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Risky alcohol use is a major health concern among college students, with 40.1% reporting 

binge drinking (5 or more drinks in one occasion) and 14.4% reporting heavy drinking (binge 

drinking on 5 or more occasions) in the past month. Risky alcohol use is thought to be the result 

of a complex interplay between genes, biological processes, and other phenotypic characteristics. 

Understanding this complex relationship is further complicated by known phenotypic 

heterogeneity in the development of alcohol use. Developmental studies have suggested two 

pathways to risky alcohol use, characterized by externalizing and internalizing characteristics, 

respectively. However, the underlying biological processes that differentiate these pathways are 

not fully understood. Neuroimaging studies have assessed reward sensitivity, emotion reactivity, 

and behavioral inhibition using fMRI and separately demonstrate associations in externalizing and 

internalizing disorders more broadly. In addition, previous genetic studies have found associations 
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between specific polymorphisms and these externalizing and internalizing subtypes. Therefore, we 

sought further characterize the biological influences on binge drinking subtypes through the 

following specific aims: 1) determine the genetic relationship between externalizing and 

internalizing characteristics in binge drinkers, 2) test whether externalizing and internalizing binge 

drinkers show differences in brain activation in response to tasks measuring emotion reactivity, 

reward sensitivity, and behavioral inhibition. In order to achieve these aims, we conducted a series 

of genetic analyses assessing differences in overall SNP-based heritability and specific associated 

variants between the externalizing and internalizing subtypes.  There were a few variants that 

reached genome-wide significance, the most notable being a cluster of SNPs associated with 

internalizing characteristics that were located in the RP3AL gene.  In a subset of these binge 

drinking young adults, brain activation was measured on tasks assessing behavioral inhibition, 

reward sensitivity, and emotion reactivity. We found some preliminary differences with regard to 

emotion reactivity, that suggest internalizing binge drinkers are more reactive to faces overall but 

have blunted reaction to sad faces compared to externalizers.  These findings provide an initial 

step to better understanding the underlying biology between the classic externalizing and 

internalizing alcohol use subtypes, which has the potential to elucidate new subtype specific targets 

for prevention and intervention. 
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Chapter 1: Global Introduction 
 
 
 
Prevalence of Alcohol Use/Misuse  

 Alcohol use is prevalent in the U.S., with 86.4% of people over the age of 18 having used 

in their lifetime and 56.0% having used in the past month (SAMHSA, 2014).  The National 

Institute on Alcohol Abuse and Alcoholism (NIAAA) recommends 3 or fewer drinks per day 

(fewer than 7 drinks per week) for women and 4 or fewer drinks per day (fewer than 14 drinks per 

week) for men.  While many people are able to consume alcohol at these healthy amounts, others 

find that their use causes problems in their life.  In the U.S., an estimated $249.0 billion was lost 

in 2010 due to the effects of alcohol misuse (Sacks, Gonzales, Bouchery, Tomedi, & Brewer, 

2015).  In 2013, an estimated 14.7 million people met criteria for an alcohol use disorder (AUD) 

within the past year, which is defined by the Diagnostic and statistical manual of mental disorders 

: DSM-5 2013) as endorsing two or more symptoms in the past year.  Symptoms include 

experiencing tolerance, withdrawal, craving, problems with family and friends, physical or 

psychological problems from drinking, spending a lot of time drinking or cutting back on other 

activities in order to drink.  However, only a small proportion of these individuals (7.9%) receive 

treatment (SAMHSA, 2014).  The fact that a large portion of individuals go untreated is 

problematic due to the widespread consequences on the familial, community, and societal level 

due alcohol misuse. 
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Alcohol Use in the College Population 

 College is an especially crucial time to study substance use, as risky alcohol use is prevalent 

among college students (Johnston, O'Malley, Bachman, & Schulenberg, 2010) with 40.1% 

reporting binge drinking in the past month and 14.4% reporting binge drinking on 5 or more 

occasions in the past month (SAMHSA, 2014).  Binge drinking is defined as 4 or more drinks for 

women and 5 or more drinks for men.  Additionally, lifetime, annual, and past 30-day alcohol use 

as well as binge drinking is higher in college students compared to their non-college-attending 

peers (Johnston et al., 2010). This frequent heavy use is associated with a range of academic, legal, 

physical and interpersonal consequences (Hingson, Zha, & Weitzman, 2009; McCarty, Morris, 

Hatz, & McCarthy, 2017; Orchowski, Mastroleo, & Borsari, 2012; Perkins, 2002).  Specifically, 

binge drinkers were more likely to miss class/get behind in school work, get in trouble with the 

police, forget or regret something they did, get hurt or injured, and engage in unplanned sexual 

activity without protection than their non-binge drinking peers (Wechsler, Davenport, Dowdall, 

Moeykens, & Castillo, 1994). 

 Besides the increased prevalence and consequences, the college years represent a unique 

period to study heavy alcohol use.  For many students this is the first time they are living on their 

own.  This new freedom and reduced supervision coincides with increased genetic influences on 

alcohol use observed during late adolescence/young adulthood (Bergen, Gardner, & Kendler, 

2007; Edwards & Kendler, 2013; Kendler, Schmitt, Aggen, & Prescott, 2008) which is 

hypothesized to reflect an increased ability for an individual to express their underlying propensity 

to binge drink or engage in other deviant behavior.  Also during this time period, this age group is 

developing/formulating their long-term alcohol use patterns (Jackson, Sher, Gotham, & Wood, 
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2001), with the median age of onset for substance dependence being 19 to 23 years old (Kessler et 

al., 2005).  This makes the college years a critical time for prevention and education efforts. 

Alcohol Use Typologies 

 Although alcohol use disorder (AUD), previously referred to as alcohol dependence, is 

diagnosed as a single comprehensive disorder, even though many have theorized that there are 

actually different types of AUDs.  Early research suggested two primary types of alcohol 

dependence.  Cloninger, Bohman, and Sigvardsson (1981) called these Type 1 and Type 2.  Type 

1 was characterized by a later age of onset, genetic and environmental influences, affecting both 

men and women, low novelty seeking, and drinking to cope with anxiety.  Conversely, Type 2 is 

characterized by an earlier age of onset, primarily genetic influences, affecting mostly men, and 

high novelty seeking.  Babor et al. (1992) proposed Types A and B which have both similarities 

and differences to Types 1 and 2.  Type A is characterized by a later onset and overall lower 

severity than Type B (fewer consequences, fewer treatment episodes, less psychological 

dysfunction). Type B is characterized by earlier onset, more familial risk factors, polydrug use, 

greater psychological dysfunction, and more treatment history. 

 Subsequent studies have expanded on these early binary classifications of alcohol 

dependence.  Using the same data as Babor et al. (1992), Del Boca and Hesselbrock (1996) 

examined whether gender dependent subtypes would emerge.  They found four subtypes, two of 

which represented either high or low risk/severity, similar to Types A and B.  However, they also 

found internalizing and externalizing subtypes.  The internalizing subtype was characterized by 

high symptoms of anxiety and depression, low antisocial personality, and low polydrug use.  

Conversely, the externalizing subtype was characterized by high rates of antisocial personality, 

increased polydrug use, and lower symptoms of anxiety and depression.  These two subtypes were 
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somewhat gender specific with a greater proportion of females in the internalizing subtype and a 

greater proportion of males in the externalizing subtype.  Windle and Scheidt (2004) analyzed data 

from a diverse group of in-patient alcoholics and also found four subtypes, which they described 

as mild, polydrug, negative affect and chronic/antisocial personality.  The negative affect subtype 

is similar to Del Boca and Hesselbrock (1996)’s internalizing subtype, in that these individuals 

report high levels of anxiety and depression.  In addition, there was about twice the proportion of 

women in this subtype than men.  The chronic/antisocial subtype was similar to Del Boca and 

Hesselbrock’s externalizing subtype in that they both demonstrated high levels of antisocial 

personality symptoms.  Finally, Sintov et al. (2010) found that a “depressed” class made up 50% 

of their sample of Irish siblings with alcohol dependence.  This class was characterized by high 

levels of depression and neuroticism, low levels of other substance dependence, and moderate 

levels of novelty seeking and antisocial personality disorder.   

 Some studies have looked at alcohol use typologies in college students often using either 

alcohol consumption and diagnostic criteria as indicators.  Most of these studies have found 

subtypes based on levels of severity but a handful of these have further examined how 

externalizing and internalizing characteristics are associated with these types.  For example, 

Beseler, Taylor, Kraemer, and Leeman (2012) found three classes indicated by number of 

diagnostic criteria endorsed.  Sensation seeking, a type of impulsivity, was higher in the two riskier 

classes than in the class where no members met criteria for an AUD.  Similarly, drinking to cope, 

a potential mechanism through which internalizing symptoms are related to alcohol use and 

problems, was higher among the two riskier classes.  Kuvaas, Dvorak, Pearson, Lamis, and Sargent 

(2014) examined the effect of behavioral and emotional regulation on subtypes of college alcohol 

users indicated by alcohol consumption and problems.  All of the heavier using classes had higher 
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sensation seeking than light drinkers.  Higher sensation seeking also differentiated heavy drinkers 

from moderate drinkers.  But emotional instability was significantly higher in the problem drinkers 

compared to the other use classes. 

Externalizing Characteristics and Alcohol Use 

 Similar to the various subtypes of alcohol dependence that have been identified, there are 

also multiple developmental pathways to problem alcohol use.  Mapping on to the alcohol 

dependence subtypes, the two most commonly studied developmental pathways are an 

externalizing and internalizing pathway (Hussong, Jones, Stein, Baucom, & Boeding, 2011; 

Zucker, 2008; Zucker, Heitzeg, & Nigg, 2011).  The externalizing pathway has been more robustly 

associated with alcohol use and dependence than the internalizing pathway (Edwards, Gardner, 

Hickman, & Kendler, 2016; Farmer et al., 2016).  According to Zucker (2008), the externalizing 

pathway is characterized by a lack of control and disinhibition manifested in aggressiveness, 

sensation seeking, impulsivity, delinquency and antisocial behavior.  These types of externalizing 

behaviors have been shown to predict early initiation of alcohol use (Johnson, Arria, Borges, 

Ialongo, & Anthony, 1995; Mayzer, Fitzgerald, & Zucker, 2009; McGue, Iacono, Legrand, 

Malone, & Elkins, 2001), heavy alcohol use (Hussong, Curran, & Chassin, 1998) and general 

substance use (King, Iacono, & McGue, 2004) in adolescence.   

 The term “externalizing” is used to encompass a range of disorders, behaviors, and 

personality characteristics.  Psychiatric disorders such as antisocial personality disorder, conduct 

disorder, oppositional defiant disorder, and substance use disorders are often classified as 

externalizing disorders.  Externalizing disorders, specifically conduct disorder, antisocial 

behavior, and other substance use disorders, are highly comorbid with alcohol use disorders with 

odds ratios for having any comorbid externalizing disorder of 5.01 to 7.73 for men and 6.10 to 
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14.12 for women (Kendler, Prescott, Myers, & Neale, 2003; Kessler et al., 1997).  Additionally, 

subclinical antisocial and delinquent behavior has been associated with increased risk of alcohol 

initiation, consumption, and problems (Dick et al., 2014; Nation & Heflinger, 2006). 

 Impulsivity is a core characteristic of most externalizing disorders.  However, impulsivity 

is a heterogeneous construct itself which more generally can be divided into an increased 

propensity to reward seeking and a decreased ability to inhibit behavior (Gullo, Loxton, & Dawe, 

2014).  Both of these processes have been positively associated with a variety of alcohol outcomes 

and are thought to play a role in the progression to from use to addiction (Coskunpinar, Dir, & 

Cyders, 2013; MacKillop et al., 2011) and measured through a variety of medium (questionnaires, 

laboratory tasks, and animal models) (Dick et al., 2010).   

Internalizing Characteristics and Alcohol Use 

In contrast, evidence for a relationship between internalizing behavior and alcohol use has 

been mixed.  Hussong et al. (2011) described an internalizing pathway whereby internalizing 

symptoms play an essential role in the progression to alcohol abuse.  Additionally, Hussong et al. 

(2011) hypothesized that these internalizing symptoms can be present at any stage during 

development, and that they impact adolescent and adult risk for alcohol use disorders. Comorbidity 

has been shown between alcohol use disorders and internalizing disorders, such as anxiety and 

depressive disorders (Hasin, Stinson, Ogburn, & Grant, 2007; Kendler, Heath, Neale, Kessler, & 

Eaves, 1993), with odds ratios of 2.22 to 3.16 for men and 3.08 to 4.36 for women (Kessler et al., 

1997).  Developmentally, internalizing symptoms have been associated with earlier age of 

initiation and shortened time to first binge and first alcohol dependence symptom (Menary, Corbin, 

& Chassin, 2017).  In a college sample, internalizing symptoms are significantly associated with 
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alcohol problems cross-sectionally but there is less conclusive evidence for their relationship 

longitudinally (Homman, Edwards, Cho, Dick, & Kendler, 2017). 

However, other studies only identify a relationship between internalizing and alcohol use 

when controlling for externalizing behavior: King et al. (2004) demonstrated that major depressive 

disorder predicted alcohol use initiation and regular use only after controlling for externalizing 

symptoms.  Even within this context, externalizing disorders alone had a stronger effect on 

subsequent alcohol use.  One theory proposes that the increased comorbidity between alcohol use 

disorders and mood disorders is a result of drinking to regulate emotions (Cooper, Frone, Russell, 

& Mudar, 1995).  There is evidence that this could explain the inconsistency in results across 

studies, as drinking to cope has been shown to moderate the relationship between internalizing 

symptoms and alcohol outcomes (Anker et al., 2017). 

Biological Influences on Alcohol Use 

 Alcohol use, ranging from consumption to dependence, is known to be under genetic 

influence with genetic factors accounting for 50-60% of the variance (Kendler et al., 2008; Prescott 

& Kendler, 1999; Verhulst, Neale, & Kendler, 2015).  However, discovering the specific genetic 

variants involved in problem alcohol use has largely been unsuccessful and identified variants 

currently explain very little of the genetic variance indicated by twin studies(Rietschel & Treutlein, 

2013).  The majority of gene finding studies treat alcohol misusers as a homogeneous group 

ignoring the possibility of potential genetic subtypes that correlate with the phenotypic subtypes 

described in the literature. Additionally, both externalizing and internalizing characteristics have 

been shown to be under modest to moderate genetic influence.   

Previous cross-sectional neuroimaging studies have reported neurobiological differences 

in reward sensitivity, emotion reactivity, and behavioral inhibition among problem alcohol users 
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compared to healthy controls (Ahmadi et al., 2013; Ames et al., 2014; Gilman, Ramchandani, 

Davis, Bjork, & Hommer, 2008).  These constructs have also been implicated in neuroimaging 

studies of internalizing and externalizing characteristics (Bjork, Chen, & Hommer, 2012; 

Buckholtz et al., 2010; Donegan et al., 2003; Hägele et al., 2014; Jones, Laurens, Herba, Barker, 

& Viding, 2009).  While there has been some initial research to show that the phenotypic 

heterogeneity among drinkers can also be represented at the neurological level (Andrews et al., 

2011; Beck et al., 2009; Gilpin, Herman, & Roberto, 2014; Nikolova & Hariri, 2012), direct 

comparisons need to be made using the same tasks, equipment and population. 

Present Study 

 As reviewed in this chapter, there is a wealth of research on the phenotypic relationship 

between externalizing characteristics, internalizing characteristics, and alcohol use. This 

phenotypic research is already being used to improve efficacy in prevention/intervention by 

increased personalization (Conrod, Castellanos, & Mackie, 2008; Conrod, Castellanos-Ryan, & 

Mackie, 2011; Savage et al., 2015; Schuckit, Kalmijn, Smith, Saunders, & Fromme, 2012).  

However, far less research has investigated how these relationships may be influenced by genetic 

or neurobiological factors, despite the evidence described above that biological factors impact risk 

for both alcohol use/misuse and internalizing/externalizing characteristics.  This dearth of research 

exists in spite of the knowledge that personalized treatment has also been shown to be effective at 

a biological/pharmacological level (Heilig & Egli, 2006; Heilig, Goldman, Berrettini, & O'Brien, 

2011; Kranzler, Burleson, Brown, & Babor, 1996; Lesch & Walter, 1996).   

