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Abstract 
THE CONTRIBUTION OF SARM1 TO AXONAL DEGENERATION IN CNS 

INFLAMMATORY DISORDERS 

By: Daniel C. Njoku, B.A.  

A thesis submitted for partial fulfillment for the degree of Master of Science in the 

department of Physiology and Biophysics at Virginia Commonwealth University 

Virginia Commonwealth University, 2018 

Major director: Unsong Oh, M.D., Associate Professor, Department of Neurology 

 

 

BACKGROUND: Multiple sclerosis (MS) is an inflammatory disease of the central nervous 

system (CNS) that results in demyelination and axonal loss. Efficiently targeting mechanisms of 

axonal degeneration in MS has the potential to reduce disability but remains an unmet need. 

Prior research has identified the protein sterile alpha and TIR motif containing 1 (SARM1) as a 

critical factor that promotes axonal destruction in the program of axonal degeneration known as 

Wallerian degeneration. SARM1 inactivation reduces axonal degeneration in a variety of 

contexts including traumatic and toxic injury, but it remains unknown to what extent SARM1 is 

involved in axonal degeneration triggered by CNS inflammation. METHODS: To test the 

hypothesis that SARM1 inactivation will reduce the burden of axonal degeneration associated 

with CNS inflammatory disorders, we first induced mice to have EAE and compared 

inflammation (CD3) and axonal damage (SMI-31/32, Beta APP) as compared to healthy control 

mice. We then studied experimental allergic encephalomyelitis (EAE) in Sarm1 knockout (KO) 

and wild type (WT) mice. We used mice hemizygous for the Thy1-YFP transgene to study 

axonal damage. Degenerating axons were identified by focal swelling or fragmentation. Beta-
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APP was also used as a marker of axonal injury. RESULTS: EAE mice had greater inflammation 

and axonal injury as compared to healthy mice. Sarm1 KO mice are susceptible to developing 

EAE, with incidence comparable to WT littermates. Analysis of YFP+ axons and Beta-APP 

showed that Sarm1 KO mice had axonal damage reduced compared to WT littermates. 

CONCLUSION: Sarm1 is highly expressed in the brain. Preliminary data suggest that SARM1 

inactivation may minimize axonal degeneration in CNS inflammatory disorders such as EAE. 

Further studies are needed to confirm the long-term benefit. 
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INTRODUCTION 

 

Epidemiology 

 

MS is a nervous system disease that results in demyelination and axonal loss, which can lead to 

many devastating effects and a drastic adjustment in lifestyle for those who suffer from the 

disease. The prevalence of MS is highest in the continents of Europe and North America, with a 

prevalence rate of over 50 per 100,000 people, while it is lowest in South America and Africa, 

with a prevalence of less than 5 per 100,000 people (1). In recent years, MS has increased in 

prevalence worldwide. A 2013 report by the Multiple Sclerosis International Foundation (MSIF) 

and the World Health Organization (WHO) states that the number of people with MS increased 

from 2.1 million to 2.3 million (2). The reported increase in prevalence is due to factors such as 

an increase in survival rates of those who have the disease due to improved health care(2). MS 

ends up being very costly to patients specifically and to society at large. According to systematic 

reviews of MS costs, drug costs are the primary reason for high price among those who are 

dealing with a benign form of the disease, while those who are suffering from a more severe 

form has more of the cost contained in indirect expenses, such as lost productivity from missing 

work and school (3) (4). MS decreases the lifespan by about an average of 10 years (5) (6), but 

mortality rates for those who have MS have been declining over the last couple of decades 

because of improvement in treatment (5) (7). Other chronic diseases such as depression and 

diabetes have been associated with increasing the chance of mortality from MS (5). 

Etiology 

 

MS is an autoimmune disease of the CNS based on genetic and experimental evidence 

suggesting that both T-cells and B-cells may have roles in causing the phenotype through 
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activation and attack of self-antigen (8). The primary pathology of the condition is a gradual 

degradation of the axon and the myelin sheath brought on by autoimmunity (10) (11). This 

axonal loss has many consequences for the individual, including irreversible neurological 

disability, loss of memory, speech disability, and tremors (10) (12). Genetically, MS has been 

linked mostly to chromosome 6p21, or HLA-DRB1*1501, which has consistently been found in 

studies across populations (13) (14) (15). There has also been new work done that shows that 

there may also be influence from chromosome 13q31.3 based on a genome-wide scan of over 

500,000 SNPs (16). Genetically, the concordance rate between monozygotic twins is about 25-

30%, while the rate between dizygotic twins is about 3-5% (15) (17) suggesting a significant 

genetic influence on the disease phenotype. 

As far as environmental causes are concerned, one primary focus of research has been the role of 

viruses. For example, the Epstein Barr Virus have been implicated in MS progression (18). 

Patients that have MS have been found to have high numbers of EBV antibodies in their blood 

(9).  Depending on the time in one’s life course, specific factors, such as smoking and Vitamin D 

intake, may have more an impact on other factors in MS progression (18) (19). Demographically, 

MS is more likely to affect those of Caucasian descent(20) (21). Other studies have shown that 

MS incidence in minority population may be underestimated due to factors such as cultural and 

socio-economic barrier for access to healthcare, as well as a long-standing problem with 

underrepresentation in clinical trials in general (20) (21).  

Diagnosis and clinical course 

 

In 1965, George A. Schumacher proposed the first criteria for MS diagnosis (22).  Patients were 

diagnosed clinically as to having “clinically definable, probable, or possible” MS based on how 
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many of the six points on the measures were proven to be true (22). The six points for the 

Schumacher criteria were: 

1. Age of onset between 10 and 50 years 

2. Objective neurological signs present on examination 

3. Neurological symptoms and signs indicative of CNS white matter disease 

4. Dissemination in time: two or more attacks separated by a month or progression in 

symptoms for at least six months 

5. Distribution in space: two or more noncontiguous anatomical areas 

6. No alternative clinical explanation 

 

The criteria for diagnosing MS has changed over time due to the advent of new technology that 

can detect anatomical changes in the CNS (22). Poser’s criteria modified Schumacher’s 

measures by incorporating paraclinical evidence found through evoked potentials or 

neuroimaging (22). W.I. McDonald published the most current standards in 2000, which has 

undergone two revisions since then, with the recent one in 2010 (22) (23). The McDonald 

criteria sought to get rid of the “probable” diagnosis and incorporate the use of MRI, 

cerebrospinal fluid (CSF) evaluation, and evoked potentials (23). Establishment of the 

McDonald Criteria has allowed for a higher diagnostic rate than there was previously (23). 

Common symptoms of MS include vertigo, mood disorder, pain, sensory disturbance, and 

fatigue (24). Clinically isolated syndrome (CIS) is a group of symptoms that are typically present 

at the onset of MS and include optic neuritis, limb weakness, and paresthesia (25). CIS usually 

lasts for 24 hours or longer and is the first sign of MS caused by neuroinflammation (26). CIS is 

clinically diagnosed and evaluated (27). If the MRI doesn’t show definitive changes in brain 
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structure, then studies such as assessing the CSF for IgG infiltration and evoked potentials are 

used (27). MS maybe confused with neuromyelitis optica (NMO), an inflammatory disease that 

results in visual loss, and acute disseminated encephalomyelitis (ADEM) a form of 

neurodegeneration that is present in children,based on similarities in clinical presentation (26). 

Therefore, the Wingerchuk criteria were created for NMO and the magnetic resonance imaging 

in MS (MAGNIMS)criteria was created for ADEM (26). 

MS has four unique clinical progressions: Relapsing-Remitting MS (RRMS), Primary 

Progressive MS (PPMS), Secondary Progressive MS (SPMS), and Progressive Relapsing MS 

(PRMS) (28) (29) (Figure 1). RRMS is the most common type, which presents in 85% of MS 

patients.  RRMS is characterized by periods where the disease symptoms occur for a brief period 

before relapsing for a specified period until the next relapse. PPMS has a course of gradual 

deterioration and occurs in about 10-15% of MS patients (30). SPMS patients have episodes of 

symptoms initially, but then the symptoms gradually progress (30). The last type, PRMS, is 

found very rarely in the population and is characterized by a slow progression of the disease over 

time with occasional relapses (30). Presentation of MS can be related to age, like those who 

develop the disease at age 60 or above have a higher chance of developing a more progressive 
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form (PRMS, PPMS, SPMS) (31).

