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ABSTRACT 

VASCULAR CELL DYSFUNCTION AND TRANSENDOTHELIAL MIGRATION 
OF NEUTROPHILS IN PREECLAMPSIA 

By Courtney E. Leik, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University 

Virginia Commonwealth University, 2003 

Director: Dr. Scott W. Walsh 
Professor 
Departments of Obstetrics and Gynecology, and Physiology 

Oxidative stress, hyperlipidemia, neutrophil activation and endothelial cell 

dysfunction are characteristic of women with preeclampsia We used in vitro experiments 

to test if a combination of oxidative stress and linoleic acid favors a mechanism for 

neutrophil transendothelial migration. We used linoleic acid because it is one of the fatty 

acids elevated in preeclampsia and the precursor for arachidonic acid and its 

inflammatory metaboli!es. For these studies, we developed a methodology for isolating 

and culturing human vascular smooth muscle cells from placental chorionic plate arteries. 

Treatment of these cells with an oxidizing solution enriched with linoleic acid, but neither 



xviii 
component alone, led to increased production of interleukin-8 (IL-8), a potent neutrophil 

chemotactic agent. This treatment solution also stimulated arachidonic acid metabolites, 

including leukotriene B4, another potent neutrophil chemotactic agent. The same 

treatment solution rapidly activated neutrophils to produce superoxide. These 

observations suggested there might be neutrophil transendothelial migration in women 

with preeclampsia because increased expression of IL-8 by vascular smooth muscle 

would attract neutrophils to the vasculature, and activation of neutrophils would prime 

them for transendothelial migration. These predictions were confirmed using 

immunohistochemical staining of systemic vascular tissue in preeclamptic women, as 

compared to normal pregnant and normal non-pregnant women, by demonstrating 

vascular smooth muscle cell expression ofIL-8 coincident with neutrophil infiltration 

into systemic vessels. Endothelial cells and vascular smooth muscle cells also expressed 

ICAM-1, a cell adhesion molecule necessary for neutrophil infiltration. 

This investigation is the first to demonstrate vascular smooth muscle cell 

expression of IL-8 and ICAM-1 coincident with neutrophil transendothelial migration 

into systemic vascular tissue in women with preeclampsia. These observations provide 

evidence for total "vascular cell dysfunction", not only endothelial cell dysfunction, in 

women with preeclampsia. Together they link vascular cell dysfunction to a single 

mechanism, transendothelial migration of neutrophils, which could explain the clinical 

symptoms of hypertension, proteinuria, and pathological edema. These results bolster the 

use of antioxidants in preventipg preeclampsia and suggest novel treatments for 

preeclampsia based on neutralizing antibodies to IL-8 or cell adhesion molecules. 



Chapter 1 

GENERAL INTRODUCTION 

A. Introduction 

Preeclampsia is a significant pregnancy-related disorder that affects 6-8% of all 

human pregnancies and is the leading cause of intrauterine growth retardation (IUGR), 

premature delivery, and maternal death 1. It is a multi-system disorder clinically 

characterized by maternal hypertension � 140/90 mm Hg), proteinuria (> 300 mg/24 

hours), pathological edema, and coagulation abnormalities. There is also evidence of 

compromised uteroplacental, fetoplacental, and maternal organ perfusion in preeclamptic 

women. Although preeclampsia does not present clinically until the second or third 

trimesters of pregnancy, the pathological process is believed to begin at placentation. 

A working hypothesis for the pathophysiology of preeclampsia states that the 

disorder has two stages 2. The first stage is the initiation of the pathophysiological 

process caused by abnormal placental implantation, which leads to reduced placental 

blood perfusion. The second stage is characterized by maternal endothelial cell 

dysfunction and subsequent clinical symptoms. The link between the first and second 

stage is not clear, although it is hypothesized that abnormal placentation results in the 

1 
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release of toxic agents that enter the maternal circulation, causing endothelial cell 

dysfunction. The clinical manifestation and progression of preeclampsia depends on the 

mother's pre-disposing circulatory health 3 . 

Research supports the belief that oxidative stress links the two stages of 

preeclampsia. Evidence confirms oxidative stress in the placenta and maternal circulation 

and suggests agents that could transfer oxidative stress between the two compartments. 

This literature review will summarize the current understanding of the role of oxidative 

stress in the pathogenesis of preeclampsia, with a focus on maternal vascular smooth 

muscle, endothelial, and neutrophil dysfunction. First, a general review of free radical 

and antioxidant biochemistry is essential to understanding the relationship between 

oxidative stress and preeclampsia. 

B. Free Radicals, Antioxidants, and Oxidative Stress 

Multicellular organisms require oxygen for the efficient production of energy. 

Oxygen, however, is a toxic gas. Over the past 50 years it has become evident that 

oxygen mediates toxic effects through the production of free radical species. A free 

radical, as defined by Halliwell, is "any species capable of independent existence that 

contains one or more unpaired electrons" 4
. Free radicals are highly reactive species 

because they will attack nearby atoms or molecules for electrons to complete their outer 

electron orbital and, therefore, restore their stability. 



Approximately 1 -3 % of inhaled oxygen forms free radicals 5. The body produces 

free radicals spontaneously and deliberately during chemical reactions. Reactive oxygen 

species (ROS) are natural byproducts of oxidative metabolism. During oxidative 

metabolism, electrons flow through a series of electron carriers, eventually to the final 

electron carrier of cytochrome oxidase, which reduces oxygen to water. A small 

percentage of electrons leak from the electron transport chain and combine with oxygen 

to produce the free radical, superoxide (02.) 5• 

Oxidase enzymes also yield ROS byproducts. For example, xanthine oxidase 

spontaneously produces 02 ·- during purine base catabolism, while cyclooxygenase 

(COX) and lipoxygenase (LPO) produce ROS during arachidonic acid (AA) metabolism 

6
• An oxidase enzyme that deliberately produces ROS is the nicotinamide-adenine 

dinucleotide phosphate (NADPH) oxidase of neutrophils. Upon neutrophil activation, 

NADPH oxidase incorporates into the cell membrane and reduces molecular oxygen to 

02·-, which leads to the formation of ROS for the destruction of bacteria and other 

pathogens. NADPH oxidase also was localized recently to endothelial and vascular 

smooth muscle cells, where ROS may play a role in cell signaling 7• 

ROS is a collective term that encompasses oxygen radicals and non-radicals. 

Many ROS are pro-oxidants, agents that oxidize various targets by removing electrons or 

hydrogen, or by adding oxygen 4. The "reactive" in ROS is relative since their reactivity 

varies depending on environmental conditions 4
. 02·- is an important oxygen free radical 

produced when diatomic oxygen accepts an extra electron (Table 1 ). It is not particularly 

reactive alone, but in the presence of transition metals and/or other ROS, highly toxic 
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species are produced. For example, 0/- reacts with transition metals to form the highly 

reactive hydroxyl radical (OH•). H202, a non-radical derivative of oxygen, also produces 

the OH• by a metal-catalyzed reaction. 

Reactive nitrogen species (RNS) are a recent addition to free radical biochemistry. 

Nitric oxide (NO') is the most commonly known RNS. NO" is a free radical with a single 

unpaired electron formed in the conversion of L-arginine to L-citrulline by nitric oxide 

synthase (NOS) 4
. Similar to 0/-, NO" is not a very reactive free radical and actually has 

a more important physiological role (i.e. vasodilatation) than pathological role 4. No· can, 

however, react with 02·- to produce the strong oxidizing agent, peroxynitrite (ONOO-) 

(Table 1). ONOO- formation occurs three times faster than the dismutation of 02·- to 

H202 8
. 

Since oxidative metabolism and other physiological processes produce free 

radicals, mechanisms are necessary to inhibit free radical damage and maintain oxidant­

antioxidant balance. Endogenous antioxidant defense mechanisms are either enzymatic or 

nonenzymatic. The three most important cellular antioxidant enzymes are superoxide 

dismutase (SOD), catalase, and glutathione peroxidase (Table 2). They function together 

to eliminate ROS generated during oxidative metabolism, which can damage cellular 

membranes, proteins, and DNA (Figure 1). SOD dismutates 02·- to H202 and molecular 

oxygen. Thus, it is a significant antioxidant enzyme because it quenches 02 ·- produced 

during oxidative metabolism. Cellular SOD exists in two forms; copper zinc SOD is 

located in the cytosol while manganese SOD is located in the mitochondria. (There is 

also an extracellular SOD, which functions to minimize oxidative stress in the plasma.) 
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Catalase is located in the cytosol and functions in conjunction with SOD to catalyze the 

conversion of H202 to water and molecular oxygen. Glutathione peroxidase is a selenium­

dependent enzyme that is similar to catalase in that it catalyzes the reduction of H202 to 

water and molecular oxygen. Selenium-dependent glutathione peroxidase, however, 

unlike catalase, also reduces free lipid peroxides to nonreactive fatty acid alcohols 9. 

Selenium-dependent glutathione peroxidase resides in the cytosol. A second form of 

glutathione peroxidase, phospholipid hydroperoxide glutathione peroxide, is located in 

the cell membrane and acts on membrane-bound lipid peroxides 10. This form is also 

selenium-dependent. 

Nonenzymatic antioxidants can be divided into a fat-soluble group and a water­

soluble group 4 . For example, vitamin E is a fat-soluble vitamin composed oftocopherols. 

Of these, d-a-tocopherol has the greatest biological activity 1 1 . Vitamin E is found in cell 

membranes and functions as a chain-breaking antioxidant to inhibit lipid peroxidation 9• 

1
1 . Vitamin E also modulates redox cell signaling pathways to prevent free radical 

damage 1 1 . In the process of inhibiting lipid peroxidation, vitamin E becomes a radical 

and must be recycled (reduced) by vitamin C 5. Other lipid soluble antioxidants include: 

carotenoids (i.e. �-carotene and lycopene), flavonoids, and vitamin A 1 2. 

Vitamin C (ascorbic acid) is a water-soluble chain-breaking antioxidant 13 . It is 

considered important for its role in recycling the vitamin E radical and in scavenging 

other free radicals. Metal transport and storage proteins are also water-soluble antioxidant 

defense mechanisms. These proteins bind iron and copper ions to prevent metal-catalyzed 

free radical damage, lipid peroxidation, and OH• formation 9. Iron is bound to transferrin 
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in the plasma and to lactoferrin in body secretions 9. Ceruloplasmin binds and transports 

copper 9. 

Oxidative stress is a state of imbalance between ROS/RNS and antioxidant 

defenses that favors ROS/RNS. This imbalance occurs when there is either a decrease in 

antioxidants ( enzymatic and/or dietary) or an increase in the production of free radicals. 

Increased concentrations of ROS/RNS may result from: 1) excessive oxygen levels, 2) 

toxins, 3) ischemia-reperfusion, 4 )  leukocyte activation, etc. 4. 

An imbalance toward reactive species leads to unchecked free radical cascades 

that cause transient or permanent tissue injury. During initial periods of oxidative stress 

tissues adapt and produce additional antioxidant molecules to maintain cell homeostasis. 

Severe oxidative stress, however, causes irreversible cell damage that ultimately leads to 

cell death. For this reason oxidative stress is a pathological mechanism of tissue injury in 

a wide variety of diseases 9. 

Many functionally and structurally important biological molecules are targets of 

oxidative stress. Consequently, oxidative stress often alters cell behavior. The effects 

vary according to the cell type, the involved ROS/RNS, and the severity of the stress. 

Cell functions that are affected by oxidative stress include: altered membrane function, 

cell division, intercellular communication, and signal transduction 4. 

Lipids, especially polyunsaturated fatty acids (PUF As), are often involved in 

oxidative stress because they are the major constituents of biological membranes. Since 

the lipid bilayer serves as a protective barrier, oxidative stress initially alters membrane 

function to cause: increased fluidity, increased permeability to proteins, and inactivation 
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of membrane-bound enzymes 4. PUF As are especially vulnerable to oxidation at carbon-

carbon double bonds. Initiation oflipid peroxidation occurs at fatty acid double bonds, by 

a reactive species that can remove a hydrogen atom to form a lipid peroxyl radical 

(Figure 2). OH• and ONOO- are primary agents of lipid peroxide initiation. Following 

initiation, the lipid undergoes a molecular rearrangement to form a conjugated diene. 

Propagation occurs when the lipid peroxyl radical attacks an adjacent fatty acid to form 

another peroxyl radical. Lipid peroxyls and hydrogen ions then interact to produce lipid 

peroxides. Another membrane lipid, AA, undergoes free radical, nonenzymatic 

peroxidation to produce toxic products called isoprostanes. Isoprostanes are 

prostaglandin-like compounds that mediate a variety of damaging actions, including 

potent vasoconstriction. 

C. Oxidative Stress in Preeclampsia 

Oxidative stress occurs during normal pregnancy, but antioxidant defenses 

simultaneously increase to oppose free radical activity 1 4. In preeclampsia, however, there 

is greater lipid peroxidation and oxidant activity with a net decrease of antioxidants, 

producing a state of oxidative stress 14. 

The dominating hypothesis proposes that the primary pathological event of 

preeclampsia is insufficient trophoblast invasion of the spiral arteries during placental 

implantation 15. Incomplete spiral artery remodeling creates a vasoconstrictive placental 

bed characterized by ischemia-reperfusion and the production of ROS. In the presence of 
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ROS, abundant placental PUF As serve as substrates for lipid peroxidation. Lipid 

peroxides and ROS attack placental cell membranes to perpetuate oxidative stress and 

damage. Gradually, as placental mass increases, placental oxidative stress is transferred 

to the mother. 

Oxidative stress appears to be the link between placental pathology and vascular 

cell dysfunction in the maternal compartment, which results in the clinical manifestation 

of preeclampsia The placenta intimately links and mediates exchange between two 

genetically distinct organisms, the mother and the fetus. Through the placenta, the 

maternal system maintains the proper functioning and homeostasis of the fetal 

compartment. Thus, oxidative stress in one compartment may alter homeostasis in 

another compartment. The distinctive roles and functions of the fetal, placental, and 

maternal compartment demand that each system be analyzed individually for oxidative 

stress. 

i. Fetal Oxidative Stress 

There is little evidence for fetal oxidative stress during preeclamptic pregnancy. 

The child's health during a preeclamptic pregnancy depends more upon uteroplacental 

perfusion than oxidative stress within the fetal compartment 1 5. The mechanics and innate 

properties of the placenta, however, may protect the fetus from oxidative stress during 

normal and preeclamptic pregnancies. This is especially important because oxidative 
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stress in the placenta is the likely origin of excessive maternal oxidative stress during 

preeclarnpsia. 

ii. Placental Oxidative Stress 

Lipid peroxidation in the placenta during nonnal pregnancy was first described in 

1979 16
. Approximately ten years later Wang et al. demonstrated elevated lipid peroxides 

in preeclamptic placentas as compared to normal placentas by measuring 

malondialdehyde (MDA) and H202 equivalents 17. This initial study was followed 

quickly by research demonstrating secretion of lipid peroxides predominately toward the 

maternal circulation upon placental perfusion of t-butyl hydroperoxide as compared to 

Krebs-Ringer bicarbonate buffer 18. Simultaneous placental perfusion of aspirin blocked 

the secretion of lipid peroxides, suggesting cyclooxygenase (COX) involvement. A 

comprehensive follow-up study showed significantly greater lipid peroxide, thromboxane 

A2 (TXA2) and prostacyclin h (PGh) production by trophoblast cells isolated from 

preeclamptic placentas as compared to nonnal placentas 1 9. Furthennore, villous core 

tissue isolated from preeclamptic placentas produced significantly more lipid peroxides 

and TXA2, but not more PGI2, than villous core tissue of normal placentas. Additional 

studies demonstrated that there is compartmentalization within the placenta: trophoblast 

cells produce more lipid peroxides and TXA2, whereas vascular tissue (chorionic plate 

arteries) produces more PGiz. 
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Lipid peroxides are not only a consequence of oxidative stress, but also influence 

enzyme activity to further alter the balance between oxidants and antioxidants. 

Specifically, lipid peroxides stimulate COX to generate prostaglandins and 

thromboxanes, including the vasoconstrictor TXA2 and the vasorelaxant PGii 
14

(Figure 

3). Lipid peroxides, however, simultaneously inhibit the PGI2 synthase enzyme so that 

PGI2 is not available to counteract the vasoconstricting actions of TXA2. Thus, elevated 

lipid peroxides in preeclamptic placentas would lead to an imbalance of increased TXA2 

and decreased PGii. Walsh analyzed TXA2 and PGI2 production from term placentas and 

was the first to describe that preeclamptic placentas produce seven times more TXA2 than 

PGI2 compared to normal placentas. This TXA2/PGI2 imbalance could explain many 

clinical findings of preeclampsia 20. 

The generation of ROS from enzymes, cytok:ines, and biochemical processes are 

sources of placental oxidative stress during preeclampsia. Preeclamptic placentas have 

greater COX-2 trophoblast expression and activity, as well as increased COX- I placental 

bed protein and mRNA levels 2 1 ' 22. Elevated COX-I & -2 protein levels may contribute 

to placental oxidative stress by the spontaneous release of 02·- during COX activation, 

while amplifying the TXA2/PGI2 imbalance due to COX activation by lipid peroxides. 

The NADPH oxidase enzyme, which mediates the phagocytic respiratory burst of 

leukocytes, was localized recently to endothelial and vascular smooth muscle cells 7. As 

an important ROS-generating system, NADPH oxidase activation in the placenta may 

cause or contribute to oxidative stress during preeclampsia. Only one study has evaluated 

NADPH oxidase in preeclamptic placentas. Although NADPH oxidase staining pattern 
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and intensity of synctiotrophoblast cells was equivalent in normal and preeclamptic 

placentas, enzyme activity may differ and lead to greater placental oxidative stress 23. 
Cytokines, specifically TNFa, may also increase ROS by stimulating 0/­

production by coenzyme Q of the electron transport chain in mitochondria of 

preeclamptic placentas 24. Wang et al. found elevated TNFa mRNA and protein in 

preeclamptic placentas, which indicated that TNFa was available to stimulate coenzyme 

Q and result in Oi"- production 25 . The number of mitochondria, a source of oxygen free 

radicals, was also elevated in preeclamptic placentas and may act to increase ROS 26. 

ROS perpetuate oxidative stress by lipid peroxidation and isoprostane formation. 

Walsh et al demonstrated both elevated lipid peroxidation and increased 8-isoprostane 

release from preeclamptic placentas 18• 27. Superoxide is the primary agent in causing AA 

peroxidation for the formation ofisoprostanes 28
. Significantly elevated protein carbonyls 

in the placental and decidual tissue of preeclamptic women confirm ROS-mediated 

protein damage and general placental oxidative stress 29_ 

In addition to attacking proteins and lipids, 02·- interacts with NO" to produce 

ONOO- in the placenta. Preeclamptic placentas have evidence of this ONOO- formation. 

Myatt et al. illustrated the presence of nitrotyrosine residues, the stable product of 

ONOO- and protein interaction, in preeclamptic placentas by immunostaining placental 

villous vascular endothelium and smooth muscle 30. Preeclamptic placentas, furthermore, 

released greater concentrations of ONOO- into the maternal circulation 30. ONOO- action 

further contributes to the feed-forward cycle of oxidative stress present in preeclamptic 

placentas. 



12 
Placental antioxidant mechanisms oppose free radical damage in healthy 

pregnancy. During normal pregnancy, placental SOD and catalase activity increase while 

glutathione peroxidase activity remains steady 24 . In preeclampsia, however, placental 

antioxidant protection is decreased Preeclamptic placentas have reduced Cu-Zn SOD and 

glutathione peroxidase activity and rnRNA expression 3 1 ' 32 . A recent study, however, 

showed increased glutathione levels and glutathione peroxidase activity in placental and 

decidual tissue from preeclamptic women 33 . Studies performed by Poranen et al. on 

preeclamptic placentas confirmed decreased SOD activity, but not decreased glutathione 

peroxidase activity 34
. Decreased SOD levels imply that Oi"- is available for longer 

periods in which it can react with AA or No· to produce isoprostanes or ONOO-, 

respectively. Normal and preeclamptic placentas showed similar extracellular SOD 

localization and activity, indicating that extracellular SOD is probably not significant in 

the pathology ofpreeclampsia 35
. Another group demonstrated, in severe preeclamptics, a 

decrease of thioredoxin and glutaredoxin 36. These antioxidant enzymes are involved in 

the thiol redox control of enzymes and transcription factors that mediate transcription and 

translation during oxidative stress. 

The role of placental lipid- and water-soluble vitamins in preeclampsia also has 

been studied. There is evidence of lower vitamin E levels in placental tissue from 

preeclamptic women 3 1 . Addition of vitamin E blocked peroxide-induced 

vasoconstriction in a placental perfusion model 37. Other studies confirmed the 

importance of antioxidants by perfusion of preeclamptic placentas with vitamins E and C 

38 or � -carotene 39 to reduce lipid peroxide production. These studies suggested that 
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preeclamptic placentas may have lower dietary antioxidant concentrations and, therefore, 

be unable to control lipid peroxidation. Decreased antioxidant molecules and enzymes in 

preeclamptic placentas may not be the cause of oxidative stress but, rather, may be the 

result of oxidative stress. Whatever the case, decreased antioxidant protection would 

worsen oxidative stress. 

