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Abstract 

NMDA RECEPTOR-MEDIATED SYNA PTIC PL ASTICITY IN 
DEVELOPING MAMMALIAN VISUAL PATHWAYS 

By Gregory S. Perens, BA 

A thesis submitted in partial fulfillment of the requirements for the degree 
of Master of Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 1995. 

Major Director: Ary S. Ramoa, M.D., Ph.D., Department of Anatomy 

Precise connections in many mammalian nervous systems require a 

great deal of remodeling during development. In the visual system, many 

excess synapses are originally formed in the lateral geniculate nucleus and 

striate cortex. Only the correct set of axon terminals are retained during 

normal development, while imprecise ones withdraw. The mechanism by 

which only correct axons are retained requires neural activity, and may be 

regulated by specific receptors at synapses. 

The transmission of neural signals at these synapses is carried out 

in part by the glutan1ate-activated NMDA receptor. It is hypothesized that 

NMDA receptor activation plays a crucial role in enhancing only those 
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connections in the immature system which will form a retino-topically 

correct map in the LGN and cortex. NMDA receptor activation requires 

depolarization of the neuron n1embrane. Possibly, only neurons 

transmitting information from nearby areas in the retina summate to 

produce NMDA receptor- mediated currents. The result is an influx of 

Ca++ ions that has been shown to cause trophic effects within the cell that 

could enhance the SYJL::'lptic connection. Thus, NMDA receptors may act to 

detect coincident neural activity in in1mature animals, thereby allowing 

only visuo-topically related axon terminals to undergo enhancement of 

synaptic transmission and structure. As development proceeds, NMDA 

receptor function decreases, possibly reducing these intracellular effects. 

Blocking NMDA receptor activation experimentally does alter the 

normal set of connections in the visual systen1. Yet, is there a direct cause

and-eff ect relation between NMDA receptor activity and anatomical 

changes? Many cellular events probably result from NMDA-mediated 

currents. Intracellular changes in phosphorylation states and protein 

levels could eventually alter a synapse at the anatomical level. Study of the 

changing NMDA receptor subwlit types making up the receptor within 

visual system structures could reveal, in part, the means by which 

plasticity is down-regulated The experimental regulation of these subunits 

in vivo could reveal important information concerning their specific 

function if plasticity and development were to be altered as a result. A 

summary of previous studies, and proposals for further research 
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concerning the role of the NMDA rece ptor and its various ty pes in 

developing visual pathways are presented in this manuscript. 



INTRODUCTION 

The adult mammalian visual system is characterized by highly 

complex and precise patteITIS of neural connectivity. Remarkable examples 

of such precision in connectivity are the topographic ordering of projections 

and segregation of inputs from the two eyes at successive levels of visual 

information processing. Ganglion cells from each eye project to the lateral 

geniculate nucleus (LGN) on both sides of the brain. Retinal axons 

within the LGN terminate in separate eye-specific layers that receive 

afferents from one single retina. Relay neurons in the LGN then project to 

neurons in layer 4 of the primary visual cortex, where information from 

each eye is again kept segregated in alternating patches. These patches 

represent the systen1 of ocular dominance columns at the level of Layer IV. 

How are these highly ordered sets of axonal connections present in the 

adult central nervous system forn1ed during development? 

Remarkably, neither the layers in the LGN nor the cortical columns 

are present initially during development. Thus, the laminar organization 

present in the adult LGN of ferrets, cats, nonhuman primates, and 

humans is not present during early development, when retinogeniculate 

1 
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connections are diffuse and display extensive overlap of the contra- and 

ipsilateral retinal fibers ( Rakic, 1976; Linden et el., 1981; Shatz, 1983). 

Complete segregation of retinal afferents from each eye occurs 

concurrently with the cytoarchitectonic differentiation of the LGN layers. 

The eye-specific layers emerge as axons from the two eyes gradually 

remodel by withdrawing branches that are formed in inappropriate 

territocy and further growing branches that have formed in the appropriate 

territory (Sre�'lvan and Shatz, 1986). 

Ocular dominance colun1ns in the visual cortex also form from an 

initial condition of intermixed LGN inputs related to the two eyes. Thus, 

initially neurons in cortical layer IV receive functional inputs from LGN 

afferents representing both eyes (Levay et al., 1978, 1980) and ocular 

segregation emerges subsequently. Interestingly, the formation of the LGN 

layers occurs before ocular dominance columns appear within the cortex. 