 Therefore, the purpose of this dissertation is to characterize the genetic and neurobiological 

mechanisms that underlie externalizing and internalizing subtypes of binge drinkers.  There are 

three primary components to this overarching goal: 1) to phenotypically characterize externalizing 
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and internalizing characteristics within the sample, 2) to determine the genetic relationship 

between externalizing and internalizing characteristics among binge drinkers, 3) to test whether 

externalizing and internalizing binge drinkers show differences in brain activation in response to 

tasks measuring emotion reactivity, reward sensitivity, and behavioral inhibition. 

In Chapter 2, a description of the sample to be used for all analyses is provided, along with 

a description of the phenotypes examined (internalizing, externalizing, binge drinking). This 

chapter also provides descriptive statistics for the phenotypes of interest, empirically characterizes 

internalizing and externalizing in the sample, and examines the relationship between 

internalizing/externalizing and binge drinking.  

Chapter 3 further reviews the literature on genetic influences underlying alcohol, 

externalizing, and internalizing, providing the context for a series of genetic analyses of 

externalizing and internalizing in binge drinkers.  Results from SNP heritability, genome wide 

associations, and secondary analyses of promising SNP associations are also presented. 

The primary analytic goal of the analyses presented in Chapter 4 was to explore potential 

differences in brain activation as a function of internalizing/externalizing within binge drinkers.  

In order to fulfill this goal a complete neuroimaging study was conducted for this dissertation.  The 

process is detailed in this chapter including, relevant literature, recruitment, data collection, and 

results. 

Finally, Chapter 5 summarizes the overall findings of the dissertation and positions these 

results within the context of the existing literature.  Limitations and opportunities for extending 

these analyses are discussed.  Therefore, these analyses provide a uniquely comprehensive 

perspective due to the integration of both psychologically meaningful constructs and multiple 
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levels of biological influences of alcohol misuse, and may be helpful in developing programming 

for intervention, prevention, and treatment.  
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Chapter 2 Sample Description and Phenotypic Analysis of Externalizing and Internalizing 
Characteristics 

 
 
 
As discussed at the end of the previous chapter, the goal of this dissertation is to examine 

the genetic and neurobiological factors influencing binge drinkers with comorbid externalizing or 

internalizing behavior.  Externalizing and internalizing characteristics are known to be highly 

comorbid with heavy alcohol use (Hussong et al., 2011; Kendler et al., 2003; Kessler et al., 1997; 

Zucker, 2008).  

Internalizing encompasses symptoms and disorders related to anxiety and depression.  

Internalizing disorders have been shown to increase the an individual’s risk of developing an AUD 

(Kessler et al., 1997).  However, anxiety and depression are complex constructs in themselves and 

their relationship to alcohol use is more nuanced than that of externalizing characteristics.  For 

example, Nichter and Chassin (2015) examined two subfacets of anxiety (worry and physiological 

anxiety) and their relationships with alcohol use in male juvenile offenders.  While these subfacets 

were moderately correlated with each other (0.58), they had unique relationships with alcohol use.  

Worry was negatively associated with quantity, frequency of binge drinking, and dependence 

symptoms, while physiological anxiety was positively associated with each of these alcohol 

outcomes.  Edwards et al. (2014) examined childhood internalizing symptoms on adolescent 

alcohol use and found that fear, separation anxiety, and less robustly, worry were protective against 

alcohol outcomes while depressive symptoms increased an individual’s likelihood of ever having 

binged.  More relevant to the current study, Homman et al. (2017) combined symptoms of anxiety 
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and depression to show that this combined measure significantly predicted alcohol problems in 

college students within each timepoint. 

As discussed in Chapter 1, externalizing is a broad term that manifests as both deviant 

behavior, such as antisocial behavior and conduct problems, and in ways that are less defiant such 

as impulsivity.  Similarly, impulsivity itself is also a multifaceted construct.  Whiteside and Lynam 

(2001) proposed a five factor model of impulsivity composed of urgency, lack of perseverance, 

lack of premeditation, and sensation seeking (UPPS).  Urgency was then subsequently split into 

negative and positive urgency representing rash action in the context of negative or positive 

emotions (Cyders & Smith, 2008; Cyders et al., 2007).  Overall, sensation seeking, positive, and 

negative urgency have consistently demonstrated the strongest associations with alcohol outcomes 

(Berg, Latzman, Bliwise, & Lilienfeld, 2015; Cyders, Flory, Rainer, & Smith, 2009; Jones, 

Chryssanthakis, & Groom, 2014; Magid & Colder, 2007; Stojek, Fischer, Murphy, & MacKillop, 

2014; Whiteside & Lynam, 2009).  More specifically, sensation seeking has consistently been 

associated with increased alcohol consumption (Cyders et al., 2009; Jones et al., 2014) and to a 

lesser extent alcohol problems (Stojek et al., 2014) in college students.  However, Whiteside and 

Lynam (2009) found increased sensation seeking only in individuals with comorbid antisocial 

personality disorder and alcohol dependence.  Individuals with alcohol dependence alone were not 

different from controls on levels of sensation seeking.  Conversely, urgency is consistently 

associated with alcohol problems and disorder (Cyders et al., 2009; Jones et al., 2014; Magid & 

Colder, 2007; Stojek et al., 2014). 

In order to examine a general disposition of externalizing or internalizing characteristics in 

the context of heavy drinking, initial data reduction analyses were conducted in the sample to 

capture each individual’s overall level of externalizing and internalizing.  Therefore, in this chapter 
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we describe the preliminary analyses necessary to complete the overarching goal of understanding 

genetic and neurobiological influences on externalizing and internalizing subtypes of binge 

drinkers. 

 

Description of Sample and Measures 

Full Sample 

 The sample used in all analyses for this dissertation is derived from the Spit for Science 

sample which was collected at a large, public university in an urban area in the eastern United 

States (Dick et al., 2014).  This study is a longitudinal cohort study of university students.  Eligible 

participants (freshman 18 years or older) are invited to fill out an online survey early in the fall 

semester of their freshman year and paid $10 as compensation for their participation.  Freshman 

who are not yet eligible in the fall or do not participate in the fall are eligible to complete an entry 

survey in the spring.  Any individual who fills out at least one survey during their freshman year 

becomes a part of the Spit for Science Registry and is eligible to complete subsequent surveys and 

spin-off projects.  These individuals are then invited to fill out another online survey each spring.  

Since the study began in fall 2011, 4 cohorts have been enrolled in the study for a total of 9892 

participants, or 66% of those eligible (Cohort 1 – 2,707, Cohort 2 – 2,483, Cohort 3 – 2,392, Cohort 

4 – 2,310).  When participants picked up their payment they were given the option of providing a 

saliva sample in order to genotype their DNA and earn an additional $10 (additional details in 

Chapter 3).  Of the current sample, 91.3% of individuals (N = 9,036) have provided a DNA sample.  

Study data were collected and managed using REDCap (Research Electronic Data Capture) tools 

hosted at Virginia Commonwealth University (Harris et al., 2009).  
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 The analyses presented in this dissertation use a subset of the Spit for Science sample.  The 

sample was restricted to data from only cohorts 1 through 3 (N= 7,582) since at the time of these 

analyses, cohort 4 had not yet been genotyped.  The sample was further reduced such that only 

individuals who were under 21 during their freshman year were included in the analysis (N = 

7,501).  This was to ensure homogeneity in the sample with regard to drinking behavior as well as 

internalizing and externalizing characteristics since nontraditional students represent a small 

proportion of the sample but may differ significantly on these variables. 

 

Measures 

Internalizing.  In each survey, participants were asked about their symptoms of anxiety 

and depression using a subset of questions from the Symptom Checklist-90 (SCL-90; Derogatis, 

Lipman, & Covi, 1973).  Participants were asked to indicate how much each symptom bothered 

them in the past 30 days, using five levels ranging from “not at all” to “extremely”.  The symptoms 

of anxiety that were measured were: nervousness or shakiness inside; suddenly scared for no 

reason; feeling fearful; and spells of terror or panic.  The symptoms of depression that were 

measured were: feeling blue; worrying too much about things; feeling no interest in things; and 

feeling hopeless about the future. 

Externalizing.  In order to capture a range of externalizing characteristics, participants 

were asked about different types of impulsivity and their antisocial behavior.  Impulsivity was 

assessed using a subset of three questions from each of the five subscales of the Urgency, lack of 

Premeditation, lack of Perseverance, and Sensation seeking – Positive urgency Impulsive Behavior 

Scale (UPPS-P), which measures the five facets of impulsivity it is named after (Magid & Colder, 

2007; Whiteside & Lynam, 2001).  Participants were asked to rate the extent to which they agreed 
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or disagreed that a statement represented who they generally are as a person.  Negative urgency 

was measured by the statements: “when I feel bad, I will often do things I later regret in order to 

make myself feel better now”; “when I am upset I often act without thinking”; and “when I feel 

rejected, I will often say things I later regret”.  Lack of perseverance was measured by the 

statements: “I generally like to see things through to the end”; “unfinished tasks really bother me”; 

and “I finish what I start”.  Lack of premeditation was measured by the statements: “my thinking 

is usually careful and purposeful”; “I like to stop and think things over before I do them”; and “I 

usually think carefully before doing anything”.  Items representing lack of perseverance and lack 

of premeditation were reverse coded.  Positive urgency was measured by the statements: “I tend 

to lose control when I am in a great mood”; “others are shocked or worried about what I do when 

I am feeling very excited”; and “I tend to act without thinking when I’m really excited”.  Sensation 

seeking was measured by the statements: “I quite enjoy taking risks”; “I welcome new and exciting 

experiences, even if they are a little frightening and unconventional”; and “I would enjoy the 

sensation of skiing fast down a mountain slope”.   

 Participants were also asked about their antisocial behavior at each survey.  Items were a 

subset of those used to measure antisocial behavior in the Semi-Structured Assessment for the 

Genetics of Alcoholism (SSAGA; Bucholz et al., 1994).  Participants were asked how many times 

over the last year had they “deliberately damaged or destroyed property that did not belong to 

them”; “broken into a car or van to try and steal something out of it”; and “carried knife or other 

weapon with you for protection or in case you needed it in a fight”. 

Binge Drinking Phenotype. The National Institute of Alcohol Abuse and Alcoholism 

provides gender-based guidelines for binge drinking: for women, 4 or more drinks in a day is 

characterized as binge drinking, while the corresponding number for men is 5 or more drinks in a 
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day.  In the current study, participants were asked at each survey, “How many drinks containing 

alcohol do you have on a typical day when you are drinking?”  Participants chose from five 

options: “1 or 2”; “3 or 4”; “5 or 6”; “7,8, or 9”; or “10 or more”.  If on any survey a participant 

endorsed their typical drinking to be “5 or 6” drinks or more they were considered a binge drinker.  

In Cohort 1’s sophomore and junior years and Cohort 2’s sophomore year, a sex specific question 

was asked on binge drinking “How often do you have five (four for females) or more drinks in a 

single sitting (considered about a 2 hour period)?”  Participants choose from five options: “Never”; 

“Monthly or less”; “2 to 4 times a month”; “2 to 3 times a week”; or “4 or more times a week”.  If 

at any time point participants in Cohorts 1 and 2 endorsed binge drinking “2 to 4 times a month” 

or more frequently they were considered a binge drinker.  This resulted in a sample size of 3,079 

binge drinkers (57.3% female). 

 

Table 1: Alcohol items to select binge drinkers 

 Y1F Y1S Y2S Y3S Y4S Max 
 N % N % N % N % N % N % 
1 or 2 831 33.03 1110 27.43 828 29.89 603 37.34 275 36.28 1335 22.77 
3 or 4 839 33.35 1453 35.91 1008 36.39 555 34.37 296 39.05 1921 32.76 
5 or 6 555 22.06 932 23.04 608 21.95 305 18.89 134 17.68 1556 26.54 
7,8, or 9 234 9.30 415 10.26 259 9.35 122 7.55 40 5.28 789 13.46 
10 or 
more 

57 2.27 136 3.36 67 2.42 30 1.86 13 1.72 262 4.47 

Total 2516 61.89 4046 68.68 2770 74.18 1615 82.23 758 86.63 5863 77.54 
ICN 154 3.79 176 2.99 99 2.65 66 3.36 21 2.4 110 1.45 
Skip 1395 34.32 1669 28.33 865 23.17 283 14.41 96 10.97 1588 21.00 
Total 4065  5891  3734  1964  875  7561  

Note: Participants had the option of endorsing “I choose not to answer” (ICN) for any question.  
Participants skipped these questions if they indicated they had not had at least one full alcoholic 
beverage. Percentages for number of typical drinks are out of individuals who endorsed an option. 
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Analytic Plan 

We used factor analysis to create factors scores in the full S4S sample representing 

externalizing and internalizing characteristics.  Factor analysis describes the underlying 

relationship between observed items using a latent continuous variable called a factor or latent 

construct. Factor analysis is frequently used as a data reduction tool because a large number of 

items can be represented by a fewer number of factors. Factor loadings describe the strength of the 

relationship between the observed items and the latent construct. By utilizing these factor loadings 

and observed items, individual-level estimates (factor scores) of the value on the factor can be 

obtained and used in subsequent analyses; in our case, as phenotypes in genetic analyses (Chapter 

3) and selection criteria for the neuroimaging sample (Chapter 4). 

For internalizing factor analysis, indicators were the 8 items assessing symptoms of anxiety 

and depression.  For each item, a participant’s response was averaged across the number of surveys 

they had taken in order to get a measure of their general level of internalizing over time.  Previous 

research in this sample has demonstrated significant correlations between these items across waves 

(Homman et al., 2017).  For externalizing, factor analysis indicators were the three items 

measuring sensation seeking and the three measures of antisocial behavior.  The sensation seeking 

items were selected due to their consistent  relationship with alcohol outcomes (Cyders et al., 2009; 

Jones et al., 2014) and association with antisocial behavior among individuals with alcohol 

dependence (Whiteside & Lynam, 2009).  A subset of participants answered the sensation seeking 

items twice; for those individuals, responses were averaged across the time points for each item.  

For antisocial behavior the maximum response per item across surveys was used, since unlike the 

other items these represent specific behaviors the participant may or may not have engaged in, 

while sensation seeking items represent a general disposition or personality.  Additionally, as seen 
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in Table 1 which shows the means of each item across individuals and across surveys, the overall 

endorsement of antisocial behavior is low so we were interested in capturing when those 

individuals engaged in this behavior the most. 

We hypothesized that each behavioral construct (internalizing behavior, externalizing 

behavior) would comprise a single factor.  We therefore ran confirmatory factor analysis (CFA) 

with sex as a covariate to ensure that one factor provided a good fit to the data.  The fit of these 

factors was evaluated by the comparative fit index (CFI; Bentler, 1990), Tucker-Lewis index (TFI; 

Tucker & Lewis, 1973) and the root mean square error of approximation (RMSEA; Steiger, 1990).  