 

Figure 1: The four different clinical progressions of MS (29) 

 

Imaging 

 

As was previously stated, MS results in demyelination of axons through inflammation (10). The 

used of imaging has informed researchers about MS pathology and effects. Magnetic resonance 

imaging (MRI) has played a significant role because of its ability to detect lesions that 

disseminate in space and time (22) (32). MRI is also useful because it is very responsive to 

changes in lesions in MS patients (32). It uses protons to assess lesion damage, normal- 

appearing white matter damage (NAWM) damage, and gray matter damage (32). However,  

conventional MRI has limitations. Clinical assessment and MRI measures are not always related 

(32). Another limitation is the lack of ability to identify substrates in individual lesions (32). For 
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example, inflammation, demyelination, and remyelination all appear similarly on MRI dual-echo 

images (32). Therefore, it is harder to assess tissue damage. Modifications such as Magnetization 

Transfer (MT) MRI, diffusion-weighted MRI, and proton MR spectroscopy have been used to 

find lesions that MRI could not detect (32). MT MRI uses a signal MT ratio (MTR) between free 

moving protons and protons which are restricted in movement to detect for axonal injury (32). 

Diffusion-weighted MRI uses the difference in diffusion rates between biological tissues and of 

water to calculate the apparent diffusion coefficient (ADC) (32). Higher ADC numbers can 

signify damage (32). Proton MR spectrometry uses decreases in N-Acetyl group levels as a 

signifier of demyelination (32). 

Two other imaging techniques to detect anatomical changes are spectral-domain optical 

coherence tomography (SD-OCT), which uses head scanning to develop a thickness map of 

retinal eye tissue, and microperimetry (MP), a technique that produces a spectral map that can 

determine changes in retinal thickness (33). Optic neuritis (ON) is the first sign of MS in a fifth 

of MS patients (33). One study found that the volumes of the ganglion cell complex (GCC), 

retinal nerve fiber layer (RNFL) thickness and macular volume of the retinal ganglion cells  

(RGC) were reduced in MS patients as compared to healthy control patients (33). The study also 

a correlation between GCC volume and RNFL thicknes, showing that the ON can affect similar 

parts in a similar manner (33). 

Pathology and pathophysiology 

 

Autoimmunity and inflammation 

 

MS is a neurodegenerative disease caused by an autoimmune response. The activation or triggers 

for this immune response are not well understood, but there is considerable data on the 
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significant parts of the autoimmune attack. MS has been long thought to be a CD4+-initiated 

autoimmune disease, with myelin-specific T-cells causing early demyelination that leads to 

axonal damage and neurological disability (34). The main T-cells involved in the MS phenotype 

are TH1 and TH17 (8) (34). TH1 cells produce cytokines such as IFN-γ and TNF-α, which result in 

a pro-neurodegenerative immune response (35). TH17 cells have the best ability to cross the 

blood-brain barrier of all the CD4+ T-cells because of the high expression of cytokine IL-17 (35)  

Once TH17 enters the CNS, it can cause damage to neurons through the secretion of granzyme B  

(34) (35). In the EAE model, there is evidence that TH1 and TH17 cells can be isolated in the CNS 

after crossing the blood-brain barrier (BBB) (35). (8). There have been a number of  

immunosuppressive therapies that have been or are being developed to reduce T cell 

proliferation. Mitoxantrone is FDA-approved for immunosuppression (8). It works by decreasing 

the number of active T-cell lymphocytes (8). IFN-beta works by decreasing T-cell cytokine 

production (8).  

CD8+ T-cells also play a role in MS (8) (35) (36). CD8+ T-cells were found in the active lesions 

of patients with MS, with high MHC Class I expression (8) (35). Also, the amount of CD8+ T-

cells found in the lesions correlated with the amount of axonal damage (36). CD8+ T-cells that 

are activated by myelin proteins such as MBP or PLP has been shown to cause damage to 

neurons (36). CD8+ T-cells that are reactive against CNS tissue are interesting because they can 

escape tolerance induction in the thymus (36). However, CD8+ T-cells have therapeutic 

opportunities as well, as they can be directed against myelin-specific CD4+ T-cells to kill them 

(36). 

The adaptive immune response in MS is not only limited to T-cells, as plasma cells and their 

antibodies also play a role in the pathophysiology of MS. From the analysis of patients that have 
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MS, but there is also evidence of lesions containing autoreactive B-cells and antibodies (8) (37). 

There is also evidence of oligoclonal bands from those patients that show that a limited number 

of B-cells is generating the immune response (8) (37) (38). Also found in these lesions are 

cytokines that function in B-cell development such as B-cell activating factor(BAFF) (38). From 

the evidence of studying EAE in mice, B-cells are activated by a myelin antigen, such as MOG 

(8) (37). After activation, B-cells produce antibodies (mainly IgG) that attack axons and myelin 

(8). There has been evidence that suppressing autoimmune B-cell activation and development 

can work to alleviate MS symptoms. One therapy being developed against autoimmune B-cells is 

an anti-CD20 treatment that disrupts immature B-cell growth and proliferation, which reduces 

the number of immunoglobulins in lesions in MS (37) (38). Patients with MS also present with a 

high concentration of antibodies in the cerebrospinal fluid, mainly IgG complexes (8). 

Furthermore, use of immunosuppressants such as IFN-β, mitoxantrone, and glucocorticoids for 

MS has been shown to reduce inflammation in patients (8), proving to be a valuable way to limit 

the effects of neuroinflammation.  

Other cells in the CNS also play a role in  MS pathology. Usually, glial cells such as astrocytes 

and microglia perform essential functions in the CNS. Astrocytes help regulate the concentration 

of neurotransmitters and maintain the BBB, while microglia are the phagocytes and antigen 

presenting cells (APC) of the CNS (39) (40).  However, in response to neural insult or injury, 

glial cells undergo a reactive change that is termed gliosis (41). Astrocytes undergoing gliosis 

have many damaging effects including antigen presentation, production of nitric oxide (NO), 

production of pro-inflammatory cytokines, and disruption of axonal metabolism (39). There are 

less tight junctions maintaining the BBB because of a decrease in tight junction proteins such as 

claudin 5 (39). Astrocytes also are responsible for forming glial scars that interfere with the 
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remyelination process (39) (42). Glutamate buffering by astrocytes decreases after injury (42). 

Their reduced ability to uptake glutamate causes damage to axons as well through the increase in 

calcium influx by activating NMDA/AMPA receptors (42).  Microglia are also more active and 

increase in proliferation in MS. Microglia mainly damage oligodendrocytes through the 

production of NO and reactive oxygen species (ROS) (43). Some studies show that microglia 

may precede the initial T-cell response in MS and are more prominent during the chronic phases 

of MS (44). Most microglia that are damaging are of the M1 subgroup, while the M2 subset is 

said to be anti-inflammatory (39). M1 microglia have cytotoxic properties, helping to destroy 

oligodendrocytes while producing cytokines such as TNF-α. M2 microglia work to promote 

remyelination of neurons (39) (45). 

BBB disruption 

 

The BBB is also disrupted in MS, as a more permeable BBB can often be a sign of MS 

development (46). Usually, the BBB is composed of endothelial cells and proteins that form tight 

junctions to keep most solutes out of the CNS (47). It also acts as a regulator for solutes such as 

oxygen and carbon dioxide to flow down their respective concentration gradients by passive 

transport (47). Nutrient, drug and protein passage through the BBB is tightly regulated through 

different channels (47). Also, the BBB protects the CNS from leukocyte infiltration (49). 

Astrocytes are essential in forming tight junctions between endothelial cells and supplying TGF-

β, FGF, and GDNF to these cells as well (48). In MS and other neuroinflammatory diseases, the 

BBB is disrupted, resulting in increased trafficking of white blood cells and proteins into the 

CNS. (49). It is not precisely clear what may cause increased BBB permeability, but there are 

several possible explanations (46) (49). One possibility is that recruitment of lymphocytes by 

pro-inflammatory cytokines such as TNF, IL-1, and IL-6 to the BBB resulting in increased 
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permeability of the BBB to white blood cells (49). In addition, NO produced by cells such as 

microglia can disrupt BBB integrity (49). Another possibility is that cytokines influence the 

transport of TH1 and TH17 cells across the BBB (35).TH17 cells have been shown to migrate across the 

BBB  due to high expression of IL-17 in that area (35). 

