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Computational modeling in the field of biomechanics is becoming increasingly popular

and successful in practice for its ability to predict function and provide information that

would otherwise be unobtainable. Through the application of these new and constantly

improving methods, kinematics and joint contact characteristics in pathological conditions of

femoroacetabular impingement (FAI) and total hip arthroplasty (THA) were studied using

a lower extremity computational model. Patients presenting with FAI exhibit abnormal

contact between the femoral neck and acetabular rim leading to surrounding tissue damage

in daily use. THA is the replacement of both the proximal femur and acetabular region

of the pelvis and is the most common surgical intervention for degenerative hip disorders.

A combination of rigid osteoarticular anatomy and force vectors representing soft tissue

structures were used in developing this model. Kinematics produced by healthy models were

formally validated with experimental data from Burnfield et al. This healthy model was

xviii



then modified to emulate the desired morphology of FAI and a THA procedure with a range

of combined version (CV) angles. All soft tissue structures were maintained constant for

each subsequent model. Data gathered from these models did not provide any significant

differences between the kinematics of healthy and FAI but did show a large amount of

variation in all THA kinematics including incidents of dislocation with cases of lower CV

angles. With the results of these computational studies performed with this model, an

increased understanding of hip morphology with regards to STS has been achieved.
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Chapter 1: Introduction

1.1 Overview of Biomechanics Research

The field of biomechanics takes a mechanical approach towards studying biological sys-

tems at multiple scale levels. On a cellular level, mechanical interactions have become a

popular and promising area of research in investigating causes of pathological situations.

Cells have a constant mechanical interaction with their neighboring cells thus affecting their

behavior. For example, formation of extra-cellular matrix (ECM) is being studied to un-

derstand the role mechanotransduction signals have between cells and their underlying sub-

strate. Stem cell differentiation and, to an extent, cancer detection are both believed to be

affected by the cells biomechanical behavior [1–3]. On a higher scale level, biomechanics can

be used to study systems such as musculoskeletal, cardiovascular, and respiratory [4–6]. The

musculoskeletal system primarily comprises structures, or tissues, involved in force trans-

mission, locomotion, and structural support. Each tissue provides a unique function and

contributes to the overall behavior of the system as a whole. Biomechanics of this sys-

tem is studied primarily through investigating various healthy and diseased states and then

applying that information towards improving the functionality of various musculoskeletal

tasks [4, 7, 8].

To achieve an increased understanding of musculoskeletal system behavior, both exper-

imental and computational approaches have been pursued. Typically, experimental work is

separated into two different categories; cadaveric studies and clinical studies. During ex-

perimental clinical studies, data is gathered directly from patients regarding the devices or

tissues being investigated. A comparison can then be made either between a single patient

both pre- and post-operatively or between several patients displaying different symptoms

of a similar disorder [7]. This is effective for learning the overall success of a procedure or
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device in addition to providing general measures, such as range of motion. Clinical studies,

however, are not capable of providing some important biomechanical measurements such as

muscle forces and joint stresses due to the invasive nature of the techniques necessary for ob-

taining this information. Experimental cadaveric studies allow for a target region within the

musculoskeletal system to be accurately analyzed using various testing equipment. Cadav-

eric studies are able to provide useful information regarding localized regions of the human

body such as bone resection, implant placement and tissue strength amongst others [9–11].

Typically, preparing a successful cadaveric experiment requires expensive equipment along

with the acquirement and storage of a cadaver and therefore, the cost tends to be much

higher compared to other options. Cadavers also contain the possibility of tissue degenera-

tion over time leading to alteration in material properties and potentially unreliable results.

That being said, proper cadaveric studies are apt at finding information like joint stresses

and strains as well as material properties for the various tissues found in the musculoskeletal

system [12,13]. As it is not currently possible to easily and humanely perform biomechanical

testing on live tissue structures, cadavers remain the best experimental option for obtaining

these results.

More recently, the field of computational biomechanics has grown profoundly in success

and popularity and is becoming an alternative to the more traditional practices. Utilizing

mathematical models with a foundation of data gathered from the aforementioned exper-

imental studies allows for a diverse range of physiological parameters to be quantitatively

studied without the need for patients, cadavers or additional equipment. Utilizing computa-

tional biomechanics requires not only an understanding of the anatomical environment but

also a fundamental understanding of the mathematical foundations to perform an analysis.

This field has a great deal of potential for gathering information not obtainable through

experimental methods.
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1.2 Computational Modeling

Computational modeling applied to the field of biomechanics has become an increasingly

popular and reliable means to study many aspects of biological systems. It provides an

approximation that relies on various physical and physiological constraints to determine

an end result, the accuracy of which depends entirely on the input parameters. With the

development of more powerful computers, increasingly complex and dynamic models are able

to be developed and analyzed more efficiently. More specifically, models containing more

components and allowing higher degrees of freedom controlled through the use of applied

forces and body contact can be studied accurately and efficiently. However, introducing

more complexity and higher levels of freedom consequently increases the potential sources

of error [14,15]. Therefore, it is essential that each model be validated against experimental

data known to have confidence in the results [15]. A properly validated computational model

is capable of performing analyses not possible in an experimental setting, whether clinical or

cadaveric. Furthermore, the predictive capacity for computational modeling improves upon

the potential of the more traditional experimental means.

1.2.1 Types of Computational Modeling

Finite Element Analysis (FEA) and Rigid Body Motion (RBM) are the two primary

forms of computational modeling. Both cases are mathematically complex and have been

proven to be useful means for performing mechanically-based analyses. They differ, however,

in the type of information that they can provide. FEA serves as an accurate alternative to

experimental techniques in providing deformable body information about a given sample

such as stress and strain [16]. However, the amount of computational power required for

these types of calculations is exceptionally large and therefore simplifications or idealizations

are made. FEA is based on breaking a complex domain into a finite number of nodes and

elements, each containing specific data pertaining to its location and properties. Each node
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or element utilizes mathematical models comprised of a combination of physical equations

and interpolation functions to provide an estimation of the resulting outcome. FEA is

capable of being applied to a range of situations such as fluid flow, mechanical loading, and

heat transfer [16]. Pertaining to biomechanical research, FEA is capable of providing an

understanding about how tissues or different implanted devices will handle the applied loads

in their native or altered environment [17]. It has been proposed that information from

finite element analyses may also be able to provide insight into the etiology of some common

disorders. For example, the potential relationship between hip morphology and development

of osteoarthritis in the hip joint has been suggested and studied extensively [18, 19]. Finite

element analysis has been proposed as a means of quantifying this relationship between

pathology and morphology [20].

RBM allows for an effective alternative to experimental testing for studying the inter-

action of forces and solid body motion and how one affects the other [14]. As the name

suggests, rigid body motion assumes each individual body to be rigid and thus removes the

contributions of deformation to the analysis. This approximation is acceptable in situations

where the resulting strain in the bodies will be much less than 1% or essentially zero, or

where the questions posed do not require a deformable body model. High stiffnesses seen

in bones provide these infinitesimal strain values and make RBM an appropriate means of

investigating skeletal motion. Soft tissues, however, experience higher levels of deformation

and thus FEA is more appropriate. Including soft tissue structures as a means for controlling

and maintaining stability in RBM becomes a challenge that is constantly requiring creative

solutions for implementation. Each soft tissue has its own individual size, shape and be-

havior that need to be considered in implementation into the model. Line of action, force

behavior and primary function all need to be considered.

Calculations that go into solving these rigid body models become greatly simplified by

removing deformation of the major bodies, thus cutting down on the required computational
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power and subsequently the about of time required to solve. Early rigid body models included

an additional level of simplification through constraining the joints motion to a single degree

of freedom (DOF) such as a hinge. Utilizing the true contact between articulating surfaces

and surrounding soft-tissue support as a control for joint motion is a much more accurate

and realistic option for providing insight about joint function and kinematics. RBM has

two different forms depending upon the flow of calculations relative to how motion actually

occurs. Forward dynamics estimates kinematics produced by a given force or set of forces.

In contrast to this, inverse dynamics analyzes a given motion for a system and estimates the

forces necessary. Forward kinematic calculations were used in this thesis to study how sit-

to-stand motion varies based on altered body or skeletal form whilst maintaining consistent

muscle forces.

1.2.2 Software Packages

There are several software packages capable of performing FEA and RBM. Each differ

in user interface simplicity, complexity of problems, etc. For example, SIMM (Software for

Interactive Musculoskeletal Modeling, Musculographics Inc., USA) is able to solve the neces-

sary governing equations for RBM but idealizes joints to permit rotation around single points

or axes. Motions are based upon a predefined coordinate system and points of rotation for

each part rather than the actual interaction between parts. Anybody (AnyBody Technology

A/S, Denmark) is another, more recent, option that is very similar in its capabilities than

SIMM but still lacks the ability to base motion on true anatomical constraints.

Alternatively, SolidWorks (SolidWorks Corp. Concord, MA) is a 3D computer-aided

design (CAD) software commonly used in modeling solid bodies. Within the SolidWorks

interface are add on packages Simulation and Motion capable of performing FEA and RBM

analyses respectively. SolidWorks Motion relies on the ADAMS solver (Automatic Dynamic

Analysis of Mechanical Systems, MSC Software Corp, USA) which utilizes user-defined con-

straints along with the volumetric shape of interacting parts to dictate the resulting kinemat-
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ics instead of specifying simplified joints that could lead to inaccurate motion. Additionally,

ADAMS is capable of providing information about volumetric overlap between bodies for

determining the repelling contact forces [21]. SolidWorks Motion allows for more freedom

in that the analysis is fully user-generated and the degree of constraint and simplification

is highly customizable. Various part interactions, customizable force and damper elements

along with external fixations provide control over this higher DOF when using SolidWorks

Motion. This methodology has been used extensively within biomechanics research as an

option for anatomical kinematic studies [22–25].

Figure 1.2-1: Image taken from the Musculographics website displaying the interface of SIMM and a
typical simulation of gait with muscle colors signifying activation state [26].
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1.3 Hip Joint Modeling

The femoroacetabular joint, more commonly referred to as the hip joint, is a diarthrodial

ball-and-socket joint containing the femur and pelvis as well as a complex network of soft

tissue anatomy. Due to this arrangement, with all six degrees of freedom permitted and high

magnitudes of loading experienced through daily tasks [27], it is prone to both musculoskele-

tal disorders (MSDs), such as femoroacetabular impingement (FAI), dysplasia and labral

tears, as well as degenerative joint disease (DJD) or osteoarthritis (OA). Femoroacetabular

impingement occurs as a result of a bony overgrowth in the anterosuperior region of either

the femoral neck or the acetabulum bringing about unusual contact between the femur and

pelvis tissue damage and painful joint motions [28–32]. Damage from FAI is typically a

result of repetitive motions rather than a single traumatic incident [8]. DJD typically devel-

ops with age from high frequencies of hip joint usage and motion. Total Hip Arthroplasty

(THA) is the most common surgical intervention for DJD by replacing previously damaged

tissue with artificial, inorganic materials [33]. THA has proven to be a successful approach

in correcting pain and motion hindrances but improper placement and implementation of

the implants can produce separate issues of impingement and dislocation [34–36].

In consideration of these issues, the hip joint is a common area of musculoskeletal re-

search. Previous studies involving the hip joint have taken advantage of the aforementioned

computational and experimental techniques to understand kinematic, contact and interac-

tion between the structures through many situations in the hip joint [37–39]. For example,

a recent finding suggests there is an association between anterior knee pain (AKP) and hip

morphological alterations such as FAI. Clinically, this relationship has been observed and

thus was investigated retrospectively through follow-up studies on patients presenting with

AKP secondary to being diagnosed with FAI [39]. Typically, studies involving the relation-

ship between hip pathology and kinematics have been done experimentally using patients

and expensive marker systems to track the joint movements [7, 40,41].
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Computationally speaking, previous work on the hip joint has focused primarily on static

relationships between the skeletal parts. Finite element studies have been done in joint con-

tact analyses or joint capsule strength [17, 42]. A study by Weiss et al used FEA in an

attempt to understand how the labrum is able to assist in load support across the hip joint

through different situations [43]. Information such as this is difficult to acquire experimen-

tally as a consequence of both the size and placement of the labrum. Gathering stress and

strain information for an intricate structure such as the labrum is much less rigorous com-

putationally through FEA. Rigid body motion is a relatively untouched area with respect to

the hip joint. There has been a study utilizing a forward dynamic rigid body computational

model to study how proximal femur deformities affect the full hip joint range of motion but

there has yet to be a rigid body model of the lower extremity developed for more dynamic

situations such as sit-to-stand (STS) [44]. Inverse dynamic models have provided estimations

of muscle force magnitudes based upon body motion for various activities including gait and

STS [45, 46]. This information helps to provide data necessary to develop more robust and

complex computational models.

1.4 Objective

With the STS transfer being one of the most commonly performed activities of daily

living and the prevalence of both FAI and total hip arthroplasties (THA), there is a need to

examine how either case affects the joint during a STS movement [47, 48]. Factors such as

pain and damage cannot be quantified or measured computationally, but can be inferred via

force and contact analyses. Biomechanical parameters such as joint reaction forces, altered

kinematics and muscle forces can be easily investigated computationally and cannot always

be found efficiently experimentally. Additionally, it has already been mentioned that there

is very little work done in the realm of computational rigid body modeling for the hip joint.

As a result, this work involves the development of such a model for understanding how
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hip morphology impacts hip mechanics during a sit-to-stand transfer. More specifically, the

effect of alterations in proximal femur morphology for both native tissue and replacement

cases were investigated. Initially a healthy, non-symptomatic lower extremity model was

developed, examined and compared against experimental data for validation. This data

was then used as a base for comparison against models with altered femoral morphology

such as FAI and THA. Ultimately, results from this study will provide insight on how these

morphological alterations affect a commonly performed task of STS through kinematics and

joint contact regions with the hope of providing a better indication of potential issue to arise

from performing STS with these conditions.
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Chapter 2: Anatomy Overview

2.1 Introduction

The lower extremity is a complex network of soft and hard tissues that permits the ac-

tivities of daily living performed by people. Tasks such as gait and sit-to-stand are relatively

simple and overlooked visually but require a complex interplay among the different tissues

coupled with a high magnitude of force output from muscles. These tissues include skeletal

anatomy, providing the structural support, layers of muscles that generate necessary loco-

motive forces and additional soft tissue structures for flexibility as well as restraint. The

aforementioned movements of walking and rising from a seated position involve primarily

flexion and extension in the hip, knee and ankle (Figure 2.1-1) as well as some other mi-

nor movements within the foot. Human lower extremities are responsible for withstanding

approximately 60% of total body weight and thus there can be impactful deviations from

typical motion with just slight anatomical variations [49].

Figure 2.1-1: Lower extremity motions in the hip along the mid-sagittal plane. The knee and hip flexion
and extension motions occur in this plane [50]

10



2.1.1 Skeletal Anatomy

Excluding the foot and ankle, the lower extremity only contains a handful of skeletal

structures including the femur, tibia, fibula, patella and pelvis. The femur is the longest

bone in the human body, stretching from hip joint to knee joint [51]. Long bones contain an

outer, dense cortical layer containing a stiff, nearly-rigid shell providing a frame for motion

and body support as well as a calcium reserve for body nutrition. Within this cortical shell is

a second layer called cancellous or trabecular bone. Trabecular bone is more deformable than

cortical bone and typically resides in the epiphyseal regions of the long bones allowing for

better distribution of loads experienced within the joints at either end [52]. Along the shaft is

a diaphysis region closing at either end at metaphysis regions (Figure 2.1-2). This metaphysis

region is where bone growth primarily occurs during maturation [53,54]. With regards to the

femur, distally the condyles and epicondyles form a rounded articulating surface promoting

knee rotation (Figure 2.1-4) while the proximal portion contains the ball-like head that

provides rotational motion in the hip joint (Figure 2.1-3). This head attaches to the femoral

shaft via a cylindrical neck and articulates with the acetabulum of the pelvis [55].