Oxidative stress may be the link between insufficient placental perfusion and 

maternal endothelial cell dysfunction in preeclampsia The direct exchange between the 

placenta and the maternal circulation allows for the transfer of placental oxidative stress 

to the mother by lipid peroxides, ROS, circulating leukocytes, and oxidized 

syncytiotrophoblast micromembrane (STBM) fragments. Although oxidative stress 

originates in the placenta, it is systemic maternal oxidative stress that leads to cellular 

dysfunction, which causes the clinical presentation of preeclampsia. This is discussed in 

the next section. 

iii. Maternal Oxidative Stress 

Maternal plasma lipid peroxide levels are increased above non-pregnant levels 

during normal pregnancy and further increased during preeclampsia 40-42. A likely source 

of elevated circulating lipid peroxides during pregnancy is the placenta 14. Normally 

placental growth parallels a progressive rise in antioxidant defenses during pregnancy, 

which counteracts oxidative stress produced by the placenta 24. In preeclampsia, however, 
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significantly elevated lipid peroxides and decreased antioxidant mechanisms support self-

propagating lipid peroxidation and widespread cell damage. 

Research has demonstrated increased serum lipid peroxides in preeclamptic 

women. Maternal serum lipid peroxides, measured by the breakdown product, MDA, 

were significantly elevated in mild preeclampsia and even more elevated in severe 

preeclampsia compared to normal pregnancy 43• Hubel et al. demonstrated elevated levels 

of serum lipid peroxides, as well as elevated levels of serum triglycerides and free fatty 

acids (FFA) in women with preeclampsia. The levels significantly decreased by 24 -48 

hours post-partum, implicating the placenta as the source of the elevated levels of lipids 

44. Other studies confirmed maternal oxidative stress with evidence of elevated 

conjugated dienes, 8-isoprostanes, triglycerides, and iron levels in preeclamptic 

individuals 24. A recent study, which measured oxidized low density lipoproteins (LDL), 

rather than lipid peroxide metabolites, did not find an increase in oxidized LDL in 

preeclamptic patients 45. These investigators suggested that secondary lipid peroxidation 

products, such as aldehydes or lipid peroxide metabolites originating in the placenta, 

might mediate oxidative damage in the maternal circulation in preeclampsia. 

Maternal oxidative stress may be responsible for the TXA2/PGI2 imbalance that 

characterizes not only the placenta, but also the systemic maternal compartment in 

preeclampsia 43• 46• 47 . Lipid peroxides secreted by the placenta could activate COX, while 

inlubiting PGI2 synthase of endothelial cells to increase TXA2 and decrease PGI2 plasma 

levels. Oxidized fatty acids may also explain increased TXA2 and decreased PGii 

production by monocytes from women with preeclampsia as compared to women with 
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normal pregnancy 47. Finally, ROS from other sources (i.e. activated leukocytes and 

enzymes) would exacerbate this TXA2/PGI2 imbalance by stimulating and propagating 

lipid peroxidation. 

Antioxidants, the opponents of free radical cascades, are reduced in the maternal 

circulation during preeclampsia. Preeclamptic women have decreased plasma levels of 

vitamin C, vitamin E, vitamin A, {3-carotene, glutathione, and iron-binding proteins 24. 

Hubel et al further demonstrated increased plasma vitamin C depletion rates, indicative 

of oxidative stress, from preeclamptic women 1 5 . Moreover, early prophylactic treatment 

with vitamins E and C decreased the incidence of preeclampsia in women at high risk 48
. 

This correlated with lower urinary isoprostane levels, indicating a reduction of maternal 

oxidative stress, and supporting the role of oxidative stress in the pathology of 

preeclampsia 49
. The activity of the antioxidant enzyme, SOD, also was decreased in 

erythrocytes and leukocytes 50. As in the placenta, oxidative stress propagates because 

low levels of SOD allow excess 02 ·- to interact with AA and NO" to form powerful 

oxidants. Furthermore, 02·- was shown to increase free iron levels, which leads to 

accelerated cell membrane lipid peroxidation by the Fenton reaction 5 1 • 52
• Decreased 

plasma antioxidants are likely a result of widespread maternal oxidative stress and not the 

primary stimulus for the oxidant imbalance. 

These data clearly demonstrate the involvement of oxidative stress in the 

pathophysiology of preeclampsia. Oxidative stress is the result of excess oxidants in the 

presence of decreased antioxidants. Preexisting conditions that involve oxidative stress, 

such as obesity, diabetes and hyperlipidemia, increase the risk of preeclampsia Since the 
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balance is already tipped toward oxidative stress in the pre-partum state for these 

individuals, additional lipid peroxides secreted from a growing placenta can lead to a 

state of maternal oxidative stress by the second or third trimesters of pregnancy, resulting 

in the clinical symptoms ofpreeclampsia 24(Figure 4). 

D. Maternal Cell Dysfunction in Preeclampsia 

Oxidative stress of the preeclamptic placenta may be transferred to the maternal 

circulation by secreted lipid peroxides, ROS, cytokines, circulating leukocytes, and/or 

STBM particles to induce maternal cell dysfunction in many organ systems. These 

factors may influence one another to propagate oxidative stress and produce cellular 

damage leading to the clinical syndrome of preeclampsia Next, this review will focus on 

the effects of oxidative stress on vascular smooth muscle cells, endothelial cells, and 

neutrophils and, finally� their linked role in the pathogenesis of preeclampsia 

i. Vascular Smooth Muscle 

Vascular smooth muscle is critical in mediating the normal hemodynamic changes 

associated with pregnancy and the abnormal hemodynamics of preeclampsia S3. Since the 

endothelium modulates vascular smooth muscle tension, most preeclampsia research has 

focused on endothelial cell physiology despite the obvious role of vascular smooth 

muscle in hypertension. Only recently groups have begun to investigate vascular smooth 



17 
muscle functioning during preeclampsia. Bearchell et al. treated vascular smooth muscle 

with preeclamptic serum and measured changes in vascular smooth muscle oxygen 

consumption. They found an increase in oxygen consumption, which is indicative of 

muscle contraction 54
• Removal of preeclamptic serum returned oxygen consumption to 

control levels. They hypothesized that a toxic factor might be present in preeclamptic 

serum that directly alters vascular smooth muscle function. Another study demonstrated 

that placental extracts from women with preeclampsia lead to increased oxygen 

consumption by porcine carotid arteries as compared to placental extracts from 

normotensive women. Furthermore, placental extracts from women with preeclampsia 

produced greater histamine-induced vasoconstriction of these vessels than extracts from 

normotensive women 55
• Additional experiments indicated lipid peroxides to be the active 

agents of preeclamptic placental extracts. Another group corroborated that preeclamptic 

serum altered vascular smooth muscle function. Specifically, preeclamptic serum 

attenuated whereas non-pregnant and normal pregnant serum augmented the intracellular 

calcium response of vasoactive agents 56
• Although the implications are unclear, these 

data demonstrate vascular smooth muscle dysfunction in the presence of preeclamptic as 

compared to normal pregnant serum factors. The studies completed so far have shown 

that vascular smooth muscle function is altered in the presence of preeclamptic serum, 

but they have not shown that there is specific dysfunction of vascular smooth muscle. In 

Chapter 3 ,  we will show spe�ific and direct evidence for dysfunction of vascular smooth 

muscle in preeclampsia. 
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ii. Endothelium 

The endothelium is a complex organ that serves as a regulator of vascular smooth 

muscle tone and as a mechanical barrier to prevent blood and other circulating factors 

from entering the extravascular space. Therefore, it is a source of important vascular 

smooth muscle functional mediators, including PGI2, endothelin (ET), and No· . 

Endothelial cells also release proteins that inhibit platelet aggregation, prevent 

intravascular coagulation, and orchestrate inflammatory cell influx 57 . 

During pregnancy, endothelial cell behavior is modified to satisfy the demand for 

increased blood volume while maintaining lower blood pressures and reduced 

vasopressor sensitivity 58
• High blood pressure and increased vasopressor sensitivity 

during preeclampsia suggest endothelial cell involvement. The original description of 

"endothelial cell dysfunction" in preeclampsia combined morphological, biochemical , in 

vivo and in vitro evidence 59
• Since the hypothesis was first presented, research has 

continued using techniques, such as treating cultured endothelial cells with plasma from 

non-pregnant, normal pregnant, and preeclamptic women or measuring plasma markers 

of endothelial dysfunction. 
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a. Evidence for Endothelial Cell Dysfunction 

i.) Histological and Cell Culture 

Morphological observations of the vasculature highlight endothelial destruction 

and dysfunction in preeclampsia. Glomerular endotheliosis is a common pathological 

finding and direct evidence of endothelial cell involvement. In glomerular endotheliosis, 

there is swelling of glomerular capillary endothelial cells, often blocking capillary 

lumens, and deposition of protein between the basal lamina and endothelial cells 1 . 

Additional histological evidence of endothelial and vessel damage in preeclampsia is 

"acute atherosis" in decidual vessels, which is similar to atherosclerotic foam cell 

formation 58. 

Initial in vitro experiments tested if preeclamptic serum was cytotoxic to human 

umbilical vein endothelial cells (HUVECs) using radiolabeled chromium (5 1Cr) release 

60
. Cells treated with preeclamptic serum showed increased levels of 5 1Cr in the cell 

supernatant, which illustrated that cell permeability was compromised 60
. Cytotoxic 

effects quickly disappeared with treatment of post-delivery serum, which parallels the 

abatement of preeclamptic symptoms following delivery 60. Further research, however, 

clarified that preeclamptic serum was not cytotoxic, but rather, caused selective 

activation of endothelial cells 61 . Using phase contrast microscopy and fluorescence­

activated cell sorting, it was determined that membrane integrity remained intact 

following treatment with preeclamptic serum 61 . The conclusion that preeclarnptic serum 
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was not cytotoxic to endothelial cells was confirmed by Endresen et al. using a broad set 

of cytotoxicity measurements including 5 1Cr release, Trypan blue exclusion, plating 

efficiency, DNA and protein synthesis, and cell growth 62. 

ii.) PGl2 and TXA2 

Prostaglandins and thromboxanes are 20-carbon unsaturated fatty acids derived 

from AA upon cleavage of membrane phospholipids by phospholipase A2 (PLA2), 

followed by COX activation (Figure 3). Although they are similar in structure, their 

actions are varied and often opposing. All, however, are characterized by local 

production, short half-lives, and inhibition by anti-inflammatory agents 63. 

PGI2 is a prostaglandin produced from AA by COX and PGI2 synthase 64. PGii is 

a potent vasodilator and inhibitor of platelet aggregation. The production of PGI2 by 

endothelial cells exceeds all other prostaglandins, suggesting a significant physiological 

role 63. Thus, PGI2 production is an excellent gauge for endothelial cell homeostasis and a 

deficiency in PGI2 could explain hypertension in preeclampsia. Accordingly, decreased 

PGii levels are the best evidence for endothelial cell dysfunction in preeclampsia. 

Measurement of the stable PGl2 metabolite, 6-keto prostaglandin Fla (6-ketoPGF 1 .), in 

plasma and urine has demonstrated decreased PGh biosynthesis in preeclamptic 

compared to normotensive pregnant individuals. Recently, a comprehensive longitudinal 

study by Chavarria et al. showed that plasma PGl2 was significantly decreased by the 

third trimester in preeclamptic as compared to normally pregnant women 46. This is 
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consistent with previous measurements 17• 65

. These data correlate with decreased urine 

PGI2 levels in women with preeclampsia as compared to women with normal pregnancy. 

An initial study showed a significant increase of urine PGii levels during normal 

pregnancy, but less of an increase in preeclamptic pregnancy 66
• Mills et al. confirmed 

that women with preeclampsia had significantly lower excretion of PGI2 metabolites 

throughout pregnancy as compared to normal pregnant women, even prior to clinical 

symptoms as early as 13 to 16 weeks of gestation 67
. 

Initial in vitro studies with preeclamptic plasma reported conflicting results 

concerning endothelial PGI2 production. Preeclamptic plasma was reported to both 

decrease 68• 69 and increase PGI2 production by HUVECs 10-12. Baker et al. clarified that in 

vitro PGh production by HUVEC was dependent upon the length of plasma incubation. 

Acute administration of preeclamptic plasma increased PGI2 (by stimulating COX), but 

longer incubations with preeclamptic plasma decreased PGI2 concentrations (by 

inhibiting PGI2 synthase) 73• 74. HUVECs treated with preeclamptic plasma, as compared 

to those treated with normal pregnant plasma, also were shown to have increased 

triglyceride incorporation and reduced PGI2 production 68. This study suggested a link 

between hyperlipidernia and altered endothelial cell function in preeclampsia 

TXA2 is an AA metabolite produced by COX and thromboxane synthase. It is a 

potent vasoconstrictor. Chavarria et al. showed that plasma TXA2 was elevated as early 

as 9 weeks of gestation in women destined to develop preeclampsia 46
. In women that 

developed severe preeclampsia, TXA2 was two times as high as those diagnosed with 

mild preeclampsia. Similarly, Wang et al. showed significantly elevated plasma TXA2 
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levels in women with severe preeclampsia in comparison to women with mild 

preeclampsia 43
. Urine TXA2 metabolites were also elevated in women with preeclampsia 

67• 75• 76. Elevation of urinary TXA2 metabolites was observed as early as 21 weeks 

gestation 67 and 25 weeks gestation 76
, indicating that altered TXA2 levels precede clinical 

symptoms. Urinary excretion of TXA2 metabolites decreased rapidly to normotensive 

levels by 24 hours post-partum 75
. 

The TXA2/PGh imbalance strongly suggests endothelial cell dysfunction in 

preeclampsia. Although many tissues produce PGI2 and TXA2, endothelial cells produce 

the greatest quantity of PGI2, so decreased PGI2 production in preeclampsia indicates 

impaired endothelial function. 

iii.) Coagulation Abnormalities 

The procoagulant state of preeclampsia, evidenced as disseminated intravascular 

coagulation, microthromboses, and uteroplacental circulation restriction may reflect 

endothelial cell activation. In vivo studies demonstrated decreased anticoagulant protein 

levels (antithrombin III, protein C, and protein S) and increased procoagulant protein 

expression. Elevated plasma levels of tissue factor, von Willebrand factor, platelet­

activating factor (P AF), �-thromboglobulin, cellular fibronectin, and thrombomodulin 

strongly suggested endothelial cell dysfunction in preeclampsia 77. Endothelial cells 

release ET and von Willebrand factor following endothelial cell damage and/or 

coagulation system activation. von Willebrand factor initiates platelet activation while 
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endothelin causes vasoconstriction of subjacent vascular smooth muscle 77. ETs form a 

family of vasoactive peptides with the primary ET, ET-1, released from endothelial cells 

78• Clark et al. correlated ET elevation during preeclampsia with a rise in plasma uric acid 

79. Elevated plasma uric acid levels, caused by a decrease in uric acid clearance, indicated 

glomerular damage that reflected disease severity and altered glomerular filtration rate 79• 

Fibronectin is a high-molecular-weight surface glycoprotein of endothelial cells involved 

in cell adhesion and migration. Fibronectin is constantly shed into the circulation but at 

increased concentrations during endothelial cell damage, making it a good marker for 

endothelial cell activation. Longitudinal studies showed significantly elevated plasma 

levels of fibronectin by the second 80 and third trimesters 81 in preeclamptic women as 

compared to normal pregriant women. 

iv.) Cell Adhesion Molecules 

Investigators also have measured plasma levels of soluble cell adhesion molecules 

to determine endothelial cell dysfunction in preeclampsia 82-87. Intercellular adhesion 

molecule- I (ICAM- I )  and vascular cell adhesion molecule- I (VCAM- I )  are 

constituently expressed on endothelial cells. These proteins are shed into the circulation 

upon endothelial cell damage or dysfunction. In preeclamptic plasma, Austgulen et al. 

found elevated concentrations of soluble ICAM-I, VCAM-1, and E-selectin 84. This was 

corroborated by Krauss et al. who reported elevation of both ICAM- I and VCAM- I 88. 

They concluded that elevated second trimester VCAM-1 and ICAM- I levels were 
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predicative of developing preeclarnpsia 88. Other investigators have observed increased 

soluble VCAM-1, but not ICAM-1 levels 85• 89' 
90. Finally, a study conducted at 18 weeks 

of gestation found an increase in ICAM-1, but not VCAM-1, in women destined to 

develop preeclampsia 83 . The levels did not correlate with endothelial cell dysfunction 

and instead were suggested to reflect abnormal placentation, which occurs prior to 20 

weeks of pregnancy. The reason for discrepancies between some studies is not known, 

but overall, it appears that VCAM-1, and probably ICAM-1, levels are elevated in 

women with preeclarnpsia, which is consistent with endothelial cell dysfunction. The 

levels, however, apparently vary throughout pregnancy and may reflect 

pathophysiological processes occurring prior to endothelial dysfunction and the clinical 

manifestation of preeclarnpsia. 

b. Explanations for Endothelial Cell Dysfunction 

i.) Hyperlipidemia and Dyslipidemia 

Dyslipidemia could mediate endothelial cell dysfunction in preeclampsia. It is 

well documented that both hyperlipidemia and lipid profile alter the expression of 

adhesion molecules and the general function of the endothelium 9 1
-95. Potter et al. 

demonstrated increases of cholesterol and triglyceride during pregnancy, which peaked in 

the second and third trimesters, and declined sharply with delivery 96
. Thus, normal 

pregnancy is characterized by hyperlipidemia. In preeclarnpsia, however, triglycerides are 
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significantly elevated above normal pregnant levels 96• 97

. This difference was present at 

ten weeks of gestation in women destined to develop mild and severe preeclampsia, and 

was not observed in pregnant women with other forms of hypertension 97
. 

In conjunction with hyperlipidemia, there is evidence that preeclarnptic women 

have altered lipid profiles. Serum FF As were increased in preeclamptic patients, and 

positively correlated with serum triglycerides and MDA 44. Elevated FF As included: 

palmitic (16:0), oleic ( 1 8: 1 n-9), and linoleic (18:2 n-6) acids 98• 99. These alterations were 

present as early as 17 weeks of pregnancy in women destined to become preeclamptic, 

and were also present in women with preeclarnpsia 98. There was no difference in the 

level or the composition of esterified fatty acids in early pregnancy between normal 

pregnant and preeclamptic groups 98. In later pregnancy, however, women with 

preeclarnpsia had increased oleic acid in the phospholipids fraction, and had decreased 

linoleic acid in the phospholipid and triglyceride factions 98. These data confirm earlier 

work that characterized the preeclamptic state by decreased esterified PUF As, including 

linoleic acid, linolenic acid, and eicosapentaenoic acid 100. Decreased PUF As, later once 

preeclampsia is established, may indicate maternal oxidative stress, since PUF As are 

vulnerable to oxidation. 

Further studies demonstrated that fatty acid composition, particularly levels of 

certain PUF As, may influence one's risk of developing preeclampsia. Williams et al. 

showed that women with the lowest levels of omega-3 PUF As (n-3), a PUF A rich in fish 

oil, had a 7.6-increased risk of developing preeclampsia 10 1 . A later study confirmed this, 

showing that women with increasing levels of n-3 PUF As had decreased risk for 
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developing preeclampsia 102. In contrast, their risk was increased with higher levels of n-6 

PUF As, especially for AA 102. This was corroborated by studies that have demonstrated 

elevated AA in maternal serum phospholipids and cholesterol esters 103 and increased 

total plasma AA concentrations 104 in preeclamptic as compared to normal pregnant 

women. 

These data would suggest that dietary modifications might be beneficial in 

preventing preeclampsia Research substantiates this proposal demonstrating that diets of 

women who develop preeclampsia were characterized by increased consumption of total 

lipids, particularly of palmitic, stearic, oleic and linoleic acids 105. A prospective study 

also showed that a greater intake of PUF As lead to an increased risk of developing 

preeclampsia 106. Since linoleic acid is a precursor to AA and its inflammatory 

metabolites, dietary restrictions of linoleic acid might be helpful in preventing the 

development of preeclampsia. In preeclampsia, accumulation of linoleic acid and AA by 

endothelial cells could alter eicosanoid synthesis 69 and contribute to the TXAi/PGI2 

imbalance. In contrast, ingestion of omega-3 PUF As would alter AA metabolism, leading 

to the production of thromboxane A3, a much less potent vasoconstrictor than TXA2, and 

production of PGI3, a vasodilator as potent as PGI2, to maintain TXA2/PGI2 levels that 

favor vasodilatation. 
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ii.) Neutrophils 

One theory of endothelial cell dysfunction proposes that neutrophils are activated 

as they circulate through the intervillous space by lipid peroxides secreted by the placenta 

(Figure 5). As they return from the intervillous space to the maternal circulation, they 

produce systemic vascular cell damage by adhering to endothelial cells 14• 1 07 . Thus, 

neutrophils would transfer the oxidative stress of the placenta to the maternal 

compartment. Neutrophil activation causes enhanced expression of cell adhesion 

molecules and release of proteolytic enzymes, ROS and cytokines, which can directly 

damage the endothelium. Endothelial cell adhesion molecules mediate leukocyte binding 

in preparation for neutrophil transendothelial migration. Greer et al. first demonstrated 

neutrophil activation in preeclampsia by showing elevated plasma levels of neutrophil 

elastase 108. Plasma levels of neutrophil elastase were correlated with plasma levels of 

von Willebrand factor, suggesting that neutrophil activation could be responsible for 

endothelial cell dysfunction 108. 

iii.) ROS 

The vasculature, specifically the endothelium, is both a target for and a source of 

many oxidant species. Oxidants, such as ONOO-, lipid peroxides, oxidized LDLs, and 

02·-, directly damage endothelial cells. All of these species can act as toxic agents and 

could propagate placental oxidative stress to the maternal compartment. 
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The presence of ROS in the maternal circulation could affect endothelial 

vasoactive pathways resulting in endothelial cell dysfunction. An example is impairment 

of NO' signaling, which is evidenced by inhibition of endothelium-dependent relaxation 

in coronary ring preparations in the presence ofOi- 109. The role of NO' in preeclampsia 

has yielded conflicting results. Studies have demonstrated unchanged, reduced or 

elevated circulating NO' metabolites in preeclampsia compared to normal pregnancy 109. 