Thus, formation of layers in the LGN occurs even before eye-opening, and, 

thus, before visual activity is possible, during approximately the first two 

postnatal weeks in the ferret (Linden et al., 1981) and during fetal life in 

cats (Shatz, 1983) and primates (Rakic, 1976). In contrast, formation of 

ocular dominance columns occurs postnatally in cats and monkeys (Levay 

et al, 1978, 1980), at a tin1e when visually driven activity has already started 

Patterned visual activity is critical for the formation of ocular dominance 

columns. In sumn1ary, acquisition of the precise pattern of adult 

connectivity in the visual systen1 requires extensive remodeling of 
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connections probably involving elimination of inappropriate synapses 

(Campbell and Shatz, 1992). How do inputs representing the two eyes 

segregate to form eye-specific layers in the LGN and ocular dominance 

columns in the primary visual cortex? 



Activity-Dependent Mechanisms During Development 

In this manuscript, evidence will be reviewed that indicates neuronal 

electrophysiological activity, especially involving the N-methyl-D-aspartate 

(NMDA) subtype of excitatory amino acid receptor, regulates remodeling of 

visual connections during development. It has been appreciated for several 

years that the electrical activity of neurons is fundamental for maturation 

of form and function in the mammalian brain (for a review, see Goodman 

and Shatz, 1993). The classical work of Wiesel and Hubel on the effects that 

visual deprivation (Wiesel, 1963) has on the maturation of form and 

function in the visual cortex has provided critical insight into the role of 

activity in neural remodeling. These authors have discovered that if one eye 

is deprived of vision by closing the eyelids for at least a few days, the 

majority of neurons in the visual cortex respond only to the eye that 

remained open (in contrast, in the normal cortex, the majority of neurons 

are binocularly driven). In addition to this physiological shift in ocular 

dominance, it has been shown that the anatomical organization of LGN 

axons within layer IV also changes. Following a period of monocular 

deprivation, axons representing the open eye occupy most of layer IV, 

4 
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whereas in normal animals they would occupy approximately half of this 

layer (Hubel et al, 1977). Activity-dependent competition for synaptic 

contacts between axon terminals from the two eyes for layer IV neurons 

was proposed to drive the formation of ocular dominance columns during 

normal and abnormal development. The greater activity displayed by 

neurons driven by the open eye provides them with an advantage in the 

competition for synaptic terminals within the cortex. As a result, the 

deprived eye terminals lose com1ections within layer IV while connections 

from the open eye are stabilized 

In the LGN in particular, recent results have indicated that neuronal 

electrophysiological activity plays a critical role in binocular segregation. 

Thus, the reduction of activity by blockade of voltage-dependent sodium 

channels (Shatz and Stryker, 1988) or blockc'lde of N-methyl-D-aspartic acid 

receptors (Hahm et al., 1991) in LGN neurons prevents normal maturation 

of connectivity. Since eye-specific layers in the LGN are forn1ed before the 

retina is mature enough to detect light stimuli, it is likely that spontaneous 

visual activity plays a critical role in neural remodeling. Consistent with 

this possibility, recent results have shown that the retinal ganglion cells 

are spontaneously active during early fetal life (Galli and Maffei, 1988; 

Meister, et al, 1991). These findings raise the questions of how does activity 

influence the process of neural remodeling during development, and what 

role do NMDA receptors play in activity-dependent neural remodeling? 



Activity-Dependent Mechanisms and the Role of NIVIDA Receptors 

As discussed in the previous section, the amount and pattern of 

activity at the retinogeniculate and geniculocortical pathways may 

determine whether synapses are eliminated or stabilized during 

development of the LGN and visual cortex, respectively. According to a 

model initially proposed by D. 0. Hebb (Hebb, 1949) to explain mechanisms 

of learning, synapses are strengthened where activity coincides with target 

cell depolarization sufficient to trigger action potentials. Stent (1973) has 

argued that synchronous synaptic activation and firing of action potentials 

by the postsynaptic neuron protects neurotransmitter receptors within the 

active synaptic area. In contrast, synapses would be weakened where 

activity is not correlated with post-synaptic activation (Stent, 1973). 