From these factors we then extracted factor scores to be used in the subsequent genetic analyses 

and serve as the basis for participant selection in the neuroimaging study.  All analyses were 

conducted using Mplus 7.1 (Muthén & Muthén, 1998 - 2012).  
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Table 2.  Descriptive statistics for the externalizing and internalizing items 

 Y1F Y1S Y2S Y3S Y4S Total  
 N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD Range 
Externalizing                   1 - 4 
Damaged 
property 

N/A N/A N/A 5690 1.10 0.40 3618 1.10 0.40 1900 1.11 0.39 848 1.08 0.34 6135 1.17 0.50 1 – 4 

Broken into car N/A N/A N/A 5707 1.02 0.22 3622 1.02 0.17 1908 1.01 0.16 851 1.02 0.15 6142 1.04 0.26 1 – 4 
Carried a knife N/A N/A N/A 5656 1.39 0.92 3597 1.33 0.86 1902 1.32 0.85 848 1.30 0.83 6119 1.53 1.05 1 – 4 
Enjoy taking 
risks 

3992 2.84 0.84 5672 2.67 0.87 N/A N/A N/A N/A N/A N/A N/A N/A N/A 6927 2.75 0.81 1 – 4 

New/exciting 
experiences 

3983 3.20 0.74 5669 3.04 0.80 N/A N/A N/A N/A N/A N/A N/A N/A N/A 6930 3.11 0.73 1 – 4 

Enjoys skiing 
fast 

3944 2.86 1.08 5593 2.76 1.08 N/A N/A N/A N/A N/A N/A N/A N/A N/A 6857 2.80 1.05 1 - 4 

Internalizing                    
Nervousness 5922 2.10 1.06 5664 2.11 1.07 3605 1.95 1.03 1898 2.00 1.04 846 1.99 1.07 7428 2.08 0.92 1 - 5 
Suddenly 
scared 

5931 1.50 0.89 5664 1.55 0.91 3603 1.45 0.82 1899 1.47 0.84 847 1.44 0.83 7437 1.51 0.76 1 – 5 

Feeling blue 5931 2.20 1.12 5665 2.44 1.16 3605 2.38 1.16 1900 2.36 1.14 846 2.31 1.13 7436 2.33 1.00 1 – 5 
Worrying 
about things 

5929 2.75 1.28 5674 3.00 1.24 3602 2.94 1.28 1902 2.92 1.29 846 2.89 1.30 7434 2.88 1.10 1 – 5 

Feeling no 
interest in 
things 

5925 1.93 1.10 5658 2.18 1.17 3606 2.10 1.17 1898 2.09 1.19 844 2.06 1.15 7433 2.07 0.99 1 – 5 

Feeling fearful 5931 1.75 0.99 5662 1.72 0.98 3604 1.67 0.96 1900 1.67 0.98 845 1.72 1.03 7435 1.72 0.83 1 – 5 
Feeling 
hopeless 

5927 1.78 1.11 5668 2.09 1.23 3602 2.08 1.23 1902 1.99 1.19 845 2.07 1.26 7431 1.97 1.02 1 – 5 

Spells of terror 
or panic 

5924 1.39 0.85 5668 1.45 0.89 3602 1.45 0.87 1901 1.46 0.87 843 1.49 0.91 7431 1.43 0.75 1 – 5 
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Results 

Table 2 shows the sample size, means, standard deviations, and ranges for each item at 

each time point as well as collapsed across time points.  Confirmatory factor analyses were 

conducted on 7,501 participants who were younger than 21 in their initial survey and in cohorts 1-

3.  The sample was 60% female.  Representative of the VCU student body as a whole, the 

ethnic/racial breakdown is as follows: 49.5% white (3,718), 19.3% black/African American 

(1,449), 16% Asian (1,201), 6.2% more than one race (465), 6% Hispanic (447), 0.6% 

Hawaiian/Other Pacific Islander (50), 0.5% American Indian/Alaska Native (35). The results 

generally supported a one factor solution for both externalizing and internalizing characteristics.  

The CFI, TLI, and RMSEA were 0.871, 0.828, and 0.118, respectively.  The CFI and TLI are just 

below the desired value of 0.9.  The RMSEA is much greater than the ideal value of 0.06.  

However, greater values of RMSEA are both sensitive to sample size and often indicate high 

correlations between items (redundancy of information).  In this analysis, since these items are 

from previous scales hypothesized to capture similar constructs it is not surprising (and less 

concerning) that the RMSEA is higher than typical cutoffs.  The factor loadings and standard errors 

are shown in Table 3.  The factor loadings of each item were significantly different from zero.  

Solutions were also tested with nicotine use items loading on the externalizing factor and items 

measuring drinking to cope on the internalizing factor.  Both these solutions resulted in a poorer 

fit and lower item loadings for the nicotine and drinking to cope items.  The internalizing and 

externalizing factors are significantly, although modestly, negatively correlated at -0.066. 
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Table 3: Factor loadings and standard errors for the externalizing and internalizing factors 

Item Loading S.E 
Externalizing   
Damaged property .683 .078 
Broken into car .664 .152 
Carried a knife .394 .048 
Enjoy taking risks .750 .014 
New/exciting experiences .606 .012 
Enjoys skiing fast .546 .014 
Internalizing   
Nervousness .755 .007 
Suddenly scared .745 .009 
Feeling blue .760 .007 
Worrying about things .716 .007 
Feeling no interest in things .665 .009 
Feeling fearful .777 .008 
Feeling hopeless .708 .009 
Spells of terror or panic .729 .009 

Note:  All factor loadings were significantly different from zero, p<0.05 

 

 Table 4 shows the mean, SD, and range for the externalizing and internalizing factor scores 

for binge drinkers and non-binge drinkers in the sample.  Levels of externalizing and internalizing 

were statistically higher for binge drinkers compared to non-binge drinkers.  

 

Table 4: Group differences on Externalizing and Internalizing factor scores 

 Non-Binge Drinkers Binge Drinkers   
 Mean SD Range Mean SD Range t-statistic p-value 
Externalizing -0.56 0.58 -2.17 – 0.74 -0.35 0.56 -2.17-0.83 -10.929 2.2e-16 
Internalizing 0.42 0.65 -0.46 – 3.02 0.47 0.65 -0.46-3.33 -2.206 0.027 

 

Discussion 

 

 The goal of the current chapter was to characterize externalizing and internalizing within 

the sample of interest and determine the binge drinking subset of participants which will be used 
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in subsequent analyses (Chapters 3 and 4).  The externalizing and internalizing items used in this 

chapter (and subsequent analyses) have been previously associated with alcohol use in this sample 

(Cho et al., 2015; Homman et al., 2017).  However, the goal of our analyses moving forward is 

not to test that these characteristics are associated with substance use but rather given their known 

association what can we learn about the underlying biology of individuals with the comorbid 

conditions. 

 We found that a single internalizing and a single externalizing factor were a good fit to the 

items of interest.  This mirrors the analyses conducted by Homman et al. (2017) which also found 

a one factor solution to be a good fit to the internalizing items in this sample.  The existence of a 

single externalizing or internalizing factor providing a good fit to psychopathology data is not 

unique to this study (Krueger, 1999; Lahey et al., 2012).  While each of the symptoms, traits, or 

disorders used in this and previous research has its own field of study, they also index overarching 

factors that capture externalizing and internalizing more generally. Therefore, despite that 

externalizing and internalizing are heterogeneous constructs, the items measured in the current 

sample seems to represent two underlying predispositions. 

 The factor scores resulting from the externalizing and internalizing factors were 

significantly higher in binge drinkers in the current sample.  This indicates that as hypothesized 

(and previously demonstrated) these characteristics are associated with problem drinking in our 

sample.  While these analyses did not attempt to assess the directional relationship between binge 

drinking and externalizing/internalizing characteristics, the increased comorbidity underscores the 

importance of study this population as they are at an increase of exhibiting other problem 

behaviors/symptoms. 
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 To summarize, externalizing and internalizing characteristics can each be captured by a 

single factor in this sample and the resulting factor scores are increased in those individuals with 

a history of frequent binge drinking.  These scores and the binge drinking sample will be used in 

analyses in the subsequent chapters.  In Chapter 3, externalizing and internalizing factor scores 

will serve as the phenotypes in a series of genetic analyses conducted in the binge drinking sample.  

In Chapter 4, participants are selected for a neuroimaging study from the binge drinking sample 

based on their externalizing and internalizing factor scores. 
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Chapter 3: Genetic Analyses in Externalizing and Internalizing Subtypes of Binge Drinkers 
 
 
 

Alcohol phenotypes (from use to alcohol use disorder) are known to be under genetic 

influence.  Twin studies, which estimate the proportion of genetic to environmental influences for 

a given trait in a given population, estimate a range of heritabilities from 40-60% (Kendler, 2001; 

Kendler et al., 2008; Prescott & Kendler, 1999).  A recent meta-analysis of twin and adoption 

studies on alcohol use disorder (AUD) estimated the heritability at 49% (Verhulst et al., 2015).  

Due to the substantial portion of variance attributed to genetic influences, identifying the specific 

genes or markers influencing AUD and alcohol use generally has the potential to improve our 

understanding of the biological mechanisms underlying these complex behaviors. 

Initial gene finding efforts for alcohol phenotypes included linkage and candidate gene 

association studies.  Linkage studies are conducted in related individuals and exploit the overall 

increased shared genetic background between these individuals to narrow in on regions that are 

more commonly shared among affected relatives than unaffected.  This technique is best suited to 

discover variants of modest effect and implicates large areas of a chromosome which require 

subsequent fine-mapping.  Using this method there has been consistent support for a protective 

effect of the alcohol dehydrogenase genes on developing alcohol dependence (Prescott et al., 2006; 

Reich et al., 1998).  Linkage analysis also implicated a region in the genes coding for the GABA-

A receptor (Edenberg et al., 2004; Porjesz et al., 2002; Reich et al., 1998). 

In contrast to linkage studies, candidate gene association studies examined one gene at a 

time, often one variant, that was hypothesized to have a biological relevance to alcohol 
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consumption or problems.  Since alcohol dependence is a psychiatric disorder, most of the genes 

tested initially in candidate gene studies were involved in neurotransmitter systems.  More 

recently, enough individual candidate gene association studies have been conducted on specific 

variants to allow for meta-analyses.  In  meta-analysis of 40 published studies, Munafo, Matheson, 

and Flint (2007) found that the A1 allele of the Taq1A polymorphism did increase one’s risk for 

alcohol dependence.  Although this polymorphism is located in the ANKK1 gene, it alters the 

function of the dopamine D2 receptor gene nearby.  The serotonin transporter gene (5HTTLPR) 

has been examined as a gene of interest across many psychiatric conditions.  McHugh, Hofmann, 

Asnaani, Sawyer, and Otto (2010) conducted a meta-analysis of studies that examined the 

influence of the short allele on alcohol dependence.  They found that across 22 studies those who 

carried the short allele were at an increased risk of alcohol dependence; the risk was even greater 

for those who were homozygous for the short allele.  Not all candidate gene findings have been 

robust to meta-analysis.  Although initial findings were significant, variants in both the dopamine 

transporter gene (SCL6A3) and the catechol-O-methyl transferase gene (COMT) were not 

significantly associated with alcohol dependence in meta-analyses (Du, Nie, Li, & Wan, 2011; 

Tammimaki & Mannisto, 2010; Xu & Lin, 2011).  These meta-analyses represent the handful of 

the candidate genes that have been tested in a large number of samples.  To facilitate this type of 

analysis arrays have been developed that focus on markers thought to be associated with addiction 

and related traits (Hodgkinson et al., 2008).  However, the majority of these candidate genes have 

yet to be robustly replicated. 

With candidate gene association studies proving to be largely unreproducible, there was a 

renewed interest in agnostic approaches similar to linkage analysis.  Genome-wide association 

studies (GWAS) test the relationship between hundreds of thousands of common variants across 
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the genome and a trait of interest.  Unlike linkage studies and candidate gene studies, GWAS can 

detect variants of small effect using an agnostic approach.  In the first GWAS of alcohol 

phenotypes, Treutlein et al. (2009) examined alcohol dependence in a sample of all males and 

found two genetic variants in the PECR gene to be genome-wide significant (GWS).  This finding 

fit with previous linkage studies which had indicated increased allele sharing in this region for 

alcohol dependence.  Stemming from this initial success, there was an increase in the number of 

GWAS on alcohol traits being conducted and published.  Many of these studies have had null 

results (Bierut et al., 2010; Edenberg et al., 2010; Heath et al., 2011).  Bierut et al. (2010) found 

no GWS associations with alcohol dependence in the both European Americans and African 

Americans of the Study of Addiction: Genes and Environment (SAGE) sample.  Edenberg et al. 

(2010), using the Collaborative Study on the Genetics of Alcoholism (COGA) sample, also found 

no GWS markers for alcohol dependence.  Kendler, Kalsi, et al. (2011) performed one of the first 

GWAS of a quantitative alcohol dependence phenotypes using the control sample of the Molecular 

Genetics of Schizophrenia study but still found no GWS associations.  Finally, Heath et al. (2011) 

examined three alcohol phenotypes in a sample of over 8,000 individuals and still found no GWS 

markers.  Although previously discovered through linkage, the protective effect of genetic variants 

in alcohol metabolizing genes has been supported by GWS in Asian samples (Park et al., 2013; 

Quillen et al., 2014), European samples (Frank et al., 2012) and American samples of both 

European and African descent (Gelernter et al., 2014).   

This lack of robustly significant genetic markers for alcohol traits is somewhat surprising 

given the well replicated moderate heritability of alcohol phenotypes.  Additionally, the emergence 

of a large number of initial null GWAS was not unique to alcohol phenotypes but similarly seen 

across complex psychiatric traits.  Generally, there have been two strategies taken to address this.  
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The first has been to drastically increase the sample size.  Due to the fact that in these highly 

polygenic traits each individual associated variant is likely to have a small effect on a given alcohol 

phenotype, it is thought much larger sample sizes will be needed to detect these associations.  

Sample sizes of around 100,000 have been successful for some psychiatric phenotypes, like 

schizophrenia (Ripke et al., 2014), but less successful for other psychiatric phenotypes, such as 

major depression (Ripke et al., 2013).  In fact, even with sample sizes greater than 300,000 there 

are still far fewer GWS variants associated with major depression than with schizophrenia (Hyde, 

Nagle, et al., 2016).  Alcohol dependence falls between schizophrenia and major depression in 

terms of both prevalence in the population and heritability.  Therefore, it is not surprising that even 

with sample sizes comparable to the schizophrenia there have been few robustly significant 

variants associated with alcohol dependence.  In addition, the higher prevalence of alcohol 

dependence compared to schizophrenia implies that, unless carefully phenotyped, a cursory 

screening of participants could lead to controls who were missed as cases or eventually develop 

symptoms and cases who are misdiagnosed.   

Recently much larger GWASs of alcohol phenotypes have been published with varying 

success.  Sanchez-Roige et al. (2017) found no genome-wide significant hits associated with the 

alcohol use disorder identification test in a sample of over 20,000 alcohol users.  Jorgenson et al. 

(2017) examined alcohol consumption in a trans ethnic sample of over 80,000 individuals.  They 

replicated several previously associated variants including markers in the alcohol dehydrogenase 

genes but no novel variants reached genome wide significance.  Schumann et al. (2016) conducted 

a GWA meta-analysis on alcohol consumption in non-dependent individuals.  They discovered 

one novel loci and several other suggestive associations which they were able to replicate in 

another sample.  Finally, the largest alcohol GWAS to date with over 112,000 individuals found 
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only 4 novel loci (Clarke et al., 2017).  While there is some modest replication across these recent 

large scale GWAS, they have identified far fewer variants than identified with regard to 

schizophrenia at similar sample sizes.  Therefore, alcohol phenotypes may require even larger 

sample sizes (N>100,000) or a more careful examination of what makes gene discovery for these 

phenotypes particularly intractable.   

 Another strategy in response to the initial null GWAS findings of complex psychiatric traits 

was to refine the phenotype of interest.  CONVERGE refined their study of major depression by 

focusing on individuals of exclusively Han Chinese descent, using a diagnostic interview to 

identify cases, requiring cases to have had multiple depressive episodes, and restricting control 

participants to be past the vulnerability period for major depression.  Furthermore, given prior 

evidence of sex-specific genetic effects (Kendler & Prescott, 1999), the sample was limited to 

women.  By employing these restrictions, the CONVERGE study identified the first robust and 

replicated associations with major depression (Converge consortium, 2015).  The goal of the 

current study is to also use the approach of phenotype refinement.  As previously mentioned, the 

development of problem alcohol use is phenotypically heterogeneous.  Similar to major 

depression, this heterogeneity may be adding to the difficulty in finding associated genetic variants 

in alcohol phenotypes. Therefore, an additional approach to increasing sample size is to directly 

examine these comorbid factors in the context of problem alcohol use. 

As previously discussed the two more commonly studied pathways to problem alcohol use 

are an externalizing and an internalizing pathway.  Externalizing phenotypes, such as antisocial 

behavior and impulsivity, are also genetically influenced.  A recent meta-analysis estimated that 

50% of the variance in impulsivity was due to heritable factors with a narrow sense heritability of 

38% (Bezdjian, Baker, & Tuvblad, 2011).  Specific to the current study, sensation seeking (a 
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subfacet of impulsivity) had a heritability of 34%.  The co-occurrence of externalizing disorders 

and problematic alcohol use appears to be due, in part, to a shared genetic liability between these 

behaviors (Kendler et al., 2003; McGue, Iacono, Legrand, & Elkins, 2001).  Khemiri, Kuja-

Halkola, Larsson, and Jayaram-Lindstrom (2016) examined the genetic overlap between 

impulsivity and alcohol dependence and found that 80% and 53% of the correlation between 

impulsivity and alcohol dependence was due to genetic factors in males and females, respectively.  

Previous research has shown a shared latent genetic factor between antisocial behavior/personality 

disorder, conduct disorder and alcohol dependence (Kendler, Aggen, et al., 2011; Kendler et al., 

2003; Krueger, 1999; Young et al., 2009). 