During preeclampsia NO' production may be reduced locally in endothelial cells due to 

the interaction of NO' and abundant 02·-. Not only does this reaction produce the 

powerful ONOO-, which acts as an oxidant, it also decreases the NO' available to mediate 

vasorelaxation. Therefore, increased 02·- in preeclampsia may not directly cause 

vasoconstriction, but it may prevent NO' from completing its vasorelaxant role. This 

speculation was supported by immunohistochemical staining of increased ONOO- and 

endothelial nitric oxide synthase (NOS) staining and decreased SOD in endothelial cells 

of preeclamptic women as compared to normal pregnant women 1 10. Additionally, 

Davidge et al. has demonstrated decreased NO' production from HUVECs upon 

treatment with preeclamptic plasma. Isolation and purification studies suggested that 

oxidized LDL was the mediating factor. They speculated that perhaps NO' is increased in 

preeclampsia, but in the presence of oxidative stress it is rapidly converted to ONOO- so 

that local endothelial cell NO' levels are decreased 1 1 1 .  Finally, ONOO- is not only a 

result of oxidative stress, but also a strong oxidant that may directly attack endothelial 

cell membranes to cause cell necrosis or apoptosis, resulting in increased cell 

permeability and fluid loss 109• 
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Treatment of HUVECs with preeclamptic plasma ( containing elevated lipid 

peroxides, as measured by MDA) activated NF-KB and up-regulated ICAM- 1 expression, 

which was inhibited by vitamin E 112. These data suggested that lipid peroxides in the 

plasma were the mediators of endothelial cell activation. NF-KB activates the interleuk:in-

8 (IL-8) promoter to increase IL-8 expression. Simultaneous expression of ICAM-1 and 

IL-8, a potent neutrophil chemokine, suggests a mechanism for neutrophil 

transendothelial migration. 

ROS, generated by activated neutrophils, also could damage endothelial cells to 

cause dysfunction. For example, Oi"- attacks AA in cell membranes to produce 

vasoconstrictive isoprostanes, which also could propagate lipid peroxidation within the 

maternal vasculature. 

iv.) Cytokines 

Cytokine production by the placenta or leukocytes also could activate endothelial 

cells as part of the pathophysiological process of preeclampsia. Cytokine levels correlated 

with VCAM-1 expression in the maternal circulation suggesting interaction between 

activated leukocytes and endothelium 1 13. Cytokines, such as TNFa, IL- l f3, and IL-2, 

affect endothelial cell prostaglandin formation and may enhance the PGh and TXA2 

imbalance. 
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v.) STEM deportation 

STEM deportation into the maternal circulation, which is increased in 

preeclamptic patients, also has been suggested to be the toxic agent responsible for 

endothelial cell dysfunction 1 14. In vitro research showed that incubation of STEM and 

HUVECs suppressed cell proliferation and altered cell integrity 1 1 5 . Cockrell et al. 

confirmed STEM-induced endothelial dysfunction by demonstrating that perfusion of 

subcutaneous arteries with STEM vesicles inhibited endothelium-dependent vasodilation 

1 16• Finally, ultrastructural endothelial cell disruption of STEM-perfused arteries was 

validated using transmission electron microscopy. 

These studies suggest that oxidative stress is spread within the maternal 

compartment by placental-derived toxic agents, which produce direct damage of the 

endothelium while interacting with maternal vascular constituents to generate additional 

oxidants and to promote further destruction. The condition of the maternal circulatory 

system prior to pregnancy (e.g., diabetes, hyperlipidemia, obesity, etc.) could exacerbate 

the propagation of oxidative stress during pregnancy. In preeclamptic pregnancy, 

maternal oxidative damage leads to a dysfunctional endothelium, unable to regulate 

smooth muscle tone, resulting in hypertension. 
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iii. Neutrophils 

The primary role of neutrophils or polymorphonuclear leukocytes is the killing 

and phagocytosis of pathogens for host defense 1 1 7. Neutrophils release destructive 

agents, such as ROS and proteolytic enzymes, to fulfill this function 1 17. Cytok:ines, 

including TNFa and IL-6, modulate or "prime" rieutrophils for enhanced activation, but 

do not themselves activate neutrophils 1 18• 1 19. Neutrophils have plasma membrane 

receptors that interact with specific chemoattractants to initiate activation events, 

including: chemotaxis, respiratory burst, phagocytosis, degranulation, and 

transendothelial migration 1 19• These end results are mediated by various cell signaling 

pathways, which are activated by certain stimuli 1 19. Recently, neutrophils have been 

implicated in many diseases because unchecked neutrophil activity causes damaging 

tissue degradation and can lead to inflammatory conditions 120. 

A great deal of evidence suggests that uncontrolled neutrophil activation may play 

a significant role in the pathophysiology of preeclampsia. Neutrophils are likely 

mediators in preeclampsia for several reasons: 1) they are the most abundant of the 

leukocytes, 2) their numbers increase in pregnancy 1 , 3) their numbers further increase in 

preeclampsia 121 , and 4) they produce toxic substances (ROS, myeloperoxidase (MPO), 

TXA2, and TNFa), which could cause endothelial and vascular smooth muscle cell 

dysfunction and lead to vasoconstriction and proteinuria. 
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a Evidence for Neutrophil Dysfunction 

i.) Neutrophil Elastase 

Greer et al. first demonstrated neutrophil activation in preeclampsia by measuring 

significantly elevated plasma levels of the neutrophil protease, elastase, in preeclamptic 

patients 122. Elastase is a potent enzyme released as a host-defense mechanism upon 

neutrophil activation 1 23. It is stored pre-packaged in the azurophil granules and is 

released to degrade bacteria and connective tissue during inflammation 1 23. The presence 

of neutrophil specific elastase in plasma indicated in vivo lysosomal granule release and 

thus, neutrophil activation. It also suggested a potential mechanism for endothelial cell 

dysfunction in preeclampsia mediated by neutrophil release of ROS, cytokines, and 

proteases. Further investigation compared maternal and umbilical vein plasma neutrophil 

elastase levels and found neutrophil activation was confined to the maternal compartment 

124. Immunocytochemical evidence of increased elastase production and neutrophil 

infiltration in the decidua, but not in the placenta or subchorionic plate, suggested that the 

mechanism of neutrophil activation may occur at the maternal-fetal interface 125. 

Recently, plasma levels of the proteolytic MPO enzyme, also released by activated 

neutrophils, were found to be elevated during preeclampsia 126. 
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ii.) Neutrophil ROS 

The respiratory burst is the primary result of neutrophil activation. It is also a 

useful tool to measure neutrophil activity. Tsukimori et al. measured neutrophil 02·­

production using a SOD-inhibited reduction of ferricytochrome C with a 

spectrophotometer to first demonstrate that neutrophils from preeclamptic patients had 

greater spontaneous 02·- production than those from normal pregnant and non-pregnant 

patients 127. Furthermore, neutrophils, primed with N-formyl-methionyl-leucyl­

phenylalanine residues (fMLP), and incubated with sera from preeclamptic patients had 

twice the neutrophil 02 ·- production than sera from normal pregnant patients. There was 

no significant difference between non-pregnant and normal pregnant groups. Since 

preeclamptic serum enhanced neutrophil 02 ·- release, it was suggested that a humoral 

factor activates neutrophils. 

Sacks et al. used whole blood flow cytometry to show that basal intracellular ROS 

values of granulocytes, monocytes, and lymphocytes were significantly greater for 

preeclamptic as compared to normal pregnant and non-pregnant women 1 28. The 

oxidative burst showed an increasing trend from non-pregnant, to normal pregnant, to 

preeclamptic patients. Thus, the evidence clearly supports that neutrophil intracellular 

ROS and respiratory burst are altered in preeclampsia. 



34 

iii.) Neutrophil Adhesion Molecules 

Measurements of neutrophil adhesion molecules further confirm neutrophil 

activation in preeclampsia Expression of the neutrophil integrins, CDl lb and CD64, 

were increased in both normal pregnant and preeclamptic patients 128. In addition, there 

was a decrease in L-selectin expression on neutrophils from preeclamptic women 128. 

Quantitative flow cytometry confirmed that there was increased CD 11  b and decreased L­

selectin expression on neutrophils from preeclamptic patients 82• 129• 130. Furthermore, the 

enhanced CD 11  b expression positively correlated with plasma uric acid levels in women 

with preeclampsia, suggesting that neutrophil activation reflected disease severity 82. An 

animal study also demonstrated neutrophil activation by measuring adhesion molecules in 

an experimental rat model of preeclampsia induced by low-dose endotoxin 13 1 . While 

neutrophils from healthy pregnant rats exhibited an up-regulation of CD1 l a  and CD49d, 

there was even greater CD 11 b and CD49d expression and a decrease of L-selectin on 

neutrophils from the endotoxin-induced preeclamptic rats 1 3 1 . One study, however, did 

not find an alteration in the expression of cell adhesion molecules (CDl I ,  CD18, and 

CD26) on neutrophils isolated from non-pregnant, pregnant, and preeclamptic women 132. 

iv.) Neutrophil Lactoferrin 

Neutrophil lactoferrin release and locomotion have also been analyzed. Crocker et 

al. observed no significant difference in lactoferrin production among neutrophils 
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obtained from non-pregnant, pregnant, and preeclamptic women 13

2. Preeclamptic plasma 

or serum also did not alter neutrophil locomotion 133 . These data suggested that specific 

rather than general neutrophil activation occurs in preeclampsia. 

b. Causes for Neutrophil Dysfunction 

These studies support the idea that a certain stimulus, most likely a plasma 

component, activates specific neutrophil pathways in preeclampsia. Research groups 

have investigated a variety of potential neutrophil activators including: fatty acids, 

cytokines, complement molecules, and STBM particles 1 34-138. One hypothesized 

mechanism of neutrophil activation proposes that neutrophils become "activated" from 

placental-derived lipid peroxides and TNFa in the intervillous space (Figure 5) 107. 

i.) Lipids 

The altered lipid profile of preeclampsia may lead to neutrophil activation in both 

the intervillous space and the maternal circulation. Major fatty acid concentrations are 

normally modified in the pregnant state and further altered in preeclampsia Specifically, 

both palmitic and Iinoleic acids are elevated in women with preeclampsia 98. Crocker et 

al. demonstrated that PUF A incorporation lead to altered neutrophil NADPH oxidase 

function, producing enhanced respiratory bursts 134. PUF As also may directly alter 

NADPH oxidase activation. Gorog et al. showed direct and differential activation of the 
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respiratory 02·- burst by oxidized PUFAs 1 39. This mechanism could account for 

excessive 02 ._ production in preeclampsia, since elevated plasma FF As and free radicals 

would produce oxidized PUF As. 

ii.) Cytokines 

Cytokines, from various sources, may be involved in neutrophil activation during 

preeclampsia. TNFa, TNFa receptor, interleukin-6 (IL-6), and interleukin-12 (IL-12) are 

all increased in preeclamptic plasma 13>137, The placenta, activated endothelial cells, or 

activated neutrophils could secrete these cytokines, and by exerting paracrine or autocrine 

effects, induce genomic changes to alter cell function. TNFa and IL-6 are known to 

prime neutrophils, which enhances subsequent activation, perhaps by a preeclampsia­

specific agent, such as lipid peroxides 1 1s. 1 19• 

iii.) Complement 

Neutrophil activation in preeclampsia also could occur by the complement 

system. The terminal complement complex, C5a, is increased in the severe preeclamptic 

state and could activate neutrophils 140. Furthermore, C5a and neutrophil elastase levels 

positively correlated in plasma from preeclamptic patients, while in vitro work showed a 

dose-dependent release of neutrophil elastase upon stimulation with recombinant C5a 140. 

Another study, however, did not find evidence that the complement system was activated 
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in mild preeclampsia 126• These investigators reported that C4b and levels of other 

complement mediators in preeclamptic women were comparable to those of non-pregnant 

women. 

iv.) SIBM particles 

More SIBM particles are shed from the placenta in preeclampsia than normal 

pregnancy 1 14 . These particles could potentially link placental and endothelial cell 

dysfunction in preeclampsia. Endothelial cell activation by SIBM also could lead to the 

release of factors that activate neutrophils 1 15• 14 1 . The involvement of SIBM particles in 

neutrophil activation was analyzed by changes of intracellular calcium, pH, and ROS in 

the presence of supematants from cultured HUVECs previously exposed to SIBM 1 38. 

The supernatants increased neutrophil intracellular calcium and ROS concentrations, and 

decreased intracellular pH, demonstrating a mechanism for neutrophil activation in 

preeclampsia 1 38. 

The mechanism for neutrophil activation during preeclampsia is not clear. There 

is, however, a growing understanding of the complex inter-relationship among lipids, 

cytokines, complement, STBM particles, and neutrophil activation. Since the exact 

relationship of neutrophil activation and endothelial cell dysfunction remains elusive, it 

must be determined if neutrophils are the primary stimulus for endothelial activation or if 

they are activated secondarily to endothelial cell damage. In Chapter 5, we present 
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evidence for the former by demonstrating massive neutrophil adherence to endothelial 

cells and infiltration into systemic vasculature in women with preeclampsia 

iv. Vascular Smooth Muscle, Endothelial, and Neutrophil Interaction 

The preceding review demonstrates that the vasculature is a dynamic 

environment. Vascular smooth muscle cells, endothelial cells, and neutrophils interact 

and respond to various physiological and pathophysiological conditions to maintain 

homeostasis. Coordinated and appropriate behavior is achieved through cellular 

communication by mediators, such as cell surface receptors, adhesion molecules, 

cytokines, chemokines, and ROS. Interaction among dysfunctional vascular smooth 

muscle cells, endothelial cells, and neutrophils in preeclampsia may lead to uncontrolled 

neutrophil transendothelial migration, which could explain the clinical symptoms of 

preeclampsia. 

Transendothelial migration or diapedesis is a multi-step process coordinated by 

expression of chemotactic agents and various adhesion proteins on neutrophils and 

endothelial cells (Figure 6). The mechanism of neutrophil transendothelial migration 

consists of margination (rolling and capture), firm adhesion, and extravasation. Each step 

is controlled to direct specific aspects of neutrophil transendothelial migration 142. 

Margination occurs under normal physiological circumstances. Neutrophils roll 

along the vessel wall and transiently adhere to the endothelium via constitutively 

expressed leukocyte selectin (L-selectin). Selectins are transmembrane glycoprotein 
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adhesive molecules that consist of a calcium-dependent lectin domain on the extracellular 

NHi-terminus that is joined to an epidermal growth factor-like domain. Short consensus 

sequences bind extracellular domains to a short intracellular domain, which is coupled to 

signaling molecules. The L-selectin ligand is CD34, a long protein chain molecule with 

0-linked sugar and sialyl groups 1 43. 

Inflammatory stimuli such as complement, ROS, and certain cytokines increase 

platelet selectins (P-selectin) and endothelial selectins (E-selectin) of endothelium to 

facilitate irreversible neutrophil binding. P-selectin is stored in intracellular Weibel­

Palade bodies of endothelial cells. Appropriate inflammatory stimuli induce mobilization 

of P-selectin to the cell surface. P-selectin interacts with P-selectin glycoprotein ligand- I 

(PSG- 1 ), which is constitutively expressed on neutrophils, to slow rolling and establish 

firm neutrophil-endothelial attachments. PSG-1 is a protein ligand molecule, similar to 

CD34, modified by 0-linked sugar and sialyl groups. It is a homodimer, however, and 

can simultaneously bind two P-selectin ligands. E-selectin expression, unlike P-selectin, 

requires gene transcription and translation following endothelial cell stimulation. The 

time necessary for E-selectin mobilization may coordinate with the down-regulation of P­

selectin to maintain neutrophil rolling and adhesion. In vivo and in vitro evidence 

demonstrate that E-selectin binds protein ligands, similar to those for P- and L-selectin, 

with sugar and sialyl group modifications 143. 

Complementary surface receptors on neutrophils (L-selectin) and endothelium (P­

and E-selectins) mediate neutrophil rolling and capture. Neutrophils begin to adhere 

firmly to the endothelium upon integrin and cell adhesion molecule expression. Integrin 



40 
up-regulation occurs in a timely, sequential manner by inflammatory cytokines or by 

signaling of activated selectins. Since L-selectin has cytoplasmic domains linked to signal 

transduction machinery, it is a likely candidate for the activation of neutrophil integrins 

143 

Integrins are a group of heterodimeric transmembrane glycoproteins involved in 

neutrophil cell-cell and cell-extracellular matrix adhesion. Each integrin contains an 

extracellular a- and 13-subunit for ligand binding and a cytoplasmic domain with 

phosphorylation sites and signal transduction proteins. Macrophage antigen- I (Mac-1; 

aMf32; CD1 lb/CD18) is an important neutrophil integrin in transendothelial migration. 

Neutrophils package Mac-1 in secretory vesicles and granules for rapid mobilization. 

Potent Mac-1 stimulators, including the bacterial fMLP peptide, cause degranulation. 

Lipopolysaccharide (LPS) and TNF-a, as weaker stimuli, mobilize Mac-1 secretory 

vesicles for cell surface expression 1 43. 

ICAM-1 on endothelial cells interacts with the neutrophil Mac- 1 integrin to 

mediate firm binding. ICAM-1 is an irnrnunoglobulin-like molecule that is constitutively 

expressed on endothelium. It is greatly up-regulated in the presence of inflammatory 

cytokines or oxidative stress 144• VCAM-1 is similar to ICAM-1, but functions in the 

transmigration of monocytes and eosinophils by binding to 13-1 integrins. Neutrophil 

transendothelial migration may use both ICAM-1 and VCAM-1 143 . 

Following tight adhesion of neutrophils to the endothelium, neutrophils migrate 

through intercellular junctions and move toward a chemotactic stimulus within the 

interstitial tissue 142. The exact extravasation mechanism, unlike the previously described 
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steps of transendothelial migration, is not clear. It is understood, however, that platelet-

endothelial cell adhesion molecule (PECAM-1) of endothelium is an important homing 

receptor, strategically positioned at intercellular junctions where neutrophil 

transendothelial migration occurs. PECAM-1 has an immunoglobulin domain that can 

form homodimers with PECAMs on other cells, such as neutrophils 14
3 . 

Soluble exogenous or endogenous mediators regulate the process of vascular cell 

activation and neutrophil transendothelial migration. These mediators can be further 

classified as non-chemoattractant or chemoattractant. Non-chemoattractant cytokines, 

such as TNF-a and IL- 1 ,  increase expression of adhesive proteins, but are not 

chemoattractant for neutrophils. These inflammatory cytokines up-regulate adhesion 

molecules on neutrophils and endothelial cells in preparation of transendothelial 

migration. Directed transendothelial migration, however, requires neutrophil 

chemoattractants. Chemokines are chemotactic cytokines that mediate inflammation 145. 

They form a group of approximately forty proteins that share a common four cysteine 

residue structure, which is used to classify chemokines and produces varying leukocyte 

chemoattractant responses 143. 