The Hebbian model of potentiation as further elaborated by Stent may 

explain ocular don1inance plasticity. In the n1onocular deprivation 

experiments of Wiesel and Hubel (1963), a sufficient level of synchronous 

activity would occur at geniculocortical synapses chiven by the open eye to 

generate action potential activity in cortical neurons. This would in turn 

lead to strengthening of the activated synapses. In contrast, synapses 

driven by the deprived eye would not be activated in synchrony with action 

6 
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potential activity in the target neurons. These synapses would be weakened 

and eventually lost. 

Evidence supporting the Hebbian model of synaptic plasticity during 

visual system develop1nent has been reported recently. In animals that had 

received intraocular injection of tetrodotox.in to block retinal ganglion cell 

activity, it has been shown that direct electrical stimulation of optic nerves 

may lead to rearrangements in geniculocortical connectivity (Stryker and 

Stcykland, 1986). When right and left eye retinal fibers were stimulated at 

slightly different tin1es, asynchronously, separation of geniculocortical 

terminals into eye-specific colun1ns was found to occur. In contrast, 

concurrent stimulation of the two sides did not lead to the segregation. 

The NMDA subtype of excitatory an1ino acid receptors may play an 

important post-synaptic role in Hebbian mechanisms of plasticity. 

Consistent with this possibility, it has been shown that blocking NMDA 

receptor activation in cortical layer IV by continuous application of a 

specific NMDA receptor antagonist, D-APV, can block the effects of 

monocular deprivation (Kleinschmidt, et al, 1987). Thus, most neurons in 

the cortex of untreated anin1als responded only to stimulation of the open 

eye, while in the D-APV treated animals, a large percentage of neurons 

were chiven by the deprived eye. If NMDA receptors are indeed involved in 

visual plasticity, how can they detect the relative amounts of activity at 

synapses? Further1nore, does their activation contribute to the 

strengthening of a syrL:'1 pse? 



Biophysical Prope1iies of NMDA Receptors 

The biophysical properties of the NMDA subtype of excitatory amino 

acid receptors suggests that it n1ay play a post-synaptic role in activity

dependent increases in synaptic strength (for a review, see Constantine

Paton, et al, 1990). The most unique property of the NMDA receptor is that 

the associated ion channel is blocked by Mg++ at the resting membrane 

potential and hyperpolarized voltage potentials (Nowak, et al, 1984; Mayer, 

et al., 1984). Glutamate binds the receptor, but activation also requires 

removal of the magnesium ion within the associated channel. Whole-cell 

recordings conducted in non1inally-free Mg++ solution revealed that 

NMDA receptor-induced inward and ouhvard cun·ents vary linearly with 

the voltage. In contrast, 550uM Mg++ added to the bathing medium greatly 

diminished the inward currents at negative but not positive potentials. 

Single channel properties siinilarly changed markedly at negative 

recording potentials when Mg++ was applied to the mediun1 (Nowak, et al, 

1984). Thus, the mean open tin1e of channels was lowered from 4. 7ms in 

Mg++ free solution to 1.21ns in lOuM Mg++, and to .7ms in lOOuM Mg++. 

However, the nwnber and duration of short closings of the channels 

8 
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increased during application of magnesium. The average burst time (a 

group of channel openings occwring less than 5ms apart from each other) 

decreased from 5. 7ms in Mg++ free solutions to 3.2ms in l00uM Mg++. 

The Mg++ ion block may 1uake the NMDA receptor ideally suited as a 

detector of the amount of activity occurring at a synapse. Thus, NMDA 

receptors would become optimally activated when a critical amount of 

neural activity causes first a substantial depolarization of the post-synaptic 

membrane through other ion channels, and the release of glutamate. 

When the membrane is sufficiently depolarized by strong synaptic 

activation of non-NMDA excitatory receptors, such as may occur when 

neighboring retinal ganglion cells connected to the same LGN neuron (or 

neighboring LGN neurons connected to the same cortical neuron) fire 

synchronously, Mg++ blockade of the NMDA channels is relieved and the 

cell is further depolarized. When this happens, intracellular Ca++ enters 

the cell via the ionic channel linked to the NMDA receptor and the 

concentration of intracellular Ca++ has been shown to increase 

(MacDermott et al., 1986). Titls increase is due specifically to the activation 

of NMDA receptors, since when Mg++ ion were added to the extracellular 

milieu, the Ca++ build-up was found to take place only at depolarized 

potentials (MacDermott, et al., 1986). The influx of Ca++ ions may have 

important trophic effects on the neuron. Since Ca++ regulates many 

intracellular cascades, including phosphorylations, NMDA receptor 

mediated Ca++ influx might affect synaptic sW'vival during development. 
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For this reason, it has been proposed that Hebbian synaptic consolidation 

occurs when the Ca++ flux exceeds a threshold level (Bear, et al., 1987). 

