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ABSTRACT 
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A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science in Biology at Virginia Commonwealth University 

Virginia Commonwealth University, 2017 

Advisor: Dr. Rima B. Franklin, Associate Professor, VCU Department of Biology 

 

 Antibiotic resistance is a major threat to human health.  Clinical situations are the 

main focus for antibiotic resistance research, but understanding the spread of 

resistance in the environment is also vital.  A major contributor to this spread is 

wastewater from combined sewer overflow (CSO) events.  The effect of CSO events on 

antibiotic resistance in the James River near Richmond, Virginia was studied using 

genomic and microbiological approaches.  The abundance of genes associated with 

resistance to quinolones (qnrA) and tetracycline (tetW) was strongly correlated with the 

presence of fecal indicator bacteria (E. coli abundance) as well as total nitrogen and 

phosphorus loads, which suggests an anthropogenic source of these genes.  

Abundance of the blaTEM gene, which confers resistance to β-lactam antibiotics, was 

elevated during CSO events and increased with precipitation and river discharge.  

Bacteria isolated during a CSO event were resistant to more antibiotics and had higher 

multi-drug resistance when compared to isolates from a non-event.  This study 

demonstrated that CSO events are contributing to the spread of antibiotic resistance.  
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1. INTRODUCTION 

Antibiotics are vital to human health.  They have been used to treat bacterial 

infections worldwide since the discovery of antibiotics in the early 20th 

century.  Unfortunately, the heavy use of antibiotics in the medical, veterinary, industrial, 

and agricultural fields has led to the increased natural selection of antibiotic resistant 

bacteria (Davies and Davies 2010).  Antibiotic resistance originates from evolutionary 

changes towards naturally occurring antibiotics, but human use during the antibiotic era 

has exacerbated this effect (Aminov and Mackie 2007).  This increased spread of 

resistance is largely due to the misuse and overuse of antibiotics in many medical 

practices, where antibiotic use and prescriptions go unmonitored and unregulated 

(Septimus and Owens 2011).  Though antibiotic resistance is most often studied in 

clinical situations and hospitals, there is also a need to study the environmental 

dissemination of antibiotic resistance, particularly in urban wastewater and riverine 

systems. 

The leading contributor to the spread of resistance in urban river systems is 

wastewater (Amos et al. 2014).  There are two key factors that contribute to this.  First, 

resistant bacteria are abundant in wastewater, and conditions in wastewater treatment 

plants are favorable for the proliferation of these organisms (Prestinaci et al. 2015).  

Second, wastewater treatment plants have been found to promote a process called 

horizonal gene transfer (Laht et al. 2014), which is the direct transfer of mobile genetic 

element from one organism to another.  The genes that encode for antibiotic resistance 

are usually part of these mobile genetic elements and subject to especially high rates of 

gene transfer, which can rapidly spread resistance throughout the microbial community.  
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Of additional concern is the rise of multi-drug resistant (MDR) organisms, which can 

have a level of resistance ranging from two or more antibiotics to nearly every 

commercially available antibiotic.  These MDR organisms have been shown to be more 

prevalent in urban riverine and wastewater systems than in pristine environments 

(Szczepanowski et al. 2009; Graham et al. 2011; Pruden et al. 2012; Korzeniewska et 

al. 2013; Ouyang et al. 2015).  

One problematic wastewater system, used in over 750 cities in the US, is the 

Combined Sewer System (CSS) (EPA 2012).   A CSS collects storm water and sewage 

for treatment at a single facility.  Occasionally during heavy rain, the volume of water 

that needs to be treated exceeds the capacity of the facility and the combined untreated 

wastewater is released into the river in what is called a CSO (Combined Sewer 

Overflow) event.  These CSO events and the released wastewater could be a 

contributing factor to the spread of antibiotic resistance in the environment.   

Though many studies have examined the connection between wastewater 

treatment and antibiotic resistance, the results are variable.  Resistance towards 

antibiotics can prevail in certain areas when high amounts of specific antibiotics or a 

high abundance of resistant organisms enter the wastewater and river system 

(Korzeniewska et al. 2013).  Resistant organisms persist in the environment, especially 

during wet weather events, though exposure to ultraviolet light (sunlight) may increase 

mortality (Engemann et al. 2008; West et al. 2011).  Numerous studies have found that 

bacteria intrinsically-resistant to antibiotics and bacteria resistant to chemically modified 

antibiotics are common and widespread without the effect of wastewater (Rodríguez-

Martínez et al. 2011, Ash et al. 2002).  Additionally, increased resistance to specific 
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antibiotics and their respective genes can be region specific (Marston et al. 2016). 

Therefore, it is important to study the effects of CSOs on the occurrence of antibiotic 

resistance in the environment to better understand the spread of antibiotic resistance 

genes and the possible health effects they pose. 

The city of Richmond (Virginia) is a moderately sized urban area that relies on a 

CSS, which often overflows and discharges untreated wastewater into the James River. 