Similarly, internalizing phenotypes, such as anxiety and depression, are also genetically 

influenced.  Major depression has a heritability of about 37% (Sullivan, Neale, & Kendler, 2000) 

while generalized anxiety disorder has a slightly lower heritability of 32% (Hettema, Neale, & 

Kendler, 2001).  Similar estimates are seen for the heritability of symptoms of anxiety and 

depression (Happonen et al., 2002).  There is some evidence of genetic correlation between 

internalizing symptoms and alcohol use (Edwards, Sihvola, et al., 2011; Prescott, Aggen, & 

Kendler, 2000).  However, other studies have shown that their comorbidity is explained by 

environmental factors (Edwards, Larsson, Lichtenstein, & Kendler, 2011; Kendler, Aggen, et al., 

2011). 

Even though externalizing and internalizing characteristics are under modest to moderate 

genetic influence, gene finding for these phenotypes has also progressed slowly.  With the 

exception of the CONVERGE project, there have been few robustly significant genetic variants 

associated with either internalizing disorders (Otowa et al., 2016) or broad externalizing behavior 
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(McGue et al., 2013; Vrieze et al., 2014).  Therefore, these disorders are likely to benefit from 

examining more refined phenotypes as well. 

 Thus the goal of this chapter is to use what we know about the heterogeneity of alcohol 

phenotypes (Chapter 1) to conduct genetic analyses on binge drinking subtypes (Chapter 2) with 

the hypothesis that a less heterogeneous phenotype will improve our ability to understand 

underlying biology and detect associated genetic variants.  We focus on externalizing and 

internalizing subtypes since these are well known pathways to problem alcohol use (Hussong et 

al., 2011; Zucker, 2008) which are genetically influenced as well.  Finally, we are studying these 

subtypes in college students as this is both when genetic influences peak (Kendler et al., 2008) and 

when problem drinking starts to manifest. 

 

Methods 

 

 The binge drinking sample, described in Chapter 2, was used for theses analyses.  Briefly, 

this sample is a subset of the parent Spit for Science sample who regularly binge drink (4 or more 

drinks for women and 5 or more drinks for men).  The phenotypes used for the analyses are the 

externalizing and internalizing factor scores.  The indicators and creation of the factor scores is 

described in Chapter 2 in detail.  Of the 3,079 participants in the binge drinking sample, 2,618 

provide a DNA sample and therefore were included in these analyses. 

Genetic Data Cleaning and Imputation 

 Samples were genotyped on the Affymetrix Biobank Array at Rutgers University Cell and 

DNA Repository.  This array contains 653K SNPs and InDels including a) 296K common variants 

used for GWAS and imputation and b) 357K rare, and likely functional, variants derived from 
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exome studies.  Initial QC followed similar procedures as the Psychiatric Genomic Consortium 

(PGC; Ripke et al., 2014), removing off target variants found by SNPolisher, single nucleotide 

polymorphisms (SNPs) missing more than 5% of genotypes, samples missing more than 2% of 

genotypes, and SNPs missing more than 2% of genotypes after removing bad samples.  This initial 

QC resulted in 6,325 samples and 560,138 variants brought forward to imputation.  Imputation 

was conducted using SHAPEIT2 (Delaneau, Zagury, & Marchini, 2013) and IMPUTE2 (Howie, 

Donnelly, & Marchini, 2009) with 1000 genomes phase 3 as a reference panel (N=2,504; Sudmant 

et al., 2015). 

Ancestry Principal Components (PCs) 

 Two types of ancestral principal components were created: cross ancestry PCs and ancestry 

specific PCs.  For both types, EIGENSOFT/SmartPCA (Patterson, Price, & Reich, 2006; Price et 

al., 2006) was used to create the PCs, regions with high disequilibrium were excluded, and Plink 

1.9 was used to prune variants (r2<0.1).  For the cross ancestry PCs, principal components analysis 

(PCA) was run in the 1KG phase 3 reference panel and then projected on to the S4S sample.  For 

the ancestry specific PCs, PCA was run in each super population separately. 

Assignment to Ancestry Super Population 

 The genotyped S4S sample was by design ethnically diverse with regards to self-identified 

census race/ethnicity (American Indian/Alaska Native, Asian, Black/African American, 

Hispanic/Latino, More than one race, Native Hawaiian/Other Pacific Islander, Unknown, and 

White).  In order to reduce variance within ancestral groups and include individuals whose 

race/ethnicity is either unknown or a combination of races/ethnicities, each participant was assign 

to 1000 Genomes Project (1KGP) ancestry super population of African (AFR), American (AMR), 

East Asian (EAS), European (EUR), or South Asian descent (SAS).  To do this, the 10 cross 
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ancestry PCs were used to calculate the Mahalanobis distance (Mahalanobis, 1936) between each 

sample and each of the 1KGP populations (N=26).  Each S4S sample was then assigned to a 1KGP 

super population based on the minimum Mahalanobis distance and then further collapsed into the 

above super populations. 

SNP-based Heritability 

 Genome-wide Complex Trait Analysis (GCTA) was used to estimate the proportion of 

phenotypic variance that is attributable to the observed (genotyped) genetic variants (SNP based 

heritability) of externalizing and internalizing characteristics among binge drinkers.  Genetic 

relationship matrices (GRMs) were created within each of the five ancestry super populations 

using an ancestry specific minor allele frequency (MAF) cutoff of 0.01 and the associated ancestry 

specific PCs. 

Genome-wide Association (GWA) Analyses 

 Five ancestry specific GWAS were performed for each phenotype (10 total) using 

SNPTEST 2.5.2 (Marchini, Howie, Myers, McVean, & Donnelly, 2007).  Pre-GWAS filtering 

excluded markers with a MAF less than 0.005 and an INFO score less than 0.5.  Post-GWAS 

filtering including ancestry specific violations of Hardy-Weinberg Equilibrium (p-value>10-6) and 

ancestry dependent MAFs.  A marker needed to have a minor allele count (MAC) of 40 within the 

ancestry group to be included in meta-analysis.  Ancestry groups with a sample size of less than 

400 individuals were not included in the meta-analysis.  Ancestry specific GWASs were meta-

analyzed using METAL (Willer, Li, & Abecasis, 2010).   

Functional Mapping and Annotation of Genetic Associations (FUMA) 

 In order to further explore the results from the GWAS, FUMA (Watanabe, Taskesen, van 

Bochoven, & Posthuma, 2017) was used.  FUMA is an online tool that functionally annotates 
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GWAS findings and prioritizes likely causal SNPs by combining information from 14 biological 

databases.  FUMA has two main processes; SNP2GENE and GENE2FUNC.  SNP2GENE takes 

summary statistics from GWAS and maps the SNPs to genes based on both their position and 

function.  GENE2FUNC takes the prioritized genes from SNP2GENE and returns information on 

tissue expression patterns and enrichment in biological pathways. 

 

Results 

The phenotypes in the genotyped sample closely match those in the full binge drinking 

sample described in Chapter 2.  The mean of the externalizing factor scores is -0.35 (SD = 0.57, 

range = -2.17 – 0.83).  The mean of the internalizing factor scores is 0.46 (SD = 0.64, range = -

0.46 – 3.33).  Externalizing and internalizing factor scores were significantly correlated at -0.071 

(p = 0.001). 

SNP-based Heritability 

Table 5 shows the SNP heritability for each ancestry group as well as the meta-analyzed 

estimate across ancestry groups.  The meta-analyzed results show that the estimate of heritability 

of externalizing characteristics in binge drinkers are not significantly different from zero while the 

estimate of heritability for internalizing characteristics in binge drinkers is modestly heritable.  Due 

to the small samples sizes of some of the ancestry groups (AMR, EAS, SAS), a meta-analysis 

including just the AFR and EUR ancestry groups was conducted.  The results were similar to the 

full sample meta-analysis for both externalizing (h2 = 0.015, S.E. = 0.228) and internalizing (h2 = 

0.196, S.E. = 0.226) characteristics. 
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Table 5: GCTA Results 
 
Phenotype Ancestry h2 S.E. p-value N meta meta_S.E. 

Externalizing 

AFR 0.000001 0.634003 0.5 449 

0.064 0.2165 
AMR 0.721612 0.823059 0.4168 243 
EAS 0.000001 1.867347 0.5 179 
EUR 0.017609 0.244067 0.4689 1430 
SAS 0.000002 1.852756 0.5 153 

Internalizing 

AFR 0.000001 0.423701 0.5 448 

0.25 0.21583 
AMR 0.999999 0.957031 0.02829 244 
EAS 0.000001 1.460971 0.5 179 
EUR 0.273349 0.267336 0.1502 1430 
SAS 0.999999 1.708642 0.1598 152 

 
 

GWAS 

 After filtering and meta-analysis 12,028,511 and 12,020,239 markers were analyzed for 

externalizing and internalizing characteristics, respectively.  The meta-analyses showed no 

evidence of genomic inflation with l1000 of 0.9988 for externalizing characteristics and 0.9978 for 

internalizing characteristics.  Figures 1 and 2 show the quantile-quantile plots.  Figures 3 and 4 

show meta-analyzed results for externalizing and internalizing characteristics respectively in 

manhattan plots.  There were three markers with an FDR q <0.5 for externalizing characteristics 

(Table 6).  There were 32 markers with an FDR q<0.5 and 13 markers with an FDR q <0.1 for 

internalizing characteristics (Table 3). 
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Figure 1: Q-Q plot for Externalizing Characteristics in Binge Drinkers 
 

 
 
Figure 2: Q-Q Plot for Internalizing Characteristics in Binge Drinkers 
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Figure 3: Manhattan Plot for Externalizing Characteristics in Binge Drinkers 
 

 
 
Figure 4: Manhattan Plot for Internalizing Characteristics in Binge Drinkers 
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Table 6: Genetic Markers with q>0.5 for GWAS of Externalizing Characteristics in Binge Drinkers 
 

SNP CHR BP 
MAF 
AFR 

Pvalue 
AFR 

MAF 
EUR 

Pvalue 
EUR Allele1 Allele2 Weight Zscore P.value Direction q_1k 

rs71569819 1 21536624 0.312 0.008 0.127 
4.12E-

07 a attatttat 1879 -5.722 
1.06E-

08 -- 0.096 

rs35728229 1 44516588 0.354 0.312 0.141 
1.88E-

08 t ta 1879 5.4 
6.68E-

08 ++ 0.203 

rs79401837 7 67832139 0.005 0.756 0.040 
4.80E-

08 a c 1430 5.458 
4.81E-

08 ?+ 0.203 
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Table 7: Genetic Markers with q>0.5 for GWAS of Internalizing Characteristics in Binge Drinkers 
 

SNP CHR BP 
Maf 
AFR 

Pvalue 
AFR 

Maf 
EUR 

Pvalue 
EUR Allele1 Allele2 Weight Zscore P.value Direction q_1k 

rs76897114 1 53799050 0.065 
8.74E-

10 0.044 0.033 t c 1878 -4.857 
1.19E-

06 -- 0.402 

2:37261641:A:C 2 37261641 0.014 0.373 0.016 1.27E-07 a c 1430 5.283 
1.27E-

07 ?+ 0.089 

rs10549702 2 38153237 0.202 0.009 0.064 5.59E-05 a aaact 1878 -4.788 
1.69E-

06 -- 0.484 

rs1446299 2 38153593 0.202 0.009 0.065 4.32E-05 a g 1878 4.838 
1.31E-

06 ++ 0.404 

rs7584626 2 38161778 0.046 0.002 0.064 2.44E-05 t c 1878 -5.173 
2.30E-

07 -- 0.136 

rs139166299 2 38163952 0.080 0.014 0.064 2.38E-05 a t 1878 4.89 
1.01E-

06 ++ 0.398 

rs59738114 2 38192028 0.082 0.026 0.072 1.51E-05 t g 1878 4.861 
1.17E-

06 ++ 0.402 

rs77583243 4 144426869 0.007 0.362 0.020 9.52E-07 c g 1430 4.901 
9.52E-

07 ?+ 0.398 

rs75599877 4 144428647 0.007 0.401 0.018 5.39E-07 a g 1430 -5.012 
5.40E-

07 ?- 0.259 

rs1395820 4 148032488 0.499 0.002 0.196 0.0001 a g 1878 4.875 
1.09E-

06 ++ 0.398 

rs112050397 5 16113885 0.003 0.947 0.019 1.28E-06 t c 1430 -4.843 
1.28E-

06 ?- 0.404 

rs150847810 6 62893066 0.005 0.174 0.032 1.11E-07 a g 1430 5.308 
1.11E-

07 ?+ 0.084 

rs143991214 6 62944608 0.008 0.203 0.039 1.05E-06 a g 1430 4.882 
1.05E-

06 ?+ 0.398 

rs149499893 6 96270587 0.071 0.034 0.154 2.20E-06 a aac 1878 5.166 
2.39E-

07 ++ 0.136 

rs500000 8 102465957 0.438 0.039 0.499 1.51E-05 a g 1878 -4.787 
1.70E-

06 -- 0.484 

rs618854 8 102467706 0.437 0.025 0.499 1.40E-05 t c 1878 4.883 
1.05E-

06 ++ 0.398 
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rs543427 8 102468599 0.454 0.019 0.499 1.58E-05 c g 1878 4.909 
9.15E-

07 ++ 0.398 

rs10971108 9 32729457 0.460 0.036 0.202 1.26E-05 t c 1878 -4.836 
1.33E-

06 -- 0.404 

rs11383665 16 75649082 0.119 0.029 0.046 5.31E-06 g ga 1878 5.038 
4.72E-

07 ++ 0.253 

rs115570676 16 77534851 0.023 0.958 0.016 5.31E-07 a g 1430 -5.015 
5.31E-

07 ?- 0.259 

rs375077981 17 93102 0.020 0.379 0.041 9.86E-08 t c 1430 -5.329 
9.86E-

08 ?- 0.082 

17:93710:A:ACT 17 93710 0.017 0.463 0.039 4.58E-08 a act 1430 5.467 
4.58E-

08 ?+ 0.076 

rs145520862 17 94227 0.018 0.434 0.040 4.58E-08 a at 1430 -5.467 
4.58E-

08 ?- 0.076 

rs186729453 17 94232 0.018 0.434 0.040 4.57E-08 t g 1430 -5.467 
4.57E-

08 ?- 0.076 

rs75336375 17 94595 0.017 0.530 0.040 4.86E-08 a g 1430 -5.456 
4.86E-

08 ?- 0.076 

17:94869:C:T 17 94869 0.019 0.332 0.040 4.98E-08 t c 1430 -5.452 
4.99E-

08 ?- 0.076 

17:94873:C:T 17 94873 0.018 0.425 0.040 8.37E-08 t c 1430 -5.359 
8.37E-

08 ?- 0.076 

rs367726249 17 95191 0.018 0.384 0.040 5.17E-08 a agtgt 1430 -5.445 
5.17E-

08 ?- 0.076 

rs76409107 17 97350 0.016 0.291 0.041 2.38E-07 t c 1430 -5.167 
2.38E-

07 ?- 0.136 

rs11651220 17 98244 0.020 0.444 0.040 8.11E-08 c g 1430 5.365 
8.11E-

08 ?+ 0.076 

rs11651297 17 98409 0.015 0.271 0.040 8.15E-08 t c 1430 -5.364 
8.15E-

08 ?- 0.076 

rs143909369 17 100194 0.036 0.172 0.040 6.61E-08 t c 1430 -5.401 
6.61E-

08 ?- 0.076 
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 For externalizing characteristics two markers reached genome wide significance (p < 5 x 

10-8).  Figures 5 and 6 show the regional association plots for these two markers on chromosome 

1 (rs71569819, p = 1.6x10-8, q = 0.096) and 7 (rs79401837, p = 4.8x10-8, q = 0.203).  The marker 

on chromosome 1 is located in the gene endothelium converting enzyme 1 (ECE1) and was tested 

in the AFR and EUR samples.  The marker on chromosome 7 is located in an intergenic region 

and was tested only in EUR sample.   

 

Figure 5: Regional Association Plot for rs71569819  
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Figure 6: Regional Association Plot for rs79401837 
 

 
 
 

 For internalizing characteristics five markers reached genome wide significance (p = 

4.57x10-8 – 4.99x10-8).  All five of these markers are located on chromosome 17 in the gene 

rabphilin 3A-like (RPH3AL) and were only tested in the EUR ancestry group.  Figure 7 shows the 

regional association plot for these markers. 
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Figure 7: Regional Association Plot for significant markers in RPH3AL 
 

 
 
FUMA 

 Through FUMA a genome-wide gene set analysis was done using MAGMA (de Leeuw, 

Mooij, Heskes, & Posthuma, 2015) on the results from the externalizing and internalizing GWASs.  

These tests resulted in no significant gene sets at a corrected p-value threshold of p < 2.72x10-6.  

