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ABSTRACT 

ELECTROCHEMI CAL INVESTIGATION OF THE EFFECTS OF TEMPERATURE , 

pH , AND ELECTROLYTE ON THE ELECTRON TRANSFER REACTIONS OF 

CYTOCHROME c .  

Kent B .  Kol ler 

Virginia Commonwea lth Univers i ty ,  1 9 8 6 . 

Maj or Director : Dr . F .  M .  Hawkridge 

Spectroelectrochemical and e lectrochemical methods have 

been used to inves tigate the character i s t ic s  of heterogen

eous electron trans fer between cytochrome c and indium oxide 

e lectrodes . Direct e lectron transfer between cytochrome c 

and solid electrodes i s  of interest due to the interfacial 

character of electron transfer between the protein and its 

membrane-bound phys iological redox partners . The conforma 

tion of ferricytochrome c i s  affected more by changes in 

temperature or pH than i s  i ts  reduced form , ferrocytochrome 

c .  Thi s  difference in conformational stabi lity i s  attri 

buted to the + 1  charge o f  the heme i n  ferricytochrome c that 

is largely embedded in the hydrophobic interior of the 

enzyme . 

A linear temperature dependence of the formal potential 

of cytochrome c was observed f rom 5 to � 5 5 ° C  in neutral 

and acidic media .  Thi s  behavior is  attributed to a linear 

variation in the conformation of ferricytochrome c that 



xiii 

results in an increase in so lvent exposure of the solvent 

exposed heme edge . A break in the linear temperature 

dependence of the formal potential occurred at 4 0 ° C  in 

a lka line media .  Thi s  ref lects a dist inct conf ormational 

change that accompanies the onset of thermal denaturation of 

ferricytochrome c .  The change in reaction center entropy , 

ASrc O ,  of ca . - 1 3  eu in neutral and acidic media ( 5  to � 

5 5 ° C )  and in alkaline media ( be low 4 0  D C )  i s  appropriate 

for the smal l  shift to a more s table conformation of cyto

chrome c that occurs upon reduction . 

The heterogeneous electron tr ans fer rate constant , k O l , 

of  cytochrome c exhibited a biphas ic temperature dependence 

with a maximum value obtained at diff erent temperatures , but 

at the same formal potential in binding and nonbinding 

neutral media . Thi s  indicates that there is  an optimum 

conformation of ferricytochrome c for fac i le heterogeneous 

e lectron trans fer . Adsorption of reactant and product was 

detected . The strength and type of adsorption were found to 

be temperature - and pH-dependent . The characteristics of 

e lectron transfer between cytochrome c and an e lectrode 

depend on bulk so lvent properties and e lectrode surf ace 

characteristics . 



CHAPTER I - INTRODUCTION 

A .  Overview and Objectives 

Cytochrome c is a member of a diverse group of electron 

transfer enzyme s , cytochrome s ,  that a l l  contain a protoheme 

I X ,  or one of i ts  derivatives ( 1 - 3 ) . Whi le cytochromes are 

found in nearly a l l  forms of l i fe , thi s discus s ion will  be 

limited to the cytochrome c found in the mi tochondr ia of 

eukaryotic c e ll s . 

Oxidative phosphorylation couples the e lectron f low 

a long the mi tochondrial respiratory chain to the production 

of ATP ( adenos ine tr iphosphate ) ,  a common energy source in 

living cells ( 4 ) . The culmination of the respiratory pro

cess i s  the electron transport chain that i s  incorporated in 

the inner membrane of mitochondria ( Figure 1 ) . High energy 

electrons enter the chain from the matrix s ide of the inner 

membrane and release free energy as they move to the term

inal e lectron acceptor , oxygen . Cytochrome c i s  a sma ll  

( molecular we ight ca . 1 2 , 4 0 0 ) , water soluble , peripheral 

enzyme that exis ts  in the cytosol between the inner and 

outer membranes of mitochondr ia . I t s  function i s  to trans 

fer an e lectron from cytochrome c reductase to cytochrome c 

oxidase , the terminal enzyme in the electron transport 

1 



Figure 1 .  The mitochondrion : ( a ) : structure ( adapted from 
Whi te , A . ; Handler ,  P . ; Smith , E .  L . ; Hi l l , R .  L . ; Lehman , 
I .  R .  "Principles of Biochemi s try" , 6th Ed . ;  Mcgraw-Hi l l : 

2 

New York , 1 9 7 8) and ( b ) : the electron transport chain ( based 
on Gassott i , P .  Top.  Bioe lectrochem . Bioenerg.  1980, 1, 1 4 9 -
1 9 0)  . 
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chain . 

Cytochrome c i s  eas i ly separated from its mitochondrial 

environment because i t  is soluble in water and is  weakly 

as soc iated with the inner membrane surface . The protein has 

been wide ly studied owing to its availabi lity in pure , 

native form . The crystal s tructures of mitochondrial cyto

chrome c from several sources have been determined to atomic 

resolution ( 1 ) . The interpretation of the phys icochemical 

properties of cytochrome c is fac i l itated by the knowledge 

of its conformation . 

The kinetics and mechanism of e lectron trans fer between 

cytochrome c and its physiological redox partners is not 

fully understood. Electrochemistry has been applied to the 

study of the thermodynamic and kinetic properties of cyto

chrome c ( 5 - 5 6 ) . Whi le the temperature dependence of the 

thermodynamic properties of cytochrome c has been inve s t i 

gated using e lectrochemical methods , heterogeneous e lectron 

transfer had not been employed prior to the beginning of 

this research , rather , a mediator was used to l ink the pote

ntial of the electrode to the redox ratio of cytochrome c 

( 1 4 ,  17 , 2 3 , 2 4 , 4 4 ) . Although heterogeneous electron 

trans fer rate constants have been obtained for cytochrome c 

at var ious e lectrodes ( 1 5 ,  1 8 , 2 7 , 2 9 , 3 0 , 3 2 , 3 5 , 3 6 ,  3 7 , 

3 8 ,  4 1 , 4 2 , 4 5 - 5 6 ) , the ef fects of temperature on the 

heterogeneous e lectron transfer kinetics have not been 

investigated . The goal of the research presented in this 

dissertation has been to e lucidate the mechani sm of the 
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heterogeneous e lectron transfer o f  cytochrome c at a so lid 

e lectrode through the character i z ation of the ef fects of 

temperature , pH , and e lectrolyte on the thermodynamic and 

kinetic parameters of the reaction . The study of cytochrome 

c electron trans fer behavior us i ng direct e lectrochemical 

methods is of interest due to the interfacial character of 

the e lectron transfer reactions between cytochrome c and its 

phys iological redox partners . Thi s  i nve stigation of the 

mechanism of direct e lectron trans fer of cytochrome c at an 

e lectrode also may provide useful information for the gen

eral development of arnperometric biosensor s .  

B .  Structure o f  Cytochrome c 

Cytochrome c ( Figure 2)  consists  of a s ingle polypep

tide chain with a globular tertiary structure and a heme 

( Figure 3 )  that is deeply embedded within the hydrophobic 

i nte rior of the protei n ,  except for a solvent - exposed heme 

edge ( 1 ) . The redox component of cytochrome c is a low- spin 

iron atom located in an octahedra l  coordination environment . 

The iron atom cyc les between the +3 and +2 oxidation states . 

A porphyrin ring provides the equatorial ligands . The iron

containing porphyrin r ing is the heme group . Axial coordi 

nation s ites of the i ron atom are occupied by two strong 

field ligands : the €-nitrogen of his - 1 8  and the sulfur atom 

of  met - 8 0 . 

I n  ferricytochrome c ,  the f ive electrons in the 3d 

she l l  of the i ron atom are located in the dxy , dxz ' and dyz 

orbitals . The z axis is normal to the heme plane . The 
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Figure 2 .  Cytochrome c molecular structure . Thi s  view of 
oxidi zed horse heart cytochrome c is towards the mo lecular 
f ront face , which contains the exposed heme edge ( or heme 
crevice ) .  The left and ri ght s ides of the mo lecule are as 
viewed . Only the a-carbon atoms are shown ; amide groups are 
represented by straight bonds . No amino acid side chains 
are shown except for those bonded to the heme , i . e . , met -
8 0 , his- 1 8 , cys - 1 4 , cys - 1 7 . ( Adapted from Dickerson , R .  E . ; 
Timkovich , R .  I n  " The Enzyme s " , Boyer , P .  E . , Ed . ;  Academic 
Press : New York , 1 9 7 5 ; Vol .  XI - A ,  3 9 7 - 5 4 7 ) .  
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8 

Figure 3 .  Heroes  b and c 
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heme .Q, 

heme.£ , 
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unpai red spin dens i ty i s  located primari ly in the dxz and 

dyz orbitals ( 5 7 ) , which are mixed with the n-orbitals of 

the porphyri n  ring . A proton NMR s tudy of horse heart 

ferricytochrome c ( 5 8 )  revealed that there is a pronounced 

asymmetry to the spin densi ty distribution , i . e . , 2% of an 

unpai red e lectron is local i zed on the porphyrin ring carbon 

atoms 3 and 8 ,  whereas only 0 . 5 % of the unpaired e lectron is 

on ring carbon atoms 1 and 5 .  Carbon atom 3 is  at the sol

vent-exposed heme edge . Thus , the asymmetry of the unpaired 

e lectron spin distribution on the heme may f ac i li tate direct 

electron transfer at the solvent - exposed heme edge of cyto

chrome c .  The importance of the spin densi ty asymmetry to 

physiologica l  function is reinforced by the fact that a 

chemical modif ication of cytochrome c caused a change in the 

spin density distribution and a concomi tant loss of phys io

logica l  activity ( 5 9 ) . The direction of the spin density 

distr ibution asymmetry may be control led by the chirality of 

the axi a l ly bound met - 8 0  sul fur ( R  i n  horse heart ) ( 6 0 ) . 

The chi rality o f  the met - 8 0  sulfur atom controls the direc

tion of  the lone pair orbital on the sulfur atom ( di rected 

a long pyrrole rings II and IV in mitochondr ial-type cyto

chrome c ) . The orientation of thi s lone pair orbital 

imparts different energies to the molecular orbitals formed 

f rom the dxz and dyz  atomic orbitals of the iron in which 

the unpaired electron resides , affecting the distribution of 

the unpaired e lectron spin densi ty .  

The crystal structures o f  horse heart and bonito ferri-
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cytochrome c have been determined t o  2 . S  A resolution ( 6 1 ) . 

Horse heart and bonito cytochrome c consist  of 1 0 4  amino 

acids in one continuous polypeptide chain , with no disulf ide 

br idges . The heme seems to be the contro l l ing feature of 

the fo lding of the polypeptide chain . Only one group of 

res idue s , 92 to 1 0 2 , i s  strictly a lpha-he lical . There are 

s ix abrupt bends in the chain , each at a location required 

to attain a g lobular structure about the heme . Re sidues 1 

through 4 7  are on the right s ide of  the heme ( as shown in 

f i gure 2 ) , whi le res idues 4 S  through 91 are on the left s ide 

with the heme placed deeply within the pocket formed by the 

halve s . The remaining residues , 9 2  to 1 0 4 , form an alpha

helical chain that extends from the top rear to the right 

s ide of the enzyme . The halves of the polypeptide chain are 

held together by four bonds to the heme . The right s ide of 

the po lypeptide chain is covalently attached to the heme by 

thioether linkages between cys - 1 4  and cys - 1 7  and the vinyl 

groups at pos itions 2 and 4 ,  respec tive ly , and by a coor

dinate bond between a nitrogen of h i s - IS and the i ron atom 

of  the heme . The left side i s  attached to the heme by the 

coordinate bond between the met - SO sul fur and the iron atom . 

Thus , the heme plays a maj or role in the stabi li zation of  

the enzyme structure . Substi tution of  synthetic prosthetic 

groups that are incapable of covalent linkage to the poly

peptide chain results in a looser structure due to a weaken

ing of the heme crevice ( 6 2 ) . The structure of the enzyme 

i s  further stab i l i zed by an extensive series of hydrogen 
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bonds . A hydrogen bond from the carbonyl oxygen of pro-3 0 

to the o- ni trogen o f  his - 1 8  stab i l i zes  the orientation of 

the imidazole ring re lative to the heme . The sulfur of met-

80  i s  hydrogen bonded to tyr - 6 7 . One of the propionic acid 

s ide chains of  the heme group is buried deeply in the hydro

phobic interior of the enzyme . Thi s  polar group promotes 

hydrogen bonds to tyr - 4 8 , trp- 5 9 , and thr- 4 0 . It  has been 

estimated , by a proximity analys i s  from crys tal structure 

data , that there are 3 7  backbone , 23 backbone - to - s ide chai n ,  

and 1 0  s ide chain-to-side chain hydrogen bonds ( 6 3 ) . By the 

same analysi s , it was calculated that there are 1 3 6  nonpolar 

contacts within l imits of 4 . 0  A and 2 9 8  nonpolar contacts 

wi thin limits of 4 . 5  A .  I t  was conc luded from a study of 

the contribution of e lectrostatic f actors to the conforma 

tional stab i li ty o f  cytochrome c that the maj or forces con

tributing to structural integrity are due to interactions 

between interna l  res idues ( 6 4 ) . Both s ide s of the heme are 

surrounded by hydrophobic s ide chains with at least two 

approximately parallel aromatic groups on each s ide , creat 

i ng a hydrophobic environment for the heme . The crevice 

about the solvent - exposed heme edge is circ led by several 

positive ly charged lys ine groups . A c luster of nine nega

tive ly charged acidic residues i s  located at the opposite 

end of the molecule . Thi s  asymmetric distribution of 

charges on the surf ace i s  an unusua l feature of cytochrome 

c ,  and it wi l l  be di scussed further . I n  a l l , cytochrome c 

has 1 9  pos it ively charged lys ine residues , plus two argi -
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nines , a l so pos i t ive ly charged , but has only 1 2  acidic res i 

dues ( aspartic or glutamic acids ) .  Thus , cytochrome c is  a 

very bas ic molecule with an i s oelectric point near pH 1 0 . 

Cytochrome c has nine aromatic res idues s i tuated in the 

tightly packed interior of the molecule . With the exception 

of  the iso lated aromatic res idues , phe - 3 6  and phe- 8 2 , a l l  

a r e  pos i tioned in a parallel conf iguration with a t  least one 

other aromatic group . Phe - 3 6  f i l ls a hydrophobic position 

in the rear of the molecule , and appears to serve no purpose 

other than to provide hydrophobic ity and bulk . Phe- 8 2 , 

however ,  i s  c lose to the heme group in the center of the 

f lexible region of res idues 8 0  to 8 5 . The c lose parallel  

conf iguration of the aromatic group of phe - 8 2  and the heme , 

together with its relative freedom of movement , indicate 

that phe - 8 2  may serve as a pathway for e lectron trans fer to 

and from the heme ( vide infra ) .  

The crystal s tructures of tuna ferricytochrome c ( 6 5 )  

and ferrocytochrome c ( 6 6 )  have been determined to 2 . 0  A 

reso lution . Whi le the research presented i n  this disserta

t ion used exclusive ly horse heart cytochrome c ,  the analysi s  

of  tuna cytochrome c i s  of interest  for two reasons . First , 

a l l  types of eukaryotic cytochrome c are nearly identical in 

s tructure and function , differ ing only in a few residue 

substitutions in or additions to the po lypeptide chain . 