The pelvis contains two irregularly shaped bones, each referred to as a hemipelvis, mark-

ing the other half of the hip joint (Figure 2.1-5). These two bones meet anteriorly at the

pubic symphysis and posteriorly at the sacrum. Each individual hemipelvis is made up of

three sections called the ilium, ischium and pubis which are all fused together and meet at

the acetabulum. During developmental years, triadiate cartilage connects these three sec-

tions allowing for acetabular growth synchronous with femoral head growth. After puberty,

the pelvis takes its final form with the full fusion of the three sections [56, 57]. The acetab-

ulum is an inferolaterally facing cup-like feature which constitutes the “socket” portion of

the hip joint cupping the femoral head and allowing for various rotational movements and

some slight translational motion. The depth and amount of which the acetabulum wraps

around the femoral head contribute to defining the joint range of motion. A healthy hip joint
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permits approximately 120◦ of flexion, 25◦ of extension, 45◦ of abductions, 25◦ of adduction,

15◦ of internal rotation and 35◦ of external rotation [58,59].

Figure 2.1-2: The structure of a long bone including the five primary regions along with a section cut of
the upper half to show cortical (compact) bone and trabecular (spongy) bone [60]
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Figure 2.1-3: Anterior and posterior views of the proximal femur with key features highlighted.

Figure 2.1-4: Anterior and posterior views of the distal femur with key features highlighted.
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Figure 2.1-5: Anterior view of the full pelvis with key features highlighted. The sacrum of the spine is
included in the image but is not labeled.

Morphology in the hip joint plays a large role in determining range of motion and is

an area largely affected by abnormal pathology. Regions of overgrowth in either the prox-

imal femur or acetabulum can reduce the range limits while a lack of acetabular coverage

compromises the innate stability typically provided by the hip joint. These disorders are

referred to as femoroacetabular impingement and hip dysplasia respectively. Quantifying

this morphology is done through measures such as anteversion and inclination angles, alpha

angle and center-edge angle (CEA) to describe proximal-distal relationship in the transverse

and frontal planes as well as the femoral head and acetabular cup shape [61]. Femoral antev-

ersion and inclination along with the alpha angle are used to describe femoral morphology.

With the alpha angle, a circle closely defining the femoral head contour is placed over the

2D radiographic image. A line between the center of this circle and the point of bony defect
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is connected to the line defining the neck axis passing through the center of the circle. The

alpha angle is defined as the angle between these two lines. Femoral anteversion and in-

clination describe femoral neck orientation in the transverse and frontal planes respectively

and will be discussed more in Chapter 5. Similar to the femoral head, the acetabulum

contains measures used for quantifying its morphology such as acetabular version, acetabu-

lar inclination and a center-edge angle [61]. Acetabular version and inclination are angular

measurements describing the orientation of the acetabulum relative to anatomic planes while

CEA describes the acetabular coverage. More specifically, CEA is the angle between a line

perpendicular to the horizontal plane starting at the center of the femoral head and a line

connecting the lateral-most aspect of the acetabulum with the center of the femoral head.

Acetabular anteversion and inclination will be discussed more in Chapter 5. Both acetab-

ular measures along with the femoral measures are instrumental in the diagnosis of FAI in

addition to pre-operative planning and placement of total hip arthroplasty.

Further distal, in the shin or lower portion of the leg, there are the tibia and fibula. The

tibia is the stronger of the two and thus bears more weight while the fibula provides some

mobility. Each run roughly parallel to the other with the tibia being medial to the fibula.

These two bones connect proximally at the knee joint, though the fibula does not directly

articulate with the femur. Distally, the two create the tibiotalar, or ankle joint, contributing

to the mortise joint with the lateral malleolus [62]. Interaction between them allows for the

inversion and eversion motions of the foot through rotation of one around the other. Both

the tibia and fibula are long bones and have a similar structure to the femur with a diaphysis

capped closed on either end with a metaphysis and epiphysis [63].
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2.2 Soft Tissue Anatomy

Throughout the lower extremity exists a complex network of ligaments, muscles and ten-

dons that provide functional movements. Most commonly known are the knee ligaments

anterior cruciate ligament (ACL), medial collateral ligament (MCL), posterior cruciate lig-

ament (PCL) and lateral collateral ligament (LCL). Injury to the ACL is a frequent issue

experienced in athletics as a consequence of quick, lateral motions and leads to destabi-

lization of the knee joint [64]. Within the hip joint, however, there is a fibrous network of

ligamentous structures surrounding the femoral neck known as the joint capsule, a fibrocar-

tilaginous ring along the acetabular rim called the labrum, articular cartilage on both the

femoral head and acetabulum, a series of muscles driving the actual motions and a small

fibrous band, called the ligamentum teres, connecting the fovea capitis to the acetabular

notch [37, 43, 65–67]. Proper joint function is reliant upon each of these tissues perform-

ing synergistically. Detailed explanations on their function within the hip joint is discussed

throughout this section.

2.2.1 Hip Capsule Ligaments

The hip joint capsule contains the iliofemoral ligament (ILFL), pubofemoral ligament

(PFL) and ischiofemoral ligament (ISFL) and serves to connect the pelvis to the femur

(Figure 2.2-1) [30,68]. Generally, ligaments are composed primarily of collagen Type I fibers

in a parallel arrangement. For the joint capsule, these fibers mostly run longitudinally,

relative to the femoral neck, originating near the acetabular rim and then attaching along

the intertrochanteric line of the femur [69]. Functionally, they help in maintaining joint

stability by preventing hip distraction in addition to limiting range of motion. There is a

slight spiral orientation of the joint capsule that tightens more in end-range for hip extension

than in hip flexion thus limiting extension as well as rotational motion more [69, 70]. The

thickness and true fiber arrangement are dependent on location and help in discerning each
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individual ligament. More anteriorly lies the thicker ILFL with fibers that split between two

bands: the superior and inferior portions. The superior ILFL originates proximally from

the lower portion of the anterior inferior iliac spine (AIIS) and run horizontally where it

attaches distally to upper portion of the intertrochanteric line. The inferior ILFL originates

on the iliac portion of the acetabular margin and runs more downward to the lower part of

the intertrochanteric line [69,71]. Both bands of the ILFL tighten and provide most stability

in hip extension while being completely lax in hip flexion. Being the thicker part of the

capsule, the ILFL displays a higher stiffness (97.8± 67.5N/mm and 100.7± 54.0N/mm for

the superior and inferior respectively) and is stronger than both the PFL and ISFL [12].

The PFL originates proximally between the obturator crest and superior ramus of the

pubis bone and runs longitudinally where it meets with the distal part of the inferior ILFL

[71]. It is thinner and thus less stiff than the ILFL (35.8±19.8N/mm) [12,72]. This ligament

primarily serves to limit motion in abduction and therefore is at its greatest length when

the hip is in that position [69]. Finally, the ISFL lies on the posterior of the femoral neck

axis, originating proximally at the ischial circumference of the acetabular rim and inserting

distally at base of the greater trochanter. This ligament runs in a spiral-like manor and has

a similar reported stiffness as the PFL (36.9± 24.4N/mm) [69].
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Figure 2.2-1: Each of the three hip capsular ligaments and their locations along the femoral neck. Each
has unique fiber orientation and this can be seen here [70].

Figure 2.2-2: A femur dislocated from the acetabulum to visualize the labrum and ligamentum teres from
within the interarticular space [70].

18



2.2.2 Articular Cartilage

Both the femoral head and acetabular surfaces contain a layer of hyaline articular car-

tilage comprised primarily of a network of type-II collagen, proteoglycans and interstitial

fluid (Figure 2.2-2) [65]. The collagen and proteoglycans together form the primary carti-

lage ECM which is maintained by chondrocytes. The ECM and fluid combine to determine

the overall mechanical properties of the cartilage [73, 74]. As previously mentioned, the hip

joint undergoes a diverse range of motions and experiences a variety of loads in performing

the functional tasks of gait or rising from a chair [27]. Bone on bone contact can lead to

damage under these conditions if it occurs continuously and thus these cartilage layers act

to cushion and reduce friction in the joint. On an instant applied load, such as jumping, the

interstitial fluid pressure plays a large role in raising the tissue stiffness value and maintain-

ing an adequate repulsive force. However, under a more prolonged applied load, this fluid

is dispersed through the tissue causing the proteoglycans to be the primary factor in the

stiffness value [73,74].

Both femoral and acetabular articular cartilage layers are relatively thin, ranging from

approximately 1.0mm to 2.5mm in thickness, and are highly organized into zones based on

depth and makeup. Superficially, there are primarily thin collagen fibers running parallel to

the articular surface providing mostly tensile strength [65,75]. Below this, is a middle layer

containing spherical chondrocytes, larger collagen fibers and proteoglycans in a more random

and scattered orientation and a deep layer with columnar collagen fibers fixed perpendicularly

to the articulating surface providing additional tensile strength. Both femoral and acetabular

cartilage are fixated to the underlying bone by a layer of partially calcified cartilage [76–78].
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2.2.3 Acetabular Labrum

The acetabular labrum is a fibrocartilaginous ring lying around the rim of the acetabular

cup (Figure 2.2-2, Figure 2.2-3). It typically has a triangular cross-section that spans nearly

the entire bony rim of the acetabulum, connecting on both sides to the transverse acetabular

ligament [43,79]. This connection is difficult to discern due to their visual continuity. In the

same fashion, the labrum is difficult to discern from the articular cartilage which covers the

acetabular surface [80].

Figure 2.2-3: The labrum (red) acts as a continuation of the acetabular cartilage (yellow) with a tran-
sition zone between the solid and dotted lines. Visually these tissues are difficult to discern. (Left) A 3D
representation of the labrum and acetabular cartilage positioned within the acetabulum. (Right) A section
view showing the continuity between cartilage and labrum [43].

Collagen is the most predominant part of the labral structure and is intermixed with

proteoglycans to provide its compressive strength. More specifically, circumferential, type-I

collagen fibers are arranged in bundles parallel to the acetabular rim with some obliquely

oriented fibers scattered throughout and no fibers oriented radially [81]. These type-I collagen
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fibers intermix with the type-II fibers seen in the articular cartilage thus contributing to the

continuity between the labral and cartilaginous surfaces [80]. Mechanically speaking, the

labrum plays a large role in maintaining joint integrity. By extending the acetabular surface

by up to 27%, the labrum is able to further encapsulate the femoral head, cushion the

interaction between femoral neck and pelvis, and help maintain the joint synovial fluid for

proper lubrication [82]. The combination of both collagen fibers and proteoglycans allow for

the labrum to effectively perform these functions [43].

2.2.4 Muscles

Muscles are the primary means of physical movement in the body. Force generation in

these soft tissues is done through various mechanisms on a cellular level involving concen-

tration gradients of several ions such as calcium, sodium and potassium causing many slight

and rapid shifting of muscle cells [83]. As a result, all muscle activity provides a slight

electrical signal called electromyography (EMG) [84]. This signal provides information re-

garding the amount or degree of muscle activation but does not directly relate to the force

output magnitude [85]. Muscle force output is dependent upon the number of muscle cells

being activated, providing stabile, smooth motion with the potential for a variation in force

output. The central nervous system (CNS) provides the ability to monitor and coordinate

body segments within space providing a feedback mechanism for determining the amount

of force to output dependent upon the desired task [84, 86, 87]. This phenomenon is most

commonly referred to as coordination or proprioception and can vary between people.

Motion involving the lower extremity requires the coordination of several muscle groups.

With the hip joint having six degrees of freedom for movement, it is important for control

in each direction to maintain stability. Muscles are grouped according to their function and

attachment sites (Table 2.2-1) [63]. The most commonly known muscle groups in reference

to hip control are the quadriceps, hamstrings and glutes. Each of these contain several

individual muscle bodies that work synergistically to promote motion about an axis. A single
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muscle can have multiple tasks such as hip extension and external rotation seen in the gluteus

maximus muscle. STS transfer primarily involves the aforementioned muscle groups as each

of them have their primary function in hip flexion/extension or knee flexion/extension [88].

The three vasti muscles originate on the proximal portion of the femoral shaft and span

longitudinally the length of the femur attaching on the patella via the quadriceps tendon.

Similarly, the rectus femoral spans the length of the femur, attaching to the quadriceps

tendon. It, however, originates on the anterior inferior iliac spine (AIIS) of the pelvis.

Together, these muscles form the quadriceps group and promote knee extension. On the

posterior side of the femur, the biceps femoris, semitendinosus and semimembranosus of the

hamstring group each originate on the ischial tuberosity of the pelvis and attach distally just

below the knee on the tibia or fibula. Together, these antagonize the quadriceps by causing

knee flexion as well as some hip extension. Lastly, the gluteus maximus originates on the

iliac crest and sacrum and wraps around posteriorly attaching on the gluteal tuberosity and

on the iliotibial (IT) band. It produces primarily hip extension.
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Muscle Name Hip Motion Attachment Sites

Adductor brevis Flex, Add Inferior ramus of the pubis, Linea aspera

Adductor longus Flex, Add Anterior pubis, Middle of linea aspera

Adductor magnus Flex, ER, Ext Edge of pubic crest, Linea aspera

*Biceps femoris -
long head)

Ext, ER Ischial tuberosity, Head of the fibula

*Biceps femoris -
short head)

Ext, ER Lower half of the linea aspera, Head of the fibula

*Gluteus max-
imus

Ext, ER, Abd Lower posterior iliac crest and posterior surface
of the sacrum, Gluteal tuberosity and Iliotibial
(IT) band

Gluteus medius Abd, IR, ER Outer surface of the ilium, Greater trochanter

Gluteus minimus Abd, IR, Flex Outer surface of the ilium, Greater trochanter

Gracilis Flex, Add, IR Pubic crest, Medial condyle of the tibia

Iliacus Flex Iliac fossa, Lesser trochanter

Pectineus Flex, Add Pubic crest, Inferior to the linea aspera

Psoas major Flex Lumbar and thoracic vertebral bodies, Lesser
trochanter

*Rectus femoris Flex Anterior-inferior iliac spine (AIIS), Patella

Sartorius Flex, Abd Anterior-superior iliac spine (ASIS), Anterior-
medial condyle of the tibia

Semimembranosus Ext, IR Ischial tuberosity, Medial surface of the proxi-
mal tibia

Semitendinosus Ext, IR Ischial tuberosity, Medial surface of the proxi-
mal tibia

Tensor Fascia
Latae (TFL)

Flex, Abd, IR Iliac crest, Iliotibial (IT) band

Table 2.2-1: Lower extremity muscles involved in hip motion and their functions and attachment sites [61].
The vasti muscles only contribute to knee motion and thus are not included in this chart. They were
however included in the model. (Refer to Figure 2.1-3, Figure 2.1-4 and Figure 2.1-5 for insertion sites)

Abbreviations: Flex – flexion, Ext – extension, Add – adduction, Abd – abduction, IR – Internal
Rotation, ER – External Rotation.
*Muscles included in the model
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Figure 2.2-4: Anterior, lateral and posterior views of the lower extremity muscles. The muscle included in
this model are highlighted.
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Chapter 3: Development and Validation of a

Sit-to-Stand Computational Model

3.1 Introduction

Creation of this rigid body model involved a series of steps to take a patient’s comput-

erized tomography (CT) scan and develop a fully functional series of solid bodies and force

vectors representing the necessary skeletal and soft tissue structures. Accuracy with regards

to true anatomy and function was considered throughout the development process. Skeletal

anatomy for the hip joint is rather simple relative to other joints modelled in our laboratory,

with the only skeletal structures being the femur and pelvis [63]. However, the motion and

tissue structures involved are rather complex.