In this study, we analyzed James River water samples to better understand the impact 

CSO events play on antibiotic resistance.  Antibiotic resistance was studied using 

microbiological and genomic approaches.  Relationships between antibiotic resistance, 

environmental parameters, and the dates of CSO events/non-events were used to 

address three major questions: (1) does the abundance of antibiotic resistance genes 

increase in association with CSO events (2) are antibiotic resistant organisms more 

prevalent during CSO events and, if so, (3) do those organisms harbor more resistance 

to multiple antibiotics? 

 

2. METHODS 

2.1. Site selection and sampling  
 

This study compared two sites along the James River (Figure 1) as it flows 

through the city of Richmond, Virginia (USA). The first was a riverine site (HUG) located 

near the Huguenot Bridge (37.560471, -77.545801) which was selected to represent the 

quality of water entering the city.  The watershed upstream of this site (between 

Lynchburg and Richmond) is forested and agricultural land, but is also impacted by over 

150 industrial sites, more than 90 additional discharge sources, and runoff from over 
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700 km2 of impervious surfaces (Furry 2011; Brown et al. 2015).  The second was an 

estuarine site (CSO) near the outflow of the Shockoe CSO - 06 (37.529486, -

77.429382) in downtown Richmond, which is the largest of the 29 CSO outfalls in the 

city. 

Approximately every week during the summers of 2015 and 2016 (1st May 

through 15th October), surface water samples were collected from these sites using a 

bucket thrown from shore.  Samples (1L) were transferred to sterile brown plastic 

bottles and sterile clear plastic bottles and stored on ice.  All samples were returned to 

the lab within 2 hours at which time subsamples were removed from each brown bottle 

and immediately processed to determine Escherichia coli (E. coli) abundance using 

Modified mTEC agar (BD Difco™, Sparks, Maryland) following EPA guidelines Method 

#1603 (2009).  In addition, an aliquot of water (~ 250 mL) was removed from each of 

these bottles and filtered using 0.2 µm pore-size mixed esters of cellulose filter 

membranes (Millipore, Molsheim, France).  Filters were stored at -20°C until DNA 

extraction could be performed.  Lastly, the water in the clear bottles were used to 

determine certain water quality and nutrient parameters (details below).   

2.2. DNA Extraction 

Sample DNA was extracted from archived filters using the PowerWater® DNA 

Isolation Kit (Mo Bio Laboratories, Inc. Carlsbad, California) with the following 

modifications to increase extraction efficiency.  First, each membrane filter was torn into 

small pieces using sterile forceps prior to being inserted into PowerWater® Bead 

tube.  To minimize DNA shearing, all vortex speeds were reduced to the lowest possible 

speed that still allowed for mixing.  The incubation step for the removal of non-DNA 
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organic and inorganic matter was extended to 10 minutes.  Lastly, the elution step, 

normally one 100 µL elution with no incubation, was split into two elutions of 50 µL with 

an additional room temperature 5 minute incubation before each 

centrifugation.  Successful extraction was determined by checking for the presence of 

genomic DNA bands using agarose gel electrophoresis (1.5%) and ethidium bromide 

staining. All DNA concentrations were measured using Quant-iT™ PicoGreen™ dsDNA 

Assay Kit (Invitrogen, Carlsbad, California).   

2.3. Quantification of genes using qPCR 

The following antibiotic resistance genes were assessed using quantitative PCR 

(qPCR): blaTEM, qnrA, and tetW.  The blaTEM gene confers resistance to β-lactam 

antibiotics, such as penicillin, ampicillin, and cephalosporins, and is one of the most 

common β-lactam resistance genes due to it being transferred via plasmid or 

transposon (Bradford 2001).  The qnrA gene is also plasmid mediated, and confers 

resistance to quinolones (Rodríguez-Martínez et al. 2011).  The tetW gene confers 

resistance to tetracyclines on a chromosomal mobile genetic element (Scott et al. 1997) 

and has been shown to commonly occur in fecal contaminated waters (Xi et al. 2009).  

The 16S rRNA gene was additionally quantified to determine overall bacterial 

abundance following Fierer et al. (2005).  

Reaction mixtures (15 µL) contained Bio-Rad SsoAdvanced™ Universal SYBR® 

Green Supermix (Bio-Rad, Hercules, California), forward and reverse primers (Table 1), 

and 5 ng of template DNA.  Each qPCR assay was performed in triplicate (qnrA 

performed in quadruplicate) using a CFX384™ Real-Time System (Bio-Rad, Hercules, 

California).  The primers (purchased from Integrated DNA Technologies, Coralville, 
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Iowa) and optimized reaction conditions for each gene are presented in Table 1.  A melt 

curve and agarose gel electrophoresis were conducted to verify the specificity of the 

amplified products.  Each qPCR run included an appropriate standard curve (discussed 

below) as well as two types of negative controls.  The first was a “negative template 

control,” which contained nuclease-free water instead of the template DNA, and the 

second was a “resistance gene-free control,” which contained Methanococcus voltae 

(DSM #1537, DSMZ, Braunschweig, Germany) DNA instead of sample DNA.   