To further inspect the genome wide significant and suggestively significant markers a set of “lead” 

markers from each GWAS was also entered into the FUMA program.  The rows in bold in Table 

7 show the markers from the internalizing GWAS that were entered as lead SNPs in a FUMA 

analysis to explore the function.  The three markers in Table 6 as well as rs10165682 (chr 2, p = 

1.42x10-6), rs4643870 (chr 4, p = 1.06x10-6), rs35078547 (chr 14, p = 1.55x10-6) from the 

externalizing GWAS were used as lead SNPs in a FUMA analysis to explore their function.  

There were 182 SNPs from the externalizing GWA analyses that were in LD (r2>0.5) with 

the pre-selected lead SNPs.  None of these SNPs mapped to genes and most were in intergenic 
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regions.  The exception was rs35078547, the lead SNP on chromosome 14, which of the 14 SNPs 

in LD with the marker 4 were located downstream of LINC00226 and 5 were located upstream of 

LINC00221. 

There were 97 SNPs from the internalizing GWA analyses that were in LD (r2>0.5) with 

the pre-selected lead SNPs.  The 14 SNPs in LD with rs186729453 were all located in an intron of 

the RPH3AL gene.  On chromosome 2, 6 SNPs were located in an intron of the RMDN2 gene and 

40 SNPs located on in an intron of a ncRNA – RMDN2-AS1.  Additionally, 5 SNPs on 

chromosome 6 are located in an intron of a ncRNA and 3 SNPs located upstream of or in an intron 

of a ncRNA. 

 

Discussion 

 

This chapter applied a variety of analytic methods to examine the genetic influences on 

externalizing and internalizing characteristics within binge drinkers.  We estimated the overall 

heritability due to common variants, performed agnostic tests to discover associated individual 

variants, and followed up on the function of significant and suggestively significant markers.  The 

results reveal some promising avenues for follow up in future analyses, but suggest that phenotypic 

refinement alone cannot overcome the limitations of modest sample sizes.  The primary findings 

are discussed below. 

For SNP-based heritability, the estimate for externalizing characteristics was not 

significantly different from zero.  This is surprising due to the well-established significant 

heritability of alcohol use and externalizing characteristics separately as well as the known shared 

genetic influences between externalizing and alcohol.  There are several plausible explanations 
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why in our sample externalizing characteristics within binge drinkers did not show significant SNP 

heritability.  First, it is possible that since the sample was reduced to a heavier drinking sample 

(reducing the phenotypic variance regarding alcohol use) and externalizing behaviors have been 

shown to have minimal genetic influences that are not shared with problem substance use (Kendler 

et al., 2003).  There may not be minimal genetic variance within this sample that relates to 

externalizing characteristics only.  Relatedly, we are underpowered in this sample to detect such 

potentially small effects.  Table 8 shows the power calculations for SNP-based heritability given 

a range of samples sizes including those in the present analyses.  As seen in the table, using the 

full sample we are well powered to detect heritabilities of 0.4 or greater, with only the EUR 

ancestry group being well powered to detect any heritability estimates before meta-analysis.  This 

means if there was a reduction in heritability of externalizing characteristics in the binge drinking 

sample due to a lack of variation in alcohol use we would be unable to detect it. 

Table 8: Power calculations for SNP-based heritability estimates 
 
   SNP –based Heritability    
 N 0.05 0.1 0.2 0.4 0.5 0.6 0.8 
 150 0.0501 0.0503 0.051 0.0541 0.0565 0.0593 0.0667 
 250 0.0502 0.0507 0.0529 0.0615 0.0681 0.0761 0.0969 
Sample 
Size 

500 0.0507 0.0529 0.0615 0.0969 0.1241 0.1578 0.2441 
1000 0.0529 0.0615 0.0969 0.2441 0.3526 0.4751 0.7156 
1430 0.0559 0.0737 0.1477 0.44 0.6183 0.7744 0.9513 

 1879 0.0602 0.0913 0.221 0.6616 0.844 0.9458 0.9974 
 2454 0.0674 0.1213 0.3419 0.8737 0.9726 0.9965 1.0000 

Note: Calculated using GCTA-GREML Power Calculator (http://cnsgenomics.com/shiny/gctaPower/) 

With regard to internalizing characteristics in binge drinkers, we observed a modest SNP 

heritability estimate (h2 = 0.25).  Although the standard errors on this estimate are large, the 

estimate is in line with other estimates of SNP heritability of major depressive disorder (Lubke et 

al., 2012).  This may indicate that unlike externalizing characteristics, internalizing characteristics 

are no more or less heritable in a binge drinking sample as compared to the general population.  
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Although it is important to note that even in the meta-analyzed sample we are underpowered to 

detect SNP heritability estimates below 0.4. 

There were two genome-wide significant (GWS) markers for externalizing characteristics.  

The first (rs71569819) was located on chromosome 1 in the endothelin converting enzyme 1 

(ECE1) gene.  SNPs in this gene (rs212524, rs213032) have been previously identified in a meta-

analysis of height (Wood et al., 2014) and associated with sleep duration in a small study of 

childhood obesity in Hispanic children (Comuzzie et al., 2012).  There has been some previous 

evidence suggesting a relationship between sleep duration and impulsivity, especially in children 

(Gruber, Cassoff, Frenette, Wiebe, & Carrier, 2012; Scharf, Demmer, Silver, & Stein, 2013).  One 

study estimated 81% of the relationship between sleep quality and externalizing behavior is due to 

genetic influences (Barclay, Eley, Maughan, Rowe, & Gregory, 2011).  This suggests a potential 

relationship by which markers in the ECE1 gene are associated with externalizing characteristics 

in this sample.  The second GWS marker (rs79401837) is located in an intergenic region on 

chromosome 7 with no previous associations.   

The five GWS markers for internalizing characteristics were located in an intron of the 

rabphilin 3A-like (RPH3AL) gene.  An additional 9 suggestively significant makers in high LD 

with were also located in this intron of RPH3AL.  In a study of women with borderline personality 

disorder or major depressive disorder, Prados et al. (2015) found an association with methylation 

sites within the RPH3AL gene and childhood maltreatment scores, such that these sites were 

associated with lower childhood maltreatment in depressed individuals (a majority of the 

borderline personality disorder patients were also diagnosed with major depressive disorder).  

While this study supports the potential role of RPH3AL in relation to internalizing characteristics, 

it is not a direct replication of our findings. 
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Therefore, we conducted a series of follow-up analyses in an attempt to replicate the 

association of variants within the RPH3AL gene and internalizing in binge drinkers.  We had access 

to three samples containing participants measures of drinking and internalizing behavior to at 

similar ages to the S4S sample; the Avon Longitudinal Study of Parents and Children (ALSPAC), 

the Finnish Twin Cohort Study (FinnTwin), and the prospective subsample of the Collaborative 

Studies on the Genetics of Alcoholism (COGA).  In each sample, we tested the association between 

the top markers on chromosome 17 (listed in Table 7) and a measure of internalizing characteristics 

among past month heavy drinkers. As shown in Table 9, none of the variants that were GWS or 

borderline significant in the S4S discovery sample were significant in any of the three replication 

samples.  Since the associated variants in a GWAS are often not the causal variant but in LD with 

the causal variant, we also conducted a test of the whole RPH3AL gene using MAGMA (de Leeuw 

et al., 2015).  As shown in Table 10, RPH3AL was not significantly associated with internalizing 

behavior in any of the three heavy drinking replication samples.  While the results of both the 

individual variant tests and gene tests suggest the initial results be interpreted cautiously, some 

limitations to the replication analyses are also applicable.  First, the minor allele frequencies 

(MAF) of these variants are between 0.023 - 0.026 in COGA and FinnTwin and 0.042-0.044 in 

ALSPAC.  These MAFs are similar to S4S but combined with particularly small sample sizes of 

COGA (N=534) and FinnTwin (N=321) means there is likely very little variation in these samples 

across these markers.  Additionally, data from ALSPAC was only available for age 18 which is 

just the beginning of the young adult period that is captured by the S4S sample.  Therefore, the 

influence of variation in the RPH3AL gene on internalizing characteristics in heavy drinkers still 

warrants further exploration. 
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Table 9: Attempted replication of individual variants in RPH3AL 
 
 COGA FinnTwin ALSPAC 
 Beta P-Value Beta P-value Beta P-value 
rs375077981 0.1891 0.5756 0.1667 0.7406 N/A N/A 
rs145520862 0.1871 0.5799 0.0758 0.8824 -0.0341 0.9459 
rs186729453 0.1871 0.5799 0.0758 0.8824 0.0000 1.0000 
rs75336375 0.1871 0.5799 0.0758 0.8824 0.0111 0.9825 
rs76409107 0.1871 0.5799 0.0758 0.8824 0.1621 0.7482 
rs11651220 0.1459 0.6556 -0.0621 0.9053 0.0652 0.8979 
rs11651297 0.1459 0.6556 0.1148 0.8227 0.0637 0.9003 
rs143909369 0.1193 0.7066 0.0592 0.9096 0.8560 0.8698 

 

Table 10: Results of RPH3AL gene-based association test 
 
 SNPs N Z statistic P-value 
COGA 168 321 -0.6907 0.7551 
FinnTwin 55 534 -0.8692 0.8076 
ALSPAC 202 1665 1.0681 0.1427 

 

Most of the variants implicated in the current analyses (including those in RPH3AL) do not 

have a clear mechanism of action by which they might affect the phenotype.  This is a common 

finding when examining the genetics of complex psychiatric traits or disorders.  Previous research 

has shown that variants associated in complex psychiatric traits are often found in non-coding 

regions (Finucane et al., 2015; Peterson et al., 2017).  These variants may play a role in regulating 

gene expression which future studies could explore but is currently outside the scope of the present 

study. 

The results of the current study should be considered in the context of several limitations.  

First, as discussed above, the sample size was small for these types of genetic analyses.  We 

hypothesized that examining externalizing and internalizing characteristics in the context of heavy 

drinking individuals would eliminate some of the “noise” created by heterogeneity not previously 

accounted for in other studies and thus increase power; however, it is clear that a sample size 
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greater than the current sample (N=2,454) is needed to confidently explore these subtypes.  

Second, our measure of internalizing or externalizing encompassed a range of those behaviors 

(depression and anxiety, impulsivity and antisocial behavior).  This allows for internalizing or 

externalizing to manifest in multiple ways and still be a considered in relation to problem alcohol 

use.  However, this assumes that each of these sub facets of internalizing or externalizing share 

broader genetic influences.  While there is some evidence for this (Kendler, Aggen, et al., 2011; 

Kendler et al., 2003), it is possible that a focus on more specific facets of internalizing and 

externalizing better characterize genetic subtypes of problem alcohol use. 

Despite these limitation, there are many potential future directions for this work.  First, 

these same questions should be explored in a larger sample to confirm the SNP heritability 

estimates and potentially replicate the GWA findings.  Similarly, larger samples that are not 

limited to individuals of European ancestry will be needed to understand whether current 

findings generalize across all individuals or are specific to those of African and/or European 

descent.  Additionally, conducting similar analyses in a sample with diagnostic level measures of 

both internalizing and externalizing disorders may yield more convincing results.  It may be that 

those most severely affected by internalizing or externalizing disorders represent those with the 

highest genetic predisposition towards either trait and alcohol problems.  These most severely 

affected individuals may be unlikely to have enrolled in the S4S project and continued through 

university.  In conclusion, the analyses presented here represent an initial exploration into 

differential genetic influences on subtypes of problem alcohol users, a topic that is currently 

understudied. 
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Chapter 4: Underlying Neurobiological Differences between Externalizing and 
Internalizing Binge Drinkers 

 
 
 
Neurobiology of Addiction 

 In addition to genetic influences on alcohol use, there are many intermediate factors that 

play a role in the development of alcohol use.  Extensive research has been conducted examining 

differences in neurobiological differences that set those addicted to alcohol apart from others.  

Several theories have been put forward to help understand the underlying neurobiology among 

individuals who transition from healthy alcohol use to alcohol misuse.  Some theories suggest this 

transition is the result of a change from using alcohol for the positive, rewarding effects to using a 

substance to eliminate the negative symptoms or withdrawal (Koob et al., 2004; Koob & Le Moal, 

2008; Solomon & Corbit, 1978).  Others argue that problem use is caused by a loss of control as 

brain regions involved in decision making become less engaged, shifting use from voluntary to 

compulsive (Everitt & Robbins, 2005). Still others suggest that over time cues associated with use 

(such as a drinking location, a certain time of day, a wine glass) become reinforcing themselves 

and cause craving, thus leading to compulsive use (Robinson & Berridge, 1993).  While these 

theories differ with regard to the specific mechanism driving the shift from use to dependence, 

they all point to neurobiological changes as essential in the progression from use to dependence.  

 The majority of these theories propose changes with regard to neurological systems that 

govern reward motivation and behavioral control.  In healthy controls, the ventral striatum (VS) 

and ventromedial prefrontal cortex (vmPFC; Bartra, McGuire, & Kable, 2013; Haber & Knutson, 
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2010) are involved in reward motivation.  More specifically these brain regions work together in 

healthy individuals to determine the value (reward) of a stimulus/choice.  The VS has also been 

associated with a preference for immediate rewards and therefore reward seeking/sensitivity more 

generally (McClure, Laibson, Loewenstein, & Cohen, 2004).  With regard to behavioral control, 

the dorsolateral prefrontal cortex (DLPFC) and right inferior frontal gyrus (RIFG) show activation 

in healthy controls on tasks involving impulsive choice and impulsive response, respectively 

(Kable & Glimcher, 2007; Simmonds, Pekar, & Mostofsky, 2008).  Research using functional 

magnetic resonance imaging (fMRI) has demonstrated that these systems are dysregulated in 

individuals with problem alcohol use.  These findings have given support to the theories outlined 

above and further detailed below. 

Incentive Salience. Robinson and Berridge (1993) proposed a theory of incentive 

sensitization (also called incentive salience) to explain the transition from normative substance use 

to problem substance use or a transition from “liking” a substance to “wanting” a substance.  This 

theory posits that over repeated use individuals come to find stimuli that have been repeatedly 

paired with use of a drug to be rewarding in and of themselves.  As an example, Due, Huettel, Hall, 

and Rubin (2002) found increased activation in reward circuitry in response to viewing smoking 

cues (pictures of cigarettes, people smoking and holding cigarettes) in smokers compared to 

nonsmokers.  Similarly, Kareken et al. (2004) showed increased activation in the nucleus 

accumbens when high risk drinkers inhaled alcohol vapors compared to low risk drinkers 

demonstrating an increased salience to alcohol cues.  A meta-analysis of cue reactivity in alcohol 

dependent individuals showed reliable activation in bilateral ventral striatum (VS), left pallidum, 

right amygdala, left thalmus, right inferior frontal gyrus, and left middle frontal gyrus (Kuhn & 

Gallinat, 2011).  This meta- analysis found further support for activation in the VS and amygdala 
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in response to cues in nicotine and cocaine dependent individuals.  However, Wilson, Sayette, and 

Fiez (2004) argue that especially in non-treatment seeking dependent individuals, the dorsolateral 

prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) are additionally important brain areas 

involved in cue-reactivity.  It is thought that since these areas are involved in goal-directed 

behavior and decision making, when shown a cue non treatment seeking individuals are recruiting 

brain areas involved in deciding to use. 

 Hedonic Allostasis. Solomon and Corbit (1974) proposed an Opponent Process model 

theorizing that hedonic states were automatically modulated by the central nervous system to 

reduce their intensity.  The Opponent Process theory posits that there is a primary process 

associated with the pleasurable effects of drug use and an opponent process associated with the 

negative effects of drug use or withdrawal.  Over repeated drug use the opponent process grows 

larger and individuals feel less of the pleasurable effects and more of the withdrawal effects.  

Similarly, Koob et al. (2004) proposed a theory of Hedonic Allostatis which suggests that 

continued drug use is a type of negative reinforcement where individuals use the drug to remove 

the negative effects/withdrawal symptoms of a drug.  Unlike the Opponent Process Theory, the 

Hedonic Allostatis Theory posits that a driving force of addiction is due to a change in the 

individual’s baseline state or homeostatic point.  Therefore, eventually an individual no longer 

finds smaller healthy rewards to release enough dopamine to be rewarding and instead needs the 

larger dopamine release from drug use in order to return to baseline.  This altered set point has 

been consistently demonstrated in the animal literature (Schulteis & Liu, 2006; Schulteis, Markou, 

Cole, & Koob, 1995).  Perhaps the most convincing evidence for an altered base line state due to 

substance use is the work by Volkow et al. (2007) using PET scanning, which showed that chronic 

alcoholics felt less high and enjoyed the drug less than controls despite releasing similar levels of 
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dopamine in the VS.  There have been similar findings using fMRI, Gilman, Ramchandani, Crouss, 

and Hommer (2012) demonstrated that intoxicated heavy drinkers show blunted activation in the 

nucleus accumbens while intoxicated compared to light drinkers. 

