 
sequencing technologies (reviewed in Jiao & Schneeberger 2017) offer appropriate 
resources? 

c. What is the degree of convergent and parallel adaptation within polygenic architectures 
across tree populations and species? 

d. At what level of the genetic architecture do we see patterns of convergence, parallelism, 
and divergence? Within core hubs, or perhaps within aspects of the periphery? What does 
the comparison of the topologies from such architectures tell us about influential 
evolutionary processes? 

e. How often are architectures influenced by variation in expression levels rather than 
structural variation in proteins? Do architectures differ in predictable ways with the 
prevalence of one or the other? How can we utilize knowledge synthesized across past 
approaches to spur understanding of underlying genetic architectures in trees (Mizrachi et 
al. 2017, Lotterhos et al. 2017)? 



 

 

 

171 

section, we orient our path forward by first highlighting utilities available to, and underused within, 

the forest genetics community to describe the genetic architecture of complex traits. We then 

outline several suggestions to facilitate further progress and advocate for prospective 

perspectives in future studies such that information and data may continue to be used easily in 

subsequent syntheses across pathways, environments, species, and towards insight to identify 

future needed resources as our understanding progresses. While our recommendations are 

specific to the tree community, we also acknowledge other valuable recommendations from 

recent reviews (e.g., Savolainen et al. 2013; Tiffin & Ross-Ibarra 2014; Lotterhos & Whitlock 2015; 

Gagnaire & Gaggiotti 2016; Hoban et al. 2016; Wellenreuther et al. 2016; Burghardt et al. 2017; 

Wadgymar et al. 2017). 

 

Stepping off the pack – what’s in our pack? 
The genetic architecture underlying local adaptation and complex traits likely has a 

polygenic basis composed of many loci of relatively weak effect yet many of the common 

association or outlier methods will often fail to detect many of the causative loci of small to 

moderate influence. Such investigations have so far led to an incomplete description of studied 

architectures, and, in many cases, have limited our understanding of complex traits in trees to a 

handful of loci. While we do not advocate that such single-locus methods be avoided in future 

studies (considered further in the next section), here we outline underused and promising 

approaches to identify and describe underlying loci that explicitly take into account the polygenic 

basis of such traits and may help advance our understanding in future studies, including some of 

the questions we have outlined in Table 6.1. Multivariate, multiple regression, and machine 

learning techniques are three such examples, and differ from univariate analyses by analyzing 

patterns among multiple loci simultaneously. 

The Bayesian sparse linear mixed model (BSLMM), for instance, such as that deployed in 

the software package GEMMA (Zhou et al. 2013), is developed for both genomic prediction (see 
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also Box 1) and mapping of complex traits that offers considerable advantages over single-locus 

genotype-phenotype approaches (Guan & Stephans 2011; Ehret et al. 2012; Zhou et al. 2013; 

Moser et al. 2015). This analysis has gained in popularity recently, being used across diverse 

taxa such as stick insects (Comeault et al. 2015, Riesch et al. 2017), butterflies (Gompert et al. 

2015), Darwin’s finches (Chaves et al. 2016), and trees (Lind et al. 2017). BSLMM is a hybrid of 

LMM and Bayesian variable regression that extends the Lande & Arnold (1983) multiple 

regression approach in an attempt to address the sparsity of common data sets used in genotype 

associations, where the number of model parameters (loci) is often much greater than the number 

of observations (sampled individuals; Zhou et al. 2013; Gompert et al. 2016). Specifically, the 

model takes into account relatedness among individuals and provides a means to summarize 

estimates of selection across the genome such as the proportion of phenotypic variation explained 

(PVE) across genotyped markers by estimating the combined influence of markers with either 

polygenic (infinitesimal) or measureable (moderate to large) effect, the proportion of PVE 

explained by genetic loci with measurable effects (PGE), and the number of loci with measurable 

effects that underlie the trait (for more details see Guan & Stephens 2011; Zhou et al. 2014; 

