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EXPERIMENTAL EVALUATION OF URANYL TRANSPORT INTO MESOPOROUS 

SILICA GEL USING FLUORESCENCE  

By Brandon Michael Dodd 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University. 

 

 

Virginia Commonwealth University, 2018 

 

Director: Dr. Gary C. Tepper 

Professor and Chair, Department of Mechanical and Nuclear Engineering 

 

This research investigated parameters that can affect the use of nanoporous silica gel as a media 

for accumulating a detectable amount of uranium. The unique fluorescence of the Uranyl 

(UO2
2+) ion was used to evaluate the transport kinetics and accumulation within silica gel in a 

static fluid and under pressure driven flow. The addition of fluid flow decreased the time 

constant from on the order of an hour to approximately 2s with a very low fluid velocity of 

0.36cm/s. The 0.36cm/s fluid velocity was found to be the critical velocity above which there 

was no gain in time constant. A table top instrument was developed that can detect trace amounts 

of uranium in solution. The table top instrument was used to investigate how the time constant 

depends on the uranyl concentration, which led to the development of a new time-based method 
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for quantifying the uranyl concentration. The time-based method of detection uses a preset 

threshold and, based on the time it takes to reach that threshold, the concentration in the water 

sample can be determined. The lifetime of uranyl in complex with silica increased to 

approximately 120us, allowing for gated detection and background discrimination.  In addition to 

the fluorescent contaminants, competing cations were tested to determine how they affect the 

fluorescence and transport kinetics of the uranyl. The cations tested were Mn2+, Ca2+, Mg2+, Na+, 

K+, and Li+. The result shows that within the natural concentrations, Mg2+, Na+, and K+ did 

quench the fluorescent of the uranyl ions by collision quenching. The time constant was also 

examined in the presence of each cation and showed that Ca2+, Mg2+, Na+, and K+ decreased the 

adsorption time constant. Future studies in this area should be directed toward the development 

of a portable version of the instrument.  
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Chapter 1: Motivation and Objectives 

 

 Uranium is a ubiquitous, heavy, naturally occurring, radioactive element that is both 

chemically and radiologically toxic. Elevated concentrations of uranium in water and soil can be 

linked to activities such as uranium mining, nuclear fuel preparation, and disposal (1–3).  

Monitoring the concentration of uranium in the environment is of interest to organizations 

involved in activities such as national security, non-proliferation, water quality, and 

environmental impact studies (4,5). The impact studies have mainly focused on the area of 

human consumption because the EPA has established a maximum contamination level (MCL) of 

30µg/L (4). Water with levels greater than the MCL have been linked to nephrotoxicity, 

osteotoxicity, liver damage, and increased risk of cancer (6–9). It has been discovered that two of 

the largest aquifers in the U.S., High Plains (HP) and Central Valley (CV), have contamination 

levels higher than the MCL. These two aquifers are the main source of water to wells for areas 

where almost 6 million people live, covering an area of 22375km2(7). These aquifers are also 

used to water 56700km2 of farmland (7). These contaminated water sources need to be 

constantly monitored to check the status of the natural level of uranium. This monitoring is 

currently being done by gathering samples from the source and transporting them back to a lab to 

be tested.  

Currently, the main methods for detecting uranium in water: alpha-spectrometry, gamma 

spectroscopy, inductively coupled plasma mass spectrometry, and fluorimetry. All three of these 
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methods have different sample preparations and laboratory equipment needed to properly perform 

the test. While these test are very accurate with detection limits of 0.1µg/L, the need for laboratory 

equipment and extensive sample preparations make them impractical for field use (10). Currently, 

if an individual wants to know the uranium level in a water source, they will receive a testing kit 

from the local health department office to collect a water sample, and then it is sent to a laboratory 

for one or more of the aforementioned tests to be performed(8). The duration of this process, from 

acquiring a test kit until final results are received, will take considerably longer than if an 

instrument could be brought directly to the water source and provide rapid results.  

One objective of this study is to develop a hand-held instrument to rapidly detect uranium 

in aqueous solutions by the observation of its fluorescent properties. Development of this 

technology will allow field testing of natural water sources and possible in-home testing of well 

water. In order to develop an instrument that can be hand-held, accurate, and fast, there would 

need to be significant technological advances. Requirements for a field testing device are that the 

sample preparation must be minimal; the equipment must be portable, battery powered, and small 

in overall size; and it should be simple to operate while maintaining the high level of accuracy that 

is currently accepted for the other methods. This instrument also needs to produce results in a rapid 

manner with minimal testing. Ideally, this device will be able to take a small water sample directly 

from the source and output the concentration of uranium in the water within minutes.  

Objective 1: Examine the transport of uranyl into nanoporous silica gel and parameters that 

can affect it. 

The current methods of detection of uranium in water are slow and must be performed in 

a laboratory environment. In order to minimize the time it takes to perform a measurement, the 

current timing needs to be characterized. Characterization of the transport kinetics will be based 
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on the uranyl concentration and fluid velocity needed for uranyl to full accumulate on the silica. 

Uranyl has a high affinity towards silica, so it can be used as a binding medium. The time for a 

measurement in the method used in this work is considered to be the time it takes for the uranyl to 

be fully accumulated on the surface on the silica, which is related to the time constant. In static 

fluid the time constant was on the order of an hour. The original idea was that changing the pore 

size of the silica gel would increase the gel permeability and decrease the time constant. This 

hypothesis was tested and shown to be successful, but it did not reduce the time constant to a point 

that would be considered sufficient for rapid detection. The next hypothesis was that using forced 

fluid flow to penetrate the silica gel pores would increase the rate at which the uranyl is deposited 

in the silica. This hypothesis eliminates the slow diffusion process that was the controlling 

mechanism in the previously mentioned method. The flow enhancement was very successful and 

reduced the time constant from the original hour to approximately a second. The tasks required for 

objective 1 are listed below. 

Task 1.1: Evaluate the time constant for uranyl transport into nanoporous silica gel 

 Status: Complete and published (Dodd et al. 2016) 

Task 1.2: Investigate the effect of silica gel physical properties, uranyl concentration, and forced 

fluid flow on the transport kinetics.  

 Status: Property of pore size and forced fluid flow are complete and published (Dodd et 

al. 2016) 

Task 1.3: Evaluate the mass adsorbed into nanoporous silica gel. 

 Status: Complete 
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Objective 2: Examine the parameters that affect the development of the table top 

instrument  

The purpose of this objective is to identify the critical components needed to perform 

uranium detection. The hardware needs to have the ability to pump water through the silica gel 

bag, excite the entrapped uranyl, detect the fluorescent output of the uranyl, and relay and 

process the signal of the fluorescent detection. These specific abilities were intended to be 

performed by the smallest and lowest power-consuming devices because of the final goal of a 

hand-held battery operated device. The hardware components that were selected were a 12VDC 

peristaltic pump, a low voltage PMT with an analog signal output, a 280nm UVLED for 

excitation, and an Arduino UNO microcontroller. After the hardware was identified, the layout 

and flow cell needed to be addressed. The layout of the UVLED and the PMT was critical in 

order to have optimal excitation and fluorescent detection, while limiting light contamination. 

This was achieved with a custom 3d printed housing design that held the PMT, UVLED, optical 

filter, and the flow cell. In parallel to designing the hardware holder, a custom flow cell was 

designed that allows the water to flow through the silica gel bag from the top side of the bag and 

down to the exit.  Once all of the hardware was laid out and the circuit was designed to power all 

of the components, a program was written that controls the pump speed and timing, gated 

excitation, and reads the analog signal from the PMT. The final step to the table top instrument 

set up was to test the detection limits of this configuration, which is currently at 3.9ppb. This 

limit of detection was the detection limit without increasing the PMT gain significantly and 

without using the time based detection method. The tasks required for objective 2 are listed 

below. 
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Task 2.1 Evaluate the performance of LEDs and PMT needed to detect uranyl fluorescence. 

 Status: Complete  

Task 2.2 Examine how uranyl concentration affects flow cell design, and optimize the hardware 

holder to limit light contamination.  

 Status: Complete  

Task 2.3 Evaluate sensitivity and find the detection limit of the table top instrument. 

 Status: Complete  

Task 2.4 Develop a method for gated detection to eliminate possible contaminants. 

 Status: Complete  

 

 

Objective 3: Perform calibration and contamination studies  

The purpose of this section is to extensively test the uranium detection components and 

software. This will include testing all variables that must either be set or maintain their 

variability in the final calibration. The variables that need to be tested are the PMT gain through 

the Vcontrol, pumping time, and silica gel used. Once the final detection limit has been reached, 

these variables may be fixed in order to simplify the calibration. This calibration will need to 

take into account additional variables that can affect the detection such as water temperature and 

pH. The water temperature can affect the mobility of the uranyl into the silica gel matrix, and the 

pH is known to affect the fluorescent output of the uranyl. All of these possible variations must 

be taken into account when developing a robust calibration of the system. Once the calibration 

has been developed and tested, the contamination study can begin. The contaminants that will be 

tested will all produce light at wavelengths within the bandwidth of the optical filter used. Gated 

detection is another method that can be used to eliminate contaminants; therefore, fluorescent 
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lifetimes that differ from the lifetime of uranyl can be eliminated. Another avenues that will need 

to be addressed is initial filtration that could eliminate contaminants as long as the filter media 

used will not affect the uranyl. All of these test will be performed using the table top set up, and 

the results will be used in development of the final design.  

Task 3.1 Analyze the uranyl concentration and pH effects on detection  

 Status: Complete 

Task 3.2 Investigate how possible contaminants affect detection. 

 Status: Complete 

  



 

7 

 

 

 

Chapter 2: Background 

2.1 Uranium in Nature 

Natural uranium can be found in three isotopes: U234, U235, and U238, with U238 being the 

most abundant. All of these isotopes can decay by either alpha or gamma emission (10). Uranium 

that is present in water can come from a number of sources both man-made and natural. The man-

made sources range from mining to storage and disposal of spent nuclear fuel. The natural sources 

can be from erosion of large natural deposits or ubiquitous uranium. For example, the ubiquitous 

uranium concentration in soil is 3mg/kg of soil (11). Uranium in nature is commonly found in two 

forms: the tetravalent state or the hexavalent state. The tetravalent state of uranium is not water 

soluble, but the hexavalent state is water soluble (12).  The hexavalent uranium in nature is most 

commonly found in an oxidized ionic form known as uranyl, with the chemical formula UO2
2+ 

(13,14). Uranyl readily complexes with nitrate, carbonate, phosphate, or sulfate ions, and all of 

these forms are water soluble (7,11,15). The stability or these uranium complexes can be affected 

by many geological processes such as precipitation, absorption, complexation with soil or other 

chemical species, and changes in pH (15). These processes often cause the accumulation of 

uranium in granite and sedimentary rocks, the most common which is uraninite (16). The uranium 

that is not deposited through normal geological processes or eroded from deposits will travel 

through ground water. The ground water contamination, which is usually in very small amounts, 

leads to the contamination of drinking water, plants, and animals, including humans. The normal 

level of contamination is usually 10-7 g or uranium/g of ocean water, plants, or animals (16). While 
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the normal levels are considerably lower than the MCL published by the EPA, there are regions 

where the levels exceed 180 times the MCL; these regions include a large portion of the U.S. (7). 

The elevated levels of uranium in these regions have sparked an interest in the development of a 

field instrument to detect uranium in water.  

2.2 Environmental Contamination from Uranium Processing and Its Impact.  

Introduction 

Uranium is a naturally occurring element that, at naturally occurring concentrations, is 

not typically an environmental or health concern; however, elevated levels can be detrimental to 

the environment and living organisms. Elevated levels of uranium are associated with mining 

and milling of uranium ore, storage of nuclear waste, and other aspects of the nuclear fuel cycle, 

which can all cause uranium contamination. Though the nuclear fuel cycle is associated with 

uranium contamination today, it was not the initial reason. In the 1930s, Pierre and Marie Curie 

discovered that radium has important applications, specifically towards the treatment of cancer. 

Radium is a decay product of uranium, so the demand for radium drove the beginning of 

uranium mining. Initially, radium was considered the product of interest, so the uranium was 

deemed unimportant and was discarded as waste. Then, in 1938, Otto Hahn demonstrated the 

first nuclear fission reaction. The demonstration of fission showed that uranium had potentially 

useful applications.  The first application that caused a large expansion in mining was the 

concept of a nuclear weapon during World War II. Next, in 1956, the United Kingdom began 

using nuclear energy to produce commercial electricity with Calder Hall (17). The development 

of nuclear weapons and commercial nuclear powers caused a steady increase in the demand for 

uranium until the end of the cold war. After the cold war ended in 1991, the uranium supply was 

stabilized, and there was no longer a large need for new uranium mines. Once the need to create 
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new uranium mines slowed, characterizing contamination at the mining, milling and processing 

sites began.   

The contamination characterization of these site is challenging because measuring alpha 

and gamma spectrums in the field is very difficult due to the significant background signature, 

unknown source sizes and strengths, and a long list of potentially present attenuators that can 

affect the measurements results. That leaves two main avenues for characterization: 1) using a 

simple detector to determine the dose at specific locations on the site, and 2) collecting samples 

for more time consuming measurements in a laboratory setting. Both techniques are used to 

characterize the uranium content in the left over waste, soil on site, soil in the surrounding area, 

construction materials, surface and ground waters on the site, and any water sources into which 

the water runs off (5,17–21). In addition to looking in the immediate vicinity of the site, there is 

also contamination that travels a significant distance through the water ways and can 

contaminate farm land that is not adjacent to the nuclear sites. This contamination of the 

surrounding areas has raised concerns because it has been found to contaminate local food and 

water supplies of the general populous at levels that are not safe for humans (4,17,19). This has 

led to people having health issues caused by having high levels of uranium in their bodies (17). 

The next step for most of the nuclear facilities that have had contamination issues is to develop a 

plan for remediation of their sites in order to stop further contamination.  

Causes of environmental contamination 

 Contamination caused by nuclear sites is classified as an elevated level of nuclear 

material that is present on the site and in the surrounding areas that can be linked back to a 

specific location or event. Most commonly, this is linked to mining and milling of uranium and 
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storage of nuclear waste. These links are because those processes have the highest potential for 

the uranium to interact with the environment.  

The first and most concerning aspect of the fuel cycle in terms of contamination is 

uranium milling. Uranium milling is a large concern because the tailings are still radioactive and 

contain long lived radionuclides such as left over uranium and thorium (19,22). The forms of the 

tailings are typically in large heaps or sludge/slime that remain from in-situ leaching. The large 

heaps are piles of uranium milling by-product that still contain residual uranium and other decay 

products. The heaps are left unprotected from the elements which allows rain water to 

contaminate the runoff, surface water, and the soil (17–19,21–23).  In addition to water 

contamination, there is air bourn dust and radiation that can be released from these large piles of 

waste (22,24). The waste piles at some locations also went through the process of leaching. This 

leaching was performed with sulphuric acid, which leaches the uranium out of the remaining ore, 

but it also leaks into the soil and water that changes the local pH in surrounding waters (18). This 

change in water and soil pH increases the mobility of the uranium and promotes it to move into 

the aqueous phase (17). This method also allows the particulates to runoff into the surface water 

and move toward larger bodies of water up to 5.6km away (23). 

The next most concerning mode for contamination is from the mining of uranium ore. 

The mining of uranium is typically done through open pit mines, underground mines, in-situ 

leaching, and recovery from mining by-products, such as the previously mentioned leaching of 

mill tailings (17,19,22).  The in-situ leaching is a contamination concern because of the 

formation of soluble uranium compounds and the acid contamination that reduces the pH and 

increases the mobility of uranium in water and soil (18).  
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Underground mines raise many concerns for workers’ safety being that they were 

constantly breathing in particles of uranium and decay products. This lead to the installation of 

ventilation ducts to move the contaminated air out of the mines. This ventilation is where the 

contamination concerns began because they were meant to let air pass both ways. Though this 

brought clean air to the workers, it also allowed the air containing uranium out into the 

environment (21). Many of the underground mines were later sealed, but they still pose a risk 

today. They are now areas where erosion, in conjunction with instabilities in the rock walls from 

mining, could result in a collapse. This would not only be detrimental to the surface, but a 

collapse would release more uranium into the environment. There is also concerns that these 

areas interact with the atmosphere, and the minerals can oxidize more easily which can lead to 

contaminated acidic mine drainage (22).   

Another concerning method of mining is open pit mining. Open pit mines have the most 

interactions with the atmosphere, allowing rainwater to fall directly in them, and in some cases, 

fill them, as shown in Figure 2.1.  
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Figure 2.1: The Quinta do Bispo uranium mine filled with effluent (17). 

Figure 2.1 shows an open pit uranium mine that constantly contains water. This water is at a 

lower pH, but is not sequestered to the site and can easily contaminate the surrounding soil and 

runoff waters. The water limits the air contamination from uranium particulates that were a large 

concern during the operation of this type of mine, but it does not eliminate the contamination 

altogether (17,21).  

Characterization of sites and levels of contamination 

The characterization of mining and milling sites were performed by both in-situ and 

laboratory measurements. The in-situ measurements were performed with an ionization chamber 

to find the dose rate at specific locations around the sites. The ionization chamber measurements 

are taken by positioning the chamber 1m above the ground in various locations around the sites 

to identify high levels of radiation (18). In the analysis is was assumed that dose rate is 

proportional to uranium concentration. The data collected by the ionization measurements were 

used to identify location were heaps of tails were left behind or area where the piles were spread 
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thin over the ground (18). After the areas of interest were identified, samples were taken for 

further testing in a laboratory setting.  