One example of synaptic plasticity that may involve NMDA receptors 

is long-term potentiation (LTP) of synaptic transmission, which has been 

shown at synapses in the hippocampus (Bliss, et al., 1973). When an 

afferent fiber is tetanically stin1ulated at a certain frequency (10-lOOHz), 

synaptic transmission may be enhanced such that excitatory post-synaptic 

potentials (EPSP) are potentiated for hours or even days (Bliss, et al., 1973), 

a phenomenon that may play a role in memory processes (Morris, et al., 

1990). This phenomenon appears to result from increased Ca++ currents 

flowing through NMDA receptors as a result of the tetanic stimulation 

(Lynch, 1983). Whether such a process contributes to plasticity in the visual 

system is still unclear. Synaptic potentiation has been revealed in the visual 

thalamus (Mooney, et al., 1993) and cortex (Teyler, 1993; Kirkwood, 1994). 

This potentiation is, however, surprisingly difficult to elicit and much 

weaker than that present in the hippocampus. 



Developmental Changes in NMDA Receptor Function 

The proposal that NMDA receptors may underlie Hebbian plasticity 

has motivated some recent work aimed at learning the role of NMDA 

receptors in LGN and visual cortex synaptic transmission and plasticity 

during developn1ent. These studies have indicated that NMDA receptors 

play a critical role in synaptic transmission in the developing LGN 

(Mooney, et al., 1993; Ramoa and McCormick, 1994) and cortex. Moreover, 

the functional role of NMDA receptors changes during the course of visual 

system development. In both LGN (Ramoa and McCormick, 1994a, b) and 

cortex (Agmon, 1992; Carmignoto, 1992) NMDA receptor-mediated synaptic 

transmission is n1arkedly enhanced in the CNS during early development. 

Thus, application of the NMDA receptor antagonist D-APV was found to 

block the visual responses of neurons in layer IV of kittens to a greater 

degree than in adult cats (Tsumoto, et al., 1987). Recordings of visual 

responses of cortical neurons revealed that D-APV suppressed the visual 

responses of only 33% of adult cortical cells, in contrast to 71 % of kitten 

cortical cells. The non-specific glutamate receptor antagonist kynuremic 

acid blocked about 71 % of cells in both cats and kittens. 

1 1 
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Several mechanisms may contribute to facilitation of the NMDA 

receptor response in immature LGN and cortical neurons. The first reason 

is that changes occur in the kinetic properties of the NMDA receptor 

response. The NMDA component of excitatory post synaptic currents 

(EPSC) recorded in layer IV neurons of rats shows a longer lasting current 

at days 9-14 than at day 35 (Carn1ignoto and Vicini, 1992). EPSC's are 

described as having a double exponential curve, with fast and slow 

components of 21-63ms and 177 to 321 ms, respectively. At the early, age, the 

slow component comprised 92+/- 12% of the EPSC, but at the later age, less 

than 35%. Similar findings have been reported at the level of the LGN 

(Ramoa and McCormick, 1994). Interestingly, the NMDA receptor

mediated responses in both cortex and LGN were enhanced during the 

initial periods of synaptic plasticity for ren1odeling of retinogeniculate and 

corticogeniculate connections. 

These changes in NMDA receptor-mediated synaptic transmission 

may be regulated by sensory experience. Thus, dark-rearing was found to 

delay the changes in NMDA receptor fimction in kitten visual cortex (Fox et 

al, 1991). Moreover, when kittens were reared in the dark, the EPSC's 

retained their longer duration through day 45 (Carmignoto and Vicini, 

1992). Total block of retinal activity by intraocular application of TIX 

produced rat cortical cells with even slower EPSC's than dark-reared cells, 

showing that spontaneous retinal activity may produce some decrease in 

NlVIDA EPSC duration. In conclusion, light stimuli appear to have some 
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regulatory control over developn1ent of cortical cell visual response 

characteristics. How activity ca uses changes in the properties of NMDA 

receptors is not known. Electrical stimulation at critical periods may cause 

up-regulation of various channel subunits, changing the intrinsic 

physiological characteristics of the channel itself. 