Demyelination 

 

Demyelination is understood to be the pathological hallmark of multiple sclerosis (50). In the 

CNS, myelin is produced by oligodendrocytes and function in saltatory conduction and 

metabolic buffering (51). In MS, the immune system becomes autoreactive and begins the 

demyelination process (36). Autoantibodies against myelin proteins such as MBP and PLP and 

production of NO by activated macrophages actively work to demyelinate the axon (52).  The 

damage from demyelination appears as lesions, of which there are several types. For example, 

the early active plaques contain macrophages containing myelin debris such as MOG and PLP 

throughout the lesion and are typically found in patients that are undergoing an acute MS attack, 

while inactive lesions have macrophages without myelin products and damaged axons (52). 

Specific demyelinating disorders has standard traits such as the formation of lesions and 

inflammation. They include Marburg MS, which is very rapid and has large lesion formations in 

the brain, and Balo concentric sclerosis  (BCS), which has a hallmark of concentric lesions (52). 

In addition to the differences in the types of injuries, there are also differences in how the lesions 

form (53) (54). Pattern I demyelination is mainly caused by macrophages, while Pattern II 

involves both macrophages, antibodies, and complement (52) (54). There have also been studies 

that showed that oligodendrocytes go through apoptosis independent of inflammation, suggesting 

that there may be some other mechanism for causing demyelination (53). This pattern of 

demyelination is what is involved in Pattern III, while Pattern IV is rare and deals with non-
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apoptotic oligodendrocytes in the peri plaque white matter (PPWM) (52). Demyelinated axons 

have been shown to be susceptible to degeneration (53), there is also evidence that there is 

axonal loss happening in inactive lesions as well as active lesions (52). There is also the matter 

of the differences between demyelination in white matter lesions compared to gray matter 

lesions, which are less inflammatory but may contribute significantly to the MS phenotype (52) 

(53). Demyelination in the cerebral cortex is more associated with SPMS and PPMS, while 

plaques that are considered that have a high number of macrophages in the lesion are more 

associated with the acute phase of MS (55). 

Remyelination is the process where axons are re-covered in myelin following demyelination 

(56). In MS, there is a process of remyelination where oligodendrocyte progenitor cells (OPCs) 

remyelinate axons through maturation into oligodendrocytes (56). Specific factors such as Notch 

signaling, LINGO-1 expression, and PSA-NCAM expression influence the remyelination 

process (56). With acute lesions, it is possible to have substantial remyelination of exposed 

axons, although the myelin sheaths will be thinner (56). Microglia also help with the 

remyelination process by producing cytokines to help with OPC differentiation (40). With 

chronic lesions, it is highly possible for remyelination to fail because the environment will be 

less conducive for oligodendrocytes to produce myelin after autoinflammation (52) (56) (57). 

Remyelination in the later stages is mostly confined to the outer edge of the lesion (52) (56) (57). 

Astrocytes also interfere with remyelination due to glial scarring that happens after injury (42).  

Axonal injury 

 

The result of demyelination and autoimmune attack in the CNS is the gradual loss of axons (58) 

(59). Axonal density loss during MS is estimated to be around 20% and can affect any part of the  

CNS (58). Also, the reduction of spinal cord cross-sectional area is determined to be about 25-
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37% due to that axonal loss (58). Axonal density loss varies from person to person but gradually 

increases as the disease progresses (58). The damage from axonal injury can lead to permanent 

disability, with patients developing fatigue, memory loss, and cognitive impairment (60) (61). 

The damage to axons results in impaired transport of proteins and organelles, as well as 

swellings that develop as a result (61). While axon loss is correlated to auto-inflammatory 

activity, evidence for any direct attack on the axons themselves has been less than sufficient (62). 

One way that axons can be damaged is through glutamate excitotoxicity that leads to sodium and 

calcium to accumulate inside of the axon (63). Calcium is of interest because of its ability to 

activate calpains, which degrade the cytoskeleton of axons (52) (60) (63). Increased calcium 

buildup has also been studied for its effect on mitochondrial dysfunction. As was discussed 

previously, demyelination is another factor in axonal loss. With demyelination leading to a 

redistribution of ion channels leading to metabolic dysfunction in the axon (53). There is also 

evidence that axonal injury is independent of demyelination. For example, there has been 

evidence of axonal loss in mice that that had cortical demyelination later in the disease course 

(61). Also, gray matter lesions experience axonal loss in areas that aren’t being actively 

demyelinated (61). 

One of the ways that axonal damage can be identified is by using a marker such as beta amyloid 

precursor protein (β-APP or Beta-APP). β-APP is highly expressed in neurons (axon, dendrites, 

and the soma), as well as in vesicles (64). β-APP is transported through the axon using fast 

anterograde transport by associating with kinesin (64) (65). In autoimmune diseases such as MS, 

there is a higher expression of APP in neurons affected by MS compared to healthy tissue, and 

that expression seems to be independent of demyelination (58). 
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Another way to assess axonal damage is through the expression of non-phosphorylated 

neurofilament H. SMI-32 is a monoclonal antibody that binds to non-phosphorylated 

neurofilament H, which can help signify axonal damage. Neurofilament H is the heavy subunit 

of the neurofilaments, along with neurofilament L (light) and neurofilament M (medium) (67). 

Neurofilament H is usually phosphorylated at the head domain of the neurofilament, and at the 

lysine-serine-protein (KSP) motif in the tail domain (66) by MAPKs and dephosphorylated by 

protein phosphatases such as PP2A (66). Phosphorylation can help to manage subunit interaction 

and resistance to cleavage (66). When the axon is demyelinated, there is an increase of non-

phosphorylated neurofilament H expression (62). Also, there has been evidence that axonal 

transection leads to a rise in free Neurofilament L and Neurofilament H in the CNS (67). 

Wallerian degeneration 

 

Wallerian degeneration is the process of the axons, after injury or disruption of transport, of 

gradual axonal loss (68). It used to be thought of a process that was passive at first, but test with 

transgenic mice that have the Wallerian degeneration slow protein (Wlds) have led researchers to 

believe that is a destruction program than causes that axon to break down(69). Similar “dying-

back” forms of axonal degeneration happen in other neuronal disorders such as Alzheimer’s (69). 

Wallerian degeneration has been a focus of research for its ability to be delayed, with the 

possibly of retaining axonal function. 

With Wallerian degeneration, there is a latent period (from 4-6 hours in vitro, up to 36 hours en 

vivo) where active fragmentation of the axon does not occur (68). During that latent period, the 

axon can be protected from irreversible loss by safeguarding its NAD levels (68). There was a 

study that showed that a rapid increase in NMN, a precursor to NAD, can trigger Wallerian 

degeneration (70). Wallerian degeneration has been shown to be tied to NAD metabolism inside 
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the axon, where the rapid loss of NAD interferes with processes such as glycolysis in the axon 

(68). During the latent period, the NMNAT isoform in the axon (NMNAT2) that would usually 

work to replenish NAD by combining ATP and NMN to produce NAD is rapidly depleted after 

injury (68) (71). The Wlds protein has an NMNAT domain (NMNAT1) near the N-terminus that 

has the same functionality as a regular NMNAT protein, signifying that Wlds has a similar 

neuroprotective function (68). After this latent period, the axon continues with rapid 

demyelination and axonal degeneration (68). The activity of Wlds after axotomy can delay the 

axonal degradation process by 2-3 weeks (68). The Wlds protein has an N16 moiety and a Ube4b 

protein as well, although there is uncertainty about what role each of those play in axon 

protection (71). 

Depending on where the injury occurs, Wallerian degeneration can be beneficial or harmful. In 

the peripheral nervous system, Schwann cells work right after neuronal damage to remove 

myelin debris so that the axons can regenerate (72). The Schwann cells also produce laminin so 

that the axons can be remyelinated and neurotrophic facts such as NGF are also secreted (72). 

Also, an inflammatory cascade is produced by activated macrophages to clear the myelin (72). 