Gompert et al. 2016). Additionally, GEMMA returns the posterior inclusion probability for each 

marker providing evidence for association with the phenotype. While the approach remains 

promising considering its performance in the context of genomic prediction and inference of PVE 

(e.g., Zhou et al. 2013, Speed & Balding 2014), there has been no attempts, to our knowledge, to 

assess the approach under various demographic histories, genetic architectures, and sampling 

designs. A close approximation to this comes from analyses carried out by Gompert et al. (2016), 

in which GEMMA was evaluated for PVE estimation, estimated effects of causative loci, and the 

estimated number of underlying SNPs based on various author-specified numbers of causal loci, 

underlying heritability ranges, and numbers of sampled individuals. In short, the authors convey 

that GEMMA is promising, but that there are important limitations to consider (Gompert et al. 

2016). However, because the authors simulated architectures by randomly assigning effects to 
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loci from an empirically-derived sequence data set, and while they were thorough in their data 

exploration, we encourage these results be replicated in silico through full modeling of genomic 

loci across various demographic, LD, sampling, and architecture scenarios to ensure underlying 

allele frequencies among populations and LD (within and among populations) reflect realistic 

patterns which may have an effect on model performance. Such additional analyses will also allow 

for more specific insight into model performance based on a priori biological insight available to 

investigators, allowing more informed decisions when choosing an appropriate genotype-

phenotype association method such as BSLMM. 

Random Forests (Breiman et al. 2001) is a machine learning algorithm used to identify 

patterns in highly dimensional data sets to further generate predictive models. Alongside uses 

outside of evolutionary biology, the Random Forests algorithm has gained popularity in 

association studies across taxa as well as in trees such as that of genotype-phenotype 

associations in Sitka spruce (Picea sitchensis; Holliday et al. 2012) and genotype-environment 

associations in white spruce (P. glauca; Hornoy et al. 2015). Random Forests is based upon 

classification (for discrete variables, e.g., soil type) and regression (continuous variables; e.g., 

temperature or phenotypic measurements) trees (so-called CART models). During its 

implementation, Random Forests creates these decision trees using two layers of stochasticity: 

the first layer is used to grow each tree by using a bootstrap sample of observations 

(environmental or phenotypic) while the second uses a random subset of predictors (marker loci) 

to create a node which is then split based on the best split of the observations across permutations 

of predictors using the residual mean square error (see Figure 2 in Hornoy et al. 2015). The 

observations that were not used as training data to create the model are then used to estimate 

model accuracy, which can be further used to assess variable importance (Holliday et al. 2012; 

Hornoy et al. 2015; Forester et al. 2017).  

While creating a promising alternative to univariate approaches, until recently the Random 

Forests algorithm has not been fully explored to assess model performance for use in association 
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studies. Forester et al. (2017) provide a thorough analytical assessment using simulated data to 

remark on performance for use in genotype-environment association studies (GEA). In their 

analysis, they used published simulations of multilocus selection (Lotterhos & Whitlock 2014, 

2015) of various demographic histories and selection intensities across 100 causative (with 9900 

neutral) loci to compare the Random Forests algorithm to the multivariate approaches of 

constrained ordination (redundancy analysis, RDA, and distance-based RDA, dbRDA - both of 

which are mechanistically described in Legendre & Legendre 2012, but are multivariate analogs 

of multiple regression on raw or distance-based data) and to the univariate latent factor mixed 

model (LFMM).  In short, Forester et al. (2017) found that LFMM performed better than Random 

Forests as a GEA, while constrained ordinations resulted in relatively lower false positive and 

higher true positive rates across levels of selection than both Random Forests and LFMM. 

Additionally, the authors found that correction for population structure had little influence on true 

and false positive rates of ordination methods, but considerably reduced true positive rates of 

Random Forests. They also note that further testing is needed across various evolutionary 

scenarios. Even so, constrained ordination provides an effective means by which to detect loci 

under a range of both strong and weak selection (Forester et al. 2017). While promising under a 

GEA framework, future analyses may provide evidence that such methods also perform well in 

genotype-phenotype associations as well. Empirically, it has been used in trees to explore 

multivariate relationships between phenotypes, genotypes, and environments (e.g., Sork et al. 