All lower extremity bones proximal to the ankle were included in the model to allow for

the desired sit-to-stand motion and a more accurate representation of muscle insertion sites.

CT scans provide accurate representation of this skeletal anatomy but do not provide much

information as to the surrounding soft tissue structures. Consequently, literature-reported

insertion sites were used to construct the force vectors necessary for muscles and ligament

structures. Essentially, a combination of the specific skeletal anatomy and the applied forces

were used in developing this model. With the ultimate goal of this work being to provide

a general means for studying how different conditions affect sit-to-stand transfer, there was

not a need for complete patient specificity during the development of this model.
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3.2 Methods

3.2.1 Body Creation and SolidWorks Implementation

To accurately generate the necessary skeletal geometry, a CT scan of a single patient

(female, 58 years old) was imported into a commercially available software package known

as Mimics. This scan included the entirety of the patient’s lower extremity, along with some

of the lower abdomen, and was taken for the purpose of a non-musculoskeletal issue. There

were not any reported signs or symptoms of hip joint disorders present in this patient.

Mimics is capable of transforming DICOM (Digital Imaging and Communications in

Medicine) files, consisting of an array of 2D images generated during the CT scan in three

planes, into a 3D body usable in computational modeling. Mimics allows for the scan to be

visualized slice-by-slice in each plane with an additional 3D view of the already segmented

bodies. More importantly, Mimics allows for the user to highlight or select desired tissues

from within the scans on each slice. These CT scans provide an inherent visual contrast

due to the variation in radiodensity between hard and soft tissues, making the process of

selecting desired tissues much more straight forward. A thresholding tool within the software

highlights areas within each slice based on this contrast allowing the user to filter out various

types of tissue to simplify this selection. Herein, a mask was created, overlaying the tissue

of choice, where the boundary was determined by a sharp change in contrast or radiodensity

and was marked through polylines.

For this particular model, focus was on the long bones of the lower extremity including

the femur, pelvis, sacrum, tibia, fibula and patella. The above process was done on each

image slice for each tissue to provide a 3D visual of the tissue. A combination of user

input along with automation made this task less daunting. Moving forward, Mimics then

utilized interpolation functions to combine these 2D masks and polylines from all three planes

into a full 3D shell representing the tissue. This shell contained highlighted voxels, or 3D
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representations of the 2D pixels, which fill the tissue shape. Differentiation between cortical

and trabecular bone was not considered in extracting skeletal tissues as RBM excludes

deformation. The entirety of the bones was filled, forming a full solid body (Figure 3.2-1).

Before proceeding, the body was checked as to its visual accuracy and refinements were

made.

Figure 3.2-1: Mimics interface showing the progression from scan (left) to mask creation (center) and
finally 3D body generation (right) for a right femur.
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The 3D shell was converted into a series of facets, or planes and vertices, which could be

read by various CAD programs for further use. This is a process known as meshing and it

provides a 3D body representative of the desired tissue in a simplified manor. Each of the

facets are typically triangular or polygonal in shape and can number in the thousands to

millions for a single body, largely depending on the curvature of the surface. It is preferred

that this number remain below around 20,000 for use in SolidWorks to reduce computational

power needed. The meshed body was further refined within a Mimics add-on called 3-Matic

through a process called remeshing, which reduces the number of faces along with smooth-

ing out some irregularities. During this process, it was important to maintain the correct

anatomical shape but to still provide an appropriately simplified mesh for computational

purposes (Figure 3.2-2). With the goal of having this model be reliant upon articulation,

it was important to include this process and provide smooth and accurate surfaces for each

of the bones. The final product was saved as a stereolithographic (STL) file for use later.

STL files describe the surface geometry of a particular object via points and unit-normal of

the faces in a 3D Cartesian workspace. For the meshed product, the STL file type easily

encompassed the geometry in an efficient and minimal manner. Each of the aforementioned

target bones of the lower extremity were saved as an individual STL files for future use.

Figure 3.2-2: This is a result of the remeshing and refining done within 3-Matic on the femur used for this
model. The native structure and shape were preserved while minimizing the number of faceted surfaces and
smoothing out rough areas.
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SolidWorks 2016 was the primary software used for simulating musculoskeletal kinemat-

ics and stress analysis. It is a multifaceted 3D CAD program that allows for engineering

design and testing of that design to be performed within a single user interface. Within the

program, a user can design solid or surface bodies, known as parts, and combine them into

larger assemblies for analysis. For this work, the parts were imported via the bone STL files

previously mentioned, rather than being manually created, allowing for an accurate repre-

sentation of each bone. SolidWorks is capable of reading a STL file to create a single solid

body based upon the points and faces structure. After some elementary rendering the bones

of were successfully brought into the SolidWorks interface, with each saved as an individual

SolidWorks part (Figure 3.2-3). Providing unique colors allowed for easier distinguishing

between structures during the development phase.

Figure 3.2-3: Images showing how bones look after being imported into the SolidWorks workspace. (Left)
Lateral view of the right hemi-pelvis, (Center) anterior view of the right femur and (Right) anterior view of
the right tibia and fibula.
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3.2.2 SolidWorks Assembly and Part Arrangement

SolidWorks contains separate add-in packages capable of performing different analyses

such as a Finite Element Analysis simulation as well as a Rigid Body Motion kinematic

solver with the latter being used for the work in this thesis. As mentioned previously, each

bone was saved as its own separate part file upon being imported into SolidWorks. For them

to be useful in a Motion study, they needed to all be individually opened and appropriately

arranged within a single SolidWorks assembly. From the assembly workspace, parts can be

arranged relative to each other and different boundary conditions applied. The bones were

initially arranged according to their original scan orientation by matching, or mating, their

origins together. However, this does not guarantee alignment in a true neutral position.

The International Society of Biomechanics (ISB) created a means for defining the true

anatomical coordinate system within each bone allowing for each to be placed in their

anatomical position (Figure 3.2-4) [89]. ISB utilized prominent bony features or landmarks

to define the universal anatomical coordinate system on a local scale within each individual

bone. Using this, each bone was aligned with a consistent universal coordinate system based

upon their individual axes wherein the assembly as a whole could be easily manipulated into

the desired position for testing. A combination of geometric fitting and manual selection

was used on each part to fully implement this coordinate system. Spherical fitting on both

the femoral head and acetabular surface permitted an estimation of the center of rotation

for each structure with regards to hip motion (Figure 3.2-5, Figure 3.2-7). Peak fitting for

different regions was used to find the locations of the epicondyles along with the iliac spines.

According to ISB, the centers of rotation become the origin for the respective parts while

the epicondyles and iliac spines provide additional points to define the anatomical planes

(Figure 3.2-6, Figure 3.2-7).
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Figure 3.2-4: ISB used various common anatomical landmarks within the bones to define a coordinate
system for aligning each bone relative to each other. Both the femur and the pelvis have a local set of axes
with the origin centered on the point of rotation for the hip joint [89]

Figure 3.2-5: An anterior view of the proximal femur (blue) with spherical fitting on the head (red) to
determine an approximate center of rotation. This center of rotation was then used as the coordinate system
origin.
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Figure 3.2-6: An anterior view of the distal femur showing that selection of the epicondyles was done
though the most lateral and most medial points in the distal femur. These points were used in defining the
frontal plane of the knee.

Figure 3.2-7: An anterior view of the entire pelvis with spherical fitting on the acetabulum and a plane
defined by locations of the PSIS and ASIS points. Both of these geometric fitting techniques were used in
defining the coordinate system according ISB.
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Figure 3.2-8: Anterolateral view of how the femur and pelvis were correctly aligned with each other
according to the ISB-defined anatomical coordinate system. The green arrows show the 3-dimensional
coordinate system.

With the bones correctly aligned according to this coordinate system, each joint was

manipulated based on their approximated points or axes of rotation to arrange the entire

model in a seated position [90]. There is not a single defined ‘seated position’ but rather an
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ambiguity based upon personal preference. A starting position for rising out of a chair with

100◦ of knee flexion, slight hip abduction, a vertical pelvis and a 20◦ posterior tilt of the

tibia/fibula was chosen as the initial seated position for this study based on the kinematics

reported by Burnfield et al (Figure 3.2-9) [91]. To mimic the upper body center of mass

(COM), an extension of the spine was created up to a point calculated as the COM based

upon anthropometric data provided by NASA [92]. From here a force vector was applied in

the negative vertical direction as a means for providing an estimation of the contribution of

the upper body weight. Total body weight was set to be 75 kg (∼ 165 lbs) and, based upon

anthropometric data, upper body weight comprises 59.28% of this total body weight [92].

As this model only incorporates a unilateral situation, this amount was further cut in half

to represent weight experienced by a single lower limb. An additional vector representing

forces generated through the torso along with two stabilizing dampers were attached to this

COM point as well. Magnitudes for the torso force were calculated retrospectively based

upon the expected moment about the hip joint and the moments generated by each of the

current applied muscles [93]. Ambiguity about this particular force provided an opportunity

for some adjustment to during the validation phase. The stabilizing dampers provided the

ability to control the rate of motion and prevented abrupt movement. These were assigned

a damping coefficient of 0.5 kg · s−1 permitting a level of smoothing and stability without

drastically altering the results.
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Figure 3.2-9: A lateral view of the skeletal structures positioned in the initial seated position. The hemi-
pelvis and physical representation of the torso COM (red), the femur (blue), tibia (yellow), fibula (orange)
and patella (green) can all be seen. Soft tissue structures were hidden for clarity.
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3.2.3 SolidWorks Motion and Soft Tissue Implementation

With this anatomically correct lower extremity model appropriately arranged in a seated

position, the aforementioned SolidWorks Motion package was used to implement contact and

penetration interactions between bones, restraints provided by ligaments, forces emulating

muscles and weights, and fixtures set to allow/prevent the bones to translate and/or rotate

with respect to one another. The fixtures were important in creating a basis or reference

for all other parts and preventing the entire assembly from freely moving in space. As the

focus of this work was on the hip the knee was simplified to be a simple hinge and the tibia

and fibula were both fixed in their initial position. This allowed for the femur, pelvis and

even patella to still move relative to the tibia/fibula while simplifying the necessary soft

tissue structures and preventing uncontrolled motion in space. It also removes the ability to

incorporate ankle joint into the model, an aspect that should be considered moving forward.

Motion of the hip joint was completely governed by the 3D articular anatomy, ligamentous

restraints, and muscle activation. Contact between the articular surfaces was defined such

that penetration between parts was minimized. SolidWorks Motion provides the ability to

apply penetration and contact settings between two different parts based upon a stiffness

value, maximum damping and penetration at this maximum damping. Utilizing the ADAMS

solver and these predefined parameters, SolidWorks recognizes regions of overlap between

two parts and applies a force projecting outward on both parts. This force is applied at the

centroid of the overlap region and the magnitude is calculated as the product of the stiffness

and overlap depth. A viscous element is included to prevent destabilization and is dependent

on the maximum damping input parameter and the rate of interference between the two

parts. Any parts that should not overlap one another were applied appropriate contact

parameters for minimal overlap between bodies while preventing unnecessary penetration

forces (Table 3.2-1). Lastly, friction was ignored between parts as synovial joints experience

negligible friction coefficients [94,95].
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Parameter Value

Geometric Accuracy 100%

Contact Type . Impact

Stiffness (k) 8000 N/mm

Exponent (e) 2

Maximum Damping (cmax) 400 N · s/mm
Penetration at Max Damping (dmax) 0.001 mm

Friction None

Table 3.2-1: Contact parameters used to prevent penetration between bodies in SolidWorks Motion.

Soft tissue structures were represented through a series of force vectors with the num-

ber of vectors varying dependent upon size and shape. For the more complex structures

such as the hip capsule, a larger number of force vectors were linked together to represent

the intricate shape of these ligaments. Both the fiber orientation and mechanical proper-

ties were considered in aligning and connecting these force vectors. These properties were

gathered from a combination of cadaveric experimental studies and anatomic textbooks to

most accurately replication the shape and behavior of the native tissue [96,97]. SolidWorks

allows for force vectors to be programmed through a simple FORTRAN expression allowing

for conditional behavior to be implemented (Equation 3.1). Ligaments were given tension-

only behavior based on an initial-length and a stiffness value (Table 3.2-2) to determine the

magnitude and thus providing them with the ability to react to the environment.
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Ligament Force Vector L0 (mm) Stiffness (N/mm)

Superior ILFL

1 23.7504 48.9

2 13.3824 97.8

3 16.9536 97.8

Inferior ILFL

1 23.3664 100.7

2 29.9328 100.7

3 24.1152 151.05

4 23.0112 151.05

5 29.1168 151.05

PFL

1 28.656 35.82

2 21.744 35.82

3 21.5616 68.565

4 17.3472 68.565

5 19.45928 68.565

ISFL

1 12.6144 100.7

2 11.9328 100.7

3 20.5536 151.05

4 17.9136 151.05

5 26.592 151.05

6 21.8592 151.05

Table 3.2-2: The parameters used for each individual force vector that comprise the hip capsular ligaments.
Initial length values were based upon in-situ strain in the defined femur resting position relative to the pelvis
and stiffness values were gathered from previous studies and adjusted depending on the number of vectors
used to define the ligament [12].

F = IF ({Length} − L0 : 0, 0,−S · ({Length} − L0)) (3.1)
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In the previous expression, {Length} refers to the distance between attachment points of

the force throughout the simulation time and was constantly compared to an initial length

(L0) for each tissue. This initial length was defined based upon an in-situ strain of 0.04 with

the joint in a resting position. In this case, the resting position for the hip joint capsular

ligaments is 30 degrees of flexion and abduction with a slight internal rotation [41, 98].

S represents the stiffness parameter with each ligament applied a specific stiffness value.

The expression itself is a simple if-statement written in FORTRAN code wherein measured

length and resting length were compared with zero on each iterative calculation and a force

proportional to the stiffness and strain value was generated if that difference was greater

than zero. Essentially, the force vector was only activated when the measured length was

greater than L0, maintaining the tension only specification.

Rather than being reactive to the motion of the surrounding parts, muscles are the

driving force behind the motion. Muscle activity was defined based on EMG activity from an

experimental study performed by Burnfield et al while the force magnitudes were determined

through an inverse dynamics computational study done by Caruthers et al [45, 91]. All

insertion sites and physiological lines-of-action were determined primarily through anatomic

textbooks [63]. Simple, linear muscles were modeled with point-to-point linear force vectors

connecting these insertion sites and representing the desired line-of-action. The ingenuity,

however, came in matching the curved and complex shapes for these tissues within the

model to what is seen anatomically. Muscles with more non-linear shapes and curvatures

that wrap around joints, such as the gluteus maximus, have yet to be successfully modelled

without greatly increasing the necessary computational power or the need to make significant

compromises. With only simple, linear forces available in SolidWorks Motion, this has been

a lingering issue with RBM applied to the organic shapes seen in orthopedic biomechanics.