Second, GABAergic n1echanisn1s, which may also be involved in the 

control of NMDA receptor-n1ediated activity in mature and developing 

cortex (Luhmann and Prince, 1990) and LGN (Ran1oa and McCormick, 

1994), follow a protracted course of develop1nent in several central nervous 

system structures (Luhinann and Prince, 1990; Harris and Teyler, 1983; 

Schwob et al., 1984; Rrunoa and McCormick, 1994). Hyperpolarizing IPSP's 

might bring the sununation of EPSP's below the threshold for NMDA 

receptor activation and action potentials. Without this inhibition, 

depolarizations may occur, relieving the Mg++ block of NMDA receptors. 

Thus, late functional maturation of inhibitory connectivity may represent a 

general mechanis111 to enhance NMDA receptor activation in the 

developing CNS. Third, developn1ent of the intrinsic men1brane properties 

in the immature neurons appear to be coordinated to enhance excitatory 

synaptic transntlssion during develop1nent (&'Unoa and McConnick, 1994a, 

b). For instance, both the increased input resistance (Ramoa and 

McConnick, 1994a) and lack of intrinsic oscillatory behavior (Ramoa and 

McConnick, 1995) of immature thalamic neurons raise the probability that 

excitatory neurotransmission is enhanced. Another important factor may 
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be the depolarized levels of the resting membrane potential at early 

developmental stages in the LGN (Ramoa and McCormick, 1994a) and 

cortex (McCormick and Prince, 1987). Finally, the voltage-dependent block 

of the NMDA receptor-associated channel also appears to change during 

development (Burgard and Hablitz, 1994). 



Molecular Biology of Developmental Changes of the NMDA Receptor 

The previous results showing that developmentally relevant changes 

occur in the functional properties of NMDA receptors may be explained by 

modifications in their subunit co1nposition. Consistent with this possibility, 

recent molecular cloning studies have shown that the NMDA receptor is 

composed of different subunits, which can be classified into two 

subfami1ies, the NMDARl and NMDAR2A, B, C, and D that determine its 

functional properties (Ishii, et al., 1993; Kutsuwada, et al., 1992; Meguro, et 

al, 1992; Monyer, et al., 1992; Monyoshi, et al., 1991). There is 50-70% 

sequence homology within the NR2 subfamily, but only about 20o/o between 

NRl and NR2 (Monyer, et al., 1992). NlVIDARl is expressed throughout the 

mammalian brain, leading to the idea that it participates in many 

functions (Kutsuwada, et al., 1992). NR2A is expressed in forebrain and the 

cerebellum, NR2B in the forebrain, and NR2C n1ostly in the cerebellum 

(Kutsuwada, et al., 1992). When the NRl subunit is expressed in Xenopus 

oocytes with a member of the NR2 type they are able to form functional 

receptors (Meguro, et al, 1992). Since expression of a single subunit type 

does not lead to normal NMDA receptor currents, it is thought that the in 

1 5 
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vivo channel probably exists as a combination of two or more subunits 

(Meguro, et al., 1992). In fact, recent studies have shown that NMDA 

receptors may be composed of three different types (Sheng, et al, 1994). 

Depending on the combination of subunits, different NMDA receptor 

subtypes may form which display different response properties. The 

physiological properties of the channels are studied after one or two subunit 

genes are transfected within a vector (a DNA plasmid which has a gene 

promoter connected to the gene, allowing for transcription in the cells) into 

xenopus ooe,-ytes. Ion currents are n1uch stronger when NRl was expressed 

with an NR2 subunit (rather than only the NRl) (Meguro, et al, 1992). 

Application of lOuM L-glutrunate and lOuM glycine activated NR1-NR2A 

channels currents of 364+/-62nA; NR1-NR2B reached 667+/- 187nA; and 

NR1-NR2C was 191 +/- 67nA. Also, Mg++ blocks the channels in a voltage

dependent manner. But NR1-NR2A channels show almost no current at 

hyperpolarized voltages in .5 and .lmM Mg++, whereas NR1-NR2B and C 

channels still produce current upon addition of .lmM Mg++. Furthermore, 

addition of Ca++ extracellularly increased the reversal potential of all 

receptor types fron1 Omv to about 20mv, showing that the ion permeates the 

channels (Kutsuwada, et al., 1992). 