2016). Additionally, there have been many extensions of the original Random Forests model, 

such that extensions with purportedly better performance should be assessed alongside other 

popular association methods in the future. 

         Once a set of candidate loci have been identified to putatively underlie a phenotype or 

environment of interest, these loci can be used to further test the hypothesis of polygenic local 

adaptation. For instance, Berg & Coop (2014) use the significant hits from GWAS data sets to 

estimate within-population additive genetic values by calculating the frequency-weighted sum of 
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effects across these loci. These values are then compared to a null model of genetic drift that 

accounts for population structure to test for an excess of variance among populations, ultimately 

identifying the populations most strongly contributing to this signal. The excess variance statistic 

(Qx) is analogous to QST and is composed of two quantities – an FST-like component describing 

allele frequency differentiation across populations and a LD-like component describing 

coordinated and subtle allele frequency shifts across populations. This method thus allows explicit 

hypothesis tests related to the expected polygenic architecture of local adaptation across 

populations of trees. It is also noteworthy in that it combines aspects of the genotype-

environment-phenotypic spectrum that underlies local adaptation within a single methodological 

framework (cf. Sork et al. 2013). Prior attempts take a pairwise approach examining each pairwise 

combination of the genotype-environment-phenotype spectrum (e.g., Eckert et al. 2015). Despite 

the promising insight from this method, it has not been used widely outside of model organisms. 

Future applications in trees should consider the number of causal loci identified to be associated 

with quantitative phenotypes (driven somewhat by the number of loci used in mapping studies), 

the number of populations needed to increase power, especially in the correlation of genetic 

values to environmental data, and the ability to reliably estimate genotypic effects. 

 

At the trail junction – where to next? 
While we have outlined methods above that have not yet realized their full potential in describing 

genetic architecture of complex traits in trees, there are several matters that we, as a field, must 

keep in mind such that we can continue to progress our understanding in the most efficient 

manner. Here we believe the path forward lies in three critical areas which we discuss in further 

detail below: 1) needed data, 2) standardized data reporting, and 3) empirical studies in trees 

designed to test theoretical expectations of genetic architectures. 
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Needed data 
While the common garden approach can facilitate understanding of evolutionary processes 

without specifically identifying underlying loci (Rausher & Delph 2015), identifying features of the 

genetic architecture will ultimately inform breeding applications important to management, 

conservation, and industry, and thus requires knowledge about underlying loci. Consequently, we 

have not yet had sufficient sampling of both marker densities and studies amenable to replication 

across systems to truly exhaust the use of single-locus approaches, particularly as the sample 

size of markers, individuals, and populations increase in the near future. Indeed, Hall et al. (2016) 

estimated that the number of causative loci underlying quantitative traits in trees is likely in the 

several hundreds, and to capture 50% of the heritable genetic variation using single-locus 

approaches, population sizes of about 200 will be needed for mapping disease traits, and about 

25,000 for traits such as growth. Even so, we recommend that such single-locus associations 

should not be used as the sole method of architecture description as we carry out future studies 

unless justified a priori based on biological principles, knowledge of the expected architecture, 

and/or for testing specific hypotheses. While the limits of such methods should be considered, 

these approaches can be used alongside other lines of evidence to either support or spur further 

testing of underlying loci (sensu Sork et al. 2013). For instance, there is little downside to 

performing both a single-locus association and a multivariate analysis in the same study, even if 

some or all of the results for a given technique are excluded to the supplement (e.g., Sork et al. 

2016). Further, contextualizing genotype-phenotype and genotype-environment relationships with 

results that describe local adaptation (e.g., phenotype-environment, QST-FST comparisons) can 

also stimulate further understanding particularly for data that is made publicly available for future 

synthesis. Specifically, studies which do so within the context of comparisons within and across 

species (e.g., Yeaman et al. 2016) or environments (Holliday et al. 2016), offer unique 

circumstances under which to advance our understanding of complex traits in trees (Table 6.1; 
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Lotterhos & Whitlock 2015; Ćalić et al. 2016; Hoban et al. 2016; Ingvarsson et al. 2016; Mahler 

et al. 2017).  