 The laboratory samples were selected based on the field measurements, and additional 

samples were taken from areas where contamination is more concerning such as surface water 

and nearby water sources. To preserve the samples, the soil samples were collected and sealed 

before leaving the site, and the water samples were preserved by reducing the pH to 2 and 

keeping them in containers to reduce evaporation. In the laboratory, the soil samples were dried 

and put through a sieve to remove any large pieces. Then the samples were sealed and stored 

until each sample reached radioactive equilibrium. Next, the containers were measure using an 

HPGe gamma detector. These measurements were used to identify the activity of the samples 

and the radionuclides present at the site. The isotopes that were found were 238U, 235U, 234U, 

232Th, 230Th, 226Ra, 210Pb, 210Po, 208Tl, and 212Pb (17–19,22). The alpha spectroscopy 

measurements were performed with ion implanted silicon detector on both the small particle and 

the larger particle waste from the soil samples. These samples were prepared by sieving them to 

separate the particles by size and then electroplating them onto the discs to place in the detector 

and limit attenuation. The water samples were also measured using alpha spectroscopy by 

electroplating the precipitates onto the discs for detection (18). In addition to these methods that 

rely on detection of ionizing radiation, there are developments in other methods to specifically 

identify uranium compounds and uranium concentrations using fluorescent spectroscopy both in 

the field and laboratory settings (3,20,25).  
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 Using the aforementioned methods, mining and milling sites in Portugal were 

characterized, and the activity and dose rates were measured. The uranium mining and milling 

sites are shown on the map in Figure 2.2.  

 

 

 

 

 

 

 

The samples were collected from waste heaps, soil, tailings, neutralization ponds, river bed 

sediments, surface water particulates, dissolved phases, irrigation wells, and horticulture 

products(17–19). For the area shown in Figure 2.2, the samples were taken at upstream and 

downstream locations. The results are shown in Table 2.1 below. 

Table 2.1: Concentrations of radionuclides dissolved in surface water and mine discharges  

(µg/L ± 1 SD) (19). 

 

 

 

 

 

 

Table 2.1 shows the concentration at the locations on the map depicted by QF1 through QF8. 

The water upstream from the mine had an average radioactivity concentration of 1.9µg/L, but at 

Figure 2.2: Map of uranium mining and milling sites in Portugal (3). 

Sampling Site
238

U
235

U
234

U

QF1, Rib. Quarta-Feira 1.66±0.05 0.012±0.001 0.00009±0.000003

QF2, Rib. Quarta-Feira 2.14±0.8 0.015±0.001 0.00012±0.000003

QF3, Rib. Quarta-Feira 1.72±0.6 0.013±0.001 0.00010±0.000003

QF4, Mine Discharge 12.05±3 0.089±0.003 0.00067±0.000013

QF5, Rib. Valerdinho 1.004±0.4 0.008±0.0007 0.00005±0.0000003

QF6, Treated Water Discharge 165.5±8 1.2±0.06 0.00864±0.000022

QF7, Rib, Valverdinho 2.68±0.9 0.018±0.001 0.00015±0.0000004

QF8, Rib, das Enguias 1.31±0.5 0.011±0.001 0.00007±0.0000003
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the Carrasca mine discharge, the activity increased to 12.05µg/L (19). Table 2.1 also shows that 

the treated water being discharged from the Bica Mine has a concentration of 165.5µg/L, and this 

is being discharge into the environment at a high concentration when compared to the natural 

level of 1.9µg/L (19). In addition to the elevated levels of 238U, Table 2.1 shows the same trend 

for 235U and 234U. These levels in the water in the surrounding area can lead to concerns of how 

this contamination will affect the local populations. In addition to evaluating the contamination 

levels in the water on and near the Portugal nuclear sites, the water that was further away was 

evaluated. The results of testing the irrigation wells of farms that are located downstream from 

the nuclear sites are shown in Table 2.2.  

 

 

 

 

 

 

 

W1 is located in Águas Belas, which is located at a higher elevation than the uranium mines.  

W4, located in Caldeirinhas Village in the valley, is located far enough away from the mine to be 

used for a control group (19). When looking at the level of W2 and W3 that were located near 

the mining site, the relative contamination level of the radionuclides is significantly higher that 

W1 or W4 showing that these irrigation wells have been directly affected by the mining activities 

Sampling Site
238

U
235

U
234

U

W1, Well Águas Belas 9.16±0.24 0.063±0.0025 0.00048±0.000009

W2, Well Quarta-Feira 5.95±0.16 0.041±0.0025 0.00032±0.000009

W3, Well near the Bica mine 24.58±0.72 0.2±0.0125 0.00131±0.000035

W4, Well Caldeirinhas 1.61±0.08 0.011±0.0006 0.00008±0.000004

W1, Well Águas Belas 113.28±3.21 0.837±0.07 0.00616±0.00017

W2, Well Quarta-Feira 531.05±15.26 3.625±0.37 0.02938±0.00087

W3, Well near the Bica mine 268.74±8.03 1.75±0.19 0.01463±0.00043

W4, Well Caldeirinhas 0.18±0.00015 0.001±0.0002 0.00001±0.0000004

Dissolved phase (µg/L ± 1SD)

Particulate Phase (mg/kg  ± 1SD)

Table 2.2: Concentrations of radionuclides in the dissolved phase and particulates in irrigation 

wells (3). 
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in the area (19). In order to test how the contamination of irrigation wells could affect the local 

populous, the plants that were being irrigated with this water were tested for contamination. The 

contamination levels in the plants from the Quarta-Feira Valley are shown in Table 2.3.  

Table 2.3: Concentrations of radionuclides in crops from the Quarta-Feira Valley (µg/kg)(19). 

 

Table 2.3 measurements are consistent with Table 2.1 in that the two controls have different 

values with the mountains (QF1) having higher concentration than the valley (QF5), and Quarta-

Feira (QF2) being the highest out of the sites in both tables. Table 2.3 shows that the vegetables 

that were affected most by the contamination were lettuce, carrot, and watercress. The highest 

levels of contamination were found to be from 226Ra and 210Pb. The produce that accumulated 

radium and lead the most were the leafy vegetables, which shows that the contamination was 

caused by exposure to the contaminated water more than the contaminated soils. It has also been 

shown the contamination can accumulate in livestock tissues as another avenue for 

contamination to enter the human body (19).  

 

Product, area
238

U
235

U
234

U

Lettuce, QF1 23.54±1.21 0.1012±0.03 0.001215±0.000065

Carrot, QF1 12.37±0.64 0.1075±0.02 0.000603±0.00003

Tomato, QF1 1.12±0.16 0.0087±0.01 0.00007±0.000009

Lettuce, QF2 8.84±0.40 0.0675±0.01 0.000447±0.000017

Tomato, QF2 0.72±0.06 0.0054±0.0022 0.000047±0.000004

Onion, QF2 1.08±0.07 0.0029±0.0019 0.00007±0.000004

Water Cress, QF2 491.68±23.3 3.1248±0.31 0.025564±0.001215

Apple, QF3 0.52±0.04 0.0045±0.0015 0.000027±0.000002

Pear, QF3 0.15±0.02 0.0023±0.0012 0.000008±0.000001

Lettuce, QF4 1.76±0.08 0.0079±0.0027 0.00001±0.000004

Apple, QF4 5.95±0.16 0.0425±0.0037 0.000326±0.000009

Lettuce, QF5 4.74±0.24 0.02±0.01 0.000239±0.000013

Tomato, QF5 0.35±0.02 0.0046±0.0017 0.00002±0.000002

Apple, QF5 0.13±0.02 0.0004±0.0002 0.000004±0.0000004
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Impacts to human health and the environment 

The EPA has set a limit for the level of uranium that can be present before it is 

considered to be detrimental to human health at 30µg/L in water (4). Being that the water 

contamination near uranium mining sites has been measured to be as high as 1035µg/L, there 

could be significant health problem associated with consuming that level of uranium (17).  

The human health impact of uranium contamination is related to the potential for internal 

exposure. This internal exposure can occur through inhalation, ingestion, or absorption (23). 

Inhalation could be cause by uranium interacting with the atmosphere and releasing particulates 

into the air (22). Ingestion could be caused by the consumption of contaminated water, plants, or 

meat from contaminate livestock (19). Absorption can be cause by exposing cuts or openings 

in/on the body to the contaminated soil or water.  Once the radionuclides are inside the body, the 

ionizing radiation exposure from the alpha, gamma, and beta particles becomes damaging (23). 

Alpha particles are typically not concerning in normal external cases of radiation exposure 

because they are easily shielded; however, if they are inside the human body, they deliver the 

greatest dose of radiation due to their high radiation weighting factor for biological damage and 

relatively high particle energy. Alpha emitting radionuclides are known as carcinogens because 

they produce a large number of double-strand DNA breaks which is difficult for the human body 

to recover from (23). This DNA damage has specifically been seen as a problem in the people 

living near the previously mention mines in Portugal. In those subjects, it was seen that the DNA 

integrity and content in white blood cells decreased. Individuals that were less than 40 years old 

exhibited a decrease in NK and T lymphocytes which indicates damage to the hematopoietic 

organs that produce immune cells (17).  
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Beta particles and gamma rays have high penetrating power, so they are also external 

radiation hazards; however, they cause less damage (23). These particles can still deposit high 

doses when they are present in large concentrations such as individuals inside mines and close to 

mill tailings. This dose will lead to the ionizing of atoms that can lead to the death of the cells 

into which they are contained (23). If the cell does survive the radiation, the DNA of that cell 

could have been damaged, and those cells could initiate cancer. In addition to the radiation from 

the consumption of radionuclides, the consumption of heavy metals can cause damage to the 

liver and kidneys (23).  Therefore, contamination is potentially a significant problem to humans 

in the areas surrounding uranium facilities. When contamination is present, it is important to 

know the dose rate, time of exposure, and the area of exposure to determine the potential level of 

damage that could occur.  

In addition to the impact on human health, radiation can also damage the environment.  

One major impact on the environment is the decrease in pH in the water to a range of 4.2-6.2 

(17). This change in pH can negatively affect the crops that are being irrigated with the acidic 

water and it will affect the aquatic life in the streams (22,23). The radiation has also negatively 

impacted the wildlife in locations with uranium mines, include all levels of the food chain. These 

effects are cause by the animals lower in the food chain consuming contaminated water and plant 

life and then being eaten by predators higher up in the food chain (22). Once the radioactive 

material is consumed it affect those living organisms in the same ways as humans.  

Radiation being emitted from the uranium can cause significant damage to the humans 

and the environment, so remediation of nuclear sites is needed to reduce the contamination in the 

surrounding areas. 
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Remediation of contaminated sites 

The main goals for the remediation of nuclear sites are to: 1) sequester the radioactive 

waste, 2) protect the surrounding areas and waters from contamination, 3) neutralize the 

radiological and chemical waste, 4) minimize the physical risk caused by mines, tunnels and 

other structures, and 5) develop new uses for the land (17,21,26). In order to achieve these goals, 

the first step of any remediation project it to collect all of the waste from the contaminated area. 

Once all of the waste has been collected, it must be stored in a location that does not allow any 

more contamination to occur. In the case of the Urgeirica mine in Portugal, the waste was 

gathered and deposited in a location that was sealed with clay, screen, geotextiles, gravel, and 

humus (17). In addition to this treatment of the solid waste, the surface waters were diverged 

away from the waste storage. This treatment achieved the goals of reducing the radiation dose 

and limiting the spread of contamination (17). Other locations have used chemical stabilizers and 

wet scrubbers on the waste before the burial process (21). To reduce the physical risk on the old 

mine site, open pit mines have been used as waste storage after they were sealed and then filled 

in (17,21). The underground mines have been grouted to seal ore seams to reduce water contact, 

improve structure stability, and prevent erosion to reduce the risk of collapse (17,21). To solve 

the problem of reduction of the contamination of the water, there have been systems put in place 

to collect the drainage and seepage waters and treat them (17,21). In addition to simply trying to 

prevent contamination and reduce current contamination levels, location are also attempting to 

use natural materials to perform the correction such as using limestone as a pH buffer and clay as 

a sealant (17,21). These measures have worked so well in previous sites that it is common to 

build houses or commercial facilities on old mining and milling sites (24).  
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Once the remediation measures are all in place, the project is not over; there must be long 

term monitoring of the site. There are monitoring systems that assess water quality, soil 

contamination, and radiation dose on the remediated sites (17,21,27,28). In order to measure 

different layers within the sealed waste storage sites, there are probes that are placed at six points 

in the pile that measure radon concentration and radioactivity (17). For sites that are near houses, 

there were dosimeters and dust monitors put in place to monitor any potential waste movement 

(17,27,28).  

Conclusions 

The environmental contamination of mine sites started in the 1930s with mining of uranium for 

radium. This contamination was caused by the uranium milling tails being left unprotected from 

the elements, uranium mines being exposed to the elements, and waste from chemical leaching 

being in contact with surface waters. The contamination left behind high levels of radionuclides 

in the soil and water on and around nuclear sites. This contamination is measured in multiple 

ways, including in-situ ionization chambers and gamma and alpha spectroscopy in a laboratory 

setting. These methods are used to classify what the dose is at specific location and what isotopes 

are present. Using these technique, it has been found that there is a significant problem with 

contamination around mining and milling sites with excess radionuclide concentration in the soil 

on the site, soil surrounding the site, surface water of the site, ground water on the site, and water 

from nearby wells and streams. This contamination has a negative impact on the health of the 

people living in the surrounding areas because these types of contamination lead to internal 

radiation exposure. This is also the case for animals in the area, so it negatively affects the 

ecosystem. To lower the contamination and prevent future contamination, the nuclear sites need 

to be properly decommissioned using the correct remediation measures for each location. Once 
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that remediation is complete, there should be a set of detectors to monitor potential 

contamination levels.  

2.3 Current Methods of Uranium Detection in Water. 

Uranium can be detected in several ways, but the most common method is measuring the 

high-energy radioactive decay products.  This is usually performed by either gross alpha detection 

or alpha spectroscopy. Unfortunately, at low concentration levels, uranium radioactivity signals 

are weak and attenuated and, therefore, difficult to measure outside of a laboratory.  Uranium is a 

known alpha particle emitter, so the current initial detection method is a gross alpha test. 

 The gross alpha test is used if there is a significant amount of alpha emitting radionuclides 

present in the water.  Gross alpha tests require a natural water sample of 1 liter that must be 

preserved with HCl to maintain a pH of 2 when it is collected. This method begins with the addition 

of HCl, and then the sample is boiled to eliminate the carbonate and bicarbonate ions that are 

naturally present and keep the uranium in solution. The boiling of the acidic solutions precipitates 

the uranium along with ferric hydroxide. Then the uranium is separated using HCl to dissolve the 

other precipitates through an anion exchange column. This process will produce uranium in its 

nitrate form.  Then the samples will be dried and the alpha particles activity will be counted with 

an alpha scintillator detector (29). This method can be contaminated with protactinium-231 that 

can also make it through the chemical processes, but this is a rare case being that protactinium-

231 is a decay product of uranium-235, which has a very low natural abundance (30). The problem 

with this test is that it cannot determine the origin of the alpha particle, so it cannot provide any 

definitive information about the uranium concentration because there are other alpha particle 

emitters commonly found in water such as radium.  Additionally, once the results are interpreted 
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from the gross alpha test to show elevated levels of alpha radiation, another testing method must 

be used to determine the origin of the radiation and the concentration of the radionuclide (31).   

If the results of the gross alpha test are positive for elevated level of radiation, a second test 

must be performed. The tests that can be used to determine is the elevation alpha radiation is 

coming from uranium are alpha-spectrometry, inductively coupled plasma mass spectrometry, and 

fluorimetry.  

Alpha-spectrometry is a method of radiation detection that can determine the source of the 

alpha particles based on the energy of the incident particle(s). The alpha spectra of uranium has 

three specific peaks, and each peak is made by the different isotopes: U-238, U-235, and U-234. 

The procedure for alpha-spectrometry begins with the purification of the uranium sample. To 

purify, uranium must be precipitated with aluminum phosphate from the aqueous solution under 

weakly acidic conditions. The precipitate is then dissolved using acid to be further extracted into 

ethyl acetate using magnesium nitrate as the salting agent. The extracted layer is then evaporated 

to dryness, and the residue is taken up with HCL and placed on an anion exchange column to 

remove any remaining contaminants such as thorium. After the anion exchange, the uranium is 

eluted with HCL and evaporated near dryness and taken up with low pH (2.6-3.0) NH4CL to 

prepare for electroplating. The acidic solution will ensure a uniform electrodeposition of U3O8 

onto the cathode. The cathode used for the best resolution is a small diameter titanium plate. Once 

the sample is prepared, it will be placed in the alpha spectrometer’s vacuum chamber and counts 

will be detected for 1000 minutes (32,33). Alpha spectroscopy is an effective detection method for 

determining the concentration of uranium in water but only within a laboratory setting. Alpha 

spectroscopy is not feasible as a field detector because the extensive sample preparation needed 

before the uranium concentration can be determined. This preparation must be performed in a 
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laboratory. Additionally, the equipment needed has multiple large components like a computer 

and vacuum chamber that will need large power supplies to operate properly. The 1000 minutes 

for producing a reading is unacceptable for rapid detection of uranium concentration.  

Inductively coupled mass spectrometry is a very sensitive method of elemental analysis 

that produces the best resolution on the order of ng/L. While this resolution is very high, this is not 

the normal operating condition of the mass spectrometer because the low level settings cause high 

levels of interference (16,34). The volume of the water samples for ICP is 10mL. The collected 

water samples must be preserved using HCl as in alpha spectrometry.  However, there is no 

extensive purification process with ICP. The procedure for using the mass spectrometer begins 

with igniting the plasma and allowing the instrument to equilibrate for 30 minutes. Then the 

forward voltage, plasma flow, auxiliary flow, and nebulizer flow must be set and the lenses must 

be focused. Next, the sample needs to be monitored for 2s and repeated 5 times for each 

measurement (22). This method is limited by the equipment needed to perform a measurement. 

The equipment would be very difficult to downsize enough to allow the transportation to a natural 

water source. In addition to the size and amount of equipment, the power needed for this process 

would increase this difficulty. While the time of the actual reading is short, the set up and warm 

up of the equipment is too slow for rapid detection.  

Fluorimetry is a technique of uranium detection that employs as UV excitation source to 

induce fluorescent emission from the molecule. Commonly, the UV excitation sources used are 

lasers or UV lamps. Laser induced fluorimetry of uranium uses a nitrogen laser that emits very 

intense light for a very short amount of time (7ns). The nitrogen laser emits light with a wavelength 

of 337.1nm (12). The fluorescence detected using this method has a linear relationship to the 

uranium concentration in the water. Even with the high output from the laser, a chemical 
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fluorescent enhancer is needed to achieve a detection limit of 0.2ppb. This limit was achieved by 

Bhangare et al. testing filtered natural water samples and using time gated detection to eliminate 

any remaining contaminants (12). UV Lamps are commonly used for higher concentration sample 

that will fluorescence without the high excitation energy provided by a laser. This method can be 

modified to create a field instrument, but high power consuming components have to be 

eliminated, including the computer and the laser. The fluorescent enhancement will need to be 

simplified to allow it to be easily used in the field. The detection limit will also need to be addressed 

to match or exceed the detection limits of the other methods.  