Second , the crys tals of horse heart ferricytochrome c were 

of limited qual i ty ( 6 5 )  such that the resolution of the x

ray crystal structure could not be extended beyond 2 . 8  A and 
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obtained . 
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The analys i s  of tuna ferricytochrome c revealed that 

the phe - 8 2  residue is located next to the heme , and c loses 

the heme crevice . I t  does not extend out into the external 

solut ion as had been suggested in the 2 . 8  A analysis of 

horse heart ferricytochrome c ( 6 1 ) . A comparison of the 

crystal structures of the two redox states of tuna cyto

chrome c demonstrated some smal l  diff erences ( 6 7 ) . When 

reduced , the heme group moves 0 . 1 5 A further into the hydro

phobic interior o f  the molecule . Several residues that are 

directly involved with the heme also move . These inc lude 

res idues involved in heme attachment to the polypeptide 

chain , the residues positioned at the lower right lining of 

the heme c revice , those at the f loor of the crevice , and 

groups tyr - 6 7 , met - 8 0 , phe - 8 2 , and ala- 8 3 . Also , a network 

of hydrogen bonding invo lving asn- 5 2 , thr- 7 8 , and tyr - 6 7  

with a buried water molecule located t o  the left o f  the 

heme is affected . When cytochrome c is reduced , the water 

molecule moves approximate ly 1 . 0  A away from the heme . The 

residues that are hydrogen bonded to the water molecule are 

also shifted in pos ition . Thi s  bur ied water mo lecule i s  

located approximate ly 5 A from the met - 8 0  sul fur atom and 

lies underneath the 7 0  to 8 0  series of residues of the poly

peptide chain . Thi s  region of the molecule appears to be 

the active s ite for e lectron transfer ( vide infra ) .  The 

s ide chains of this series of res idues are either basic or 



hydrophobic , and would provide a good fit  to a hydrophobic 

region surrounded by a ring of negative charges on a reac 

tion partne r . Thi s  appears to be the mode of interaction 

for the reaction of cytochrome c with cytochrome c peroxi 

dase ( 6 8 ) . 

1 5  

A s ignif icant feature o f  cytochrome c i s  that whi le the 

iron atom cycles between charges of +3 and +2 , the heme 

group has a pos i tive charge of +1 in the oxidi zed form and 

i s  neutral when reduced . Therefore , the pos i tive charge on 

the heme in ferricytochrome c is partially s tab i l i zed by the 

1 . 0  A shift of the buried water molecule toward the heme and 

the 0 . 1 5 A movement of the heme out of its hydrophobic cre

vice . 

I n  summa ry , cytochrome c cons i s t s  of a heme which is  

enve loped by the hydrophobic groups of the po lypeptide 

chain . The hydrophilic groups o f  the po lypeptide chain are 

oriented outward , and so lubi l i z e  the molecule . The protein 

i s  roughly spherical i n  shape , with dimensions , exc luding 

solvent , of 3 0  X 3 4  X 3 4  A ,  inc luding s ide chains . 

The protein sheath plays a crucial role in determining 

the reduction potential  of the heme . Several explanations 

of the factors that determine the reduction potential have 

been proposed . Mitochondr ial cytochrome c has a redox 

potential of 2 6 0  mV ± 20 mV ( 1 - 3) . Thi s  value i s  approxi 

mately 3 0 0  mV pos i tive of mode l heme compounds in aqueous 

solution ( 6 9 ,  7 0 ) . The substitution of nonaqueous , low 

dielectric solvents for water raised the reduction potential 
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of  the model heme complexes ( 6 9 ,  7 0 ) . From this result , i t  

was postulated that the hydrophobic environment of the heme 

group caused the high reduction potential of cytochrome c .  

The model was based on the difference in f ree energy for the 

ferric heme ( posi tive charge of +1 ) in polar and nonpolar 

environments . The neutral ferrous heme was as sumed to have 

an e lectrostatic free energy change of zero with change in 

po larity of  solvents . Thus , the pos i tively charged ferric 

heme is destab i l i zed relative to the neutral ferrous heme in 

a nonpolar environment , resulting in a positive shift  in 

reduction potent i a l . Another model ( 7 1 )  is  that the degree 

of heme exposure to solvent is inversely proportional to the 

reduction potent i a l  and that solvent exposure , rather than 

i nternal hydrophobicity , is the controlling f actor . Moore 

and Williams ( 7 2 )  proposed that the reduction potential  is 

determined by a more complex mix of f actors that inc lude s 

the e lectrostatic charge and donor and acceptor power of the 

ligand . Nitrogen i s  a better e lectron donor than sulphur 

( lowers reduction potential ) ,  and sulphur is a better n

acceptor than ni trogen ( raises the reduction potential ) .  

Therefore , cytochromes with two histidi ne axia l  ligands have 

lower reduction potentials than cytochrome c .  Myer , et al . 

( 7 3 )  publi shed s imul taneous ly with Moore and Wi l l i ams , and 

stated that nei ther the hydrophobicity of the heme envi ron

ment nor the degree o f  solvent exposure controls the reduc -

-tion potential . The governing factors were determined to be 

a combination of the integrity of the Fe - S  bond and the 
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hydrophobicity of the trp-5 7 heme environment i n  the deepest  

part of the heme crevice . Substitution of various internal 

residues local to the heme altered the reduction potential 

of  cytochrome c only i f  the hydrogen bonding network was 

dis rupted ( 7 4 ) . One additional contribut ing factor is the 

e lectrostatic interaction between one of the propionate 

s idechains of the heme and the positive charge on the ferric 

ion ( 7 5 ) . There does not appear to be a def ini tive explana

tion for the heme reduction potential  for cytochrome c .  

Moore and Williams conducted an NMR study of the ef fect 

of temperature on the conformation of ferricytochrome c ( 7 6 )  

and the ef fects of temperature and pH on the conformation of 

ferrocytochrome c ( 7 7 ) . They found that ferrocytochrome c 

was extremely s table i n  that i t  maintained its  native con

f iguration from 4 to 9 7 ° C  at neutral pH and from pH 4 to 1 2  

a t  2 5  ° C .  The high activation energy required for the rota

tion of the aromatic group of a tyrosine residue ref lected 

the c lose packing of the interior of the molecule ( 7 8 ) . 

There was a linear relationship between the log of the rota

tion rate and temperature . Thi s  indicated that the rotat ion 

rate of aromatic residues in the interior of the enzyme 

could be used as a measure of the stability and conformation 

of a globular enzyme . Ferricytochrome c was less stable to 

the ef fects of temperature , but s t i l l  maintained nativity in 

the wide temperature range of 20 to 77 ° C  at pH 5 . 3 .  ( The 

temperature range for nativity was not studied at neutral 

pH . ) The denaturation of ferricytochrome c was attributed 
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t o  the rupture o f  the iron t o  met - 8 0  sul fur bond , which 

gradua l ly weakened with increase in temperature . Some high

spin character begins to deve lop at e levated temperatures 

prior to denaturation . Moore and Williams found that there 

is about 12 % high-spin character at 6 7 ° C .  Change i n  oxi 

dation state causes a sma l l  change in structure about i le-

5 7 . Thi s  region of the enzyme , the bottom half  of the front 

f ace , assists in shielding the heme from solvent ( 7 9 ) . I n  

addition t o  changi ng with oxidation state , the se residues 

also vary in pos i tion in a continuous manner with change in 

temperature and/or pH . Change of conf ormation of this 

region with change in oxidation state has also been deter 

mined by noting dif ferences in acetylation reactivity o f  

surf ace lys ine residues ( 8 0 ) . The relative change was found 

to be pH-dependent . Thus , the re lative conformational 

change accompanying change in oxidation state varies with 

temperature and pH . The driving forces for the conformation 

difference are a change in the Fe- S  bond length , which 

alters the pos itions of adj acent residues by a "pull-push" 

mechanism ( 7 6 ) , and the change in heme charge , which pro

duces conformati onal effects by e lectrostatic interactions . 

A ma j or difference between the two redox states of 

cytochrome c is  the difference in the Fe- S  bond strength . 

This bond has been determined to be much stronger in ferro

cytochrome c ( 8 1 ) . Thi s  coordinate bond is the only chemi

cal bond holding the left s ide of cytochrome c to  the heme . 

Thus , the increased rigidity and stabi lity of ferrocyto-



chrome c can be explained by the increase in the Fe -S  bond 

strength when ferricytochrome c i s  reduced . 

19  

A computer s imulation study of cytochrome c ,  based on a 

complex of ferricytochrome c and cytochrome c peroxidase , 

i l lustrated that the net result o f  reduction of ferricyto

chrome c is  a " c l amshe l l - l ike closing of the protein enve

lope on the heme " ( 8 2 ) . Res idues 1 - 2 0 , 2 7 , and 2 8 , on the 

right s ide of the heme , undergo a sma l l  movement to the 

lef t . Res idues 7 0 - 8 0 , located on the left s ide of the heme , 

shi ft to the right . There are three regions on the back and 

bottom of the molecule that s imul taneous ly undergo a hinge

like movement that serves as an energy sink to relieve con

format ional strai n .  Another ef fect of reduction is a move

ment of phe - 8 2 . The heme also moves . The bottom half 

( r ings 1 and 4 ,  the points of propionate attachment ) shifts 

to the left , and the top half ( points of thioether connec

tion to the backbone ) moves to the right . The driving force 

for the change in heme position is the change in charge on 

the heme from pos i tive to neutral upon reduction , caus ing 

change in the covalent and nonbonded interactions of the 

heme within its  protein environment . Thi s  movement at the 

binding s ite of cytochrome c provides a mechanism for break

ing away from its reaction partner fol lowing electron trans 

fer . 

The 6 9 5  nm absorption band of ferricytochrome c has 

been used as an indication of the condition of the Fe -S  bond 

( 6 0 ,  8 3 - 8 8 ) .  Thi s  absorption band can be e liminated by 
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i ncreas ing the temperature at  neutral pH  or by increas ing 

the pH whi le holding temperature constant . Both processes 

are entirely revers ible . There is ample experimental evi 

dence that an equi l ibrium between two forms of ferricyto

chrome c ( s tates III  and IV ) is  being affected . The 6 9 5  nm 

peak area should be monitored , rather than the peak height , 

to accurately determine the temperature of trans ition from 

state I I I  to state IV ( 8 6 ) . The convers ion of state I I I  to 

state IV is accompanied by a very unfavorable enthalpy 

change and a favorable entropy change . Thi s  i s  cons istent 

with the postulate that the conversion from state I I I  to 

state IV occurs through the breaking of the Fe-S bond . I n  

contrast , the Fe - S  bond in ferrocytochrome c i s  much more 

stable to extremes in pH or temperature ( 7 7 ) . 

The e f fect of pH variation on ferricytochrome c confor

mation was firs t  studied by Theore l l  and Akesson ( 8 9 ) . They 

reported f ive conformations ; state I I I  exists at neutral 

pH , states I and I I  correspond to acidic forms and states 

IV and V to alkaline structures . The respective pKa ' s  for 

the trans it ions from I to V are < 2 . 0 ,  2 . 5 ,  8 . 8  to 9 . 6 ,  > 1 1 . 

Myer et a l . ( 9 0 ) , in a resonance Raman study , reported two 

additional states , IlIa and I I I b .  S tate I lI a  i s  a precursor 

to the neutra l  form , state I I I , and state I I I b  i s  a precur

sor to the alkaline form , state IV . They found that the 

only pH region where the structure of cytochrome c was not 

af fected is from 5 to 7 .  

The trans i tion from the neutral form I I I  to the alka-
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line form I V  o f  ferricytochrome c ,  known a s  alkaline i somer

i z ation , has been we l l - s tudied . The techniques of resonance 

Raman spectroscopy ( 9 0 ,  9 1 , 9 2 ) , dif ferential pulse po laro 

graphy ( 3 1 ) , stopped f l ow ci rcular dichroism ( 9 3 ,  9 4 ) ,  and 

pulse radio lysi s  ( 9 5 ,  9 6 ) have been applied to examining the 

pH- induced conformational change from neutral pH to alkaline 

pH . The generally accepted mechanism involves an interme 

diate , i . e . , the structure labe led I I Ib by Myer . For the 

transit ion from s tate I I I  to state IV , analysis of the 6 9 5  

nm absorption band ( 9 0 )  revea led that the first  two- thirds 

of the loss of absorption is due to conformational change 

and the f inal one - third to disruption of the Fe-S bond . 

Also , the Fe - S  bond breaking f o l lows the change in confor

mation . The trans ition from state I I I  to state I I I b  invol 

ves a tightening of the pyrrole rings in the outer domain o f  

the porphyrin ring . The heme core i s  unaf fected . The 

dimens ions of the heme core ref lect the degree of hydropho 

bicity of the heme environment . As the nonpolar character 

increases , the porphyrin ring core s i ze increases .  The 

transition from state I I I b  to state IV invo lves more pro

nounced changes in the coordination configuration , as we ll  

as in the porphyrin r ing core dimens ions . The latter 

ref lects a loosening of the heme crevice . The change in 

coordination is produced by the rupturing of the Fe - S  bond 

and the deprotonation of some group that subsequently binds 

to the iron in the vacated axia l  posi tion . The transition 

from state I I I  to state IV is also accompanied by a decrease 
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in reduct ion potential ( 5 )  t o  the point where ferricyto

chrome c can no longer react with cytochrome c reductase . 

All three forms have been found to be e lectroactive , with 

state IV exhibiting much s lower e lectron trans fer kinetics . 

The mechanism proposed for reduction of s tate IV ferricyto

chrome c involve s formati on of an activated complex fol lowed 

by rapid e lectron trans fer , and then a s low relaxation to 

the stable ferrocytochrome c where the Fe - S  bond is reform

ed . 

The identi f ication of the group that replaces the sul

fur atom upon alkaline isomeri z ation i s  a point of contro

versy . I t  i s  known to be a strong f ie ld ligand due to the 

fact that the i ron remains low- spin . Lys - 7 9  and lys - 7 2  have 

been found to be likely candidates through chemical modi f i 

cation studies ( 8 7 ,  9 7 ) ,  a s  wel l  as a n  hydroxyl group ( 8 5 )  

and the phenolic hydroxyl group of trp - 6 7  ( 9 8 ) . Bos shard 

( 9 9 )  found that the 6 th l igand in s tate IV cannot be a 

lys ine . Bosshard proposed that deprotonation of the bur ied 

water molecule near met - 8 0  enables a deprotonated surf ace 

located water mo lecule to move into the heme crevice and 

replace the sulfur atom . Thi s  would explain the higher 

stability of ferrocytochrome c to alkaline pH . The ferrous 

heme is uncharged , and the hydroxyl ion at the heme edge is 

therefore not drawn into the heme crevice . 

Urea denaturation of horse heart ferricytochrome c at 

neutral pH i s  proposed to inc lude two intermediate states 

( 7 3 ,  1 0 0 ) . The f irst step is associated with a general 
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loosening o f  the heme crevice , fol lowed by solvent exposure 

of the po lypeptide backbone , and the f inal transition 

involves the breaking of the Fe -S  bond and a dis ruption of 

the tryptophan-heme domain of the mo lecule . No difference 

in bimolecular reaction kinetics was observed unti l  the 

third step . I t  was conc luded that the tryptophan domain 

determine s  the stabi l i ty of the Fe - S  bond , as we ll  as the 

formal reduct ion potent ial of the mo lecule . The mechani sm 

for the reduction of the denatured form was thought to occur 

through an activated complex which mus t  revert to one of the 

intermedi ate states prior to electron transfer . Hence , the 

f luorescence emitted by the tryptophan-heme region has been 

proposed to be a better indicator of the conformation of 

ferricytochrome c than the 6 9 5  nm absorption band ( 1 0 1 ) . An 

optica l ly transparent thin layer e lectrode cell  ( OTTLE ) was 

used to control the redox ratio of cytochrome c whi le s imu l

taneously monitoring the f luorescence of the solution . A 

mediator was used to link the potential  of the e lectrode to 

the solution cytochrome c .  Ana lys i s  of the change in f luor 

escence intens i ty revealed that the tryptophan residue moves 

toward the heme ca . 0 . 7  A upon reduction . 

The OTTLE , incorporating an electrochemical mediator , 

has also been used to study the effect of temperature on the 

formal reduct ion potential of cytochrome c in the presence 

of spec i f ically adsorbed anions ( 1 4 ,  1 7 , 2 4 ) .  The decrease 

in reduction potential with increase in temperature ( 2 5 to 

5 5  ° C )  was related to the extent of anion binding to ferri-
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cytochrome c .  Ion binding to the oxidized form reduces the 

charge repuls ion within the mo lecule , and thus decreases its 

s i z e , resulting in a smal ler net s i ze change during reduc 

tion.  The strength of anion binding was related to the 

change in formal potent ial with change in temperature , 

dEo ' /dT . Biphasic behavior was observed in the presence of 

chloride ions , with the trans i tion point occurring at 4 2 ° C .  