Isozymes (Adams & Joly 1980), restriction fragment length polymorphisms (Devey et al. 

1994), randomly amplified DNA (Grattapaglia & Sederoff 1994), and expressed sequence tag 

polymorphisms (Temesgen et al. 2001) were among the first used to test evolutionary hypotheses 

in trees related to genome organization and the mapping of complex traits (discussed in Eckert 

et al. 2009). Marker technology has progressed considerably since this time (dozens of markers) 

to include markers capable of more densely sampling tree genomes (up to millions of markers). 

For example, array-based designs (Silva-Junior et al. 2015) and exome capture (Suren et al. 

2016) allow for hundreds to tens of thousands of both genic and intergenic markers (which can 

be dwarfed by the number of subsequently called SNPs) whereas RADseq (reviewed in 

Parchman et al. in review) is in the range of tens- to hundreds of thousands of markers (e.g., 

Parchman et al. 2012) and whole genome sequencing in the range of millions (e.g., Stölting et al. 

2015). However, while the continual advent of sequencing technology will likely allow for more 

SNPs and longer sequences, it is ultimately the concordance between polygenic expectations 

and analytical methods of marker data that will determine the success of such endeavors. With 

this in mind, future studies aimed at answering outstanding questions (Table 6.1) will benefit from 

a diverse set of markers that represent both functional proteins (genic regions) as well as those 

which control aspects of their expression or post-transcriptional regulation. If one lesson is to be 

gained from the recent discussion of the applicability of reduced representation techniques (Lowry 

et al. 2016, 2017; Catchen et al. 2017; McKinney et al. 2017), it is that genomic resources are 

paramount to advancement of knowledge, especially when developed with knowledge of patterns 

of linkage disequilibrium or, if not with this knowledge, with goal of quantifying it. However, 

RADseq remains one of the most cost-effective approaches available to trees and should thus be 

assessed in the specific context of tree species, particularly when strengths and limitations are 

understood and addressed (as reviewed in Parchman et al. forthcoming). No matter the approach 
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used for association, some aspect of the architecture is likely to be missed in trees. For example, 

RADseq-based markers developed within large genomes are not enriched within genic regions 

where structural changes to proteins are expected to affect phenotypes, although choice of 

enzymes can affect the relative proportion of genic regions in tree genomes, as evidenced from 

in silico digestions of reference genomes from Populus, Eucalyptus, Amborella, Pseudotsuga, 

and Pinus species (Parchman et al. forthcoming). In contrast, exome based approaches are 

anchored within coding regions thus excluding putative regulatory elements outside of the exomic 

regions used to develop probes. Recent marker development approaches, such as RAPTURE 

(Ali et al. 2016), however, have blurred the lines between RADseq and exome based approaches 

and, in addition to targeted capture approaches, may offer a promising, cost-effective path forward 

that explicitly avoids biased assumptions about the importance of exomic versus intergenic loci 

comprising the architecture of local adaptation.  

Beyond dense genetic linkage maps (e.g., Friedline et al. 2015) and reference genomes, 

which undoubtedly should be among our top priorities, other techniques outside of traditional 

genomics, such as transcriptomics, have the potential to complement genomic studies in many 

ways without great need for existing species-specific resources (reviewed in Romero et al. 2012, 

Strickler et al. 2012; Vialette-Guiraud et al. 2016). For instance, comparative transcriptomic 

techniques in trees can be used to identify putatively orthologous sets of markers (e.g., 

Wachowiak et al. 2015; Yeaman et al. 2016) that can be used to describe the evolution of 

architecture (e.g., shared orthologs versus paralogs across species) or for comparative linkage 

mapping (Ritland et al. 2011) across systems. Additionally, with the appropriate study design, 

transcriptomics can be implemented in tree species to describe various aspects of differential 

expression (Cohen et al. 2010; Carrasco et al. 2017; Cronn et al. 2017), selective constraint 