The cascade produces pro-inflammatory cytokines and chemokines soon after injury (TNF-α, IL-

β) from the Schwann cells and macrophages then produces pro-inflammatory cytokines such as 

IL-6 from the macrophages to help promote re-growth of neurons (72). 

In the CNS, there is evidence that the Wallerian degeneration is more harmful to long term 

axonal health (72). As opposed to the PNS, the CNS is an immune privileged site, usually 

protected from the inflammation generally by the BBB that could help clear myelin debris (72). 

At the same time, the microglia that are activated in the CNS are pro-inflammatory (M1)  cause 
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damage by producing reactive oxygen species (ROS) that demyelinate and damage axons (40) 

(72).  

SARM1 

 

SARM1 is a member of the MyD88 family of TLR adaptors (MyD88, TRIF, TRAM, and Mal) 

(73).  It is also known as MyD88-5 (68) (70) (74). The gene is located on chromosome 17q11 in 

humans and encodes 690 amino acids (75). The SARM1 protein is highly expressed in neural 

tissue and is associated with the outer mitochondrial membrane (68).  The protein is highly 

conserved among species such as zebrafish (Danio rerio), horseshoe crab (Limulidae), and 

nematodes (C. Elegans) (73). Cluster analysis between Human, Drosophila Melanogaster, and 

C. Elegans show that the HEAT/Armadillo repeats in the SAM domain are conserved (75). One 

of the earliest model organisms for SARM1 testing was Drosophila Melanogaster, with the fruit 

fly homolog dSarm shown to promote axonal degeneration (76). SARM1 function has also been 

studied in mice (Mus Musculus) in various contexts such as axonal injury and kainic acid (KA) 

expression(68) (76). Kainic acid is used to induce excitotoxicity in RGC’s, thereby leading to 

axonal destruction (76) SARM1 depletion resulted in preserving retinal nerve structure by 

attenuating for KA (76). Figure 2 shows the domains of the protein (68). 
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Figure 2: Theoretical figure and activation for SARM1. SARM1 is usually autoinhibited by the 

N-terminal domain. After injury, SAM domains multimerize and the TIR domains are activated. 

The multimerized TIR domains go out to activate effectors that deplete NAD+ (68). 

SARM1 in inflammation 

 

SARM1 has been studied for the different roles it plays in inflammation. Depending on the 

context, it can either activate or deactivate inflammation. Unlike the other members of the 

MyD88 family, SARM1 does not activate the NF-κB pathway but enables the MAPK pathway 

through its TIR domain activating MKK4 through ASK, which goes on to activate JNK and p38 

and result in expression of genes involved in the immune response (77) (78). Blocking 

inflammation by deleting MKK4 or using AKT to antagonize MKK4 has neuroprotective effects 

(68). JNK also works to cause axonal degeneration by targeting stathim 2 (SGC10), a 

cytoskeletal protein, for degradation (68). That results in eventual degeneration of the whole 

axon (68). Figure 3 shows how SARM1 upregulates JNK and p38 expression while suppressing 

TRIF dependent signaling that relies on stimulation of TLR 3/4 inside a CD8+ T-cell (73) (77). 
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SARM1 also helps stimulate TLR7/9 mediated apoptosis in neurons though localization to the 

mitochondria and subsequent mitochondrial accumulation inside neurons (79). In a study by 

Szretter et. Al, mice were infected with West Nile virus (WNV)(80). SARM1 deficiency worked 

to decrease TNF-α production in the CNS, leading to higher mortality in mice infected by WNV 

(80). SARM1 deficient mice also had lower microglia activation (80) (81). 

SARM1 can also work to decrease cytokine production (77) (81). SARM1 in the neuron can 

work to decrease cytokine production by blocking the TRIF-dependent pathway and instead 

activate the MKK4 pathway that results in the activation of Bax, an effector of apoptosis (77). 

SARM1 knockout mice were shown to have higher levels of IL-6 and IFN-Beta in embryonic 

neurons (81). In adult neurons, SARM1 knockout mice have higher levels of IL-1-beta and IL-

12b (cytokines of the NF- κB pathway) (81). 
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Figure 3: SARM1 activates the JNK/p38 pathway in CD8+ T-Cell. SARM1 activates 

ASK1, which phosphorylates MKK4 in the MAPK pathway. JNK and p38 are activated 

and go to the nucleus to activate cytokine production. SARM1 also inhibits the TRIF-

dependent pathway from TLR4 signaling (77). 

SARM1 in axonal degeneration 

 

SARM1 causes axonal damage by NAD+ cleavage (68) (82). The SARM1 protein is usually 

auto-inhibited by its N-terminal domain, but following axonal injury, the SAM domains allow 

for dimerization of SARM1, leading to activation of its effector function that results in cleavage 

of NAD (68) (82). Lower NAD+ levels can result in axonal metabolic dysfunction, resulting in 

an influx of Ca2+ and subsequent activation of calpain (52) (60) (63) (68). Research done in the 

nematode found that cleavage of NAD required dimerization of the TIR domains in C. elegans 

(TIR-1), although the deletion of NAD+ was not as robust as in human SARM1 (82). Neurons in 

mice that have SARM1 deleted has ATP and NAD levels that remain at normal levels, and as a 

result have axons that can survive longer, like the effects of Wlds (82). Also, axons have an 

endogenous NMNAT (NMNAT2) that can inhibit SARM1 by synthesizing NAD+ (68). Lower 

NAD+ levels in the axon because of NMNAT2 loss or inactivation has been theorized to activate 

SARM1 (68) (82). Another way that SARM1 is activated is explained by the NMN hypothesis. 

According to the hypothesis, higher NMN levels are responsible for triggering SARM1 (68). 

NMNAT2 works to consume NMN and ATP and make NAD+, thus preventing activation (68). 

Figure 4 shows how SARM1 functions to trigger axonal degeneration (68). 
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Figure 4: SARM1 axonal degeneration pathway. As SARM1 is activated, TIR 

dimerization results in NAD+ depletion and MAPK activation. Eventually, ATP is 

depleted, and the axon begins to break down.NMNAT2 loss also results in SARM1 

activation.  (68) 

Experimental allergic encephalomyelitis 

  

Experimental allergic encephalomyelitis is an animal model of MS that has been used to 

understand possible causes and effects of the disease (83). It has also been used to test treatments 

for MS, such as using IFN-β or glucocorticoids for immunosuppression (83). The disease was 

first studied in primates but has since included other animals such as mice and guinea pigs (53) 

(83). Unlike MS, the animal must be inoculated with a myelin antigen (usually MBP or MOG35-55) 

and adjuvant (usually CFA) to produce the EAE phenotype (83). Once the animal has been 

inoculated, EAE develops as the animal is monitored over several days. There are similarities be 

between EAE and MS. In EAE and MS, there is increased T-cell infiltration and demyelination, 

increased adhesion molecule expression, and increased cytokine production (8) (84) (85). There 

are differences between EAE and MS that are important to note, such as the heterogeneity of 

disease progression and the heterogeneity of effects across species (8). However, EAE has been 
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proven to be an excellent way to study the effects of MS. There has been prior research that has 

used SARM1 expression to research nerve protection in mice and other animals (68). In the 

mouse, the gene for SARM1 is found on chromosome 11 (86). Inactivation has shown some 

evidence of axonal protection and lower inflammation. SARM1 silencing in mice was shown to 

lower axonal degeneration in the retinas (77). SARM1 inactivation leads to preserved NAD+ 

levels in Drosophila flies (82).  

Hypothesis 

 

We hypothesize that SARM1 works to cause breakdown of axons by interfering with the local 

metabolism of the axon after the autoimmune attack and that axons can be rescued by 

inactivating the protein genetically. Using EAE as a model for MS, we aim to understand how 

SARM1 inactivation affects axonal degeneration. Preliminary data has shown a modest reduction 

in clinical EAE score over the first couple of weeks post-induction and a lower clinical score 

overall.  

Specific Aims 

 

S1: Establish EAE pathology 

EAE will be induced in several mice using CFA+MOG33-55. Clinical scores will be assessed 

daily over the course of a six-week period. IHC will be used to determine inflammation (CD3) 

and axonal health (Beta-APP, SMI-31/32) in healthy and EAE mice. 