For each antibiotic resistance gene, a standard curve was constructed using 

plasmid DNA extracted using the Zyppy™ Plasmid Miniprep Kit (Zymo Research Corp, 

Irvine, California).  Sources were SpyTag-β-Lactamase-Spycatcher (pET28a) (for 

blaTEM, Addgene, Cambridge, Massachusetts), pTrcHis+qnrA (provided by Dr. David 

Hooper, Harvard University) in E. coli J53 (Thermo Fisher Scientific, Waltham, 

Massachusetts) and pCR®2.1-TOPO+tetW (provided by Dr. Brian Badgley and Dr. 

Michael Strickland, Virginia Tech) in DH5α E. coli (Invitrogen, Carlsbad, California).  For 

the 16S rRNA gene standard curve, genomic DNA was extracted from E. coli (ATCC 

11775, Manassas, Virginia) using the DNeasy UltraClean Microbial Kit (Quiagen, 

Germantown, Maryland).    

Copy numbers for standard curves were calculated following Ritalahti et al. 

(2006), with the E. coli genome size being used for 16S rRNA copy numbers and 

plasmid + gene insert size being used for the resistance genes.  The gene copies were 

calculated using the mean starting quantity obtained from the Bio-Rad CFX Manager 

Version 3.1 (Hercules, California).  The detection limit for the antibiotic resistance genes 

studied was determined to be a starting quantity of 120 copies per ng DNA.  The 



 
 

7 
 

abundance of each antibiotic resistance gene was normalized based on 16S rRNA gene 

abundance and these ratios were used for all subsequent analyses.  

2.4. Multi-Drug Resistance (MDR) Screening 

Antibiotic resistant bacteria were cultured, isolated, and assessed for multi-drug 

resistance for two sampling dates: June 28, 2016 (during a CSO event, both sites) and 

July 5, 2016 (non-event; CSO site only).  Water samples were collected as previously 

described, diluted in sterile phosphate buffered saline (PBS) and plated onto four types 

of R2A agar (BD Difco™, Sparks, MD): (i) unamended, (ii) tetracycline amended at 50 

μg/mL, (iii) streptomycin amended at 100 μg/mL, and (iv) ampicillin amended at 100 

μg/mL (antibiotics purchased from Sigma Aldrich, St. Louis, Missouri).  These antibiotic 

concentrations are the maximum of the ranges recommended by major antibiotic 

retailers (ATCC, Thermo Fisher Scientific, Sigma Aldrich) and represent high levels of 

exposure.  The motivation for choosing this high concentration was to select for very 

resistant organisms and to limit growth environmental bacteria, which often have low 

levels of resistance due to exposure to sub-inhibitory levels of antibiotics (Sandegren 

2014).  A preliminary study used the full range of recommended concentrations of major 

antibiotic retailers and showed that the selected concentrations were the most effective 

(data not shown).   

Triplicate plates were prepared for each dilution and each agar type and then 

incubated in the dark at 27°C for 72 hours.  Plates containing 10-200 colony forming 

units (CFU) were counted, stored at 4°C (<2 weeks) and then isolated.  For each 

antibiotic type, 25-35 morphologically distinct colonies were selected and streaked on to 

antibiotic-amended R2A agar plates of the same type from which they were isolated.  
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Plates were again incubated for 72 hours at 27°C.  Isolates were transferred to R2A 

broth and incubated at 27°C for 72 hours.  A small aliquot of each liquid culture was 

then archived (15% glycerol, stored at -80°C) until MDR testing could be performed 

using antibiotic susceptibility disk tests (Table 2).    

Each isolate was determined to be resistant or susceptible to each antibiotic 

following methods in the Manual of Antimicrobial Susceptibility Testing (American 

Society for Microbiology 2005).  Archived isolates were tested using direct colony 

suspension, with the inoculum reaching the 0.5 McFarland turbidity standard in no 

longer than 24 hours.  Once cultures reached the 0.5 McFarland standard, they were 

spread on plates and incubated in the dark at 27°C for 16-18 hours after which time the 

zone of inhibition surrounding each antibiotic disk was measured.  E. coli (ATCC 25922, 

Manassas, Virginia) was used as a control and tested with each batch of samples.   

Some isolates did not reach the standard turbidity within 24 hours and a second 

attempt was made to regrow them from the archived cultures.  Any that still did not have 

adequate growth after this second attempt were excluded from the MDR testing.  This 

created an unequal sample size, with different numbers of isolates from each site and 

each original antibiotic type.  To adjust for this in the data analyses, a random subset of 

9-15 isolates was selected from each combination for final comparison (total n=126). 