Thi s  was related to the change in so lvation strength of the 

chloride ion , which occurs at the s ame temperature . The 

idea that this is an entropy ef f ect was further reinforced 

by the e l imination of the biphasic behavior in D2 0 - chloride 

solutions . Thi s  biphasic behavior i n  the presence of chlor

ide anions was not observed in the case of heterogeneous 

e lectron transfer between cytochrome c and a chemically 

modif ied e lectrode ( 5 2 )  or a metal oxide semiconductor e lec

trode ( 5 6 ) . The reason for this discrepancy has not been 

resolved . A pos s ible explanation i s  that the chloride 

anions are excluded from the e lectron trans fer active s i te 

region under heterogeneous conditions ( 5 6 ) . Thi s  di screp

ancy will be discussed further in the Results and Discuss ion 

section . 

c .  Reaction Mechanism of Cytochrome c 

Cytochrome c reacts alternatively with its membrane

bound phys iological reaction partners . Electrostatic 

attraction provides the driving force for movement of cyto

chrome c to its appropriate partner . The movement of cyto

chrome c is  probably two-dimens ional along the negatively 



2 5  

charged membrane surf ace ( 1 0 2 ) . The dif fusion coeffic ient 

of cytochrome c in mi tochondria is much s lower than in 

aqueous solution , i . e . , 1 . 6  X 1 0 - 1 0  cm2 jsec ( 1 0 2 ) to 7 X 

1 0 - 1 0  cm2 jsec ( 1 0 3 ) versus ca . 1 . 2  X 1 0 - 6  cm2 jsec ( 1 0 4 ) . 

Thi s  appears to be due to the interaction of cytochrome c 

with the phosphol ipid membrane ( 1 0 5 ) . The rate of diffus ion 

of cytochrome c in its physiological environment is much 

smaller than that required for a mode l involving diffusion

mediated e lectron transfer between randomly dispersed com

ponents ( 1 0 2 , 1 0 3 ) . An explanation for this discrepancy i s  

that the cytochrome c reductase and oxidase enzymes are able 

to move within their membrane environment . A diffus ion 

coefficient o f  1 . 5  X 1 0 - 1 0  cm2 jsec for cytochrome c oxidase 

has been measured ( 1 0 3 ) .  Thus , there could be an equi l i 

brium between cytochrome c reductase-cytochrome c -cyto

chrome c oxidase aggregates ,  partial aggregates , and separ

ated reductase-diffusing cytochrome c oxidase systems , each 

participating in e lectron trans fer ( 1 0 2 , 1 0 3 ) . This theory 

is supported by the observation that only 5 0 %  of cytochrome 

c oxidase in native mi tochondrial membrane has rapid rota

tiona l mobili ty ( 1 0 6 ) . Another supporting facet is the 

S inger-Nicho l son f luid-mosaic mode l of biological membranes 

( 1 0 7 ) . Biomembranes  are po lar l ipid bilayers with an inter

nal f luid character due to an appropriate mixture of  satur

ated and uns aturated fatty acids . I ntegral proteins have 

hydrophobic surface residue s that al low them to dissolve in 

the nonpolar interior of the membrane . The membrane pro-
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duces the proper three-dimensi onal conformation of the inte 

gral membrane for biological activity . Since there are no 

covalent bonds between l ipid molecules of the bilayer or 

between the protein surf ace and the lipids , the integral 

protei ns are free to move in a two dimensional manner . An 

interesting hypothe s i s  i s  that both periphe ral cytochrome c 

and its integral redox partners are f ree to diffuse in a 

two-dimensional mode . The act ive s i tes of the integral 

proteins are maintained at the membrane-cytosol  inter face by 

the ir placement i n  the membrane . Cytochrome c moves along 

the interface , and is oriented for effective e lectron trans 

fer by e lectrostatic factors upon c lose approach to its 

redox partners . 

Despite the very sma l l  crystal structure dif ferences 

between reduced and oxidized tuna cytochrome c ,  there are 

many physicochemical properties which are affected by oxida

tion s tate ( 8 0 ) . The X- ray crystal structure represents a 

time - averaged static structure . However , the structure of 

cytochrome c is  not static in its physiological environment , 

rather , it i s  undergoing constant , thermal ly-induced motion . 

The dynamic , vibrational state of each redox form of cyto

chrome c mus t  be considered in order to explain dif ferences 

in phys icochemical properties ( 6 9 ,  8 0 , 1 0 8 , 1 0 9 ) . The mag

ni tude of the vibrational osc i l lations of ferricytochrome c 

i s  larger than that for ferrocytochrome c due to its compar

ative instabi l i ty .  Thus , the differences in phys icochemical 

properties of ferri- ferrocytochrome c may be explained by a 
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change in the acce s s ible dynamic states with change in oxi 

dation state , rather than the time - averaged conformational 

difference determined by X-ray crystallography ( 1 1 0 ) . Com

puter s imulations of the dynamic structure of enzymes have 

led to the conc lus ion that some physiological reactions , 

such as the revers ible binding of oxygen by myoglobin , would 

be impossible if the molecule had the rigid structure 

depicted by X-ray crys tal lography ( 1 0 8 ) . The mechanism of 

enzyme activity should not be based on a static picture of 

the protein structure ( 1 0 9 ) . The magnitude of the average 

atomic velocities is regulated by temperature . A computer 

s imulation study of protein motion revea led that i ndividual 

atomic f luctuations within globular enzymes are not indepen

dent of each other . Due to the tight packing of  residues on 

the i nterior of the structure , one atom cannot move appre 

ciably wi thout a concurrent movement of  i t s  neighbors . 

Thus , collective motions that develop over periods of 

severa l  picoseconds control the movement of individual 

interior atoms . Thes e  low-frequency collective motions can 

serve to provide the appropriate configuration for ef fective 

catalytic action . Movement of up to 2 A i s  possible on the 

surface of a protein where packing is not as tight , whi le 

movement of atoms within the protein are restricted to 

approximately 1 A .  The dynamics o f  the structure o f  a pro

tein are strongly affected by solvent ( 1 0 9 ) . Whi le the 

i nternal motions are not strongly af fected by so lvent , the 

movement of surface atoms has a dif fus ive character that is 
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dependent on the viscosity of the solvent . Thus , the rate 

at which a protein can alter its conformation is strongly 

dependent on so lvent vi scosity and therefore , temperature . 

The magnitude of the conformational f luctuations is control

led by the i nternal hydrogen bond and chemical bond struc 

ture of the protein . Since the motions of atoms throughout 

an enzyme are interconnected , individua l events at one site , 

such as binding to a reaction partner or change in solva

tion , can af fect rates of reaction at another site . An 

e lectro-mechano-chemical mode l ( 1 0 9 ) of dynamic enzyme 

interaction proposes that transi tion state act ive s ite con

formation is coupled to low-frequency , collective vibra

tional modes of the protein . These low-f requency , concerted 

motions are much s lower than individual atomic vibrations . 

Relative ly long- term conformational states are as sumed to be 

provided by large dipole oscillations of the protein . 

A computer analysi s  ( 1 1 1 ) o f  the structur al f luctua 

tions of the atoms of tuna ferrocytochrome c revealed that 

movement becomes increasing ly restricted toward the center 

of the prote i n .  At radii of 6 ,  9 ,  1 2 , 1 5 , l S ,  and 21 A ,  the 

average f luctuations are 0 . 6 6 ,  0 . 7 0 ,  0 . 7 3 ,  0 . 9 S ,  1 . 0 5 , and 

1 . 6 4 A .  The heme atoms had the sma l lest f luctuations , 

i . e . , 0 . 5 1 A .  Atoms on the met-SO s ide of the heme undergo 

larger f luctuations in pos i tion than those on the his - 1 S  

s ide , i . e . , 0 . 7 1 A versus 0 . 5 6 A .  

An enthalpy- entropy compensation mechanism has been 

thought to play a role in the dynamic nature of enzyme 
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catalysi s  ( 1 1 0 ) . The thermodynamic parameters o f  free 

energy , pres sure , and temperature are virtua lly constant in 

an enzymatic reaction . Changes in enthalpy , entropy , and 

vo lume are the critical thermodynamic parameters in enzyme 

catalys i s . The central feature of this mode l is that a 

change in enthalpy at an active s ite required for a f luctua

tion of nuc lear coordinates i s  compensated by an entropy 

change e lsewhere in the po lypeptide structure of the enzyme . 

Electron transfer with cytochrome c is  be lieved to 

occur via an outersphere mechanism ( 8 8 ,  1 1 2 ) . An inherent 

step in this mechani sm is the formation of an act ivated 

complex prior to electron transfer . The exposed heme edge 

of mammalian cytochrome c is surrounded by pos i tive ly 

charged residues . Charge interactions appear to be respon

sible for the formation of precur sor complexes . Strong bind

ing of  reactants prior to e lectron trans fer has been 

observed in redox reactions of cytochrome c with sma l l  mole

cules ( 3 5 ) . As mentioned earlier , cytochrome c is  a highly 

charged molecule . Studies of anion binding ( 1 1 3 ) , reactions 

with various ly charged inorganic redox partners ( 1 1 4 - 1 1 7 ) , 

and reactions with nonphysio logical , biological ( 1 1 8 - 1 2 6 ) ,  

and phys iological ( 1 2 0 , 1 2 7 - 1 3 0 ) reaction partners have 

indicated that the driving force for the formation of the 

activated complexes is e lectrostatic . To determine the site 

of binding to its physiological redox partners , a series of 

studies of chemical modif ication of the charged residues on 

the surface of cytochrome c have been conducted ( 1 2 0 , 1 2 7 -
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1 2 9 , 1 3 1-1 3 4 ) . The analysis o f  the interactions o f  a series 

of  singly modif ied residues of cytochrome c with cytochrome 

c oxidase and cytochrome c reductase , as wel l  as with non

physiological partners , led to the conc lusion that cyto

chrome c has a common s ite for e lectron transfer , and it  is  

centered in the ring of pos i tively charged residues that 

surround the solvent-exposed heme edge . Modi f ication with 

trif luoroacetate and tr i f luoromethylphenylcarbamate neutra

l i zed the positive charge of the lys ine residues . The use 

of the se two substituents demonstrated the ef fect of steric 

bulk and charge on binding . The lys ine residues with the 

greatest e ffect on the rates are , in order of decreas ing 

ef fect , at positions 1 3 , 7 2 , 2 5 , 8 7 , 8 ,  7 9 , and 2 7  for oxi 

dase and 1 3 , 7 2 , 7 9 , 2 7 , 8 7 , 8 ,  and 8 8  for reductase . 

Change in charge o f  a residue rather than the bulk of the 

chemical modi f ier proved to play the dominant role . Cyto

chrome c which was s ingly modif ied with 4 - carboxyl - 2 , 6 -dini 

trophenol ( CDNP ) was used to convert the pos i t ive charge of 

a lys ine to a negative charge . The results obtained were 

s imilar to those described above , except that the e ffect on 

the rate of the reaction was more pronounced due to the 

i ncrease in charge di fference . The CDNP study determined 

that the lys ines  which most s igni f icant ly affect reactivity 

are 1 3 , 7 2 , 8 6 , 8 7 , and 8 for oxidase and 1 3 , 7 2 , 8 6 , 8 7 , 

and 2 7  for reductase . 

The chemical modi f ication studies described above 

determined the ef fects of modi f ication of active site resi-
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dues . I n  contrast , an acetylation study was done on cyto

chrome c - reductase and - oxidase complexes that did not 

invo lve active s i te res idues ( 1 2 0 ) . Thi s  approach avoids 

the pos s ible conformational ef fects of chemical modi f ication 

of active site residues . Only those res idues not invo lved 

in the bond between cytochrome c and either reductase or 

oxidase are susceptible to acetylation . Thi s  study indi 

cated the same reaction s i te as with the surface res idue , 

chemical modif ication studies . The lys ine groups most pro

tected from acetylation were , in order , 1 3 , 8 6 , 8 7 , 8 ,  7 2 , 

and 7 3  for the complex with oxidase and 8 6 , 8 7 , 1 3 , 8 ,  7 9 , 

and 5 with reductase . Res idue 1 3  seems to play the most 

prominent role in binding . 

I t  has been demonstrated that the outer groups sur

rounding the exposed heme edge are quite mob i le ( 1 1 1 ) . This 

reinforces the premise that cytochrome c i s  capable of 

interacting in a dynamic manner , through binding , with its 

redox partners to ef fect f avorable positioning of the redox 

centers . I t  i s  also be lieved that binding serves to distort 

the substrate toward the trans ition state , thus us ing the 

energy of speci f ic substrate binding interactions to lower 

the activation energy to product formation ( 1 3 6 ) . 

The reaction s ite for cytochrome c occupies a limited 

area on the surface of the protein of approximately 3 %  

( 1 3 7 ) , yet reactions o f  cytochrome c with its physiological 

redox partners take place at .nearly dif fus ion-controlled 

rates . Chemical modi f ication studies of cytochrome c have 
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demonstrated that dipole moments of  3 2 5  and 3 0 8  de bye exist 

for horse heart ferri - and ferrocytochrome c ,  respectively 

( 1 3 8 ) . The dipole moment thus serves to or ient the enzyme 

wi thin the e lectric f ield of its redox partners so that high 

e lectron transfer rates are achieved . Total protein charge 

dominates the e lectrostatic interactions at large reactant 

separations . The orienting ef f ect of the dipole moment 

become s stronger upon c lose approach of reactants . Reac

tions of cytochrome c with the nonphysiological enzymes 

plastocyanin and azurin ( 1 2 4 ) exhibited lower rates of e lec

tron transfer and were less af fected by CDNP modif ication of 

lysine residues at the reaction s i te of cytochrome c .  Thi s  

indicates that the e lectric f i e lds of the reactants d o  not 

orient cytochrome c with these nonphysiological enzymes as 

e f fective ly as with its physiological redox partners . Also , 

there i s  not a precise molecular interaction domain between 

cytochrome c and the nonphysiological redox partners . 

Margoli ash and coworkers ( 1 1 6 ) reinforced the premi se 

that the s ite for e lectron trans fer is  the solvent-exposed 

heme edge through a s tudy of e lectron transfer kinetics for 

the reaction of CDNP s ingly modif ied cytochrome c with iron 

and cobalt complexes . They found that the center of the 

reaction s i te was the � -carbon of phe - 8 2 , and the reaction 

s i te inc luded the so lvent-exposed heme edge . Also , the 

s i z e , nature , or charge of the reaction partner does not 

a lter the reaction s i te . The preorienting effect of a 

dipole moment within cytochrome c for favorable positioning 
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for e lectron transfer was also supported by a study of e lec

tron trans fer between f lavodoxin and cytochrome c ( 1 2 2 ) . 

Cytochrome b S exists along the inner surface of the 

outer membrane of mitochondria , and may interact with cyto

chrome c ( 1 1 8 ) . The crystal structures of both cytochrome c 

and cytochrome bS are known . Sa lemme ( 1 3 9 )  used a least

squares f i tting process to propose a hypothetical struc ture 

for an intermolecular electron trans fer complex of cyto

chrome c and cytochrome b S . Cytochrome bS has a ring of 

negatively charged residues about its so lvent-exposed heme 

edge that matches the corresponding ring of positively 

charged residue s at the reaction s i te of cytochrome c .  The 

computer-generated complex invo lved four complementary 

charge inte ractions between reaction s i te res idues . The 

lys ine residues 1 3 , 2 7 , 7 2 , and 2 9  on cytochrome c inte ract 

with the cytochrome bS carboxyl groups of asp- 4 8 , glu- 4 4 , 

asp- 6 0 , and the exposed heme propionate , respective ly . The 

structure of the comp lex indicates that water is  excluded 

f rom the reaction s i te and that the heme groups are approxi 

mate ly coplanar with a heme edge - to-heme edge distance o f  

8 . 4  A .  The charge neutrali zation resulting from the surface 

res idue interactions and the exclus ion of water from the 

reaction s i te in the complex both serve to create a hydro

phobic , low die lectric environment along the electron trans 

fer path between the heme edge s . An ionic strength study of 

the electron trans fer reaction between surf ace res idue 

chemically modif ied cytochrome c and cytochrome bS ( 1 1 8 ) and 
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an NMR study o f  the complex ( 1 2 3 ) supported the computer 

generated mode l o f  the electron transfer complex between 

these two enzymes . Moore and Eley ( 1 2 3 ) reported that two 

of  the lys ine groups involved in binding , lys - 1 3  and lys- 7 9 , 

are involved in maintaining the internal structure of cyto

chrome c .  Bindi ng to these groups leads to a weakening of 

the heme crevice and the Fe- S  bond . They propose that the 

binding of cytochrome c to its reaction partners may lead to 

an alteration of the heme environment that activates the 

complex toward e lectron transfer . Thi s  theory is supported 

by a dif ferential  scanning calorimetry study ( 1 4 0 ) of the 

cytochrome c and cytochrome c 1 complex that i llustr ated that 

the thermodenaturation temperature of cytochrome c was 

reduced when complexed to cytochrome c 1 , thus indicating a 

destab i l i z at ion of cytochrome c .  A spectroscopic analysi s  

of the interaction between cytochrome c and cytochrome b1 

revealed that format ion of the complex is large ly entropic 

in origin , with a . H O  of 1 ± 3 kcal/mole and a . S O  of 33 ± 

1 1  eu . 