S2: Assess SARM1’s impact on axonal integrity 

The specific aim is to examine the effect of SARM1 on axonal degeneration in the context of 

EAE.  End-point PCR and qRT-PCR will be used to assess genotype and gene expression. 
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Western Blotting and ICH will be used to validate antibodies. YFP expression and Beta-APP 

expression will be used to measure the amount of axonal degeneration to quantify SARM1’s 

impact of axonal damage. 

 

METHODS 

 

Mice 

Sarm1 KO (B6.129X1-Sarm1tm1Aidi/J) mating pairs were obtained from Jackson Laboratories 

(Bar Harbor, ME). A breeding colony of Sarm1 KO mice was then maintained in-house. A 

heterozygote mating scheme generated Sarm1 KO and WT littermates for the EAE experiments. 

Thy1-YFP (B6.Cg-Tg(Thy1-YFP)HJrs/J) mating pairs were a kind gift from John Povlishock. 

The Thy1-YFP mice express yellow fluorescent protein (YFP) at high levels in motor and 

sensory neurons, as well as subsets of central neurons. Axons are brightly fluorescent all the way 

to the terminals. A breeding colony of Thy1-YFP mice was maintained in-house. To generate 

Sarm1 KO mice that express YFP in neurons, we crossed mice hemizygous for the Thy1-YFP 

transgene and Sarm1 KO mice to yield Thy1-YFP/Sarm1+/- mice. Thy1-YFP/Sarm1+/- breeding 

pairs were maintained to generate Thy1-YFP/Sarm1-/- and Thy1-YFP/Sarm1+/+ littermates for 

EAE experiments. All mice were C57BL/6 background. 

EAE 

EAE was actively induced by injection of myelin oligodendrocyte peptide (MOG35-55) in complete 

Freund’s adjuvant and injection of pertussis toxin. Sham control mice were injected with 

complete Freund’s adjuvant without MOG35-55. Clinical severity was scored according to a 

standard 5-point scale: 0 = normal, 1 = limp tail or loss of righting reflex, 2 = limp tail and loss 

of righting reflex, 3 = partial hind limb weakness, 4 = hind limb paralysis, 5 = moribund or 
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death. The cumulative clinical score was calculated as the sum of daily clinical scores over the 

course of observation.  

DNA Purification 

DNA was purified from tissue using the DNeasy Kit (Qiagen) according to manufacturer’s 

protocol.  Tail clippings were digested in 180 µL of buffer ATL and 20 µL of proteinase K and 

kept overnight at 56℃. 200 µL of Buffer AL and 200 µL of 100% ethanol was added to tail 

tissue. The product was then vortexed. The mixture was then pipetted into a DNeasy spin column 

in a two mL collection tube. The mixture was centrifuged at 6000 x g for 1 min at room 

temperature. The spin column was placed in a new 2 mL collection tube. 500 µL of Buffer AW1 

was then added. The product was centrifuged at 8000 rpm for 1 minute at room temperature. The 

spin column was then placed in a new 2 mL collection tube. 500 µL of Buffer AW2 was added. 

The product was centrifuged at 14,000 rpm for 2 mins at room temperature. The spin column 

was then placed in a 1.7 mL microcentrifuge tube. 200 µL of Buffer AE was added to the 

mixture to elute the DNA. The product was then incubated for 1 min at room temperature. The 

mixture was centrifuged at 8000 rpm for 1 min at room temperature. Concentrations were 

measured spectrophotometrically on a BioTek plate reader. 

Sarm1 genotyping 

Sarm1 genotyping was performed by PCR. The reaction mixture comprised of DNA, PCR 

mastermix (Amplitaq Gold 360 MasterMix, Applied Biosystems) and primers. Sarm1 knockout 

forward and reverse primers were CTT GGG TGG AGA GGC TAT TC and AGG TGA GAT 

GAC AGG AGA TC, respectively. Sarm1 wild type forward and reverse primers were GGG 

AGA GCC TTC CTC ATA CC and TAA GGA TGA ACA GGG CCA AG, respectively. Each 

PCR reaction well contained 12.5 μL of mastermix, 2.5 μL of forward and reverse primers and 
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10 μL of DNA sample (50 ng). A non-template control well was included for each assay. The 

Venti Thermal Cycler was set with the Amplitaq Gold 360 run protocol for a 25 𝜇L reaction: The 

samples were heated for 10 minutes at 95℃. Then, they went through 40 cycles of initial 

denaturation at 95℃ for 30 second, primer annealing at 60℃ for 30 seconds, and extension at 

72℃a at 60 kb/second. The final extension was for 7 minutes at 72℃. The samples were cooled 

at 4℃ after the final extension was complete. 

The PCR product was analyzed by gel electrophoresis. 50 mL of 2% agarose with 5 µL of Gel 

Red was poured into a beaker, then into a DNA Plus electrophoresis well and allowed to solidify 

with 2 combs placed inside the gel. 1x TBE buffer (0.089 M Tris Base, 0.089 M Boric Acid, 

0.002 M Disodium EDTA·2H2O) filled the well so that the gel was covered. 5 µL of ddH2O was 

mixed with 2 µL of Blue/Orange 6x loading dye on parafilm. 5 µL of PCR product or the NTC 

was mixed with ddH2O and 6x loading dye and loaded into the gel. The gel ran at 80 V for about 

an hour. The gel image was taken with an Aplegen Imager. 

RNA Purification 

RNA was purified from mouse tissue. Following euthanasia, brain, liver, kidney, spleen, and 

testis were harvested from mice and placed in a 1.7 mL microcentrifuge tube with 350 µL of 

RNAlater (Qiagen) was added to preserve RNA for later use. Tissues were lysed using a 

TissueLyser LT. Briefly, stainless steel beads were added to each tube. 1 mL of QIAzol reagent 

was then added to each tube. Tissues were lysed for 5 min at 50 Hz and then left to stand for 3-5 

minutes. The stainless-steel beads were then discarded using a small spatula. Chloroform (200 

µL) was added to each tissue sample inside the fume hood. The tissues were then centrifuged at 

12,000 x g for 15 minutes at 4℃. After centrifugation, the mixture was separated into an aqueous 

top layer, a white interphase layer, and a pink organic layer. About 400 µL of the aqueous layer 
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was transferred to a 1.5 mL RNAse free tube containing. 400 µL of 100% ethanol. The resulting 

mixture was then transferred to RNeasy mini spin columns (Qiagen) for RNA purification 

according to manufacturer’s protocol. The columns were placed on a vacuum manifold. The 

columns were washed with 700 µL of buffer RW1, 500 µL of buffer RPE, and 500 µL of buffer 

RPE, sequentially, using the vacuum after each addition. After the washing, the columns were 

placed in 2 mL collection tubes. The columns were then dried by centrifugation at full speed 

(21,100 x g) for 1 minute. The columns were then placed in 1.5 mL collection tubes. 50 µL of 

RNAse-free water was then added to the columns to elute the RNA. The columns were then 

centrifuged at 8000 x g for 1 min. RNA concentration was measured spectrophotometrically 

using a BioTek plate reader. The RNA samples were stored in a -80℃ freezer until later use. 

Quantitative reverse transcriptase (qRT)-PCR 

Sarm1 RNA expression was measured by real-time RT-PCR. TaqMan mastermix, Actb 

primer/probe, Sarm1 primer/probe mix (Mm_001308995_m1 Thermo Scientific), which spans 

Sarm1 gene exons 1 and 2, Sarm1 primer/probe mix (Mm_00555617_m1, Thermo Scientific), 

which spans Sarm1 genes exons 7 and 8, and reverse transcriptase were thawed in PCR/UV box. 

Wells were planned out for each RNA sample so that 10 μL of mastermix, 1 μL of each 

primer/probe, 0.5 μL of reverse transcriptase and 8.5 μL of diluted sample were added to each 

well. A non-template control (NTC) of ddH2O was also used for the wells. A working mixture of 

mastermix and primers was made and aliquoted into wells. Wells were taken into biosafety 

cabinet, and RNA was aliquoted into wells. Wells were capped and centrifuged at 1000 rpm for 2 

min. The samples were placed into the StepOnePlus Real-Time PCR machine. 2-step singleplex 

RT-PCR was run to convert RNA into cDNA and to amplify cDNA expression: WT Spleen was 

set as the reference sample, and Actb was used as the endogenous control for the comparative CT 
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experiment. Samples were heated from 25℃ to 95℃ for 10 minutes in the holding stage and 

then ran through 40 cooling and heating cycles between 60℃ and 95℃ for 1 minute each. 