An important characteristic of NMDA receptors, the slow decay of 

EPSP's due to activation by glutamate, differed between NR1-NR2A and 

NR1-NR2C. Exposure to glutrunate and glycine produced time constants of 

about 31ms for NR1-NR2A and 51n1s for NR1-NR2C (Monyer, et al, 1992). 
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The differences in physiological properties of the various NMDA subunits 

appear to be due to the specific amino acid make up of the receptor. Each 

NMDA receptor subunit has an aspartate residue within the second 

transmembrane sequence which is important for Ca++ permeability and 

the Mg++ blockade (Burnashev, et al., 1992). However, each subunit's 

physiological properties is differentially affected by mutations at this 

aspartate. For exrunple, the NR2 aspartate has a more critical role than the 

NRI's residue in the Mg++ ion block of NMDA receptor activation. These 

changes in NMDA receptor properties according to subunit composition 

may be crucial in the enhance1nent of their function seen during early 

development. 

Indeed, recent evidence suggests that NMDA receptors undergo age

related alterations in their subunit composition (Williams, 1993; Sheng, et 

al, 1994). MRNA studies of each subunit, NRl, NR2A, NR2B, NR2C, NR2D, 

show that in cortex NRI 1ises fro1n a low level at birth, reaches its highest 

level during the second week, and drops to an intermediate level 

throughout adulthood (Sheng, et al, 1994). NR2B remains at a higher level 

throughout, while NR2A does not exist at birth, ru1d rises to adult during 

the second ru1d third weeks. bnmunoprecipitation using subunit-specific 

studies show the srune patterns of chrumel forn1ation for NR2A and NR2B 

with NRI. Also, NR2A and NR2B can co-precipitate each other, meaning 

that a tri-subunit chrumel may exist. These results suggest that the various 

physiological ruul pharn1acological properties which have been reported to 
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change during development (increased Mg++ block, duration of evoked 

CUITents, decrease in glycine sensitivity) may result from changes in the 

ratio of NR2A to NR2B making up NMDA receptors. 



Intracellular Effects of NlVIDA Receptor Activation 

Many intracellular effects have been shown to result fron1 NMDA 

receptor activation that could contribute to changes in synaptic efficacy. The 

increased intracellular calciun1 concentration that results from NMDA 

receptor activation induces diverse intracellular effects that may play a role 

in synaptic plasticity. For instance, NMDA receptor activation has been 

shown to cause the phosphorylation of a tyrosine side chain in myelin

associated protein II (MAP II) in rat hippocampal cells (Bading and 

Greenberg, 1991). An increase in phosphotyrosine occurs on a 39kD protein, 

which is inhibited by D-APV. Ca++ influx may cause this phosphorylation 

because chelation of Ca++ ions within the cells with 2mM EGTA also 

inhibited the reaction. 

TI1e NMDA receptor-induced Ca++ influx also n1ay act to regulate the 

activation-state of the receptor. If intracellular Ca++ concentration reaches 

too high a level it will inhibit NMDA receptor fw1ction (Mayer, et al., 1985). 

But, the rundown of the receptor's activity occurs independent of Ca++ 

concentrations in the absence of high-energy phosphates provided by ATP 

(MacDonald, et al., 1989). Therefore, it has been proposed that the Ca++ 

1 9 
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influx acts upon Ca++-dependent phosphatases, causing changes in the 

phosphorylation state of some protein (McBain and Mayer, 1994). In 

contrast, addition of protein tyrosine kinases (PTK) intracellularly can 

increase conductances through NMDA channels, while a PTK inhibitor 

caused a reduction of currents (Wang and Salter, 1994; Lieberman and 

Mody, 1994; Wang, et al., 1994). Whether these kinases and phosphatases 

act directly on NlVIDA receptors or on other proteins which regulate NMDA 

receptors was not shown. However, at least one study has shown that one 

type of glutamate receptor, GluR6, is directly phosphorylated by cyclic 

AMP-dependent protein kinase (Rayn1ond, et al, 1993). 