S ince the crystal structures of cytochrome c ' s  redox 

partners , cytochrome c reductase ( or cytochrome bC 1 ) and 

cytochrome c oxidase ( or cytochrome aa3 ) ,  are not known , 

determining the nature of their inte raction with cytochrome 

c is diff icult . As mentioned previous ly , cytochrome c oxi 

dase is the terminal enzyme in the electron transport chain . 

I t  obtains e lectrons from ferrocytochrome c mo lecules and 

then reduce s  molecular oxygen . Although the cytochrome c 
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active site for e lectron transfer to cytochrome c oxidase 

has been determined ( vide supra ) ,  the number of active sites 

and the ir  pos i ti ons on oxidase have not been determined . 

The bimolecular rate constant for the presteady-state reac

t ion of cytochrome c with cytochrome c oxidase has been 

determined as a function of ionic strength ( 1 2 5 ) . By extra

polating to zero ionic strength from a plot of in k O ' vs . 

r 1 / 2 , a rate constant o f  l O l l  M- 1 s - 1  for the reaction was 

obtained . By using this value and one s imi lar ly obtained 

for a reaction rate at infinite ionic strength , an effective 

charge on beef cytochrome oxidase of - 8  to - 1 0 . 5  was calcu

lated . Thus , i t  appears that there is an interaction of 

oppos itely charged residues at the active s ites of  cyto

chrome c and oxidase , as i s  the case for the reactions of 

cytochrome c with cytochrome b5 and cytochrome c peroxidase . 

The e f fect of  vari ation in temperature for this reaction was 

also studied ( 1 2 5 , 1 3 0 ) . Below 2 0 ° C ,  the enthalpy of 

activation was calculated to be ca . 16 kca l /mole . Above 

2 5 ° C ,  the enthalpy of activation is between 1 and 4 

kcal/mole . Thi s  indicates that the reaction i s  not di f 

fus ion-controlled be low 2 0 ° C  and i s  dif fus ion-control led at 

temperatures above 20 ° C .  For dif fus ion-controlled reac

tions , an enthalpy of activation of ca . 3 . 5  kcal/mole i s  

expected , due t o  the temperature dependence of the viscos ity 

of the so lvent . The enthalpy of activation was not affected 

by chemical modif ication of active s ite residues on cyto

chrome c ( 1 2 5 ) or by ionic strength ( 1 3 0 ) . These results 
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led to the conc lus ion that the ef fect of chemical modifica

tion is pure ly e lectrostatic , without any steric effects . 

The fact that the rate constant vaired with ionic strength 

whi le the activation enthalpy remained constant , indicates 

that the kinetics are control led by a smal ler increase in 

activation entropy upon as sociation at increas ing ionic 

s trength . A large , positive activation entropy of 3 0  eu was 

determined . None lectrostatic contributions to the activa

tion entropy were determined to be 14 to 17 eu . Most of the 

active s i te on cytochrome c is composed of hydrophobic s ide 

chains about the solvent-exposed heme edge that are sur

rounded by the positive ly charged lysine groups . Thus , the 

formation of an e lectron transfer complex with cytochrome 

oxidase probably re leases structured water into the bulk 

solution , resulting in a gain in entropy . The change in 

activation enthalpy that occurs at ca . 2 1 ° C  may be due to a 

variation of  the interaction of cytochrome c with the pho s 

pho lipid membrane . 

Several studies have led to the conc lus ion that there 

are two binding s ites for cytochrome c on cytochrome oxidase 

( 1 4 1 ) , a high aff inity and a low affini ty s ite , and that 

they may both be catalytically active . The complicated 

kinetic behavior observed from the interaction of cytochrome 

c with cytochrome oxidase with change in concentration of 

reactants has resulted in many dif ferent theories . Margo

liash and coworkers ( 1 4 1 )  have recently reviewed the litera

ture ( most of it from Margoliash ' s  lab ) , and they conc luded 
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that there i s  a s ingle catalytic s i te for electron transfer 

on cytochrome oxidase . Under conditions of low concentra

tions of ferrocytochrome c ,  the rate of dissociation of 

ferricytochrome c from cytochrome oxidase i s  much s lower 

than the rate of e lectron transfer , and i s  the rate- limiting 

s tep . A s low ,  steady- s tate rate constant of 2 to 1 0  s - 1 i s  

observed . As the concentration of ferrocytochrome i s  

increased , the rate constant increases . Previous studies 

had attributed thi s  to e lectron trans fer between ferrocyto

chrome c and a ferricytochrome c -cytochrome oxidase complex 

at a second catalytic s i te ( 1 4 2 ) . The s ingle catalytic s ite 

mode l attributes the increase in rate constant to the 

enhanced rate of di s sociation of ferricytochrome c from the 

catalytic .  s ite caused by the repuls ive e lectrostatic effect 

of  nonproduct ive binding of ferrocytochrome c to the sur 

rounding phosphol ipid membrane . Thi s  e f fect i s  attributed 

to the alteration of the electrostatic environment of the 

active s i te on oxidase due to the high concentration of 

strongly pos i tive cytochrome c bound to the membrane in the 

immediate vicinity . Thus , complicated kinetic patterns are 

observed providing the rate of dissociation of product bound 

at the catalytic s i te i s  rate - l imiting . The upper limit for 

e lectron transfer rates , as determined by this mode l ,  i s  

reached when the bimolecular association constant for the 

binding of ferrocytochrome c to the active s i te becomes the 

rate - l imiting s tep . Fol lowing this point , substrate inhibi

tion i s  observed . 
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The reaction o f  cytochrome c with mitochondr ial ubiqui

no l - cytochrome c reductase has also been investigated by 

Margoliash ( 1 4 3 ) . The reductase complex ( a . k . a .  complex I I I  

o r  cytochrome bC l complex ) was removed from the inner mem

brane of  mitochondr ia and so lubi l i zed by detergent for this 

s tudy . The quinol reductant and ferricytochrome c were 

found to react independently with the reductase complex . 

Thus , a ternary comp lex i s  not neces sary ,  but also not pre

c luded . Ana lysis of the ef fect of pH on this reaction 

reve aled that opt imum kinetics were observed at pH 8 .  At 

low concentrations of ferricytochrome c ,  s imple Michael i s 

Menton kinetics were observed . As the concentration of 

ferricytochrome c was increased , the rate constant for e lec

tron transfer increased less than expected . When the con

centration was increased further , substrate inhibition was 

observed . Cytochrome reductase was found to preferentially 

bind ferricytochrome c over ferrocytochrome c .  This  i s  in 

contrast to the equivalent binding strengths of both forms 

of cytochrome c to cytochrome oxidase ( 1 4 1 ) . At low ionic 

strength , considerable nonproductive binding of ferricyto

chrome c to the reductase complex and associated phospho

lipid membrane was observed . Thi s  nonproductive binding of 

pos itively charged substrate to the reductase complex in the 

vicinity of the active s ite alters the electron transfer 

rate through e lectrostatic effects . This  model was also 

proposed for the reaction of ferrocytochrome c with cyto

chrome oxidase ( 1 4 1 ) . However , the effect of variation of 
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ionic strength o n  the kinet ics o f  the reaction o f  cytochrome 

c with its two phys io logical redox partners differs for each 

reaction due to the different substrate /product binding 

ratios for the two reactions . Ferrocytochrome c binds as 

strong ly as ferricytochrome c to cytochrome oxidase . Thus , 

an increase in the rate of product dissoc iation caused by 

the e lectrostatic effect of nonproductive binding has a 

large ef fect of the overall rate constant . Thi s  proces s  is  

also strongly af fected by  ionic s trength . For a 2 5  roM to 

1 0 0  roM range of ionic s trengths ( 1 4 3 ) , the strength of pro

duct binding to cytochrome reductase is much less than that 

of substrate binding . Above 1 0 0  roM ionic strength , sub

s trate and product bind with equal strength . Accordingly , 

the reaction o f  cytochrome c with the reductase complex i s  

much less affec ted by variation in ionic strength from 2 5  roM 

to 1 0 0  roM than the corresponding reaction with cytochrome 

oxidase . Substrate inhibition i s  observed for both systems 

at high substrate concentrations . Thi s  again is  attr ibuted 

to the concentration at which nonproductive substrate bind

ing in the vicinity of the active s i te leads to a decrease 

in the rate of substrate binding to the active s ite . 

D .  Electron Trans fer Theory 

oxidation-reduction reactions are generally classif ied 

as : inner sphere e lectron trans fer , outer sphere electron 

trans fer , or e lectron tunne ling . Both outer sphere e lectron 

transfer and tunneling are remote attack reactions . It  i s  

widely accepted that electron transfer occurs a t  the exposed 
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heme edge of cytochrome c ( 1 - 3 ,  1 1 2 ) ; consequently , remote 

attack is implied . React ions of cytochrome c with inorganic 

complexes ( 1 1 4 , 1 4 4 ) , have revealed that the rate of reac

tion depends strongly on the abi lity of the complex to 

de localize  its e lectrons through metal -to- ligand n-bonds and 

on the hydrophobic ity of the ligands . E lectrostatic inter

actions draw the reactants together , then the hydrophobicity 

of  the ligands permits penetration of the protein sur face , 

which al lows ef fective orbital over lap with the n-orbitals 

of the heme group . Steric restraints of the iron atom 

placement within the interior of the enzyme preclude inner 

sphere e lectron transfer , which requires a metal - ligand

metal bridge . The low-spin e lectron state of cytochrome c 

f avor s  outer sphere electron trans fer due to the minima l 

inner sphere reorganizational energy required . 

Outer sphere e lectron transfer represents the s imp lest 

class of e lectron transfer reactions in that no bonds are 

formed or broken . Electron transfer proceeds by a collis ion 

between reactants fol lowed by the formation of a precursor 

complex . Dis sociation of the reactant-product complex fol

lows e lectron trans fer . The observed rate constant for the 

reaction i s  the product of the equilibr ium constant for the 

formation of the precursor complex and the rate of electron 

transfer within the precursor complex . 

The distinction between outer sphere e lectron transfer 

and e lectron tunne ling i s  not c lear . Basically , the dis

tance between the two reaction centers and the dif ferences 



4 1  

between the reactant and product nuc lear coordinates seem to 

be contro lling factor s , s ince both of the se features contri

bute to the activation energy . Dis tances relate to the 

degree of orbital over lap ( required for an outer sphere 

reaction , but not for e lectron tunne ling ) .  At large dist

ances , the conductivity of the matter between the oxidant 

and reductant mus t  be considered ( 1 4 5 ) . I f  electron tunne l 

ing i s  occurr ing , the conductivity re lates directly t o  tun

ne ling probabi l i ty . I f  one considers two potential ene rgy 

curves as a function of reaction coordinate ( Figure 4 ) , one 

for the reactants and one for the products , an intersection 

i s  observed . Thi s  intersection re lates to a point where the 

coordination spheres of the two metal ions are the same , 

i . e . , the Franck-Condon restriction i s  met . According to 

the Franck- Condon principle , the nuc lear velocities and the 

internuc lear dis tances do not change during electron trans 

fer . I f  the ions are c lose together , a relative ly large gap 

develops at the intersection , and its  magnitude is propor

tional to the magnitude o f  e lectronic coupling , i . e . , orb i 

tal over lap , and the system wi l l  remain o n  the lower poten

tial energy curve . The proces s  i s  de scribed as be ing adia

batic if  the reaction goes to completion every time the 

intersection region i s  attained . However , i f  the ions are 

far apart or the difference in reactant and product nuc lear 

coordinates is large , the energy gap at the cros sover point 

become s sma l l . Thus , the probabi l ity of cross ing from 

reactants to products  depends on tunne ling probability .  
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Figure 4 .  Electron transfer reaction diagrams . ( a ) : No 
e lectronic interaction between the reactants . ( b ) : Slight 
interaction . ( c )  Cons iderable interaction . R represents 
reactants plus environment and P represents products plus 
environment . ( Adapted from Marcus , R .  A .  In  " Tunne ling in 
Biological Systems " ,  Chance , B . ; DeVault ,  D . ; Frauenfelder , 
H . ; Marcus , R .  A . ; Schrief fer , J .  F . ; Sutin , N . , Eds . ; 
Academic Pres s : New York , 1 9 7 9 ; 1 0 9 - 1 2 7 ) .  
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I t  would be convenient t o  cons ider outer sphere e lectron 

tr ansfer as an adi abatic proces s  and non- adiabatic proce s ses 

as e lectron tunne ling . However , thi s direct relationship 

does not have a s ound theoretical bas i s . All  that can be 

said is that non- adiabatic processes  are af fected by both 

the Franck-Condon principle and an e lectron transit ion pro

babi lity . In  adi abatic processes , either " classical " outer 

sphere e lectron transfer may be occurr ing or , if e lectron 

tunne ling i s  occurring , its probab i l i ty constant is  large . 

Quantum mechanical tunne ling considers the e lectron to have 

a finite probabi l i ty of penetrating a potential energy bar 

rier . The conventionally used expression for e lectron tun

ne l l ing probabi l i ty does not contain a temperature depen

dence . Hopfield ( 1 4 6 ) invoked a temperature dependence in 

the probab i l i ty of electron tunne lling by as suming coupling 

of  thermal ly activated , molecular vibronic states to elec

tronic states dur ing tunne l l ing between statically oriented 

reactant s . The heme edge-to-heme edge distance during the 

reaction of cytochrome c with its physiological reaction 

partners i s  longer than that expected for classical outer 

sphere e lectron transfer but i s  close to the estimated range 

of a thermal ly activated tunne l l ing process ( 1 1 2 ) . Salemme 

( 3 )  does not consider the distinction between these mechan

i sms to be critica l , s ince they may be different mathemat i 

cal descriptions of the same physical process . 

Marcus theory ( 1 1 2 , 1 4 7 - 1 5 0 ) is  often used to evaluate 

outer sphere e lectron transfer reactions . For homogeneous 



reactions , an expres s ion i s  given which relates the cross 

reaction rate constant , k1 2 , between two reactants to the 

equi librium constant , K ,  the self-exchange rates for each 

reactant , kl l  and k2 2 , and a term , f ,  which is usua l ly 

as sumed to be uni ty for reactions with a smal l  driving 

force : 

For this relationship to ho ld , a l l  reactions must  be adia-

4 5  

batic o r  uni formly non- adiabatic . The rate constant i s  also 

re lated to the overall f ree energy barrier , 4G* , by the 

expres s ion : 

k = pZexp ( - 4G* /RT )  

p :  Probabi l i ty o f  e lectron transfer i n  the activated 
complex ( equa l s  one for adiabatic processes ) 

Z :  Coll i s ion frequency ( based on gas -phase collis ion 
mode l ) 

To reach the trans i tion s tate , i . e . , the inter section 

region of Figure 4 ,  f luctuations of the vibrational coordi-

nates must  be considered when a reactant has different equi-

libr ium bond lengths or bond angles than the product .  Also , 

the f luctuat ions of the orientational coordinates of polar 

solvent mo lecules mus t  be cons idered . Thus , the reorganiza-

tiona 1 energy required can be divided into inner sphere and 

outer sphere categories . Another contribution to the act i -

vation energy i s  the work required t o  br ing the reactants or 

product s  together to form the activated complex . Proper 

orientat ion of the reactants mus t  also be cons idered due to 

the nonspherical nature of n-orbitals and poss ible active 
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s ite considerations ( such a s  with cytochrome c ) . 