Fluorescence was measured using the StepOnePlus machine. 

Western Blotting 

WT brain, WT liver, Sarm1 KO brain, and Sarm1 KO liver protein samples were diluted to 6 

mg/mL using cold lysis buffer (RIPA buffer, ThermoScientific) and 1x Protease Inhibitor 

Cocktail). The samples were further diluted to 3 mg/mL by 100µL working Lammeil Buffer (950 

µL of 2x Lammeil Buffer and 50 µL of 2-mercaptoethanol). The samples were resolved in a 

Mini Protean Precast gel (10-well, 30 µL per well) at 200 V for 35 minutes. The was prepared 

for transfer of the protein. The product was then transferred to a nitrocellulose membrane 

through the Bio-Rad Trans-Blot Turbo Transfer System with 1x turbo blot transfer buffer (50 µL 

5x Turbo Blot Transfer Buffer (BioRad), 50 µL of 200 proof ethanol, and 150 µL of deionized 

water). The membrane was then agitated with Ponceau S for 10 minutes, washed with deionized 

water, then imaged with an Aplergen imager. Then the membrane was washed with PBS-Tween 

3 times for 5 minutes each. The membrane was then blocked with PBS-Tween-5% milk for 30 

minutes. The membrane was then stained with the diluted primary antibody (Rat Anti-SARM1, 

Biolegend, 1:1000 in PBS-Tween) and agitated at 4℃ overnight. The membrane was washed 

with PBS-Tween 3 times for 5 minutes each. The membrane when stained with secondary 

antibody (CARt-HRP, Santa Cruz, 1:5000 in PBS-Tween) and agitated for 45 minutes at room 

temperature. The membrane was washed with  PBS 3 times for 5 minutes each. Less than 1 mL 

of Millipore immobilon reagent was applied to the membrane. The membrane was then imaged 

with an Aplergen imager using the Chemiluminescence setting. The membrane was then stripped 

and reblotted for Beta-Actin as an endogenous control. Mouse Anti-ꞵ  Actin, (ThermoScientific, 
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1:5000 in PBS-Tween) was the primary antibody, while DAM-HRP, (ThermoScientific,1:5000 

in PBS-Tween) was the secondary antibody. 

Fluorescent Immunohistochemistry 

Parts of the mouse CNS were surgically removed from mice and placed in optimal cutting 

temperature (OCT) cryopreservative and stored at -80°C. 20 µm sections or 10 µm sections 

(SMI-31/32) and using a Lecia CM 1950 cryostat and placed on positively charged slides. The 

sections had a PAP border drawn around them after the OCT as trimmed. All sections were 

rinsed in 1x TBS (Fisher Bioreagents) after sectioning, after primary antibody application, and 

after secondary antibody application 3 times for 5 minutes each. Blocking buffer (970 μL of 

TBS, 2 drops of cold skin fish gelatin (EM Sciences #25560) and 30 μL of 10% Triton X-100) 

was used for blocking. 

Primary antibodies stained for Beta-APP (Rabbit Anti-Beta APP, Thermoscientific, 1:400), 

SARM1 (Rat-Anti SARM1, Biolegend, 1:200), NeuN (Mouse unconjugated Anti-NeuN, 

Millipore,1:100), SMI-31 (Mouse SMI-31, Calbiochem, Cat No. NE1022, 1:1000), SMI-32 

(Mouse SMI-32, Calibiochem, Cat. No. 1023, 1:1000), CD3 (Hamster Anti-CD3, BD 

Biosciences, 1:100), and CD31 (Rat Anti-CD31, ThermoScientific, 1:50). Sections were placed 

in a 4°C refrigerator overnight for primary staining (60 minutes for CD3/CD31 at room 

temperature), and at room temperature for 90 minutes (60 minutes for CD3/CD31) for secondary 

staining in a closed, moisturized box. Sections were blocked for 15 minutes before primary and 

secondary staining at room temperature. All sections were stained with either primary antibody 

or blocking buffer before secondary staining. Secondary antibodies used for this project were 

Rabbit IgG Alexa FluorⓇ 594 antibody, Goat Anti-Rat IgG Alexa FluorⓇ 594, Goat Anti- Mouse 

IgG Alexa FluorⓇ 488, and Goat Anti-Hamster IgG Alexa FluorⓇ 488 (all 1:1000). DAPI 
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(VectashieldⓇ) was used as a counter-stain before imaging and coverslips were purchased from 

Corning. Digital images were taken with a Life Technologies ™ imager, then modified using the 

Fiji program from the NIH (87). Every fifth lumbar cord section was stained for Beta-APP. 

Every fifth lumbar cord section was mounted for YFP+  axonal counting. Beta-APP particles and 

YFP+ expressing axons were manually counted using Fiji (87).  

Antigen Retrieval 

Sections were placed in a plastic coplin jar of 40 mL citric acid buffer (pH 6.0). Another plastic 

coplin jar was filled with 40 mL of ddH2O. The two coplin jars were both placed in a microwave, 

and a thermometer was placed in the coplin jar that was filled with deionized water. The sections 

were microwaved at 525 W with a 45℃-maximum temperature for 7 minutes. The sections were 

then removed from the microwave and allowed to sit for 5 minutes. The sections were 

microwaved at 525 W with a 45℃-maximum temperature for 5 minutes and 30 seconds. The 

sections were then removed from the microwave and allowed to sit for 20 minutes. Afterwards, 

the slides were then washed rapidly in 1x TBS 3 times.  

M.O.M protocol -SMI-31/SMI32 (Neurofilament H) 

Sections were fixed in pre-chilled 100 % methanol for 10 minutes at -20℃ after antigen 

retrieval. A working solution of Vector M.O.M TM Mouse IgG Blocking reagent (FMK-2201)  

was prepared by adding 60 μL of the stock solution to 2.5 mL of TBS. A working solution of 

M.O.M TM Diluent was prepared by adding 600 μL protein concentrate to 7.5 mL of TBS. The 

sections were then washed 3 times in TBS for 5 minutes each. Then each of the sections was 

incubated with Mouse IgG blocking reagent for 1 hour. Then the slides were washed in TBS 

twice for 2 minutes each.  The primary antibodies and were diluted in M.O.M TM Diluent. Mouse 
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SMI-31 was applied to an EAE  lumbar cord section and a healthy lumbar cord section. Mouse 

SMI 32 antibody was applied to an EAE and healthy lumbar cord sections. M.O.M TM Diluent 

was applied to an EAE section as a control. The slides were incubated overnight in a closed, 

moisturized box in a 4℃ refrigerator. On the next day, the sections were washed in TBS twice 

for 2 minutes each. A working solution of M.O.M ™   Biotinylated Anti-Mouse IgG Reagent was 

prepared by adding 10 μL of stock solution to 2.5 mL of M.O.M TM Diluent. M.O.M 

™   Biotinylated Anti-Mouse IgG Reagent was applied to each section, and the sections were 

incubated for 10 minutes. The sections were then washed in TBS twice for 2 minutes each. A 

working solution of Texas Red Avidin DCS was prepared by adding 40 μL of stock solution to 

2.5 mL of TBS. Texas Red Avidin DCS was applied to each section and incubated for 5 minutes. 

The slides were washed in TBS twice for 5 minutes.  

YFP+ axonal counting 

Axons were manually counted by drawing three vertical lines to contact the axons and then 

manually counting the axons at the contact points along the longitudinal tracts using Fiji (87). 

Degrading axons were identified by focal swellings or fragmentation along the axon. 

Statistical Analysis- YFP+ and Beta-APP 

Mann-Whitney tests were used to compare WT (N = 4) and Sarm1 KO (N = 3) mouse littermates 

for YFP+  expressing axons, degrading axons, and Beta-APP particles. The p-value calculator for 

the test was found on http://astatsa.com/WilcoxonTest/. Statistically significant p-values for this 

experiment were p < 0.05. 

RESULTS 

 

Sarm1 KO mice 

http://astatsa.com/WilcoxonTest/
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Sarm1 KO mice were genotyped by PCR. Figure 5 shows the Sarm1 PCR products for the WT, 

heterozygote and Sarm1 KO mice. PCR using primers for Sarm1 and WT alleles resulted in 

bands near the expected 280 bp and 186 bp, respectively. Sarm1 KO and WT alleles were both 

present in heterozygotes.  