Compulsivity.  Everitt and Robbins (2005) suggest that the shift from voluntary to 

compulsive substance use is mirrored by a similar shift in activation in related brain regions.  More 

specifically, a shift from engagement of the prefrontal cortex, focused on decision making, to the 

striatum, driven by reward.  This shift is supported by decreased brain volume in the frontal lobes 

in chronic alcoholics (Pfefferbaum, Sullivan, Mathalon, & Lim, 1997).  With the decision making 

ability of the prefrontal cortex diminished, compulsive use is then driven by the striatum, 

specifically the dorsal striatum (Doherty et al., 2004). 

It is important to note that the three theories described above are not mutually exclusive.  

Within one individual each theory may explain a different stage on their path to addiction.  For 

example, early on a person may find it is harder to stop themselves from having another drink, 

indicating a shift from prefrontal control to striatal control.  This continued drinking leads to 

tolerance and a change in the person’s homeostatic point.  Therefore, they continue to drink to 

reduce negative affect instead of to experience the pleasant effects of alcohol.  This further 

reinforces alcohol related cues causing craving when the person abstains from using.  This cycle 

of addiction has been described by Koob and Volkow (2010), who classify these three stages as; 

binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation.  The subsequent 

analyses focus on three neurobiological constructs that index these three stages; behavioral 

inhibition, emotion reactivity, and reward sensitivity.  Besides these theories, much additional 

work has examined each construct individually. 
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Behavioral Inhibition 

 Whereas the previous theories center on altered motivation toward drugs relative to natural 

rewards, atop both frameworks is the critical role of self-control neurocircuitry to restrain drug-

seeking behavior. The ability to control or inhibit one’s actions is a key part of human behavior, 

necessary for adapting to new environments/stimuli.  Lack of behavioral inhibition or a difficulty 

controlling one’s actions is a hallmark of alcohol abuse and binge substance use, for example the 

inability to stop consuming alcohol once an individual has started.  The phenotypic and personality 

manifestations of this kind of impulsivity have been reviewed in Chapters 1 and 2.  Therefore, in 

this chapter we focus on the behavioral measurements of impulsivity.  The two main forms of 

behavioral impulsivity are choice impulsivity and rapid response impulsivity.  Choice impulsivity 

encompasses both the preference for immediate rewards, even if they are smaller, over delayed 

rewards, even if they are larger and the diminished ability to tolerate delays (Hamilton, Mitchell, 

et al., 2015).  Not surprisingly, this type of impulsivity is related to neural activity in brain areas 

responsible for both goal directed behavior and reward sensitivity (Kable & Glimcher, 2007) with 

areas in the prefrontal cortex (i.e. DLPFC) associated with choosing to defer gratification and the 

VS associated with choosing immediate rewards (McClure et al., 2004). 

The other form of impulsivity, which is relevant to the present set of analyses, is rapid 

response impulsivity.  Rapid response impulsivity is a diminished ability to inhibit a primed 

response (Hamilton, Littlefield, et al., 2015).  Behavioral inhibition (or response inhibition) is most 

often measured using behavioral tasks; one of the most common being Go/No-go tasks which 

require the participant to suddenly inhibit a response when a specific stimulus is presented.  This 

task has been shown to activate the prefrontal cortex, specifically the right inferior frontal gyrus 

(see Figure 8)(Simmonds et al., 2008).  Group differences in brain activation in response to the 
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Go/No-go task have been established in heavy drinkers compared to light drinkers (Ahmadi et al., 

2013; Ames et al., 2014; Campanella et al., 2016).  With some studies demonstrating increased 

activation in heavy drinkers (Ames et al., 2014) which is often interpreted as this group needing 

to expend more energy to complete the task.  While other studies show decreased activation in 

heavy drinkers (Ahmadi et al., 2013) thought to represent a deficit in cognitive resources.  These 

differences are likely a factor in driving substance abuse rather than being a result of heavy use, as 

differences are seen prior to the initiation of heavy drinking (Norman et al., 2011; Wetherill, 

Squeglia, Yang, & Tapert, 2013) and in individuals with a family history of (i.e., predisposition 

toward) alcoholism (Schweinsburg et al., 2004). 

Figure 8: Brain activation in the right inferior frontal gyrus corresponding to “response 

inhibition” 

  
Note: The graphic is from a meta-analysis of studies generated from neurosynth.org 



	 56	

Rapid response impulsivity (specifically using Go/Nogo tasks) have been associated with 

long term substance use outcomes.  Although the direction of effect has not been consistent.  

Berkman, Falk, and Lieberman (2011) found that increased activation in the right inferior frontal 

gyrus, supplementary motor area, and basal ganglia attenuated the otherwise positive relationship 

between cravings and subsequent smoking in smokers attempting to quit.  Conversely, 

Prisciandaro, Myrick, Henderson, McRae-Clark, and Brady (2013) found that increased activation 

in the left postcentral gyrus was associated with a positive cocaine urine drug screen in cocaine 

dependent individuals at a one week follow up visit. 

 Behavioral inhibition has also been studied as a function of externalizing and internalizing 

characteristics.  Similar to the findings in alcohol abusers, deficits in behavioral inhibition have 

been seen in a range of externalizing disorders (Albrecht, Banaschewski, Brandeis, Heinrich, & 

Rothenberger, 2005).  Impulsivity more broadly has also been found to correlate with activation 

in a Go/No-go task (Asahi, Okamoto, Okada, Yamawaki, & Yokota, 2004; Horn, Dolan, Elliott, 

Deakin, & Woodruff, 2003) but with mixed results.  Asahi et al. (2004) showed a negative 

correlation between activation in the right dorsolateral prefrontal cortex (DLPFC) and motor 

impulsivity while Horn et al. (2003) showed a positive correlation between activation in the right 

inferior frontal gyrus and Eysenck’s impulsivity scale. 

There have been few studies of response inhibition in individuals with internalizing 

disorders.  But there is some evidence that individuals with internalizing characteristics are better 

able to maintain cognitive control (Sehlmeyer et al., 2010).  In one study, those with comorbid 

externalizing and internalizing disorders performed better on a behavioral inhibition task than 

those individuals with externalizing disorders alone (Lipszyc & Schachar, 2010).  However, this 

protective effect may not hold true for alcohol use disorders.  In a study of in comorbid alcohol 
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dependence and anxiety/depression, Sjoerds, van den Brink, Beekman, Penninx, and Veltman 

(2014) found that alcohol dependence severity was more associated with response inhibition than 

depression or anxiety symptoms. 

Emotion Reactivity 

 The ability to process and regulate one’s emotions is important for navigating interpersonal 

interactions.  Dysregulation of this system is a hallmark of some psychiatric disorders, especially 

internalizing disorders (Leppänen, 2006; Rauch, Shin, & Wright, 2003).  In neuroimaging studies, 

activation in the amygdala is often measured in tasks where participants view faces expressing a 

variety of emotions (See figure 9).  In general, greater amygdala activation is seen in response to 

emotional stimuli, like faces, with faces expressing negative emotion eliciting the greatest 

activation.  This is especially true for individuals with depression who consistently show increased 

activation to sad faces compared to happy faces (Fu et al., 2004; Surguladze et al., 2005).  

Similarly, increased amygdala activation to faces has been seen in anxiety prone individuals (Etkin 

& Wager, 2007; Stein, Simmons, Feinstein, & Paulus, 2007).  Additionally, individuals with 

anxiety or depression show increased amygdala activation to neutral faces compared to healthy 

controls (Filkowski & Haas, 2017) indicating a potentially increased sensitivity to hostility and/or 

threat. 
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Figure 9: Brain activation in the bilateral amygdala corresponding to “faces” 

 

Note: The graphic is from a meta-analysis of studies generated from neurosynth.org 

 Fewer studies have examined the relationship between externalizing characteristics and 

amygdala activation in response to emotional faces.  There is some evidence for reduced amygdala 

activation to fearful faces in individuals with antisocial behavior (Hyde, Shaw, et al., 2016; Jones 

et al., 2009), although this association may be driven by the psychopathic and callous-unemotional 

traits often associated with antisocial behavior (White et al., 2012). 

 The relationship between alcohol and negative emotion is complicated and dynamic.  At 

first alcohol can have an anxiolytic effect and some people may drink to cope with anxiety or 

depression symptoms.  However, with prolonged use alcohol can have an anxiogenic effect leading 

to increased incidence of internalizing disorders.  Gilman et al. (2008) demonstrated this anxiolytic 

effect in the brain by showing a decrease in amygdala activity to fearful faces when individuals 

were intoxicated compared to when they were sober.  In addition to seeing this blunted response 

as an acute effect of alcohol, alcohol dependent individuals show blunted amygdala activation 
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across all types of emotional faces compared to controls (Marinkovic et al., 2009).  While this 

blunted response may be the result of chronic alcohol consumption, there is also evidence that 

those with a family history of alcohol dependence show decreased activation in the amygdala in 

response to faces (Glahn, Lovallo, & Fox, 2007) demonstrating that this difference may be a risk 

factor for substance abuse and not an effect of use.  

Reward Sensitivity 

 An increased sensitivity to reward is a hallmark of substance abuse, including alcohol 

abuse.  The Monetary Incentive Delay task (MID) is designed to measure response to reward and 

punishment indicated by activation in the nucleus accumbens (NAcc, see figure 10 (Knutson, 

Adams, Fong, & Hommer, 2001).  The MID task is able to separate neural activity associated with 

anticipation of receiving a reward/punishment and actually receiving the reward/punishment.  

Substance dependent individuals, specifically alcohol dependent individuals, have shown 

increased activation in the NAcc in response to the prospect of receiving a reward (Bjork, Smith, 

& Hommer, 2008), indicating an increased sensitivity to reward.  But other studies in alcohol 

dependent individuals have showed decreased activation in the VS (Beck et al., 2009; Wrase et 

al., 2007).  However, this activation in this region may differ across substances (Karoly et al., 

2015).  When examining individuals with a family history of alcoholism some studies have found 

no difference (Bjork, Knutson, & Hommer, 2008; Muller et al., 2015), while others have found 

decreased NAcc activation compared to those without a family history (Andrews et al., 2011; Yau 

et al., 2012). 
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Figure 10: Brain activation in the bilateral amygdala corresponding to “reward anticipation” 

 

Note: The graphic is from a meta-analysis of studies generated from neurosynth.org 

 In several of these studies a strong relationship was seen between reward sensitivity/ NAcc 

activation and measures of impulsivity (Beck et al., 2009; Bjork, Knutson, et al., 2008).  Additional 

studies have directly measured reward sensitivity in the presence of externalizing characteristics 

solely, such as risk taking adolescents and impulsive-antisocial traits (Bjork, Smith, Chen, & 

Hommer, 2010; Buckholtz et al., 2010), indicating that the increased reward sensitivity seen in 

alcohol abusing individuals is the result of a broader predisposition to externalizing.  Weiland et 

al. (2013) tested this theory and found that NAcc activation to reward sensitivity mediated the 

relationship between sensation seeking and alcohol use. 

 Far less research has been conducted to examine the role of reward sensitivity in 

individuals with internalizing characteristics or disorders.  However, a few studies have found 

decreased activation in the NAcc in response to reward among individuals with depression or 

depressive symptoms (Admon et al., 2017; Hägele et al., 2014).  The decreased activation to 
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reward may be more specifically related to the anhedonia experienced by individuals with 

depression (Wacker, Dillon, & Pizzagalli, 2009). 

 Some of these three constructs (behavioral inhibition, emotion reactivity, and reward 

sensitivity) have been studied together.  Specifically, Nikolova and Hariri (2012) examined 

emotion reactivity and reward sensitivity in college students and were able to predict stress-related 

drinking at a later time point.  For those who were low in reward sensitivity (low VS reactivity), 

recent life stress has no effect on their level of drinking.  However, for individuals who were highly 

reward sensitive (high VS reactivity) and had low levels of amygdala reactivity (less reactive to 

emotions) recent stress had a significant positive association with their alcohol use.  Therefore, 

demonstrating a unique neural profile that could predict stress – related drinking. 

Stemming from the work of Nikolova and Hariri (2012), the current study seeks to integrate 

previous research and further clarify the relationship among neurobiological processes, alcohol 

misuse, and psychopathology by testing for potential brain activation differences between 

internalizing and externalizing binge drinkers.  We focused on the three constructs reviewed above 

(behavioral inhibition, emotion reactivity, and reward sensitivity) since they are known to be 

associated with problem alcohol use.  With regard to behavioral inhibition, we hypothesize that 

there will be increased activation in the right inferior frontal gyrus (RIFG) in externalizers 

compared to internalizers, due to internalizers having increase behavioral control.  With regard to 

emotion reactivity, we hypothesize there will be increased activation in the amygdala to faces and 

negative emotions in internalizers compared to externalizers, due to internalizers heightened 

sensitivity to negative emotion.  Finally, with regard to reward sensitivity, we hypothesize there 

will be increased activation in the nucleus accumbens in response to reward in the externalizers 

compared to interalizers, due to their higher levels of impulsivity.  
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Table 11: Primary Analyses and Hypotheses 

 
 

Methods 

Subjects 

 Participants were recruited from the S4S binge drinking subsample.  Individuals who had 

a factor score one standard deviation above the mean on the externalizing factor and one standard 

deviation below the mean on the internalizing factor were classified as Externalizers; those who 

had a factor score one standard deviation below the mean on the externalizing factor and one 

standard deviation above the mean on the internalizing factor were classified as Internalizers.  350 

individuals met these criteria and were sent an email by the S4S project coordinator inviting them 

to participate in the current study.  Individuals who were interested in participating (N=91) 

completed a brief screening questionnaire on the phone that asked about their physical health, 

mental health, and alcohol use.  Participants who were healthy (measured by blood pressure, heart 

rate, body temperature), regular binge drinkers (drinking 4 or more drinks for women and 5 or 

more drinks for men at least once a month), and right-handed (N = 44) completed a screening visit.  

During the screening visit participants filled out a series of questionnaires, including the full 

Cognitive 
Construct 

fMRI Task Primary Analysis Primary Region 
of Interest 

Hypothesis 

Reward 
Sensitivity 

Monetary 
Incentive Delay 

Task (MID) 

Anticipation during high 
+low reward trials vs 

neutral trials 

Bilateral 
Nucleus 

Accumbens 

Extern > 
Intern 

Behavioral 
Inhibition 

XY Go – Nogo 
Task 

Lures (XX or YY) Right Inferior 
Frontal Gyrus 

Intern > 
Extern 

Emotion 
Processing 

Face Matching 
Task 

Faces vs Shapes Bilateral 
Amygdala 

Intern > 
Extern 
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versions of the SCL-90, SSAGA antisocial behavior questions, and UPPS.  They also were 

checked for MRI safety and completed a battery of computer tasks.   

XY Go-NoGo (XYGNG) Task 

 Stimuli consisted of alternating “X”s and “Y”s.  The participant was asked to press a button 

each time the “X” or “Y” was on the screen (Go trials).  Sometimes the X or Y was preceded by 

the same letter (Nogo trial).  In this case participants were instructed not to press the button and 

therefore inhibit their response to the stimuli (Garavan, Ross, & Stein, 1999; Kaufman, Ross, Stein, 

& Garavan, 2003).  For example, in the pattern “X Y X Y X X Y X”, the sixth letter would be a 

Nogo trial and the participant should not press the button.  There were 250 trials: 225 Go trials and 

25 Nogo trials.  Each trial lasted 1 second.  Participants completed this task once for a run time of 

4 minutes and 45 seconds. 

Emotional Face (EF) Assessment Task 

 In each trial, participants viewed a trio of faces in face blocks or a trio of shapes in shapes 

blocks, one on the top of the screen and two on the bottom (Phan et al., 2008). For each block, 

they were asked to select which stimulus on the bottom row matches the stimulus on the top row.  