Many intracellular effects of NMDA receptor activation have been 

related to LTP of synaptic transmission in the hippocampus. In the 

hippocampus, protein kinase C has been shown to play a role in the 

initiation and n1aintenance of L 'IP (Abers, et al., 1984). Ca++ concentration 

and ATP have also been linked to the effectiveness of LTP. Too great of an 

intracellular Ca++ concentration increase due to NMDA receptor 

activation inhibits LTP (Clark, et al., 1990). Since ATP is required to 

maintain NMDA receptor function in the hippocampus (MacDonald, et al., 

1989), another hypotheses suggests that ATP serves as a source of energy to 

prevent excessive Ca++ build-up. Ca++ may act on the NMDA receptor 

itself or on other regulatory proteins, while A'IP may support the function 

of Na+/Ca++ exchangers to maintain norn1al cytosolic levels of Ca++ 

(Blanstein, 1988; Miller, 1991). 
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NNIDA receptors located within membranes of visual system neurons 

may interact with both intracellular regulatory proteins and the 

cytoskeleton. Intracellular Ca++ increases cause the depolymerization of 

filamentous actin, which is followed by NMDA receptor activity rundown 

(Rosenmund and Westbrook, 1993). Furthermore, 25% of NMDA receptors 

in visual system neuron son1as and dendrites are mobile, not located at a 

specific site within the cell me1nbrane (Benke, et al., 1993). Synaptic 

plasticity might be aided by the movement of available NMDA receptors 

(MacBain and Mayer, 1994). Long-tenn modification of regulatory proteins, 

the cytoskeleton, or intracellular Ca++ may have the effect of altering a 

neuron's synaptic capabilities. 



EXPERIMENTAL APPROACHES TO TEST TI-IE HYPOTHESIS THAT 

NMDA RECEPTORS UNDERLIE NEURAL PLASTICITY 

A General Hypothesis for Deyelop1nent of the Visual System 

Do NMDA receptors play a specific instructive role in neural 

plasticity? Although n1any studies have addressed this iinportant issue, the 

role of NMDA receptors in visual plasticity has ren1ained elusive. One 

especially popular approach to study the role of NMDA receptors in visual 

plasticity has involved the use of pharn1acological agents. Thus, many of 

the pharmacological experin1ents suggesting that blockade of NMDA 

receptors disrupts visual plasticity can be interpreted in favor of the idea 

that NMDA receptors play a significant role in synaptic plasticity. However, 

an alternative interpretation is also available. The findings that NMDA 

receptors transn1it a large portion of the excitatory response in immature 

neurons also raises the possibility that the effects of NMDA receptor 

antagonists are due to a reduction of synaptic activity (for a discussion, see 

Daw, 1994). What re1nains to be answered is whether the properties of the 

NMDA receptor participate in Hebbian, or other, synapse mechanisms 

which have a direct role in the stability of SyrL:'lpses. 

22 
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It is possible that NMDA receptor activation plays an instructive role 

during development, allowing for changes in synaptic connections in the 

LGN and cortex.As described earlier, the unique biophysical properties of 

the NMDA receptor could signal when strong synchronized firing of input 

fibers occurs that leads to postsyna ptic firing. The question arises as to why 

NMDA receptors, although still functional in adult animals, no longer 

contributes to synaptic plasticity in the n1ature LGN and cortex. The initial 

period of plasticity in the developing visual system provides us a 

remarkable opportunity to study the role of NMDA receptors in synaptic 

plasticity. Looking at develop1uental changes in NMDA receptor function 

and how these changes correlate in time with the critical periods of 

plasticity in the LGN and cortex has been another approach which provided 

us with important insight into specific mechanisms of visual plasticity. 

Other approaches that may be applied to reveal the role of NMDA receptors 

in visual plasticity are described below. 

Futw:e Research: Genetics 

The knowledge now available about the characteristics of the NMDA 

receptor genes may help elucidate the exact role of NMDA receptors in 

neural plasticity. The complete knock-out of an NMDA receptor subunit, 

using a mutant gene transfected into embryonic stem cells, was shown to 

reduce the magnitude of LTP in the hippocampus (Sakimura, et al., 1995). 

Mice that lacked the NR2A subunit showed a moderate reduction in 
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hippocampal NMDA receptor currents, and a decreased NMDA receptor

mediated LTP of synaptic transmission. It would be valuable to study the 

visual system in similar animals at various ages. Would the initial period 

of plasticity be altered in duration or, even be present in these animals? 

Would LTP in visual cortex be affected or abolished in these animals? 

Further genetic studies should also aim at elucidating the promoter 

and regulatory sequences, and transcription factors of NMDAR genes. 