Neutrophils have receptors for chemoattractant agents: IL-8, platelet activating 

factor (PAF), C5a complement protein, leukotriene B4 (LTB4), and tMLP. A variety of 

cells produce these neutrophil chemoattractants. fMLP is an exogenous mediator, while 

L TB4 and P AF are important endogenous mediators. Monocytes and neutrophils produce 

L TB4 from AA. L TB4 is 10 to 1000 times more potent than P AF in causing neutrophil 

chemotaxis 143. 
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The chemokine, IL-8, is a primary stimulus for neutrophil transendothelial 

migration during inflammation. IL-8 is a C-X-C or a-chemokine 142 . The C-X-C reflects 

separation of conserved cysteine residues by an amino acid. Neutrophils contain two C­

X-C receptors (CXCRI & CXCR2), which both couple to IL-8. Other C-X-C 

chemokines, however, only bind CXCR2 143 . This may explain the potent and specific 

neutrophil chemoattraction to IL-8. Leukocytes, endothelial cells, and smooth muscle 

cells produce IL-8 under conditions of oxidative stress and upon stimulation with IL-I or 

TNF 142 Cl 

Investigators only recently began to look for neutrophil transendothelial migration 

into systemic tissues during preeclampsia. Initially, immunohistochemical staining of 

elastase and neutrophils demonstrated the presence of neutrophils in the decidua and 

spiral arteries of preeclamptic patients 125. In systemic maternal tissue, Reister et al. 

illustrated neutrophil infiltration and described elevated IL-8 concentrations in the 

characteristic glomerulonephritis lesion of preeclampsia 146. There was also histological 

evidence of neutrophil infiltration into liver tissue of women with hemolysis, elevated 

liver enzymes, and low platelets (HELLP) syndrome and eclampsia 147. Finally, an 

animal model of endotoxin-induced preeclampsia had evidence of neutrophil 

. . . h . infil . f th 1· d kidn 13 1 ,  148, 149 transendothehal migration, s owmg tratJon o e 1ver an eys . 
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E. Summary 

Preeclampsia is a multi-system disorder characterized by maternal vascular cell 

dysfunction. It is thought that oxidative stress, originating in the placental compartment, 

produces the various pathophysiological features of preeclampsia. Specifically, placental 

ischemia-reperfusion generates localized oxidative stress, which is then propagated 

within the placenta. As the placenta grows, maternal oxidative stress gradually increases 

as more placental-derived oxidant agents, including lipid peroxides, ROS, activated 

neutrophils, cytokines and SIBM particles, enter the maternal circulation, linking the 

primary placental pathology to the maternal compartment. These oxidant agents interact 

with vascular smooth muscle cells, endothelial cells and neutrophils to overwhelm 

maternal antioxidant mechanisms and exacerbate oxidative stress. It is a vicious, self­

propagating cycle of cell-cell and oxidant-cell activation that culminates in the clinical 

symptoms of preeclampsia. This complex interplay of placental-derived oxidant agents, 

maternal vascular cells, and pre-existing maternal circulatory health determines the 

clinical manifestation and progression of preeclampsia. Only when the primary stimulus, 

the placenta, is removed will the pathological process of preeclampsia cease. 

F. Purpose of Investigation 

This investigation examined one of the possibilities for vascular cell dysfunction 

in preeclampsia: Activation and transendothelial migration of neutrophils into systemic 
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vascular tissue. We used in vitro studies to explore mechanisms related to oxidative stress 

and hyperlipidemia that would create an environment conducive for transendothelial 

migration of neutrophils. We used subcutaneous fat biopsy samples to determine if 

transendothelial migration of neutrophils actually occurs in women with preeclampsia 

We first developed a methodology for isolating and culturing human vascular 

smooth muscle cells for in vitro studies (Chapter 2). Second, we used these cells to 

investigate whether oxidative stress in the presence of linoleic acid stimulates vascular 

smooth muscle cell production of IL-8 in culture (Chapter 3). We used linoleic acid 

because it is elevated in the diet and plasma of women with preeclampsia, and because it 

is the precursor for AA and its metabolites that mediate inflammation. Third, we 

evaluated the ability of oxidative stress in the presence of linoleic acid to activate 

neutrophils by measuring superoxide production in real-time (Chapter 4 ). Last, we used 

fat biopsy samples to examine whether there is vascular smooth muscle expression of IL-

8, endothelial expression of ICAM-1, and neutrophil infiltration into systemic vascular 

tissue in women with preeclampsia (Chapter 5). 

These studies could provide evidence that dysfunction of vascular smooth muscle, 

endothelium and neutrophils are all linked to the pathogenesis of preeclampsia by 

neutrophil transendothelial migration into systemic vascular tissue in response to vascular 

smooth muscle production of IL-8. 
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G. Hypotheses 

1) Treatment of vascular smooth muscle cells with an oxidizing solution 

enriched with linoleic acid will lead to increased production of IL-8, a 

potent neutrophil chemokine. 

2) Treatment of neutrophils with an oxidizing solution enriched with linoleic 

acid will stimulate neutrophils to produce superoxide. 

3) In the systemic vascular tissue of women with preeclampsia, there will be: 

a) increased expression of IL-8 by vascular smooth muscle, b) increased 

expression of ICAM-1 by endothelial cells, and c) infiltration of 

neutrophils. 

H. Significance of this Research 

If our overall hypothesis is correct that neutrophils infiltrate into systemic 

vascular tissue in women with preeclampsia, this could explain vascular cell dysfunction 

and the clinical symptoms of preeclampsia. Such findings would suggest the use of 

antioxidants to reduce oxidative stress and dietary modifications, such as restriction of 

linoleic acid, to decrease neutrophil activation and vascular IL-8 production. These 

modifications could reduce vascular inflammation and inhibit neutrophil transendothelial 

migration to prevent preeclampsia. Furthermore, these studies would suggest a role for 
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neutralizing antibodies directed at IL-8 or cell adhesion molecules as novel treatments for 

preeclampsia 
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Table 1. Reactive oxygen species and reactive nitrogen species. 

Name Symbol Comments: Formation/Examples 

Formed by interaction of superoxide and a lipid 
Alkoxyl radical Lo· peroxide; c�pable of initiating lipid peroxidation 

02· + LOOH = LO' + Off + 02 

Hydrogen atom ff The simplest free radical 

Hydrogen peroxide H202 
Formed by the dismutation of superoxide 

Formed by metal-catalyzed decomposition of 
Hydroxyl radical HO" hydrogen peroxide; highly reactive; attacks all 

biological molecules 
Formed by a peroxyl radical removing a hydrogen 

Lipid peroxide LOOH from an adjacent lipid 
LOO' + LH = LOOH + L. 

Formed by the rem9val of a hydrogen ( common 
agents: ONOO , Off, LOO"), occurring 

Lipid radical L" preferentially at carbon-carbon double bonds of 
unsaturated f�tty acids 

LH + 02° = L· 

Nitric oxide NO' Formed in vivo by conversion of L-arginine into 
L-citrulline by nitric oxide synthase (NOS) 

- Formed by interaction of nitric oxide and Peroxynitrite anion ONOO suoeroxide; capable of initiating lipid oeroxidation 
Formed by the interaction of a lipid radical and 

molecular oxygen during lipid peroxide 
Peroxyl radical LOO' propagation or by the transition metal-catalyzed 

decomposition of lipid peroxide 
L· + o2 = Loo· 

Protein radical Formed by removal of a hydrogen from a protein 

Formed by enzymatic or non-enzymatic one -
Superoxide 02· electron reduction of oxygen 

02 + e = 02·-

Transition metals Fe, Cu Powerful catalysts of free radical reactions 
because they can change their oxidation numbers 
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Table 2. Antioxidant enzymes and their actions. 

Antioxidant Enzyme Action 

Superoxide Dismutase Reduces superoxide radical to hydrogen peroxide and 
(SOD) molecular oxygen 

20/- + 2H+ H202 + 02 
SOD 

Catalase Converts hydrogen peroxide to molecular oxygen and 
water 

2H202 02 + 2H20 
Catalase 

Glutathione Uses glutathione (GSH) as a hydrogen donor to convert 
peroxidase glutathione into glutathione disulfide (GSSG) to convert 

hydrogen peroxide to water and lipid peroxide to water and 
a fatty acid alcohol 

2GSH + H202 GSSG + 2H20 
glutathione peroxidase 

2GSH + LOOH GSSG + LOH + H20 
glutathione peroxidase 
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Cellular enzymatic antioxidant mechanisms. 

The body has three primary enzymes to neutralize ROS, g�nerated during oxidative 
metabolism, so to prevent cell injury. SOD dismutates 02° to H202, which is then 
metabolized by catalase or glutathione peroxidase to H20. (This figure was adapted from 
Cellular Pathology I: Cell Injury and Cell Death. In: Cotran RS, Kumar V, Collins T, eds. 
Robbins Pathologic Basis of Disease. Philadelphia: WB Saunders Company, 1999, p. 13.) 



LH 
Unsaturaled lipid 

oNoo- ! INITIATION i 

1 OH· 
__. XH 

Figure 2. 

L· 

LOO · 
Lipid peroxyl radical 

LIPID HYDROPEROXIDE­

DEPENDENf 

LIPID PEROXIDATION 

LOH 

LH 

LOOH 
Lipid Hydroperoxule 

Me•\/ \rMeittt 

Me••t7 � Men• 
LO· LOO· 

Alkoxyl radical Lipid peroxyl radical 

LH �/ 

LH 

Free radical mechanism of lipid peroxidation. 

50 

Initiation of lipid peroxidation occurs when a free radical attacks a hydrogen atom of an 
unsaturated fatty acid to form a lipid radical. Propagation of lipid peroxidation occurs 
when that lipid radical reacts with 02 to form a highly unstable lipid peroxyl radical, 
which attacks a nearby unsaturated fatty acid to form a lipid hydroperoxide and a new 
lipid radical, so that the cycle is repeated. Propagation of lipid peroxidation also occurs in 
the presence of transition metals. Definitions: XH = new unsaturated lipid; Me = metal, 
with varying valence electrons; LOH = lipid alcohol; all other definitions, see Table 1. 
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Figure 3. Stimulation and inhibition of arachidonic acid pathways by lipid peroxides 
and reactive oxygen species. 

Lipid peroxides affect AA metabolism by stimulating COX and by inhibiting 
prostacyclin synthase leading to an increase of thromboxane metabolites and a decrease 
of prostacyclin metabolites, respectively. ROS react with AA to produce isoprostanes, 
which cause vasoconstriction. 
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Pregnancy is characterized by a gradual increase in oxidative stress due to secreted lipid 
peroxides by the placenta and activated leukocytes. In normal pregnancy, there is a 
parallel increase in antioxidants. In preeclampsia, there are increased levels of lipid 
peroxides, in addition to lower levels of antioxidants. These patients also tend to have 
pre-existing oxidative stress. Clinical symptoms of preeclampsia occur when oxidative 
stress overwhelms the maternal compartment. (Adapted from Walsh, S.W. Maternal­
Placental Interactions of Oxidative Stress and Antioxidants in Preeclampsia. Seminars in 
Reproductive Endocrinology, 1 998; 16 :93-104.) 
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Neutrophils are activated as they circulate through the intervil lous space by lipid 
peroxides secreted by the placenta. Neutrophils return to the maternal compartment to 
produce vascular damage by producing superoxide and by adhering to endothelial cel ls. 
(Used with permission of artist. From Walsh, S.W. The role of oxidative stress and 
antioxidants in preeclampsia. Contemporary OB/GYN, 1997; 42: 1 1 3- 1 24.)  
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Figure 6. The multi-step process of neutrophil transendothelial migration. 

Neutrophil s  transiently bind to selectins on endothelium, to create a rolling motion, as 
they circulate through the vasculature. Firm adhesion of neutrophi ls to endothelial cells 
occurs with increased expression of ICAM- 1 and integrins upon stimulation with 
inflammatory mediators. A chemotactic signal causes neutrophils to flatten onto the 
endothelium and extravasate into systemic tissue. 
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Chapter 2 

SIMPLE AND ECONOMICAL METHOD FOR ISOLATION AND 

CULTURE OF ARTERIAL SMOOTH MUSCLE CELLS 

FROM CHORIONIC PLATE ARTERIES 

A. Introduction 

Vascular smooth muscle cells regulate the diameter of blood vessels by 

modulating their contraction in response to neural, hormonal and chemical signals. Thus, 

vascular smooth muscle plays an important role in maintaining cardiovascular function. 

Hemodynamic regulation is especially critical during pregnancy when cardiac output 

increases while total peripheral resistance decreases. In preeclampsia, vascular smooth 

muscle function may be altered to cause hypertension. 

To explore mechanisms for vascular smooth muscle dysfunction in preeclampsia, 

we considered studies with primary cultures of vascular smooth muscle. Primary cultures 

of adult vascular smooth muscle cells, however, can be difficult to obtain and 

commercially available cells are expensive. The age of the donor is often advanced and 

health problems of the donor may have altered the phenotype of the cells. There is always 
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a question as to whether donor cells are truly normal. A readily available source of 

normal vascular smooth muscle cells would be useful. 

The purpose of this study was to develop a simple and economical method to 

obtain normal vascular smooth muscle cells for in vitro studies. This has been done for 

endothelial cells, which are commonly used for cardiovascular studies, by isolating 

endothelial cells from human umbilical veins. We applied a similar rationale and 

developed a simple and economical technique, based on the work of Graham et al. for 

establishing primary cultures of intestinal smooth muscle cells 1 50, to isolate and culture 

arterial smooth muscle cells from placental chorionic plate arteries. 

B. Materials and Methods 

1. Placental Arterial Smooth Muscle (P ASM) Cell Isolation and Culture 

Placentas were collected at the time of term delivery from normal pregnant 

women at MCV Hospitals, Virginia Commonwealth University Health System. Informed 

consent was obtained prior to delivery. This study was approved by the Virginia 

Commonwealth University Office of Research Subjects Protection. 

In a sterile environment, the chorionic plate arteries were identified and excised 

from the chorionic plate. The vessels were rinsed three times in a solution of Hank's 

Balanced Salt Solution (HBSS) containing 2x strength antibiotic/antimycotic (100 U/mL 

of penicillin, 100 µg/mL streptomycin, 25 µg/mL amphotericin B, Life Technologies, 



57 
Long Island, NY). Next the vessels were placed in a sterile culture plate and cut 

longitudinally to expose the lumen. Vessels were dissected into small pieces of tissue 

(approximately 3-5 mm) and placed in a separate 100 mm culture plate with the lumen 

facing down. Approximately 20 -25 explants were placed in each culture plate. 

Dulbecco's Modified Essential Media (DMEM, Life Technologies, Long Island, NY) 

supplemented with 10% fetal bovine serum (FBS, Life Technologies, Long Island, NY) 

(5 mL) was carefully added to the culture plate so as not to disturb adhered explants. 

Culture plates were placed in a 37°C incubator (5% CO2). 

Media were removed and replaced with fresh media twice a week. At this time, 

culture growth and cell morphology were examined using an inverted light microscope. 

Cells were observed growing from the explant within one week. At approximately two 

weeks, the volume of media per 100 mm culture plate was increased to 10 mL. 

Cells reached confluence after approximately 4 weeks. At confluence cells were 

placed in DMEM without serum for 24 hours to kill any contaminating cells, such as 

fibroblasts and endothelial cells, since these cells, in contrast to smooth muscle cells, do 

not survive without serum. After 24 hours, P ASM cells were placed in DMEM with 10% 

FBS for trypsinization, passage or freezing according to standard protocols. PASM cells 

were used between passages two and seven. 



11. Verification of Vascular Smooth Muscle Cell Phenotype 

Vascular smooth muscle cell phenotype for all PASM cultures (n = 5) was 

verified by immunoblotting for smooth muscle myofilament proteins: a-smooth muscle 

actin, f3-tropomyosin, h-caldesmon, and vinculin. Both a-smooth muscle actin and h­

caldesmon are specific only to smooth muscle. The antibody for vinculin also cross­

reacted with metavinculin (Sigma, St. Louis, MO). PASM cell phenotype was compared 

to adult human aortic smooth muscle (HASM) cells, human intestinal smooth muscle 

(HISM) cells, and HUVECs. HASM cells were kindly supplied by Dr. Gary Bowlin, 

Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, 

VA. 

a. Cell Harvesting for Western Blot 

Cells were seeded in 100 mm culture plates with IO mL media (DMEM, 10% 

FBS) and allowed to grow to confluence. Cells were harvested six days after the last 

addition of fresh media. At confluence, the media were removed and exchanged with 

DMEM without serum for 24 hours. The following day cells were harvested with a cell 

scraper on ice in a sterile environment. The media were vacuumed off and the culture 

plates were rinsed twice with phosphate buffered saline (PBS), pH=7.4 (Life 

Technologies, Grand Island, NY). The plates were briefly scraped with a cell scraper to 

enhance cell Iysing. Then 250 µL of fresh Laemmli's lysing buffer was added to the 
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culture plate. The plate was scraped again and the lysate was transferred to an Eppendorf 

tube with a 21-gauge needle. The cells were sheared a couple of times with the 21-gauge 

needle. The sample was then placed in a -70 °C freezer until use. 

b. Gel Electrophoresis and Western Blot 

In the afternoon, a 9% polyacrylamide gel was prepared Once it was determined 

that there were no leaks, the gels were covered with running buffer and plastic wrap 

overnight. In addition, running and blotting buffers were prepared and placed in the 

refrigerator until use. The next morning a 4% polyacrylamide stacking gel was prepared. 

While the stacking gel was polymerizing, the PASM lysate samples were thawed and 

protein concentration was determined by measuring light absorbance at 280 nm. The 

protein samples were balanced to ensure loading of equal protein concentrations to each 

lane. Sample volume was equalized with buffer containing blue dye to visualize sample 

migration in the gel (0.5 M Tris-HCl, 0.1 % glycerol, 10% SDS, 0.0 5% 2-methanol, and a 

few grains of bromophenol blue powder) at a 1:4 ratio, respectively. A molecular weight 

marker (High Range Rainbow Molecular Weight Marker, Amersham Pharmacia, 

Piscataway, NJ) was prepared (8 - 10 µL of protein marker plus sample buffer equal to 

sample volumes). All samples and the protein marker were then boiled for five minutes. 

The samples were spun for 30 seconds, to spin down condensation due to boiling, and 

vortexed. The protein marker (20 µL) was added to the left most lane and then protein 
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samples (20 µL) were added from left to right. The gels were run at 165 volts for 

approximately two hours or until the blue dye front migrated to the end of the gel. 

To confirm equal loading of the samples, one gel was then fixed (50 mL 

methanol, 10 mL acetic acid, 30 mL ddH20, I O  mL fixative agent) and stained with silver 

stain (Silver Stain Plus Kit, BioRad, Hercules, CA). The gel was watched closely while 

developing to prevent overdevelopment. Development was stopped by placing the gel in 

a 10% acetic acid solution. 

The remaining gels were placed in electroblotting cassettes to transfer proteins 

from the gels to nitrocellulose membranes. Each gel was placed on top of a piece of filter 

paper, which lay on a fiber pad (Trans-Blot Fiber Pads, BioRad, Hercules, CA) that was 

on top of the cassette. Nitrocellulose paper was placed on top of the gel. A piece of filter 

paper and a fiber pad were placed on top of the nitrocellulose paper. The cassette was 

carefully closed to prevent entrapment of air bubbles and locked. Gel electrophoresis was 

performed in a cold room for 2.5 hours at 65 volts. At completion, nitrocellulose 

membranes were removed from cassettes and the visible protein marker was marked with 

a glow-in-the-dark crayon. Membranes were blocked with a 5% solution of dry milk and 

Tris buffered saline at 4 °C overnight to prevent non-specific binding. 

The next morning primary antibodies were diluted at 1 :  1000 in Tris buffered 

saline. Mouse monoclonal anti-human antibodies for smooth muscle myofilament 

proteins were directed at: a-smooth muscle actin (IgG2a), J3 -tropomyosin (IgG), h­

caldesmon (IgG) and vinculin (IgG). To ensure equal loading of protein, gels were co­

stained with a housekeeping protein, a mouse IgG anti-human monoclonal antibody 
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specific for 13-actin (Sigma, St. Louis, MO). The gel stained for a-smooth muscle actin 

was not co-stained with 13-actin because similar molecular weights would lead to 

overlapping expression and inability to compare a-smooth muscle actin expression 

among cell cultures. Membranes were incubated with primary antibody for one hour on a 

rotator at room temperature and followed by four 25-minute washings with Tris buffered 

saline and Tween-20 (0.1 %). A goat monoclonal secondary antibody, conjugated to 

horseradish peroxidase, (Roche Molecular Biochemicals, Indianapolis, IN) was diluted 

1 :10 ,000 in Tris buffered saline and Tween-20 (0.1%) and incubated for one hour on a 

rotator at room temperature. The nitrocellulose membranes then were washed for two 

hours to remove excess secondary antibody. The wash solution (Tris buffered saline and 

Tween-20) was changed eight times during the wash period. The last wash solution was 

Tris buffered saline without Tween-20. 

Western Lightning Chemiluminescence Reagent Plus Enhanced Luminol 

(PerkinElmer Life Sciences, Boston, MA) was used to develop the horseradish 

peroxidase. The membranes were incubated with 5 mL of the combined substrate for 60 

seconds and then were quickly wrapped in plastic wrap, placed in a cassette, and exposed 

in a dark room using Kodak autoradiography film (Hyperfilm MP, Amersham Pharmacia, 

Piscataway, NJ). 
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C. Results 

Cells were observed growing from chorionic plate vessel explants within one 

week (Figure 7). Primary cultures of P ASM cells grew to confluence in approximately 

four weeks. At confluence, PASM cell cultures had a uniform cell morphology that was 

characterized by elongated cells in parallel rows, typical of smooth muscle cells (Figure 

7). PASM cell cultures also showed evidence of overlapping layers forming ridges, which 

is characteristic of smooth muscle cell cultures. PASM cell morphology was retained 

after several passages. 