This section shows that the current methods used to detect uranium in water are sufficiently 

sensitive, but could not be used as field testing instruments as they currently operate. Each of the 

previously mentioned method have many steps, including chemical processing, and equipment set 

up that prevents these methods from being used for rapid field detection.  

2.3 Uranium Fluorescence 

The green fluorescence of uranium was known to be used as a decorative feature in glass dating 

back to 79AD (35). Not until 1833 was this distinctive fluorescence associated with the uranyl ion 

(36–38).  Multiple spectral emission bands make up the unique characteristics of the uranyl 

fluorescence. The uranyl optical emission signature can have as many as six peaks at wavelengths 

ranging from 345-600nm, depending on factors such as pH, temperature, and associated 

compounds (39,40).  Each of these peaks is due to the vibrational modes of the two smaller oxygen 

atoms vibrating around the much larger uranium atom; this causes vibrational levels in the ground 

state of the uranyl ion (1,2,41,42). These vibrational modes are caused by the symmetric stretching 

of the linear (O=U=O)2+ (43,44). The stretching leads to a vibronic emission that is characterize 

by the fundamental transition energy, which is the emission line with the highest energy and the 
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change in energy between each emission line(43). The spectrum has been shown to have two 

excited states and a minimum of five vibrational ground states as depicted in Figure 2.3 (42,45). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Jablonski Diagram for Uranyl in aqueous solutions(42) 

The pH of the solution affects the hydrolysis of the uranyl ion, which changes the 

fluorescent output because there are different species that are created at different pH levels. At 

some of these pH levels, there is no fluorescence, but at other pH levels, the species do fluoresce 

(2,46). In the pH range from 1-3, the uranyl does not hydrolyze, so the stand alone UO2 produces 

a weak fluorescence. The uranyl begins to hydrolyze at a pH of 3, and this is when the fluorescence 

will increase dramatically, moving into the neutral pH range, then decreasing at the higher pH 

ranges (2,46). The decrease in the higher pH ranges is caused by the binding of uranyl with a 

carbonate, which creates a non-fluorescent compound. The optimal pH range has been found to be 

5 to 5.5(2,46). This optimal range is when the uranyl is bound to a hydroxide, which is a fluorescent 

compound. The studies on pH have also shown that the spectral peaks will shift slightly; low pH 
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causes a blue shift, and higher pH causes a red shift (2). There are many different compounds of 

uranyl that can be found in nature that exhibit fluorescence when excited with ultraviolet light such 

as uranyl acetate, uranyl nitrate, uranyl oxalate, uranyl phosphate, uranyl sulfate, and zinc uranyl 

acetate. Since the vibrational bands of the uranyl spectra is caused by the structure of the UO2, the 

emission for all of the compounds listed are essentially the same. There are small differences in 

the wavelength between the compounds, but the significant differences are the intensities at each 

band wavelength (39). Other compounds of uranyl exist, such as uranyl calcite, and other carbonate 

species, that will not fluoresce at room temperatures, but they will exhibit the normal fluorescent 

behavior at very low temperatures (39,47). Other uranium compounds will not fluoresce at all, 

such as uranyl formate and U3O8 (46). 

Even though not all compounds can be detected, fluorescence emitted from the uranyl ion has 

long been used as a method for determining the presence and concentration of uranyl in water 

(48–50).  However, water molecules quench the optical emission making detection at trace 

concentration levels challenging (36).  Multiple methods have been used to enhance the 

fluorescence of uranyl in water.  These methods are main focus on the manipulation of the pH 

and temperature of the solution in order to control the hydrolysis of the uranyl ion. One method 

uses phosphoric acid or sulfuric acid to decrease the pH, which in turn increases the creation of 

uranyl hydroxide (51).  Another method uses cryogenic cooling to allow compounds that are not 

fluorescent at room temperature to fluoresce (14,39,49,50). The most promising method of 

uranyl enhancement, and the method chosen in this paper, is using silica gel. 

2.4 Silica Gel Synthesis and Characterization  

Silica gel is typically created using the sol-gel process, which is a process known for creating 

optically transparent glasses (52,53). The sol-gel process is consecutive hydrolysis and 
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polycondensation of alkoxy silicon materials in aqueous solution with additional cosolvents 

(52,54–56). The sol is a colloidal suspension of a solid in a liquid that is converted into a gel by 

polycondensation. The sol creates a porous matrix in the liquid and then the solvents are 

removed (53,54). Common silicon precursors that are used to create porous silica are 

Tetramethylorthosilicate, Tetramethoxysilane (TMOS), Tetraethoxysilane (TEOS), 

Methyltriethoxysilane (MTES), and polyethoxydisiloxane (PEDS) (52–57). Each precursor 

creates a different final structure that can be hydrophobic or hydrophilic (54,55). Once a 

precursor is selected, the next step is to prepare the sol by dissolving the precursor in a water or 

alcohol based solution that will create the gel (52,54). The pH, as well as other experimental 

parameters, can be controlled to produce different final structures such as various pore structures 

or spheres (53,54,56). In addition to controlling the structure with the solvents and precursors, it 

is common to use additives to produce specific pore structures, mechanical properties, or 

functional groups (55). The common materials that are used to modify pore size and mechanical 

properties are glycerol, 1-butyl-3-methyl-imidazolium-tetrafluo-roborate, and polyethyleneglycol 

(PEG) (54,57). PEG is a porogen that is use to create through-pores and is a solubilizer of the 

silane that is present in most precursors (54). In order to control the permeability of the silica gel, 

the solution is aged. The ageing process can include washing with water and ethanol, ageing in 

siloxane solution, ageing in TEOS solution, or aging in ethanol solution. These aging methods 

also have been reported to strengthen the silica gel matrix (54).  The aging process causes more 

siloxane groups to form, and various strengthening materials are used promote more siloxane 

groups to form (52). The last step is to dry the gel to produce the final product. The drying 

process is governed by capillary pressure. The capillary pressure in the pores causes the volume 

of the gel to shrink and potentially crack (53,54,56). The drying procedure is typically performed 
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by either evaporation, using hypercritical conditions for the solvents, or the addition of chemicals 

to produce a reaction that will dry but not damage the silica left behind (52–54,56).  

Once silica gel is synthesized through the sol-gel process, the next step is to characterize the final 

product. Silica gel is typically classified by pore size, specific surface area, and particle size. The 

common method for evaluation the pore size and specific surface area is gas adsorption, which 

can be performed with oxygen, argon, carbon monoxide, carbon dioxide, sulfur dioxide, butane, 

and most commonly nitrogen (58–60). In order to measure the surface area using gas adsorption, 

the Brunauer-Emmett-Teller (BET) method was developed and has since become the standard 

(57–59).  The BET method is typically applied using the linear for of the BET equation (59).  

𝑝

𝑛𝑎  (𝑝𝑜 − 𝑝)
=

1

𝑛𝑎  𝐶
+

(𝐶 − 1)𝑝

𝑛𝑚
𝑎  𝐶 𝑝𝑜

 

Where 𝑝𝑜  is the saturation pressure of the absorptive at the temperature the measurement is 

performed, 𝑝 is the saturation pressure at the critical temperature of the absorptive,  𝑛𝑎 is the 

amount adsorbed at the relative pressure of 
𝑝

𝑝𝑜 , and 𝑛𝑚
𝑎  is the single-layer capacity (59). C is 

related to the enthalpy of adsorption but is not a quantitative measure of enthalpy, so it is 

accepted that it is an indication of the magnitude of the adsorbent-adsorbate interaction energy 

(59). Once the BET equation is used to solve for 𝑛𝑚
𝑎 , the surface area and specific surface areas 

can be calculated.  

𝐴𝑠 = 𝑛𝑚
𝑎  𝑁𝐴 𝑎𝑚   

Where 𝐴𝑠 is the surface area and specific surface area is 𝐴𝑠 divided by the mass of the adsorbent,  

𝑁𝐴 is Avogadro’s number and 𝑎𝑚 is the molecular cross sectional area (59). 
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For the pore size measurement there are multiple methods that have been used. The commonality 

between these methods is that they are based on the Kelvin equation (58). The Kelvin equation 

relates pore size to capillary evaporation and condensation (58,60).  

1

𝑟1
+

1

𝑟2
= −

𝑅𝑇

𝜎𝜈
ln (

𝑝

𝑝𝑜
) 

Where 𝑟1and 𝑟2 are principal radii of the liquid meniscus in the pore, 𝜎 is the surface tension of 

the liquid condensate, and 𝜈 is the molar volume of the condensate (59). Then with the 

assumptions of the cylindrical pore and the curvature of the meniscus is related to the pore size 

the equation becomes 

𝑟𝑘 =
2𝜎𝜈

𝑅𝑇 ln (
𝑝

𝑝𝑜)
 

Where 𝑟𝑘 is the kelvin radius (58,59). To account for the thickness of the adsorbed layer, the 

pore size is calculated with  

𝑑𝑝 = 𝑟𝑘 + 2𝑡 

Where t is the thickness of the absorber layer which is typically found by performing the gas 

adsorption of a non-porous sample of the same adsorbent (58,59,61).  

The Barrett-Joyner-Halenda (BJH) method for pore size distribution calculation still used the 

kelvin equation with an added a correction from the adsorbed film thickness, which allows for a 

more accurate calculation of pore size assuming a cylindrical pore (58).  In addition to assuming 

the pore shape, it is assumed the there are no micropores present, and the pore size distribution 

does not extend into the macro pore range(59). The pore sizes are typically broken down in the 

three size ranges; micropores(d < 2nm), mesopores (2nm < d < 50nm), and macropores (d > 

50nm)(58,59).  



 

30 

 

2.5 Silica Gel Fluorescent Enhancement of Uranyl 

Silica gel is hydrophilic and has been used for applications such as chromatography, 

removal of ions in solution, and desiccant refrigeration (62,63).  Studies of silica in the presence 

of metal ions have shown that silica has a high adsorption capacity and selectivity, especially when 

used with uranyl (62).  The selectivity towards uranyl ions is caused by the negatively charged 

sites on the silica surface, to which the uranyl ions attach in conjunction with uranyl’s high affinity 

for oxygen (48).  Two important parameters need to be considered when using silica to enhance 

uranyl fluorescence: the equilibrium capacity and the kinetics of the adsorption process (62).  The 

equilibrium capacity refers to the total number of silica surface sites available to adsorb a uranyl 

ion, while the kinetics of adsorption is the time required to fill those sites.  Study of equilibrium 

capacity has focused on maximizing the capacity for removing ions from aqueous solutions 

(46,64–66). The maximization of the equilibrium capacity was achieved by adding functional 

groups such as amidoxime, carboxyl, dihydroimidazole, and hydroxyquinoline to the surface of 

the silica gel particles (64–68).  The kinetics have been studied for various solutions and with 

different methods such as in a static or stirred fluid (62).  The tests show that in a static or stirred 

fluid, the time required for uranyl to reach equilibrium capacity can be on the order of hours (62), 

which is too slow for most measurement applications.   

Complexation with silica is the most compelling method for enhancing the fluorescence of 

uranyl because it is most promising for rapid detection in water outside of a laboratory setting.  

Silica has been used to enhance many fluorescent compounds such as La4Ti9O24 and Eu3+ (48,69). 

The silica enhancement method has been used with colloidal silica, and in this project, porous 

silica gel was used. Silica gel is a three-dimensional network of colloidal silica that is created by 

the formation of siloxane bonds (48). This three-dimensional network allows the silica the easily 
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trap the uranyl and increase the local uranyl concentration inside the sample to an easily detectable 

level. When the uranyl is trapped in the silica gel, it binds to the negatively charged sites on the 

silica surface. When the uranyl is bound to the silica gel, its fluorescent lifetime will change 

significantly; it changes from a simple decay to a biexponential decay. This biexponential decay 

shows two separate lifetimes, a major lifetime of 240µs and a minor of 55µs (48). This lifetime is 

significant increase from uranyl in acidic solution (48). The decay lifetime can be used to eliminate 

fluorescent contaminants that could be found in natural water sources. In addition to extending the 

life time, the silica also increases the emission intensity. The increase in life time is caused by the 

uranyl binding to the silica gel, which eliminates the optical quenching from the surrounding water 

(2,48). Silica gel enhancement can also be affected by pH, both in the same way as previously 

mentioned, as well an additional way. The additional way the silica gel enhancement is affect is at 

elevated pH levels, where the fluorescence will drop-off because the silica gel decomposes (2). 

The silica gel method of fluorescent enhancement is ideal for a field instrument because of the 

large increase in intensity and extended lifetime and the sample preparation can be performed 

before collecting the water samples.  
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Chapter 3: Flow Enhanced Kinetics of Uranyl (UO2) 

transport nano-porous silica gel 

Previous work has been performed on using silica gel to extract water from soil in order to detect 

the uranium levels in the soil. This work focuses on the silica gel’s ability to enhance the 

fluorescence of uranium to a level that would be easily detectable.  

3.1 Introduction 

Uranyl transport into nanoporous silica gel is limited in a static aqueous solution by slow natural 

diffusion to the open bonding sites. In order to make this process faster, the diffusion dependence 

was eliminated using pressure driven fluid flow. Uranyl transport and adsorption within 

nanoporous silica gel was measured using time-dependent fluorescent measurements in an 

aqueous solution.  The transport kinetics were measured under two different conditions: static 

solution in a standard cuvette and flowing solution through the silica gel. 

3.2 Spectra testing with Silica gel and Fluorescent Enhancement  

Sample Preparation 

Silica gel was purchased from Sigma-Aldrich and Acros Organics with nominal pore sizes ranging 

from 2.2 nm to 10 nm and particle sizes from 40 µm to 650 µm as reported by the manufacturer.  

The specific properties of each silica gel used in this study (referred to here as SG-1 through SG-

5) are shown in Table 3.1.  
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Table 3.1: Physical properties of silica gel 

 

The silica gel particles were packed together in custom-made 1-inch square bags made of a 

monofilament nylon mesh with an opening size of 28 µm purchased from McMaster-Carr.  The 

bags were made by melting the edges together with a small flame.  Using a Fisher-Scientific accu-

124 balance, 250 mg of silica was measured and transferred into the nylon bags, which were then 

sealed.  A filled nylon bag and a 20x optical microscope image of the mesh pores are shown in 

Figure 3.1a and 3.1b.  Figure 3.1 also includes an optical image of SG-3 and Scanning electron 

microscope (SEM) images of SG-1, SG-3, and SG-5.  

Item No. Company Pore Size (nm) Particle size (µm) Surface Area (m2/g)

SG-1 Sigma-Aldrich 2.2 75-650 800

SG-2 Sigma-Aldrich 3.0 75-150 480

SG-3 Acros Organics 4.0 40-60 750

SG-4 Acros Organics 6.0 40-60 550

SG-5 Sigma-Aldrich 10.0 63-200 300
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Figure 3.1: a) Silica-filled nylon bag; b) 20x optical image of the nylon mesh; c) optical image of 

SG-3; d) SEM image of SG-1; e) SEM image of SG-3; and f) SEM image of SG-5.   

 

It can be seen that silica gel consists of an assembly of bonded silica nanoparticles, and there are 

open pores between the nanoparticles, similar to a granular bed.   A 0.01 M aqueous uranyl solution 

was used in all of the experiments discussed in this portion of the paper and was prepared from a 

uranyl nitrate salt and 10 MΩ-cm pure deionized water.   

a) b)

100 µm

c) d)

e) f)

100 µm

1 cm
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Full Spectra Measurements 

The florescence emission of the uranyl was performed using a QuantMaster-3 Spectrofluorometer 

with a Xenon Flash lamp excitation source and a photomultiplier tube detector.  The parameters 

used to obtain the steady state emission scan are shown in Table 3.2.   

The nylon bags containing the silica gel were folded and placed into a quartz UV transparent 

cuvette, and 3 ml of the 0.01 M uranyl solution was added to submerge the sample.  The cuvette 

was placed in the sample holder inside the chamber of the spectrometer with the slits set to the 

values shown in Table 3.3, and emission spectra were obtained for each sample in Table 3.1. 

 

Steady-State Emission Spectra 

The emission spectra for each silica gel in Table 3.1 are shown in Figure 3.2. 

 

Parameter Value Unit

Excitation 310 nm

Emission 400-600 nm

Step Size 0.5 nm

Delay 1 108 µs

Int. Time 0.3 µs

Averages 5

Shots 10

Frequency 200 Hz

Slit Name Actual value (mm) Bandpass

excitation entrance 3 12

excitation exit 1.25 5

emission entrance 1.25 5

emission exit 1.5 6

Table 3.2: Parameters for static fluid scans 

Table 3.3: Spectrometer slit settings 
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Figure 3.2: Fluorescent spectrum of uranyl for silica gels and without silica gel present. 

These spectra were used to determine the peak emission wavelength for the time based scans.  

Silica gels SG-2 through SG-5 showed three main peaks with the most intense peak at 496 nm.  

Silica gel SG-1 showed four peaks with the most intense at 491 nm; this resulted in a change of 

the peak emission wavelength used in the time based scans for this sample.  The cause of this small 

blue shift in the emission spectra for the silica gel with the smallest pore size will be discussed at 

a later date. Figure 3.2 also shows the large enhancement caused by the addition of the silica gel. 

When comparing the solution without silica gel to the SG-5 sample, the fluorescent intensity 

produced is improved by greater than 300%.  

3.3 Static Fluid Time Constant  

Table 3.4 shows the spectrometer settings used to measure the kinetics of uranyl transport into the 

silica gel samples under static fluid conditions.   
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Each silica bag sample was placed into a quartz cuvette containing the 3 ml of the 0.01 M 

solution.  The peak emission wavelength was measured at a frequency of 2 Hz until the intensity 

reached steady state.  A normalized example of this scan is shown below. 

