

Capstone Design Expo Posters

College of Engineering

2017

Method and Apparatus for Removal of Phosphate from Wastewater Streams

Steven Skeels Virginia Commonwealth University

Arjun Subedi Virginia Commonwealth University

Fred Williams Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone Part of the <u>Chemical Engineering Commons</u>

© The Author(s)

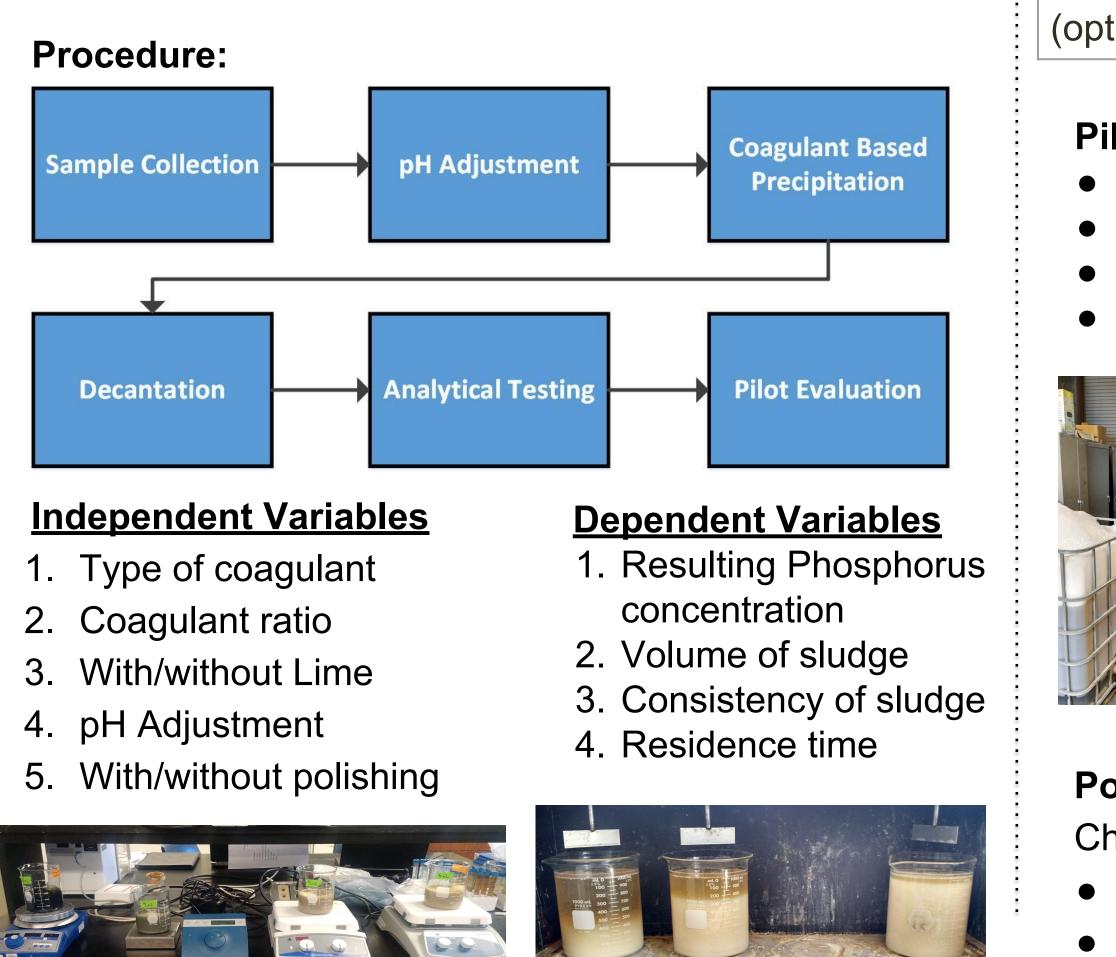
Downloaded from https://scholarscompass.vcu.edu/capstone/151

This Poster is brought to you for free and open access by the College of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

CHEMICAL & LIFE SCIENCE ENGINEERING Method and Apparatus for Removal of **Phosphate from Wastewater Streams**

CLSE 208 | Team members: Steven Skeels, Arjun Subedi, Fred Williams | Faculty adviser: Dr. Ben Ward Sponsor: Church & Dwight, CO. | Sponsor adviser: Nick Johnson, Carl Terry

Background


Church and Dwight's wastewater contains high concentrations of phosphate; current non-optimized disposal costs \$100K annually.