All PASM cells expressed smooth muscle myofilament proteins: a-smooth 

muscle actin, �-tropomyosin, h-caldesmon, vinculin and metavinculin (Figures 8-9). 

P ASM cultures showed similar protein expression to that of the other smooth muscle 

cells, HASM and lllSM. All smooth muscle cell cultures strongly expressed a-smooth 

muscle actin. P ASM cells were used between passages two and five and there was no 

difference in protein expression among various passages. HUVECs expressed vinculin 

and �-tropomyosin, but neither of the smooth muscle-specific myofilament proteins. 

Since P ASM cells showed similar protein expression to HASM and lllSM cells, but not 

to endothelial cells, these data indicated that cultured P ASM cells were smooth muscle 

cells and not contaminated with endothelial cells. All lanes had similar expression of�­

actin, confirming equal protein loading. 



D. Discussion 

In this study, we describe a simple and economical method to obtain human 

vascular smooth muscle cells for in vitro studies. Morphological and immunoblotting 

evidence confirmed that the established primary P ASM cell cultures were vascular 

smooth muscle cells, and not contaminated with endothelial or fibroblast cells. PASM 

cell smooth muscle myofilament protein expression was similar to HASM cells. Since 

placentas are readily available to investigators and the health of the mother and sex of the 

baby are easily obtained, we suggest that PASM cells are a good alternative for 

expensive, commercially available vascular smooth muscle cells from adult donors. We 

used these cells in the next chapter to study the effects of oxidative stress and linoleic 

acid on vascular smooth muscle cell production ofIL-8 and AA metabolites. 



Figure 7. 

1 Week 2 Weeks 

3 Weeks 4 Weeks 

PASM explant growth to establish primary cultures of vascular smooth 
muscle cells. 

PASM cells were observed growing from explants within one week. Cells grew to 
confluence over the next three weeks. Magnification is xlOO. 
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Figure 8. Western blot for smooth muscle myofilament proteins. 

PASM, HASM and HISM cells, but not HUVECs, expressed a-smooth muscle actin and 
�-tropomyosin. 
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Figure 9. Western blot for smooth muscle myofilament proteins. 

PASM, HASM and HISM cells, but not HUVECs, expressed h-caldesmon. All cells 
expressed vinculin. 



Chapter 3 

VASCULAR SMOOTH MUSCLE CELL PRODUCTION OF IL-8 IN RESPONSE 

TO OXIDATIVE STRESS AND LINOLEIC ACID 

A. Introduction 

In the previous chapter, we described a technique to isolate and culture human 

vascular smooth muscle cells. In this chapter, we used these cells to investigate the effect 

of oxidative stress and linoleic acid on vascular smooth muscle cell production of IL-8. 

Oxidative stress and hyperlipidemia involving linoleic acid are present in women 

with preeclampsia 15• 98
• 99 . For this reason, we wanted to determine if a combination of 

oxidative stress and linoleic acid could modulate chemokine expression of the 

vasculature to create an environment conducive to transendothelial migration of 

neutrophils. We were specifically interested in vascular smooth muscle regulation of IL-

8, a potent neutrophil chemokine known to be upregulated by oxidative stress, because 

vascular smooth muscle expression of IL-8 would provide a chemotactic gradient from 

the circulation to the vascular smooth muscle for neutrophil infiltration. We chose 

linoleic acid for our in vitro studies because linoleic acid is elevated early in pregnancy in 

women destined to develop preeclampsia 98
, linoleic acid is increased in the diets of 
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women that develop preeclampsia 105, and linoleic acid is the dietary precursor for AA 

and its metabolites which mediate inflammatory responses. 

Previous research in our laboratory demonstrated that oxidative stress in the 

presence of linoleic acid increased IL-8 production, as well as AA metabolite production, 

by human intestinal smooth muscle cells 1 5 1 • 1 52. We questioned if oxidative stress plus 

linoleic acid also affected AA metabolite production by vascular smooth muscle cells, 

and possibly played a role in IL-8 expression. If the AA pathway was involved in 

vascular smooth muscle regulation of IL-8, then inhibition of AA metabolite production 

should result in a decrease in IL-8 expression. 

We hypothesized that oxidative stress in the presence of linoleic acid would 

upregulate vascular smooth muscle expression of IL-8 and that IL-8 expression would be 

linked with AA metabolites. 

B. Materials and Methods 

P ASM cells were isolated and characterized by smooth muscle myofilament 

proteins by techniques previously described (Chapter 2 ). Initially, an IL-8 time-course 

was conducted and AA metabolite production was analyzed to determine that PASM 

cells were functionally active. 

PASM cells (passages two - seven) were suspended in DMEM, 10% FBS and 

were seeded into 24-well Costar tissue culture plates at 40,000 cells / well (Costar, Fisher 

Scientific, Malvern, PA). The following day, media were discarded and replaced with 
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fresh media to remove unattached cells. P ASM cells grew for four days to confluence. On 

the fourth day, the media were discarded and replaced with DMEM without serum. 

Treatments were prepared the following day in M199 media, added for 18 hours and run 

in triplicate. Five to eight experiments were performed for each treatment group. PASM 

media were collected and stored at -20 °C. 

Cell viability was confirmed by Trypan blue exclusion staining and MTT viability 

and proliferation assay. Following collection of media, PASM cells were trypsinized, 

centrifuged, and resuspended in media. A small volume of the cell suspension was 

incubated with Trypan blue at a ratio of 4: 1 and counted to determine percent viability. 

Trypan blue only permeates dead cells. Relative MIT concentrations were also used to 

evaluate cell viability between treatment groups 153. MTT is a tetrazolium salt that is 

cleaved by mitochondrial dehydrogenase enzymes of living cells. In the presence of an 

acid-isopropanol solution, cleaved MIT will solubilize to yield a blue formazan product 

that can be measured spectrophotometrically. Foil owing incubation with treatments and 

collection of media, PASM cells were incubated with 0.5 mg/mL MTT dissolved in PBS 

(1 mL) for four hours at 37°C. Cells then were incubated for 30 minutes with an acid­

isopropanol solution composed of: isopropanol (45 mL), ultra pure water (5 mL), sodium 

dodecyl sulfate (0.25 g), and concentrated HCl (100 µL). Fluid suspension was collected 

and absorption was analyzed at 595 nm by a 96-well microplate reader (Tecan, Research 

Triangle Park, NC). This assay is a measurement of viable cells since MTT is only 

processed by mitochondria of living cells. 
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To mimic an environment of oxidative stress, we used an oxidizing solution (Ox) 

composed of: hypoxanthine (RX, 0.05 mM, Sigma, St. Louis, MO), xanthine oxidase 

(XO, 0.002 units / mL, Roche Molecular BioChemicals, Indianapolis, IN), and ferrous 

sulfate (FeS04, 5 µM, Sigma, St. Louis, MO). The oxidizing solution was enriched with 

linoleic acid (LA, 45 µM, Cayman Chemical, Ann Arbor, MI) to mimic the 

hyperlipidemic state ofpreeclampsia. We used nordihydroguaiaretic acid (NDGA, 5 µM, 

Sigma, St. Louis, MO) to inhibit the LPO pathway and indomethacin (Indo, 5 µM, 

Sigma, St. Louis, MO) to inhibit the COX pathway (Figure 10 ). PASM cells were treated 

for 18 h with the following solutions: 

1 )  Ml99 

2) LA (45 µM) 

3) Ox 

4) Ox enriched with LA (OxLA) 

5) OxLA + NDGA (5 µM) 

6) OxLA + Indo (5 µM) 

Media were analyzed for IL-8, and the following AA metabolites representing the 

LPO pathway: leukotriene B4 (L TB4), and the COX pathway: prostaglandin E2 (PGE2) 

and thromboxane B2 (TXB2). Media were analyzed by commercially available enzyme­

linked irnmunosorbant assays (ELISA) (R&D Systems, Minneapolis, MN). Data were 

analyzed by one-way analysis of variance (ANOV A) and Student-Newman-Keuls post 
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hoc test was used to determine differences between treatment groups. (*P<0.05, 

**P<0 .01) Statistical analysis was performed using StatView software (StatView, Abacus 

Concepts, Inc., Berkeley, CA). 

C. Results 

PASM cells spontaneously produced IL-8 while cultured in M199 media. 

Concentrations ofIL-8 increased progressively during 18 h of incubation (Figure 11 ). A 

culture time of 18 h was chosen for all subsequent experiments. Figures 12 and 13 show 

that P ASM cells were viable following treatments. 

PASM cells treated with OxLA produced significantly more IL-8 than M199 

media, LA, or Ox (Figure 14 ). Both NDGA and Indo significantly inhibited IL-8 

production induced by OxLA (Figure 15). 

OxLA, but not LA, significantly increased production of L TB4 by PASM cells as 

compared to M l  99 media or Ox (Figure 16). PASM cell L TB4 production was 

significantly inhibited by NDGA, but not by Indo, demonstrating inhibition of the LPO 

pathway (Figure 16). Both LA and OxLA significantly increased production of COX 

metabolites as compared to M199 media or Ox (Figures 17 and 18). PASM cell 

production of PGE2 was almost completely inhibited by lndo, but not by NDGA, 

demonstrating inhibition of the COX pathway (Figure 17). Surprisingly, PASM cell 

production of TXB2 was inhibited by NDGA, as well as Indo, suggesting that NDGA 
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inhibits thromboxane synthase (Figure 18). This was an unexpected finding because 

NDGA is described as a selective LPO inhibitor. 

D. Discussion 

The presence of both LA and Ox were necessary to stimulate P ASM cell 

production of IL-8. Neither LA alone rior Ox alone increased IL-8 production. To 

determine if AA metabolites were involved in the regulation of IL-8 production by 

vascular smooth muscle cells upon treatment with OxLA, we used NDGA to inhibit the 

LPO pathway and Indo to inhibit the COX pathway. Surprisingly, both NDGA and Indo 

inhibited IL-8 production. This suggested that AA metabolites were involved, but it did 

not differentiate between the LPO and COX pathways. 

To distinguish which AA pathway mediated the IL-8 response, we measured 

representative AA metabolites of each pathway after treatment with LA, Ox, OxLA, and 

OxLA plus AA pathway inhibitors. OxLA, but not LA, significantly increased production 

of L TB4 as compared to M 199 media or Ox. In contrast, both OxLA and LA markedly 

stimulated the COX products, PG:Ei and TXB2. Ox alone did not stimulate either LPO or 

COX metabolites. As expected, OxLA plus Indo inhibited PGE2 and TXB2, indicating 

inhibition of COX. Unexpectedly, OxLA plus NDGA not only inhibited L TB4 indicating 

inhibition ofLPO, but it also inhibited TXB2 production, indicating NDGA also inhibits 

thromboxane synthase. 



This unexpected finding made it more difficult to determine whether a LPO or 

COX metabolite was mediating IL-8 production. For an AA metabolite to mediate IL-8 

production, it must be stimulated under conditions that stimulate IL-8, and it must be 

inhibited under conditions that inhibit IL-8. Since both TXB2 and IL-8 were stimulated 

by OxLA and inhibited by OxLA plus NDGA and OxLA plus Indo, TXB2 may be a 

mediator in IL-8 production. Experiments with specific thromboxane synthase inhibitors, 

thromboxane antagonists, and thromboxane mimetics will be necessary to prove the role 

of thromboxane in IL-8 production. Additional experiments with an inhibitor of LPO 

more specific than NDGA, will further clarify the role ofLTB4• 

We have demonstrated that the combination of Ox and LA acts on vascular 

smooth muscle cells to stimulate production of IL-8 and AA metabolites. Our data 

suggest that IL-8 is regulated by AA metabolites, possibly by thromboxane, under 

conditions of oxidative stress. We speculate that oxidative stress and elevated levels of 

LA in preeclamptic women lead to increased IL-8 and AA metabolite production by 

vascular smooth muscle cells. The production of IL-8 by vascular smooth muscle would 

create an IL-8 concentration gradient from the circulation to the vascular smooth muscle, 

which would favor transendothelial migration of neutrophils. Since the AA metabolite, 

L TB4, is also a neutrophil chemotactic agent, the production of L TB4 under conditions of 

oxidative stress and hyperlipidemia involving LA would cause additional neutrophil 

chemotaxis from the circulation to vascular smooth muscle. Vascular smooth muscle also 

produces thromboxane in the presence of oxidative stress and LA. The production of 
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thromboxane by vascular smooth muscle cells, which contain thromboxane receptors, 

may be responsible for vasoconstriction leading to hypertension of preeclampsia. 

In conclusion, oxidative stress and elevated plasma levels of LA during 

preeclampsia may act on vascular smooth muscle to produce vascular inflammation 

characterized by increased IL-8 and AA metabolite production, leading to neutrophil 

transendothelial migration and hypertension. In Chapter 5, we will show evidence that 

vascular smooth muscle express IL-8 in women with preeclampsia and that this is 

associated with neutrophil infiltration into systemic vasculature. 
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Inhibition of arachidonic acid cascade by NDGA and Indo. 

LA incorporates into cell membranes to form esterified AA. PLA2 releases AA from 
the cell membrane so that is can be acted upon by COX or LPO to produce 
prostaglandins (PGs) or leukotrienes (L Ts), respectively. Thromboxane synthase 
converts PGH2 into TX. We hypothesized that one of these AA metabolites mediates 
IL-8 production by vascular smooth muscle cells. Indo inhibited COX to prevent 
formation of PGs and TX. NDGA inhibited LPO to prevent formation ofLTs. In the 
course ohhis study, we found that NDGA also inhibited thromboxane synthase. 
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Time course for the spontaneous production of IL-8 by PASM cells 
cultured in M199 for 2, 4, 6, and 18 h. 
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Concentrations of IL-8 increased progressively during 18 h of incubation. A culture time 
of 18 h was chosen for all subsequent experiments. 
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Percent viability of PASM cells following an 18 h treatment period using 
Trypan blue cell viability assay. 

All treatment groups had a percent viability above 90%. 
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Relative MTT concentration of PASM cells following an 18 h treatment 
period. 

There was no significant difference between treatment groups. 
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Production of IL-8 by PASM cells exposed to M199, LA, Ox, or OxLA 
for 1 8  h. 

79 

OxLA significantly increased IL-8 production as compared to M199 media, LA, or Ox. 
*P < 0.05 (n = 5) 
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Production of IL-8 by PASM cells exposed to treatments with LA, Ox, 
OxLA, or OxLA with AA metabolite inhibitors for 1 8  h. 

AA metabolite inhibitors (NDGA and Indo) significantly decreased IL-8 production as 
compared to OxLA. *P < 0.05 (n = 5) 



350 

300 - 250 
..J 
E 200 -

1 50 

1 00 

50 

0 

Figure 16. 

81 

* 

* 

M199 LA Ox OxLA OxLA OxLA 
+NOGA + INDO 

Production of LIB4 by PASM cells exposed to M199, LA, Ox, OxLA, or 
OxLA with AA metabolite inhibitors for 18h. 

L IB4 production was significantly greater in the presence of OxLA as compared to M l  99 
media control, LA, or Ox. NDGA significantly inhibited L 1B4 production, whereas Indo 
did not. *P < 0.05 (n = 8) 
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Production ofPGE2 by PASM cells exposed to M199, LA, Ox, OxLA, or 
OxLA with AA metabolite inhibitors for 18 h. 

Both LA and OxLA significantly increased PGE2 production as compared to M199 media 
control or Ox. Indo significantly decreased PGE2 production, whereas NDGA did not. 
*P < 0.05 (n = 8) 
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Production ofTXB2 by PASM cells exposed to M199, LA, Ox, 
OxLA, or OxLA with AA metabolite inhibitors for 18 h. 

Both LA and OxLA significantly increased TXB2 production as compared to M199 
media control or Ox. AA metabolites (NDGA and Indo) significantly decreased 
TXB2 production as compared to LA or OxLA. *P < 0.05 (n = 7) 
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Chapter 4 

THE NEUTROPBIL SUPEROXIDE BURST IN REAL TIME IN RESPONSE TO 

OXIDATIVE STRESS AND LINOLEIC ACID 

A. Introduction 

Neutrophils are activated in preeclampsia 122' 127
, but the mechanism of activation 

is unclear. Research has demonstrated that oxidized lipids alter monocyte function to 

increase the neutrophil 0/ burst 139. The previous chapter demonstrated that together 

oxidative stress and linoleic acid alter the expression of chemotactic agents, such as IL-8 

and L TB4, by vascular smooth muscle cells to create an environment conducive to 

transendothelial migration of neutrophils. Since oxidized lipids modulate monocyte 

function, we wanted to explore if an oxidizing solution enriched with linoleic acid would 

alter neutrophi1 0/ production. 

We used a novel chemiluminescent method to specifically measure neutrophil 

0/ production in real time. Historically, ROS have been measured using a cytochrome C 

assay, which measures oxygen consumption over a period of time to indicate generation 

of ROS. Our methodology uses a synthesized chemiluminescent probe that specifically 

interacts with O/ to produce photons of light that can be measured with a 
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photomultiplier. We used a synthesized analog of coelenterazine (2-(4-hydroxybenzyl)-6-

(4-hydroxyphenyl)-8-benzyl-3, 7-dihydroirnidazo[ l ,2-a] pyrazin-3-one), which is the 

biologically active component or light-producing molecule, of bioluminescent marine 

organisms. Specifically, we chose Detector "C" from the available synthesized analogs 

because it had the lowest background luminescence 154· 155• 

We hypothesized that the neutrophil 0
2·- burst would be greater in response to 

oxidative stress plus linoleic acid than controls. If true, these data could explain 

neutrophil activation in preeclampsia and suggest a priming mechanism for the 

transendothelial migration of neutrophils. 

B. Materials and Methods 

1. Neutrophil Isolation 

Healthy volunteers (n = 9) agreed to donate blood for the isolation of neutrophils. 

Signed consent was obtained. This protocol was approved by the Office of Research 

Subjects Protection, Virginia Commonwealth University. Whole blood (20 mL) was 

collected by vein puncture into two 16 x 100 mm sodium heparin vacutainer tubes (VWR 

Scientific Products, Pittsburgh, PA). The neutrophil isolation procedure was performed 

within one hour of blood collection. 

Human peripheral blood neutrophils were isolated from whole blood as described 

by Boyum 156• Histopaque 1 1 19 (Sigma Chemical Company, St. Louis, Missouri) was 
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layered below Histopaque 1077 (Sigma Chemical Company, St. Louis, Missouri) in a 50 

mL conical tube (Coming Incorporated, Coming, New York). Whole blood was slowly 

layered onto the upper gradient of Histopaque 1077 (Figure 19). Toe layered blood and 

Histopaque were centrifuged at 700 x g (Beckman J6-MC centrifuge, Beckman 

Instruments, Inc., Columbia, MD) for 30 minutes at room temperature (25°C). Two 

distinct layers of leukocytes were obtained; the upper layer contained monocytes, 

lymphocytes and platelets, and the lower layer contained granulocytes. 

The upper layers of plasma, monocytes, lymphocytes, and Histopaque 10 77 were 

aspirated and discarded to within 0.5 cm of the granulocyte layer. Granulocytes were 

aspirated and transferred to a new 50 mL conical vial. The granulocytes were washed to 

remove any remaining Histopaque by adding sterile PBS, pH 7.4 (Life Technologies, 

Grand Island, New York) and centrifuged for 10 minutes at 200 x g. PBS was aspirated 

and discarded up to the cell pellet and the washing procedure was repeated. 

A pellet remained which contained neutrophils and residual erythrocytes. To lyse 

contaminating erythrocytes, 3 mL of ice-cold ddH20 was added and the tube gently 

agitated. After exactly 30 seconds, 1 mL of ice-cold 0.6 M KCl was added to restore 

tonicity. The cell suspension was centrifuged at 200 x g for 4 minutes at 4 °C to form a 

white pellet containing primarily neutrophils. Approximately 96% of the cells were 

neutrophils and only 4% were eosinophils and basophils. 

Neutrophils were resuspended with 4 mL of Hanks' Balanced Salt Solution 

(HBSS) containing no Mg+t or Ca+t (Life Technologies, Grand Island, New York) and 

placed in a 15 x 100 mm non-adherent Teflon tube (Minisorp, Nunc, Rochester, NY). 
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The Teflon tube was placed on a slant rank attached to an orbital rotator (50800 Rotomix 

Rotator, Therrnolyne, Dubuque, IA) in an incubator gassed with 5% CO2 while a cell 

count was performed (Forrna Scientific, Inc., Marietta, Ohio). Neutrophils were 

resuspended with DMEM/F I2, 10% FBS and returned to the incubator until the 

experiment, approximately 4 hours. At the time of the experiment, cells were 

resuspended to a concentration of2 x 106 cells/mL of PBS. 