 

Figure 3.3: Normalized florescent intensity vs. time obtained for SG-4 in a quiescent solution. 

The scan above shows the raw data collected, displayed with the solid line, and the curve fit, 

displayed with the dashed line. The fluorescence emission intensity increased with time in a 

manner that can be modeled using a single exponential as shown in Equation 1 

Parameter Value Unit

Excitation 310 nm

Emission 496 nm

Duration 3600 s

Delay 108 µs

Int. Time 0.3 µs

Shots 10

Frequency 2 Hz

Table 3.4: Parameters for static fluid scans. 
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                                                      𝐼(𝑡) = 𝐼𝑓 + (𝐼𝑜 − 𝐼𝑓)𝑒
−𝑡

𝜏        (1) 

where 𝐼𝑓 is the final intensity, 𝐼𝑜 is the initial intensity, and 𝜏 is the time constant.  The data of 

Figure 3.3 shows a large (approximately 50%) enhancement in the uranyl fluorescence intensity 

caused by the transport and adsorption within the nanoporous silica gel; however, Figure 3.3 also 

shows that it takes a relatively long period of time for this signal enhancement to occur (about 40 

minutes to reach steady state).  This is the time it takes for the silica to initially wick the water into 

the pore and for the concentration gradient driven diffusion to reach a steady state.  This long time 

constant is unacceptable for applications requiring rapid detection. 

Figure 3.4 is a plot of the time constant versus the pore size in the static fluid.  This figure shows 

that as the pore size increases, the time constant for transport and adsorption from a static fluid 

decreases.  

 

 

 

 

 

 

 

 

Figure 3.4: Time constant in static fluid versus silica gel pore size. 

A least square linear fit is obtained for the data in Figure 3.4 and is given in Equation 2. Here 𝜏 is 

the time constant and 𝑑𝑝 is the nominal pore size of the silica gels.  The coefficient of 

determination R2 was found to be 0.86.   
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                                                               𝜏 = −105𝑑𝑝 + 1745                                                (2) 

The trend observed in this figure can be justified noting that the silica gels with greater nominal 

pore size (SG-5) have the lowest specific surface area, perhaps leading to the highest permeability 

to water.  Greater permeability allows the water to penetrate more easily, which carries the uranyl 

in at a faster rate.  The faster penetration causes the uranyl to reach and fill the available bonding 

sites faster, reducing the time constant.   

3.4 Flow Enhanced Time Constant  

The flow system shown schematically in Figure 3.5a was used to measure the kinetics of uranyl 

transport into the silica gel samples under flow conditions.   
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Figure 3.5: a) Schematic of flow system; and b) internal geometry of the silica strainer. 

Fiber optic cables were used to connect the flow system to the spectrofluorometer, and the slits 

were opened to the values shown in Table 3.5 to compensate for the signal attenuation caused by 

the fiber optic connections.   

a)

b)
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Slit Name Actual value (mm) Bandpass

excitation entrance 7 28

excitation exit 7 28

emission entrance 5.5 22

emission exit 3.25 13

Table 3.5: Spectrometer slit settings for flow enhanced scans. 



 

41 

 

 

The flow system used ½” ID R-3603 Tygon tubing, a Danner model 7 utility pump, and a king 

flow meter with a scale from 0 to 3 gph.  The fiber optics were aligned perpendicular to the sample 

as the 0.01 M solution flowed through the silica gel.  The silica was held in place by a custom-

designed insert that is placed inside of a commercially available in-line strainer and sealed with 

teflon tape. The insert holds also replaced the normal cap on the strainer and houses a quartz 

window to allow the excitation and detection to take place. The first design of the strainer insert is 

shown in Figure 3.6. 

 

Figure 3.6: a) Section view of the first strainer insert, b) Picture the assembled strainer with 

insert. 

The first design worked well in terms of allowing light to pass through and holding the silica bag 

in place. The down fall of this design came in allowing the water to flow through the side holes 

and down to the exit. The sides of the lower portion were so close to the edges of the inside of 

the strainer that it increased the pressure drop across the device and also caused leaks. The 

second version of the strainer had an additional slot that went down the sides of the main tube to 

provide large flow channels down to the exit of the strainer. The second design can be seen 

below. 

 

 

 

 

Strainer insert 1 

a) b) 
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Figure 3.7: Section view of the second version of the strainer insert. 

The second version of the insert allowed the water to flow more easily through the strainer. The 

seal of the insert still needed to be improved, and it was noticed that the bottom of the insert was 

contacting the inlet tube of the strainer. This contact made the insert tilt to one side, which left a 

small gap in the seal. The final version of the insert focused of improving the seal. This was 

achieved by making the insert shorter to prevent tilting. Additionally, the ledge where the quartz 

window rest was enlarged to allow for a larger seal; this also increased the ledge that held the 

silica gel bag in place. 

 

Figure 3.8: Section view of the final version of the strainer insert. 

The flow-enhanced scans were performed with the same solution concentration as the static 

scans, but the duration, integration time, and frequency of the emission intensity measurements 

were changed to 150 s, 0.3 s, and 200 Hz respectively because of the much faster adsorption 
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kinetics.  The reservoir was filled with 700 mL of solution.  The solution was pumped through the 

silica sample, and the fluorescence intensity was measured as a function of time.  The scan began 

when the pump was turned on, but the zero point for the time constant determination occurred 

when the leading edge of the water solution first touched the bag.  Therefore, this method measured 

the kinetics of uranyl transport into a dry silica gel to a fully saturated state from the time the 

solution began to flow through the bag containing the silica gel.   

3.5 Results and Discussion 

Time Constant Results 

Figure 3.9a is a normalized plot of the peak emission wavelength intensity as a function of time 

for silica gel SG-4 in the static uranyl solution.   
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Figure 3.9: a) Normalized florescent intensity vs. time obtained for SG-4 in a quiescent solution 

as seen in Figure 3.3 above; b) Normalized florescent intensity vs. time obtained for SG-3 at 1 

gph 

Figure 3.9b is a normalized plot of the peak emission wavelength intensity as a function of time 

under flow conditions using SG-3.  The magnitude of the fluorescence enhancement under flow 

conditions was similar (approximately 55%) to the signal enhancement under static conditions, but 

the time constant is dramatically smaller.  By comparing Figures 3.9a and 3.9b, it can be seen that 
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the fluid flow significantly lowers the time needed for the uranyl fluorescence intensity to reach a 

plateau.  We speculate that the slow saturation rate in the case of quiescent solution is due to the 

shortage of uranyl in the interstitial fluid inside the silica bags, as shown schematically in Figure 

3.10a.  

    

Figure 3.10: a) Schematic representation of uranyl transport into silica gel pack beds in quiescent 

solution and b) in presence of flow. 

In the absence of flow, the uranyl transport mechanism is solely due to diffusion in a static fluid 

driven by the concentration gradient from the bulk concentration to the surface concentration of 
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the silica (Fick’s Law).  The surface concentration of uranyl is depleted by the uranyl bonding to 

the silica gel, which forces slow diffusion to take place from the bulk fluid to the surface and then 

into the pores.  The rapid decrease in the saturation time in the presence of flow seems to occur 

because the flowing fluid maintains a constant uranyl concentration around the bed of silica gel 

particles and eliminates the time delay caused by diffusion (see Figure 3.10b).   

 

Figure 3.11: Time constant in presence of flow. 

For flow velocities from 0.36 cm/s down to 0.18 cm/s, the time constant does not appear to have 

any dependence on the pore size (see Figure 3.11).  For the 0.11 cm/s velocity (corresponding to 

the lowest flow rate used in this study), the time constant does decrease with increasing pore size 

above 4.0 nm, similar to the trend shown for the static fluid.  Because the silica is initially dry, the 

water is first wicked into the pores until it becomes saturated.  The silica’s hydrophilic surface 

allows the water to rapidly fill the pores compared to the much slower diffusion of the uranyl.  The 

larger pore sizes cause this diffusion to take place at a faster rate.  This occurs because the uranyl 

is removed faster as it reaches the open sites within the pores due to the increased permeability.  

When the uranyl solution flows through the silica gel particles, some fluid moves around the 

particles while some fluid flows into the pores.  The pores that are connected like a regular granular 

bed will allow the solution to flow to all sites within the particle.  The forced flow through the 
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pores overcomes both the diffusion and permeability affects, which allows the time constant to be 

reduced by orders of magnitude.  Figure 3.11 also shows that there is a critical velocity at 

approximately 0.36 cm/s.  Above the critical velocity, the time constant levels off and becomes 

independent of velocity; while below the critical velocity, the time constant increases rapidly 

toward the static value.  The static time constant value at zero velocity is not shown in Figure 3.11 

as it is orders of magnitude above the scale of that figure.  The critical velocity required to achieve 

the optimum enhancement in adsorption kinetics is approximately the same for all of the pore 

sizes.  The critical velocity is the same for all pore sizes because it is the velocity at which the 

uranyl transport is no longer being limited by diffusion but is being driven by the fluid flowing 

into and around the pores.  The pore size does have an effect on the kinetics of the uranyl transport 

from the static fluid.   

3.6 Conclusions 

In a static fluid, the transport of uranyl ions into nanoporous silica gel takes on the order of one 

hour to reach saturation as determined by measuring the fluorescence emission intensity as a 

function of time.  In a moving fluid, however, the transport kinetics increase significantly, and the 

time required to reach saturation is reduced to approximately 2s at a flow velocity greater than or 

equal to 0.36 cm/s.  Above 0.36 cm/s, the time constant did not depend on the velocity, but at 

velocities lower than 0.36 cm/s, the time constant increased toward the static fluid case.  In a static 

fluid, the time constant decreased linearly with pore size, but this trend was not observed in a 

moving fluid at velocities greater than 0.11 cm/s.  In a moving fluid, the process of uranyl transport 

into the pores is no longer controlled by diffusion and permeability.  Uranyl transport seems to be 

dominated by the pressure-driven fluid flow similar to flow through a granular filter.  The results 

indicate that rapid detection and measurement of trace levels of uranyl in water can be achieved 
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by using fluid flow to enhance the transport and adsorption of uranyl onto the available bonding 

sites within nanoporous silica gel. 
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Chapter 4: Table Top Instrument Development 

The development of the instrument begins with creating a top table assembly of the components 

needed for accurate detection of uranyl in aqueous solutions. The main components need in the 

final instrument will be a small pump, flow cell, photomultiplier tube (PMT), ultraviolet light 

emitting diode (UVLED), and a micro controller. The small pump will be used to pump the 

uranium solution from the water source into the flow cell that contains a silica gel packet and 

will have a quartz window to allow for excitation and emission detection. The UVLED will have 

a wavelength near the maximum absorbance of uranyl to achieve the maximum fluorescent 

output. The PMT will be used to detect the fluorescent output of the uranyl and relay an analog 

signal to the microcontroller for processing. The Arduino microcontroller is also being used to 

control the gating of the excitation.  

4.1 Flow cell design 

The flow cell was designed to be similar to the flow cell in the initial flow enhanced kinetics 

experiment setup but much smaller in overall size. The size was reduced to accommodate the 

final goal of having a hand-held device. Initially, the design was four pieces that were printed 

using the MakerBot Replicator 2. This printing used PLA filament and had a low resolution, but 

it was sufficient for the prototyping purpose at this point in the development. The four pieces 

were two barb hose fittings, one top, and one base. The barb hose fitting were printed because 

tapping the printed PLA pieces to use brass fittings would be difficult, and printing them as part 

of the base produced very poor fittings. The initial design are shown below.  



 

50 

 

 

 
Figure 4.1: a) The top view of the flow cell lid, b) the bottom view of the flow cell lid, c) the 

section view of the flow cell base without barbed hose fitting installed, d) fully assembled flow 

cell. 

Once these pieces were printed, the quartz window was glued into the top piece. The holes in the 

base were tapped to fit 8-32 treaded screws, while the holes in the top were designed as pass-

through holes. To complete the seal of the sample chamber, an o-ring was placed in the slot 

around the sample chamber, which compresses when the top is tightened.  

The silica gel bag was placed in the sample chamber, so that the uranium solution could flow up 

through the bottom of the bag, down over the edge of the center tube, and exit the chamber to be 

recirculated. This design flow pattern was effective with large concentrations (ppm range) of 

uranyl, where during the pumping time, the bag became completely saturated with uranyl. When 

the silica bag becomes completely saturated, the fluorescence can be measured on both the top 

and bottom of the bag. When the concentration was decreased to the parts per billion (ppb) 
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range, the fluorescence was no longer detected. This was due to the silica gel bags not becoming 

fully saturated within the time the measurements were taking place. The incomplete saturation 

could be seen by removing the silica bag; the bottom side of the bag would fluoresce, but the top 

side would not. Only the bottom side of the bag fluoresced because initially, the solution entered 

through the bottom of the flow cell and the uranyl deposited onto the silica it encountered first. 

The uranyl deposition on the bottom of the bag was problematic because the fluorescent 

detection window is at the top of the flow cell. The design was then modified to have the 

solution flow through the top of the bag and move down to the exit. 

This modified design used the same top piece as before, but the flow pattern was changed. The 

revised section view is shown below.  

 

Figure 4.2: The second flow cell design section view. 

The second flow cell design succeeded in the deposition of the uranyl on the top side of the bag, 

but it was inconsistent in maintaining this top side first flow pattern. The flow had a tendency to 

pick up the bag and keep the bag against the quartz window while allowing the solution to flow 

underneath the bag to the exit. This causes the bag to be ineffective in collecting the uranyl from 

the solution.  

The third flow cell was able to fix the aforementioned problem. The cross section of the third 

version of the flow cell is shown below. 
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Figure 4.3: The third flow cell design section view. 

A lip was added to the sample chamber so that the edge of the silica gel bag could rest below the 

water entry level; therefore, the bag could not be lifted and allow the water to flow underneath. 

This model has not shown any other problems except for some leaking issues, which are caused 

by the use of the PLA and MakerBot Replicator 2 printer not producing 100% water tight pieces.  

The final version of the flow cell will be printed on the EDEN260VS printer which will produce 

water tight components and allow for better quality prints. This printer is also capable of printing 

the barb fitting on the base. The final model is shown below. 

 

 

Figure 4.4: The section view of the final flow cell. 
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4.2 Hardware Holder Design 

The hardware holder was designed to hold the PMT module, UVLED, and the flow cell in place 

in order to allow for the proper excitation and emission detection. The initial design is shown 

below with the PMT module hole located on the left and the UVLED hole located on the right. 

 

Figure 4.5: Hardware holder section view and right side view. 

The initial hardware holder had a problem with light contamination because the screws that were 

used to hold the lid on the flow cell allowed light to pass between them into the detection area. In 

order to combat this problem, the next design has recessed areas for the screw heads to rest and 

the lid of the flow cell was flush with the bottom of the detection area as seen below. 
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Figure 4.6: Second revised hardware holder section and right side view. 

The hardware holder at this point was designed with the gated excitation in mind; however, the 

letdown time of the UVLED was too long to allow proper detection within the fluorescent 

lifetime of uranyl. The addition of a narrow bandwidth filter would eliminate most common 

forms of light contamination, including the UVLED, with a full width half max of 20nm. The 

third revision of the hardware holder allows for a 15mm narrow bandwidth filter to be placed 

with the flow cell and UVLED on one side and the entrance to the PMT on the other side. 

Additionally, the second revision did not mate with the flow cell easily, so the screw head 

recessions were modified. The third revision of the hardware holder is shown below. 

Holder 1 
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Figure 4.7: Third revision hardware holder revision section view. 

Figure 4.7 shows that the two recessions for the screw heads are now different widths; this 

allows for one alignment point, making installation of the flow cell easier.  

In the final form of the prototype holder, a cooling mechanism must be added for the UVLED 

because the hot LED is capable of melting the 3d printed parts.  

4.3 Circuit and Program Development 

The circuitry for the table top instrument was developed using the Arduino platform, including 

the Arduino UNO microcontroller board and the Arduino IDE software. The circuit powers the 

UVLED; it also powers and controls the sensitivity of the PMT. 

LED Selection and Performance 

The UVLED selection was based on the LEDs commercially available through the vendor Digi-

Key electronics, who provided a wide range of wavelength, viewing angles, and price points. 

Knowing that uranyl has a maximum absorbance wavelength of 300nm (as seen below), the 

UVLEDs used in this work had wavelengths of 365nm, 325nm, 310nm, and 280nm. 
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Figure 4.8: Excitation scan of Uranyl Nitrate in silica gel. 

Each of the UVLEDs listed above had different forward voltage and current requirements, as 

seen in the table below. 

 

 

 

 

Each UVLED was initially tested to see which produced the most fluorescent output from the 

uranyl, using the aforementioned specifications. The UVLEDs were turned on and left at full 

output for the duration of the scan. Fiber optic connections to the spectrometer were used to 

detect the emission of the uranyl coming from a presoaked silica gel bag that was placed under 

the UVLED. The results of these tests are shown below. 
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280 7 40

310 6.5 40

325 5 40

365 3.5 15

Table 4.1: UVLED Specifications. 
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Figure 4.9: Uranyl emission with different excitation UVLEDs. 

The use of the fiber optics for emission detection and a constant excitation source resulted in the 

spectra in Figure 4.9, as opposed to the normal signature of uranyl. The figure shows that the 

highest intensity of light was created by the 280nm UVLEDs, with 325nm as the second best. In 

addition to testing the fluorescent output by using the UVLEDs as excitation sources, the output 

of each UVLED was tested to check how closely they matched the manufacturer’s specifications.  

The outputs were tested inside the spectrometers chamber to produce the best possible results. 

The spectra for the UVLEDs are shown below, where each spectrum line is from a different 

UVLED. Each wavelength is shown in a separate graph.  
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Figure 4.10: UVLED output by wavelength: a) 365nm, b) 325nm, c)310nm, d) 280nm to include 

114° (1,2) and 24° (3,4) viewing angle. 

The figure above shows that the commercially purchased UVLEDS are not all the same, even if 

they are supposed to have the same wavelength. Taking into account the study of the fluorescent 

output and the UV spectra, the LED chosen for the future sensitivity measurements was the 

280nm #4. This LED has a viewing angle of 24°; this LED will be more focused on the sample, 

whereas the 114° projected too much light onto the filter.   