An approach involving the connection of linear forces along a predefined path was used as the

solution for this model. A small sphere, or bead as we called it, served to both connect the
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force vectors as well providing a physical barrier permitting the forces to follow any defined

path. In the case of this research, simple cylindrical shapes were used as the paths and were

created based upon the shape of the desired tissue (Figure 3.2-10, Figure 3.2-11). Previous

work has utilized this technique without the defined path, limiting each bead only through

contact between it and the surrounding solid bodies consequently adding to the required

calculations and thus lengthening the time required [99]. By providing a surface path for the

beads to follow and using mating techniques rather than contact properties, a higher degree

of control and lower amount of calculations necessary were achieved. The gluteus maximus

along with the hip joint capsule ligaments were modelled in this manner.

Figure 3.2-10: An example of how the Iliofemoral Ligament was created using several linear force vectors
and spheres. The red and blue arrows denote the individual force vectors. Each sphere is set to glide along
the yellow cylinder which was generated based upon the shape and orientation of the femoral neck.
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Figure 3.2-11: An inferolateral view of the hip joint portion of the model with the gluteus maximus
highlighted. The red and blue arrows represent the gluteus maximum muscle with six silver beads connecting
these nine force vectors.

Each force vector was run in parallel with a damper for tissues modeled using this tech-

nique. This was exceptionally important in maintaining stability and preventing the beads

from scattering and losing effectiveness for that particular tissue (Figure 3.2-12). With the

dampers and applied path, each set of forces successfully followed the correct line of action

for that particular tissue without much deviation. However, inclusion of dampers provided

a viscous element and, in order to prevent the dampers from altering the actual motion, the

dampers were provided with a small coefficient of 0.1 kg · s−1. This value was low enough to

not compromise the kinematics while still successfully stabilizing the bead motion.
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Figure 3.2-12: Plots comparing the linear distance between gluteus maximus beads with and without a
parallel damper. (Left) Motion without the damper is much less stable and has a higher maximum distance
between beads. (Right) The damper smoothed the motion reducing the random fluctuations.

The remaining soft tissue structures included in the model are the labrum and articular

cartilage, both of which contain unique properties difficult to completely incorporate within

a rigid body framework. These differ from the previous soft tissues in that neither runs

linearly from one insertion site to another. Rather, they both cover an area acting as an

additional layer over the skeletal anatomy. Additionally, both experience a great deal of

compression which cannot be modeled, even in a simplified manor, with rigid body motion.

Cartilage was kept as a simple rigid structure created as an approximately 1mm extension of

the lunate surface of the acetabulum. Femoral cartilage was not included in the model as it

caused complications during the analysis. The labrum was modeled in a manner allowing for

its tension properties but mostly ignoring its compressive properties. It was separated into

5 different sections with tension-only force elements connecting adjacent elements (Figure

3.2-13). Each force vector was programmed in a similar manor as the ligament structures

with the stiffness value gathered from literature but with an initial length of zero. The rigid

elements were attached to the acetabular rim via hinges essentially creating a series of flaps

with tension force vectors maintaining its shape. Five elements were chosen as a compromise

between over-simplification and stability.
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Figure 3.2-13: (Left) The labrum is shown in orange fully intact without any displacement. (Right) The
labrum in orange in a displaced state with the force vectors shown between adjacent elements. Both images
depict the acetabular cartilage surface (yellow).

3.2.4 Modeling Sit-to-Stand Transfer

The sit-to-stand (STS) transfer is a maneuver performed approximately 60 times per day

by a healthy individual regardless of their demographics [47]. It is commonly overlooked as

a trivial task but can become rather difficult for those with lower extremity musculoskeletal

disorders (MSDs) or even neurological disorders such as Parkinson’s disease [100]. These

situations can lead to increased incidence of contact between tissues, lowered muscle force

output, reduced coordination and general discomfort throughout the motion typically as a

result of the high degree of hip flexion experienced during STS. Clinically, STS is commonly

used as an indicator of performance during recovery for elderly patients. The entire process

involves coordination between many of the lower extremity and torso muscles as well as a

large force magnitude. During the initial 40-45% of motion, the body repositions itself to
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provide a more ideal moment generated by its weight about the knee joint and thus requiring

less muscle force. This is referred to as the pelvic tilt phase. As the torso COM position in

space is fixed relative to the pelvis for this model, motion in this phase was entirely based

around the hip joint. Immediately following this phase, the actual lift-off to a standing

position takes place comprising the remaining 55-60% of motion and involves significantly

higher force magnitudes. Modeling this biphasic behavior directly came from the muscle force

programming mentioned previously. Both the magnitude and the activation/deactivation

timing were accurately represented when developing this model. The combination of EMG

activation and inverse dynamics force data provided a great starting point for providing these

muscle force vectors with appropriate magnitudes over time. An example of the gluteus

maximus force-time plot can be seen below (Figure 3.2-14). Muscles contain negative force

values to represent the compression force native to muscle contractile behavior. Subsequent

iterations of the model changed the peak magnitudes, within 1 standard deviation as reported

(Table 3.2-3).

Figure 3.2-14: An example of a force-time plot representing the activation pattern for the glutes maximus
muscle. This figure comes directly from the SolidWorks workspace.
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Muscle Peak Force Magnitude (N)

Gluteus maximus 2009.07± 277.31

Vastus lateralis 1542.14± 359.30

Rectus femoris 944.03± 382.21

Vastus medialis 798.88± 296.41

Bicep femoris 490.06± 380.64

Table 3.2-3: Peak muscle force magnitudes for each of the muscles used to drive this model. This data
came from an inverse dynamic calculation based on kinematic data from 7 healthy patients [45].

3.2.5 Model Validation

Validation of this computational model was necessary to ensure that it was an accurate

representation of what is seen in the real world. Proper validation fortifies the claims made

as a result of future studies performed using the model. In this particular case, kinematics

throughout a sit-to-stand transfer was the primary concern and thus should be compliant

with the real-world motion. The hip joint was being focused on for this work but both the

knee and hip are involved in performing a sit to stand transfer and thus both were properly

validated. Since the appropriate equipment for performing an experimental version of this

task was not accessible, an indirect means of validation was performed with data gathered

from previously published work. Burnfield et al (2012) investigated how the Vera-lift sit-

to-stand device affected the motion through a STS transfer [91]. Ten male adult patients

with no previous history of musculoskeletal or neuromuscular impairment were recruited

to perform this study. Data was gathered using the Qualisys Motion Analysis System, a

series of reflective markers and EMG electrodes along the primary muscle groups. Each

participant was instructed to perform the STS task without any device, while using the

device and still utilizing personal strength, and then finally with complete reliance upon

the device. Kinematic and electromyography data were gathered from each case and the
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ensemble averages were reported. For the purpose of this thesis, only trials without any

device were considered.

In comparing the model with experimental data, the timescale for the motion needed

to be scaled appropriately. STS is typically reported with respect to a percentage of the

motion, rather than actual time, ranging from 0% at the initiation of the pelvic tilt phase

to 100% at a fully standing position. As the muscles drive the motion and were used as

the input parameters of this model, the timing arrangement of these muscles was used to

scale the motion appropriately from the SolidWorks timescale to a percentage value. More

specifically, according to EMG results, most muscles peaked at approximately 50% STS.

This relationship provided a ratio used in converting the timescale appropriately. In this

case, the success or failure of the applied forces could be monitored based on the motion for

proper validation.

Gathering the knee flexion and pelvic tilt angles for the computational model was done

indirectly by monitoring key positions in space during the entire process. SolidWorks pro-

vides a straightforward means for monitoring the angle between three points but is limited

to only values from 0− 180◦. Rather than continuing on to values greater than 180◦, Solid-

Works begins to count down back to 0◦. For this reason, an approach involving length

measurements with simple trigonometry calculations was used in determining the model

kinematics (Figure 3.2-15). Linear distances (L1 and L2) in the horizontal direction were

taken at each time point with respect to a point fixed in space, 1000mm (L3) from the knee

joint rotational axis. These measurements permitted an accurate calculation of the pelvic

tilt (θPT ) and knee flexion (θKF ) angles within the physiologically possible range. Custom

Matlab functions (Appendix A) were developed for the validation process. They performed

the calculations in determining the resulting kinematics and then performed further analysis

on the data in reference to experimental data from Burnfield et al.
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As a consequence of fixing the lower leg anatomy with a 20◦ posterior rotation, full upright

posture was unachievable with the current state of this model. At approximately 70% of

the motion, knee flexion from the experimental data reaches 20◦ and thus this was set to

be the target point for validation. Root mean square error (RMSE) was used to determine

the model or models that most closely resemble the kinematics reported experimentally.

RMSE provides a comparison between two data sets by quantifying the sample standard

deviation between predicted and observed values [101]. A threshold RMSE of 5◦ was used as

the limit for providing an appropriately validated model based upon the standard deviation

reported by Burnfield et al for various points during the motion [91]. Any models above this

threshold for both knee flexion and pelvic tilt were determiend to be considerably different

from the experimental data. In selecting models that fell within this acceptable range to

use for additional analyses, the points of higher deviation from the experimental work were

considered. For instance, with femoroacetabular impingement we hypothesized the area of

greatest bone interaction would take place during peak hip flexion and thus it was important

to have a model accurately representing the transition from pelvic tilt to lift-off with a peak

pelvic tilt angle within the range of reported values of 28.1 ± 7.0◦ [91]. Finally, angular

velocity was calculated as the derivative of the angular position data with respect to time

for each of the models as well as the experimental data to provide additional analysis.
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Figure 3.2-15: A visual describing how the kinematic data for both hip and knee motion were calculated
throughout the motion. Refer to Equations 3.2 and 3.3 for how these variables and measurements relate to
each other and are used in calculating the desired pelvic tilt (θPT ) and knee flexion (θKF ) angles.

θPT = sin−1

(
L1 − L2

A

)
(3.2)

θKF = 90− cos−1

(
L3 − L2

B

)
+ 20 (3.3)
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3.3 Results

Using the RMSE threshold of 5◦, this lower extremity computational model was success-

fully validated up to the 70% of the sit-to-stand motion target for three different variations

of muscle force inputs (Table 3.3-1). Two of the models (KT226 and KT227) have nearly

identical applied forces but did vary slightly in the torso force wherein the torso force for

both models peaked at 85N but decreased down to 40N for KT226 and decreased down to

45N for KT227 (Figure 3.3-1). The third model differed in magnitude between all quadri-

ceps muscles and in the torso force. All three models were used as a means of accounting

for slight alterations in the STS kinematics seen between individuals. Each had advantages

to the motion while none perfectly matched every aspect of the STS transfer as reported

experimentally. Two (KT226 and KT227) were fully validated to the 70% target for both

pelvic tilt and knee flexion with RMSE values less than 5◦ and the last (KT170) contained

a near exact replication of the hip motion (RMSE = 1.5◦) but with inadequate knee flexion

(RMSE = 10.5◦) (Table 3.3-2). All this information was plotted with the data from Burnfield

et al for direct comparison (Figure 3.3-2). Additionally, all three models had peak pelvic tilt

values well within the target range (28.1± 7.0◦) [91] (Table 3.3-3).

Each of the models performed the lift-off phase at a faster rate than what was seen

experimentally. Joint velocity plots show this difference in angular velocity occurring at

approximately 60% of STS motion with a spike in the negative direction for both pelvic

tilt and knee flexion (Figure 3.3-4). Negative velocity refers to the magnitude of each joint

angle decreasing at a higher rate. Models KT226 and KT227 show a very clear and sharp

peak with model KT170 displaying only a slight increased rate of negative angular velocity

towards the end of the motion. This observation was a reoccurring issue in many of the prior

iterations leading to these validated models.
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Muscle/Force
Peak Force Magnitudes (N)

Model KT170 Model KT226* Model KT227*

Gluteus maximus 2010 2010 2010

Vastus lateralis 1722 1812 1812

Rectus femoris 1134 1039 1039

Vastus medialis 1020 1020 1020

Biceps femoris 395 395 395

Torso 80 85 85

Table 3.3-1: Peak force magnitudes for the muscles used in each of the three validated models.
*KT226 and KT227 differ in the torso force but not in peak magnitude. The torso force for KT226 decreases
down to 40N by 100% STS where the torso force for KT227 decreases to 45N (Figure 3.3-1)
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Figure 3.3-1: Models KT226 and KT227 differ only in the torso force. This is a plot displaying the slight
variation.
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Kinematic Data of Healthy Runs compared to Experimental Data

Made using STAnalyzer v2.0 beta on 14-Dec-2017
Figure 3.3-2: Kinematic data for the selected models plotted with the data from Burnfield et al [91].
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Model Pelvic Tilt RMSE (◦) Knee Flexion RMSE (◦)

KT170 1.5 10.5

KT226 4.2 4.9

KT227 2.7 4.7

Table 3.3-2: Statistical results from the three chosen models displaying the RMSE values for both hip and
knee motion.

Figure 3.3-3: A series of images taken at five time points for each of the runs to provide context with the
kinematic plots.

Model Peak Pelvic Tilt (◦)

KT170 26.9

KT226 27.8

KT227 29.4

Table 3.3-3: Peak pelvic tilt values for each of the models. The reported average was 28.1± 7.0◦ [91].
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Figure 3.3-4: Angular velocity data for the selected models plotted with the data from Burnfield et al [91].
Velocity was calculated as the first-order derivative of the respective kinematics.
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3.4 Discussion

These validated computational models of the lower extremity are capable of accurately

representing the first 70% of a STS transfer. All the skeletal structures were represented

as 3D rigid bodies and were oriented according to their respective anatomical coordinate

system [89]. Soft tissue structures were created as a hybrid of rigid bodies and linear force

vectors arranged such that both their line of action and anatomical shape were correctly

matched. Outside of physical appearance, these soft tissue structures were programmed

based upon data gathered from previous experimental studies. Muscle force magnitudes and

activation timing were gathered from inverse dynamic and EMG analyses respectively [88,91].

Ligaments adjust their force magnitude in response to their environment based upon the

linear distance between attachment sites and a known stiffness value (Table 3.2-2). This

arrangement allowed for ligaments to perform their native function of stability and muscles to

provide the driving force for the resulting motion. However, this arrangement also contained

some simplifications that must be considered in analyzing the results.

Out of the iterations performed, three different models provided accurate representations

of STS kinematics based upon their RMSE calculations. Between these three models, there

was not a distinguishing factor for selecting one single model over the others. Consequently,

all three models were chosen with each providing a better representation of an aspect of

STS relative to the others. For instance, the pelvic tilt motion in model KT170 very closely

resembled the experimental data (RMSE = 1.5◦) while it lacked the appropriate knee flexion

(RMSE = 10.5◦). Models KT226 and KT227 were very similar and only differed slightly in

their muscular inputs. However, KT226 reached a peak pelvic tilt very similar to that of

the experimental data providing more accurate representation of what occurs at that point

while KT227 was the best all-around model with a pelvic tilt peak only slightly higher than

the experimental data and lower RMSE values than that of KT226. The advantages and

disadvantages of each model should be considered when utilizing them for future studies.
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Even though these models were successful in performing the STS motion, there were

sources for error in the development. Motion during the lift-off phase was an indicator of

this error in that the most deviation from experimental data occurred during this region.

Both the hip and knee joints tended to experience higher rates of extension motion than

what was reported by Burnfield et al [91]. The primary causes have already been mentioned

as underlying RBM requirements. Removing deformation mandates creative alternatives to

soft tissues that may not be able to fully mimic the native tissue. Matching muscle line

of action as well as force generation through only linear force vectors and rigid bodies was

a challenge. This model met that challenge with success but may not be perfect in every

position throughout STS. Outside of modeling decisions, patient geometry and capability

must be considered as the patient used for this model could vary quite a bit in their size and

strength from that patients used by Burnfield et al [91].