(Mähler et al. 2017), prevailing selective forces (Hodgins et al. 2016), mapping of disease 

resistance (Liu et al. 2016; Liu et al. 2017), and regulatory networks (Zinkgraf et al. 2017). The 

multilocus paradigm of transcriptomics is amenable to identifying and testing hypotheses of the 



 

 

 

179 

genetic architecture of complex traits in a network framework (Jansen et al. 2009; Leiserson et 

al. 2013; Civelek & Lusis 2014; Feltus 2014) and will no doubt provide valuable contributions for 

tree evolutionary biologists. Other areas amenable to network description such as metabolomics 

and proteomics would also be a complement (Feltus 2014; Cowen et al. 2017), particularly if 

genetic studies contextualize results with findings from such approaches and vice versa. 

Ultimately the goal is to use a priori knowledge synthesized across past studies, techniques, and 

perspectives to guide further hypotheses about underlying architecture, as exemplified by 

Mizrachi et al. (2017) and Lotterhos et al. (2017). Finally, high-throughput phenotyping as well as 

environmental measures at fine spatial scales below square-kilometers will also facilitate and 

advance our understanding of complex traits in trees (Sork et al. 2013; Rellstab et al. 2015; 

Leempoel et al. 2017), particularly when measured phenotypes well represent those experiencing 

selection pressure, and environmental measures well represent the multivariate environment 

imposing selection (Lotterhos et al. 2017). 

 

Standardized data reporting 
As we continue to accrue genotype-phenotype, genotype-environment, and phenotype-

environment relationships within and across tree species, authors should consider how their 

results can most effectively be used in further studies and syntheses, both for the purpose of 

validation or comparison as well as novel insights yet to be seen. Here we outline a few 

suggestions that can be broken down into reporting within manuscripts and metadata. For 

instance, in our survey of common garden studies used to estimate h2 and QST, in many cases 

the exact design of the study could not be replicated with the information from the manuscript 

alone. While an abbreviated design may be suitable for the main text, authors can provide much 

more detail in supplemental materials that can facilitate replication and comparison across studies 

(e.g., total individuals per garden, family, or block – as opposed to averages or ranges), which 

will ultimately facilitate syntheses regarding future directions. Further, future studies would benefit 



 

 

 

180 

from estimating relatedness using marker data which will ultimately improve the precision of h^2, 

QST, and missing heritability estimates (de Villemereuil et al. 2016) including those estimates 

made in the field (Castellanos et al. 2015). For cases in which estimating relatedness from 

markers is not appropriate or feasible, the field would benefit by authors exploring a range of 

underlying sibships (e.g., Eckert et al. 2015), which are often assumed to be half-sib relationships. 

While some studies in our survey assumed a mixed sibship relationship for open-pollinated 

sources, ultimately such assumptions without data exploration will affect the outcome or 

conclusions for any given study. A recently released R package by Gilbert and Whitlock (2014) 

allows for such an exploration of effects of mixed sibships on inference of QST and its magnitude 

relative to FST. Inclusion of such exploration, even in the supplement, will help contextualize such 

studies as they are published. For studies estimating causality for genotype to phenotype, it would 

be worthwhile to include the regression coefficients or other estimates of effect size (e.g., odds 

ratios) in addition to PVE (r2). Importantly, the units of the effect size must be explicitly reported 

(e.g., Julian days versus phenotypic standard deviations), with the standard deviation also 

reported. For all association studies, supplemental tab- or comma-delimited text files (outside of 

a word processing document) easily analyzed with programming languages would also facilitate 

synthesis (even if providing redundant information from the main text), particularly if such files are 

well described with a README file and contained data regarding marker position, putative 

orthogroups, hits to reference genomes, effect size, PVE, genotypes by individual identifiers, 

individual population assignments, and if the sequence or marker was significantly associated to 

phenotype or environment. Such an operating procedure may work well in the short term, however 

in the long term such information will need to be easily accessible from one or a central hub of 

repositories.  