2.5. Environmental Data  

Data for CSO event dates were obtained from the open access monthly reports 

posted by the City of Richmond Department of Public Utilities (Combined Sewer 

Overflow Project).  Specific conductance, temperature, and pH were measured directly 

using a water quality sonde (YSI 6600, YSI Environmental, Inc., Yellow Springs, Ohio).  
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Total suspended solids (TSS) were determined gravimetrically using pre-weighed, pre-

combusted filters (APHA 1998).  Samples for total nitrogen (TN) and total phosphorus 

(TP) were being collected as part of a long-term monitoring program and analytical 

methods are described in greater detail in Bukaveckas et al. (2011).  Discharge data for 

the James River were obtained from the USGS gaging station at site 02037500 

(37.563055, -77.547222), which is near the HUG sampling site.  Precipitation data 

provided by National Climatic Data Center, using the Richmond International Airport, 

“KRIC”.    

2.6. Data Analysis 

Correlation of environmental data with abundance of antibiotic resistance: 

Pearson correlations were used to compare antibiotic resistance gene ratios to E. coli 

abundance and environmental data (TN, TP, TSS, specific conductance, pH, 

temperature, discharge, precipitation) across all sampling dates.  Correlations with river 

discharge considered three different time frames: mean daily discharge for the day of 

sampling (“Sampling day”), the difference in the mean discharge for the day before and 

the day after sampling (“Prior minus following”) to reflect whether the sampling event 

was during a period of increasing or decreasing flow, and the mean discharge for the 

day before, day of, and day after sampling (“Three day mean”).  Correlations with 

precipitation also considered several timeframes: "day of sampling" (cumulative rainfall 

from midnight on sampling day until sampling time (usually ~12 hours), "1 day prior" 

(rainfall that fell between 12 and 36 hours prior to sampling), "2 days prior" (between 36 

and 60 hours), "3 days prior" (between 60 and 84 hours), and "4 days prior" (between 
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108 and 84 hours). Because of the large number of analyses this created, α was 

adjusted to 0.01.   

Effect of CSO events on the abundance of resistance genes: To specifically 

determine the effect of CSO events on gene abundance ratios, two categories were 

defined: “event” (a CSO overflow was reported by the City of Richmond during sampling 

or in the three days immediately prior) and “non-event” (no CSO overflow reported in at 

least seven days prior to sampling).  Of the 88 total sample dates considered in this 

study, 18 and 17 dates, respectively, met these criteria.  From this list of possible dates, 

12 full data sets were selected from each category and used for statistical analyses.  

Because a Shapiro-Wilk test indicated these data were not normally distributed, a non-

parametric Kruskal-Wallis test was used to compare resistance gene ratios during these 

“events” and “non-events.”  Post hoc pairwise comparisons were performed using the 

Mann-Whitney test.  Data from both sites was considered, though it is important to note 

that HUG is upstream of the CSO discharge point.  Thus, any change in resistance 

gene ratios during an “event” at HUG likely reflects discharge from upstream of the city 

and/or increased runoff from precipitation.   

Multi-drug resistance of isolates: Each of the isolates that were cultured during 

the summer of 2016 (see section 2.4.) were classified as resistant (1) or not resistant (0) 

to 10 different antibiotics (Table 2).  From this data matrix, we calculated the total 

number of antibiotics to which each isolate was resistant and fraction of isolates 

resistant to each individual antibiotic.  The Jaccard coefficient was used to calculate 

similarity between each isolate based on their resistance profiles.  Results were 

visualized using nonmetric multidimensional scaling (NMDS) ordination, and a 
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permutational multivariate analysis of variance (PERMANOVA, 9999 permutations) was 

used to test if the origin of the isolate (i.e., obtained from CSO event, CSO non-event, or 

HUG) had a significant effect on its resistance profile.   

All statistical tests were performed using PAST Version 3.16 (Hammer et al. 

2001).  All graphs were visualized using SigmaPlot Version 13.0.   

 

3. RESULTS 

3.1. Correlation of antibiotic resistance abundance with environmental data  

None of the water chemistry, river discharge, precipitation or E. coli data were 

significantly correlated with any of the antibiotic resistance gene ratios for the HUG site 

(data not presented, all |r| < 0.26 and p > 0.04).  Additionally, temperature and pH were 

not significantly correlated with any of the antibiotic resistance gene ratios for the HUG 

or CSO site (data not presented).  In contrast, several environmental parameters were 

correlated with antibiotic resistance gene ratios at the CSO site (Table 3).  For blaTEM, 

discharge on the day of sampling and the “three day mean” were positively correlated.  

In cases where discharge was increasing around the sampling day (i.e., the difference 

in discharge the day before and the day after sampling was high), blaTEM was also high. 

For qnrA and tetW, E. coli abundance, TN, and TP were the best predictors of 

increased gene ratios.   