Finally, it is important to note that sit-to-stand is a task that inherently varies amongst

the entire population. Age, weight, strength, etc. all contribute to a person’s ability to

perform this task and thus affect the overall kinematics. Even the same individual may not

perform this task the exact same way on each attempt. Some use their arms as a means for

providing additional support while some rely solely on the lower extremity strength. This

makes formal validation difficult because providing a baseline to compare to only resembles

a select small population. Additionally, the lack of ankle motion could negatively impact

these results. Without the ability to rotate the tibia and fibula, the resulting knee motion

is only indicative of femur rotation. All of this should be considered when analyzing the

validation results along with any future studies performed using this model as this model

represents the average between 10 patients and future studies will be indicative of that

sample size. However, even with anatomical variation and the simplifications made, this

model was successfully able to mimic the kinematics of a true STS maneuver through the

use of only soft tissue and osteoarticular constraints and will allow for future investigations
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into hip joints kinematics during a sit-to-stand transfer. Continued use of this model will

provide an indication of how various MSD’s and morphological situations within the hip

joint affect the overall kinematics of a STS transfer as well as how performing a STS transfer

with these conditions can further affect the anatomy.
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Chapter 4: Effect of Femoroacetabular Impingement on

Sit-to-Stand Kinematics

4.1 Introduction

Femoroacetabular impingement is a pathological condition in the hip joint that occurs

because of abnormal articulation between the femoral neck and acetabular rim. Typically,

this occurs as a result of a region of overgrowth residing on either bone. These abnormalities

lead to an impairment in joint range of motion and thus issues in performing daily functional

activities such as gait. Increased instance of contact between the femur and pelvis causes

joint pain and can lead to damage on the surrounding soft tissue structures [102,103]. There

is further evidence, recently, that this abutment can lead to articular cartilage damage and

thus FAI may be a mechanism leading to the onset of osteoarthritis over time [31]. Diagnosis

of FAI involves a combination of clinical testing and medical imaging techniques to provide

both an indication of the patient’s range of motion and an idea of skeletal morphology.

Magnetic Resonance Imaging (MRI) and X-ray are both commonly used in this diagnosis.

Cam-type and pincer-type are the two forms of impingement seen in patients (Figure 4.1-

2). Cam impingement involves an unusual offset between the femoral head and neck typically

from a bony protrusion present in that region. However, in some cases, the head can have

a more posterior placement relative to the neck [103]. Pincer-type impingement involves an

unusual overgrowth of the acetabular rim [103]. This can be a result of abnormalities such

as acetabular retroversion, coxa profunda or protrusio acetabuli all of which involve irregular

geometry in the acetabulum [102]. Both coxa profunda and protrusion acetabuli involve a

deeper position of the acetabulum while acetabular retroversion, more commonly referred

to as hip dysplasia, occurs when the mouth of the acetabulum has a more posterolateral
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orientation [104–106]. Regardless of the impingement type, persistent contact between these

structural abnormalities leads to damage on both the surrounding soft tissue as well as the

underlying subchondral bone. Pain in the anterior region is consistent amongst both types

and is a common indicator of FAI in general [8].

Figure 4.1-1: A radiographic image showing a point of impingement. The red circle is included to show
where the asphericity of the femoral head connecting to the femoral neck occurs [102]
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Data has shown that FAI has greater prevalence in athletic individuals and, therefore,

it has been proposed that the physical activity has an underlying cause on development of

FAI. Specifically, researchers believe that osseous growth in a region of higher stress along the

neck causes development of the abnormality [29,107]. It has already been seen in phenomena

such as stress-shielding that our native bone formation is highly dependent on the mechanical

environment. In stress-shielding, the bone experiences less stress due to an implanted device

with a high stiffness leading to bone resorption around the device [108]. In regions where the

stress is high then, the bone could be remodeled by depositing more calcified matrix providing

an opposition effect. In FAI, it is hypothesized that the femoral neck is experiencing higher

concentrations of stress from elevated load through different activities, such as jumping or

running, leading to elevated bone growth in that region [107].

Figure 4.1-2: An anterior view showing the different forms of femoracetabular impingement with impinge-
ment zones highlighted: (A) Healthy hip (B) CAM impingement (C) Pincer Impingement and (D) Combined
impingement [102]
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Clinically, quantifying general acetabular and femoral morphology in reference to FAI

involves two different measurements called the alpha angle and center edge angle (CEA)

(Figure 4.1-3). Due to the locations for either type of impingement, these measurements

are typically made with 2D radiography on an anterosuperior plane view that include the

center of the femoral head. With the alpha angle, a circle closely defining the femoral head

contour is placed over the 2D radiographic image. A line between the center of this circle

and the point of bony defect is connected to the line defining the neck axis passing through

the center of the circle. The alpha angle is the angle between these two lines (Figure 4.1-3).

Asymptomatic patients present with average alpha angles of 55.0 ± 8.8◦ in this view while

symptomatic patients average 65.2 ± 7.3◦ [28, 102]. CEA is used to determine acetabular

morphology such as dysplasia in addition to pincer impingement. It is defined as the angle

between a line perpendicular to the horizontal plane of the scan starting at the center of the

femoral head and a line connecting the lateral-most aspect of the acetabulum with the center

of the femoral head. A CEA value lower than 20◦ is typically considered to be dysplastic while

pincer-type impingement cases have CEA values greater than 39◦ [103]. Both measurements

were briefly described in Section 2.1. Current research has attempted to use newer 3D

imaging technologies to more accurately determine impingement zones through combined

femoral and acetabular morphology [61]. Further research on femoroacetabular impingement

has focused on etiology, improvements in diagnosis and kinematic alterations [7,29,107,109].
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Figure 4.1-3: (Left) Radiographic image displaying the circle defining the femoral head, the line connecting
the impingement point to the center of this circle and the line along the neck axis all used to calculate the
alpha angle. (Right) Radiographic image showing the center-edge angle defined by a vertical line and the
lateral most aspect of the acetabulum. Both lines must intersect at the center of the femoral head [28]

Several experimental studies have been conducted in an attempt to understand how FAI

will affect the daily tasks of a patient with the condition [7,40,103]. Tasks such as squatting,

walking and rising from a chair directly involve hip flexion motions potentially affected by

FAI. FAI abnormalities have shown to affect patients during gait through a decrease in the

peak extension angle as a result of the common symptoms of anterior joint pain and soft

tissue tension [40]. In the extremes of hip flexion, experienced during a deep squat, patients

with symptoms of cam-type impingement had a reduction in peak hip flexion and internal

rotation angles. The most common location for the abutment or abnormality typically is

located in the anterior region of the hip joint and thus physically limits the motion [7].

[7]. However, the impact of FAI on sit-to-stand has not been fully investigated. Therefore,

the purpose of this computational study is to use kinematic and contact information to

provide an indication of how FAI affects the kinematics of sit-to-stand and the resulting

joint mechanics.
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4.2 Methods

4.2.1 Model Development

Structurally, the difference between a hip diagnosed with cam-type FAI and a healthy hip

lies in a bony protrusion or overgrowth along the anterosuperior region of the femoral neck

and head. Development of a new model using a patient formally diagnosed with FAI would

not provide data comparable to the validated healthy model as the skeletal geometry differs

between each individual thus creating a variation in moment arms created by muscles. As the

goal of this study was to investigate FAI relative to a healthy state, using skeletal anatomy

from a separate patient would not permit this direct comparison between healthy and disease

states. Rather, the healthy femur used previously was modified within the Mimics software

to create a region of cam-type impingement. Mimics provides the ability to easily manipulate

3D geometry with real-time feedback through a contour editing feature (Figure 4.2-1). As

mentioned in the previous section, cam impingement is quantified through an alpha angle

measurement and typically patients with symptomatic FAI have an alpha angle of around

65.2 ± 7.3◦. For this particular patient, the original healthy femur had an alpha angle of

53.7◦ and the modified FAI femur had an alpha angle of 65.2◦ measured in the anterosuperior

plane. Both of these values match closely to what was defined as being healthy or FAI in

the literature [28, 102]. Additional alpha angle measurements were taken in different planes

to confirm the success of the modification (Table 4.2-1). Once completed, this modified

femur simply replaced the original within the validated healthy models, maintaining all the

same soft tissue elements. Ligamentous structures were applied the same stiffness and initial

length parameters as seen in the healthy model and muscles applied the same force values

over time. Acetabular morphology was not being investigated here so the native pelvis was

used. These runs were again limited to 70% of STS transfer with the fixation of the tibia

and fibula being the limiting factor.
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Figure 4.2-1: (Left) The original contour describing the unmodified, native anatomy for this patient.
(Right) A modified contour in this particular view to create a region of impingement for this patient.

Plane Model Nor-
mal (◦)

Model Dis-
ease (◦)

Literature
Normal (◦)

Literature
Disease (◦)

Anterior 48.9 50.1 48.2± 6.8 53.0± 9.8

Antero-superior 53.7 65.2 55.0± 8.8 65.2± 7.3

Superior 56.9 64.1 54.3± 9.8 54.3± 9.8

Table 4.2-1: The measured alpha angle values in different relevant planes compared with the reported
values from literature [28,102].
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4.2.2 Data Analysis

Kinematic behaviors were gathered from the models. Results from this FAI model were

analyzed using the previously mentioned custom Matlab functions (Appendix A). These

functions imported the SolidWorks Model position data with respect to time for each FAI and

respective healthy model, performed calculations on both kinematics and comparison, and

then finally generated plots of pelvic tilt and knee flexion angles with regards to percentage

of STS up to 70%. An additional plot with hip flexion was included to provide a relationship

of the femur orientation relative to the pelvis. These hip flexion angles were calculated

using a combination of both pelvic tilt and knee flexion angles (Figure 4.2-2). Within each

kinematic plot, both the healthy and FAI data were included for a direct comparison. In

addition to this kinematic data, the difference magnitude in angles between healthy and

FAI data for each model was plotted with particular points of variation highlighted. More

specifically, the point where the FAI kinematics began to truly differentiate from the healthy

data along with the point of highest variation were marked. Determining the point of initial

deviation was done with a threshold of 0.1◦ based on how the results were rounded. Finally,

to provide an overall quantification of the comparison between FAI and healthy models, root

mean square deviation (RMSD) was calculated. RMSD is calculated exactly as RMSE but

is used to provide an indication of deviation rather than similarity.
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Figure 4.2-2: The hip flexion angles relative to both the pelvic tilt and knee flexion angles. θHF is the hip
flexion angle and provides an indication of the femur orientation relative to the pelvis.

Contact between tissues is another area of concern with FAI patients. It is believed that

abnormal contact between the region of bony overgrowth and surrounding structures could

lead to tissue damage. As deformation is not permitted in rigid body motion, information

regarding stress and strain within the joint throughout the motion could not be obtained.

However, an advantage of using the ADAMS solver within SolidWorks for performing rigid

body motion calculations is that body penetration and overlap are quantified in terms a vol-

umetric measurement. Interference detection within SolidWorks performs this calculation

based upon assigned contact parameters previously mentioned. Both this volume of overlap
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and visuals for the overlap regions were gathered for five time points throughout the motion

for each impingement model and compared back with their respective healthy model. Specif-

ically, overlap between the femoral head and acetabular cartilage along with the femur and

labrum were compared graphically for each validated model. Finally, the translation of the

femoral head relative to the acetabulum was measured in all three directions as well as the

magnitude of translation to provide context with the volumetric overlap as to the location

of this contact.

4.3 Results

The results from each RBM were plotted for a direct comparison between FAI and non-

symptomatic. Kinematics of FAI models did not vary much from the original healthy models

in either pelvic tilt or knee flexion. Kinematic plots provide a visual representation of this

comparison (Figure 4.3-1). It was not until approximately the point of peak pelvic tilt that

the overall motion began to change for each model iteration. KT170 ended with higher

pelvic tilt and knee flexion angles while KT226 and KT227 both experienced the opposite.

These observations were further quantified through magnitude of deviation, RMSD values

and deviation points of interest (Figure 4.3-2, Table 4.3-1 and Table 4.3-2). Model KT170

showed very little difference from its healthy alternative with RMSD values of 0.3◦ and 0.5◦

for pelvic tilt and knee flexion respectively and maximum amount of deviation of 1.8◦ and

2.8◦ for these same angles. Model KT227 resulted in the highest variation from its healthy

state with RMSD values of 1.9◦ and 2.3◦ and maximum amount of deviation of 6.7◦ and

8.1◦. An additional hip flexion plot was provided for each model, comparing FAI to healthy,

to provide a direct indication of how the pelvis and femur are oriented with respect to each

other (Figure 4.3-3). All three healthy models and all three FAI models reached a peak hip

flexion value of approximately 98◦, showing no difference between healthy and FAI models.
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Made using STAnalyzer v2.0 beta on 14-Dec-2017
Figure 4.3-1: Plots showing how the healthy and FAI knee and hip kinematics vary for the three validated
models.
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Figure 4.3-2: Plots showing the deviation between healthy and FAI cases for all 3 models. Points of initial
variation and highest variation are highlighted. Exact values for these points are in (Table 4.3-2).
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Model Pelvis Tilt RMSD (◦) Knee Flexion RMSD (◦)

KT170 - FAI 0.3 0.5

KT226 - FAI 1.7 2.1

KT227 - FAI 1.9 2.3

Table 4.3-1: RMSD values for the FAI models compared with their respective healthy models for both hip
and knee motion.

Pelvic Tilt Knee Flexion

Initial
Variation

Maximum Variation Initial
Variation

Maximum Variation

Model %STS %STS Diff Mag (◦) %STS %STS Diff Mag (◦)

KT170 - FAI 51.7 70.0 1.8 55.0 70.0 2.8

KT226 - FAI 40.7 66.7 5.9 33.8 66.9 7.2

KT227 - FAI 43.8 67.5 6.7 31.7 67.7 8.0

Table 4.3-2: Highlighted points of variation between the three validated healthy models and their respective
FAI models. The %STS for initial variation in addition to the %STS and magnitude of maximum variation
are included for all THA models. Point of initial variation indicates the point where the magnitude difference
between healthy and FAI models is greater than 0.1 degrees. As each value was rounded to a single decimal
point, variation greater than 0.1 provides a numerical indication of this variation seen in the rounded results.

69



0 10 20 30 40 50 60 70

STS %

0

20

40

60

80

100

A
n

g
le

 (
d

e
g

)

KT170 Hip Flexion

Healthy

FAI

0 10 20 30 40 50 60 70

STS %

0

20

40

60

80

100

A
n

g
le

 (
d

e
g

)

KT226 Hip Flexion

Healthy

FAI

0 10 20 30 40 50 60 70

STS %

0

20

40

60

80

100

A
n

g
le

 (
d

e
g

)

KT227 Hip Flexion

Healthy

FAI

Hip Flexion of FAI Models compared to Healthy Data

Figure 4.3-3: Hip flexion plots for each model. The angles were calculated based upon pelvic tilt and knee
flexion angles to provide a better indication of the pelvis orientation with respect to the femur.