Data standardization, the inclusion of meta-information, and compilation of these data 

specific to trees into a database with common terminology will be crucial to future inquiries with 

the purpose of synthesizing evidence for underlying architectures across species and 
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environmental systems (e.g., as for human GWAS data: https://www.ebi.ac.uk/gwas/). If the data 

generated by tree biologists is disparate and housed across databases and journal supplements 

this impedes synthesis first by forcing scientists to collate information across sources, which may 

be further impeded by data redundancies or inconsistencies in data format and utilized 

nomenclature (Wegrzyn et al. 2012). While many journals have required submission of sequence 

data to repositories such as NCBI, such databases are lacking with regard to information 

pertaining to phenotypic, environmental, and geographic information upon which much of the 

foundation of our field is built. Submissions to Dryad somewhat overcome this, but there is no 

standardization within the community for content for such submissions and important information 

may be lacking. Currently, this information is often appended in supplemental files that cannot be 

readily accessed, compared, or queried in an efficient manner. Hierarchical ontologies can be 

used to ease this burden. Gene Ontology is likely the most recognizable to evolutionary biologists, 

but there also exist Plant Ontologies for organismal structure and developmental stages, 

Environmental Ontologies for habitat categorization, and Phenotypic, Attribute, and Trait 

Ontologies for the annotation of phenotypes. Such ontologies not only standardize nomenclature, 

but also assist in database queries. The utilization of such databases will no doubt encourage 

comparative studies and syntheses, as infrastructure and data accessibility are essential to the 

comparative approach (Neale et al. 2013; Ingvarsson et al. 2016; Plomion et al. 2016). Luckily, 

such a database exists for the broader tree genetics community. The open-source genomics and 

phenomics database, called TreeGenes (treegenesdb.org), is part of a central hub of repositories, 

including the Hardwood Genomics Project (hardwoodgenomics.org) and the Genome Database 

for Roseaceae (rosaceae.org), that communicate and integrate data from each other. Unlike 

many other repositories for tree genomic data, TreeGenes is not project or institution specific. The 

data and metadata for roughly 1700 species housed on TreeGenes can be accessed, queried, 

and visualized through DiversiTree, a web-based, desktop-style interface (Wegrzyn et al. 2008). 

DiversiTree connects to the geographical interface CartograTree (Vasquez-Gross et al. 2013) to 
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encourage comparative synthesis by providing technology to filter and visualize geo-referenced 

biotic and abiotic data housed on TreeGenes. As promising as such database hubs are, they are 

only as useful as the data that is deposited to them. While TreeGenes will regularly import and 

enhance data from public repositories (through e.g., sequence alignment to published genomes, 

or data from Genbank, Phytozome, PLAZA, etc), often pertinent metadata necessary for 

comparative synthesis is lacking (Wegrzn et al. 2008, 2012). Indeed, from our survey of published 

GPA since the release of the database in 2008, less than 13% (6/48) of the studies submitted 

their data directly to TreeGenes. To better prepare for future synthesis, we advocate that authors 

submit their data to the TreeGenes database and that reviewers and editors enforce this habit, 

as currently implemented for linkage maps published in Tree Genetics & Genomes. Consolidated, 

open-source resources will be crucial to the advancement of this field (Neale et al. 2013), and will 

no doubt spur knowledge that would not have been recognized otherwise. Prime examples of 

advancement to knowledge because of these types of resources and community-wide efforts 

come from the human GWAS literature where such resources provide crucial information 

necessary to study polygenic adaptation (e.g., Berg & Coop 2014). 

 

Empirical tests of theory 
In combination with the development of truly genome-wide public resources, there is need to use 

these resources to validate and better characterize foundational ideas and assumptions in the 

theory of polygenic adaptation relative to the life history strategies of tree species. For example, 

Gagnaire & Gaggiotti (2016) highlight that the degree of polygenicity can be tested as a function 

of the number of GWAS hits relative to the length of contigs or chromosomes containing these 

markers. Simple models of polygenicity predict that there should be a positive correlation between 

these quantities. Thus, rather than assuming some functional form of a polygenic architecture 