11. Protocol for Oxidizing Linoleic Acid 

Hypoxanthine (HX, 0 .0 123 g for a final concentration of 3.6 mM) (Sigma 

Chemical Company, St. Louis, Missouri) was added to a 50 mL conical vial containing 

22.5 mL of M199 media (Life Technologies, Grand Island, New York) and sonicated for 

twenty-five minutes. Then 0.00 187 g of xanthine oxidase (XO, activity of0.067 units/ 

mg solid) (Sigma Chemical Company, St. Louis, Missouri) was added for a final 

concentration of 0.005 units I mL. This solution was sterile filtered. A 0.02 M ferrous 

sulfate (FeS04, Sigma Chemical Company, St. Louis, Missouri) solution was made by 

sterile filtering 25 mL ofddH20 and then adding 0. 139 g ofFeS04. Sixty-three µLs of the 

0.02 M FeS04 solution was added to the HX / XO solution for a final concentration of 50 

µM. This was our oxidizing solution (Ox). 

A 0. 1 1  M solution of linoleic acid (LA) was made fresh every 3 days by diluting 1 

g of LA in 33 rnL of 100% ethanol. A volume of20.5 µL of the 0.11 M solution of LA 

was added to Ox to achieve a LA concentration of 90 µmo! / L. This was followed by 
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addition of 2.5 mL FBS (heat-inactivated) for a total volume of 25 mL. XO generates 

02
.- during metabolism ofHX to uric acid. LA in the Ox solution was oxidized by 02·- in 

the presence of Fe++ according to the Fenton reaction. We determined an optimum 

concentration for XO (0.05 units I mL) for 02·- production from previous experiments. 

This was our Ox solution enriched with LA (OxLA). 

To compare the neutrophil 02·- burst upon stimulation with OxLA, we also 

stimulated neutrophils with known activators including, phorbol 12-myristate acetate 

(PMA, 8 µg/mL) and lipopolysaccharide (LPS, 100 ng/mL). Stock solutions of activators 

were prepared and an appropriate volume of stock solution was added to I mL of Ml 99 

to equal the final concentration noted above. This solution then was injected into the 

measuring tube. 

To confirm cell viability, cell counts for Trypan blue uptake were performed 

following measurement ofneutrophil 02·-. 

111. Superoxide Measurement 

The 02·- chemiluminescent measuring system was designed to directly measure 

02·- production, as photons of light, from tissue maintained in a physiological 

environment (Figure 20 ). The measuring instrument was constructed to be virtually light­

tight by Tom Gentry, Biomedical Engineering Department, Virginia Commonwealth 

University. Cells remained at 37°C and 95% air and 5% CO2 using circulating warm 

water and appropriate gas tanks ( 15 psi). The photomultiplier tube was maintained at 
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-30°C by a LCT50 control unit with circulating cool water and was powered by a high 

voltage power unit set for 1000 volts. Photons of light were measured and the data were 

transmitted to a ctl counter timer computer program for analysis. 

Neutrophils (500 µL, 2 x 106 cells / mL) were placed into a Teflon tube in a light­

tight and thermostatically insulated chamber. Detector "C" (2 µL, 25 µM), the 

coelenterazine analog, was then added to the cell suspension. The sample was placed in 

the measuring chamber and covered with the measuring chamber cap containing 

treatment and gas injection tubes. Finally, the cap was secured with wing nuts to form a 

l ight-tight and thermostatically insulated chamber. 

For control purposes, counts began with the photomultiplier shutter closed and the 

voltage source set for O volts. Initial counts were zeros. Upon enabling the voltage source 

to relay 1 000 volts, the counts showed background noise. After several data counts, we 

opened the shutter to obtain baseline counts, which represented spontaneous 0/ 

production from unstimulated neutrophils. Injections consisted of 500 µl of oxidizing 

solution enriched with linoleic acid (90 µM). Since the injection was added to 500 µL of 

cell suspension, the final concentration of OxLA was 45 µM. OxLA injections were 

followed by an injection of oxidizing solution, which contained hypoxanthine, xanthine 

oxidase, and ferrous sulfate, for control purposes. Superoxide dismutase (Sigma, St. 

Louis, MO) was added following treatments to confirm that we were measuring 0/ 

anions and not artifact. The experiment concluded by repeating control steps in the 

opposite sequence: 1 )  the shutter was closed to measure background noise, and 2) the 

high voltage source was shut off. Data collection ended when counts were zeros. 
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C. Results 

OxLA caused an immediate dose-dependent increase in photon counts, 

representative of 02·-production (Figure 2 1). Superoxide production upon stimulation 

with OxLA ranged from 2 10 - 764.4 picomoles. Injection of SOD caused an immediate 

decline in photon counts, verifying that we were measuring 02·-. Figure 22 shows 

decreased photon counts when OxLA was injected into the measuring chamber in the 

absence of neutrophils. These photon counts represented 02·- produced by our Ox 

solution, and confirmed that the 02·- burst observed in the previous figure was from 

neutrophils, rather than Ox solution. In contrast to OxLA, LA or Ox alone did not induce 

a neutrophil superoxide burst (Figure 23). 

Upon injection with OxLA, 02·- production peaked within 20 seconds and then 

declined to baseline with a half-life of 120 seconds (Figure 24). LPS caused a slower rise 

time in 0/- production as compared to OxLA (3 minutes vs. 20 -30 seconds) (Figure 25). 

Treatment with PMA induced a slower rise time in 02 
.- production similar to LPS ( data 

not shown). 

D. Discussion 

We measured the neutrophil 02.- burst upon stimulation with OxLA in real time 

using a novel chemilumiscent 02.- measuring system. OxLA rapidly stimulated 

neutrophil 0
2

·- production. In contrast, neither Ox nor LA stimulated 02·- production by 
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neutrophils. Neutrophil 02.- production upon stimulation with OxLA differed from 

stimulation with LPS or PMA. LPS and PMA produced gradual increases in 02·­

production, whereas stimulation with OxLA lead to a rapid and more intensive burst of 

0/-. 

In conclusion, OxLA was a potent and immediate stimulator of neutrophil 02 .­

production. These data suggest that oxidative stress and elevated plasma levels of LA 

may be responsible for neutrophil activation in preeclamptic patients. This could 

contribute to the clinical symptoms of preeclampsia. Activated neutrophils would release 

0/ and other ROS to propagate and exacerbate oxidative stress within the maternal 

vasculature. Transendothelial migration of activated neutrophils with production of ROS 

could oxidize lipid membranes and damage endothelial cells and vascular smooth muscle 

cells. In addition, generation of TNFa, MPO, and TX by neutrophils could cause 

inflammation of the vasculature and vasoconstriction. Systemic oxidative stress would 

favor neutrophil transendothelial migration by stimulating IL-8 and L IB4 production by 

vascular smooth muscle cells (Chapter 3) and by increasing 02°-production by 

neutrophils. 
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Figure 1 9. Neutrophil isolation from whole blood by histopaque density gradient 
separation. 

Whole blood was layered upon two densities of histopaque. Centrifugation caused 
leukocytes to separate into layers by density, so that granulocytes (neutrophils) could 
be collected for experiments. 
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Neutrophils were placed into the Teflon measuring tube, which was placed into the 
measuring chamber. The measuring chamber was sealed with the measuring chamber 
cap. Treatments were injected through the treatment injection tube. The 
photomultiplier tube measured photons in real time. Photon counts were recorded by a 
computer and then transferred to Excel software for processing. 
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Figure 2 1. Neutrophil superoxide production upon stimulation with OxLA. 

OxLA caused an immediate dose-dependent increase in neutrophil superoxide 
production. Superoxide dismutase (SOD) caused an immediate decline in photon 
counts verifying that we were measuring superoxide. 
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Figure 22. Injections of OxLA into the measuring chamber without neutrophils. 

This graph illustrates that the superox.ide burst observed in the previous figure was 
from neutrophils rather than oxidizing solution. 
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In contrast to OxLA, LA or Ox alone did not induce a neutrophil superoxide burst. 
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Figure 24. Time-course of neutrophil superoxide burst caused by OxLA. 

OxLA caused an immediate increase in neutrophil superoxide production, which 
peaked within 20 seconds and then declined to baseline with a half-life of 120 
seconds. As in the previous figure, Ox alone did not induce a superoxide burst by 
neutrophils. 
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Figure 25. Time-course comparison of the neutrophil superoxide burst with OxLA 
as compared to LPS, a neutrophil activator. 

LPS (100 ng/mL) caused a slower rise time in superoxide production than OxLA (3 
minutes vs. 20 -30 seconds). Similar to LPS, PMA (8 µg/mL) also produced a slower 
rise time in superoxide production (data not shown). 



Chapter 5 

INFILTRATION OF NEUTROPHILS INTO SYSTEMIC VASCULAR TISSUE 

IN WOMEN WITH PREECLAMPSIA 

IN ASSOCIATION WITH INCREASED EXPRESSION OF 

ENDOTHELIAL ICAM-1 AND VASCULAR SMOOTH MUSCLE CELL IL-8 

A. Introduction 

The previous chapters explored the relationship between oxidative stress, 

hyperlipidemia, and vascular cell dysfunction using in vitro models. These studies 

demonstrated increased vascular smooth muscle cell production of IL-8 and increased 

neutrophil 02·- production upon treatment with oxidative stress and linoleic acid. These 

data suggested a mechanism for neutrophil transendothelial migration in preeclampsia 

based on neutrophil activation and vascular smooth muscle production of IL-8. 

Neutrophil infiltration into vascular tissue requires at least three things: 1) 

vascular expression of a chemotactic agent to attract neutrophils, 2) endothelial 

expression of adhesion molecules to bind neutrophils to the endothelium, and 3) 

neutrophil activation. Therefore, to study if neutrophils infiltrate vascular tissue in 

women with preeclampsia, we used immunohistochemistry with specific antibodies to 
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evaluate: 1 )  vascular smooth muscle expression of IL-8, 2) endothelial expression of 

ICAM-1, and 3) neutrophil activation and infiltration into systemic vascular tissue. We 

used subcutaneous fat biopsies for this study because subcutaneous fat is a highly 

vascularized tissue representative of the systemic vasculature. 

We evaluated IL-8 because it is a potent chemotactic agent and activator of 

neutrophils. IL-8 activates neutrophils to enhance their chemotaxis, integrin expression, 

and respiratory burst activity during inflammation. IL-8 is upregulated in the presence of 

oxidative stress 144
, and our previous in vitro experiments demonstrated that exposing 

vascular smooth muscle cells to oxidative stress and linoleic acid resulted in increased 

production of IL-8. Therefore, we reasoned that there would be increased expression of 

IL-8 by vascular smooth muscle in preeclampsia. This would provide a concentration 

gradient from the circulation to the vascular smooth muscle for neutrophil 

transendothelial migration. 

We evaluated endothelial expression of ICAM-1 because it is an adhesion 

molecule that binds integrins ( CD 11 b/CD 18) on the neutrophil surface causing them to 

adhere and flatten onto the endothelium prior to infiltration. Stimuli similar to that for IL-

8 increase ICAM-1 expression, such as oxidative stress. ICAM-1 is elevated in the 

plasma of preeclamptic women 83
• 

84 and ICAM-1 is upregulated upon treatment of 

HUVECs with plasma from preeclamptic women 1 12
, suggesting a role for ICAM-1 in the 

pathogenesis of preeclampsia. 

We evaluated neutrophils in preference of other leukocytes because: 1) they are 

the most abundant of the leukocytes, 2) their numbers increase in pregnancy 1, 3) their 
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numbers further increase in  preeclampsia 121, and 4) they produce toxic substances (ROS, 

MPO, TX and TNFa), which could be responsible for vasoconstriction and vascular cell 

dysfunction in women with preeclampsia. 

We hypothesized that in women with preeclampsia there would be increased 

expression of vascular smooth muscle IL-8 and endothelial ICAM- 1 coincident with 

infiltration of neutrophils into maternal systemic vascular tissue. Figure 26 is a schematic 

representation of our hypothesis. 

B. Materials and Methods 

i. Study Subjects 

Subcutaneous fat biopsies were collected from patients at MCV Hospitals, 

Virginia Commonwealth University Health System. Fat biopsies were collected at the 

time of cesarean section from normal pregnant patients (n = 6) and preeclamptic patients 

(n = 5) or at the time of abdominal or minimally invasive surgery from normal, non­

pregnant patients (n = 4 ). Cesarean sections for normal pregnant women were performed 

because of previous c-section or secondary to latent herpes simplex virus or fetal 

malposition. Surgeries for normal non-pregnant women were performed for removal of 

uterine myomas (fibroids) or for tissue biopsies. The criteria for normal pregnancy were a 

maternal blood pressure of less than 140/90 mmHg, no proteinuria, non-smoker, and no 

other complications. The diagnosis of preeclampsia was based on ACOG 
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recommendations. Mild preeclampsia was defined as hypertension greater than 140/90 

mm.Hg on at least two separate measurements six hours apart and proteinuria greater than 

300 mg/24 hours or 1-2 plus dipstick. Severe preeclampsia was defined as hypertension 

greater than 160/110 mmHg and proteinuria greater than 5,000 mg/24 hours or 3-4 plus 

dipstick. One preeclamptic patient had gestational diabetes, which was diet controlled. 

Preeclamptic women were non-smokers. Women in active labor were excluded from the 

study. The criteria for normal, non-pregnant patients were a blood pressure of less than 

140/90 mmHg, non-smoker, and no systemic inflammatory conditions, such as diabetes. 

Patients were matched for BMI. Informed consent was obtained prior to surgery. This 

study was approved by the Virginia Commonwealth University Office of Research 

Subjects Protection. 

u. Collection of Fat 

Subcutaneous fat biopsies (approximately 1 cm x 1 cm x 1 cm) were collected at 

cesarean section or abdominal or minimally invasive surgery. In the operating room fat 

biopsies were snap-frozen in liquid nitrogen or placed immediately in 10 % neutral 

buffered formalin. The tissue was further processed in the laboratory. Frozen tissue was 

wrapped in aluminum foil and stored at -70 °C until tissue processing. Formalin-fixed 

samples were cut into smaller pieces, placed in tissue cassettes and returned to 10% 

neutral buffered formalin for five days. Fixation was confirmed by observation and touch. 
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Formalin-fixed samples were rinsed in ddH20 and placed in 100 mM phosphate buffer, 

pH=7.5 until paraffin-embedding. 

iii. Protocol for Frozen Tissue 

Frozen tissue was used to perform immunohistochemical staining for IL-8. At the 

time of sectioning, a frozen biopsy was cut into smaller pieces and allowed to equilibrate 

to -30 °C in a cryotome (Leica CMl lOO, Leica Microsystems Inc. , Allendale, NJ). A 

small amount of frozen tissue matrix (Tissue-Tek O.C. T. Compound, VWR, Pittsburgh, 

PA) was placed on the cryotome chuck. As the matrix began to freeze, a piece of frozen 

tissue was placed on top and covered slowly with additional matrix. Once frozen, the 

mounted tissue was cut in 20 µm sections and placed on Superfrost Plus microscope 

slides (Fisher Scientific, Pittsburgh, PA). Slides were warmed quickly to room 

temperature by pressing the slide against the palm of a gloved hand and fixed in cold 

acetone (-20 °C) for three minutes. Slides were air-dried and placed in a -70 °C freezer 

until staining. 

On the day of staining, slides were warmed rapidly to room temperature by 

pressing the slide against the palm of a gloved hand and placed immediately in I 00 mM 

phosphate buffer saline (0 .9% NaCl), pH=7.5 for ten minutes. To quench endogenous 

tissue peroxidase, tissue sections were blocked with 0.3% H202 in methanol for ten 

minutes followed by a five minute wash in phosphate buffered saline. 
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The ABC technique was used for immunohistochemical staining. This 

methodology is based on the binding of a preformed avidin and biotin horseradish 

peroxidase macromolecular complex to a biotinylated antibody, which is bound to the 

primary antibody and antigen of interest. Visualization was produced by a buffered H202 

and chromogen, 3,3 '-diaminobenzidine tetrahydrochloride (DAB), solution. 

Immunohistochemical staining was performed at room temperature using 

VECTASTAIN Elite ABC (Universal} and DAB Substrate Kits (Vector Laboratories, 

Burlingame, CA) with a ST 5050 automated staining machine (Vision Instruments, 

Australia). Every step was strictly controlled for each antibody. Each step of the staining 

cycle was followed by a rinse with phosphate buffered saline (PBS) + 0.05% Tween-20 

(3 rinses; 5 minutes) (Gibco, Long Island, New York). For IL-8 staining, all solutions 

were prepared in I OOmM PBS, pH=7.5, except for DAB substrate solution which was 

prepared in Grade 1 ultrapure H20. For ICAM-1 and CD66b staining, except for DAB 

substrate solution, all solutions were prepared in lOOmM phosphate buffer, pH=7.5. 

In preparation for staining, slides were covered briefly with PBS + 0.05% Tween-

20 , pH=7.4 (Gibco, Long Island, New York). Tissue was blocked with horse serum 

blocking solution for 20 minutes. Tissue was stained with a mouse IgG anti-human 

monoclonal antibody specific for IL-8 (1 :50 , BioSource International, Camarillo, CA). 

The negative control for IL-8 was a mouse IgG monoclonal isotype standard (pre-diluted, 

Zymed Laboratories, San Francisco, CA). To confirm intact endothelium and identify 

vascular smooth muscle, tissue was imrnunostained with a rabbit anti-human monoclonal 

antibody directed at Factor VIII (1 :600 , Zymed Laboratories, San Francisco, CA) and a 
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mouse anti-human monoclonal antibody directed at a-smooth muscle actin (1  :6000 , 

Sigma, St. Louis, MO). Their staining also was used to identify vessels and determine the 

location of IL-8, ICAM-1 ,  and CD66b staining. Next the tissue sections were covered 

with biotinylated antibody (anti-mouse/anti-rabbit IgG made in horse) for 30 minutes. 

The enzyme conjugate (Vectastain ABC reagent) was incubated on the tissue for 30 

minutes. The protein-antibody complex was localized with a DAB substrate chromogen 

mixture for five minutes. 

Tissue was counterstained with filtered alcian blue stain, pH=2.5 ( 1  % alcian blue 

dye + 3% acetic acid) for five minutes followed by rinsing in tap H20 157. Slides then 

were dipped in methyl green (Vector Laboratories, Burlingame, CA), placed on a metal 

tray, and incubated for three minutes in a 60 °C oven. Sections were rinsed in Grade 1 

ultrapure water for one minute and dipped five times in 0.05% acetic acid in acetone. 

Sections were dehydrated (50%, 85%, 95%, 95%, 100%, 100%; 2 minutes each) and 

cleared two times for 3 minutes in Histoclear (National Diagnostics, Atlanta, Georgia). 

Slides were mounted with VectaMount (Vector Laboratories, Burlingame, CA) and 

covered with a coverslip. 

1v. Protocol for Formalin-fixed Tissue 

Formalin-fixed tissue was used for ICAM- 1 and CD66b staining. Tissue was 

dehydrated in a graded alcohol series (70%, 80%, 95%, 95%, 100%, 100%, 100%), 

cleared in CitriSolv (Fisher Scientific, Malvern, PA), and paraffin-embedded overnight 
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using an automated tissue processor (Shandon Citadel 2000 Tissue Processor, Shandon 

Scientific Limited, Cheshire, England). The next day paraffin-embedded tissue was 

placed in embedding rings and covered with additional paraffin. 

Tissue was cut in 8 µm sections using a microtome (820 Spencer Microtome, 

American Optical Company). Sections were floated on a preheated 42°C ddH20 bath 

(Flotation Bath Model 135, Fisher Tissue Prep, Fisher Scientific, Malvern, PA), separated 

into tissue sections of three, and placed on Superfrost Plus glass slides (Fisher Scientific, 

Malvern, PA). Slides were dried on a 37°C slide warmer (C.S. & E Slide Warmer No. 

26020, Clinical Scientific Equipment Co., Melrose Park, Illinois), and then placed in a 

37°C oven overnight. 

On the day of staining, tissue sections were cleared three times with Histoclear 

(National Diagnostics, Atlanta, Georgia) to remove paraffin (five minutes each) and then 

hydrated in a graded alcohol series (100%, 100%, 95%, 95%, 85%, 50%, 0 %; two 

minutes each). Tissue sections were placed in 100 mM phosphate buffer, pH=7.5 for ten 

minutes. To quench endogenous tissue peroxidase, the tissue was blocked with 0.3% 

H202 in methanol for 30 minutes followed by washes in 100 mM phosphate buffer, 

pH=7.5 (5 minutes) and Grade 1 ultrapure water (6 minutes). 

Antigen retrieval was performed with microwave citrate pretreatment. Five slides 

were placed upright in a polypropylene Coplin jar filled with citrate buffer (10 mM; pH = 

6.0 ) and microwaved at 90 °C for 10 minutes at 70% power. Slides remained in the 

covered container for 30 minutes, at which time they were transferred to 100 mM 

phosphate buffer, pH=7.5 for a minimum of five minutes prior to staining. 
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Tissue was incubated for 30 minutes with a primary antibody. Primary antibodies 

included: 1) a mouse IgG anti-human monoclonal antibody against ICAM-1 (CD54, 

1:100 ,  Zymed Laboratories, San Francisco, CA), 2) a mouse IgG monoclonal isotype 

standard used as a negative control for ICAM-1 (pre-diluted, Zymed Laboratories, San 

Francisco, CA), 3) a mouse IgM anti-human monoclonal antibody specific for CD66b 

(1:500,  BD BioSciences, San Diego, CA), and 4) a mouse IgM monoclonal isotype 

standard used as a negative control for CD66b (1:500, BD BioSciences, San Diego, CA). 