Circuit Development 

The circuit used for the table top instrument powers the UVLED, peristaltic pump, and the PMT. 

The UVLED that was selected for the excitation source needs 7V for the optimal output of light 

to produce the most intense fluorescence, but the controlled pins on the Arduino UNO board 
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operate at 5V. In order to produce the 7V needed, a non-inverting operational amplifier (opamp) 

was setup. The gain for a non-inverting opamp setup is giving by the equation 

𝐺𝑎𝑖𝑛 = (1 +
𝑅2

𝑅1
) 

where 𝑅1 and 𝑅2 are the resistances of the resistor in the voltage divider. Using standard resistor 

of 𝑅1 = 10𝑘𝛺 and 𝑅2 = 3.9𝑘𝛺, the gain produced was 1.39. This in turn produces an output 

voltage of 6.95. The circuit schematic for the UVLED portion is shown below. 

 

Figure 4.11: Circuit schematic for the UVLED portion of the table top instrument. 

The schematic is shown without the Arduino UNO board, but the board controls the voltage 

supply to the circuit. The 5V Vin supply comes from pin 9, and the Vcc 12V comes from the Vin 

port on the Arduino board.  

The PMT needs four different voltages to operate. Three of the four voltages needed are supplied 

by an external power supply. Those three voltages are the positive and negative 5V inputs and 

the 1.2V reference voltage. The fourth voltage is the Vcontrol input voltage. The control voltage 
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is the voltage that determines the gain of the PMT. This voltage needs to be between 0.5V and 

1.1V in order to make this a variable voltage of 10K potentiometer (T103). The potentiometer 

allows the gain to be adjusted while doing sensitivity testing. Once the sensitivity limit has been 

reached, the potentiometer can be replaced with a resistor to take away the adjustability in the 

final design. In order to connect this potentiometer, three connections are made: one is the 5V 

input from pin 13, one is ground, and the last is the output to the Vcontrol wire to the PMT.  

The peristaltic pump needs 12V to run at maximum output, but voltage is also a way to control 

the speed of the pump.  The voltage can be controlled by an external method similar to the 

potentiometer used for the control voltage of the PMT or a programmable analog signal. The 

programmable analog signal was used in this case because there is no need for on-the-fly 

changes to the pump speed. This analog signal is controlled through the Adafruit 

Motor/Stepper/Servo shield for Arduino. This motor shield has screw-down terminal blocks for 

easy confection, and it is 12V input compatible.  

Program Development 

The program for the table set up controls the UVLED, peristaltic pump, PMT, and the reading 

from the PMT.  This program has been written in the Arduino IED. Using the LED in 

combination with the basic Arduino IED functions analogwrite() and digitalwrite() to flash the 

LED for the gated excitation brought a new challenge to the table top instrument.  The challenge 

was the fall time, the time it takes the LED to go from maximum light output to zero output, was 

significantly longer than expected. This problem was discovered by measuring a sequence of 

light flashes using the spectrometer. The spectrometer was set to 300Hz for a 10 second time 

based emission scan to capture at the fastest possible rate. An example of the scan is shown 

below. 
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Figure 4.12: Time based emission scan of 280nm 24viewing angle UVLED. 

The scan above shows that there are data points in the fall time, which means that the fall time 

takes longer than the time between measurements: 0.0333 seconds. The fluorescent lifetime of 

uranyl is 240µs, so the fall time of 0.0333 seconds is insufficient for a gated excitation (32).  

Originally, this was thought to be a problem with the UVLED, but all of the LEDs performed the 

same.   When the program was further investigated, it was realized that the Arduino board was 

capable of much faster speeds than at which it was currently running, so the speed was changed 

from 9600bps to 115200bps. After changing the Arduino board speed, the speed at which the 

loop was running was also investigated.  It was found that the built-in functions in the Arduino 

IDE are very low; in order to simplify the programming, the function have to run full “c” 

programmed routines to perform basic functions.  In order to make functions including the on/off 

of the UVLED perform as fast as possible, the conventional Arduino functions were eliminated 

from the code and replaced with direct port control using “c” programing  segments within the 

Arduino code. Switching to the “c” language allowed the Arduino to perform the same tasks 

without having to run sub-routines.  The increase in speed can be seen in the time based scan 

below that was created using the same 280nm UVLED as the previous scan.  
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Figure 4.13: Time based emission scan of 280nm 24viewing angle UVLED using port control 

programing. 

The figure above shows that on the fall of cycles two and three, the UVLED fall time was faster 

than the speed of the spectrometer. The other cycles do not show this pattern because the timing 

of the spectrometer and Arduino were controlled separately.  

 The program for the PMT portion performs two tasks: first, it turns the PMT on and off 

through the Vcontrol wire, and second, it reads the analog signal. The on and off task is 

controlled in the direct port control; it is controlled in the same method as the UVLED: using 

pin13. Pin13 is the pin that goes through the potentiometer.  Using direct port control of pin13 

will allow the PMT to turn on immediately after the UVLED turns off. The immediate switch 

allows for a reading to be taken before the fluorescent lifetime of the uranyl times out.  

In terms of the second function of the PMT program, the analogread() function was used to 

measure the output of the PMT. The PMT had an output between 0 and 4V. The analogread() 

function reads voltages between 0 to 5V, but it is interpreted as numbers between 0 and 1023. 
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The relationship between the 0 to 5V and the 0 to 1023 was tested to show that the relationship 

was linear, as shown in the equation below. This equation had an R2 value equal to 1. 

𝑆𝑖𝑔𝑛𝑎𝑙 = 207.5(𝑖𝑛𝑝𝑢𝑡) − 1 

The maximum safe output of the PMT is 4V, so using the equation above, the displayed number 

is 829. If the PMT outputs above 4V, there is an addition IF loop after the signal is taken that 

will print “HIGH VOLTAGE” and turn the PMT off.  

The program for controlling the peristaltic pump uses the Adafruit_Motorshield library that is 

recommended to be used with the motor shield. This library has specific built-in functions for 

controlling DC motor, steppers, and servos. The only functions currently used in this experiment 

are specifically for the DC motors. The main functions used for the motor are the run and 

setSpeed functions. The run function can be used to control the direction of rotation of the motor, 

and the setSpeed function allows the use of a variable analog signal to set the speed of the motor. 

The pump control section of the program, which is outside the main loop, controls the pump to 

initially turn on and then continuously pump water until the testing is complete.  

4.4 Current Status 

The current status of this instrument is promising. The recent time-based method of detection 

limit has not been reached. Theoretically, the time-based method is limited by the amount of 

water in the source. The time-based method allowed for a reduction in the Vcontrol from the 

0.77V used in direct detection to 0.63V. The Vcontrol has a maximum of 1.1V which leaves a 

large amount of improvement if necessary.  The increase in Vcontrol will cause a recalibration of 

the constants for the time-based detection method, but it would allow a reduction in the time to 

detect very low concentrations of uranium in water. This performance has given enough 
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information for an international patent to be filed for this technology, which currently has 

multiple accepted claims.  

In addition to changing the PMT setting, efforts will be made to improve the signal-to-noise ratio 

by refining the gated excitation and filtration of the UVLED. Once the signal-to-noise ratio has 

improved, the flow cell will be modified to run multiple samples before having to remove the 

flow cell. Then this entire system will be consolidated into a hand-held battery-powered device 

used for field testing of natural waters.  

4.5 Develop a final hand-held design for the instrument. 

The development of a hand-held device is the ultimate goal of this project. In order to design this 

final hand-held device, a touch screen will need to be developed in order to control the device 

and to display the output of the detected concentration. The device will contain all of the 

components from objective 2, but it will also have to have some additional components that will 

be needed to perform field testing. The biggest change from the current table top design will be 

to the flow cell design. The flow cell will have to be modified to allow multiple samples to be 

taken without having to remove the samples from the device. This could be achieved by having a 

cartridge that houses multiple samples or having multiple flow cells to which the water could be 

directed. The main additional component will be a power supply that must be light weight and 

output 12V. The 12V requirement is needed to power the peristaltic pump and the op amp for the 

UVLED. Another major improvement that could be made it switching the PMT and optical 

filters with a spectrometer. There are many options for this that include a small spectrometer that 

can be controlled and operated with a Raspberry Pi computer and powered by a lithium ion 

battery. This would allow for full spectral analysis to be used to eliminate possible contaminates 

and even expand the capabilities to detect other fluorescent materials. Another additional 
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component may be a filter that could be placed at the water inlet to block all large contaminants 

from making their way into the device and blocking water flow of the light path to or from the 

sample. The most important design will be the robust waterproof housing that will hold all of the 

electrical components in place during transportation and use.  This device will then be used for 

field testing for uranium concentrations in water. 
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Chapter 5: Uranyl Adsorption Kinetics within Silica Gel: 

Dependence on Flow Velocity and Concentration 

5.1 Introduction 

Uranium is a radioactive element and uranium compounds are naturally occurring in water. 

Increased uranium concentrations in the environment have been associated with uranium ore 

mining, soil fertilization and nuclear fuel manufacturing and disposal(1–3,70). Measuring the 

natural concentration and deviations from that concentration is necessary for national security, 

non-proliferation, and water quality assessment (4,5). The traditional method of measuring 

uranium is based on the detection of high-energy particles that result from radioactive decay. 

However, detecting trace amounts of uranium compounds in water is challenging because the 

radiation signals are weak and attenuated.  

The most common form of uranium in nature is uranyl, which is the oxidized ionic form. Uranyl 

is the +6 oxidation state with the chemical formula of UO2
2+ (13,14). Uranyl compounds can be 

water soluble and exhibit a distinct green fluorescent emission when excited with an ultraviolet 

light (36). The green emission can have up to six peaks with wavelengths in the range of 345-

600nm. Various environmental factors, such as pH and temperature, can affect the wavelength(s) 

of the emission (39). The distinct peaks in the emission signature are caused by the vibrational 

modes of the two smaller oxygen atoms bound to the large uranium central atom (1,2,41,70).  
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Fluorescence has been used to detect the presence and concentration of uranyl in water for many 

years (48–50). The detection of uranyl in water at trace levels still presents challenges because 

water molecules quench the optical emission mode (36). This challenge has given rise to 

multiple methods of uranyl fluorescent enhancement. These methods include manipulation of the 

solution’s pH, reducing the solution temperature, and immobilizing the uranyl on the surface of 

silica (14,39,49,50). In this work, porous silica gel is used to both accumulate and enhance the 

fluorescence of the uranyl. Silica has also been used to enhance the fluorescence of other 

materials such as Eu3+, La4Ti9O24, Rhodamine B, and alpha fetoprotein (48,69,71,72).  

 

Silica gel is a hydrophilic material that is commonly used for chromatography, desiccant 

refrigeration, immobilization of cells and enzymes, and in this case, ion removal and 

fluorescence enhancement (62,63,73,74). In previous studies of silica gel on metal ion removal, 

it was shown that silica has a high adsorption capacity and affinity for uranyl (62). This 

attraction between the silica and the uranyl is cause by the negatively charged surface sites on the 

silica attaching to the positively charged uranyl cation (48). The amount of uranyl that can be 

adsorbed into these negatively charges sites is known as the equilibrium capacity. The 

equilibrium capacity has been studied with the objective of maximizing the capacity. This has 

been achieved by adding functional groups to the silica gel surface (46,64,65,68). The 

equilibrium capacity, while not the focus of this work, is still critical to the function of this 

method. The ability to store the uranyl entering the silica gel allows the uranyl to accumulate to a 

level that is easily detectable, which allows for a lower threshold of detection. This mechanism 

can be employed in very low concentration solutions, and we have shown that the solution 

concentration can be correlated with the amount of time needed to reach the detection threshold. 
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The time needed to reach the detection threshold is related to the kinetics of adsorption. The 

kinetics of adsorption has been studied in different scenarios such as static fluid, stirred fluid, 

and pressure driven flow (62,70). These studies showed that there was little improvement in 

stirring the fluid when compared to a static fluid; both studies had the time to reach equilibrium 

on the order of an hour, because of the slow rate of diffusion into the nanopores. However, when 

the fluid is forced through the silica gel using pressurized flow, the time is reduced to the order 

of seconds (62,70). In this paper, we establish the relationship between uranyl concentration and 

the kinetics of adsorption in nanoporous silica gel. 

5.2 Experimental Methodology 

Sample Preparation 

Silica gel was purchased from Sigma-Aldrich with a nominal pore size of 10nm, particle size 

range of 63-200 µm, and specific surface area of 300 m2/g. Two experimental systems were used 

to investigate the uranyl adsorption kinetics in silica gel over a wide range of concentrations. The 

silica gel particles were placed in 12mm diameter porous mesh bags for the low velocity system 

and 1-inch square bags for the high velocity system. The bags were made of nylon mesh with 28 

µm openings from McMaster-Carr.  The small bags were formed by melting the edges of two 

circles of mesh together and the large were formed by folding a rectangle in half and melting the 

edges. Using a Fisher-Scientific accu-124 balance, 50mg of silica gel was placed into each bag 

for the low velocity system and 250mg for the high velocity system. The two different sized 

nylon bags are shown in Figure 5.1.  



 

69 

 

 

Figure 5.1: a) Low velocity system bag, b) high velocity system bag 

The Uranyl Nitrate was purchased from American Master Tech and was weighed using the 

Fisher-Scientific accu-124 balance to make a stock solution of 39.4 mg/L. The stock solution 

was then diluted to create the solutions used in this study.  

Time Constant Measurement with the Low Velocity System 

The response time used in this study refers to the time required for the fluorescence signal from 

the uranyl deposited within the silica gel to produce a preselected photo multiplier tube (PMT) 

output voltage. This measurement was performed using a custom-made instrument that is 

schematically shown below.  

1 cm 1 cm

a) b)
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Figure 5.2:  Schematic of the custom flow system 

This system included a 280nm wavelength LED for excitation, a UV band pass filter, a notch 

pass visible light filter, a custom flow cell, Adafruit Industries peristaltic pump, and a solution 

reservoir. The flow cell, UV LED, optical filters, and PMT were all held in place using a custom 

3D-printed piece that maintains a constant geometric relationship between all optical 

components. The UV band pass filter was used to limit the amount of UV light reaching the 

entrance of the PMT, and the notch pass filter was used to block all visible light outside of the 

maximum peak of the uranyl emission spectra. All flow components were connected with ⅛” ID 

rubber tubing. All of the components were controlled, and the signal was obtained, using a micro 

controller. This micro controller also was used to adjust the gain of the PMT through the Vcontrol 

wire which was set to 0.58V. 

The low velocity measurements were performed by pumping the solution through the silica gel 

sample at an average flow velocity of 3.14cm/s while the fluorescence intensity was monitored 

as a function of time. Flow velocity through the silica gel, rather than liquid flow rate, was used 

in order to compare the results from the two different sized silica gel bags.   Signal monitoring 

silica gel bag

optical filters

PMT

UV LED
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started when the pump was turned on, but the initial time for establishing the response time was 

set to when the water front reached the silica gel sample.  Signal monitoring continued until the 

threshold PMT output voltage was reached. The solution was added to the system just before 

each scan and replaced for each measurement. Once the measurement was complete, the entire 

system was deconstructed and all flow components were cleaned and dried.  

Time Constant Measurement with the High Velocity System 

The high velocity system is a modification of the low velocity system to accommodate a larger 

pump, flow cell, reservoir, and a flow meter with a needle valve to control flow rate. The only 

additional component for this system was the flow meter with the needle valve. All of the 

components were connected using ½” ID R-3603 Tygon tubing. The flow cell used in this 

system is a vacuum strainer that had an additional custom piece which held the silica gel bag in 

place and allowed the water to flow through the bag. The silica gel bag size was increased to a 1-

inch square bag to cover the cross section of the larger flow cell compartment, and the mass of 

the silica gel in the bag was increased to 250mg. The piece that holds all of the instrumentation 

was modified to contain the larger flow cell. This modification resulted in a small increase in the 

PMT gain, where the Vcontrol was set to 0.63V. This setting change reproduced the same initial 

signal as the low velocity system. The average flow velocity in this system was determined to be 

5.53cm/s.  

5.3 Results and Discussion 

Time Constant Results 

In our previous studies of the kinetics of uranyl transport into silica gel, the fluorescence 

intensity verses time curve was fit using equation 1. This equation was used to find the saturation 

time constant as shown in Figure 3a. The maximum signal (e.g. saturation), If in equation 1, is 
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the point where all of the bonding sites in the silica gel have been filled, and the silica gel cannot 

hold anymore uranyl. In Figure 5.3a it can be seen that the initial increase is linear until the 

bonding sites begin to saturate and then the exponential curve takes over.  

                                                      𝐼(𝑡) = 𝐼𝑓 + (𝐼𝑜 − 𝐼𝑓)𝑒
−𝑡

𝜏        (1) 

where 𝐼𝑓 is the final intensity, 𝐼𝑜 is the initial intensity, and  τ is the time constant (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For measurement times that are short compared to the time required to saturate the silica gel, the 

output signal intensity versus time is approximately linear as shown in Figure 5.3b.   In this case, 

the time constant can be determined from the following linear equation, and a response time can 

be defined as the time required to reach a particular output signal.   

                                                      𝐼(𝑡) = 𝐼𝑜 −
(𝐼𝑜−𝐼𝑓)𝑡

𝜏
          (2) 
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Figure 5.3: a) Normalized florescent intensity vs. time with silica gel saturation; b) Normalized 

florescent intensity vs. time in the linear region 
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In this study, a particular output voltage from the PMT was selected as a fixed threshold, and the 

time required to reach this threshold was determined at four concentrations and two liquid flow 

velocities.  A response time was determined at each of the following concentrations and at both 

flow velocities: 3940µg/L, 2000µg/L, 1000µg/L, and 394µg/L. Figure 5.4 shows response time 

(time constant) at the high and low velocities as a function of the uranyl concentration.  

 

Figure 5.4: Concentration as a function of response time. 

Figure 5.4 is a plot of the response time versus the uranyl concentration and the dotted line curve 

fits show that the response time is inversely proportional to the solution concentration. 