(i.e., an approximate infinitesimal model) during analysis, researchers can strive to characterize, 

or at least exclude some forms of, the underlying genetic architecture prior to interpretation. In a 
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related fashion, publicly available data sets would spur comparisons across species and study 

systems to test hypotheses about polygenic architectures (e.g., the modularity of genetic 

architectures as in Lotterhos et al. 2017, or perhaps genomic organization or effect size 

distribution) due to the relative timing of selection, degree of environmental contrast (e.g., 

diversifying selection and changes to the strength of negative selection), selection strength, and 

level of gene flow across diverging lineages. As an example, much of the theory of polygenic 

adaptation requires assumptions about simplistic demographics (where violations have 

consequences for standing levels of non-neutral diversity, e.g., Wang et al. 2017) and the 

equilibration among co-acting evolutionary forces over a large number of generations (Brandvain 

& Wright 2016). Indeed, differing architectures are expected as a function of the timing for the 

onset of selection (Le Corre & Kremer 2003; Kremer & Le Corre 2012), with subtle allele frequency 

shifts across populations dominating architectures near the onset of selection and larger allele 

frequency shifts much later in time. While there is need for empirical validation of this theory, there 

is also a need to characterize the prevalence of its predicted patterns across differing clades of 

tree species. In other words, researchers could imagine testing the theory itself in natural 

populations (e.g., as begun by Le Corre & Kremer 2012) or assuming its validity and 

characterizing the circumstances under which to expect large shifts in allele frequencies across 

tree species with differing life history strategies. Little of any of this (Table 6.1), however, will be 

possible without development of needed data and its deposition into publicly available, 

standardized databases. 

Concluding remarks 

The path forward provides a means by which we can most efficiently describe the 

underlying genetic architectures of traits important to management, conservation, and industry, 

which can ultimately be used to expedite breeding projects (Box 1). The past evolutionary history 

will have a profound effect on the underlying genetic architecture of such traits, and thus strengths 

and weakness of the data and methods used to uncover such architecture should be specifically 
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addressed in the future, particularly in how utilized methods perform across various demographic 

and architecture scenarios. Insights gained from empirically testing theory will also contribute to 

the advancement of this field and will ultimately quantify the variation in architecture across 

environments and species and inform effective management. Importantly, the success of future 

genotype-phenotype efforts should not be predicated on past studies using single-locus 

approaches and small numbers of markers, and instead on overcoming such shortcomings by 

applying theoretical expectations to empirical inquiry. Even so, until sequencing technologies 

allow for cost-effective whole genome sequencing of individual trees, most genotype-phenotype 

studies (GS included) will be carried out via reduced representation techniques (i.e., a subset of 

all sites within the genome). Therefore, it is essential that processed data be uploaded to a 

repository that, in addition to raw sequences, includes genotypic, environmental, and spatial data, 

facilitates user-friendly queries, and allows for future meta-analysis. The future is bright, but we 

are not yet out of the woods. As such, efficient advancement in this field relies on community 

efforts, standardized reporting, centralized open-access databases, and continual input and 

review within the community’s research. 
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    Chapter 7.  
Conclusions 

 

Throughout my dissertation I have utilized natural populations of Pinus species to better 

understand the natural and anthropogenic drivers of tree evolutionary dynamics. Throughout 

these systems, I have provided evidence that the environment is driving dynamics within and 

between populations of trees. Such dynamics are an important consideration when making 

decisions regarding conservation and industrial endeavors. Below I outline the main conclusions 

from each of my chapters. 

  

Chapter 2. Effects of forest management on fine-scale gene flow in Pinus lambertiana 

1. Univariate statistics of spatial aggregation suggest that P. lambertiana adults often cluster 

with other P. lambertiana adults, that shade-tolerant Abies spp. often cluster with other 

Abies spp., and P. lambertiana seedlings cluster with other P. lambertiana seedlings 

2. Bivariate statistics of spatial aggregation suggest that P. lambertiana adults and seedlings 

are both spatially inhibited by the presence of shade-tolerant Abies spp. 