Project Goal - Develop a process to reduce cost of phosphate disposal, which will:

- A. Treat varying quantities and concentrations
- B. Avoid interfering with downstream processes

Approach

- Separate phosphate via precipitation and filtration
- Develop chemistry by Design of Experiment
- Scale-up and adjust chemistry as needed

VCU Jar Test

Church and Dwight Jar Test

Results

Lab Scale

	PC-1101	Ferric Chloride	Cerium Chloride
Lowest Conc. (as P)	*0 ppm Nominally: 0 - 80 ppm	*0 ppm Nominally: 50 - 80 ppm	1500 ppm
Sludge	Moderate	Highest	Lowest
Final pH (optimal result)	6.5 - 7	5 - 6	5 - 6

*Below detection limit

Pilot Scale

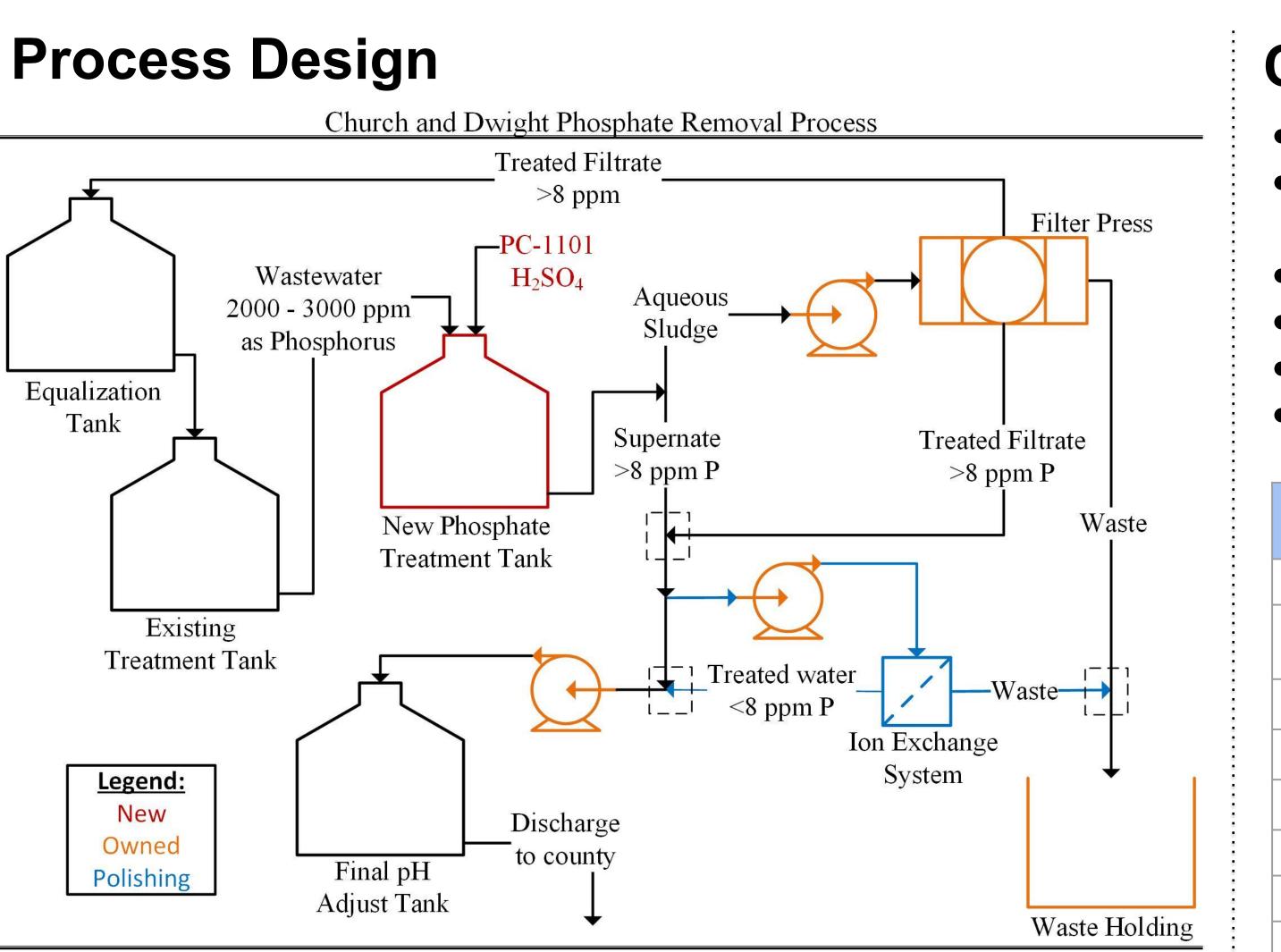
- 200 gallon in-plant trials
- Jar test run in parallel for comparison
- Results validated lab-scale methodology
- Residence time increased