CD66b is a granulocyte-specific glycosylphosphatidylinositol-linked membrane antigen 

that is upregulated and released upon granulocyte activation. CD66b is involved in 

granulocyte phagocytosis, cell adherence, and chemotaxis 158 and it promotes adhesion of 

granulocyte �2 integrins (CD1 l b/CD18) to endothelial cells 159• 160. Thus, CD66b staining 

not identified granulocytes, but diffuse CD66b staining also indicated secretion by 

activated granulocytes. Granulocytes from a normal non-pregnant individual were 

isolated by density centrifugation and used as a positive control for CD66b. Isolated 

monocytes and lymphocytes were used as negative controls. Granulocytes are comprised 

of neutrophils, eosinophils and basophils. Neutrophils comprise 96% of the granulocyte 

population. In addition, neutrophils respond to tissue inflammation, whereas eosinophils 

and basophils respond to parasitic diseases and various forms of allergy. Therefore, our 

data primarily represent neutrophils. 

Tissue sections also were stained with a rabbit IgG anti-human antibody specific 

for Factor VIII ( 1  :400) and a mouse IgG anti-human antibody directed at a-smooth 

muscle actin (1 :3000 ). To increase cross-reactivity between primary and secondary 
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antibodies, since CD66b was an IgM, the concentration of the biotinylated antibody (anti-

mouse/anti-rabbit IgG made in horse) was doubled. Slides were incubated for 30 minutes. 

The remainder of the staining methodology for formalin-fixed tissue was identical to that 

for frozen tissue. 

v. Data Analysis 

To quantify staining, an observer unaware of the patient' s  identity scanned the 

middle tissue section of each slide in a systematic manner. Lumen width was measured 

for each vessel and vessels were categorized as small (:SlO  µm), medium (10 µm-39 µm) 

or large (�40 µm). Vessels between 10 µm and 200 µm, which represent resistance-sized 

vessels, were analyzed for staining. For each patient, approximately 34 vessels were 

evaluated for IL-8 staining and 92 vessels for ICAM-1 staining. Vessels staining for IL-8 

and ICAM-1 were graded using a visual score ranging from zero to four (from absent to 

intense) and also were evaluated by density measurements using image analysis software 

(Image Pro Plus, Media Cybernetics, Silver Spring, MD). The visual score was correlated 

to density measurements to verify objectivity of the visual score. 

For CD66b staining, an average of 126 vessels were analyzed for each patient. 

Each vessel was graded using a visual score ranging from zero to four based on overall 

staining intensity and neutrophil infiltration. Since the CD66b protein is secreted from 

activated neutrophils, diffuse staining for CD66b also was evaluated for staining density 

using image analysis software. In addition to visual scores and density measurements, 
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CD66b staining of neutrophils was recorded as present within the lumen, along the 

endothelium, within the inti.ma and vascular smooth muscle, and present on the outside of 

the vessel wall. The number of stained neutrophils was counted in each of these locations. 

v1. Statistical Analysis 

Kruskal-Wallis and Chi square were used to analyze visual score data for staining. 

Frequency distributions were completed for visual scores. For density measurements, 

one-way ANOVA was performed and Student-Newman-Keuls post-hoc test was used to 

determine differences between the patient groups. Regression analysis was performed to 

correlate visual scores with density measurements. Bar graph data are reported as mean ± 

SE. 

For CD66b staining data, statistical analysis also was performed for the percent of 

vessels with staining in certain vessel locations: 1) along the endothelium, 2 )  within the 

inti.ma, and 3) on the outside of the vessel, and for the number of infiltrated neutrophils 

per stained vessel. ANOV A was performed and Student-Newman-Keuls post-hoc test 

was used to analyze differences between patient groups. Kruskal-Wallis and Dunn's post 

hoc test were used when variances were not equal. Bar graph data are reported as mean ± 

SE. 
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C. Results 

1. Subjects 

The clinical data for normal non-pregnant, normal pregnant, and preeclamptic 

groups are summarized in Table 3. According to criteria, systolic and diastolic blood 

pressures and proteinuria were significantly greater for preeclamptic patients than for 

other groups. The preeclamptic group also was characterized by significantly lower 

parity, gestational age, and infant birth weight as compared to normal pregnant patients. 

Maternal age was not significantly different between normal pregnant and preeclamptic 

groups, and there was no difference in BMl among groups. 

11. Immunohistochemical Staining 

Vessels of preeclamptic patients had intense IL-8 staining, whereas normal 

pregnant patients and normal non-pregnant patients had light or no IL-8 staining (Visual 

score: 2.8 ± 0. 1 vs. 0.7 ± 0. 1 vs. 0.7 ± 0. 1 ,  respectively, P<0.00 1 ,  Figure 27). Optical 

density (OD) measurements confirmed that preeclamptic patients had significantly 

greater IL-8 staining as compared to normal pregnant or normal non-pregnant patients 

(126.0 ± 3.7 OD vs. 70.2 ± 2.4 OD vs. 67.5 ± 2.8 OD, respectively, P<0.00 1 ,  Figure 28). 

Chi square analysis verified higher visual scores for preeclamptic patients (P<0.000 1 )  
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. (Figure 29). The visual scores were highly correlated with the density measurements, r = 

0.99 (Figure 30). 

Preeclamptic patients had intense IL-8 staining in vascular smooth muscle cells, 

as well as in endothelial cells. In contrast, normal pregnant patients had light IL-8 

staining in endothelial cells and vascular smooth muscle cells, and normal non-pregnant 

patients had little or no IL-8 staining of the vessel (Figure 3 1  ). Figure 32 shows intense 

staining for IL-8 in the vascular smooth muscle of preeclamptic patients, which is 

verified by co-localization of a-smooth muscle actin. 

ICAM-1 was constitutively expressed in all groups. The visual scores for ICAM-1 

staining were greater for preeclamptic patients than normal pregnant or normal non­

pregnant patients (2.5 ± 0. 1 vs. 1.9 ± 0.2 vs. 2.2 ± 0. 1, respectively, P<0.05, Figure 33). 

Although the visual scores for ICAM-1 staining were statistically significantly greater for 

preeclamptic patients than normal pregnant or normal non-pregnant patients, the 

difference in staining was minimal and probably does not reflect physiological 

differences. The density measurements also showed that ICAM-1 expression was 

constitutive among all groups. Preeclamptic patients had more intense staining for 

ICAM-1 as compared to normal pregnant patients, but less staining than normal non­

pregnant patients ( 116.7 ± 2.9 OD vs. 96.9 ± 7.8 OD vs. 136.2 ± 3. 1 OD, respectively, 

P<0.0 1, Figure 34). Chi square analysis indicated higher visual scores for preeclamptic 

patients (P<0.000 1) (Figure 35). There was a strong correlation between visual scores and 

density measurements, r = 0.95 (Figure 36). 
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In women with preeclampsia, ICAM-1 staining was present not only on the 

endothelium, but also on the vascular smooth muscle (Figures 37 and 38). Although there 

was ICAM-1 staining of endothelium and vascular smooth muscle in normal pregnant 

women, the staining was not as intense, nor as diffuse, as in preeclamptic women (Figure 

37). Staining for ICAM-1 was localized to endothelium of normal non-pregnant women 

(Figure 3 7). 

A visual score, representing intensity of CD66b staining, as well as quantity of 

neutrophil infiltration, was significantly greater for preeclamptic than normal pregnant 

patients or normal non-pregnant patients ( 1.9 ± 0.07  vs. 0.3 ± 0.0 3  vs. 0.3 ± 0. 1, 

respectively, P<0.0 1, Figure 39). The visual score was verified by density measurements, 

which also indicated more intense CD66b staining for preeclamptic patients as compared 

with normal pregnant patients or normal non-pregnant patients ( 126 ± 2 OD vs. 68 ± 2 

OD vs. 75 ± 5 OD, respectively, P<0.0 1, Figure 40). Chi square analysis indicated higher 

visual scores for preeclamptic patients (P<0.000 1) (Figure 4 1). There was a strong 

correlation between visual scores and density measurements, r = 0.90 (Figure 42). 

The percentage of vessels stained for CD66b was significantly greater for 

preeclamptic patients than normal pregnant patients or normal non-pregnant patients (76 

± 8% vs. 27 ± 7% vs. 23 ± 6%, respectively, P<0.0 1, Figure 43). Of these vessels, there 

was greater staining for CD66b in the preeclamptic patients in all vessel locations, except 

in the lumen. In preeclamptic patients as compared with normal pregnant patients and 

normal non-pregnant patients, there was greater adherence and flattening of neutrophils 

along the endothelium (55 ± 7% vs. 19 ± 6% vs. 15 ± 4%, respectively, P<0.0 5, Figure 
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44), infiltration into the inti.ma (52 ±11% vs. 6 ± 2% vs. 2 ± 1%, respectively, P<0.01, 

Figure 45) and number of neutrophils on the outside of the vessel (26 ± 7% vs. 3 ± 1 % 

vs. 2 ± 2%, respectively, P<0.05, Figure 46). The total number ofneutrophils adhered to 

endothelium, infiltrated into inti.ma, and present on the outside of the vessel per stained 

vessels was also greater for preeclamptic patients than normal pregnant patients or 

normal non-pregnant patients (7.3 ± 0.8 vs. 1.9 ± 0.4 vs. 1.3 ± 0.3 per 8 µm section of 

vessel, respectively, P<0.001, Figure 47). Table 4 summarizes these data. 

CD66b specific staining of neutrophils was verified by staining of leukocytes 

isolated by Histopaque density centrifugation of whole blood. CD66b stained neutrophils, 

but not monocytes or lymphocytes (Figure 48). Representative sections of vessels are 

shown for CD66b staining of neutrophils in normal non-pregnant patients, pregnant 

patients, and preeclamptic patients (Figure 48). Figure 49 shows representative examples 

of neutrophil adherence and flattening on to endothelium, infiltration into the inti.ma, and 

presence outside of the vessel wall of vessels from women with preeclampsia. 

D. Discussion 

Staining for IL-8, a potent neutrophil chemotactic agent, was significantly greater 

in preeclamptic women as compared to normal pregnant or normal non-pregnant women. 

IL-8 staining was observed on vascular smooth muscle, in addition to endothelium, in 

women with preeclampsia. This finding is significant because it demonstrates 

inflammation of vascular smooth muscle in preeclampsia. Increased expression of 
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vascular smooth muscle IL-8 in preeclampsia establishes a concentration gradient for IL-

8 from the circulation to the vascular smooth muscle. Since neutrophils migrate along a 

concentration gradient to IL-8 161 , these data provide a mechanism for transendothelial 

migration of neutrophils to the vascular smooth muscle in preeclampsia 

Vascular ICAM-1 expression was significantly greater in preeclamptic patients 

than normal pregnant or normal non-pregnant patients. ICAM-1 was constitutively 

expressed on the endothelium in all groups, but in preeclamptic patients ICAM-1 was 

expressed intensely on vascular smooth muscle as well as on endothelial cells. This is 

further evidence, corroborating the IL-8 data, that there is inflammation of vascular 

smooth muscle in preeclampsia. Increased endothelial ICAM-1 expression provides 

evidence that endothelial cells are a likely source of elevated plasma levels of ICAM-1 in 

l . ed b th . . 83 84 162 Th al . "th preec ampsia, as report y o er mvestlgators ' ' . ey are so consistent WI an 

in vitro study that demonstrated increased endothelial cell ICAM-1 expression upon 

incubation with preeclamptic plasma 1 12. 

The percentage of vessels stained for CD66b was significantly greater in women 

with preeclampsia than in nonnal pregnant or normal non-pregnant women. There were 

significantly more neutrophils adhered and flattened along the endothelium, within the 

intima and present on the outside of the vessel wall in women with preeclampsia as 

compared to controls. The percentage of neutrophils present within different portions of 

the vessel correlated with an overall greater number of neutrophils per vessel. Diffuse 

vessel staining also was present in women with preeclarnpsia and, most likely, reflects 

secretion of CD66b from activated neutrophils. 
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These new data may explain previous findings in the field of preeclampsia. A 

study by Roggensack et al. showed increased expression of nitrotyrosine, suggestive of 

ONOO - formation, a strong prooxidant, in the vasculature of women with preeclampsia 

1 1 0. A simultaneous increase in the expression of endothelial NOS and a decrease in the 

expression of SOD also were observed. Our findings may explain the source of 0/- for 

the formation of ONOO- because the rapid interaction of neutrophil 02·- with endothelial 

NO• in the presence of deficient SOD would produce ONOO-. Our data in conjunction 

with Roggensack' s  data strongly suggest that there is localized systemic oxidative stress 

throughout the maternal vasculature, which results in vascular lipid peroxidation leading 

to vascular inflammation and dysfunction. 

Chappell et al. reported that vitamin E and vitamin C supplementation 

significantly decreased the incidence of preeclampsia in women at increased risk 48
. A 

decrease in the incidence of preeclampsia was associated with a decrease in urinary 

isoprostane, a marker of oxidative stress 49
. These data implicate oxidative stress in the 

pathogenesis of preeclampsia by using antioxidants to prevent development of the 

disorder. Since oxidative stress upregulates many components involved in neutrophil 

transendothelial migration, the prophylactic use of antioxidants during pregnancy may 

inhibit mechanisms involved in transendothelial migration of neutrophils to prevent 

development of preeclampsia. 

Neutrophil adherence and infiltration were evident in resistance-sized vessels. 

Neutrophils are known to produce thromboxane, a potent vasoconstrictor, in the presence 

of oxidative stress 163 . Hypertension, therefore, may result as activated neutrophils deliver 
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thromboxane directly to the vascular smooth muscle. Vascular disruption and oxidative 

stress caused by the products of adhered and infiltrated neutrophils would also affect 

endothelial cell integrity to proteins 164, resulting in edema in the systemic circulation and 

proteinuria in the kidney. 

In summary, the present study is the first to provide in vivo evidence of vascular 

smooth muscle inflammation and neutrophil infiltration into maternal systemic vascular 

tissue in preeclampsia. These new data suggest that there is total "vascular cell 

dysfunction", which includes vascular smooth muscle cells, in addition to endothelial 

cells, in preeclampsia. These data could explain the clinical symptoms of hypertension, 

proteinuria, and edema, and they suggest novel treatments for preeclampsia based on 

neutralizing antibodies to IL-8 or cell adhesion molecules. 
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Figure 26. A visual representation of our hypothesis of increased expression of 
vascular smooth muscle IL-8 and endothelial ICAM- 1 coincident 
with infi ltration of neutrophils into maternal systemic vascular tissue 
in women with preeclampsia. 

Activated neutrophils adhere and flatten onto endothelial cells by binding to ICAM-
1 .  In response to IL-8 produced by vascular smooth muscle cells, neutrophils 
infiltrate into the intimal space. We speculate that neutrophil production of ROS, 
MPO or TX could result in vasoconstriction and vascular dysfunction. 
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Table 3. Clinical data for patient groups. 

Normal Non- Normal 
pregnant Pregnant Preeclamptic 
(n = 4) (n = 6) (n -5) 

Maternal Age 38.5 ± 5.4 27.5 ± 4.5 24.6 ± 5.5+ 

Pre-pregnancy BMI 31.8 ± 4.4 26.6 ± 6.5 29.2 ± 7.9t 
Systolic Blood Pressure 126.0 ± 9.2 119.5 ± 12.6 178.0 ± 12.8** (mm Hg) 
Diastolic Blood Pressure 79.3 ± 9.2 76.7 ± 8.2 (mm Hg) 111.0 ± 12.3 ...... 

Proteinuria (mg / 24 h) ND ND 885 ± 374.8 
(n = 2) 

Dipstick ND ND 3.7 ± 0.6 
(n = 3) 

Parity NA 2.8 ± 1.2 1.2 ± 1. 1 * 

Gestational Age (wk) NA 39. 1 ± 0.8 33.7 ± 3.8** 

Infant Birth Weight (g) NA 3291 ± 533.8 2004 ± 1027* 

Values are mean ± SD. ND indicates not determined. NA indicates not applicable. 
*P<0.05, * *P<O.O I compared with normal pregnant or normal non-pregnant. 
+ indicates no difference between preeclamptic and normal pregnant. 
t indicates no difference among groups. 
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Figure 27. Summarized visual score results for IL-8 staining. 

Preeclamptic patients had significantly greater IL-8 staining as compared to normal 
non-pregnant or normal pregnant patients. The visual score for preeclamptic patients 
reflected staining of both vascular smooth muscle cells and endothelial cells, whereas 
the visual scores for normal non-pregnant and normal pregnant reflected staining 
primarily of endothelial cells. ***P < 0.00 1 (NNP = 1, NP = 4 ,  PE = 3) 
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Figure 28. Summarized density measurements for IL-8 staining. 

Density ofIL-8 staining in preeclamptic patients was significantly greater than in 
normal non-pregnant or normal pregnant patients. *** P < 0.00 1 (NNP = 1, NP = 4, 
PE = 3) 

120 



Figure 29. 
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Frequency distributions of visual scores for IL-8 staining. 

Preeclamptic patients had more vessels with higher visual scores for IL-8 staining 
than normal non-pregnant or normal pregnant patients. x2 < 0.000 1 
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Figure 30 . 
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Correlation between visual scores and density measurements for IL-8 
staining. 

There was a positive correlation (r = 0.99) between visual scores and density 
measurements. These data show that visual scoring was objective and precise. 
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IL-8 immunohistochemical staining of vessels in subcutaneous fat. 

a) IgG negative control, x600, b) Normal non-pregnant patient showing no vessel 
staining, x300, c) Normal pregnant patient showing light brown vessel staining, 
x300, d) Preeclarnptic patient showing intense brown vessel staining, x600. 

(A- adipocyte, VL- vessel lumen, VW- vessel wall) 



Figure 32. IL-8 immunohistochemical staining (panels a and c) contrasted with 
staining for a-smooth muscle actin (panels b and d) in preeclamptic 
patients. 

IL-8 staining is clearly evident in the vascular smooth muscle of these preeclamptic 
patients. The longitudinal arrangement of the vascular smooth muscle is evident by 
IL-8 staining in panel c. a) IL-8, x600 ,  b) a-smooth muscle actin, x600 ,  c) IL-8, 
x400,  d) a-smooth muscle actin, x400. 
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Figure 33. Swnmarized visual score results for ICAM-1. 

ICAM-1 was constitutively expressed in all groups. Preeclamptic patients had 
significantly greater ICAM-1 staining as compared to normal non-pregnant or normal 
pregnant patients, primarily due to staining in vascular smooth muscle cells, as well as 
endothelial cells. There was no difference for ICAM-1 staining between normal non­
pregnant and normal pregnant patients. *P < 0.05 
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Figure 34. Summarized density measurements for ICAM-1. 

Density of ICAM-1 staining in preeclamptic patients was significantly greater than in 
normal pregnant patients and significantly less than in normal non-pregnant patients. 
Staining in normal non-pregnant patients was limited to the endothelium, whereas in the 
normal pregnant patients and especially in the preeclamptic patients, staining was present 
in vascular smooth muscle, as well as endothelium. Density measurement, as opposed to 
visual score, did not reflect the spread of staining to vascular smooth muscle cells. 
**P < 0 .01  
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Figure 36. 
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Correlation between visual scores and density measurements for 
ICAM- 1 staining. 

There was a positive correlation (r = 0.95) between visual scores and density 
measurements. These data show that visual scoring was objective and precise. 
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Figure 37. ICAM-1 staining of vessels in subcutaneous fat. 

a) IgG Negative control, x400 ,  b) Normal non-pregnant patient showing brown 
staining of the endothelium lining the vessel lumen, but not of the vascular smooth 
muscle. Leukocytes also express ICAM-1 and some are stained in the lumen (thin 
arrows), x300 ,  c) Normal pregnant patient showing brown staining of the 
endothelium, as well as light staining of the vascular smooth muscle, x600 ,  d) 
Preeclamptic patient showing intense brown staining of endothelium, as well as 
vascular smooth muscle, x400. 

(EC- endothelial cells, VSMC- vascular smooth muscle cells) 
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Figure 38. 
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Comparison of staining for ICAM-1 (panel b) with staining for 
Factor VIII delineating endothelium (panel a) and staining for a­
smooth muscle actin delineating vascular smooth muscle (panel 
c) in a preeclamptic patient. 

Staining for ICAM- 1 is clearly evident in the vascular smooth muscle, as well as 
in the endothelium, x400. 
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Figure 39. Summarized visual score results for CD66b staining. 

Preeclamptic patients had significantly greater CD66b staining as compared to 
normal non-pregnant or normal pregnant patients. The visual score for CD66b 
was based on both staining intensity and quantity of neutrophil infiltration. 
***P < 0.00 1 
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Figure 40. Summarized density measurements for CD66b staining. 