With regards to contact and body penetration, images with overlap regions as well as the

volume of overlap magnitudes were recorded for five different time points in each model on

both the acetabular cartilage and the labrum. For cartilage contact, all three models showed

the same trend in contact amount with very little at 0% STS and increasing to a maximum

value at 70% STS. At 0% STS, the pelvis ischial region was resting on a seat platform making

in-situ strain from capsular ligaments the only factor promoting contact between the joint

articular surfaces. Overlap between the femoral head and acetabular cartilage was slightly

greater for the FAI models than the healthy for most cases (Figure 4.3-4). Visually, the

difference in amount of overlap is difficult to discern between models (Appendix B). In the

recorded results (Table 4.3-3), volume values predicted by the FAI models were given colors

based upon their comparison to the healthy model. Red designates higher overlap volume

and green refers to lower overlap volume with darker shades of either color representing a

difference greater than 10% compared to the healthy state.
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Model
Volume of Overlap (mm3)

0% 17.5% 35% 52.5% 70%

KT170
(Healthy)

5.6 54.9 420.5 772.0 844.7

KT226
(Healthy)

5.6 56.2 402.1 766.7 929.8

KT227
(Healthy)

5.6 56.2 410.3 749.7 921.0

KT170
(FAI)

5.6 (+0.0%) 63.4 (+15.5%) 446.0 (+6.1%) 464.5 (−1.0%) 800.9 (−5.2%)

KT226
(FAI)

5.5 (−1.8%) 70.5 (+25.4%) 438.7 (+9.1%) 781.1 (+1.9%) 928.9 (−0.1%)

KT227
(FAI)

7.7 (+37.5%) 63.4 (+12.8%) 437.1 (+6.5%) 780.7 (+4.1%) 946.5 (+2.8%)

Table 4.3-3: Part overlap between femur and acetabular cartilage throughout the motion in units of mm3.
For the FAI models, red signifies a higher volume of overlap, green is a lower volume and grey is equal
amounts. Darker shades of either color represent a difference of greater than 10% from the healthy state.
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Figure 4.3-4: Average volume of overlap of all three models between femoral head and acetabular cartilage
for healthy and FAI models.

71



With labrum contact, the same data was gathered as with cartilage and there were

different results. Most notably, there was not any overlap between femur and labrum bodies

until approximately 35% STS and even then there were negligible amounts. The amount

of volumetric overlap peaked at the 52.5% STS point for healthy and FAI models and had

begun to decline by 70% STS. At 52.5% STS, model KT170 had an increase in overlap

volume by 21.1% while both KT226 and KT227 had less than 4% increase. At 70% STS,

there was a range of observed results seen for both healthy and FAI cases. In particular,

KT170 showed a sharp increase (347.2%) in overlap volume from healthy to FAI cases where

both KT226 and KT227 had significant decreases in this overlap volume. Refer to Appendix

B to see all images of the overlap for each model at the 5 time steps. Results from FAI

models were again given colors based upon their relationship to the healthy model (Table

4.3-4) with the same color scale the previous table. Due to the low amounts of penetration,

further investigation into the tension developed through three regions of the labrum was

done (Figure 4.3-6). There was higher tension experienced in the labrum posterior region for

all three models relative to other regions. Throughout the STS motion, FAI models showed

slightly higher magnitudes in labrum tension force for all three regions in comparison to the

healthy joint with the posterior and superior regions seeing larger deviations. There was

very little tension developed in the anterior region until approximately 65% STS.
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Model
Volume of Overlap (mm3)

0% 17.5% 35% 52.5% 70%

KT170
(Healthy)

0.0 0.0 0.0 42.1 12.5

KT226
(Healthy)

0.0 0.0 0.0 43.4 42.0

KT227
(Healthy)

0.0 0.0 0.0 43.1 27.7

KT170
(FAI)

0.0 (+0.0%) 0.0 (+0.0%) 0.0 (+0.0%) 51.0 (+21.1%) 55.9
(+347.2%)

KT226
(FAI)

0.0 (+0.0%) 0.0 (+0.0%) 0.0 (+0.0%) 45.1 (+3.9%) 5.2 (−87.6%)

KT227
(FAI)

0.0 (+0.0%) 0.0 (+0.0%) 0.0 (+0.0%) 43.1 (+0.0%) 21.8 (−21.3%)

Table 4.3-4: Part overlap between femur and labrum throughout the motion in units of (mm3). For the
FAI models, red signifies a higher volume of overlap, green is a lower volume and grey is equal amounts.
Darker shades of either color represent a difference of greater than 10% from the healthy state.
*There was part overlap at 35% but it was < 0.1mm3 making the rounded value 0 for all models.
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Figure 4.3-5: Average volume of overlap of all three models between femur and labrum for healthy and
FAI model.
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Figure 4.3-6: Tension magnitudes experienced in the posterior (left column), superior (middle column)
and anterior (right column) for each of the FAI models compared to their respective healthy states. Each
row refers to a single model while each column refers to a region in the labrum.

For all three models, there was a shift of the femoral head posteriorly, medially and

superiorly relative to its initial position within the acetabulum suggesting that the femoral

head was being forced deeper into the socket as the motion progresses (Figure 4.3-7). Between

FAI and healthy cases, there was very little difference in each of the directions meaning the

amount of translation occurring during FAI cases was not different from the healthy cases.
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Figure 4.3-7: Femoral head translation in all three directions along with the magnitude relative to its initial
position within the acetabulum. In this case, anterior, medial and superior are considered to be positive.

4.4 Discussion

This study utilized three previously validated computational models of the lower extrem-

ity to examine how differences in hip morphology due to symptomatic femoroacetabular

impingement affected the biomechanics of a sit-to-stand transfer. The models were modified

to include a femur with an overgrowth region in the femoral neck consistent with that typi-

cally seen in patients diagnosed with FAI. All applied soft tissue structures were maintained

to be consistent with the original healthy models. Function of the models was completely
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dependent upon the physical skeletal anatomy along with the implementation of surrounding

soft tissue structures. Both kinematic and contact data were gathered in the form of joint

angles and solid body volumetric overlap.

Results from this study showed that there were only slight alterations in the kinematic

data for both pelvic tilt and knee flexion seen in both the low RMSD values (Table 4.3-1)

and in the kinematic plots providing a visual comparison between cam-type impingement

and healthy hip states (Figure 4.3-1). Most notably, the maximum amount of deviation

between FAI and healthy models occurred after the point of peak pelvic tilt for all three

models with both the pelvis tilt and knee flexion motion plots. There has been very little

work done previously investigating the relationship between cam-type impingement and STS

kinematics to provide a comparison. However, previous experimental studies have reported

that cam-type FAI does alter kinematics for gait and deep squat tasks through a decrease

in range of motion [7, 40]. Bagwell et al (2015) investigated how cam-type FAI affects deep

squat kinematics between symptomatic patients (n=15) and healthy participants (n=15)

and reported that peak hip flexion angles were all reduced with impingement cases. More

specifically, peak hip flexion was reduced for FAI cases from 113.0±6.7◦ to 106.6±14.0◦. The

measured peak hip flexion was approximately 98◦ for each of the healthy models and this

was not changed with the addition of impingement suggesting that these lower amounts of

hip flexion experienced during STS were not high enough for the FAI morphology to provide

restrictions similar to what is seen in a deep squat (Figure 4.3-3). During gait, Kennedy et al

(2009) reported that patients with cam-type FAI (n=17) experienced a decrease in their hip

extension range as opposed to hip flexion when compared with asymptomatic participants

(n=14). This was attributed to a pain-coping mechanism as a result of anterior soft tissue

damage developed over time, an aspect that cannot be quantified via a computational model.

Additionally, the STS models do not experience hip extension passed the neutral position

making the results not applicable for comparison. Within both studies, cam-type FAI was
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determined by patients with alpha angles greater than 50.5◦ and healthy participants all

presented with no prior history of lower extremity issues. The plane of measurement for

these alpha angles was not reported but, in reference to the measurements taken for this

model (Table 4.1-3), these studies were most likely referring to the anterior plane where the

literature reports alpha angles for symptomatic patients to be 53.0± 9.8◦. The FAI models

had an alpha angle of 50.1◦ in this plane.

The average amount and location of contact regions within both the acetabular cartilage

and the labrum as well as the translation of the femoral head within the acetabulum followed

a similar trend as seen in the kinematics with a small amount of difference between the

healthy and impingement states (Figure 4.3-4, Figure 4.3-5, Figure 4.3-6 and Figure 4.3-7).

Between 17.5% and 35% of STS there was a consistent increase in cartilage contact for each

of the impingement models relative to their healthy states (Table 4.3-3). This increase could

potentially be inconsequential with respect to altered biomechanics. However, with a task

performed as frequently as STS, this slight increase in contact could potentially lead to tissue

damage through repetitive incidents and fatigue over time. The tendency for the femoral

head to have a more posterior shift in contact on the acetabular cartilage during a sit-to-

stand transfer has been observed previously in a finite element analysis study performed by

Henak et al (Figure 4.4-1) [110].

Figure 4.4-1: A stress concentration map of the acetabular cartilage from a study done by Henak et al
showing posterior contact during a sit-to-stand transfer [110].
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It has been shown previously that tissue damage, as a result of FAI, occurs at the region of

contact [31,111]. However, damage reported in those studies occurred due to high incidences

of anterior contact from the impingement region, as a result of high angles of hip flexion. In

contrast, the overlap images in Appendix B along with the translation plots (Figure 4.3-7)

show that the region of overlap for both the healthy and the FAI models occured posteriorly

and superiorly for cartilage and labrum without any anterior overlap occurring. In addition,

there is almost no tension developed in the anterior portion of the labrum until later in the

motion (Figure 4.3-6). This further suggests that the amount of hip flexion experienced

during STS in all models is not large enough to induce the contact necessary to provide

anterior pain and potentially damage. However, as a consequence of the confined acetabular

coverage around the femoral head, it is feasible that these slight increases in contact and

translation posteriorly during FAI models could increase the stress experienced along the

articular surfaces in the cartilage potentially leading to damage on these surfaces. Lastly,

at 70% STS, there were rather large differences between healthy and FAI states in labrum

contact with KT170 showing a significantly larger amount of contact and both KT226 and

KT227 having much less contact (Table 4.3-4). This is most likely attributed to the slightly

altered joint angles at 70% STS for these FAI models. KT170 had a higher pelvic tilt angle

in comparison to its healthy state whereas KT226 and KT227 had lower pelvic tilt angles at

this point (Figure 4.3-1).

The manner in which this model was developed provided a potential source for error.

To proceed with the validated STS model from Chapter 3, the same skeletal structure and

anatomy had to be maintained. Using anatomy from a separate patient diagnosed with

FAI would result in different bone geometry leading to changes in the muscle moment arms.

Therefore, the original femur was modified to mimic conditions of FAI. More specifically,

the femoral neck and head were modified to create a region of overgrowth consistent with

cam-type impingement. The resulting morphology was verified through alpha angle measure-
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ments taken in three different planes to provide confidence in the modifications. In addition,

these models assumed there was no alteration in soft tissue mechanical properties or mus-

cle strength as a result of long-term diagnosis of FAI. It has been mentioned in previous

work that these structures could become damaged over time as a result of FAI [8, 102, 103].

Regardless, these structures maintain the same parameters in the impingement models as

implemented and defined during the validation process for consistency between models. Fi-

nally, similar to the validation process, simplifications had to be made during the actual

development process for the original model. These simplifications were outlined in the pre-

vious chapter. However, even with these errors and assumptions, the previously validated

computational models were successfully able to provide insight into how femoroacetabular

morphology alone affects STS kinematics and articular contact surfaces contributing to the

further understanding of cam-type impingement cases.
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Chapter 5: A Computational Study of Combined

Version in Total Hip Arthroplasty Using Sit-to-Stand

Kinematics

5.1 Introduction

Surgical intervention for hip joint diseases dates as far back as the 1820’s when John

Rhea Barton performed an osteotomy on an ankylosed hip. However, it was not until nearly

a century later, in 1927, that a true replacement for the femoral head was attempted in a

patient. It was constructed entirely out of ivory, and was unsuccessful, but it opened a door to

years of research into this topic. In 1948, the Judet brothers developed a methyl methacrylate

femoral head implant, which truly began the widespread use of hip replacement surgeries.

Their work became rather significant is this field for proving that the interaction between

human biological tissue and non-organic materials was possible with minimal damage or

infection. Throughout the 1950’s, there was a shift in the research done in this area. Non-

metallic materials were replaced with sturdier metallic materials and longer stems were

implemented providing more stability. In the years to follow, more sophisticated techniques

and materials were formed. Techniques including how the actual device is fixated or attached

in the skeletal anatomy, handling of the surface topography for articulating surfaces and

attachment sites, and the actual material for the implant all were key areas of research for

the past century [55].

In present times, total hip arthroplasty surgery is becoming an increasingly popular

procedure treatment of pain and dysfunction associated with common hip joint diseases of

Osteoarthritis (OA), Rheumatoid arthritis (RA) and chondromalacia. These involve either

skeletal damage, cartilage damage or both and tend to develop over time in elderly patients
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rather than appearing as a sudden onset. By 2010, approximately 2.5 million individuals in

the United States had undergone a THA procedure with approximately 253,000 performed

in 2010 alone [48, 112, 113]. It is projected that by 2030 this number will rise to approxi-

mately 572,000 THA procedures per year, a 126% increase [112]. Coinciding with this rise

in popularity of clinical practice, comes a rise in the amount of research to improve the

current standards. Improvements in design of the arthroplasty components, the materials

comprising the components, as well as the surgical techniques for implantation have all led

to the increased success of the procedure and implant longevity [34,35,114,115]. An implant

can vary in complexity from only a single part to several different parts each interacting

with one another. Implants tend to have their own material or set of materials chosen for

specific purposes. Known materials commonly used include metals and alloys, polymers such

as polyethylene (more specifically UHMWPE), bulk metal glasses (BMG) and ceramics such

as aluminum oxide [55,116,117]. PTFE was originally chosen as a potential bearing material

due to its frictional properties but was later abandoned due to its high wear rates compared

to the other listed materials.

In general, a THA procedure is a highly traumatic event that typically leads to inflamma-

tion surrounding the joint, high levels of stress hormones and an elevated immune response.

These symptoms could remain for weeks post-operation [118]. However, a successful implant

will vastly improve the lifestyle and functional capabilities of the patient. There are several

factors that play a role in the success or failure of a THA procedure that can be narrowed

down into either material chosen or implant placement and specifications. Due to the nature

of a RBM, the material of each part is irrelevant for the results of this study. However, the

placement and alignment could affect the kinematics relative to the native healthy state un-

der identical applied forces. More specifically, version and inclination of both the acetabular

cup and femoral neck are important to keep in mind. These measurements provide an indi-

cation of the orientation of the native femur and acetabulum in addition to the placement
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of THA components.

Femoral anteversion describes the femoral neck orientation relative to the condylar axis

thus describing the femoral shape and orientation in the transverse plane (Figure 5.1-1).

Anteversion refers to an anterior orientation of the neck relative to the condylar axis while

retroversion refers to a posterior orientation. According to Fujishiro et al, preoperatively,

patients typically present with a wide range of femoral version from 13.4◦ of retroversion

to 80.0◦ of anteversion with an average of 31.0◦ of anteversion (n=1,555) [119]. Femoral

inclination is the angle between the femoral neck and the femoral shaft and typically ranges

from 120◦ to 135◦ for a healthy femur [120, 121] (Figure 5.1-1). Acetabular anteversion is

defined as the angle between a line connecting the lateral anterior and posterior margins

of the acetabular cup and the sagittal plane [119] (Figure 5.1-2). According to Fujishiro et

al, patients have a range of 24.0◦ of acetabular retroversion to 56.7◦ of anteversion with an

average of 20.2◦ of anteversion in the native anatomy (n=1,555) [119]. Acetabular inclination

is the angle between the transverse plane and the line connecting either end of the acetabular

rim taken in the frontal plane (Figure 5.1-2) and, according to Fowkes et al, ranges from

32.1◦ to 45.5◦ with an average of 38.8◦ in native hips (n = 200) [122]. The native anatomy for

this model contained 27.9◦ of acetabular anteversion, 33.7◦ of acetabular inclination, 15.5◦

of femoral anteversion and 121.2◦ of femoral inclination.
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Figure 5.1-1: (Left) The neck axis and condylar axes, measured in the transverse plane, are used to
determine femoral version. (Right) The neck and shaft axes, measured in the frontal plane, are used to
determine femoral inclination.