Extension of cla s s ical Marcus theory to biological sys 

tems is  complicated primarily by a poorer understanding of 

the biological environment compared with the environment in 

solution studies .  Other complications include the ef fect of 

interaction of reactants with biomembranes and differences 

in the relative free energy of substrate binding with change 

in oxidation s tate . 

Marcus theory i s  often cited in discus sions of the 

e lectron transfer behavior of cytochrome c .  A basic attr i 

bute of Marcus theory i s  the use of self-exchange rate con

stants to predict cross reaction rate cons tants . An experi

mental se lf- exchange rate constant for  cytochrome c at  an 

ionic strength of 0 . 1  M and pH 7 is 1 . 2  X 1 0 3 M- 1 s - 1  ( 1 5 1 ) . 

Marcus and Sutin ( 1 1 2 ) used a combination of estimated and 

empirical data to ca lculate a s el f-exchange rate constant 

for cytochrome c which is in close agreement with the above 

exper imenta l  value . A heme edge separation of approximately 

1 0  A was used . The inner sphere reorganizational energy was 

assumed to be small ( 5  kJ/mole ) ,  which is cons istent with 

the s imilarity o f  the equi librium structures of the two 

oxidat ion states of cytochrome c .  The outer sphere reorgan

i zational energy was divided into two contr ibutions : one for 

solvent and the other for reorientation of the protein 

dipole s . The outer sphere reorgani zat ional energy was esti 

mated to be 2 5  kJ/mole . Thi s  compares we ll with an experi

mental activation energy of ca . 2 9  kJ/mole ( 1 5 1 ) . 



The rate constant of heme-heme self-exchange is  at 

least four orders of magnitude larger than that for cyto-

chrome c .  Thi s  difference i s  attr ibuted to the greater 
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reactant separation for cytochrome c due t o  the protein cage 

about the heme . The much greater reaction rate for cyto-

chrome c with cytochrome b5 ' cytochrome c peroxidase , and 

its physiological redox partners than with itself is attri-

buted to differences in electrochemical driving forces and 

to enhanced precursor-complex stability due to appropriate 

act ive site charge interactions . Marcus and Sutin ( 1 1 2 ) 

s tate that the application of Marcus theory to the inter-

action of cytochrome c with ferri- ferrocyanide ( an extens-

ively studied reaction ) i s  sometime s flawed since the self-

exchange rate for ferri- fer rocyanide i s  s trongly dependent 

on solution conditions . 

Marcus maintains ( 1 4 7 ) that reactions at electrodes 

have many feature s  in common with solution reactions . The 

e lectrode can be cons idered as a reactant with adj ustable 

ene rgy levels . Also , j us t  as solution reactants can bind to 

each other , e lectroactive species can adsorb to the elec-

trode . The heterogeneous electrode reaction rate cons tant 

can be related to the corresponding homogeneous reaction 

rate constant by a s imple equation ( 1 5 2 ) : 

( k1 1 / Zhom ) 1 / 2  � khet/ Zhet 

Zhom and Zhet are the collision frequenc ies of the chemical 

and electrochemical reactions , respectively ( l O l l  L/mole and 

1 0 4 cm/ sec ) .  The homogeneous reaction rate is larger than 
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the heterogeneous reaction rate when the e lectroactive spe

cies-electrode distance is larger than one half of the homo

geneous act ivated complex dis tance . 

E .  Heterogeneous Electrochemi stry of Cytochrome c 

The direct e lectron transfer behavior of cytochrome c 

with a variety of e lectrodes has been studied by many groups 

s ince 1 9 7 0 . Thi s  work has recently been thoroughly reviewed 

( 4 5 ,  1 5 3 ) . A brief summary of the important parameters that 

affect the heterogeneous e lectrochemistry of cytochrome c 

wi l l  be given here . Detai ls of research re levant to the 

work presented in this dis sertation are inc luded in the 

results and discuss ion section . 

As noted earlier , e lectron transfer between cytochrome 

c and its physio logical redox partners occurs at membrane / 

solution interface s . Clearly , there are s igni f icant differ

ences between the se interfaces and those of e lectrodes in 

e lectrolyte so lutions . However ,  the interaction of cyto 

chrome c with an e lectrode may mode l its phys iological reac

tion . The primary characteristic which the systems have in 

common is  the existence of a s tructured water laye r ,  which 

contains speci f ically and nonspeci f ically adsorbed charge 

s ites , at the interfacial region . Another common charac 

ter ist ic , depending on e lectrode material , is  the presence 

of active sites for both adsorption of substrate and elec

tron trans fer . 

I t  appears that the essential requirement for revers i 

ble e lectron transfer of cytochrome c with an e lectrode is  
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that it  must  b e  able t o  revers ibly and rapidly bind t o  the 

electrode . The kinetics of the reaction of cytochrome c at 

various e lectrodes range from irreversible to reversible . 

Surf ace preparation or surf ace chemical modi fication have 

been found to play a large role in controlling the degree of 

reve rsibi lity . With mercury and platinum electrodes , large 

overpotentials are required to reduce ferricytochrome c .  

The principal reason ci ted for this irreversible electro

chemical behavior is i rrevers ible adsorption of reactant to 

the e lectrode surface . Rever s ible heterogeneous electron 

trans fer has been observed at chemically modif ied ( 1 8 ,  2 7 , 

3 0 , 3 2 ,  3 4 - 3 6 , 4 1 , 4 2 , 4 9 - 5 2 ) ,  metal oxide semiconductor 

( 1 5 ,  2 9 , 3 7 ,  3 8 ,  4 5 , 4 6 , 5 5 ,  5 6 ) ,  graphite ( 4 7 ) , and carbon 

f iber ( 5 8 )  electrodes . The avai lability of appropriate 

s ites for revers ible binding of cytochrome c is proposed to 

facilitate electron transfer in each case . Albery et al . , 

( 3 0 )  has propo sed that the free energy of adsorption is  used 

to overcome the activation energy required for reaction . 

A critical criterion for revers ible heterogeneous elec

tron transfer between any electrode and cytochrome c is  

s amp le pur ity ( 3 8 ,  5 6 ) .  I t  was found that initial revers

ible behavior at tin-doped indium oxide electrodes quickly 

deteriorated with time when commercial horse heart cyto

chrome c preparations were used as received from Sigma Chem

ical Company . However ,  when the s ample was pur ified by 

cation exchange chromatography , long-term reversible behav

ior was observed . The interfering impurities are deamidated 
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and oligomeric f orms of cytochrome c .  

The interaction of cytochrome c with an e lectrode is  

be lieved to be  s imilar to  that with its physio logical reac

tion partne rs . Electrostatic interaction with an electrode 

will  orient cytochrome c for ef fective electron transfer . 

Favorable electrostatic interaction depends on the excess 

charge dens ity at the e lectrode / solution interf ace , which is 

affected by electrode potential , e lectrode material , and 

e lectrolyte compo s i tion . Adsorption of the positively 

charged res idues at the active s i te of cytochrome c to the 

e lectrode surface then occurs , probably through hydrogen 

bonding . The type o f  e lectrode material will determine the 

avai lability of binding s ites and the strength of binding . 

Close approach of cytochrome c to the electrode occurs 

through a structured water environment . The degree of sol

vent structur ing i s  stronges t  immediately adj acent to the 

electrode surf ace . Binding interactions should serve to 

overcome the energy required to penetrate this ordered 

environment . Electron transfer then occurs . The distance 

between electrode and heme edge has been estimated to be 

approximately 10 A ( 4 5 ) . Thi s  is c lose to the 8 A dis tance 

proposed for the heme edge-to-heme edge separation of cyto

chrome c with cytochrome b5 ( 1 1 8 , 1 3 9 ) . Cytochrome c then 

disengages from the electrode and diffuses into bulk solu

tion . 



CHAPTER I I  - EXPERIMENTAL 

Horse heart cytochrome c ,  type VI , S igma Chemical Co . ,  

was puri f ied by chromatography on carboxymethylcellulose 

( CM- 5 2 , Whatman ) according to a published procedure ( 1 5 4 ) . 

The puri f ied cytochrome c was then lyophi li zed and stored at 

- 4 ° C .  Due to the long time requi red for a temperature 

s tudy ( several hour s ) ,  very pure cytochrome c was neces sary . 

The process of lyophil i z i ng denatures some ferricytochrome 

c ,  and not all  of the sample returns to its native form when 

dissolved in water . Thi s  was determined f rom the observa

tion that pur i f i ed ,  lyophi l i zed cytochrome c showed band 

separation when repur i f ied , whereas pur i f ied , nonlyophili zed 

cytochrome c passed through the co lumn as a s ingle band . 

Therefore , a smal l  portion of the lyophi li zed , purif ied 

cytochrome c was repuri f ied and s tored in so lvent prior to 

exper imental use . The maintance of electrochemical reve r s i 

bil ity f o r  up t o  1 2  hours was a very sens itive indication o f  

sample pur i ty .  The cytochrome c was used as collected from 

the column in the 0 . 2  M ionic s trength phosphate buf fer 

e luent for the experiments in phosphate buf fer . To obtain 

cytochrome c in Tr i s / cacodylic acid buf fer , the phosphate 

ions were removed by repeated di lutions followed by concen-

5 1  
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trations using a s ti rred ultraf i ltration cell ( Amicon Model 

5 2 ) with a YM5 f i lter . Tr i s ( hydroxyrnethyl ) aminomethane was 

used as received from Si gma Chemical Co . ( Tr i zma Base , 

reagent grade ) .  Cacodylic acid ( hydroxydime thylars ine 

oxide , Sigma Chemical Co . ,  9 8 %  pure ) ,  was recrystallized 

twice from 2 -propanol . Water used in thi s work was purif ied 

with a Milli RO- 4 /Milli-Q sys tem ( Mi llipore Corp . ) and 

exhibited a resis tivity of 1 8  Mn on de livery . Cytochrome c 

concentrations were determined by the reduced minus oxidi zed 

dif ference molar absorptivity , 68 = 2 1 , 1 0 0  M- 1cm- 1  at 5 5 0  nm 

( 1 5 5 ) , on a Beckmann Acta MYI I spectrophotometer . Ferri 

cytochrome c was reduced by dithionite . All other chemicals 

used in this work were ACS reagent grade . Buffers were 

prepared by mixing the acid and base components to achieve 

the des ired pH . Concentrations we re adj usted to achieve an 

ionic strength o f  0 . 2  M .  The ratio of each of  the ionic 

spec ies to the analytical concentration was ca lculated for a 

given pH . These relative concentrations were then used to 

ca lculate the ana lytical concentration requi red to establish 

an ionic strength of 0 . 2  M .  Standard acid-base equations 

were used to determine the proportional concentration of 

each of the ionic species ( 1 5 6 ) . 

A nonisothermal electrochemical cell was used for the 

cyc lic voltammetry and potential step chronocoulometry tem

perature studies ( 2 3 ,  1 5 7 ) . The ha l f -cell containing the 

working e lectrode and the liquid j unction of the reference 

e lectrode were encased in a water j acket . The Ag/AgCl ( 1 . 0 0 
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M KC 1 )  reference electrode was physically iso lated from the 

thermos tated region of the cell by small-diameter glass 

tubing , and remained at room temperature . The tip of the 

reference electrode was within a few mm of the working elec

trode to minimi ze uncompensated resistance . Solution vo lume 

was approximately 1 mL , and a platinum auxiliary electrode 

was used . Reference 1 5 8  i s  an excel lent source of informa

tion for the proper des ign and use of electrochemical cells . 

The time required to bring the test solution to a 

des i red temperature was determined by placing a YSI 4 4 2 0 3  

thermistor i n  the test solution adj acent t o  the working 

e lectrode . The internal solution temperature rapidly 

adj usted to the c irculator bath temperature .  At least 1 0  

minutes equi libration , time was allowed fol lowing a tempera

ture change . Tin doped indium oxide OTE materials were 

obtained from PPG I ndustries . The OTE e lectrodes were 

c leaned by success ive 5 minute sonications in Alconox solu

tion , in 9 5 %  ethano l and twice in puri f ied water ( 1 5 9 ) . The 

working e lectrode was attached to the bottom of the cell by 

a retainer plate and an O-r ing seal . Each working electrode 

was only used for one exper iment . 

Re ference 1 6 0  i s  an excellent source for a general dis

cus s ion of potential s tep and sweep methods . Potential step 

chronocoulometry experiments were performed by stepping 4 0 0  

mV negative from an initial potential o f  5 2 2  mV vs . NHE . 

The experiments were conducted in 0 . 2  M ionic strength , pH 

7 . 0 ,  Tri s / cacodylic acid buf fer . Data were acqui red at 1 0  
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point s / s  by a n  integrating analog/digital 1 6 -bit converter 

interfaced to a UNC microcomputer ( 1 6 1 ) . Speci f ic details 

for the operation o f  this data acqui sition system and pro

gram examples are contained in reference 1 6 2 . Base line 

data were acquired for 1 s prior to the potential step , and 

their average was subtracted from all  subsequent po ints . 

Background e lectrolyte data were acquired for each expe r i 

ment with the working electrode used f o r  that exper iment and 

subtracted from the total coulometric response . The com

puter - recorded current was then digitally summed to yield 

charge . An in-house constructed potentiostat of conven

tional de s ign was  used f o r  mos t  electrochemical work . A PAR 

1 7 4  polarographic analyzer was also used for cyc lic voltam

metry . The triangle wave generator that was used to perform 

cyc lic voltammetric exper iments was tr iggered by the compu

ter . Cyc lic voltammetric data were acquired at a rate cal

culated to obtain 2 data points /mY .  A 2 0 -�s conversion 

time , 1 2  bit , fast Datel ADC-HX 1 2 B  analog/digital converter

based interface card was used to acquire cyclic vo ltammetric 

data . Data showed 6 0 -Hz no ise , and were digitally smoothed 

by a 1 2 -point po lynomial smoothing routine ( 1 6 3 ) . Slow 

potential scan rate experiments were also smoothed by an 

analog fourth-order Butterworth f i lter with a cutof f  fre

quency of  ca . 50 Hz . Success ive fast  potent ial scan rate 

cyc lic vo ltammograms were averaged unt i l  a smooth re sponse 

was obtained . Formal potentials were determined f rom the 

average of the peak potential va lue s from reversible cyc lic 
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voltammograms acquired a t  low potential scan rates . The 

diffe rence in the computer-acquired background ( electrolyte 

alone ) and total ( electroactive species present ) cyc lic 

voltammograms was used in these determinations . A program 

then determined the potential at which the maximum cathodic 

and anodic currents occurred f rom each digitally stored 

cyc lic vo ltammogram , providing preci se values for formal 

potentials . The standard deviations for cathodic peak 

potentials , anodic peak potentials , and formal potentials 

were typically less than 1 mY . 

An optically transparent nonisothermal electrochemical 

cell was used for derivative cyc lic voltabsorptommetry ( 1 6 4 ) 

and potential s tep chronoabsorptometry ( 1 6 5 )  exper iments .  

Reference 1 6 6  gives an overall de scription of spectroelec

trochemical techniques at optically transparent electrode s . 

This  cell i s  s imilar in construction to the cell described 

above . The solution path length was determined by the di s 

tance between the working electrode and the end o f  a quartz 

light pipe , and was approximately 1mm . The path length was 

varied to ensure that semi - inf inite diffus ion exi sted . The 

optical path was perpendicular to the working electrode 

surf ace . 

Initially , the cell was arranged in the spectrophoto

meter so that the working electrode was vertical . Cons ider

able t ime was spent inves t igating what appeared to be a 

homogeneous chemical reaction that fol lowed electron trans 

fer at e levated temperatures and very s low scan rates . The 
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cause of this behavior was the vertical orientation o f  the 

e lectrode . A hor i z ontal working electrode or ientation elim

inated the strange behavior at s low scan rates ( Figure 5 ) . 