Polishing Step

ChemTreat ion exchange system

- Reduces concentration to 0 ppm after precipitation
- Reduces process variability/guarantee wastewater meets county limits
- High cost limits value added to system

Equalization Tank


Existing **Treatment Tank**

Senior Design 2016-2017

Economic Analysis Capital Cost Estimate

		Old Equipment	New Equipment
Equipment	#	Estimated Cost	Estimated Cost
Contingency	1	\$2,000	\$2,000
Treatment Tank	1	\$18,000	\$18,000
Agitator	1	\$10,000	\$10,000
Filter Press	1	-	\$15,000
Solid Waste Holding	1	-	\$3,000
Pumps	3	-	\$0
Installation	-	\$20,000	
Total Capita	al:	\$50,000	\$68,000

Operational Cost Estimate

Requirement	Quantity	Estimated Annual Cost
PC-1101	160,000 lbs	\$44,800
Sulfuric Acid	20,000 lbs	\$2,000
Remaining Phosphorus	~15 ppm discharged	\$10,000
Waste Disposal	100 tons	\$3,000
Electricity		on Equipment, nal Cost
Filter Media	Frequency TBD	
Polishing Step	1	\$40,000
Annual Cost wit	\$59,800	
With	\$99,800	

CLSE208

Conclusion

- Precipitation by PC-1101, ~2% by volume per batch • Optimal pH for precipitation is 6.5 - 7, meeting county
- requirements
- Demonstrated in-plant pilot trial validated approach
- Proposed process meets need, saving ~\$40K/yr
- Max payback period of 1.32 years
- Avoid polishing step

equirement	Old Equipment	New Equipment	
Capital Cost	\$50,000	\$68,000	
Operational Cost	\$59,800	\$59,800	
PBP (years)	1.32	1.76	
ROI	52%	13%	
NPV	\$25,832	\$8,834	
Estimated P	0 - 50 ppm		
Strength	Lower cost	Dedicated equipment	
Weakness	Relies on downstream dilution May require polishing in the future	Relies on downstream dilution May require polishing in the future High capital cost	

Recommendations

- Implement proposed process to save ~\$40K/yr • Examine value of a pretreatment and/or polishing step as needed
- Evaluate coagulant ratios to optimize cost and phosphate removal
- Implement settling technology to lower residence time • Identify additional methods to remove other total
- suspended solids (TSS)