Figure 5.1-2: (Left) Acetabular version is measured as the angle between the sagittal plane and the line
connecting either end of the acetabular rim in the transverse plane. (Right) Acetabular inclination is the
angle between the transverse plane and the line connecting either end of the acetabular rim taken in the
frontal plane.
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Native anteversion and inclination are not always replicated with a THA procedure [123].

When performing a THA procedure using cemented fixation, the acetabular component is

typically placed first and should be aligned according to the Lewinnek range of 5 − 25◦ of

anteversion and 30−50◦ of inclination with average values of 15◦ and 40◦ respectively [35,124].

Subsequently, the femoral component is placed such that a combined version (CV) goal is

met. An ideal range for this measurement is inconsistent in the literature with some sources

stating combined version should be between 40–60◦ and others stating it should be between

25–45◦ [68, 125–127]. Improper application of the implants could lead to lower hip stability

and thus higher incidents of dislocation, decreased range of motion and, excessive contact

between parts [55]. Each of these will lead to discomfort for the patient and potentially a

revision procedure to correct the initial failed attempt. With this study, these issues will be

considered further. The sit-to-stand rigid body model previously validated was used further

by producing the conditions of a total hip arthroplasty in order to refine the inconsistencies

for a desired CV angle through investigation of STS kinematics.

5.2 Methods

5.2.1 Model Development

Total hip arthroplasty implants have a degree of variation between companies in shape

and size of the parts. Universally speaking, the acetabular cup could be considered as a

simple hemispherical cup with an inner polyethylene (PE) liner and a metallic outer shell. As

deformation and attachment methods were disregarded, fixation between these two parts and

material properties between metal and PE were not considered in developing the acetabular

parts. A simple hemispherical shell with a hemispherical liner were developed based upon

the DePuy Synthes PINANCLE acetabular cup to represent this component (Figure 5.2-1,

Figure 5.2-2). Similarly, the femoral component has a variety of intricacies in shape that

differ between brands and companies with stem size and shape as well as neck shape. Only
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the neck and head were considered in this case as fixation within the rigid body model does

not require direct contact between parts. A simple cylindrical shape transforming into a

somewhat rectangular base was developed as the femoral neck with a spherical ball capping

the end as the femoral head component. This was based on the DePuy Synthes SUMMIT

tapered femoral component (Figure 5.2-1, Figure 5.2-3).

Figure 5.2-1: A visual of the DePuy Sythes PINNACLE acetabular cup and SUMMIT tapered femoral
head components implanted into a hip joint. A section view of the femur shows how the component stem is
placed and both layers of the acetabular cup can be seen.
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Figure 5.2-2: (Left) The acetabular cup as a stand-alone part. It was modeled as two separate parts in
an attempt to match the true size and specifications as was is seen clinically. (Right) This cup was placed
within the native acetabulum concentrically and then aligned according to the Lewinnek ranges for version
and inclination.

Figure 5.2-3: (Left) The femoral component alone. It consists of a spherical femoral head and an intricate
neck that forms from a simple cylinder to a rectangular base. The specifications are based upon a typical
implant. (Right) The femoral component placed within the native femur used in this model.
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With the parts created according typical specifications, they were implemented within the

previously validated model similarly to what is done clinically. Initially, the acetabular cup

was arranged according to the Lewinnek averages for inclination (40± 10◦) and anteversion

(15± 10◦) [124]. This cup was placed with the assumption that it would be concentric with

the native acetabular cup providing a point of rotation and allowing for simple manipulation

to ensure proper alignment. Prior to implementing the femoral component, the native neck

and head anatomy were removed to provide a location for the implant. A point of rotation

for altering the inclination and version was defined based on the native shaft axis and neck

axis. This provided an initial position for the implant while also considering the need for

future manipulation with the primary desire being how these femoral anteversion, and thus

combined version, affect kinematics. Typically, femoral version is used to reach a target

CV and there is an inconsistency within the literature as to what an ideal range should

be. As mentioned previously, reported values range from 25–60◦ and so three values in this

range were selected. 35◦, 45◦ and 55◦ of combined version were used making the femoral

anteversion 20◦, 30◦ and 40◦ (Figure 5.2-4) with acetabular anteversion set to 15◦. Femoral

inclination was set to 130◦ for each model (Figure 5.2-5).

Figure 5.2-4: Femoral version is based upon the femoral condylar axis and the femoral neck axis. This
image displays each of these axes within the transverse plane with regards to the THA models.
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Figure 5.2-5: Inclination describes the neck relationship with the femoral shaft. This image displays the
inclination relationship in the frontal plane used in the models.

5.2.2 Data Analysis

Similar to the FAI model, kinematic data output from this SolidWorks RBM model was

read and analyzed with a custom Matlab script (Appendix A). The same lengths and calcu-

lations done on the healthy and FAI models for determining joint angles were performed on

the THA models. Again, plots displaying kinematic angles with regards to STS percentage

for both healthy and THA data and plots with the difference magnitudes throughout the

motion for each THA model relative to the healthy models were created. Root mean square

deviation (RMSD) values for each model relative to the respective healthy model were cal-

culated as a way to provide a quantification of their relationship. If unstable motion or

a dislocation occurred, there was further investigation on that particular model or version

angle.
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5.3 Results

Kinematic data for all three models was plotted to directly compare motion for healthy

with the three different THA combined version angles (Figure 5.3-1). THA created a sig-

nificant alteration in the kinematics when compared to the initial healthy state for all three

models. Both the models with 45◦ of CV and the models with 55◦ of CV had the same trend

for each case with a lower peak pelvic tilt angle and a sharp, quick pelvic extension motion

during the lift-off phase. The pelvis tilt angle continued to decrease even after reaching the

target neutral position to values that would suggest an un-physiological position. On the

other hand, all three models provided with 35◦ of CV experienced dislocation. Further inves-

tigation showed that this dislocation did not occur due to an impingement-type abutment

between the neck and acetabular cup (Figure 5.3-2). The precise time of this dislocation

was apparent in the kinematics plots as a slight spike in pelvic tilt angles leading to a sharp

decline to a point past the neutral 0◦ whereas the other two cases have a more gradual shift

to this decline. In the knee joint, all models displayed similar knee flexion angles to the

healthy model during the pelvic tilt phase. However, during the lift-off phase, rate of knee

extension for all models began to rapidly increase to its target position including the models

where dislocation occurred. This observation was unanimous between all three validated

models.
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Made using STAnalyzer v2.0 beta on 14-Dec-2017
Figure 5.3-1: Plots comparing all three healthy models with their respective THA models. The THA
models were altered to have 35◦ (blue), 45◦ (red) and 55◦ (yellow) degrees of combined version. For each
model with 35◦ of CV, there is a slight spike in the hip motion at the time of dislocation.
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Figure 5.3-2: Inferior views at the time of dislocation for each model provided with 335◦ of CV.
(Left) Model KT170, (Center) Model KT226 and (Right) Model KT227. All of these occur late into the
pelvic tilt phase.

The magnitude difference between each THA model and their respective healthy model

was plotted with areas of interest highlighted such as peak and initial deviation (Figure

5.3-3, Table 5.3-2). Unanimously, pelvis tilt motion began to differ from the healthy data for

each THA model, regardless of CV angle, early in the motion with an average initial point

of variation of 5.6% STS. Knee flexion did not change much until the lift-off phase initiated

apart from cases with 35◦ CV due to the general lack of femur motion early in a STS transfer.

On average, models with 35◦ of CV started to differ in knee motion at around 28.6% STS

whereas models with 45◦ or 55◦ of CV remained similar to the experimental knee motion

until 54.3% STS. Maximum deviation for all THA models was large for both pelvis tilt and

knee flexion and occurred well into the lift-off phase of STS. All FAI models, regardless of

CV angle, varied by a great deal during this phase (Figure 5.3-4). These high amounts of

deviation for each THA model were further quantified through RMSD values (Table 5.3-1)

wherein all models showed high amounts of deviation.
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Figure 5.3-3: Plots showing the difference magnitude between the healthy models and THA models for
35◦ (blue), 45◦ (red) and 55◦ (yellow) degrees of combined version.
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Model Pelvis Tilt RMSD (◦) Knee Flexion RMSD (◦)

KT170

35◦ CV 16.0 23.4

45◦ CV 12.0 8.6

55◦ CV 17.0 16.0

KT226

35◦ CV 18.5 22.0

45◦ CV 15.7 13.4

55◦ CV 17.3 16.7

KT227

35◦ CV 17.9 20.9

45◦ CV 14.6 11.5

55◦ CV 17.3 16.3

Table 5.3-1: The root mean square values for each variation of THA model compared with its respective
healthy model.

Pelvic Tilt Knee Flexion

Initial
Variation

Maximum Variation Initial
Variation

Maximum Variation

Model %STS %STS Diff Mag (◦) %STS %STS Diff Mag (◦)

KT170

35◦ CV 5.1 56.0 53.5 24.0 53.5 56.0

45◦ CV 5.0 69.2 46.4 58.2 69.5 40.8

35◦ CV 7.0 65.3 50.7 54.5 67.0 51.0

KT170

35◦ CV 4.9 59.9 44.6 30.1 60.4 51.8

45◦ CV 4.9 63.6 46.9 52.8 64.1 43.6

35◦ CV 6.9 61.7 48.7 52.0 63.0 48.7

KT170

35◦ CV 4.8 61.0 44.1 31.8 61.5 50.7

45◦ CV 5.0 65.0 45.1 55.3 65.4 39.7

35◦ CV 7.0 62.4 48.9 52.9 63.7 47.9

Table 5.3-2: Highlighted points of variation between the three validated healthy models and their respective
variations of THA models. The %STS for initial variation in addition to the %STS and magnitude of
maximum variation are included for all THA models. Point of initial variation indicates the point where
the magnitude difference between healthy and FAI models is greater than 0.1 degrees. As each value was
rounded to a single decimal point, variation greater than 0.1 provides a numerical indication of this variation
seen in the rounded results.
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Average maximum deviation for THA models with different combined version angles
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Figure 5.3-4: The average maximum deviation from healthy motion for the three different femoral version
angles for both hip and knee motion.

5.3.1 Discussion

This study took advantage of the previously discussed and validated STS computational

models to investigate the wide range of acceptable combined version angles in a THA pro-

cedure using postoperative kinematics. The three healthy model variations, differing only

in their applied muscle forces, were provided with a complete THA procedure starting with

resection of the native anatomy and then accurate placement of the parts compliant with

what is done clinically. All soft tissue structures, except the labrum, were left intact exactly

as they were in the healthy models to maintain consistency. Typically, when using a cement

fixation, the acetabular component is placed first according to a previously established range

developed by G. E. Lewinnek in 1978 for both version and inclination. Femoral anteversion

is then implemented to provide an ideal combined version. There is inconsistency as to what
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this combined version should be in the literature with different sources suggesting different

ranges varying from 25− 60◦ of CV. This aspect was tested during this study. With regards

to kinematics and biomechanics in general, a common indicator of a failed THA procedure

is dislocation of the femoral head from the acetabular socket [119].

Up until now, there have not been any studies comparing THA combined version with

STS kinematics. A postoperative kinematic study was performed by Lamontagne et al

(2012) to provide a general indication of how patients (n=20) performed sit-to-stand and

stand-to-sit tasks postoperatively, independent of combined version angles, and did find that

hip flexion was lower for most of the motion compared with the control participants. The

component placement measurements were not reported in the study [128]. Results from

the computational models in this thesis show similar trends through reduced pelvic tilt

angles and further expanded the investigation to include the effect of anteversion angles. All

models with THA, regardless of their CV angle, showed an alteration in kinematics when

compared with the native healthy model with this lower peak pelvic tilt angle and a faster

rise to a standing position (Figure 5.3-1). Degree or amount of deviation from the healthy

models further suggests that all three combined version angles differed drastically from their

respective healthy models with the high root mean square deviation values reported making

it difficult to refine the range of acceptable CV angles with this data alone. RMSD for all

but one case in both pelvic tilt and knee flexion was above 10◦ with the average maximum

deviation being above 40◦. Most of this variance occurred during the lift-off phase which

was also an area of concern during the validation phase.

The models with 35◦ of CV experienced a posterior dislocation during the pelvic tilt

phase. However, this dislocation did not occur as a result of an impingement situation but

rather due to a lack of coverage posteriorly (Figure 5.3-2). This is unusual as posterior

dislocations, regardless of CV angle, typically occur as a result of anterior impingement

forming a lever-type release of the femoral head component [119, 125]. Postoperative hip
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abductor deficiency is a rare situation that has resulted in cases of instability with THA

procedures and, as these muscles were not included in the original healthy model, could

be a cause of this finding [129]. Hip abductors help in maintaining hip stability for THA

by providing a force that prevents lateral motion of the femoral head relative to the cup.

Further testing on this situation should be performed.

Potential sources for error include all areas mentioned in both Chapter 3 and 4. As a RBM

study, this model required simplifications and compromises with all soft tissue structures. A

combination of rigid body elements and linear force vectors were combined to develop these

tissues. With the diverse range of motion seen in the hip joint, many different positions

and the resulting muscle line of action had to be considered. Finally, the assumption that

muscle weakness and surrounding tissue damage does not occur as a result of the THA

procedure was made to maintain consistent applied forces between these models and their

healthy comparison. Regardless, these THA models successfully provided information as to

how the kinematics change with respect to different combined version angles and created a

foundation for defining a more consistent combined version target range. This information

could prove to be useful for providing more successful total hip arthroplasty procedures and

lower the potential for revision surgeries.
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Chapter 6: Conclusion

The work in this thesis applied computational techniques to study common pathological

situations experienced in the hip joint throughout the frequently performed task of sit-to-

stand. An anatomically accurate three-dimensional rigid body model of the lower extremity

was developed using parts derived from CT scans. Soft tissue structures were incorporated,

according to insertion sites reported in literature, as a series of linear force vectors aligned to

match the line of action or fiber orientation for their respective tissue. Each tissue was pro-

grammed according to its native physiological function with ligaments provided tension only

properties based upon stiffness and strain while muscles generated the necessary moments

to create the desired motion. Magnitudes and properties for each of these were gathered

from literature. This model went through an indirect validation using results from a former

experimental study by Burnfield et al [91] to match both pelvic tilt and knee flexion angles

throughout the motion. Using a threshold root mean square error value of 5◦, three differ-

ent models, differing slightly in applied muscle force magnitudes, were chosen to proceed

forward.

The hip joint undergoes a wide range of both loading conditions and range of motion

consequently leading to more many possible of pathological situations [32,70]. Femoroacetab-

ular impingement (FAI) and total hip arthroplasties (THA) are both common morphological

states experienced with hip joints today. FAI occurs with a region of overgrowth in the an-

terior femoral neck and head leading to painful situations involving extreme hip flexion and

can cause chronic tissue pain from repetitive incidents of unusual contact [7,30,31,40]. THA

is the most common corrective procedure for patients diagnosed with degenerative joint dis-

ease (DJD), or osteoarthritis (OA), which is a painful loss of articular tissue that occurs

with age [32, 35, 119]. Both of these cases are common morphologies and lower extremity

kinematics could potentially be affected by and contribute to the issues with both cases and
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thus were the focal point of this thesis. The three previously mentioned validated models

were modified to include both FAI and THA conditions based upon the current standard

for quantifying their morphology. For FAI, a single case, representing the average patient

presenting with symptomatic cam-type impingement, was studied by implementing the re-

ported average alpha angle value to the femoral head and neck on each of the three models.