The response time dependence on concentration is not unexpected and is because a dilute 

solution will take longer to deposit a particular number of uranyl ions within the silica gel.  Thus, 

as the concentration is decreased, the time required to accumulate a particular amount of uranyl 

will increase because more solution will need to pass through the silica to provide that amount of 

uranyl. Figure 5.4 also shows that the response time decreases with increasing fluid velocity as 

would be expected.  Increasing the average fluid velocity into the silica gel from 3.14 cm/s to 

5.53 cm/s decreases the time constant by 65 percent on average with the largest decrease 

occurring at the lowest concentration.  
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The trend lines shown in Figure 5.4 were created using the equation below and the constants in 

Table 5.1. 

  𝑡 = 𝑡0 +
𝑔∗

𝑉𝐴𝐶
  

 

where C is the uranyl concentration, t0 is the offset time, V is the fluid velocity, A is the cross 

sectional area of the silica gel bag in the flow channel, g* is the amount of uranyl deposited in 

the silica gel and t is the response time. Using the constants in Table 5.1, the R2 were found to be 

0.9691 and 0.9122 for the velocities of 3.14cm/s and 5.53cm/s respectively. The constants shown 

in Table 1 are used when calculating the concentration in µg/m3. g* represents the amount of 

uranyl deposited in the silica gel bag in order to reach the specified threshold setting of the PMT. 

This is a constant that was found to be significantly higher in the high velocity system due to the 

much larger mass of silica gel. 

The trend lines were used to perform an uncertainty analysis. This uncertainty analysis was 

performed using the statistical error of the response time measurements and then using the trend 

line equation to incorporate the uncertainty propagation. The uncertainty propagation was 

incorporated by multiplying the statistical error by the derivative of the curve-fit equation 

evaluated at each of the respective points. The calculated uncertainty at the lowest concentration 

in the study was ±9µg/L, but on average for all of the concentrations measured, the uncertainty 

gives an interval of ±2.57percent. 

5.4 Conclusions 

The time constant of uranyl transport into nanoporous silica gel under fluid flow conditions 

shows an inverse relationship with the concentration of uranyl in the solution. The relationship 

shows that as the concentration of uranyl decreases, the time required to reach a particular output 

Velocity (m/s) t0 (s) A (m²) g* (µg)

0.0314 31.8936 2.827E-05 66.53252

0.0553 21.8285 0.000285 816.1008

Table 5.1: Experimental Constants 
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signal level will increase. Any fixed output signal level can be used as a threshold and reducing 

the threshold will reduce the measurement time to allow for measurements at extremely low 

concentrations. The results also indicate that increasing the fluid velocity will also reduce the 

time necessary to determine the uranium concentration. The results show that trace levels of 

uranium in solution can be measured in a short period of time and with a relatively high level of 

accuracy using this method. 
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Chapter 6: Uranyl Fluorescence Lifetime in Nanoporous 

Silica Gel:  The Influence of Pore Size, pH and Water  

6.1 Introduction 

Uranium is a natural radioactive element found in mineral deposits and ground water.  Elevated 

levels in water can be associated with industrial agriculture, mining and nuclear fuel 

manufacturing and disposal (1–3,75). Uranium in drinking water can pose a threat to human 

health but is challenging to detect in the field (4). This has prompted a drive to develop new field 

measurement methods that will be able to rapidly detect uranium in water at low concentrations. 

The most common and bioavailable form of uranium found in water is the uranium dioxide ion 

know as uranyl UO2
2+ (13,14,75).  The bond length between the uranium and oxygen has been 

reported to be in the range on 1.5Å -2Å with the common values between 1.7Å -1.8Å (76,77). 

Uranyl has been known for its unique visible green emission for over 150years (36,37,78). This 

visible emission, with wavelengths ranging from 345nm-600nm, has distinct peaks associated 

with the vibrational harmonics of the oxygen atoms vibrating around the uranium atom 

(1,2,39,41). The intensity of the fluorescent emission has been used as a method to determine the 

uranium concentration in water samples (48–50,70). However, at low concentrations, the 

fluorescence is difficult to detect, particularly in an aqueous environment, since water can both 

quench and attenuate the uranyl fluorescence (36). In order to improve the uranyl detection 

threshold in water, many strategies have been employed such as optimizing the pH and 
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temperature and through chemical complexation. Silica has been used to enhance the 

fluorescence of uranyl and other compounds including Rhodamine B, Eu3+, La4Ti9O24, and alpha 

fetoprotein (48,69,71,73).  In this paper, nanoporous silica gel is used to collect, concentrate and 

enhance the fluorescence intensity and increase the fluorescence lifetime of uranyl in water 

samples.  

Hydrophilic, nanoporous silica gel has a very high surface area and can collect and accumulate 

uranyl ions because the positively charged ions bind to the negatively charged surface sites of the 

silica. These properties of silica gel have been used for ion removal and desiccant refrigeration 

(48,62,63).  Silica gel also increases the fluorescent lifetime of the uranyl ion. The lifetime of 

uranyl in water is about 14µs, but when adsorbed onto the surface of silica, the lifetime can be 

increased by more than an order of magnitude (79).  Increasing the fluorescence lifetime is useful 

for detection and identification, because most natural fluorophores have a very short lifetime, 

and can, therefore, be rejected using time gating techniques.  It has been shown that different 

uranyl complexes are predominant at different pH values, resulting in a variation in fluorescence 

lifetime with pH (79). Gabriel et al showed that at low pH (4.01-6.7) uranyl in complex with 

silica will form UO2SiO2 with a lifetime of 170µs whereas UO2SiO2OH is formed at higher pH 

(7.35-8.87) with a lifetime of 360 µs (79). Leung et al showed that the fluorescence lifetime 

increases will temperature from 4K to 293K (80). In this paper, we investigate the effect of silica 

gel pore size on the fluorescence lifetime of uranyl attached to the silica surface in both an acidic 

and neutral pH. We also investigate the influence of water within the nanopores by measuring 

the lifetime after removal and reintroduction of the water.  Our results show that the presence of 

water within the silica gel increases the fluorescence lifetime of uranyl-silica compounds by as 

much as 40µs and that very small pores can further enhance the lifetime by as much as 20µs. We 
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also report a blue shift in the emission spectrum for the smallest pore size and hypothesize that 

the shift could be the result of quantum confinement and a corresponding adjustment of the 

energy levels for emission. 

6.2 Experimental Methodology 

Sample Preparation 

The silica gel was acquired from Sigma Aldrich and Acros Organics with pore sizes ranging 

from 22Å to 100Å, particle sizes from 40µm to 650µm, and surface areas from 800m2/g to 300 

m2/g as reported by the manufacturer.   The complete list of physical properties for the silica gels 

used in this work are shown in Table 6.1.  

 

 

 

 

The silica gel was placed in custom-made 1-inch square mesh packets made of nylon fiber mesh 

that was purchased from McMaster-Carr. The mesh had 28 µm size openings with equivalent 

fiber diameters. Using a Fisher-Scientific accu-124 balance, 250 mg of silica was measured and 

transferred to the nylon packets. The solution used in this project was 0.01M aqueous uranyl 

nitrate in pure deionized water.  The uranyl nitrate was purchased from American Master Tech.  

Full Spectra Measurements 

Baseline fluorescence emission measurements were performed using a QuantaMaster-3 

Spectrofluorometer with a Xenon flash lamp excitation source. The spectrometer settings for the 

spectral scans are shown in Table 6.2.  

 

Item Company Pore Size (Å) Particle Size (µm) Surface Area (m²/g)

1 Sigma-Aldrich 100 63-200 300

2 Acros Organics 60 40-60 550

3 Acros Organics 40 40-60 750

4 Sigma-Aldrich 30 75-150 480

5 Sigma-Aldrich 22 75-650 800

Table 6.1 Physical properties of silica gels 
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All measurements were performed in the spectrometer chamber using quartz UV transparent 

cuvettes into which the silica gel packets were folded and placed.  

Fluorescence Lifetime Measurements 

The fluorescence lifetime measurements were performed using the QuantaMaster-3 

Spectrofluorometer. The lifetime calculation was performed using the single exponential fit in 

the Felix 32 software. One example of this fit is shown in Figure 6.1 below.  

 

Figure 6.1: Figure 1: Lifetime measurement scan.  

The spectrometer setting for the lifetime scan are shown in Table 6.3. 
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Parameter Value Unit

Excitation 310 nm

Emission 470-575 nm

Step Size 0.25 nm

Delay 1 108 µs

Int. Time 0.3 µs

Averages 10

Shots 10

Frequency 200 Hz

Table 6.2: Spectrometer settings from spectral scans 
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Silica gel samples at five different pore sizes were immersed in 50mL 0.01M uranyl nitrate 

solutions for three days to allow the uranyl cations to saturate the negatively charged surface 

sites of the silica gel.  The uranyl nitrate solution was acidic with a pH of 3.96.  The fluorescence 

lifetime of the uranyl within the silica gel was measured and the process and lifetime 

measurements were repeated for ten samples at each pore size.  Each silica gel sample was then 

removed from the uranyl nitrate solution and placed in DI water for 3 days and the lifetime 

measurements were repeated at each pore size.  The DI water environment increased the pH from 

3.96 to near neutral (6.59) allowing a comparison of the lifetime at acidic and neutral conditions.  

The silica gel samples from both the 3.96 and 6.59 pH environments were then allowed to 

completely dry and the fluorescence lifetime was measured again for each sample to determine 

the effect of water on the lifetime.  The fluorescence lifetime of the samples prepared from the 

6.59 pH solution and dried were measured again after being re-immersed in DI water. 

6.3 Results and Discussion 

Emission Spectra 

The emission spectra of the uranyl when adsorbed into each of the silica gel samples are show in 

Figure 6.2. 

Parameter Value Unit

Excitation 310 nm

Emission 496 nm

Start Delay 0 µs

End Delay 1000 µs

Channels 100

Int Time 0.3 µs

Averages 1

Shots 5

Frequency 200 Hz

Table 6.3: Spectrometer settings from lifetime scans 
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These spectra were utilized to determine the optimum wavelength to measure the fluorescence 

lifetime. In these silica gels the specific peaks are always seen but the relative intensities of the 

peaks can be affected by the ratio of silica to uranyl (20). Silica gels 1 through 4 have the same 

spectral peaks at 496nm, 518nm and 540nm. Silica gel 5 has a slightly different spectra with 

peaks at 491nm, 515nm and 540nm. We believe that this small blue shift is indicative of a 

quantum confinement effect that is caused by the uranyl ion being constrained within the 22Å 

pores of the silica gel.  Quantum confinement of the uranyl ion has been exhibited by cadmium 

sulfide quantum dots with particle sizes of 2.2nm and 1.88nm, which is very similar in size the 

pores of silica gel 5 (75). This reinforces the idea that the small pore size is causing the spectral 

shift. However, a full analysis of the effect of quantum confinement on uranyl fluorescence is 

beyond the scope of this paper. 
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Figure 6.2: Fluorescent spectra for uranyl adsorbed in silica 
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Fluorescence Lifetime  

Figure 6.3 is a plot of the fluorescence lifetime versus silica gel pore size for the acidic and 

neutral aqueous environments both before and after drying.  

 

 

 

 

 

 

 

 

 

Figure 6.3 shows that the fluorescence lifetime is relatively independent on pore size above 40Å 

and for all four environments (acidic, neutral and dry/acidic, dry/neutral).  However, below 40Å 

the fluorescence lifetime increases with decreasing pore size for all four environments.  The 

amount of increase is approximately 20µs over the 18Å decrease in pore size and the trend is 

relatively independent of the pH or water content.    

In addition to the pore size trend, Figure 6.3 shows that the solution pH has a strong effect on the 

lifetime and is approximately 40s longer for the neutral solution in comparison to the acidic 

solution at all pore sizes.  This increase in lifetime with solution pH is caused by the addition of a 

hydroxyl group to the uranyl-silica gel surface complex.  The most abundant complex formed at 

the 3.96 pH solution is UO2SiO2 which has a significantly shorter fluorescent lifetime than the 

UO2SiO2OH- molecule, which becomes more prevalent with increasing pH.  While the effect of 
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pH on uranyl lifetime has been previously reported in solution, this data shows that similar 

hydrolysis reactions occur for the surface complexes within the silica gel nanopores.   

Figure 6.3 also shows that the presence of water within the nanopores significantly impacts the 

lifetime of the uranyl.   The lifetime decreases when the water is removed from both the acidic 

and neutral environments and the magnitude of the decrease is larger for the neutral solution at 

all pore sizes.  As we show below, the removal of the water causes the uranyl to form an 

additional bond to the silica surface, which reduces the fluorescent lifetime. Figure 6.4 shows 

that the process is reversible and that the lifetime can be increased by adding water to the dry 

samples.    

 

 

 

 

 

 

 

 

 

 

Figure 6.4 also shows that the fluorescence lifetime increased during the 204 day drying period.  

We do not currently have an explanation for this increase, but because silica gel is extremely 

hydrophilic, we suspect that humidity caused some additional hydrolysis of the uranyl within the 

silica gel pores resulting in a longer lifetime in the aged sample.    
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Figure 6.4: Lifetimes after the samples remained dry for 204 days. 
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Figure 6.5 shows the fluorescence spectra of a dry sample of silica gel and a spectra of the same 

sample in DI water.  

 

 

 

 

 

 

 

 

 

Figure 6.5 shows that the three main spectra peaks seen in the samples in the DI water are still 

observed in the dry samples, but a new peak at 528nm in very prominent in the dry samples. This 

peak is not seen in the original spectra and does not match with the 22nm spacing between the 

main peaks of the spectra when the sample is wet. This spacing is associated with the harmonic 

frequencies of the oxygen atoms around the uranium atom which created those wavelength 

emission, but the 528nm is distinctly different and is associated with a different emission 

transition. That is, when surrounded by water the uranyl complex is partially solubilized while 

still anchored to the silica surface.  The removal of the water causes the uranyl complex to form 

an additional uranyl silicate bond that reduces the fluorescent lifetime and cause a new emission 

peak at 528nm.  The 528nm peaks has been associated the uranyl silicate in a previous study 
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performed on silica rich soil samples from the Hanford site.  This peak was found to be an 

emission of the (UO2)2SiO4 found in the soil samples by Wang et al (20).  

 

6.4 Conclusions 

The fluorescence lifetime of uranyl bound within nanoporous silica gel is dependent on factors 

such as pore size, pH and water content.  The lifetime increases monotonically as the pore size 

decreases below 40Å and, at the smallest pore size studied in this project (22Å), a blue shift in 

the emission spectra was observed and is believed to be caused by quantum confinement.   The 

lifetime increased by about 20µs as the pore size decreased from 40Å to 22Å.   The lifetime 

increased as the pH was increased from an acidic 3.96 to a neutral 6.59 at all pore sizes due to 

hydrolysis of the uranyl-silica complex with increasing pH. Specifically, at higher pH values 

UO2SiO2OH- is formed and has a longer lifetime than UO2SiO2. The removal of water causes a 

decrease in the lifetime at all pore sizes and this decrease is due to an additional uranyl silicate 

bond that is formed in the absence of water.  The lifetime increases again when water is 

reintroduced to the sample.  This study investigated some of the main parameters that can affect 

the fluorescence lifetime of uranyl in complex with nanoporous silica gel. This information will 

be useful in the development of methods to collect, accumulate and detect uranium from water 

supplies.   

  



 

86 

 

 

 

Chapter 7: The Effect of Cations on Fluorescence and 

Kinetics of Uranyl in Nanoporous Silica Gel 

7.1 Introduction 

Uranium is a naturally occurring radioactive element that can be dangerous if present in high 

concentrations. Methods to detect trace amounts of uranium have focused on measuring the levels 

existing in areas where humans can come in contact with it such as in soil and water (1–5,25). 

There are multiple ways to detect uranium such as gamma spectroscopy, alpha spectroscopy, and 

fluorescence spectroscopy. Typically, these measurements need to be performed in a laboratory, 

but there has been a push toward field measurements.  All of the spectroscopy detection methods 

mentioned are viable while uranium is at a high concentration, but as the concentration decreases, 

so does the viability of alpha and gamma spectroscopy due to attenuation of the signal and low 

signal intensity. Fluorescence spectroscopy is applied to the most common form of uranium in 

nature known as uranyl, which is the UO2
2+ ion (13,14). Fluorescence is attractive because there 

are methods to enhance the fluorescence signal that can be implemented to decrease the threshold 

of detection. These methods include manipulating the pH, changing temperature, and 

complexation with silica gel (14,39,48,49). These methods are all very effective, but in a field 

setting, the most promising method is complexation with silica gel because the silica can be 

prepared beforehand and does not required any further adjustments (1,2,25,70). Silica gel is ideal 

for field instrumentation because it can be used in conjunction with pressurized flow to accumulate 
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uranyl quickly for detection of trace levels of uranyl in water (70). The silica gel accumulates 

uranyl because it has negatively charged surface sites that bind with the positively charged uranyl; 

this continuously occurs until all the surface sites are full. Some challenges with field detection 

can still occur when using fluorescence, the most notable being quenching from other materials 

commonly found in water. The quenchers that are of most concern when using silica gel are other 

cations because they can reduce the fluorescence intensity and can compete with the adsorption of 

uranyl into the silica by filling the negatively charged surface sites.  

To quantify the influence of competing cations on the fluorescence, the Stern-Volmer equation is 

used to show how the quenching will change with the concentration of the cation (75,81,82).  

𝐼0

𝐼
= 1 + 𝐾𝑠𝑣𝐶𝑄 

I0 is the intensity of the fluorophore without a quenching cation present, I is the intensity with the 

quenching cation present, CQ is the molar concertation of the quenching cation, and ksv is the 

Stern-Volmer Quenching coefficient (81,82). The Stern-Volmer quenching coefficient is the 

measure of the quenching rate of each respective cation. The linear relationship of the equation is 

ideal to measure deactivations through collisions with the cations (81).  The Stern-Volmer 

equation used in this study is a simplified version of the equation that was used to quantify the 

quenching from the collision mechanism. This simplified form of the equation neglects static 

quenching (complexation) because the quenchers being tested were cations that were not 

expected to form a complex with the uranyl cation(83). The Stern-Volmer equation, while it is 

used to determine how the concentration of the quencher effects the fluorescence of the 

fluorophore, does not account for the concentration of the fluorophore itself (84).  