Thi s  reinforces the s tandard electrochemical practice of 

using a hor i z onta l ly mounted working electrode whenever 

poss ible . Vertical electrodes are sub j ect to convection , 

resulting from the development of density gradients , during 

s low potent ial scan rate experiments ( 1 6 7 ) . 

A single beam UV/VI S spectrophotometer was used . I t  

cons i s ted of  a quartz -halogen source , Heath monochromator , a 

photomultiplier tube , and a Heath photomultiplier module . 

The spectrophotometer was constructed by Henry Blount at the 

Univer s i ty of Delaware . An operational amplif ier current

to-voltage converter was used to change the photomultiplier 

tube current to voltage . The initial s ignal from the sys 

tem , prior to the beginning of an exper iment , i s  Po . The 

output of the spectrophotometer after initiation of an elec

trochemical experiment i s  P .  Absorbance was calculated from 

the relationship : Absorbance = - log ( P/Po ) .  The 4 1 6  nm radi 

ation ( . 8 = 5 7 , 0 0 0  M- 1cm- 1 ) ( 1 5 5 ) was used to monitor the 

concentration of ferrocytochrome c .  A wide s l i t  width 

( large s t  setting ) was used to increase the s ignal . This  

caused the apparent molar absorptivity to decrease . Narrow

ing the s l i t  width resulted in an absorbance appropriate for 

the concentration of cytochrome c .  The system molar absorp

tivity coefficient , at wide s l i t  widths , was determined from 

a diffusion-controlled re sponse for cytochrome c .  
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Figure 5 .  Cyclic voltammetry of K3 Fe ( CN ) 6 demonstrating the 
e f fect of working e lectrode orientation at s low scan rates . 
Scan rate = 1 mV/ s ,  temperature = 4 5 ° C ,  ( a ) : working e lec
trode in vertical pos i tion , ( b ) : working e lectrode in hor i 
zontal pos i tion . 
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An IBM PC AT microcomputer sys tem , containing a 12 -bit 

Data Trans lations DT2 8 0 1A analog- to-digital and digital- to

analog board , was used to control and col lect data for the 

spectroe lectrochemical experiments . The board was program

med by a commercial software package , DT/Notebook , from Data 

Trans lation , 1 0 0  Locke Drive , Marlborough , Mas s . ,  0 1 7 5 2 . 

Lotus 1 2 3  ( software from Lotus Development Corporation , 5 5  

Cambridge Parkway , Cambridge , MA , 0 2 1 4 2 ) and the fast 

Four ier trans form function of DT/Notebook were used for data 

analys i s . A Lotus 1 2 3  worksheet was created to generate the 

working curves required to analyze potent ial step chrono

absorptometry results . The error function contained within 

the equation that descr ibes the working curve was approxi 

mated by equation 7 . 1 . 2 6 in reference 1 6 8 . The absorbance 

response attributed to adsorbed species was calculated by a 

modif ied Beer ' s  law equation : Absorbance = € ' X Concentra

tion , where concentration has the units  of mole/cm2 and € ' = 

€ X 1 0 0 0  cm3 . Noise from the spectrophotometer output was 

parti a l ly removed by using a capacitor in parallel with the 

feedback resistor of a voltage multiplier . The noise was 

increas ingly reduced as the time constant ( re s i s tance times 

capacitance ) increased . A very smooth s ignal can be 

obtained by using a large time constant ; however , the magni

tude of the s ignal was s ignif icant ly decreased as a conse

quence of  the large time constant , and the data collected 

did not accurate ly represent the actual experimental output . 

Smal l  t ime constants , in combination with s ignal averaging , 
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were used to collect the potent ial step results . 

A fourth-order Butterworth f i lter was used to reduce 

the s ignal noise from the spectrophotometer for the deriva

tive cyc lic voltabsorptornrnetry work . The magnitude of the 

absorbance in the DCVA experiments was much larger than the 

magnitude of the s ignal from the potential step experiments .  

Consequent ly , an exce l lent s ignal - to-noise ratio was obtain

ed . However ,  creation of a der ivative cyc lic voltabsorptam

mogram requires the derivative of the absorbance pro f i le 

with respect to time . Thi s  proce s s  degrades the s igna l - to

noise ratio . Fast Fourier trans form smoothing of the absor

bance prior to taking the derivative proved to be the best  

method for  improving the s ignal - to-noise ratio without art i 

fici a �ly af fecting the response through the smoothing pro

cess . The procedures out lined by Smith ( 1 6 9 , 1 7 0 ) were 

followed for the use of Fourier smoothing of e lectrochemical 

data . Reference 1 2 8  gives an overview of  the app lication of 

trans form techniques to chemis try . A Fourier transform of 

the data was obtained . The absorbance pro f i le was rotated 

so  that the f i r s t  and last points of the data array were 

zero . Thi s  process avoided the problem of " r inging , " L e . , 

low f requency osc i l lations that occur throughout the wave

form when a transform of data with different starting and 

end points i s  obtained . The high frequency noise components 

were removed prior to an inverse transform . The frequency 

cutoff point determines the s ignal-to-noise ratio . I t  is  

important to leave enough frequency information to accu-
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rately de scribe the waveform .  A digitally simulated , rever

s ible , integrated cyclic voltammogram was used as a te st  to 

determine the frequency cutof f  point where the best  smooth

ing occurred without increasing the peak separation . Signal 

noise i s  probably the mos t  serious limitation in the use of 

analog-to-digital converters .  Care must  be taken so that 

excess ive f i ltering does not degrade the response in short 

time exper iments .  

The fol lowing method was used to convert the derivative 

of absorbance with respect to potential , dA/dE , of deriva

tive cyclic voltabsorptometry to its current analog , i ,  of 

cyclic voltammetry . The absorbance , A ,  observed is related 

to the charge consumed , Q ,  by the expression ( 1 6 4 ) : A = 

€Q1 0 0 0 / nF ( Electrode Area ) ( 1 6 4 ) . Thi s  relationship i s  used 

to convert dA/dE to dQ/dE . The difference in potential 

between each computer-acquired point divided by the time 

between points is used as dE /dt . Multiplying dQ/dE by dE/dt 

gives dQ/dt . Current i s  the der ivative of charge with res 

pect to t ime , i . e . , dQ/dt = i .  Hence , the potential-depen

dent function , dA/dE , of der ivative cyc lic voltabsorptometry 

i s  converted to a corresponding current that represents only 

the f aradaic portion of a s imultaneous ly acquired total 

current that contains both faradaic and nonfaradaic cont r i 

but ions . 



CHAPTER I I I  - RESULTS AND DISCUSSION 

A .  Separation of Farada ic and Nonf aradaic Response . 

The formal reduction potential of cytochrome c was 

determined from the midpoint potential  of revers ible and 

qua s i - reve r s ible cycl i c  voltammograms , i . e . , those with peak 

separations of 60 to 80 mV . As with a l l  of the research 

presented here where current is the observed exper imental 

result , background responses obtained for e lectrolyte a lone 

were subtracted from the total electrochemical  response 

obtained for cytochrome c .  The subtraction of background 

was neces s ary due to the nonideal  nonfaradaic current 

response of the tin-doped indium oxide e lectrodes used . The 

degree of nonidea l  behavior depended on the type of e lectro

lyte used , the pH of the solution , temperature , and scan 

rate . 

A solution f orms a s tructured , immobi li zed layer at the 

surface of an e lectrode which behaves e s sentially as a 

capacitor to variations of e lectrode potential . The charg

ing of the double layer at the e lectrode / solution interface 

cause s  a nonfaradaic current to f low during any voltammetric 

exper iment . The magnitude of the nonfaradaic current i s  

affected by experimental factors such as e lectrode material , 

6 2  
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solvent , e lectrolyte , pH , speci f ic adsorption o f  anions , and 

the time frame of the potential perturbation . At high ana

lyte concentrations , the nonf aradaic current is small  com

pared to the f aradaic current which results from electron 

trans fer to the e lectroactive species . However ,  at low 

analyte concentrations , the nonf aradaic current becomes the 

ma j or component of the total recorded current . 

The e lectrochemical behavior of the e lectrolyte solu

tions in the absence of e lectroact ive species will be di s 

cussed prior to presenting the e lectrochemistry o f  cyto

chrome c .  Thi s  nonf aradaic , or background , behavior must  be 

separated from that of cytochrome c .  The abi l i ty to accur

ately differentiate between the faradaic response from cyto

chrome c and the nonf aradaic response of the e lectrochemical 

cell is  a determining f actor in the reliability of this 

e lectrochemical inves tigation . 

The effect of temperature on the background cyc lic 

voltammograms obtained in pH 5 . 3  Tr i s / cacodylic acid buffer 

i s  shown in Figure 6 .  The irregular behavior increases with 

elevation in temperature . It  i s  noteworthy that an ideal 

nonfaradaic current response to a linear potential sweep is  

rectangular in shape , with current depending only on  scan 

direction and rate , and i t  i s  independent of potential . The 

deviation f rom nonideal behavior also depends on scan rate . 

Nonfaradaic current i s  directly proportional to scan rate . 

Figure 7 shows the scan rate dependence of background cyclic 

vo ltammograms in pH 5 . 3  Tri s / cacodylic acid buf fer . Each 
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Figure 6 .  Cyc lic voltammetry of pH 5 . 3  Tr i s /cacodylic acid 
e lectrolyte a lone at various temperatures . Scan rate i s  2 0  
mY/ s o  ( a ) : 5 0  C ,  ( b ) : 2 5  ° C ,  ( c ) : 4 5  ° C ,  ( d ) : 6 5  ° C ,  ( e ) : 
7 5  ° C .  
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Figure 7 .  Cyc lic vo ltammetry of pH 5 . 3  Tr i s / cacodylic acid 
e lectrolyte a lone at various scan rates . Temperature is  5 5  
° C .  ( a ) : 2 0  mV/ s ,  ( b ) : 5 1 1  mY/ s o  Faster scan rates have 
the same morpho logy as ( b ) . 
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has been divided by its scan rate s o  that the relative 

shapes can be compared . ( Current divided by scan rate yie lds 

capacitance . )  As can be seen , the irregularity is  more 

pronounced at lower scan rates . Thi s  suggests that the 

nonfaradaic current observed at negative potent ials is at 

least partially due to a rate - l imited process . This  may be 

due to a dif fus ion- l imited ionic movement within the ge l 

layer at the e lectrode surface and/or to kinetic - l imited 

e lectrochemical proce s se s  within the electrode material . As 

mentioned previously , this nonideal behavior increases with 

temperature for any particular scan rate . Increase in temp

er ature enhances both dif fusion and kinetic rates . Varia

tion in pH  also affects the nonf aradaic response of the 

indium oxide e lectrode . Figure 8 demonstrates this for a 

series of constant ionic strength phosphate buf fers . 

Temperature , pH , and e lectrolyte compos i tion affect the 

electrochemical behavior of the indium oxide electrode used 

to evaluate the heterogeneous e lectron transfer characte r i s 

t i c s  of cytochrome c .  In  some case s , the nonf aradaic 

response to temperature and/or pH prevented the observation 

of a faradaic response from cytochrome c .  Background elec

trochemical responses become increas ingly less prominent as 

the concentration of electroactive species increases . 

Unfortunate ly , the e lectrochemical reversibility of cyto

chrome c at solid electrodes decreases with increase in 

concentration . Thus , a compromise between the proportion of 

faradaic to nonf aradaic response and e lectrochemically 
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Figure 8 .  Cyclic voltammetry of phosphate buf fer at pH 5 . 0 ,  
7 . 0 ,  9 . 0 ,  and 1 1 . 0 .  All CV ' s  were obtained at 2 0  mV/ s  and 
at room temperature . Each buf fer had an � of 0 . 2  M .  
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reversible behavior mus t  b e  reached . 

Tin-doped indium oxide electrodes were used for a l l  of 

the work presented here . The e lectrode / solution interface 

of  a metal oxide i s  strongly affected by solution pH ( 1 7 1 ) . 

Prior to imme rsi on in water the e lectrode surface wi l l  be 

hydroxylated by water vapor . Hydroxyl groups adsorb to 

cationic s ites , and H+ groups adsorb to the oxygen atoms . 

The result i s  that the surf ace of the metal ion is  covered 

with hydroxyl groups . When the e lectrode i s  placed in 

water , the fol lowing reactions can occur : 

H+ ( surf ace ) + OH- ( soln ) = H20 

OH- ( surf ace ) + H+ ( soln ) = H20 

The me tal oxide surface becomes hydrated by a highly struc 

tured monolayer o f  water molecules . The acid-base proper 

ties o f  the metal oxide and the pH o f  the solution wi l l  

determine whether the e lectrode surface wi l l  carry a net 

negative or pos itive charge . The pH at which the number of 

surface hydronium ions equal s  the number of sur face hydroxyl 

ions i s  known as the point of zero charge ( pzc ) . The metal 

oxide wi l l  act as either a solid base or solid acid . 

The pzc of  an e lectrode i s  an important criterion for 

ef fec tive e lectrostatic interaction with strongly cationic 

cytochrome c .  Thi s  e lectrostatic effect has been used to 

explain the diff erence in reversibility of  cytochrome c with 

various metal oxide e lectrodes . For example , cytochrome c 

i s  less e lectrochemically revers ible at f luor ide-doped tin 

oxide electrodes than at the tin-doped indium oxide elec-
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trodes used i n  this work ( 4 5 ) . Thi s  was proposed to be due 

to the pos i tive charge at the surf ace of the tin oxide elec

trodes at the reduction potential  of cytochrome c in the 

neutral pH buffer used . The indium oxide e lectrode has at 

least a less pos itive charge , i f  not a negative charge , on 

the e lectrode surface in the s ame potential region . Thi s  

mode l o f  e lectrostatic effects was reinforced by ionic 

strength and pH variation ef fects on the interaction of 

cytochrome c with the tin oxide e lectrode . An increase in 

ionic strength improved the reversibility .  This  i s  due to a 

les sening of the repuls ive effect between the posit ive 

charge on the e lectrode surface and the positive charge at 

the active s i te for e lectron trans fer of cytochrome c .  

I ncreas ing the pH of the solution , at constant ionic 

strength , to effect alkaline conditions improved the kinet

ics , whereas a change to acidic conditions had the oppos i te 

e f fect . Thi s  variation of kinetics with change in pH has 

also been reported at ruthenium dioxide e lectrodes ( 4 6 ) . 

The pH dependence was attributed to the charge on the metal 

oxide sur face becoming more pos i tive in acidic solutions . 

Adsorption of e lectrolyte ions on a metal oxide e lec

trode also affects the net charge at the e lectrode surface . 

Preferential adsorption of anions wi l l  shift  the charge in a 

negative direction , and the oppos ite will  occur in response 

to the preferential adsorption of cations . The pH at which 

there is no net charge on the e lectrode surface in the pre 

sence of adsorbed e lectrolyte ions is  known as the point of 



zero zeta potential ( pz zp )  or the i soelectric point ( iep ) . 

Thi s  i s  not the s ame as the pzc mentioned earlier which 

refers to the case of equal adsorption of H+ and OH- ions . 

Thus , the e lectrolyte used wi l l  af fect the charge on the 

electrode . 

7 3  

The thermodynamic and kinetic behavior o f  cytochrome c 

at indium oxide e lectrodes were probed in two buf fer sys 

tems , phosphate and Tri s / cacodylic acid , and at three pH 

values , 5 . 3 ,  7 . 0 ,  and 8 . 0 .  The two buffer systems were 

chosen as extreme s in interactive behavior with cytochrome 

c .  Phosphate anions have been shown to bind strongly to 

pos i tive ly charged surf ace lys ine res idues of cytochrome c ,  

whereas Tr i s / cacodylic acid buf fer does not interact with 

cytochrome c ( 1 7 2 ,  1 7 3 ) . Thi s  same tendency to bind to 

cytochrome c appears to hold for interaction with the indium 

oxide e lectrode surface . The nonideal background behavior 

was more pronounced in phosphate buf fers at each pH inve sti

gated . As mentioned earlier , the degree of  pos itive charge 

on a metal oxide e lectrode increases with decrease in pH . 