The tendency for blaTEM to increase with the discharge of the three day mean can 

also be seen over time at both sites (Figure 2).  Similarly, the correlation of E. coli 

abundance with the qnrA ratio and the tetW ratio at the CSO site is also consistent with 
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the tendency for spikes in E. coli counts to be accompanied by spikes in the respective 

antibiotic resistance genes over time (Figure 3).   

3.2. Effect of CSO events on the abundance of resistance genes 

For blaTEM, there was an overall difference in mean abundance ratios across 

sites and event categories (p = 0.05), though only the CSO event was significantly 

different than the CSO non-event in the post-hoc comparisons (p = 0.02) (Figure 4a).  

There were no significant differences in qnrA copies (p = 0.84) (Figure 4b).  For tetW, 

there is no significant difference between event and non-events (p < 0.96), but tetW 

copies are significantly greater at the CSO site (p ≤ 0.02) (Figure 4c).    

3.3. Multi-drug Resistance of Isolates 

A focused study of the CSO site during a non-event and during an event and at 

the HUG site was performed.  Discharge was low during the non-event sampling (5,750 

ft3 sec-1), with only a trace of precipitation (0.06 inches) in the previous 12 hours.  During 

the CSO event, discharge was much higher (12,900 ft3 sec-1) and the previous 12 hours 

of precipitation was 0.98 inches.  E. coli counts at the CSO site were elevated and 

exceeded the Virginia State law of primary contact (Figure 5a).  In addition to E. coli 

counts, the total abundance of culturable bacteria was measured and we found that the 

CSO was approximately an order of magnitude greater than the HUG site (Figure 5b).  

We then quantified the fraction of organisms resistant to ampicillin, streptomycin, and 

tetracycline and found that across all samples, the greatest percent of organisms were 

resistant to ampicillin, followed by streptomycin, then by tetracycline (Figure 5c).   

From the resistant isolates, multi-drug tests were performed.  At the CSO site, 

the fraction of isolates conferring resistance to 6 or more antibiotics was higher than the 
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HUG site, and during a CSO event it is even greater (Figure 6).  Over half of the CSO 

event isolates were resistant to 6 or more antibiotics, whereas during a non-event, 

about a quarter were resistant to 6 or more of the tested antibiotics, and at the HUG 

site, less than 10% were resistant to 6 or more antibiotics.  Additionally, resistance 

varied depending on the antibiotic (Figure 7). For all but one antibiotic (Bactrim), the 

fraction of isolates resistant was greatest at the CSO site and highest during an event.  

However, in some cases, the difference between the CSO event and non-event 

sampling was not great (vancomycin, augmentin).  In all but one case (ampicillin), the 

fraction of resistant isolates was lowest at HUG during the non-event sampling.  For 

streptomycin, cefepime, and ciprofloxacin, the CSO non-event and HUG were about 

equal.  For ampicillin, all isolates were resistant for the CSO event, but a slightly greater 

fraction of isolates was resistant at HUG than the CSO non-event.  Lastly, ciprofloxacin 

had about an equal amount of resistant isolates in all samples and the lowest fraction of 

resistant isolates was observed for this antibiotic overall.   

The isolates from the three different situations (CSO event, CSO non-event, and 

HUG) have significantly different MDR patterns (PERMANOVA F = 2.6, p = 0.008), with 

the CSO event being significantly different than both the CSO non-event (p = 0.030) and 

HUG (p = 0.004).  This difference in MDR patterns is consistent with the pattern of 

separation of points in the NMDS plot (Figure 8).   

 

4. DISCUSSION 

Antibiotic resistance is a rapidly spreading health threat.  Since resistant bacteria 

can infect humans and many bacteria can transfer their resistance to human pathogens, 
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the environmental presence of resistance is key to fully understanding the spread of 

antibiotic resistance.  One possible contributor to the spread of antibiotic resistance is 

CSO events.  This study addresses the effect of CSO events on the abundance of 

antibiotic resistance genes and the prevalence of MDR organisms.    

4.1. Linking abundance of resistance genes to environmental conditions and 

CSO events  

The HUG site was selected to represent the water that is entering the James 

River near Richmond.  In this water, a diversity of upstream inputs of genes and 

bacteria have been homogenized.  For this reason, we did not necessarily expect to see 

any correlation of antibiotic resistance gene abundances with environmental conditions 

measured in Richmond.  While we did detect resistance genes at HUG, none of the 

resistance gene ratios correlated with water chemistry, river discharge, or precipitation.  

In contrast, all three antibiotic resistance gene ratios were correlated to various 

environmental parameters at the CSO site.     