Participants made a response by pressing either the left or right response button with their dominant 

hand.  The identity of the three faces were different within a block and an equal number of male 

and female faces were presented.  The target and matching face displayed sad, fearful, angry or 

happy emotions while the nonmatching face displayed a neutral emotion.  Faces and shapes were 

presented in blocks of 4 trios of the same target shape or face.  Each trio of faces or shapes is 

presented for 5s.  There was a variable inter-stimulus interval for the faces of 2-6s and a fixed 

interval for the shapes of 4s.  There were 24 trios presented in each run.  Participants completed 

two runs of this task (8 min 22s each) for a total task run time of about 16 minutes. 
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Monetary Incentive Delay (MID) Task 

 In this task participants are first shown a cue which alerts them to the type of trial where 

they will either have the opportunity to win $5, win $0.50, lose $0.50, lose $5 or a neutral trial, to 

perform for no incentive (Knutson et al., 2001).  Cues were displayed for ~500 ms.  The 

participants then focused on a crosshair until a target symbol appears.  They must push a button 

while the target symbol is on the screen (160-260 ms) in order to either win money or avoid losing 

money. Following the disappearance of the target, participants are given feedback on whether they 

lost or won money during the trial and cumulative winnings.  Participants completed a practice 

round of this game outside the scanner to calibrate the difficulty of the task.  The difficulty of task 

was set for each participant so that they would successfully hit the target on two thirds of the trials.  

Participants completed two, 8.5 minute runs of this task for a total of 100 trials, 20 trials of each 

cue type.   

fMRI Acquisition 

 Imaging was performed using a 3T Philips Ingenia MRI scanner.  The single run of the 

XYGNG task lasted 286s with a repetition time (TR) of 1500ms, an echo time (TE) of 30ms, a flip 

angle of 68°.  The initial 12 volumes of the run were discarded.  In each volume a 3.75 mm slice 

was collected.  Each run of the EF task lasted 502s with a TR of 2000ms, a TE of 30 ms, and a flip 

angle of 68°.  The initial 4 volumes of each run were discarded.  In each volume a 3mm slice was 

collected.  Each run of the MID task lasted 515s with a TR of 1580ms, a TE of 75ms, and a flip 

angle of 90°.  The initial 13 volumes of each run were discarded.  In each volume a 3.75mm slice 

was collected.  Structural scans were collected using a T1 weighted sequence with a TR of 8.1ms, 

a TE of 3.7ms, and a flip angle of 6°. 
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fMRI Analysis 

Preprocessing.  Blood Oxygen-Level Dependent (BOLD) signal was analyzed using 

Analysis of Functional NeuroImages (AFNI) software (Cox, 1996).  The two runs of the EF task 

and the MID task were concatenated and analyzed as a single time series for each task moving 

forward.  Any time series with more than one voxel (3.75 mm) translocation across the time-course 

of the scan were excluded.  Each functional time series was corrected for motion, spatially 

smoothed to 8mm full-width half maximum, aligned to the structural scan, and warped out to 

Talairach space.   

Individual first-level statistical mapping.  Processed time series were normalized to 

represent a percent signal change in each voxel at each timepoint, relative to that voxel’s intensity 

mean.  For each volume of the time series, at each voxel the intensity difference from the mean of 

the whole time-series was divided by the mean and multiplied by 100.  The normalized time series 

were then analyzed by multiple regression (AFNI 3dREMLfit) which included six regressors 

describing residual motion used to correct for head motion and the temporal auto-correlation of 

voxel-wise noise.  Activations were detected primarily as linear contrasts of event related signal 

change, as follows: 1) for the XYGNG task, a) activation during lures (Nogo trials) compared to 

the implicit background of successful go trial, b) activation to successfully stopping a response on 

Nogo trials compared to failing to stop the response; 2) for the EF task, a) all faces trials compared 

to shape trials, b) all sad face trials compared to happy faces trials; 3) for the MID task, a) reward 

cues (high and low combined) compared to neutral cues, b) loss cues (high and low combined) 

compared to neutral cues, c) reward compared to nonreward in reward trials, d) loss compared to 

nonloss in loss trials. 
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Groupwise statistical mapping.  To accommodate the within and cross subject variability 

within group and group difference maps were calculated using AFNI’s 3dMEMA program (Chen, 

Saad, Nath, Beauchamp, & Cox, 2012).  A mask was generated that was composed of voxels with 

non-zero values from at least 24 subjects (20 subjects for XYGNG).  This mask was used in the 

group map analyses to restrict the number of voxels analyzed to those consistently activated 

throughout the sample.  A beta value, t-statistic, and p-value are calculated for each analyzed voxel.  

Due to the normalization of the data, described above, beta values represent the percent signal 

change.  All results are presented at minimum voxel-wise significance threshold of p<0.001. 

Family-wise error (FWE) correction.  Due to large number of voxels that are collected 

during a whole brain scan, corrections for multiple testing are necessary in order to evaluate true 

signals.  Whole brain FWE corrections were conducted on the second-level group maps.  The first 

step is to calculate the full-width at half maximum along with the autocorrelation function for each 

sub-brik.  Using this input, Monte Carlo simulations were then run in AFNI 3dClustSim to 

determine a cluster size threshold for each contrast of interest using only voxels where p<0.001.  

This threshold has been demonstrated to have a family-wise error rate of about 8% in a validation 

study of resting state fMRI data (Eklund, Nichols, & Knutsson, 2016).  Finally, group maps were 

constructed with only those clusters that survived both the cluster size threshold (see results below 

for contrast-specific minimum cluster sizes) and a t-statistic corresponding to p<0.001.   

Volume of Interest (VOI) Analysis. Since we hypothesized changes in specific brain 

regions selected a priori, we conducted a set of VOI analyses to test if 1) activation in these areas 

statistically differed between the two groups and/or 2) if activation in these regions correlated with 

externalizing or internalizing characteristics.  As described above, the activation was normalized 

so that the beta weights represent the percent signal change averaged over all the time-series.  To 
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avoid circularity and potentially exaggerated brain-behavior correlations (Vul, Harris, 

Winkielman, & Pashler, 2009), regions of interest were not determined from activation in the 

group maps but rather from predetermined anatomical locations.  Task-contrast beta weights were 

averaged across three-dimensional masks using AFNI 3dMaskAve. Each mask was a three-

dimensional cluster, composed of the central voxel surrounded by all six shared-face voxels (in 

3.75 mm isotropic acquisition space). For XYGNG, the regions of interest were based on 

coordinates from neurosynth.org for “response inhibition”, the mask coordinates in Talairach 

space are as follows: left inferior frontal gyrus (IFG) – 34, -18, -8 and right IFG - -42, -18, -6For 

MID, the nucleus accumbens locations are based on (Bjork et al., 2010), the coordinates in 

Talairach are as follows: left nucleus accumbens (NAcc) – 8, -11, 0 and right Nacc - -8, -11, 0.  .  

For EF, the masks for the left and right amygdala were derived from downsampling (to 3.75 mm 

isotropic) the amygdala masks of the Talairach atlas provided in the AFNI package.   

 

Results 

 

 The final scanned sample included 39 participants; 20 participants classified as 

externalizers (10 females) and 19 participants classified as internalizers (10 females).  No 

participants were excluded due to head motion and there were no group differences with regard to 

head motion.  Table 12 shows the differences between the two groups on key variables of interest 

and alcohol use and problems.  Overall there was no difference between the two groups in terms 

of days drinking per month, typical drinks per day, binges per month, or alcohol use disorder 

symptoms.  By design the groups are significantly different on sensation seeking and symptoms 

of depression and anxiety.  The two groups did not significantly differ on past antisocial behavior.   
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Table 12: Comparison of Group Differences 
 Internalizers Externalizers t-

statistic 
p-

value 
 Mean SD Range Mean SD Range   
Age 21.76 0.97 20-24 21.5 0.76 21-24 0.912 0.369 
Depression 10.26 9.18 0-31 2.6 2.66 0-11 3.501 0.002 
Anxiety 5.26 6.21 0-18 0.8 1.28 0-4 3.072 0.006 
Sensation Seeking 30.84 5.95 18-43 39.85 4.69 29-47 -5.233 <0.001 
Antisocial Behavior 2.32 2.24 0-7 3.1 3.19 0-11 -0.892 0.379 
Drinking Days 10.882 8.73 2-30 9.842 5.99 2-25 0.412 0.684 
Drinks per Day 4.632 1.53 1-7.5 4.175 1.57 1.5-8 0.897 0.376 
Binges per Month 5.368 4.83 0-16 4.875 4.06 1-18 0.344 0.733 
AUD Symptoms 2.42 2.06 0-7 2.2 1.44 0-5 0.386 0.701 

 
Task Behavior 

XYGNG.  Performance on the XYGNG task varied across participants.  The average 

reaction time to Go Trials was 314.10 msec (SD = 45.89, range = 240.54 – 384.83).  Participants 

on average made 9.74 (SD = 27.03, range = 0-133) omission errors, i.e. missed responding to a Go 

trial, which corresponds to missing 4.33% of the Go trials.  Three participants missed responding 

on greater than 10% of the Go trial and were considered outliers.  There was no difference in the 

subsequently reported findings when these individuals were removed from the analysis.  On 

average, participants committed 12.38 (SD = 4.37, range = 3 - 21) commission, i.e. responded to 

a Nogo trial, which corresponds to incorrectly responding to 49.54% of Nogo trials.  Mean reaction 

time was negatively correlated with commission errors (r = -0.504, p = 0.001), such that slower 

reaction times were associated with fewer commission errors.  Mean reaction time was unrelated 

to omission errors (r = 0.072, p = 0.66).  There were no differences between internalizers and 

externalizers on commission errors (p = 0.416), omission errors (p = 0.201), or mean reaction time 

(p = 0.943). 
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EF.  All participants successfully completed both runs of the EF task with very few missed 

or incorrect trials. 

MID.  Reaction times were fastest on high reward trials (mean = 231.693, SD = 20.231, 

range = 200.513 – 290.617) and slowest on low loss trials (mean = 236.629, SD = 22.511, range 

= 189.331 – 305.773).  Figure 11 shows reaction time to each trial type by binge drinking subtype.  

Participants were less likely to hit the target on neutral trials (mean = 5.21, SD = 2.32, range = 

1.00 - 9.00) compared to the other trial types (mean = 12.44 - 13.74).  Figure 12 shows hit rate for 

each trial type by binge drinking subtype.  Generally, there were no group differences on reaction 

time (p = 0.137 - 0.868) or hits across trial types (p = 0.265 - 0.890).  The exception being neutral 

trials where internalizers hit the target significantly more (mean = 6.00) than externalizers (mean 

= 4.45, t(37) = 2.19, p = 0.035). 

  



	 70	

Figure 11: Mean reaction time by MID task trial type 
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Figure 12: Mean number of hits by MID task trial type 

 

 

Family – Wise Error Corrected Maps 

 Threshold voxelwise t-statistics, cluster size, and minimum number of voxels in a cluster 

are as follows: 1) for XYGNG, a) t = 3.558 – 3.618, b) 1308 – 1497 ul, c) 25 – 28 voxels; 2) for 

EF, a) t = 3.559, b) 2805 – 5200 ul, c) 53-98 voxels; 3) for MID, a) t = 3.565, b) 2094 – 3117 ul, 
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c) 39 -59 voxels.  Tables 13-15 display the maximum t-statistic, related p-value and coordinates 

for clusters surviving the FWER.  Figures 13-15 display the surviving clusters graphically with p-

value cut off for significance.  All illuminated voxels meet a minimum threshold of p<0.001.   

Table 13: Activation maxima for Lures in the XYGNG task 
 

 Talaraich Coordinates t-statistic 
Uncorrected 
p-value* 

Internalizers X Y Z   
Right Inferior Parietal Lobe 48 -43 50 8.4076 <1.0 x10-9 
Right Middle Temporal Gyrus 59 -45 9 5.7606 <0.00001 
Right Superior Temporal Gyrus 54 -28 3 6.8652 <1.0x10-7 
Left Inferior Frontal Gyrus -40 17 -7 5.9318 <1.0x10-6 
Right Inferior Frontal Gyrus 50 17 -5 5.6321 <0.00001 
Right Medial Frontal Gyrus 4 27 36 6.4424 <1.0x10-6 
Right Posterior Cingulate 19 -50 26 -5.2788 <0.00001 
Right Insula 29 -31 21 -5.1843 <0.00001 
Externalizers      
Right Superior Frontal Gyrus 14 24 57 8.0899 <1.0x10-8 
Right Inferior Frontal Gyrus 48 22 -2 6.4047 <1.0x10-6 
Left Inferior Frontal Gyrus -41 19 -1 5.9027 <1.0x10-6 
Right Superior Temporal Gyrus 52 -26 0 5.9097 <1.0x10-6 
Right Medial Frontal Gyrus 4 19 38 6.8891 <1.0x10-7 

 
* all activated clusters survive Family-Wise Error (FWE) correction to adjusted p < .05 
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Figure 13: Second-level Group Maps - XYGNG Task – Lures 

 

Note: Regions are colored by their unadjusted p-values.  All illuminated voxels are part of clusters 
that survive FWER correction and have an adjusted p-value of p<0.05.  The underlay image is a 
structural T1 scan from a representative participant. 
  

Externalizers Internalizers 

Y= -17.5 Y= -17.5 

Z= -4.5 Z= -4.5 

p < 0.001 p < 0.00001 p < 0.0000001 
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Table 14: Activation maxima for faces vs shapes contrast on the Emotional Faces task 
 

 Talaraich Coordinates t-statistic 
Uncorrected 
p-value 

Internalizers X Y Z   
Right Anterior Cingulate/Left 
Medial Frontal Gyrus 0 42 0 -8.7259 <1.0x10-9 
Right Cingulate Gyrus/Right 
Medial Frontal Gyrus 2 -25 44 -6.0458 <1.0x10-6 
Right Travers Temporal Gyrus 64 -15 13 -6.9271 <1.0x10-7 
Left Superior Temporal Gyrus -69 -16 3 -7.9783 <1.0x10-8 
Right Cuneus 23 -93 -2 12.5437 <1.0x10-9 
Left Lingual Gyrus/Left Cuneus -22 -93 -2 11.3972 <1.0x10-9 
Left Amygdala -29 -2 -16 10.1044 <1.0x10-9 
Right Amygdala 25 -2 -14 7.4645 <1.0x10-8 
Externalizers      
Right Anterior Cingulate 3 48 0 -8.2559 <1.0x10-9 
Right Fusiform Gyrus 37 -53 -14 10.9481 <1.0x10-9 
Left Fusiform Gyrus -38 -53 -14 8.8838 <1.0x10-9 
Left Cuneus -22 -93 -2 11.8714 <1.0x10-9 
Right Cuneus 26 -93 -2 12.0442 <1.0x10-9 
Left Amygdala -29 -3 -16 7.0919 <1.0x10-7 
Right Amygdala 27 -3 -14 6.5931 <1.0x10-7 
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Figure 14: Second-level Group Maps - EF Task – Faces vs. Shapes 

 

Note: Regions are colored by their unadjusted p-values.  Warm colors indicate increased 
activation to faces compared to shapes.  Cool colors indicate decreased activation to faces 
compared to shapes.  All illuminated voxels are part of clusters that survive FWER correction 
and have an adjusted p-value of p<0.05.  The underlay image is a structural T1 scan from a 
representative participant. 
  

p <0.001 p < 0.001 p < 0.00001 p < 0.0000001 
	

Externalizers Internalizers 

Y= 0.5 Y= 0.5 

Z= -19.5 Z= -19.5 
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Table 15: Activation maxima of (high + low) reward vs neutral anticipation on MID task 
 

 Talaraich Coordinates t-statistic 
Uncorrected 
p-value 

Internalizers X Y Z   
Left Ventral Striatum -14 12 2 6.0364 <1.0x10-6 
Right Insula 22 15 -2 5.1229 <1.0x10-5 
Right Middle Frontal Gyrus 30 -2 41 6.0594 <1.0x10-6 
Left Medial Frontal Gyrus/Right 
Cingulate Gyrus -3 -2 48 5.9319 <1.0x10-6 
Left Precentral Gyrus/Left Middle 
Frontal Gyrus -36 -14 48 6.67 <1.0x10-7 
Externalizers      
Left Precentral Gyrus -30 -20 59 7.9825 <1.0x10-8 
Left Ventral Striatum -14 13 -7 6.7601 <1.0x10-7 
Right Lentiform Nucleus/Right 
Claustrum 18 18 -8 5.9379 <1.0x10-6 
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Figure 15: Second-level Group Maps - MID Task – Reward Cues vs Neutral Cues 

 

Note: Regions are colored by their unadjusted p-values.  All illuminated voxels are part of clusters 
that survive FWER correction and have an adjusted p-value of p<0.05.  The underlay image is a 
structural T1 scan from a representative participant. 
 