The influence of cations on the adsorption kinetics of uranyl into silica gel is determined based on 

the time it takes to reach complete saturation of the negatively charged surface sites. The time 
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constant with and without competing cations was measured by monitoring the fluorescence 

intensity as a function of time as in previous studies (25,70).   

For this study, the cations used were Mn2+, Ca2+, Mg2+, Na+, K+, and Li+, which are all commonly 

found in fresh water. The concentrations used were based on the maximum values published from 

water samples at 65 locations around the world. The maximum concentrations used in this study 

are shown in Table 7.1.  

Table 7.1: Concentrations of cations found in fresh water(85–91) 

 

 

 

 

 

7.2 Experimental Methodology 

Sample Preparation 

The silica gel used was purchased from Acros Organics and has a pore size of 60 Å, particle 

sizes in the range of 40-60 µm, and a specific surface area of 550 m2/g. The silica gel was placed 

in 1-inch square permeable pouches made from nylon mesh from McMaster-Carr. The edges of 

the bags were flame sealed to produce a pouch containing 250 mg of silica gel. The ion solutions 

were made using the chemicals shown in Table 7.2 and pure deionized water.  

 

 

 

Ion Molarity 

Calcium 0.15 

Magnesium   0.3 

Sodium 1 

Potassium 0.1 

Lithium 0.002 

Manganese 4.00E-05 
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 Table 7.2: Ion Sources 

 

 

 

 

Once the stock solutions were made, they were diluted to achieve the desired concentrations, and 

the pH was adjusted to 4 using either 0.1 M HCL or 0.1 M NaOH.  

Spectra Measurements 

The fluorescent spectra for each sample was measured using a QuantaMaster-3 Spectrofluorometer 

with a Xenon Flash lamp source. The spectrometer settings from the spectra scans are shown in 

Table 7.3.  

Table 7.3: Spectrofluorometer settings for full spectra scans 

 

 

 

 

 

 

The silica bag samples were placed in the 0.01 M Uranyl solution and allowed to reach complete 

saturation before being placed in a UV transparent cuvette. Figure 7.1 is the spectra of the silica 

gel sample in the uranyl solution.  The cuvette was then emptied and the uranyl solution was 

replaced with the respective cation solution, and the measurement was repeated.  

 

Item Company Chemical Name 

1 American Master Tech Uranyl Nitrate 

2 FisherChemicals Sodium Chloride 

3 Sigma-Aldrich Lithium Chloride 

4 Sigma-Aldrich Potassium Chloride 

5 Sigma-Aldrich Magnesium Chloride 

6 Sigma-Aldrich Calcium Chloride 

7 Sigma-Aldrich Manganese(II) Chloride 

Parameter  Value Unit 

Excitation 310 nm 

Emission 400-575 nm 

Step Size 0.5 nm 

Delay 108 µs 

Int. Time 0.3 µs 

Averages 3   

Shots 10   

Frequency 200 Hz 
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Time Constant Measurements  

 The time constant measurements were performed using the QuantaMaster-3 Spectrofluorometer. 

The silica gel bag was placed into the quartz cuvette and then a mixture of the uranyl and cation 

solutions were added. These mixtures were created using a 1:1 volume ratio of the stock uranyl 

solution and the highest concentration of each cation and deionized water as a control. The time-

based scan measures the intensity of the 518 nm emission wavelength over time. The settings from 

the time-based scans are shown in Table 7.4 below.  

Table 7.4: Spectrometer settings from time-based scans 

 

 

 

 

 

Parameter  Value Unit 

Excitation 310 nm 

Emission 518 nm 

Points/sec 0.2   

Duration 3600 s 

Delay 108 µs 

Int. Time 0.3 µs 

Shots 10   

Frequency 2 Hz 
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Figure 7.1: Full spectra of Uranyl 



 

91 

 

The fluorescence intensity as a function of time curve was then fit with equation 1 in order to find 

the time constant τ. 

𝐼(𝑡) = 𝐼𝑓 + (𝐼𝑜 − 𝐼𝑓)𝑒
−𝑡

𝜏           (1) 

One example of this curve fit is shown in Figure 7.2. 

 

 

 

 

 

 

 

 

Energy-dispersive X-ray Spectroscopy Measurements 

Energy-dispersive x-ray spectroscopy (EDS) was used to measure the weight percentage of 

uranium and the cations in the silica gel samples.  EDS analysis was performed using the Hitachi 

Ultra High-Resolution Analytical FE-SEM SU-70 with EDAX Software. The samples were 

prepared by spreading the silica gel on carbon tape that covered the top of the SEM mount, and 

then they were sputtered with carbon to reduce charging of the samples. The silicon peak was 

allow to reach 120,000 counts before the peak identification was used, and then the weight 

percentages were quantified for each element found. One example of the spectrum collected is 

shown in Figure 7.3. 
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Figure 7.2: Fluorescent intensity as a function of time 
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The spectrum in Figure 7.3 shows the carbon from the sputtering, silica and oxygen from the 

silica gel, sodium and chlorine from the pH adjustment, uranium, and calcium, which was the 

cation for this sample.  

7.3 Results and Discussion 

Stern-Volmer Quenching Coefficients  

The results from the Mn2+, Ca2+, and Li+ cations showed that within the concentration levels used 

in this study, quenching did not occur. Therefore, for natural water, even with the highest levels 

of Mn2+, Ca2+, and Li+, fluorescence is a viable method for detecting trace amounts of uranyl. The 

ions that did quench the fluorescence within the natural concentrations were Mg2+, Na+, and K+. 

Each of the cations were tested at the four concentrations shown in Table 7.5. 

 

 

Figure 7.3: EDS Spectrum for the Calcium cation sample 
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Table 7.5: Concentrations of cations tested. 

 

 

 

Stern-Volmer plots for Na+ and Mg2+are shown in Figure 7.4 below.  

Figure 7.4 shows the linear Stern-Volmer equation as a trend line on each figure. This linear 

trend suggests that the quenching mechanism is bimolecular quenching.  The mechanism is also 

known as collision quenching because the de-excitation is cause by the excited uranyl ion 

coming in contact with the other cation, which provides a non-radiative de-excitation mode. The 

trend line also gives the Stern-Volmer coefficients. Figure 7.4a shows that Na+ has the highest 

quenching with a 45% intensity reduction at the highest concentration. Figure 7.4b shows that 

Mg2+ attenuates the intensity by approximately 25% at the maximum concentration. The Stern-

Volmer coefficients are shown in Table 7.6. 

 Table 7.6: Stern-Volmer Coefficients 

 

 

Ion Concentration (M) 

Mg2+ 0.3 0.15 0.025 0.0025 

Na+ 1 0.7 0.3 0.065 

K+ 0.1 0.075 0.05 0.025 

Ion  Ksv  R2 

Mg2+ 0.825 0.9135 

Na+ 0.3984 0.872 

K+ 0.9711 0.7277 
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Figure 7.4: a) Stern-Volmer plot for Na+, b) Stern-Volmer plot for Mg2+ 
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Table 7.6 shows that even though Na+ has the largest reduction in the intensity, the quenching 

rate per mole is much lower than Mg2+ and K+. Table 7.6 also shows the most effective quencher 

is the K+ ion, but it has the lowest natural concentration.  

Time Constant Results 

The time constant was used to investigate the adsorption kinetics of the uranyl into the nanoporous 

silica gel. The kinetics of this process is governed by the diffusion of the uranyl driven by the 

concentration gradient between the bulk solution and the water inside the pores. The process starts 

by wicking the water containing uranyl into hydrophilic silica gel pores. Once the water penetrates 

the pores, a concentration gradient is established as the uranyl binds to the negatively charged 

silica surface. This diffusion process begins quickly because the negatively charged sites are 

plentiful; however, as the sites begin to fill, the process slows down as the uranyl approaches the 

equilibrium capacity of the silica gel. This results in the behavior shown in Figure 7.2. The uranyl 

time constants in the presence of each of the cations is shown in Figure 7.5 in comparison to a DI 

water control. 

 

 

 

0

250

500

750

1000

1250

1500

1750

2000

2250

DI 0.15M Ca 0.3M Mg 1M Na 0.1M K 0.002M Li 4e-5M Mn

T
im

e 
C

o
n
st

an
t 

(s
)
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Figure 7.5 shows that Mn2+ and Li+ had negligible effects on the time constants because of their 

low concentrations, and very little interaction with the uranyl was observed in the quenching 

study. The remaining four cations reduced the time constant. The largest reduction coming from 

Ca2+ (30.3%). The average reduction from the remaining four cations was 18.4%. This reduction 

is cause by the cations filling the negatively charge surface sites, reducing the number of surface 

sites available to the uranyl. The reduction in the number of sites that can be filled results in a 

lower equilibrium capacity of the silica gel and allows the uranyl to reach the capacity faster.  

 

EDS Results 

EDS was used to measure the weight percent of uranium in the silica gel when exposed to each 

of the cation/uranyl solutions and then compared to the silica that was exposed to only uranyl 

solution. The weight percentages are shown in Figure 7.6.  
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The EDS results show that all of the cations cause a reduction in the weight percent of the 

uranium by reducing the number of surface sites available to the uranium. The reduction in 

weight percent of the uranium means the amount of uranium that could be adsorbed by the silica 

gel was reduced; this lead to the decrease in time constant to reach the capacity. The largest 

reduction in weight percent was seen in the presence of Mg2+. Lithium is not show in the figure 

because it cannot be measured using the EDS system.  

Further evidence of the reduction in equilibrium capacity can be seen by comparing Figure 7.2 to 

the previous study on uranyl kinetics performed by this research group (70). The previous study 

showed a 50% increase in emission intensity over the length of the scan compared to the 

approximately 25% seen in Figure 7.2. This increase in intensity shows that the uptake of uranyl 

by the silica gel was less in the presence of competing cations than it was in the previous study 

without cations, which shows that the cations are occupying a fraction of the surface sites.  

7.4 Conclusions 

Silica gel is commonly used to enhance fluorescence of uranyl, the most common natural form of 

uranium. When using silica gel to enhance fluorescence, it is critical to consider competing 

cations that could exist in natural water systems. The cations that are commonly found in fresh 

water were tested at concentrations that can be found in fresh water sources around the world. 

The cations used were Mn2+, Ca2+, Mg2+, Na+, K+, and Li+. We found that the quenching 

mechanism for these cations is collision quenching, where the cation provides a non-radiative 

mode for de-excitation of the uranyl ion. This mode of quenching was analyzed using the Stern-

Volmer equation, where the slope of the line is the quenching rate. The highest quenching rate 

was found to be K+ followed by Mg2+ and Na+, but, at the concentrations studied in this 

investigation, there was no quenching found in the case of Mn2+, Ca2+, and Li+. In addition to the 
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quenching of fluorescence, the cations also compete for the negatively charged surface sites of 

the silica gel. This competition was studied by measuring the time constant of the adsorption in 

the presence of competing cations and EDS. It was seen that Ca2+, Mg2+, Na+, and K+ all 

decrease the time constant by occupying a fraction of the surface sites and lowering the 

equilibrium capacity of the silica gel, but the lower concentration ions did not impact the time 

constant. The presence of a competing cation could lead to a signal reduction as high as 30% in 

comparison to a water sample containing pure uranyl. The results of this study show that cations 

present in a particular water sample can influence the fluorescence measurement at very high 

concentrations.  
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Chapter 8: Gamma Spectroscopy of Uranium Adsorbed in 

Nanoporous Silica Gel 

8.1 Introduction 

Silica gel is a hydrophilic material that is a common desiccant used for applications such as 

removing moisture from packaging, chromatography, removing ions from solution, refrigeration, 

and enhancing fluorescence (62,63). Removing ions from solution and enhancing fluorescence are 

applicable to the detection of uranium because the uranyl (UO2
2+) ion, which is the most common 

form of uranium in nature, is fluorescent (5,13). The removal of uranyl from solution allows the 

uranium to be concentrated to an easily detectable level, and fluorescence enhancement also assists 

in detection (25,48–50). Fluorescence is used to detect uranium because the uranyl ion has a unique 

emission spectra that is caused by the vibrational modes of the oxygen atoms around the much 

larger uranium atom (1,2,92). The fluorescence enhancement of silica gel has been previously 

studied for chemicals such as Eu3+, La4Ti9O24, and Rhodamine B (69,72). This paper focuses on 

silica gel’s ability to remove the uranyl ion from water. Silica gel removes uranyl ions from 

solution because it has negatively charged surface sites that form hydrogen bonds with the 

positively charged ion. When using silica gel to remove ions from solution, one main concern is 

the equilibrium capacity of the silica, which is the amount of a specific ion that can be trapped in 

a specific amount of silica gel. There have been methods developed to increase the equilibrium 

capacity of silica gel by adding various functional group to the silica gel such as amidoxime, 
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carboxyl, dihydroimidazole, and hydroxyquinoline (64–68). In addition to knowing the capacity, 

it is also important to understand the kinetics of the uptake of uranyl by the silica gel and the effect 

of chemical modifications. The kinetics of the uptake have been measured in static, stirred, and 

pressure driven fluid flow methods (62,70). Once the silica gel has concentrated the uranium, the 

amount of uranium trapped inside the silica gel should be monitored. The amount of uranium 

accumulated within the silica gel can be a concern for individuals that are attempting to properly 

dispose of the silica and uranyl waste. In order to quantify the amount of uranium trapped in the 

silica, the activity of that uranium can be measure using nondestructive assay methods, such as 

gamma spectroscopy.  

Gamma spectroscopy is a common method to detect and measure radionuclides. This method uses 

the measurement of the gamma ray spectra to determine the isotopes present and the activities of 

each isotope. For uranium, the natural isotopes found are 238U (99.275%), 235U (0.720%), and 234U 

(0.005%). Due to the low abundance and small probability of emitting a gamma ray, 234U is often 

not used in the analyses.  In order to properly measure the activity of 235U, multiple gamma rays 

emitted from 235U are measured. These gamma ray energies (and their yields) include 143.76keV 

(10.5%), 163.35keV (4.7%), 185.71keV (54.0%), 202.12keV (1.0%), and 205.31keV (4.7%). The 

primary reason to use multiple gamma rays in the analyses is to improve statistical accuracy and 

to account for potential 226Ra content. 226Ra is a daughter of 238U and emits a gamma ray with an 

energy of 186.21keV, virtually indistinguishable from the primary gamma ray emitted from 235U. 

The 238U decay chain can be seen in Figure 8.1. 
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Figure 8.1: 238U decay chain (93) 

The activity of a radionuclide is a key quantity in determining its concentration in a sample. A 

sample’s activity, A, can be determined from the detector system total efficiency, ε, yield of the 

gamma ray of interest, Y, and count rate recorded by the detector system for the gamma ray of 

interest, C. This relationship is shown in Eq. 1 (94). 

 

 𝐴 =
𝐶

𝜀𝑌
 (1) 

 

To improve accuracy, the activity of a radionuclide is determined using a weighted average based 

on the uncertainty of each measured gamma ray, shown in Eq. 2 and 3 (94). 

 𝐴̅ =
∑ 𝐴𝑖𝑤𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
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 𝑤𝑖 =
1

𝜎𝑖
2 (3) 

 

Where 𝐴̅ is the weighted average radionuclide activity, Ai is the radionuclide activity estimation 

from gamma ray i, wi is the weight of activity Ai, and σi is the uncertainty of activity Ai. 

To measure the 238U isotope, the 766.4keV and 1001.0keV gamma rays from its daughter 234mPa 

are used. This is done due to the fact that 238U does not directly emit easily detectible gamma rays 

(95). 234mPa comes from 238U decaying through an alpha emission to 234Th with a half-life of 

24.1days that then beta decays to 234mPa with a half-life of 6.7 hours (93). These measurements are 

commonly used when determining the enrichment of uranium samples and classifying waste. The 

knowledge gained from this study will be used to ensure that the silica gel used for optical uranium 

detection is handled properly while giving more information about how the uranium is deposited 

within the silica gel.  

 

8.2 Experimental Methodology 

Sample Preparation  

The silica gel used in this study was purchased from Sigma-Aldrich and Acros Organics with 

various different physical characteristics. The manufacturer-reported physical characteristics are 

shown in Table 8.1. 
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Table 8.1: Manufacturer reported physical characteristics for the silica gel 

Item Company Pore Size (Å) Particle Size (µm) Surface Area (m²/g) 

Silica-1 Sigma-Aldrich 22 75-650 800 

Silica-2 Sigma-Aldrich 30 75-150 480 

Silica-3 Acros Organics 40 40-60 750 

Silica-4 Acros Organics 60 40-60 550 

Silica-5 Sigma-Aldrich 100 63-200 300 

 

The silica gel was placed inside a pouch made of 28µm nylon mesh, which was flame sealed to 

create a pouch that is a 1-inch square. Each pouch was filled with 250mg of silica gel.  

Uranyl nitrate salt purchased from American Master Tech was used to create the 0.01M solution 

with a uranium enrichment below 0.3% 235U.  

The silica gel pouches were then exposed to uranyl in two different ways. The first method used a 

pump to force the solution through the silica gel that was set up to act as a filter. The silica gel 

pouch was placed in a flow cell that orients the silica gel pouch perpendicular to the direction of 

flow. In this configuration the solution was pumped through the pouch at a flow rate of 0.946L/min 

for 20seconds which is sufficient to deposit a detectable amount of uranyl in the silica based on 

data from a previous study (5). The second method soaked the silica gel in a static uranyl solution 

for three days to allow the uranyl to fully saturate the silica gel based on the data from a previous 

study (19).  The two methods were used to test how the uranyl is deposited in the silica under 

pressure driven flow verses natural diffusion.  