3. Genetic diversity statistics reveal that alleles are structured across plots, but not with 

respect to any pattern of increasing disturbance intensity 

4. Analysis of spatial genetic structure reveals that while P. lambertiana seedlings are 

clustered spatially, alike genotypes of seedlings are only clustered in UC treatments; adult 

P. lambertiana individuals are clustered only in UN and UC plots, but alike genotypes of 

adults and seedlings are only clustered in UC treatments 

5. Effective dispersal among known samples is influenced by treatment, where weighted 

dispersal distances from fractional parentage suggests that as disturbance intensity 

increases, seed (pollen) dispersal decreased (increases) 
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6. Estimates of the seed dispersal kernel reveal that the vast majority of pollen and seed 

dispersal events occur below 150m 

7. The genetic consequences of forest management result from biological and ecological 

interaction from standing structure and treatment, where ongoing dynamics are likely to 

be influenced by treatment and further ecological dynamics. Thus, while genetic structure 

is elevated in UC treatments, this may change over time. 

 

Chapter 3. Water availability drives signatures of local adaptation across fine spatial scales 

1. Using the common garden, we provided evidence that measured fitness-related 

phenotypes are heritable, that population explains a significant proportion of phenotypic 

variation, and QST was significantly greater than FST for bud flush and å13C  

2. Using both single- and multilocus approaches to identify focal loci of interest (i.e., those 

associated to environment and/or phenotype) our analyses suggest that selective 

pressures of P. albicaulis are likely driven by water availability 

3. Despite multiple lines of evidence suggesting fine-scale adaptation, we found little 

evidence for classical genetic signatures of large allele frequency differences for loci 

putatively underlying adaptation.  

4. Our analyses suggest that adaptation within the Lake Tahoe Basin is facilitated by subtle 

allele frequency shifts across populations, which is suggestive of soft sweeps within a 

polygenic architecture 

5. Our results replicate evidence for soft sweeps in adaptive traits in trees which are enabled 

through linkage disequilibrium among populations 

6. Conservation and replanting efforts of the Lake Tahoe Basin Management Unit should 

take into consideration local adaptations at fine spatial scales. Seed should be sourced 
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not by zone, but instead from environments highly correlated with the (future) environment 

in which they’ll be planted. 

 

Chapter 4. A first step towards describing genetic architectures of complex traits in natural 

populations 

1. Precipitation-related variables have structured the geographical range of foxtail pine 

2. Climate-based niches differed between regional populations 

3. δ13C and Nμg were heritable with moderate signals of differentiation between regional 

populations 

4. A set of QTLs associated with these phenotypes explained a large proportion of the 

heritability of these traits, but showed no evidence of pleiotropy with this data set 

 

Chapter 5. The QTL landscape of water-use efficiency for foxtail pine 

1. Precipitation-related variables structured the geographical range of foxtail pine where 

climate-based niches differed between regional populations 

2. åFÖC and åFçN were heritable with moderate signals of differentiation between regional 

populations 

3. A set of large-effect QTLs (n = 11 for åFÖC; n = 10 for åFÖN) underlying åFÖC and åFÖN 

variation, with little to no evidence of pleiotropy, was discovered using multiple-marker, 

half-sibling regression models 

 

Chapter 6. The genomics of local adaptation in trees: Are we out of the woods yet? 

1. There is substantial evidence to suggest that trees across both angiosperms and 

gymnosperms are locally adapted to many different environments. 
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2. For the circumstances most likely experienced by many tree species, fitness-related traits 

are most likely to experience soft sweeps than hard sweeps where genetic signatures of 

adaptive loci will likely be indistinguishable from other non-causative sites in the genome. 

3. The vast majority of genotype-phenotype associations in trees use single-locus 

approaches that look for signals that are likely infrequent occurrences in natural 

populations. 

4. To most efficiently advance knowledge in this field authors should explore various 

association methods (particularly those that take into account the polygenic nature of the 

traits), document how well utilized methods perform under the expected demographic 

history and genetic architectures of the studied species, and ensure that their results are 

deposited to open source databases that can be easily synthesized in future studies. 
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