Thi s  causes a corresponding increase in the attraction of 

e lectro lyte anions to the e lectrode surf ace . Hydroxide ions 

and electrolyte anions wi l l  compete for the cationic surface 

s ites . The greater nonideal nonfaradaic behavior exhibited 

in phosphate buf fer probably ref lects the s tronger tendency 

of phosphate anions to bind to the e lectrode surface than 

cacodylate anions . Figures 6 - 8  show that the nonideal 

behavior becomes more pronounced at negative potentials . An 
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explanation for this behavior i s  that the nonideal , nonfara

daic current i s  due to ion migration in the gel layer in the 

interfacial region . Initially ,  scanning the potential in a 

negative direction has no ef fect on the nonfaradaic current . 

Thi s  current arises from the charging of the double layer , 

i . e . , ref lects the capaci tance of the e lectrical double 

layer at the electrode surface . The constant nonfaradaic 

current in the pos i tive region of the potential scan indi

cates that the interface s tructure is  not being affected by 

change in potential . As the electrode potential become s 

increasingly negative , the adsorbed e lectrolyte anions begin 

to dis sociate from their cationic binding s i tes . The move 

ment of  these ions in the interfacial  region gives rise to a 

current from ion migration . As the potential  becomes 

increasingly negative , the rate o f  ion migration increases ,  

and a larger current i s  observed . However ,  this current 

begins to level o f f  and then drops . Thi s  is probably due to 

depletion of adsorbed ions . Thi s  model is  supported by the 

increase in nonidea l  behavior with dec rease in pH in that 

there are more speci f ically ads orbed e lectrolyte anions 

present under acidic conditions due to an increased number 

of cationic binding s ites on the e lectrode . The dif ference 

between phosphate and Tri s /cacodylic acid buf fers at any pH 

i s  due to the i r  re spective s trengths of binding to the e lec

trode . The decrease in nonideal behavior with increase in 

scan rate can be attributed to the diffus ion rate of ion 

migration . 
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Another mode l for thi s nonideal behavior has been pre

sented by Kuwana et al . ( 1 5 9 ) . They investigated the ef fect 

of  potential variation on indium oxide e lectrodes in IN 

H2 S04 ' and reported the same e lectrochemical behavior 

observed in this work . The nonideal behavior at negative 

potent ials  was attributed to reduction of the surface oxide . 

Auger and ESCA analyse s  conf irmed that a stoichiometry 

change had occurred . I f  a s to ichiometry change is  occurring 

in the pH range used for the research described here , the 

electrolyte dependence of the nonideal behavior may be due 

to a difference in the strength of speci f ic adsorption of 

phosphate and cacodylate anions . The temperature and scan 

rate dependence of the irregular behavior would agree with 

this mode l i f  the kinetics of thi s  ,proces s  are be ing affect

ed . I t  i s  noteworthy that the reduction of the e lectrode 

material itself  would be an interfering faradaic proces s  

rather than nonf aradaic . A ma j or difference between thi s 

mode l and the i on migration mode l di scus sed above is  that 

cacodylate anion binding to the e lectrode should be stronger 

than that of phosphate anions . Stronger binding would cause 

a larger cathodic potential shift for the reduction of the 

metal oxide . 

At each pH s tudied , cytochrome c behaved less revers i 

bly i n  phosphate buf fer than i n  Tr i s / cacodylic acid buffer . 

Thi s  difference was mos t  pronounced in the pH 5 . 3  solutions . 

Reversible behavior was observed over a wide temperature 

range in pH 5 . 3  Tri s /cacodylic acid buf fer , and remained 
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s table f o r  a day a t  room temperature . A temporary e lectro

chemical response for cytochrome c in pH 5 . 3  phosphate buf 

fer was observed when the solution was first added to a 

water equ ilibrated electrode . Thi s  response completely dis 

appeared within an hour ( Figure 9 ) . The same ef fect was 

observed when a Tri s / cacodylic acid buffer-cytochrome c 

solution was titrated with a phosphate buf fer-cytochrome c 

solution . The degree of irreversibility was proportional to 

the amount of phosphate buffer solution added to the cell . A 

dif ference in electrochemical kinetics for cytochrome c in 

the two buf fer systems i s  probably at least partially due to 

phosphate anion binding to surface res idues in the vicinity 

of the active s i te of the enzyme . However ,  the time depen

dence of  the response i s  diff icult to explain i f  phosphate 

anion binding to the surface res idues is the only factor . 

I f  the indium oxide e lectrode i s  f i r s t  equil ibrated with pH 

5 . 3  phosphate buf fer , no e lectrochemical response is  ob

served . The diff erence between the two systems appears to 

be the incorporation of phosphate anions in the electrode/ 

solution interface . An initial , reversible response is 

obtained with the water equi librated e lectrode . The 

response gradual ly disappears as the phosphate anions inter

act with the e lectrode . Thi s  mode l i s  reinforced by the 

absence of any response when the e lectrode has been equi l i 

brated with the phosphate buf fer prior t o  introduction o f  

the s ample solution . Consequently , it seems that the pre

sence of phosphate anions in the interfacial region 
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Figure 9 .  Cyclic voltamrnetry of cytochrome c in pH 5 . 3  
phosphate buf fer . All CV ' s  were obtained at 2 0  mV/ s  and at 
room temperature . The CV with the larges t  peak current was 
obtained immediately after addition to the e lectrochemical 
ce l l .  Subsequent CV ' s  were obtained at approximately 10  
minute interval s  and are in order of decreasing response . 
The working e lectrode was equi l ibrated in pure water by 
ove rnight soaking prior to addition of the cytochrome c 
solution . 
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interferes with the heterogeneous e lectrochemical behavior 

of  cytochrome c .  Thi s  may be due to anion- anion repuls ion 

between those speci f ically adsorbed on the e lectrode and 

those bound to the active s ite for e lectron transfer on 

cytochrome c .  I f  the electrode i s  f i r s t  equil ibrated in pH 

5 . 3  Tri s /cacodylic acid buf fer , the same result is obtained 

as in the case when a water -equi l ibrated e lectrode is used , 

i . e . , trans itory electrochemical response . Accordingly , the 

premi se that phosphate anions interact more strongly with 

the indium oxide surf ace i s  supported . The cytochrome c in 

the phosphate buffer s ample s o lution that i s  added to the 

cell  with the Tri s /cacodylic acid buf fer equil ibrated e lec

trode can not be af fected by the sma l l  amount of  Tris /caco

dylic acid buf fer remaining on the e lectrode . The only 

pos s ible a lteration of the system is the incorporation of 

phosphate anions into the interfacial region displacing any 

cacodylate anions that may be there . S imi lar experiments 

were performed with pH 7 . 0  phosphate and Tr i s /cacodylic acid 

buffers with the s ame results , although difference s  were 

less  profound due to smaller diff erences in electrochemical 

reversibility at pH 7 . 0 .  

The e lectrochemical reversibility of ferricyanide at 

indium oxide e lectrodes is s trongly diminished by changing 

f rom Tri s / cacodylic acid buffer to phosphate buf fer , as 

indicated by an increase in peak separation from 59 mY to 

1 3 4  mY at a scan rate o f  5 mY/ s o  The cathodic peak shif ted 

5 8  mY in a negative direction , and the anodic peak shifted 
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1 7  mV pos i tive . Ferricyanide and ferrocyanide have negative 

charges of - 3  and - 4 , respective ly . It  is  highly unl ike ly 

that phosphate anions bind ferricyanide . Electron trans fer 

between an e lectrode and ferri- ferrocyanide would be more 

di f f icult if phosphate anions were speci f ically adsorbed to 

the e lectrode due to e lectrostatic repulsion . The asymmetry 

of the peak potentials  about the formal potential for ferri

ferrocyanide in phosphate buf fer under qua s i - revers ible 

conditions indicates that the e lectrochemical transfer 

coe f f ic ient , a ,  i s  less than the 0 . 5  va lue determined in 

Tr is /cacodylic acid buf fer by a symmetrical spread of peak 

potentials  under qua s i - revers ible conditions . An a of less 

than 0 . 5  indicates that the energy barrier for oxidation is 

less than that for reduction . The -4  charge of  ferrocyanide 

would have a stronger e lectrostatic repuls ion from spec i f i 

cally adsorbed phosphate anions than the - 3  charge o n  ferri

cyanide . Thi s  observed kinetic dependence upon buf fer 

strengthens the proposal  that phosphate anions interact more 

strongly than cacodylate anions with the indium oxide e lec

trode surface . 

I t  is  c lear that the e lectrochemical behavior of the 

indium oxide e lectrode is affected by variation of tempera

ture , pH , and electrolyte . To  separate the nonfaradaic and 

pos s ible interfering faradaic current from the total 

response given by cytochrome c ,  the current from background 

experiments in e lectrolyte a lone was subtracted from the 

cytochrome c response . In  order for this subtraction method 
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t o  be valid , the nonf aradaic behavior o f  the electrochemical 

cell mus t  be the s ame in the presence and absence of cyto

chrome c .  A spectroelectrochemical technique was used to 

isolate the nonf aradaic component under mixed faradaic/non

f aradaic conditions . 

Due to the species selectivity of the optical probe , 

the spectroe lectrochemical technique , derivat ive cyc lic 

voltabsorptommetry ( DCVA ) ( 1 6 4 ) , provides a response which 

is f ree from interfering faradaic and nonfaradaic currents . 

The nonf aradaic component of the current obtained under 

mixed faradaic/nonf aradaic conditions can be isolated by 

s imul taneous ly recording absorbance and current from a spec

troelectrochemical cel l . The derivative of the absorbance 

of one half of the redox couple with re spect to potential 

( dA/dE ) plotted versus potential has  the s ame morphology as  

the current versus potential plot of a cyclic voltammogram 

( CV ) . The absorbance of an electrochemically produced 

species is equivalent to the f aradaic charge ( Q )  consumed by 

the e lectroactive species . The derivat ive of charge with 

respect to time is current . The absorbance of an e lectro

chemic a lly produced species can be converted to charge 

( 1 6 4 ) . By converting dA/dE to i ts  analogous current and 

subtracting this from the exper imentally recorded current , a 

CV of the nonfaradaic component i s  obtained . Thus , a back

ground CV is extracted under actua l experimental conditions . 

This  method of i s o lating the nonfaradaic current under 

mixed faradaic-nonfaradaic conditions was applied to a temp-
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erature study o f  cytochrome c i n  pH 7 . 0  phosphate and Tris/  

cacodylic acid buffers . Figure 1 0  shows an example of 

s imultaneous ly obtained CV and DCVA data . The dif ference in 

current at any particular potent ial is the nonfaradaic com

ponent of the CV . The f i gure also shows the dif ference plot 

obtained from the CV and DCVA data . The s igni ficant experi

mental finding i s  that the background CV ' s  obtained in e lec

trolyte a lone corresponded we l l  with those obtained by the 

dif ference spectroe lectrochemical technique . Consequently , 

the background subtraction technique used for a signif icant 

portion of  the research presented here is a valid method . 

The s imilarity of the background responses in the presence 

and absence of cytochrome c indicates that the protein does 

not sign i f icantly alter the electrode / solution interface 

structure . Further exper imental results ( to be di scussed in 

a latter section ) indicated that cytochrome c does adsorb to 

the e lectrode surf ace . Clearly , the adsorption is  weak in 

that strong adsorption would alter the double layer struc t

ure a t  the e lectrode surface . As  pointed out in Chapter I ,  

revers ible , rapid adsorption of cytochrome c to an electrode 

surface is a cri terion for reversible e lectrochemical behav

ior . Strong , irreversible adsorption results in i rreve r s 

ible e lectrochemistry . 

B .  Temperature,  Electrolyte,  and pH Dependence of the 

Formal Potential  of Cytochrome c 

1 .  In  pH 7 . 0  Buf fer 

A series of control experiments were performed to 
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Figure 1 0 . Derivative cyc lic voltammetry and cyc lic voltam
metry of cytochrome c .  ( a ) : CV , ( b ) : DCVA , ( c ) : DCVA sub
tracted from CV . 10  mV/ s  scan rate obtained at 4 0 ° C .  
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conf i rm that the cell being used i n  this work behaved in a 

nonisothermal manner ( 1 5 7 ) . In  a noni sothermal cell , the 

temperature of the reference e lectrode is held cons tant , in 

thi s case , at ambient temperature ( 2 2 ± 1 ° C ) , whi le the 

temperature of the redox couple of interest i s  varied . 

Under such conditions , the reaction center entropy change , 

i s  given by : 

ASrc O = nF ( dE o ' /dT ) = Sred - Sox ( 1 )  

where n i s  the number of e lectrons transf erred , F is  the 

Faraday constant , E O ' is the formal potential , and T is the 

temperature of the redox couple of interest . The liquid 

j unction potential dif ference between the two e lectro lyte 

media used in thi s work , Tr i s /cacodylic acid buffer and 

phosphate buf fer in the presence and absence of NaCl , was 

determined to be less than 1 mV by measuring the potenti al " 

of the si lver / s i lver chloride reference e lectrode versus a 

saturated calome l reference e lectrode in  each medium . The 

uncertainty in the determinati on of ASrc O by this procedure 

is ± 1  eu ( 1 5 7 ) . 

The mode l system chosen for the evaluation of the non

i sothermal behavior of the cell used in this work was 

K3 Fe ( CN ) 6 ' The temperature dependence of both the formal 

potential and the formal heterogeneous electron-transfer 

rate constant , k O ' ,  for this redox couple is  shown in Figure 

1 1 . A reaction center entropy change of - 3 7  eu was obtained 

by using Equation 1 from the potential data shown in thi s 

f igure . Lin and Breck ( 1 7 4 )  extrapo lated to zero ionic 
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strength and reported a reaction center entropy change o f  

- 4 3  eu . Evaluati on of their data at 0 . 2  M ionic strength 

yie lded a matching va lue of - 3 7  eu . Moreover , a formal 

potential for K3 Fe ( CN ) 6 at 2 5 ° C  determined from potentio

metric redox t itrations has been reported that agrees with 

the value determined in the present work from cyc lic vo ltam

metric results , name ly , 4 2 4  mV vs . NHE ( 1 7 5 ) . These results 

estab l i sh that the cell configuration used in this work is 

noni sothermal .  

Us ing pure cytochrome c proved to be the essential 

requirement for successfully conducting the research pre

sented here . The evaluation o f  the temperature dependence 

of the e lectrochemical behavior of cytochrome c required 

long- term e lectrochemical stabi l i ty of the system . Bowden 

and Hawkr idge reported ( 3 8 )  that pur i f ication , by ion 

exchange chromatography , of type VI cytochrome c f rom Sigma 

Chemical Company resulted in long-term stable , heterogeneous 

e lectrochemistry at indium oxide e lectrodes . Cytochrome c ,  

used as received , showed a rapid loss of electrochemical 

response with time . Pur i f ication , followed by lyophi l i z a 

tion , gave a s ample with long- term , stable e lectrochemical 

response . For this work , the lyophili zed s ample was not 

pure enough . Repuri f ication of the purif ied , lyophi li zed 

cytochrome c revealed that the freeze drying proces s  irre

ve rsibly denatured some of the s ample . Addition of the 

impurities collected during the repurif ication to native 

cytochrome c caused a rapid loss of e lectrochemical 
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Figure 1 1 . Temperature dependence of the E O I and k O I of 
K3 Fe ( CN ) 6 . Results shown are the averages of three separate 
exper iments at three different indium oxide electrodes . All 
solutions contained 1 . 0  roM K3Fe ( CN ) 6 and were pH 7 . 0  and 
0 . 2 0 M ionic s trength . Two so lutions only contained Tris / 
cacodylate buffer , and the third solution also contained 
0 . 1 0 M NaC l . Temperatures ( O C ) , formal potent ials ( mV vs . 
NHE ) , and formal heterogeneous e lectron-transfer rate con
s tants ( X1 0 3 , cm/ s ) :  5 ,  4 5 1 . 4  ( ± 0 . 9 ) , 5 . 5  ( ± 1 . 4 ) ; 1 5 , 4 3 8 . 7  
( ± 0 . 2 ) , 7 . 2  ( ± 1 . 6 ) ; 2 5 , 4 2 3 . 8  ( ± 0 . 6 ) , 9 . 4  ( ± 2 . 0 ) ; 3 5 , 4 1 0 . 3  
( ± 1 . 0 ) , 1 1 . 5  ( ± 2 . 5 ) ; 4 5 ,  3 9 3 . 2  ( ± 0 . 6 ) , 1 3 . 3  ( ± 2 . 6 ) ; 5 5 , 
3 7 7 . 4  ( ± 0 . 4 ) , 1 5 . 1  ( ± 2 . 6 ) ; 6 5 , 3 6 1 . 2  ( ± 0 . 4 ) , 1 7 . 2  ( ± 3 . 4 ) ; 
and 7 5 , 3 4 7 . 1  ( ± 2 . 1 ) , 1 8 . 7  ( ± 4 . 2 ) . Parentheses contain 
standard deviations . 
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reve rsibility . The leading band impurity was e lectrochemi

cally reve rsible , and demons trated behavior that indicated 

that some of the response was due to adsorbed material . The 

peak separation was ca . 5 0  mV at 2 0  mV/ s  scan rates and c a .  