The blaTEM gene was significantly increased at the CSO site during an event 

(Figure 4a), indicating a wastewater influence on the gene, consistent with previous 

studies (Narcisco-da-Rocha et al. 2014, Laht et al. 2014, Hsu et al. 2015).  Additionally, 

blaTEM was correlated with river discharge and precipitation, but not with E. coli, TN, or 

TP, as with qnrA and tetW (Table 3).  blaTEM is one of the more prevalent and wide-

spread resistance genes (Matthew 1979, Jacoby and Bush 2005), but this correlation 

could be indicative of an upstream input of treated water and additional environmental 

inputs, which have been shown to harbor increased amounts of blaTEM genes 

(Lachmayr et al. 2009).  The correlation of blaTEM to discharge and precipitation could 
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be due to the sediment retention of the gene and water column persistence (Knapp et 

al. 2012).   

The gene ratios of qnrA and tetW were both correlated with E. coli, TN, and TP at 

the CSO site (Table 1), which is suggestive of wastewater and anthropogenic urban 

influences.  E. coli counts are used by the EPA as an indicator for fecal and wastewater 

contaminated waters (Figure 5a), and high loads of TN and TP are commonly derived 

from anthropogenic point sources, such as industrial and wastewater treatment plant 

effluent and sewage (Smith 2009).  In the James specifically, TN has been correlated 

with point sources and TP with runoff (Bukaveckas and Isenberg 2013).  The correlation 

between these environmental parameters and E. coli counts suggests a wastewater-

related influence.  That being said, qnrA was not significantly increased during a CSO 

event at the CSO site (Figure 4b), contrary to what may be expected.  This contradiction 

may be due to the combined effect of the qnrA gene being highly associated with 

Enterobacteriaceae (Jacoby 2005, Robicsek et al. 2006), but at the same time, it has 

been found to be rare (Cummings et al. 2011, Marti and Balcázar 2013, Poirel et al. 

2012).   

On the other hand, tetW gene ratios were significantly increased during a CSO 

event at the CSO site (Figure 4c).  These results are similar to those of Xu et al. (2015), 

who found increased concentrations of tetracycline resistance genes (including tetW) in 

wastewater and lesser concentrations in wastewater effluent.  Additionally, both blaTEM 

and tetW gene ratios were found at similar ratios as other related resistance genes 

(Laht et al. 2014).   
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It is important to note tetW was not detected at the HUG site.  It has been shown 

that exposure to light and the distance from the source input rapidly decreases the 

amount of tet genes (Engemann et al. 2008, Tamminen et al 2011), so it is possible that 

some tetW genes are released from sources upstream of Richmond but are simply not 

detectable by the time the water reached the sampling site.  The lack of tetW at the 

HUG site but the presence at the CSO site suggests an active point source of tetW 

between the two sites and in close proximity to the city. Despite non-detection of tetW at 

HUG, we still were able to isolate tetracycline resistant organisms (Figure 5c).  This may 

be due to our microbiological approach, which can detect a single resistant organism 

that would normally be an outlier when compared to the larger number of unculturable 

bacterial community.  Additionally, some tetracycline resistances are due to multi-drug 

efflux pumps or another tetracycline resistance genes, such as tetO or tetM (Warburton 

et al. 2016).  Therefore, the lack of tetW may not be a deficit of that antibiotic resistance 

but rather that specific gene (Chopra and Roberts 2001).    

4.2. Multi-drug resistance and CSO events 

In urban river systems, one of the largest contributors to the spread of MDR is 

horizontal gene transfer (HGT) of multiple resistance genes or MDR efflux pumps 

occurring in wastewater treatment plant effluent (Laht et al. 2014).  In this study, 

organisms were first isolated in ampicillin, tetracycline, or streptomycin.  These are all 

antibiotics to which bacteria are commonly resistant; but since these were the originally 

isolated from these antibiotics, there may be a selection bias towards these organisms 

and not towards organisms resistant to only one of the subsequently tested antibiotics.   
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Both the number of resistant organisms (Figure 5c) and the number of drugs to 

which each isolate was resistant (Figure 6) were linked to CSO events.  This increase in 

MDR may be reflective of an increased exposure to antibiotics, other resistant 

organisms, and antibiotic resistance-associated genetic mobile elements, which have 

been shown to be in greater abundance in wastewater (O’Brien 2002, Tennstedt et al. 

2003, von Wintersdorff et al. 2016, Kim and Aga 2007, Alekshun and Levy 2007).  

Though the CSO and HUG non-event results were expected to be similar, the slightly 

increased amount of resistant isolates may be due to a tidal effect at the CSO site 

bringing in possible wastewater treatment plant effluent from downstream.  These 

mechanisms can explain the greater abundance of resistant organisms found at the 

CSO site during a CSO event: more than 50% of the isolates from the CSO site during a 

CSO event were highly resistant (i.e., 6 or more antibiotics) in contrast to 25% at the 

CSO site during a non-event, and only 10% at the HUG site (Figure 6).  Furthermore, a 

greater amount of antibiotic resistance genes, specifically tetW and blaTEM, were found 

during a CSO event (Figure 4).  Therefore, overall resistance is increasing during CSO 

events.   