 

Figure 5.  Sarm1 genotyping by PCR. DNA was isolated from mice tail clippings. End-point 

PCR was performed using primers targeting Sarm1 KO and WT alleles. A representative agarose 

gel electrophoresis is shown with PCR products for mice homozygous for the WT allele (WT), 
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heterozygote (Het), and homozygous for the Sarm1 KO allele (KO). DNA ladder denoting size is 

shown on the left. 

 
Sarm1 mRNA expression 

 

 Sarm1 mRNA from brain, kidney, spleen, liver, and testis of WT mice were measured by 

quantitative reverse transcriptase (RT)-PCR to determine the relative Sarm1 expression among 

different tissues. Figure 6 shows Sarm1 gene expression for each tissue type. Sarm1 expression 

was highest in the mouse brain, followed by the testis. Sarm1 expression was low in the kidney, 

spleen, and liver (Figure 6). 

 

 

Figure 6:  Sarm1 gene expression in different tissues. Genomic DNA was isolated from various 

mouse tissue, then quantitative RT-PCR (QRT-PCR) was performed to measure relative Sarm1 
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mRNA expression. Relative quantities (RQ) were calculated using the ΔΔCT method. Actb was 

used as the endogenous control. Spleen was used as the reference sample. N = 3 for brain, 

spleen, liver, and kidney; N = 2 for testis. Mean (+S.E.M) shown. 

 

 

To further characterize how Sarm1 gene expression is altered in the Sarm1 KO mice, qRT-PCR 

was performed using primers directed against either the 5’ or the 3’ regions of the Sarm1 

transcript. One primer/probe set spanned exons 1 and 2 of the Sarm1 transcript, and the other 

spanned exons 7 and 8 of the Sarm1 transcript. Figure 7 shows the relative Sarm1 expression in 

WT and Sarm1 KO brain using the two Sarm1 primer/probe sets. As expected, WT brains 

showed relatively high Sarm1 mRNA expression with primer/probes spanning either exons 1 and 

2 or exons 7 and 8. We detected Sarm1 mRNA expression in the Sarm1 KO brain using 

primer/probes spanning exons 1 and 2, although at a substantially lower level compared with 

WT. Sarm1 KO brains showed no mRNA expression when qRT-PCR was performed with 

primer/probe set spanning exons 7 and 8. These results showed that in the Sarm1 KO mice, 

exons 7 and 8 of Sarm1 gene are not transcribed, indicating that a truncated Sarm1 mRNA is 

produced in the Sarm1 KO mice.  
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Figure 7.  Sarm1 gene expression in brain tissue based on genotype and probe combinations. 

mRNA was either amplified with Sarm1 primer/probe set 1309985 that spans exons 1 and 2 or 

Sarm1 primer/probe set 555617 that spans exons 7 & 8. RQ values are shown. 

 

EAE pathology 

Initial studies with EAE were aimed at establishing methods to assess pathologic changes 

associated with EAE by immunohistochemistry. CNS inflammatory infiltrates were detected by 

CD3 immunohistochemistry. Axonal pathology was identified by APP and SMI-31 and SMI-32 

immunohistochemistry. EAE was compared with sham or healthy controls. 

 

CD3 immunohistochemistry 

CD3 immunohistochemistry was performed to assess inflammation in EAE mice. Figure 8 shows 

CD3 immunohistochemistry for EAE and sham control mice. PECAM immunohistochemistry 

was performed simultaneously to identify blood vessels. There is more CD3 marker staining in 
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the EAE lumbar cord than in the lumbar cord of the sham control mouse, showing CNS T-cell 

infiltration in EAE.  

 

 

Figure 8. Increased CD3 staining in EAE lumbar cord. CD3, CD31/PECAM, DAPI, and merged 

images shown. Scale bar = 100μm. 

 

SMI 31/32 immunohistochemistry 

Neurofilament H immunohistochemistry was performed using SMI-31 and SMI-32 to assess 

axonal integrity in EAE mice. Figure 9 shows SMI-31 immunohistochemistry of longitudinal 

sections of the lumbar cords of EAE and the sham control mice. As  Figure 9 show, there is 

comparable staining, shown in red. Figure 10 shows SMI-32 immunohistochemistry of lumbar 

cord of the EAE and sham control mice. Comparing the two pictures shows that there is more 

non-phosphorylated neurofilament-H in the EAE mouse.  
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Figure 9:  Comparable phosphorylated neurofilament H (SMI-31) staining in EAE and healthy 

lumbar cords. Representative phosphorylated neurofilament H, DAPI, and merged images are 

shown. Scale bar = 100μm. 
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Figure 10:  Increased non-phosphorylated neurofilament H (SMI-32) staining in EAE mouse. 

Lumbar cord sections for EAE and control mice were stained for the axonal marker non-

phosphorylated neurofilament-H. Representative non-phosphorylated neurofilament-H, DAPI, 

and merged images are shown. Scale bar = 100μm. 

 

 

B-APP immunohistochemistry 

Beta-APP immunohistochemistry was utilized to assess axonal damage in EAE mice. Beta-APP, 

DAPI, and multichannel (+YFP) images (Figure 11) of the longitudinal sections of the lumbar 

cord of an EAE mouse and a healthy mouse. Comparing the two sets of images shows that there 

is reduced Beta-APP particles in the EAE lumbar cord than in the healthy lumbar cord.   
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Figure 11: Increased beta-APP staining in EAE lumbar cord. Beta-APP, DAPI, and merged 

(+YFP) images shown. 20x magnification.  

 

EAE in Sarm1 KO mice 

To study the contribution of SARM1 to clinical illness, EAE was actively induced in Sarm1 KO 

and WT littermates. Figure 12 shows the clinical scores for WT and Sarm1 KO mice over a 6-

week period. Sarm1 KO mice showed comparable scores to WT littermates at the beginning of 

the induction but showed lower clinical scores starting around the third week. Overall, Sarm1 

KO littermates showed lower mean cumulative EAE clinical scores, although the differences 

were not statistically significant (Figure 12). 



37 
 

 

Figure 12: EAE was actively induced in Sarm1 KO mice (N = 9) and WT littermates (N = 7). 

Mean clinical scores (+/- S.E.M.) for Sarm1 KO and WT littermates (left). Mean cumulative 

clinical scores for Sarm1 KO and WT littermates; lines show mean and standard deviation 

(right).  

 

Beta-APP immunohistochemistry was used to assess axonal injury in Sarm1 KO and WT mice. 

Beta-APP,  DAPI, and multichannel images of the lumbar cord sections of WT and Sarm1 KO 

mice (Figure 13). We observed that there were less Beta-APP particles in the Sarm1 KO mouse 

lumbar cord then there is in WT lumbar cord (Figure 14). We found a P-value of 0.114 at a 95% 

confidence level. WT mice had an average of 119.7 particles per section with a standard 

deviation of 34.4, and Sarm1 KO mice had an average of 67.8 particles per section with a 

standard deviation of 35.5. 
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Figure 13. Decreased beta-APP staining in Sarm1 KO lumbar cord. Beta-APP, DAPI, and 

merged (+YFP+) images of WT and Sarm1 KO lumbar cords shown.  Scale bar = 100μm. 
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Figure 14. Beta-APP particle comparison for WT (N = 4) and Sarm1 KO (N = 3) littermates. 

More Beta-APP particles were found in the WT littermates than in the Sarm1 KO littermates. 

Mean (+S.E.M) shown. Mann-Whitney Test. P-value = 0.114 (W = 1). 

 

To further assess axonal degeneration in Sarm1 KO and WT mice we generated Sarm1 KO mice 

and WT littermates that were hemizygous for the YFP gene. These mice express YFP under the 

Thy1 gene promoter at high levels in motor and sensory neurons, as well as subsets of central 

neurons. Axons were readily identified in longitudinal sections of the lumbar cord in these mice. 