THA component placement is quantified via four different angles describing orientation of

either component in both the frontal (acetabular inclination and femoral inclination) and

transverse (acetabular anteversion and femoral anteversion) planes. Combined version pro-

vides an indication of how both parts are oriented within the transverse place and there is

an inconsistency as to what this value should be with literature ranging from 25–60◦ [119].

Combined version was set to 35◦, 45◦, and 55◦, all of which fall within this range, for investi-

gating THA in all three validated models. Acetabular anteversion remained constant at 15◦

for every model making femoral anteversion the determining factor that changed between

each model.

It is well understood that FAI is not a pathology that results in a sudden onset of

symptoms but rather a gradual increase in symptoms over time with repetition [31, 103].

The results from this work support that conclusion in that there were only slight deviations

between kinematics and contact between healthy and FAI models. This brings about the

question of whether the difference is due to the altered morphology or to assumptions made

during model development. Aside from the magnitudes of contact, the actual location of

contact occured more posteriorly for every model, both heathy and FAI, without any anterior

contact between the femoral neck and labrum occurring. Typically, FAI causes discomfort

in the anterior region of the hip joint during the upper limits of hip flexion. During a

deep squat, it was observed that patients with FAI reported, on average, approximately

6.4◦ less of peak hip flexion compared with healthy patients [7]. However, average peak hip

flexion reported for these FAI patients was still approximately 8.6◦ greater than the peak
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hip flexion measured by the models used in this thesis which showed no difference in hip

flexion between FAI and healthy cases (Figure 4.3-3). With regards to contact, there were

slight increases in contact for FAI models relative to healthy models but this was located in

the posterior region of the acetabular cartilage. There was no observed contact or significant

labrum tension developed in the anterior region that would be indicative of unusual abutment

between femur and acetabulum. Therefore, it can be said that the motion of STS may not

provide traumatic enough conditions of hip flexion for cam-type impingement to induce an

effect on the kinematics.

Proper placement of the different parts in a THA procedure plays a crucial role in the

patient’s ability to perform motions as well as in the decreasing the probability of dislocation.

The three different CV cases mentioned previously were successfully implemented into the

three validated STS models. Kinematics of the THA models did have a significant change

from the respective healthy models regardless of the CV angle with the cases of 35◦ CV

dislocating. Each incidence of dislocation occurred approximately at the point of peak pelvic

tilt suggesting that this increase in hip flexion provided instability with this combination of

anteversion and inclination angles. Further investigation into this dislocation showed that

it was due to a lack of coverage posterior with the head simply slipping out (Figure 5.3-

2), contradicting what is typically observed clinically with posterior dislocation occurring

as a result of anterior impingement between the neck and cup [119, 130]. It is possible

for posterior dislocation to occur in situations of hip capsular or hip abductor weakness

as a result of a posterior surgical approach but capsular strength was maintained constant

between healthy and THA models [129, 130]. Regardless, based upon these results, the

combined version should be on the higher end of the literature ranges with both 45◦ and

55◦ CV cases successfully completing the STS task, even with a different motion than their

healthy states. This statement should be further investigated to include the hip abductor

muscles for confirmation. Considering the inconsistency in literature as to what this angle

99



should be, these results provide information to potentially develop a more definitive CV

range able to reduce the amount of dislocations experienced.

As this is the first attempt at developing a model that accurately represents a sit-to-stand

transfer, future uses of this model should attempt to improve representation of the healthy

state compared to literature. Additional musculature for control could be implemented as

well as including more samples of experimental data during the validation phase. By ac-

counting for the inherent variation that occurs between individuals in STS and increasing the

sample size, more confidence can be developed in the results gathered from this model. In

addition, implementation of the talocrural (ankle) joint would permit full 100% STS by al-

lowing for rotation of the tibia and fibula to achieve full 100% validation rather than limiting

to only 70% of the motion. This would increase the complexity along with the potential for

error but, if successful, would allow for a more accurate representation of what occurs in-vivo.

All work in this thesis focused primarily on femoral morphology. Situations of pincer-type

FAI and improper acetabular cup placement with THA could be easily investigated with

this model providing information with regards to how acetabular morphology affects STS.

Regardless, this model was able to provide insight into areas that either cannot be investi-

gated or would be difficult and require expensive equipment to investigate experimentally. It

has shown to be a useful tool in understanding different situations of STS in its initial form

and further work to improve the validation will only increase its ability to contribute to our

understanding of hip pathologies and how they ultimately affect this commonly performed

motion.
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Appendix A: Matlab Scripts

A.1 Function for calculating kinematics from raw SolidWorks data

1 function [run_points,spline_fit,parameters,muscles,status] = getRunData
(run_path)

2 %Gather data about a particular run and return calculations
3

4 % Data cell structure for folder of runs:
5 % 1. Kinematic Data*
6 % 2. Spline fit*
7 % 3. Input parameters*
8 % 4. RMSE values
9 % 5. Difference magnitudes

10

11 % Data cell structure for data to compare to:
12 % 1. Kinematic Data
13 % 2. Spline fit
14

15 % Parameter matrix structure:
16 % 1. Z-Damper
17 % 2. Y_Damper
18 % 3. Glute Damper
19 % 4. t_R
20 % 5. Muscle spline fit binary value
21

22 % Muscle force matrix structure:
23 % 1. Glute
24 % 2. Rectus femoris
25 % 3. Vastus L
26 % 4. Vastus M
27 % 5. Biceps femoris
28 % 6. Body weight
29 % 7. Abdominal force
30

31

32 % --------- INITIAL VARIABLES --------- %
33 % Data file names
34 data_files = {’COM Position.csv’ ’Hip Position.csv’ ’Parameters.csv’};
35

36 femur_L = 415.74; %Femur length
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37 COM_L = 492.95; %Length from hip to COM
38 d_3 = 1000; %Horizontal distance from point to origin
39 knee_offset = 20; %Knee angle offset
40

41 act_perc = 50; %STS Percentage of full muscle activation
42

43

44 % Check for file existance
45 if ˜exist(fullfile(run_path,’Run Data’),’dir’) == 7
46 fprintf(’%s is not a run.\n’, run_path);
47 status = 0;
48 run_points = [];
49 spline_fit = [];
50 return;
51 end
52 status = 1;
53

54

55 % -------- INPUT PARAMETERS --------- %
56 path = fullfile(run_path,’Run Data’,data_files{3});
57 parameters = zeros(7,1); %Initial blank cell matrix
58 parameters(1:3) = csvread(path,3,1,[3,1,5,1]); %Damper values
59

60 % Read muscle variables and convert to cell matrix
61 muscle_values = num2cell(xlsread(path,’B10:M17’));
62

63 % Create multidimensional cell matrix based on muscles
64 s = size(muscle_values); %Size of matrix
65 muscles = cell(s(1)-1,1);
66 muscles_temp = cell(2,s(2));
67

68 % Change NaN cells to blank, remove the blanks and separate by muscle/
force

69 for a=1:s(1)-1
70 for b=1:s(2)-1
71 muscles_temp{1,b} = muscle_values{1,b+1};
72 muscles_temp{2,b} = muscle_values{a+1,b+1};
73

74 % Set all NaN cells to be blank
75 if isnan(muscles_temp{2,b})
76 muscles_temp{1,b} = [];
77 muscles_temp{2,b} = [];
78 end
79 end
80

81 % Convert back to double matrix (removes blank cells)
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82 muscles_temp = cell2mat(muscles_temp);
83 muscles_temp(1,:) = muscles_temp(1,:)-0.5; %Subtract 0.5 from the

time
84

85 % Store the data in a cell matrix
86 muscles{a} = muscles_temp;
87 clear muscles_temp;
88 end
89 clear s;
90

91 % Use glute values to determine percentage values
92 glute_max = min(muscles{1}(2,:)); %Find the maximum glute value
93 [˜,column] = find(muscles{1}==glute_max); %Find location of max
94 parameters(4) = muscles{1}(1,column(1)); %Get the timing of max
95 clear column glute_max;
96

97 % Determine if cubic spline fitting is used and adjust points
98 spline_val = xlsread(path,’B10:B20’);
99 parameters(5) = spline_val(end);

100 clear spline_val;
101

102 %Determine conversion rate from time to percentage based on muscle
timing

103 rate = act_perc/parameters(4);
104 parameters(4) = act_perc; %Change from timescale to percent scale
105 clear act_per;
106

107 % Loop through each muscle to make adjustments
108 for a=1:length(muscles)
109 % Adjust each timestamp from seconds to percentage
110 muscles{a}(1,:) = muscles{a}(1,:) * rate;
111

112 % Add additional values to the end of the force matrix for 100
percent

113 n = length(muscles{a}(1,:));
114 muscles{a}(1,n+1) = 100;
115 muscles{a}(2,n+1) = muscles{a}(2,n);
116 clear n;
117 end
118

119

120 % --- SPLINE FIT FOR MUSCLES --- %
121 % Loop through each muscle to make adjustments (except TBW)
122 for a=1:length(muscles)
123 temp_array(1:2,1) = muscles{a}(1:2,1); %Temp array for this muscle
124
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125 % Loop through each value comparing with the following value
126 for b=1:length(muscles{a}(1,:))-1
127 %Spline fit matricies
128 x = [muscles{a}(1,b) muscles{a}(1,b+1)];
129 y = [muscles{a}(2,b) muscles{a}(2,b+1)];
130

131 %Check if the timestamp is a duplicate
132 if x(1) ˜= x(2)
133 p_spline(1,:) = linspace(x(1),x(2),200);
134 if parameters(5) == 1 && a ˜= 6
135 p_spline(2,:) = spline(x,[0 y 0],p_spline(1,:));
136 else
137 p_spline(2,:) = spline(x,y,p_spline(1,:));
138 end
139

140 n = length(temp_array); %Current temp_array size
141 n2 = length(p_spline(1,:)); %Number of values used
142

143 temp_array(1:2,n+1:n+n2) = p_spline;
144 clear n n2 x y p_spline;
145 end
146 end
147

148 muscles{a} = temp_array;
149 clear temp_array;
150 end
151

152

153 % --------- KINEMATIC DATA --------- %
154 % Gather position data
155 com_pos = csvread(fullfile(run_path,’Run Data’,data_files{1}),2,0);
156 hip_pos = csvread(fullfile(run_path,’Run Data’,data_files{2}),2,0);
157

158 % Make sure the timing variables are the same for both sets of points
159 if length(hip_pos) == length(com_pos)
160 run_points = zeros(length(hip_pos),3); %Single array for data
161

162 if hip_pos(:,1) == com_pos(:,1)
163 run_points(:,1) = hip_pos(:,1); %Time points
164 run_points(:,2) = com_pos(:,2); %Lengths that determine hip

angles
165 run_points(:,3) = hip_pos(:,2); %Lengths that determine knee

angles
166 else
167 % What to do if the time values are not the same
168 disp(’Array mismatch’);
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169 return;
170 end
171 else
172 % What to do if the the number of timestamps are not the same
173 disp(’Array mismatch’);
174 return;
175 end
176 clear hip_pos knee_pos;
177

178 % Remove all data from before time t=0.5 add in percentage values
179 index = find(run_points(:,1)==0.5,1);
180 run_points = run_points(index:length(run_points),:);
181 run_points(:,1) = (run_points(:,1) - 0.5)*rate;
182 clear index;
183

184 %Adjust run data to make sure there is a max percentage value of 100%
185 run_points = run_points(run_points(:,1)<=100,:);
186

187

188 % --- ANGLE CALCULATIONS --- %
189 % Pelvis Angles
190 % Determine the initial offset of the COM (it is not perfectly vertical

)
191 offset = run_points(1,2) - run_points(1,3);
192 hip_offset = asin(offset/COM_L)*(180/pi());
193 clear offset;
194

195 % Find the difference between com and hip lengths
196 dist = run_points(:,2) - run_points(:,3);
197

198 % Correct for any data that is longer than COM_L (weird results)
199 dist(dist > COM_L) = COM_L - 0.01;
200 dist(dist < (-1*COM_L)) = (-1*COM_L)+0.01;
201

202 % Calculate the angles
203 run_points(:,2) = (asin(dist(:,1)/COM_L)*(180/pi()))-hip_offset;
204 clear dist;
205

206

207 % Knee Angles
208 %Offset the data by d_3
209 dist = d_3 - run_points(:,3);
210

211 %Correct for any data that is longer than COM_L (weird results)
212 dist(dist > femur_L) = femur_L-0.01;
213 dist(dist < (-1*femur_L)) = (-1*femur_L)+0.01;
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214

215 %Use trig to calculation the actual angle considering negative values
216 run_points(:,3) = 90 - acosd((dist(:,1)/femur_L)) + knee_offset;
217 clear dist;
218

219 % Fit a spline to the data (only for tar_data)
220 spline_fit{1} = csaps(run_points(:,1),run_points(:,2));
221 spline_fit{2} = csaps(run_points(:,1),run_points(:,3));
222

223

224 end

A.2 Function for comparing data sets

1 function [error,diff_mag,rmse_array] = compData(run_data,tar_data,val,
error_max)

2 % This function compares the input run data with the given target data
both

3 % provided by the GUI interface
4

5 % Change run data if target data goes to a lower value
6 tar_spline = tar_data{2};
7 tar_data = tar_data{1};
8 comp_to = min(tar_data(end,1),run_data(end,1));
9 comp_to = min(comp_to,val);

10 run_data = run_data(run_data(:,1)<=comp_to,:);
11 clear tar_data;
12

13 % Generate target data points from the run data and spline fit
14 % (Need to adjust if target data is less than run data)
15 tar_data(:,1) = run_data(:,1);
16 tar_data(:,2) = fnval(tar_spline{1}, tar_data(:,1));
17 tar_data(:,3) = fnval(tar_spline{2}, tar_data(:,1));
18

19 % Error calculations
20 diff_mag = zeros(length(tar_data(:,1)),2);
21 rmse_array = zeros(length(tar_data(:,1)),2);
22 error = zeros(10,1);
23 for a=1:2
24 % Difference magnitudes
25 diff_mag(:,a) = abs(run_data(:,a+1) - tar_data(:,a+1));
26

27 % RMSE calculations
28 squ_err(:,1) = diff_mag(:,a).ˆ2;

116



29 error(a) = sqrt(mean(squ_err));
30

31 % RMSE calculations for data below target value
32 error(a+2) = sqrt(mean(squ_err(run_data(:,1)<=val,1)));
33

34 % Array with rmse for each step
35 for b=1:length(squ_err)
36 rmse_array(b,a) = sqrt(mean(squ_err(1:b,1)));
37 end
38

39 % Determine the percentage validated to
40 if error(a) <= error_max
41 error(a+4) = run_data(end,1);
42 else
43 % Find where the difference is greater than the error threshold
44 index = rmse_array(:,a) > error_max;
45 rmse_error = run_data(index,1);
46 error(a+4) = rmse_error(1);
47 end
48

49 % Find where true deviation begins and the max deviation accounting
for

50 % initial position
51 dev_index = find(diff_mag(:,a) > 0.1 + diff_mag(1,a));
52 if ˜isempty(dev_index)
53 error(a+6) = dev_index(1);
54 [˜,error(a+8)] = max(diff_mag(:,a));
55 clear dev_index;
56 else
57 error(a+6) = 0;
58 error(a+8) = 0;
59 end
60 end
61

62 clearvars -except error diff_mag rmse_array;
63 end
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Appendix B: Contact Result Images
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