 

 

Externalizers Internalizers 

p < 0.001 p < 0.00001 p < 0.0000001 
	

Y= -13.5 Y= -13.5 

Z= -8.5 Z= -8.5 
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VOI Analyses 

XYGNG.  There were no significant differences between groups in terms of activation in 

the RIFG on lures or stops vs fails (see Table 16). 

Table 16: Group Means and Statistics for XYGNG Contrasts 
 Internalizers Externalizers t-statistic p-value 
 Mean SD Mean SD   
Lures 0.177 0.17 0.137 0.10 0.895 0.378 
Stops vs Fails -0.063 0.14 -0.085 0.21 0.36247 0.720 

 

EF.  Table 17 shows the statistics for the EF contrasts.  There was no evidence for group 

differences in the left or right amygdala on faces vs shapes trials.  There was no significant 

difference between groups in the left amygdala comparing sad face trials to happy face trials.  

However, there was a borderline significant difference between sad face trials and happy face trials 

in the right amygdala such that externalizers showed increased activation to sad compared to happy 

faces while internalizers showed no difference in activation to sad vs happy faces (Figure 16). 

Table 17: Group Means and Statistics for EF Contrasts 
 Internalizers Externalizers t-statistic p-value 
 Mean SD Mean SD   
Left Amygdala       
Faces vs Shapes 0.112 0.08 0.086 0.08 0.964 0.341 
Sad vs Happy 0.013 0.10 0.097 0.20 -1.681 0.104 
Right Amygdala       
Faces vs Shapes 0.127 0.09 0.103 0.11 0.744 0.461 
Sad vs Happy -0.017 0.10 0.089 0.21 -2.007 0.055 
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Figure 16: Percent BOLD signal change to sad faces compared to happy faces in externalizers and 

internalizers. 

 

MID.  Table 8 shows the statistics for the MID contrasts.  The primary contrast for the 

MID task was comparing anticipation on high and low reward trials to neutral trials.  There was 

no evidence of group differences on this contrast in the left NAcc or right NAcc.  Secondary 

contrasts were anticipation on high and low loss trials to neutral trials, feedback on reward trials 

comparing reward to nonreward outcomes, and feedback on loss trials comparing loss to nonloss 

outcomes.  There were no significant group differences in the left NAcc or right NAcc across all 

three of these contrasts.   
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Table 18: Group Means and Statistics for MID Contrasts 
 Internalizers Externalizers t-statistic p-value 
 Mean SD Mean SD   
Left NAcc       
Reward Anticipation 0.158 0.26 0.104 0.12 0.836 0.411 
Loss Anticipation 0.161 0.24 0.095 0.09 1.151 0.262 
Reward Feedback 0.054 0.16 0.056 0.17 -0.047 0.963 
Loss Feedback 0.022 0.12 -0.054 0.21 1.412 0.168 
Right NAcc       
Reward Anticipation 0.102 0.13 0.081 0.13 0.502 0.619 
Loss Anticipation 0.082 0.14 0.057 0.13 0.592 0.558 
Reward Feedback 0.081 0.13 0.051 0.19 0.571 0.572 
Loss Feedback -0.0001 0.15 -0.052 0.21 0.905 0.372 

 

Post-hoc exploratory correlation analysis.  In order to test whether activation on the 

contrasts of interest could be related to overall internalizing or externalizing, post-hoc correlation 

analyses were conducted.  Similar to the test between groups, we tested whether activation in the 

each of the VOI regions correlated with externalizing or internalizing measured by the factor scores 

(see Chapter 2 for details on how these scores were created) or scores from the participants’ 

screening day (see Table 19).  For the XYGNG task, internalizing or externalizing characteristics 

did not significantly correlate with activation in the RIFG in response to lures or stop vs fail trials.  

For the EF task, screening visit sensation seeking scores were significantly negatively correlated 

with left amygdala activation (r = -0.341, p = 0.034) and borderline significant with right amygdala 

activation (r = -0.311, p = 0.054) on all faces vs shapes trials.  Internalizing was significantly 

negatively correlated with activation to sad faces vs happy faces (r = -0.353, p = 0.027).  For the 

MID task, neither externalizing nor internalizing characteristics were significantly correlated with 

left or right NAcc activation to anticipation on high and low reward trials to neutral trials.  

Additionally, none of the externalizing or internalizing characteristics significantly correlated with 

left NAcc or right NAcc with regard to anticipation on high and low loss trials to neutral trials, 
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feedback on reward trials comparing reward to nonreward outcomes, and feedback on loss trials 

comparing loss to nonloss outcomes. 

Table 19: Correlations between fMRI Task Contrasts and Externalizing/Internalizing 
Characteristics 
 Externalizing 

Factor Score 
Internalizing 
Factor Score 

Sensation 
Seeking 

Depression / 
Anxiety Sx 

Lures -0.224 0.074 -0.088 -0.092 
Stops vs Fails -0.126 0.074 -0.075 0.024 
Left Amygdala     
Faces vs Shapes -0.250 0.187 -0.341 0.116 
Sad vs Happy 0.249 -0.294 0.081 -0.027 
Right Amygdala     
Faces vs Shapes -0.214 0.177 -0.311 0.111 
Sad vs Happy 0.290 -0.353 0.119 -0.142 
Left NAcc     
Reward Anticipation -0.087 0.105 -0.026 0.013 
Loss Anticipation -0.077 0.084 -0.036 0.033 
Reward Feedback -0.073 0.089 -0.099 0.119 
Loss Feedback -0.113 0.191 -0.200 0.086 
Right NAcc     
Reward Anticipation -0.120 0.134 -0.021 0.089 
Loss Anticipation -0.080 0.076 0.059 0.070 
Reward Feedback -0.113 0.041 -0.065 -0.172 
Loss Feedback -0.080 0.155 -0.187 0.186 

Note: Bolded correlations are significant at p<0.05.  Italicized correlation are borderline significant 
at p<0.10. 
 

Discussion 

 

 The goal of the neuroimaging sub-study was to compare motivational and inhibitory brain 

activation between internalizing binge drinkers and externalizing binge drinkers.  Specifically, we 

tested for differences between the two groups on tasks hypothesized to represent behavioral 

inhibition, emotion reactivity, and reward sensitivity, three constructs associated with problem 

substance use.  We hypothesized that 1) externalizers would show greater activation in the inferior 

frontal gyrus on a task measuring behavioral inhibition, 2) internalizers would show greater 
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activation in the amygdala to faces on a task measuring emotion reactivity, and 3) externalizers 

would show greater activation in the nucleus accumbens to reward on a task measuring reward 

sensitivity.  Overall, these hypotheses were not directly supported since there were no significant 

differences between the two groups in any of the areas of interest of contrasts of interest.  However, 

there were some trend level findings and significant correlations in the post-hoc analyses that are 

worth noting and further discussed below.  

 There was a borderline (p = 0.055) significant difference between internalizers and 

externalizers in the right amygdala on the EF task, such that externalizers showed increased 

activation to sad faces compared to happy, while internalizers show a blunted response to sad faces 

compared to happy faces.  This decreased activation in internalizers is further supported by a 

significant negative correlation between internalizing and right amygdala activation to sad vs 

happy faces in a single group analysis.  While this reduced amygdala activation in response to sad 

faces in those with greater internalizing characteristics is contrary to two other studies which found 

exaggerated amygdala activation in response to sad faces in individuals with major depression (Fu 

et al., 2004; Surguladze et al., 2005), it is also important to note that in a meta-analysis comparing 

brain activation on different emotions, the amygdala was not shown to differentiate sad vs happy 

emotions (Vytal & Hamann, 2009).  There are several differences between these two studies and 

the present study. First, participants from the current study are much younger, ages 20-23, than the 

Surguladze et al. (2005) and Fu et al. (2004) studies (average age of 38.7 and 43).  Additionally, 

while the internalizers in the current study endorsed significantly more symptoms of anxiety and 

depression compared to the externalizers, they were not assessed for a clinical diagnosis of 

depression or anxiety. 
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 Another set of findings worth noting are the post-hoc correlation analyses on amygdala 

activation to face trials compared to shape trials.  Although there were not significant group 

differences in either the left or right amygdala on this contrast, there was a significant (left 

amygdala) and borderline significant (right amygdala) correlation between sensation seeking and 

amygdala activation.  In both the left and right amygdala individuals with higher sensation seeking 

showed less activation to faces compared to shapes.  There is minimal previous research on the 

relationship between sensation seeking and amygdala activation.  Mujica-Parodi, Carlson, Cha, 

and Rubin (2014) proposed that the relationship between amygdala activation and sensation 

seeking is mediated by threat perception.  However, this does not explain the decrease in activation 

to all emotional faces seen in our study.   

 There were no significant findings in the RIFG on lures or comparing stop trials to failing 

to stop trials in the XYGNG task; both when testing group differences but also when correlating 

internalizing and externalizing characteristics with activation across the whole sample.  This could 

be due to the size of the sample.  While 39 individuals may be large enough to detect group 

differences in problem substance users compared to non-users, it is likely that the differences 

between subtypes of problem users may be subtler and therefore require even larger sample sizes.  

From the FWE corrected whole brain maps we know that this null finding is not due to a failure 

of the task to elicit activation.  Table 13 and Figure 13 show significant activation in the RIFG for 

both groups in response to lures (or Nogo trials).  The t-statistics in Table 13 indicate that there is 

a greater activation in the RIFG on lures trials in externalizers (t = 6.4047) compared to 

internalizers (t = 5.6321) which, although not significant in VOI analyses, shows a trend in the 

hypothesized direction.   
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We also found no significant associations in the NAcc on four different contrasts in the 

MID task.  Again, this was true for testing both group differences and the post-hoc correlations.  

While sample size makes it hard to be confident that these are truly null findings there are other 

explanations worth considering besides the small sample.  In addition to the magnitude of group 

differences being potentially smaller between subtypes, the contrasts on which they differ may 

be more nuanced.  In order to not be over burdened by multiple testing corrections in an already 

small sample, we limited our VOI analyses to canonical contrasts of interest.  However, since 

this was a sample of all binge drinkers the two groups may not differ on contrasts that have been 

shown to be dysregulated in problem substance users compared to nonusers.  Instead, these 

subtypes may differ in activation on certain types of stop or reward trials and not more general 

contrasts.  Relatedly, there were significant differences between the groups on the number of 

neutral targets they hit with internalizers successfully hitting significantly more than 

externalizers.  We did not examine neural activation to neutral cues alone but this behavioral 

difference serves as evidence for future follow-up.  Finally, it is certainly possible that the 

identified subtypes of binge drinkers do not differ with regard to behavioral inhibition or reward 

sensitivity. 

 The findings of this study should be viewed in light of several limitations.  As discussed 

above, in order to detect the potentially subtler differences between subtypes of binge drinkers a 

larger sample may be needed.  In addition, while a DSM-5 screening checklist was given to 

participants, a diagnosis of an anxiety disorder or major depression was not necessary for the 

internalizing group.  With regard to externalizing severity, the two groups ultimately did not 

significantly differ in their antisocial behavior.  This is due to the generally low levels of antisocial 

behavior in both groups.  However, because they did not differ on this behavior it is unclear if 
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antisocial behavior would have been a driving factor in neurobiological differences between these 

subtypes.  Finally, in order to test multiple constructs in the constraints of affordable scanner time 

only one or two runs of each task were given.  This especially affected power to detect differences 

on the XYGNG task since there was only one run of that task which meant 6 participants had no 

failed stops and could not be used in analyzing that contrast. 

 The current study was the first to test for differences in brain activation between subtypes 

of binge drinkers on three well validated fMRI tasks used to index behavioral inhibition, emotion 

reactivity, and reward sensitivity.  We found no group differences in brain activation on tasks 

measuring behavioral inhibition and reward sensitivity.  We found suggestive evidence that 

internalizing binge drinkers are show more activation to faces than externalizing binge drinkers.  

But internalizing binge drinkers show less activation than externalizing binge drinkers when 

viewing sad faces compared to happy faces.  Future studies of problem alcohol users will need be 

needed to replicate the both the null and suggestive findings presented here.  Larger samples sizes 

are needed not only to detect potential group differences but also to better examine these factors 

along a continuum as that may be a truer representation of the relationship between 

externalizing/internalizing characteristics with alcohol use in the general population.  But for now, 

the current study presents preliminary evidence that emotion reactivity in binge drinkers is a 

function of both sensation seeking and internalizing characteristics. 
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Chapter 5: Overall Discussion and Future Directions 
 
 
 

The goal of this dissertation was to better understand the genetic and neurobiological 

influences on subtypes of binge drinkers.  This was accomplished by using factor analysis to create 

factor scores representing an individual’s general level of internalizing and externalizing over the 

course of their time in college.  These scores were then used in a series of genetic analyses on a 

binge drinking sample that 1) examined the heritability, due to common genetic variation, of these 

characteristics, 2) identified specific genetic markers associated with these characteristics, and 3) 

sought to understand the function of any associated variants.  The factors scores were also used to 

select from the binge drinking sample a subset of individuals classified as either internalizers (high 

on internalizing, low on externalizing) or externalizers (high on externalizing, low on 

internalizing) to undergo an fMRI scan which measured their brain activity in response to three 

tasks indexing behavioral inhibition, emotion reactivity, reward sensitivity. 

The genetic analyses indicated modest heritability of internalizing characteristics in binge 

drinkers, consistent with previously reported estimates.  For externalizing characteristics, the 

estimate of SNP-based heritability was not statistically different from zero, possibly indicating that 

there is little genetic influence on externalizing characteristics in college students once accounting 

for problem alcohol use.  Genome-wide association (GWA) analyses indicated genome-wide 

significant (GWS) associations for both externalizing and internalizing characteristics.  Both 

findings were located in genes (ECE1 and RPH3AL, respectively) and had existing support in the 

literature although tenuous. 
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The neuroimaging analyses indicated that both groups showed significant brain activation 

on all three tasks and in the brain areas of prioritized interest.  Regarding the XYGNG task, 

indexing behavioral inhibition, and the MID task, indexing reward sensitivity, there were no 

statistically significant group differences in the areas of interest (RIFG and bilateral NAcc).  

Additionally, when looking across groups activation in these regions did not correlated with 

overall externalizing or internalizing or measures of externalizing and internalizing from the 

participants’ screening visit.  While there were no significant group differences in the amygdala 

during the EF task indexing emotion reactivity, activation in the amygdala across the two groups 

was significantly correlated with out of scanner measures of internalizing and externalizing.  With 

sensation seeking scores being negatively correlated with amygdala activation when comparing 

face to shape trials such that participants with higher sensation seeking scores showed lower 

activation to faces compared to shapes.  While the internalizing factor score negatively correlated 

with amygdala activation when comparing sad face trials to happy face trials such that individuals 

higher on the internalizing factor showed decreased activation to sad faces. 

These analyses represent an initial exploration into the potential genetic and 

neurobiological differences between subtypes of binge drinkers.  Both sets of analyses would 

likely benefit from much larger sample sizes as the differences between subtypes of alcohol users 

are likely to be subtler than differences between problem users and nonusers.  Currently there are 

large scale efforts in both the field of genetics (PGC-SUD) and neuroimaging (ABCD) to 

understand the genetic and neurobiological influences on problem substance use more broadly.  

These efforts are essential for us to begin to understand the likely small effects on problem alcohol 

use.  That being said smaller samples that include more refined measures of the traits of interest 
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and analyses of subtypes will prove to be just as important in understanding how genes and 

neurobiology come together to produce problem behavior. 

Similarly, while these analyses take a quantitative approach to the association of 

internalizing and externalizing with alcohol use in the genetic analyses, the neuroimaging analyses 

focus on two distinct groups.  In reality, most people do not classify neatly into two subtypes.  

First, there are likely to be binge drinkers who have both externalizing and internalizing 

characteristics as well as those who have none.  Additionally, anxious people may be impulsive in 

different ways that depressed people.  We are not yet able to predict a person’s likelihood to 

develop an AUD with 100% certainty but recognizing and incorporating the potential for 

individual differences in the outcomes of interest in genetic and neuroimaging studies is a start. 

Overall, the analyses presented in this dissertation are an attempt to incorporate two factors 

(externalizing and internalizing) that are known to be comorbid with problem alcohol use.  The 

association between these factors and problem alcohol use has been extensively studied on the 

phenotypic level but in examined far less often in genetic or neuroimaging studies.  In fact, this is 

the first study to directly test differences in brain activation between internalizing and externalizing 

problem drinkers.  Although larger sample sizes and replication are necessary, preliminary 

evidence was found for new genetic markers associated within problem drinkers.  Additionally, 

there is support for differences among binge drinkers in emotion reactivity as measured in the 

amygdala associated with greater internalizing and lower sensation seeking.   
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