Five samples of each silica gel were place in a plastic petri dish that was sealed. Then each petri 

dish was analyzed using gamma spectroscopy to measure the activity of the samples and calculate 

the mass of the uranyl accumulated in the silica gel pores. The total mass of silica gel in each petri 

dish was 1.25g. 
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Gamma Spectroscopy Measurements 

A LabSOCS characterized high-purity germanium (HPGe) detector system was used to assay the 

silica gel samples. The detector system is a 40% relative efficiency coaxial germanium p-type 

detector in a Canberra Model 747 four-pi shield. To reduce lead x-ray interference at low gamma 

ray energies, the shield uses a graded system consisting of 1mm of tin, 1.6mm of copper, and 

100mm of lead (96). The HPGe detector used has an energy range of 40keV to 10MeV and an 

energy resolution of 1.2keV at 186keV and 1.7keV at 1001keV (97) The detector is accompanied 

by a liquid nitrogen Canberra Cryo-Cycle II, which keeps the detector at an operating temperature 

around 77K (98). The multichannel analyzer (MCA) used to collect the data was the Canberra 

DSA 2000. The MCA had an output voltage of 4000V and was set to collect data using 8192 

channels. Canberra’s Genie 2000 with Lab SOCS software was used to collect and analyze the 

data (99–101). The course and fine gain settings were adjusted to allow for gamma ray 

measurement data to be collected over the energy range of 0keV to 4.2MeV, approximately 0.5keV 

per channel. The detector was energy calibrated using 11 different gamma-ray energies emitted 

from a 152Eu point source. An efficiency calibration was also done using Canberra’s Geometry 

Composer. The model created matches the geometry of the silica gel samples during the 

measurements. This geometry consists of a cylinder with height 11mm and diameter 43mm placed 

2mm from the HPGe detector surface and aligned with the center of the detector. A 253hour 

background measurement was acquired with the HPGe detector system which was used to subtract 

background from the silica gels’ spectra. The silica gel samples were individually measured for 

varying amounts of time depending on the HPGe detector system availability, with most common 

duration consisting of 15hours. An example detector spectrum is shown in Figure 8.2 for a 26hour 
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measurement of the silica-5 natural diffusion sample approximately 2days after being removed 

from the uranyl. 

 

Figure 8.2: Gamma spectra of the silica-5 natural diffusion sample 

Data Analysis 

The background-subtracted gamma ray spectra were analyzed using Genie 2000 gamma analysis 

software. The number of counts in each gamma ray peak of interest and radionuclide activity were 

determined using the software’s default peak analysis sequence. The Gaussian fit of each peak was 

verified for accuracy using the software’s interactive peak fit. The modeled geometry was verified 

using the software’s Line Activity Correlation Evaluator which can help identify discrepancies in 

the modeled sample’s density, thickness, and elemental composition. The activity of 238U in the 

sample was determined from that of 234mPa. This is only valid when these two radionuclides are in 

secular equilibrium and can give the false impression that the 238U activity is changing with time 

if they are not in secular equilibrium. The transient activity of 234mPa, shown in Eq. 5, can be 

derived from the initial activity equation, Eq. 4. This derivation can be found in most introductory 

nuclear engineering textbooks as well as at (102). 
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 𝑑𝑁𝑈

𝑑𝑡
= 𝜆𝑈𝑁𝑈 (4) 

 

 
𝐴𝑃𝑎(𝑡) =

𝜆𝑃𝑎𝐴𝑈
0 (𝑒−𝜆𝑈𝑡 − 𝑒−𝜆𝑃𝑎𝑡)

𝜆𝑃𝑎 − 𝜆𝑈
+ 𝐴𝑃𝑎

0 𝑒−𝜆𝑃𝑎𝑡 (5) 

 

Where NU is the number of 238U atoms in the sample, λU is the decay constant for 238U, 𝐴𝑈
0  is the 

initial 238U activity in the sample, λPa is the decay constant for 234mPa, APa(t) is the 234mPa activity 

in the sample at time t, 𝐴𝑃𝑎
0  is the initial 234mPa activity in the sample, and t is the time since 

exposing the silica gel to uranyl nitrate.  

The mass of 235U and 238U can be calculated in each sample using the fundamental activity 

equation, Eq. 6, and substituting a derived term, Eq. 7, for the number of radioactive atoms, Eq. 8. 

 𝐴𝑖 = 𝑁𝑖𝜆𝑖 (6) 

 

 
𝑁𝑖 =

𝑁𝐴𝑚𝑖

𝑀𝑖
 (7) 

 

 
𝑚𝑖 =

𝐴𝑖𝑀𝑖

𝑁𝐴𝜆𝑖
 (8) 
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Where Ai is the activity in the sample for uranium isotope i, Ni is the number of atoms in the sample 

for uranium isotope i, λi is the decay constant for uranium isotope i, NA is Avogadro’s number, mi 

is the mass of uranium in the sample for uranium isotope i, and Mi is the molar mass for uranium 

isotope i. 

The uranium isotopic masses can be partially verified by comparing their measured values to the 

declared uranium enrichment of the sample, E. This is shown in Eq. 9, assuming the mass of other 

uranium isotopes is negligible. 

 
𝐸 = (1 +

𝑚238

𝑚235
)

−1

 (9) 

8.3 Results and Discussion 

Secular Equilibrium 

The radioactive material being assayed for this project is silica gel containing adsorbed uranium. 

What is not precisely known is the amount of protactinium that was absorbed in relationship to 

238U. Because of this, periodic measurements of the silica gel samples were performed to determine 

if 234mPa and 238U are in secular equilibrium. These measurements span a 160 day period after the 

silica gel samples were removed from the uranyl solution. The limiting half-life in 234mPa-238U 

secular equilibrium is that of 234Th at 24.1 days. By measuring the samples 160 days (6.75 half-

lives) after uranyl exposure, 234mPa-238U are at least 99.1% within their secular equilibrium 

activities. This can be seen in Figure 8.3 as the activity of 234mPa approaches an asymptotic value 

with time.  
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Figure 8.3: Activity as a function of half-life for 234mPa 

Figure 8.3 shows that the initial activity (mass) of 234mPa was greater than that of its secular 

equilibrium value. This means that protactinium is more likely to be adsorbed by the silica gel than 

uranium. As predicted by decay theory, the 234mPa activity reaches its asymptotic secular 

equilibrium value within 6.75 half-lives, within measurement uncertainty. Performing a least 

squares analysis on Eq. 5 with the data shown in Figure 8.3, an estimate of the initial 234mPa activity 

in the sample can be made for each silica sample. These results, shown in Table 8.2, indicate that 

protactinium is approximately twice as likely to be absorbed in silica gel as uranium, regardless of 

pore size. 

Table 8.2: 234mPa and 238U initial activities based on best fit curves for each silica gel sample 

Item Initial 234mPa activity (Bq) Initial 238U activity (Bq) 

Silica-1 247 133 

Silica-2 375 160 

Silica-3 439 202 

Silica-4 475 168 

Silica-5 390 186 
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Uranium Enrichment Validation 

A validation check can be performed with the measured 235U and 238U activities by comparing the 

measured uranium enrichment to the declared value. This is shown in Table 8.3 for each silica gel 

sample. The measured results indicate that the uranium enrichment of each silica gel sample is 

statistically the same and that the average uranium enrichment is 0.192% ± 0.014%. This is within 

the declared value of less than 0.3% 235U. 

Table 8.3: Measured uranium enrichment with uncertainty for each silica sample 

Item Enrichment Uncertainty 

Silica-1 0.193% 0.015% 

Silica-2 0.190% 0.015% 

Silica-3 0.184% 0.013% 

Silica-4 0.200% 0.015% 

Silica-5 0.193% 0.013% 

 

Diffusion Samples 

The diffusion samples were used to show how much uranyl can be deposited in a specific mass of 

silica. The theoretical maximum uranium mass that could be deposited in the silica is 197mg from 

the amount of solution in which the silica gel samples were placed. The total uranium mass in each 

silica gel sample was determined by taking a weighted average of the 235U and 238U measured data. 

The results from the diffusion samples are shown in Figure 8.4 below. 
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Figure 8.4: Weighted average total uranium mass captured per silica surface area as a function of 

silica gel pore size 

A proportional trend with surface area that was based on the number of negatively charged surface 

sites was expected, but this was not seen in the results. Figure 8.4 shows an approximate linear 

increase in accumulated mass per surface area with increase in pore size. This trend shows that the 

pore size has a significant effect on the surface sites that can be reached by the uranyl. This 

relationship with permeability is seen because silica gel surface area is measured using nitrogen 

gas adsorption, but at the lower pore sizes, the uranyl solution cannot reach the same surfaces as 

the nitrogen gas. The adsorption process is controlled by diffusion of uranyl into the silica gel 

pores, but it is limited by the permeability of the silica gel.  

Filtration Samples 

The filtration samples were placed in a flow cell that oriented the silica gel perpendicular to the 

flow of the solution. This method significantly increased the kinetics of the adsorption. Each 
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sample was placed in the flow conditions for 20 seconds, which allowed 6.214mg of uranium to 

pass through the silica gel filter. Unlike the diffusion samples, the uranium mass results from the 

filtration samples were determined from only the 235U data. This was due to the fact that the 

measurements of the filtration samples were taken shortly after passing the uranyl nitrate through 

the silica gel samples. The results from the mass accumulated in the silica gel under these 

conditions are shown in Figure 8.5.  

 

Figure 8.5: Mass of uranium captured as a function or silica gel pore size under flow conditions 

Figure 8.5 shows that the uranium captured in the silica gel had an approximate linear trend, within 

uncertainty, with pore size which matches the permeability trend seen in the previous study. Figure 

8.5 also shows that under the flow condition, there was significantly less uranyl deposited than in 

the diffusion samples. This indicates that when the silica gel does not accumulate enough uranium 

to limit the number of available surface sites, the deposition of uranyl is likely dependent on pore 
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size. Based on the amount of uranyl that passed through the silica gel, the filtration efficiency was 

calculated and is shown in Table 8.4.  

 Table 8.4: Filtration Efficiency 

 

 

 

The filtration efficiency shows that the silica by itself is not a very effective filter media for 

removing uranyl ions but is able to accumulate an easily detectable amount of uranium in a short 

period of time. This filtration efficiency may be improved by the addition of some functional 

groups that have been added to improve the equilibrium capacity.  

8.4 Conclusions 

Silica gel is a common material that is used to remove ions from solution, including the uranyl ion.  

It is used to remove uranyl from solution for fluorescent detection because it also enhances the 

fluorescence. When removing uranyl from solution, silica gel produces relatively pure uranium 

that can be removed from the silica gel through basic chemical processes. In the small quantities 

that are typically found in nature, this would not be a concern, but if a large amount of silica 

containing uranium is collected the samples could be deemed more than simple chemical waste. 

The testing to access this possibility led to greater insight into the mechanisms that control the 

uranyl deposition. In the case of pure diffusion being the driving force, it was seen that the 

permeability of the silica controlled the deposition until the pore size reached 40Å. Above 40Å, 

the surface area has a limiting effect because the lower surface area makes it difficult for the uranyl 

to reach open surface sites. On the other hand, when the silica gel is used as a filter, permeability 

Item Efficiency 

Silica-1 1.80% 

Silica-2 1.66% 

Silica-3 4.85% 

Silica-4 5.26% 

Silica-5 7.04% 
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is the limiting factor because the surface sites are not near capacity based on the low mass that was 

deposited. The filtration samples also show that the silica gel is not the most efficient filter media 

and could be improved by the addition of functional groups that have been used to improve 

equilibrium capacity. While silica gel is not the most efficient filter, it does accumulate easily 

detectable levels of uranyl in a short period of time which makes it an excellent candidate to be 

used as a detection enhancement material.  
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Chapter 9: Conclusions 

When evaluating the adsorption of uranyl into mesoporous silica gel, there were two parameters 

that needed to be addressed: kinetics of adsorption and the equilibrium capacity. The kinetics of 

adsorption were tested under various conditions including static fluid, flow conditions, and 

different concentrations. In the static fluid test, it was determined that the time constant of 

adsorption was on the order of an hour. The time of adsorption in the static fluid is slow because 

it is governed by diffusion from the bulk solution into the pore and surfaces of the silica gel. This 

process in the static fluid is also limited by the permeability of the silica gel which is shown by 

the reduction of the time constant with the increase in silica gel pore size. The time constant was 

then evaluated at various fluid velocities. The results showed that there was a critical velocity of 

0.36 cm/s at which there was no further reduction in time constant by increasing the fluid 

velocity. The time constant at the critical velocity reached a minimum of two seconds. This 

critical velocity was the point at which the supply of uranyl to the surface was equal to the rate of 

removal of uranyl from the solution by bonding with the silica gel. The critical velocity was 

dependent on the concentration of the solution which lead to the testing of how concentration 

affects the kinetics. The concentrations were tested by determining the time it took to reach a 

specific threshold. The threshold was set to be within the linear region of the uptake curve. The 

response time to reach the threshold point was seen to have an inverse relationship with the 

concentration. This relationship lead to the development of a time-based method to detect trace 
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amount of uranium in water.  The time-based method of detection was incorporated to create a 

table top instrument for detection of trace amount of uranium in water.  

 The table top instrument was first used without the time-based detection method to 

determine the setting needed to detect low concentrations. The baseline settings resulted in a 

base line detection limit of 3.9 ppb which is one order of magnitude below the EPA MCL for 

uranium in water.  The limit was achieved at the Vcontrol setting of 0.77 V. The Vcontrol setting 

of 0.77 V left a large margin for improvement because it can be increased to 1.1 V with the 

current hardware. Once the time-based detection was implemented, the Vcontrol was decrease to 

0.63 V and was still able to reach the same limit easily. The true lower limit of detection has yet 

to be reached using the time-based system. The time-based method has more margin for 

improvement beyond the Vcontrol because the threshold that must be reached can be adjusted as 

long as the signal-to-noise ratio is maintained. The threshold can be used to set the range of 

concentrations that can be detected by the instrument and can be adjusted based on the 

information needed. In addition to designing the hardware, the program was also designed to 

improve detection by implementing gated detection based on the lifetime of the uranyl 

fluorescence which can be used to elimination contaminants that have similar spectral 

characteristics to uranyl.  

 The use of the fluorescent lifetime to eliminate contaminants lead to further study of how 

the lifetime could be affected by the environment. The factors that were tested were the pore size 

of the silica gel, pH of the solution, and the water content in the silica gel. It was seen that at pore 

sizes below 40 Å, the lifetime increased by as much as 20 µs between the 40 Å and 22 Å pore 

sizes. It was also seen that the smallest pore size had a blue spectral shift that, with the extended 

lifetime, is indicative of quantum confinement. The pH study showed that as the pH increased 
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from acidic (3.96) to neutral (6.59), the lifetime increased by 40 µs due to the predominate 

complex formed changing from UO2SiO2  to UO2SiO2OH-. When UO2SiO2OH- is the 

predominated complex the lifetime is extended because UO2SiO2OH- has a significantly longer 

lifetime than the UO2SiO2. The lifetime was also affected by water being present in the silica gel 

because when the water is removed, (UO2)2SiO4 is formed. Uranyl silicate was identified by its 

528 nm spectral peak, and it caused a decrease in lifetime.  

 In addition to the study of lifetime to eliminated fluorescent contaminants, additional 

non-fluorescent contaminants were tested to see how they would affect the detection of uranium. 

The non-fluorescent contaminants tested were Mn2+, Ca2+, Mg2+, Na+, K+, and Li+. These are 

quenchers of fluorescence that also affect the adsorption into silica gel because of their positive 

charges. These cations were selected because they all exist in natural fresh water, and they were 

each tested at their maximum natural concentrations. To quantify the fluorescent quenching 

caused by the cations, the Stern-Volmer equation was used to determine the quenching rate as a 

function of contaminant concentration. It was determined that at the highest natural 

concentrations, Mn2+, Ca2+, and Li+ did not cause any quenching. The remaining three 

contaminants were tested, and it was determined that K+ was the most effective quencher with 

the highest quenching rate, but it also has the lowest natural concentration. The Na+ cation 

caused the largest reduction in intensity because it has a high natural concentration, but it 

actually has the lowest quenching rate of the three cations. The reduction in fluorescent intensity 

could result in an underestimation of the uranium concentration, but the quenching rates could be 

used to correct for the cations present if the concentration of the contaminants are known. The 

same cations were tested to see how they affect the kinetics of adsorption by measuring the static 

fluid time constant in the presence of the cations. Mn2+ and Li+ had negligible effects on the time 
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constant due to their low natural concentrations. The remaining four cations all caused a decrease 

in the time constant. This decrease was caused by the contaminant cations taking some of the 

negatively charge surface sites on the silica gel surface, which caused a reduction in the number 

of surface sites available to uranyl. The reduction in surface sites decreased the equilibrium 

capacity for uranyl which lead to the reduction in time. The result was also confirmed with the 

reduction in the weight percent of uranyl in these samples that was seen in the results from the 

EDS analysis of the samples. The resulting time constant change could lead to an over estimation 

of the uranium concentration when using the time-based method of detection. The change in 

weight percent of uranium present in the silica gel showed that the capacity of the silica gel is 

critical when additional ions are present. 

The capacity of the silica gel was tested using gamma spectroscopy to measure the mass of the 

uranium accumulated in the silica by diffusion in static fluid and under flow conditions. It was 

seen that in the static conditions, the permeability still affects the amount of uranium that can be 

accumulated in the silica gel. The permeability affect is caused by the amount of surface area 

that can be reached by the water is different than the surface area measured with gas adsorption. 

Therefore, the largest pore size allows the most uranium to be deposited even through it has a 

lower surface area. Under flow condition it was seen that very little of the uranium that passes 

through the silica gel gets adsorbed by the silica gel with a maximum accumulation of only 7%. 

This shows that the fluid is mostly flowed around the silica gel which further reduced the number 

of surface sites the uranyl can reach. When under the flow condition, very little of the uranyl is 

accumulated in the silica gel, but the amount that was accumulated is still enough to reach easily 

detectable levels in a short period of time.  
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All of the results from this work will be included in the final prototype of the hand-held device 

for detection of trace amount of uranium. These results will be incorporated with the addition of 

a pH probe and a method to input the concentration of common cations. In addition to these 

corrections, the final prototype will include a spectrometer, a flow cell that can run multiple 

samples without the need to be replaced, a touch screen display or a method to link to a hand 

held device, and a portable power supply. The spectrometer will eliminate the need for optical 

filters and increase the capabilities of the device to potentially detect other fluorophores found in 

water. The improved flow cell with use the same flow pattern as the optimized version, but the 

new design will be incorporated to house multiple samples that can be easily changed. The touch 

screen display will allow the user to input necessary data such as known cations that are present, 

and it will give a method to display the concentration after detection and monitor the spectrum. 

These addition will all have to be low power components in order to be incorporated into the 

portable device that will be battery powered.  
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