Upstream sequences could be matched among already known NMDAR 

genes. DNA "tootprinting'' might locate them as well Cellular proteins are 

mixed in vitro with the upstream sequence. Then, a restriction 

endonuclease digestion is performed A transcription factor protein for the 

gene would bind its promoter sequence and not allow it to be digested This 

would result in a long stretch of DNA on a Southern blot. A transcription 

factor might be located by running cellular proteins within an affinity 

column which has the promoter sequence attached to beads. The 

transcription factor would bind the sequence and not filter through the 

column. These factors could provide very specific tools for altering Nl\IDA 

subunit expression, and therefore receptor function. An exciting 

experiment would alter NMDAR genes in only a specific region of the brain 

at various ages. For exan1ple, manipulation of NMDAR expression on only 

one side of the posterior lobe during, or after, the critical plasticity period 

could expose changes resulting fron1 the experimentally altered levels of a 

subwrit. 
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Also, in contrast to a gene knock-out experiment, in which a 

completely non-functional gene is introduced into animals, an NMDAR 

gene which has only a certain region, or amino acid, altered could be 

transfected For example, a mutated NMDA receptor subunit which, when 

composing part of the receptor, decreases its binding of a trophic molecule 

could be introduced into cells. A certain region of NMDA receptor subunits 

contains a possible sequence for the binding of arachidonic acid (Petro, 

1993). If the mutation were shown to alter arachidonic acid's positive 

regulatory effects on NMDA receptors in in vitro expression systems, then 

the gene could be introduced into animals in which any changes in 

plasticity and develop1nent could then be studied One study has already 

shown the role of specific amino acids in the voltage-dependent Mg++ 

blockade of NMDA receptors in vitro. What would be the developmental 

changes seen in an animal which n1atured with an NR2A subunit with 

less affinity for Mg++ ions? 

Neural Activity And Chan2"es In NMDA Receptor Function 

Developmental changes in both NMDA receptor currents (Carmignoto 

and Vicini, 1992; Hestrin, 1992; Ra1noa and McCornlick, 1994) and subunit 

types (Ramoa, et al., 1995; Sheng, et al., 1994) of NMDA receptors present in 

the mammalian visual syste1n and cortex have been shown. What 

mechanisms regulate these changes? Dark-rearing experiments (Fox, et 

al, 1991) have suggested that visually-induced activity regulates some of 
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these developmental changes. To study this idea, additional manipulation 

of activity should be attempted, and then the NMDA receptor subunit 

content of membranes studied. Would dark-rearing affect the changes in 

subunit composition during development? Furthermore, about 25% of 

NMDA receptors are mobile in visual system neurons (Benke, 1993). 

Possibly, receptor migration away from synapse is a mechanism by which 

it is functionally weakened. Experimentally, the clustering of NMDA 

receptors at synapses could be con1pared in stimulated versus non 

stimulated in vitro (or cL--trk-reared versus light-reared) neurons. 

Consistent with this probability, Stent (Stent, 1973), proposed that 

receptors in the post-synaptic me1nbrane would be removed, or internalized 

as a mechanism to reduce synaptic plasticity. If neural activity could be 

shown to alter receptor clustering or induce differential subunit 

expression, we would be one step closer to understanding the molecular 

mechanisn1s that account for synaptic strengthening or weakening. 

Changes in the efficacy of receptors, possibly wider tight control of genetic 

developmental changes would be the final step in a se1ies that finally leads 

to neural rearrange1nent. 

NMOA Receptor Activity and Synapse Withdrawal 

How are NMDA receptors involved in the withdrawal of inappropriate 

retinogeniculate and geniculocortical synapses during development? 

Studies on the neuromuscuLtr junction show that a critical level of activity 
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at one synapse causes a neighboring inactive terminal to withdraw (Balice

Gordon and Lichtman, 1994). Another study has shown that stimulation of 

one synapse causes the suppression of a neighbor terminal in vitro (Lo and 

Poo, 1991) A sin1ilar experiinent (although technically challenging) might 

be performed on a surface cortical area or in cultured cortical cells. If D

APV were used to block a few specific synapses in a LGN or cortical 

neuron, would non-NMDA channel activation be sufficient to prevent 

withdrawal of those synapses? 

Antibodies 

Antibodies already exist for each NMDA receptor subunit. 

Imm1moprecipitation studies of cortical n1embranes should be perlormed 

to determine the clL:'ll1ging subunit composition of NMDA receptors in the 

visual cortex. The antibodies could be used to antagonists of NMDA receptor 

function by blocking different subunits. In conclusion, results obtained 

using different experin1ental approaches should elucidate whether NMDA 

receptors play a specific role in developn1ental mechanisms involving 

remodelling of co1mections. 
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