Density of CD66b staining was significantly greater for preeclamptic patients as 
compared to normal non-pregnant or normal pregnant patients. * **P < 0 .00 1 
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Frequency distributions of visual scores for CD66b staining. 
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Preeclarnptic patients had more vessels with higher visual scores of CD66b staining than 
normal non-pregnant or normal pregnant patients. x2 < 0.000 1 
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Correlation between visual scores and density measurements for 
CD66b staining. 

There was a positive correlation (r = 0.90) between visual scores and density 
measurements. These data show that visual scoring was objective and precise. 
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Figure 43. 
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Percent of vessels stained with CD66b. 

A mean of76% of the vessels in preeclamptic patients stained for CD66b as compared to 
27% for normal pregnant patients and 23% for normal non-pregnant patients. **P < 0.01 
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Figure 44. 
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Percent of vessels with neutrophils adhered and flattened onto 
endothelial cells. 

Over half of the vessels of preeclamptic patients had neutrophils adhered and 
flattened to the endothelium as compared to 19% for normal pregnant patients and 
15% for normal non-pregnant patients. **P < 0 .0 1  
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Figure 45. Percent of vessels with neutrophils infiltrated into the intimal space. 

Over 50% of the vessels of preeclamptic patients showed neutrophil infiltration to 
the intima as compared to 6% for normal pregnant patients and 2% for normal non­
pregnant patients. *** P < 0.00 1 
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Figure 46. Percent of vessels with neutrophils present on the outside of the vessel. 
Twenty-six percent of the vessels of preeclamptic patients had neutrophils present on the outside of the vessel as compared to 3% for normal pregnant patients and 2% for normal non-pregnant patients. **P < 0.01 
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Figure 47. 
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Average number of neutrophils adhered and flattened onto 
endothelium, infiltrated into intima space, and present on the outside 
of the vessel for a 8 µm section of tissue. 
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The average number of neutrophils per vessels with staining was 7.3 for preeclamptic 
patients as compared to 1.9 for normal pregnant patients and 1.3 for normal non­
pregnant patients. Neutrophil staining for normal non-pregnant and normal pregnant 
patients primarily involved only endothelial cell adherence, whereas neutrophil 
staining for preeclamptic patients involved all aspects of the vessel. ***P < 0.00 1 
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Table 4. Summary of CD66b immunohistochemical staining for resistance­
sued vessels (10 µm - 200 µm) 

Total Vessels with Stained Cells 

Vessels with Stained Cells Adhered 
& Flattened on Endothelium 

Vessels with Stained Cells in 
Intima 

Vessels with Stained Cells on 
Outside of Vessel 

No. ofNeutrophils / Vessel with 
Staining (8 µm section) 

Normal Non-
Pregnant 
{n = 4} 

22.6 ± 6. 1% 

14.8 ± 4.2% 

2.3 ± 1.0% 

2.5 ± 2.2% 

1.3 ± 0.3 

Normal Preeclamptic Pregnant (n = 5) {n = 6} 

26.9 ± 7.5% 76.6 ± 8.4%** 

18.5 ± 6.2% 55.9 ± 6.9%** 

6.5 ± 2.2% 52.3 ± 10.6%*** 

3.0 ± 1.4% 26.0 ± 6.6%** 

1.9 ± 0.4 7.3 ± 0.8*** 

Values represent mean ± SEM. *P < 0.05, **P < 0.0 1, ***P < 0.00 1 compared with 
normal pregnant and normal non-pregnant. 
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CD66b staining of leukocytes (panels a and b) and of vessels in 
subcutaneous fat (panels c-t). 
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a) Neutrophi ls isolated from blood showing brown staining for CD66b, x600, b)  
Monocytes and lymphocytes isolated from blood showing lack of staining for 
CD66b, x600, c) IgM negative control ,  x400, d) Normal non-pregnant patient 
showing no CD66b staining, x400, e) Normal pregnant patient showing a rounded 
cell l ightly stained for CD66b on the endothelium (arrow), x600, t) Preeclamptic 
patient showing massive brown staining for CD66b along the endothelium and in the 
intima, x600. 
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Representative sections of CD66b staining of neutrophils in various 
vessel locations in preeclamptic patients. 
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a) This section shows brown stained neutrophils within the lumen and along the 
endothelium. In the upper part of the vessel are two examples ofneutrophils adhered 
and flattened onto the endothelium (arrows), x600, b) This vessel shows massive 
neutrophil involvement. Neutrophils are adhered to the endothelium and present 
within the intima. The entire circumference of the vessel is involved, x600, c) This 
vessel is an example of neutrophil staining in the intima (arrows), x900, d) This 
vessel also shows massive neutrophil involvement Neutrophil staining is clearly 
evident on the outside of the vessel (arrows), x900. 



Chapter 6 

DISCUSSION 

This investigation is the first to demonstrate neutrophil transendothelial migration 

into systemic vascular tissue in women with preeclampsia. It also suggests how 

transendothelial migration of neutrophils may be favored in an environment of oxidative 

stress and elevated levels of linoleic acid by activation of neutrophils and vascular 

smooth muscle expression of IL-8. The observations of this dissertation link vascular 

smooth muscle, endothelial, and neutrophil dysfunction to a single mechanism, 

transendothelial migration of neutrophils, that could explain the clinical symptoms of 

preeclampsia of hypertension, proteinuria, and pathological edema. 

Oxidative stress and elevated plasma levels of linoleic acid are present in women 

with preeclampsia. Our in vitro data indicated that this combination favors a mechanism 

for neutrophil transendothelial migration. Specifically, our studies demonstrated that 

treatment of vascular smooth muscle cells with an oxidizing solution enriched with 

linoleic acid, but not either component alone, led to increased vascular smooth muscle 

cell production of IL-8. Similarly, this treatment solution rapidly activated neutrophils to 

produce superoxide. This favors neutrophil transendothelial migration because increased 

expression of IL-8 by vascular smooth muscle would create a concentration gradient for 
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IL-8 from the circulation to vascular smooth muscle to attract neutrophils, and rapid 

activation of neutrophils would prime them for transendothelial migration. The final 

study confirmed the predictions of the in vitro studies by demonstrating vascular smooth 

muscle cell expression of IL-8 coincident with neutrophil infiltration into systemic 

vascular tissue in women with preeclampsia. Inflammation of the vascular smooth 

muscle, as well as endothelium, was evident by expression of both IL-8 and ICAM- 1 in 

women with preeclampsia. 

Although there is little reason to believe that vasculature supplying subcutaneous 

fat differs from other systemic vasculature, it would be of interest to confirm neutrophil 

transendothelial migration in other systemic tissues, such as muscle or skin. This could be 

done in future experiments by taking small pieces of skin and abdominal muscle from the 

abdominal incision. 

Another future investigation of our laboratory will be to determine the 

relationship between the degree of neutrophil infiltration and the severity of clinical 

symptoms of preeclampsia. We were unable to do this in the present study because the 

sample size was too small. However, analysis of samples from women with hemolysis, 

elevated liver enzymes and low platelets (HELLP) syndrome, considered a severe form 

of preeclampsia by many clinicians, provided some information regarding the 

relationship between neutrophil activity and clinical symptoms. Our patient group with 

HELLP had blood pressures characteristic of severe preeclampsia, but proteinuria levels 

characteristic of mild preeclampsia. Vessels of HELLP women had less neutrophil 

infiltration as compared to our preeclampsia group, which was composed primarily of 
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severe preeclamptics, suggesting that the degree of neutrophil infiltration was correlated 

with the severity of proteinuria (Figure 50). These observations suggest that as the 

number of vessels with neutrophil infiltration into the intima increase, so does the 

severity of proteinuria and clinical presentation. Future investigations in our laboratory 

intend to clarify the relationship between neutrophil involvement and disease severity. 

We plan on increasing our sample size to differentiate between mild and severe 

preeclampsia. We expect to observe a linear relationship between the level of neutrophil 

involvement and the progression of preeclampsia. We also plan to increase our sample 

size for HELLP patients to clarify if HELLP truly is a severe form of preeclampsia or is a 

distinct pathophysiological process. 

Our sample population did not include any women with eclampsia, which is 

diagnosed when grand mal seizures accompany symptoms of preeclampsia. If neutrophil 

activation and transendothelial migration in the systemic circulation are responsible for 

clinical symptoms of preeclampsia, maybe a similar pathology in cerebral blood vessels 

is responsible for seizures of eclampsia. Belfort et al. proposed that increased cerebral 

perfusion pressure might cause eclamptic seizures in women with severe preeclampsia 

165. The work of this dissertation would support this hypothesis because neutrophil 

adherence and infiltration of cerebral blood vessels, accompanied with production of 

ROS, would lead to increased vascular permeability, cerebral edema and increased 

cerebral pressure. This idea could be tested in an animal model of preeclampsia, in which 

a brain biopsy could be obtained to determine if neutrophils infiltrate cerebral blood 

vessels. 
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Magnesium sulfate is the present treatment to prevent progression of preeclampsia 

to eclampsia. The mechanism of action of magnesium sulfate, however, is disputed and 

not understood 166. Our data demonstrating neutrophil infiltration into systemic vascular 

tissue in women with preeclampsia may explain how magnesium sulfate prevents 

eclampsia. Neutrophil function and activation is modulated by magnesium. Magnesium 

deficiency increases neutrophil phagocytosis and ROS production in a rat model, whereas 

magnesium sufficiency inhibits neutrophil activation 167. These results were confirmed 

using human neutrophils 168. Another group showed a 70 % decrease in plasma 

glutathione associated with neutrophil activation in magnesium deficient rats 169. 

Decreased plasma glutathione levels indicate systemic oxidative stress. Magnesium 

sulfate for the prevention of eclampsia may act by inhibiting neutrophil activation, and 

subsequently, minimize oxidative stress and reduce neutrophil transendothelial migration 

of cerebral vessels. The findings of this dissertation also would explain why magnesium 

sulfate is significantly more effective at preventing seizures of eclampsia compared to 
. d. . b l d " l  170 mmo tpme, a cere ra I ator . 

During the course of our research we found evidence of neutrophil involvement 

and infiltration in normal pregnant and non-pregnant patients. Upon investigation of their 

medical records, we found that normal pregnant women with neutrophil infiltration were 

in labor when the biopsy was collected. Non-pregnant women with neutrophil 

involvement were found to be obese or obese and hypertensive. In laboring women as 

compared to non-laboring women, there were significantly more vessels with staining for 

neutrophils, and neutrophils flattened and adhered to the endothelium, infiltrated into the 
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intima, and adhered to the outside of the vessel (Figures 51 and 52). In obese women or 

obese women with hypertension, there was greater neutrophil vessel involvement than in 

non-obese women with normal blood pressures (Figure 53). These observations invite 

speculations regarding a role for neutrophils and neutrophil transendothelial migration in 

many normal, as well as abnormal physiological processes, and suggest future research 

directions. 

We could speculate that parturition is an inflammatory process mediated by 

neutrophils. Neutrophils infiltrate the myometrium during labor, and the number of 

neutrophils present in the lower uterine segment increases with cervical dilatation 17 1 • 1 72 . 

Increased expression of cell adhesion molecules and IL-8 with parturition indicates a 

mechanism for transendothelial migration of neutrophils into these tissues 1 72• 1 73
. 

Neutrophils infiltrated into the myometrium may be responsible for the production of 

prostaglandins and thromboxane that cause myometrial contractions. Neutrophils within 

the lower uterine segment may release matrix metalloproteinases to cause cervical 

ripening. Systemic vascular neutrophil activation and transendothelial migration during 

labor may demonstrate a significant role for neutrophils in the process of parturition. 

These data also may answer why preeclampsia is associated with preterm labor. 

We could also speculate as to why neutrophil numbers increase and infiltrate 

systemic tissue during labor. Neutrophils may have a protective role in case of post­

partum infection. This may explain why the infection rate is so low after vaginal delivery 

with episiotomy (0.35%) as compared to C-section (2%) 1 • 1 74. It is remarkable that 

women who have completed the laboring process are less likely to develop post-partum 
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infections, despite the unsterile conditions of vaginal delivery. This may be explained by 

the activation and systemic infiltration of neutrophils with labor that provide an 

immediate defense to any infection. A rise in neutrophil numbers and activation during 

labor is not harmful to most women, but some women may not be able to withstand the 

vascular insult. This may explain why some women with normal pregnancy develop 

preeclampsia in the post-partum period. 

Our preliminary evidence for neutrophil activation and infiltration in obese and 

obese, hypertensive women are fascinating, especially considering the similarities in risk 

factors, pathology, and clinical symptoms between preeclampsia and cardiovascular 

disease. Cardiovascular disease, as preeclampsia, is characterized by endothelial cell 

dysfunction, oxidative stress, and generalized low-grade inflammation. Essential 

hypertension and preeclampsia share clinical symptoms of hypertension and proteinuria 

(microalbuminuria in the case of hypertension). Essential hypertension is unexplained 

hypertension caused by an increase in total peripheral resistance. A few recent studies 

have investigated a role for leukocytes, namely neutrophils, in the pathology of 

cardiovascular disease and essential hypertension. For example, increased white blood 

cell counts were shown to be strong predictors of coronary artery disease and stroke in 

post-menopausal women, and neutrophil count and neutrophil elastase were significantly 

elevated in subjects with essential hypertension 175• 1 76
. Neutrophils from patients with 

essential hypertension were more adhesive than neutrophils from normotensive 

individuals 1 77, as were neutrophils isolated from spontaneously hypertensive rats, which 

also exhibited neutrophil-mediated cytotoxicity to endothelial cells 178. Another study 
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used scanning electron microscopy to demonstrate neutrophil adhesion to endothelial 

cells and invasion of endothelial cell junctions of cerebral vessels in hypertensive rats. 

The evidence suggests a role for neutrophils in the pathology of essential hypertension, 

but no one has demonstrated significant neutrophil involvement in systemic vasculature 

as shown by our preliminary data. 

Our findings suggested that one of the risk factors for essential hypertension, 

obesity, is associated with increased vascular neutrophil involvement as compared to 

individuals of normal weight. In obese women, there were increased numbers of vessels 

with staining for neutrophils, and increased numbers of neutrophils adhered and flattened 

to endothelium, but not increased numbers infiltrated into the intima (Figures 52 and 53). 

The physical presence of increased numbers of neutrophils adhered and flattened onto 

endothelium would increase total peripheral resistance and could partly explain essential 

hypertension. The production of vasoconstrictors, such as TX and ROS, by activated 

neutrophils also could cause hypertension. It is evident that obesity shows early signs of a 

pathological process that will likely worsen over time and eventually may cause essential 

hypertension. These preliminary data for obese and hypertensive women suggest that 

preeclampsia may be a temporary, but an extreme and accelerated form of the 

pathological process responsible for essential hypertension. 

The work presented in this dissertation, demonstrating a role for oxidative stress, 

elevated levels of linoleic acid and neutrophil transendothelial migration in the 

pathophysiology of preeclampsia, offers numerous options for preventive and therapeutic 

benefits. These findings can serve as rationale for dietary modifications or therapeutic 
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targets. Dietary modification would be a simple and inexpensive method to reduce the 

risk of preeclampsia. A diet low in omega-6 fatty acids and high in antioxidants prior to 

and throughout pregnancy would offset oxidative stress associated with pregnancy and, 

hopefully, prevent preeclampsia. This dissertation work showed that neutrophil activation 

and vascular smooth muscle production of IL-8 are enhanced by oxidative stress in the 

presence of linoleic acid, suggesting that if one could decrease oxidative stress, 

preeclampsia could be prevented or its severity lessened. Since linoleic acid is a 

polyunsaturated fatty acid and readily oxidizes, it causes lipid peroxidiation, which 

propagates oxidative stress. Linoleic acid is the primary constituent of most vegetable 

oils. Substitution of oils rich in oleic acid, such as olive oil, could substantially reduce 

one's intake of linoleic acid. Research in our laboratory demonstrated that oleic acid, a 

monounsaturated fatty acid, reduces lipid peroxidation 152. Dietary modifications to 

decrease oxidative stress and the risk of preeclampsia are supported by the research of 

Chappell et al. 48
' 

49
, who demonstrated that vitamin E and C supplementation in women 

at high-risk for preeclampsia led to decreased markers of oxidative stress and a lower 

incidence of preeclampsia. 

Our observations also suggest that neutralizing antibodies to IL-8 or cell adhesion 

molecules might prevent or stop the progression of preeclampsia Recently, a monoclonal 

antibody directed against a4 integrins showed positive outcomes for the treatment of 

Crohn's Disease and multiple sclerosis in two large clinical trials 179' 180. Neutralizing 

antibodies to IL-8, ICAM-1, or CDl 1/CD18 would block the process of neutrophil 

transendothelial migration. This treatment could prevent production of ROS, MPO, and 
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TX by neutrophils present within the intima, which we speculate results in vascular cell 

damage and vasoconstriction. 

Another potential pharmacological intervention suggested by the results of this 

dissertation would be the use of AA metabolism inhibitors, such as aspirin, to reduce 

vascular inflammation and inhibit neutrophil transendothelial migration. Our in vitro data 

suggested that inhibition of thromboxane synthase would decrease production of IL-8 by 

vascular smooth muscle cells in the presence of oxidative stress and linoleic acid. A 

decrease in IL-8 production would reduce the chemotactic gradient for neutrophil 

transendothelial migration. The suggestion to use aspirin to prevent preeclampsia is not 

novel. Many small clinical studies showed that treatment with low-dose aspirin in women 

at high risk for preeclampsia reduced the incidence of preeclampsia 1 81 -184
. However, two 

large clinical studies by the National Institute of Child Health and Human Development 

Network of Maternal-Fetal Medicine Units did not demonstrate a beneficial effect with 

low-dose aspirin, although patient compliance was low 185• 186. These unfavorable results 

lead to a recommendation against low-dose aspirin for the prevention of preeclampsia. 

The debate over treatment of preeclampsia with low-dose aspirin is not over. Recently, a 

meta-analysis of clinical trials using aspirin to prevent preeclampsia demonstrated that 

aspirin was beneficial in preventing preeclampsia 1 87. 

These preventive modifications and therapeutic agents may also be beneficial in 

preventing essential hypertension. Dietary modifications of decreasing linoleic acid and 

increasing oleic acid with antioxidant supplementation would decrease available 

substrates for AA metabolism and inhibit oxidative stress, respectively. These 
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adjustments would inhibit many aspects of the mechanism of transendothelial migration 

of neutrophils. 

In conclusion, this investigation demonstrated transendothelial migration of 

neutrophils into systemic vascular tissue in women with preeclampsia. In vitro studies 

complemented this observation, suggesting aspects of this mechanism, involving vascular 

smooth muscle cells, endothelial cells, and neutrophils, that are modified by oxidative 

stress and linoleic acid to favor neutrophil transendothelial migration. These new data 

provide evidence for total ''vascular cell dysfunction" that could explain the clinical 

symptoms of preeclampsia. It is our hope that this work is beneficial to understanding the 

pathophysiology and the eventual treatment of preeclampsia. AMEN. 
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CD66b staining in vessels for HELLP patients. 
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HELLP patients (n = 3) were similar to preeclamptic patients with respect to percent of 
vessels with staining (panel a) and percent of vessels with neutrophiJs adhered and 
flattened onto endothelium (panel b ). HELLP patients, who did not have as severe of 
proteinuria as the preeclamptic patients, did not have the same degree of neutrophils 
infiltrated into the intima (panel c ). Panel d shows a vessel with a massive number of 
brown stained neutrophils adhering to the endothelium and occluding the lumen in a 
HELLP patient, x600. *P < 0.05, **P < 0 .01  
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Figure 5 1. CD66b staining in vessels for laboring patients. 

Laboring patients (n = 3) were similar to preeclamptic patients with respect to percent of 
vessels with staining (panel a) and percent of vessels with neutrophils adhered and 
flattened onto endothelium (panel b ). Laboring patients, however, did not have the same 
degree ofneutrophils infiltrated into the intima (panel c). *P < 0.05, **P < 0.0 1 
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Representative sections of CD66b staining of neutrophils in vessels of 
laboring patients. 

1 55 

a) This section shows brown staining for neutrophils adhered to endothelium, x600, b) 
This vessels shows a vessel occluded with neutrophils, x600, c) This vessel shows 
massive neutrophil involvement. The entire endothelium is lined with neutrophils, x400, 
d) This vessel has dark brown staining ofneutrophils accumulated along the endothelium, 
x600. 
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Figure 53. CD66b staining in vessels for obese and hypertensive patients. 

Obese (n = 1)  and obese, hypertensive (n = 2) patients were similar to preeclamptic 
patients with respect to percent of vessels with staining (panel a) and percent of vessels 
with neutrophils adhered and flattened onto endothelium (panel b ). Obese patients, 
however, did not have the same degree of neutrophils infiltrated into the intima as 
compared to preeclamptic patients (panel c ). These preliminary data may explain why 
obesity is a risk factor for preeclampsia, as well as essential hypertension. 
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Figure 54. Representative section of CD66b staining of neutrophils in a vessel of an 
obese patient. 

This longitudinal section shows massive brown staining of neutrophils throughout the 
length of the vessel, x400. 
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