Degenerating axons were identified by focal swelling or fragmentation. Thy-1-YFP+ mice 

sections were utilized to quantify SARM1’s impact on axonal degeneration. Degrading axons 
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and total axons were counted. YFP, DAPI, and multichannel images of the WT and Sarm1 KO 

lumbar cords are shown in Figure 15. There was a higher number of fragmented axons in WT 

than Sarm1 KO mouse. Figure 16 displays the total number YFP axons in WT and Sarm1 KO 

mice, which show that Sarm1 KO mice have a lower amount of YFP expressing axons and 

degrading axons.  We found P-values of 0.400 for total axons, 0.114 for intact axons, and 0.629 

for degrading axons at a 95% confidence level. WT mice had an average of 63.9 axons per 

section with a standard deviation of 25.5, and Sarm1 KO mice had an average of 44.9 axons per 

section with a standard deviation of 23.6. 

 

 

Figures 15: Decreased YFP expression and axon fragmentation in Sarm1 KO mouse. YFP, 

DAPI, and merged images WT and Sarm1 KO lumbar cord sections shown. Scale bar = 100μm. 
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Figure 16: a) Axon counts from WT (N = 4) and Sarm1 KO (N = 3) lumbar cord sections. More 

axons found in WT lumbar cords than in Sarm1 KO lumbar cords. Mean (+S.E.M) shown. b) 

Intact vs. degrading axon counts from WT and Sarm1 KO mice. Mean (+S.E.M) shown. Mann-

Whitney Test. P-values: 0.400 (total) (W = 3), 0.114 (intact) (W = 3), 0.629 (degrading) (W = 8). 

 

DISCUSSION 

 

EAE pathology 

We wanted to assess EAE pathology in mice relative to healthy mice to better understand the 

pathology and effects of MS. Inducing mice to have EAE has resulted in mice having higher T-

cell counts in CNS tissues (84) (85). Using the T-cell marker for CD3, we were able to show that 

EAE induction results in higher CD3 expression (Figure 8). T-cells that infiltrate the CNS has 

shown to have neurodegenerative effects through targeting myelin. EAE and MS eventually 

result in axonal damage and dysfunction (58) (64). To assess this, we stained for phosphorylated 
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neurofilament H (SMI-31), dephosphorylated neurofilament H (SMI-32), and Beta-APP in EAE 

and healthy mice. Comparable phosphorylated neurofilament H staining was found between 

EAE and healthy lumbar cord (Figure 9). However, increased dephosphorylated neurofilament H 

staining was found with EAE induction (Figure 10). Dephosphorylated neurofilament H is a sign 

of poor axonal health (64). Beta-APP expression is assessed as a signifier of disrupted axonal 

transport in diseases such as MS and Alzheimer’s. We found more Beta-APP particle expression 

in EAE tissue as compared to healthy tissue (Figure 11). Understanding the different ways that 

EAE manifest in mice was essential for establishing a baseline for SARM1. SARM1 has been 

studied both for its role in inflammation and axonal degeneration. Lack of SARM1 expression 

has been shown to protect axons (68). Mice with the Sarm1 gene disrupted should have a starkly 

different pathology of EAE than those mice that don’t. 

SARM1 is primarily found in the brain 

 

We first wanted to validate the genotype of SARM1 of the mice we received from Jackson 

Laboratory. End-point PCR was valuable in establishing the Sarm1 genotypes of several 

different mice. Figure 5 shows the example of a gel that was ran that had three different 

genotypes. Quantitative RT-PCR was performed to measure mRNA expression in various mouse 

body tissues. Figure 6 showed SARM1 was more expressed in the brain than in other tissues. 

Our data correlates to a previous study by Mink et. Al. that showed that SARM1 is highly 

expressed in mouse tissue (86).  From previous studies, SARM1 is highly expressed in neurons 

and functions in neuronal death (68) (74). Assessing the expression of SARM1 in different 

tissues help illustrate the unique role that SARM1 has in axonal pathology. We then wanted to 

validate the genotype through quantitative RT-PCR using two different Sarm1 probes (Figure 7). 

The neomycin cassette vector in the Sarm1 KO mice targets and replaces exons 3-6 of the Sarm1 
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gene (91), so we aimed to compare Sarm1 expression with two different primer/probe sets that 

targeted different areas of the Sarm1 gene. We found that there was less expression of Sarm1 in 

the KO mouse brain with both primer/probes. Also, the primer/probe set directed against the 3’ 

end of the Sarm1 showed no amplification in the Sarm1 KO brain. This data appears to be 

consistent with the Western Blot analysis found by Ding et. Al (91). Using qRT-PCR was 

helpful to assess primer quality as well as gene expression.  

 

SARM1 and axonal degeneration 

SARM1 functions to cause Wallerian degeneration through rapid NAD depletion post injury (68) 

(82) (88). From the clinical scores of the littermates that were induced to have EAE (Figure 12), 

there were comparable clinical scores between the two samples, although the SARM1 KO 

littermates showed improvement over time. We wanted to see if we could quantify this effect 

through axonal damage markers. 

After staining for dephosphorylated neurofilament H (Figure 10) and Beta-APP (Figure 11), we 

found that the was a prominent increase in axonal damage EAE mice than in control mice. Beta-

APP and dephosphorylated neurofilament H expression increase with damaged axons (89). We 

then wanted to see how a Sarm1 KO EAE could reduce axonal damage as comparted to a WT 

EAE mouse. Thy1-YFP+ mice were used to quantify axonal injury in a subset of neurons that 

express it. We found that there was a higher number of YFP expressing axons in WT mice 

compared to Sarm1 mice in total (Figure 16a) and less degrading axons in total (Figure 16b) 

although the p-value was not significant between the two samples. When quantifying axonal 

damage through B-APP, there was decreased expression in Sarm1 KO compared to WT, 

although the difference was not statistically significant.  Comparing the healthy lumbar cord 
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(Figure 11) and Sarm1 KO (Figure 13) lumbar cord, there is some similarity in Beta-APP 

expression. The accuracy in counting the axons and particles can result from having a more 

established standard in place for counting. One way to help quantify degrading axons in the 

future is to establish a baseline axonal density for all sections. Comparing non-phosphorylated 

neurofilament H and fluoromyelin staining for Sarm1 KO and WT lumbar cords will allow us to 

understand SARM1’s effect on axonal damage further, while also assessing 

demyelination/remyelination.  

 

Conclusions and Future Directions 

We found that SARM1 is highly expressed in the brain. From there, we mainly focused on the 

axonal degradation effects of SARM1, showing that there is a modest, but not significant, 

decline in axonal injury. A future area of study is the role that SARM1 plays in cytokine 

production and inflammation. SARM1 activates JNK through the  MKK4/MKK7 cascade and 

p38 through (68) (77). JNK works to enable TH0 cells into pro-inflammatory TH1 cells (90). 

SARM1 has shown to have different roles in the MAPK pathway (68) (92).  SARM1 has been 

shown to activate ASK to phosphorylate MKK4, which goes on to activate JNK (68). Knocking 

out MKK4 in mice has been shown to reduce axonal degeneration (68). Pathways that could 

affect SARM1 can also influence inflammation, like PHR (positive regulator) and kinase AKT 

(negative regulator) could be researched in the context of SARM1 to clarify SARM1 impact 

(68). PHR loss has been shown to protect axons (68). AKT is known to be an inhibitor of MKK4 

(68).  On the other hand, in a study by Peng et Al., SARM1 has been shown to result in 

downregulation of the MAPK pathway through inhibition of TRIF and MyD88 activation of AP-



45 
 

1 (92). As a result, p38 declined with SARM1 overexpression (92). Further research on the 

nature of SARM1 in inflammation in a different context will be critical.  

Research has shown that SARM1 could function in a process called “Sarmoptosis,” which is 

different from apoptosis because it does not depend on caspase activation (68). This complicated 

process is of interest because some methods that work to prevent apoptosis, such as Bcl-XL 

overexpression and caspase inhibitors, do not prevent SARM-1 mediated neuronal death (68). 

Finding inhibitors for the pathway could be beneficial in maintaining axonal integrity. Ca2+ 

influx could be another avenue to explore as well. SARM1 is necessary for mitochondrial 

accumulation and subsequent dysfunction in axon metabolism (79). Also, Ca2+ accumulation, as 

stated before, result in calpain activation and cytoskeleton breakdown (52) (60) (63) (68). Using 

mitochondrial retention assays for calcium can help quantify this effect in vitro.  
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