The antibiotics that were most affected by CSO events were ampicillin, 

cefotaxime, tetracycline, streptomycin, and cefepime (Figure 7).  Of the greatest 

concern are cefotaxime and cefepime, which are both used to treat severe infections 

that are usually already multi-drug resistant (Kim et al. 2016).  Environmental resistance 

to cefotaxime and cefepime is rare, so the relatively high frequency of resistant isolates 

is further evidence of an anthropogenic input of resistance during CSO events.  On the 

other hand, ampicillin, streptomycin, and tetracycline are all widely used in the medical, 
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veterinary, and aquaculture fields.  Though they increase with CSO events, resistance 

has also been shown to be prevalent in the environment (Amos et al. 2014, Popowska 

et al. 2012, and West et al. 2011).  This is shown best with ampicillin, which was slightly 

greater at the HUG site than the CSO non-event.  This may be due to a ubiquitous 

amount of resistant environmental bacteria.   

Vancomycin, Bactrim, and ciprofloxacin had similar fractions of resistant isolates 

in all situations (Figure 7).  Overall levels of resistance to vancomycin were high, which 

may be due to increased resistant organisms and the presence of the environmental 

bacteria from which the antibiotic originated (Larsen et al. 2012, Ouyang et al. 2015).  

Bactrim and ciprofloxacin had low fractions of resistance, which is due to their limited 

use and specific qualities.  Bactrim is often used in combination with other drugs and 

therefore organisms are less commonly resistant (Kim et al. 2016).  Ciprofloxacin has 

not often been shown to have cross resistances, so organisms are also less commonly 

resistant (Kim et al. 2016). 

Lastly, the CSO site had a greater fraction of resistant isolates than the HUG site 

for augmentin and piperacillin, but the event and non-event were similar (Figure 7); 

since both of these antibiotics are used in clinical situations, this could be indicative of 

resistance that persists through wastewater treatment or foregoes treatment.  For 

augmentin, it could be due to runoff from Richmond and its use in the veterinary field 

(pet waste); for piperacillin, the increased fraction may be due to the common use of 

this antibiotic with other drugs against multi-bacterial infections (Kim et al. 2016).   

Overall, isolates impacted by a CSO event had a different pattern of resistance 

than isolates during a non-event or at the HUG site (Figure 8).  This pattern tended to 
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be more isolates which were resistant to a greater number of antibiotics during a CSO 

event. 

4.3. Conclusions and Future Work 

This study demonstrated that CSO events significantly contributed to the 

environmental pool of antibiotic resistance in the James River; there was both an 

increase in the abundance of antibiotic resistance genes and antibiotic resistant isolates 

during CSO events.  Additional research is needed to determine whether any of the 

organisms are pathogenic or HGT-susceptible organisms, which will help access the 

direct threat these bacteria have on human health.  Preliminary DNA sequencing of ~30 

of these isolates revealed several clinically-relevant genera including Staphylococcus, 

Pseudomonas, and Sphingomonas (Moezzi and Lanyi, personal communication).   

Future work should also consider additional resistance genes, such as ermB or 

ampC, to cover a greater scope of antibiotic classes and mechanisms (Alexander et al. 

2015).  ermB confers resistance to erythromycin and is found on mobile genetic 

elements, especially in water sources (Rodriguez-Mozaz et al. 2015, Böckelmann et al. 

2009).  ampC confers resistance to β-lactam antibiotics and is both chromosomal and 

plasmid-mediated but less ubiquitous than other similar β-lactamase genes (Hawkey 

and Jones 2009).  Additionally, a longer timescale would help us understand if there has 

been a steady increase of CSO events and corresponding antibiotic resistances.   

Though all the intricacies of the spread of antibiotic resistance have yet to be fully 

understood, one contributing method – CSO events – has been found, and hopefully a 

change in treatment facility infrastructure may help mitigate the amount of resistance 

being spread to the environment.  If the proliferation of antibiotic resistance continues 
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unabated, those deadly infections could rise from the currently estimated 700,000 

annual deaths worldwide to 10 million worldwide in 2050 (O’Neill 2014).  Given the slow 

pace of research and development for new antibiotics (Coates et al. 2011), decreasing 

the amount of resistant bacteria released into the environment is crucial to reduce the 

possibility of a rapidly increasing human death rate from antibiotic resistant and MDR 

infections.   
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TABLES & FIGURES 

Table 1. Primers and reaction conditions for qPCR assays. 
 

Antibiotic 
Class 

Gene Primer name and sequence Primer conc. 
(µM) 

Thermal cycling Modified from 

β-lactams blaTEM  bla-TEM, FX: GCKGCCAACTTACTTCTGACAACG 0.3 95 °C for 5 minutes;  
95 °C for 15 seconds,  
61 °C for 30 seconds,  
72 °C for 30 seconds, 
(40 cycles) 
 

Marti et al. 2014 
 

 
bla-TEM, RX: CTTTATCCGCCTCCATCCAGTCTA 0.3 

Quinolones qnrA qnrAf-RT: ATTTCTCACGCCAGGATTTG 0.1 95 °C for 3 minutes;  
95 °C for 15 seconds,  
59.9 °C for 20 seconds,  
(45 cycles) 

Marti et al. 2013 
 

 
qnrAr-RT: GCAGATCGGCATAGCTGAAG 0.1 

Tetracyclines tetW tetW-F: GAGAGCCTGCTATATGCCAGC 0.1 95 °C for 4 minutes;  
95 °C for 30 seconds,  
57.4 °C for 15 seconds,  
72 °C for 15 seconds,  
(40 cycles) 
 

Thames et al. 
2012  

 
tetW-R: GGGCGTATCCACAATGTTAAC 0.1 

 16S 
rRNA 

Eub338: ATTTCTCACGCCAGGATTTG 
Eub518: GCAGATCGGCATAGCTGAAG 

0.15 
0.15 

95 °C for 4 minutes;  
95 °C for 30 seconds,  
55.5 °C for 30 seconds,  
72 °C for 1 minute  
(40 cycles);  
95 °C for 1 minute 

Fierer et al. 2005 
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Table 2. Antibiotic concentrations of disks used in multi-

drug resistant screening (Oxoid™ Thermo Fisher 

Scientific, Waltham, Massachusetts). 
 

Antibiotic Concentration (μg) 

Ampicillin 10 

Augmentin (amoxicillin/clavulanic acid) 20/10 

Bactrim (sulfamethoxazole/trimethoprim) 1.25/23.75 

Cefepime 30 

Cefotaxime 30 

Ciprofloxacin 5 

Piperacillin 100 

Streptomycin 10 

Tetracycline 30 

Vancomycin 30 

  



 
 

iii 
 

Table 3. Pearson correlations between water quality parameters, hydrologic data, or E. 

coli abundance and each antibiotic resistance gene copy ratio at the CSO site (n = 37-

41).  
 

  blaTEM    qnrA    tetW    

Water Chemistry         

 Specific Conductance (µS cm-1) -0.22   0.19   0.25  
 TSS (mg L-1) 0.36   -0.14   -0.08  
 TN (mg L-1) 0.39   0.60 **  0.74 ** 
 TP (mg L-1) 0.18   0.58 **  0.65 ** 

River Discharge (ft3 sec-1)         
 Sampling day 0.41 *  -0.13   -0.10  
 Prior minus following 0.62 **  0.17   0.14  
 Three day mean 0.45 **  -0.13   -0.10  

Precipitation (inches)         
 Sampling day -0.07   -0.08   -0.03  
 1 day prior to sampling 0.13   0.26   0.33  
 2 days prior to sampling 0.02   -0.05   -0.10  
 3 days prior to sampling -008   -0.14   -0.08  
 4 days prior to sampling 0.67 **  -0.12   -0.07  

E. coli abundance (CFU 100 mL-1) 0.18   0.88 **  0.97 ** 

* 0.001 < p ≤ 0.01  
** 0.001 < p 
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Figure 1. Site map.  Image created with Google Maps.  
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Figure 2.  The blaTEM to 16S rRNA gene copy ratio and three day mean discharge (ft3 

sec-1) at the CSO (a) and HUG (b) sites during the summers of 2015 and 2016.  Each 

point on the discharge line represents a sampling event and the bar is the 

corresponding qPCR value.  Asterisk represents missing qPCR data.  No bars 

represent qPCR results below the detection limit.     
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Figure 3. The qnrA to 16S rRNA gene copy ratio (a) the tetW to 16S rRNA gene copy 

ratio (b) and E. coli abundance at the CSO site during the summer of 2015 and 2016.  

Each point on the E. coli line represents a sampling event and the bar is the 

corresponding qPCR value.  Asterisk represents missing qPCR data.  No bars 

represent qPCR results below the detection limit.     
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Figure 4. Mean (+SE) gene abundance ratios of blaTEM (a), qnrA (b), and tetW (c) 

during event and non-event conditions.  Within each panel, different letters indicate 

statistically significant differences (p < 0.05) determined using Mann-Whitney test (n = 

12 per group). 
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Figure 5. Abundance of E. coli (a), abundance of culturable bacteria (b), and the 

fraction of bacteria resistant to each antibiotic (c) at the CSO site and the HUG site 

during an event and a non-event.   
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Figure 6. Fraction of isolates resistant to 1-10 antibiotics at the CSO site and the HUG 

site during an event and a non-event.   
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Figure 7. Fraction of isolates resistant to each of the 10 antibiotics from the CSO site 

and the HUG site during an event and a non-event.   
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Figure 8. Nonmetric multidimensional scaling (NMDS) ordination plot displaying the 

overall resistance patterns for the MDR isolates in the three different situations: CSO 

event, CSO non-event, and HUG (stress = 0.23) (n = 126). 
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