4 0  mV a t  1 0 0  mV/ s  scan rate . A peak separation of 5 8  mV is  

expected for  a revers ible cyc lic voltammogram of dif fus ing 

e lectroactive species . A revers ible cyclic voltammogram of 

adsorbed material shows no peak separation . When both 

adsorbed and so lution-res ident e lectroactive species are 

present , the current due to adsorbed material becomes more 

pronounced at faster scan rates than that due to dif fus ing 

species , and thi s  i s  ref lected by the morphology of the 

cyclic  vo ltammogram . Cyc lic voltammograms were col lected 

over a four hour per iod and no change in behavior was 

observed . At this point , some of the following band cyto

chrome c materi al  was added to the e lectrochemical cell 

which caused a rapid loss in e lectrochemical response . The 

leading band material i s  described as deamidated forms of 

cytochrome c ,  and the fol lowing impur ity bands are ol igomers 

of  cytochrome c ( 1 5 4 ) . The deamidated forms are e lectro

active , and show s tronger adsorption to indium oxide e lec

trodes than native cytochrome c .  The ol igomer s  cause a loss 

of electroactivi ty to occur when added to a solution of 

native or mixed native and deamidated cytochrome c .  The 

deactivation process probably occurs through the formation 

of an insulating layer of strongly adsorbed , e lectroinactive 

o ligomers to the e lectrode surf ace . 
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The temperature dependence of the formal potent ial of 

cytochrome c was determined in the two buffer so lutions used 

in this work at pH 7 . 0 .  Both phosphate and Tr is/cacodylic 

acid buf fers were prepared to be pH 7 . 0  at 2 2 ° C  and 0 . 2 0 M 

in ionic strength . The pH of the phosphate buffer varied 

with temperature in a manner that was s imi lar to that pre

vious ly reported for 0 . 0 2 5  M phosphate buf fer ( 1 7 6 ) , with pH 

va lue s of 7 . 0 9 at 5 ° c  and 6 . 8 8 at 5 5 ° C .  The pH of Tri s /  

cacodylic acid buffer was 7 . 2 2 a t  5 ° C  and 6 . 5 5 a t  5 5 ° C ,  

exhibiting a larger temperature dependence than the pho s 

phate buf fer but not as large as f o r  Tr i s / HCl buf fers ( 1 7 6 ) . 

Both ferricytochrome c ( 1 7 7 ) and ferrocytochrome c ( 7 7 )  

remain conformationa l ly s table between the pH values given 

above . 

Figure 1 2  shows the dependence of the formal potential 

on temperature for cytochrome c in phosphate buf fer . The 

formal potential at 2 5 ° C  is ca . 2 5 6  mV vs . NHE . Linearity 

i s  observed from 5 to 5 5 ° C ,  and dE o ' /dT = - 5 . 5  X 1 0 - 4  

V/deg . Thi s  s lope yie lds a &Src o of - 1 2 . 7  eu , which com

pares we ll  with the va lue of - 1 2 . 9  eu reported by Taniguchi 

et a l . ( 2 3 )  for the mediated reduction of cytochrome c in pH 

7 . 0  phosphate buf fer . Another group used a method s imilar 

to this work , i . e . , revers ible cyc lic voltammetry , at a 

chemically modif ied gold e lectrode , and obtained a &Src o of 

- 1 1 . 8  ± 1 . 1  eu ( 5 1 ) . The fact that s imilar results were 

obtained at two different solid electrodes and in a homogen

eous study indicate that the variation of the formal 
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Figure 1 2 . Temperature dependence of the E O ' of cytochrome 
c in pH 7 . 0  phosphate and Tris/ cacodylic acid buf fers . 
( squares )  Phosphate buf fer , pH 7 . 0 ,  0 . 2 0 M ionic strength . 
dE o ' / dT = - 5 . 5  X 1 0 - 4  V/ o C  ( 5 - 5 5  ° C ) , .Src o = - 1 2 . 7  eu , r = 

- 0 . 9 9 9 3 . Results shown are the averages of s ix separate 
experiment s . Three experiments were in phosphate buffer 
only and three exper iments were in phosphate buf fer that 
also contained 0 . 1  M NaC l . Temperatures ( O C )  and formal 
potent ials  ( mV vs . NHE ) : 5 ,  2 6 7  ( ± 2 . 0 ) ; 1 5 , 2 6 2  ( ± 1 . 2 ) ; 2 5 , 
2 5 6  ( ± 1 . 0 ) ; 3 0 ,  2 5 4  ( ± 0 . 6 ) ; 3 5 , 2 5 1  ( ± 1 . 0 ) ; 4 0 , 2 4 8  ( ± 1 . 0 ) ; 
4 5 , 2 4 5  ( ± 1 . 3 ) ; 5 0 , 2 4 2  ( ± 1 . 1 ) ; 5 5 ,  2 4 0  ( ± 0 . 5 ) . ( circles ) 
Tr i s / cacodylic acid buf fer , pH 7 . 0 ,  0 . 2 0 M ionic strength . 
dE o / dT = - 5 . 8  X 1 0 - 4  V/ o C  ( 5 - 6 5  ° C ) , . S  C O = - 1 3 . 4  eu , r = -
0 . 9 9 8 9 . Each value i s  the average of  tfiree separate expe r i 
ments . Temperature ( O C )  and formal potential ( mV vs . NHE ) : 
5 ,  2 7 5  ( ± 0 . 6 ) ; 1 5 , 2 6 9  ( ± 0 . 8 ) ; 2 5 , 2 6 4  ( ± 0 . 8 ) ; 3 5 , 2 5 9  
( ± 1 . 0 ) ; 4 0 , 2 5 5  ( ± 1 . 2 ) ; 4 5 ,  2 5 2  ( ± 0 . 8 ) ; 5 0 , 2 4 9  ( ± 0 . 5 ) ; 5 5 , 
2 4 7  ( ± 0 . 9 ) ; 6 0 , 2 4 4  ( ± 0 . 5 ) ; 6 5 , 2 4 0  ( ± 0 . 8 ) . 
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potential  o f  cytochrome c with change i n  temperature , as 

determined by heterogenous methods , ref lects the thermody

namic behavior of cytochrome c rather than an artifact of 

the experimental method . The formal potential for cyto

chrome c in Tri s / cacodylic acid buf fer is  ca . 8 mV anodic of 

formal potential in phosphate at any particular temperature , 

with a formal reduction potential of 2 6 4  mV vs . NHE at 

25 D C .  The ASrc D of - 1 3 . 4  eu is exper imenta l ly indi stin

guishable from the - 1 2 . 7  eu value in phosphate buffer . One 

s ignif icant dif ference between the results in the two buf 

fers i s  that a linear relationship between formal potential 

and temperature was maintained to 65 DC in  Tri s /cacodylic 

acid buf fer . Thi s  is 10 D C  higher than in phosphate buf fer . 

The formal potentials  were determined every 5 D C .  I t  was 

pos s ible only to obtain one f ormal potenti a l  ( at 60 DC in 

phosphate and 70 D C  in Tri s / cacodylic acid buf fer ) after the 

break in linear behavior due to the onset of irreve r s ible 

e lectrochemi stry . The formal potential of cytochrome c is  

240  mV vs . NHE i n  both phosphate buf fer at 55  DC  and in 

Tr i s / cacodylic acid buf fer at 65 D C ,  i . e . , i rreversible 

behavior begins at approximately the s ame formal potentia l . 

This indicates that the formal potenti a l  i s  an excel lent 

indicator of the conformation of ferricytochrome c .  

Cooling the pH 7 . 0  phosphate buf fer-cytochrome c solu

tion that had been heated to 55  DC  did  not res tore reve r s 

ible behavior . The cell was thoroughly r insed and then 

a l lowed to soak overnight in water . A fresh , cytochrome c 



solution added to the cell yie lded irrevers ible behavior . 

The e lectrode was removed from the cell , c leaned , and then 

returned to the e lectrochemical cell . Revers ible behavior 

for cytochrome c was obtained at the c leaned e lectrode . 

9 4  

Thi s  indicates that cytochrome c exposed t o  5 5 ° C ,  in p H  7 . 0  

phosphate buf fer , i rrevers ibly adsorbs to the e lectrode 

surface and blocks e lectron transfer to solution- resident 

species . 

The 6 9 5  rum absorption band of ferricytochrome c ,  in pH 

7 . 0  phosphate buf fer , was monitored from 2 1  to 6 6 ° C .  The 

intens ity of the band dimini shed with increase in tempera

ture , indicating a weakening of the Fe-S bond . Coo ling the 

solution to room temperature caused the intens ity of the 6 9 5  

rum band t o  return t o  its original leve l , indicating a 

reve rsible temperature ef fect on cytochrome c .  Thus , e lec

tron transfer at indium oxide e lectrodes at temperatures 

above ca . 5 0 ° C ,  in pH 7 . 0  phosphate buf fer , causes an irre

versible change to occur in cytochrome c which cannot be 

attributed to the effects of temperature a lone . I rreve r s 

ible adsorption t o  the e lectrode and l o s s  of e lectroactivity 

accompanie s  this irrevers ible change . 

Several attempts were made to evaluate the temperature 

dependence of the f ormal potential of cytochrome c by thin

layer spectroelectrochemis try . The redox ratio of cyto

chrome c was set by the e lectrode potential and determined 

by monitoring the 5 5 0  rum absorption band of ferricytochrome 

c .  Room temperature evaluations gave reproduc ible results 
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that agreed with those dete rmined by cyc lic voltammetry . 

Condensat ion of  water vapor on the optica l ly transparent 

working e lectrode at low temperatures and bubble formation 

at e levated temperatures caused severe baseline dr ift  to 

occur . Vari at ion of temperature from 25 to 4 5  DC in both pH 

7 . 0  phosphate and Tr i s / cacodylic acid buf fers yie lded a 

negative shift in formal potential . However , the results 

were not prec ise . The determination of formal potentials  by 

cyclic voltammetry at temperatures above and be low room 

temperature was much more preci s e , accurate , and rapid than 

by thin- layer spectroe lectrochemis try , and the latter tech

nique was not used further . 

The dif ferences observed in the formal potential of 

cytochrome c reacting at indium oxide electrode s in the two 

buf fers used in this s tudy are attr ibuted to anion binding 

in the case of phosphate buf fer . Phosphate anions bind to 

the posit ive ly charged lys ine res idues surrounding the sol

vent exposed heme edge ( 1 7 2 ) . The anions may e lectro

statical ly reduce charge repulsion between the positively 

charged heme group of ferricytochrome c and the pos i tively 

charged lys ine res idue s , thus s tabi l i z ing the oxidi zed form 

of  cytochrome c .  Thi s  i s  ref lected by the re latively nega

tive formal potentials for cytochrome c in phosphate buf fer 

a s  compared to those in Tri s / cacodylic acid buffer . There 

is exper imental evidence ( 7 9 ,  8 5 , 1 2 3 , 1 7 3 ) that binding to 

the lys ine res idues in the active s i te region destabi li zes 

the s tructure of ferricytochrome c .  Hence , the binding of 
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phosphate anion to cytochrome c may cause an  increase in 

so lvent exposure of the heme group . This  would also result 

in  an increased s tabil i z ation of the oxidi zed form relative 

to the structure present in the absence of anion binding and 

a corresponding negative shift in reduction potential . 

The e lectrostatic and conformational explanations of 

the different formal potentials of cytochrome c in the two 

buffer systems have dif ferent conformational implications . 

Both model s  propose that the negative shift of formal poten

tial  in  phosphate buf fer , relat ive to that in Tr i s / cacodylic 

acid buf fer , is due to phosphate anion binding which causes 

a stabi l i z at ion of the pos i tively charged heme group in 

ferricytochrome c .  I f  a purely e lectrostatic ef fect from 

the interaction o f  phosphate anions and _ the heme group 

cause s  the shift in f ormal potential , the conformation of 

ferricytochrome c in both buf fer systems i s  the same at the 

s ame temperature . However , i f  phosphate anion binding 

shifts the conformation of ferricytochrome c to that with an 

increased solvent exposure of the heme group , the conforma

tion of the oxidi z ed form i s  different in the two buf fer 

systems at any one temperature .  An increase in temperature 

causes an opening of the crevice about the solvent exposed 

heme edge in both buf fer s . A conformational shift due to 

phosphate anion- ferricytochrome c interaction would have a 

constant additive ef fect on the opening of the crevice 

throughout the temperature range s tudied . Consequently , 

ferricytochrome c may have the same conformation in the two 
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buf fer systems when the formal potential is the s ame . Thi s  

occurs a t  dif ferent temperatures i n  the two buf fers used . 

Recall  that the linear range of the formal potential versus 

temperature relationship extends to dif ferent temperatures 

in  the two buf fers but ends at approximately the same formal 

potential . I f  anion binding has this conformational ef fect , 

i t  should be ref lected by a lower ing of the temperature of 

denaturation and the pK of a lkaline isomeri z ation . This  has 

been reported for the alkaline i some r i z ation of ferricyto

chrome c in the presence perchlorate anions ( 17 8 ) . The 

shift in pK was attributed to the preferential binding of 

perchlorate to the alkaline form of ferricytochrome c ( state 

IV ) over the neutral f orm ( state I I I ) . However ,  chloride 

and phosphate anions do not cause a shift in pK ( 1 7 8 ) . Both 

phosphate and chloride anions bind to ferricytochrome c with 

approximate ly the same strength ( 1 7 9 ) . Osheroff et a l . 

( 1 7 2 ) found that phosphate anions bind to both oxidation 

states of ferricytochrome c ,  whi le chloride anions only bind 

to ferricytochrome c .  Other groups report that chloride 

anions do bind to ferrocytochrome c ( 1 7 9 , 1 8 0 ) . Clearly , 

there are dif ferences of opinion on change of anion binding 

s trength with change in oxidation state . Most  studies indi

cate that binding i s  stronger to the oxidized form ( 7 ) . The 

binding s ites are in the region of the solvent-exposed heme 

edge ( 7 ,  1 7 8 - 1 8 0 ) o f  ferricytochrome c .  The solvent expo

sure of the heme group decreases s igni f icant ly ( 8 2 )  on 

reduction . The dependence of binding strength on oxidation 



9 8  

state o f  cytochrome c supports the view that there is  an 

e lectrostatic interaction between the anions and the sol

vent- exposed heme edge . The e lectrostatic mode l is  also 

supported by the .Src o for cytochrome c ,  which is  the same 

( within experimental error ) in both the binding and nonbind

ing buffers . However ,  a conformationa l perturbation induced 

by anion binding may increase the extent of solvent exposure 

of the heme group suf f iciently to cause the observed 8 mV 

shift in formal potential without making a noticeable di f 

ference i n  . Src o .  A change of enthalpy of .HO  = - 9 . 5  Kc al/  

mo le has  been reported for the reduction of cytochrome c 

( 4 0 ) . The formal potentials of cytochrome c at 2 5 ° C  in 

phosphate and Tr i s / cacodylic acid buf fers correspond to a 

change in f ree energy of AGO  = - 5 . 9 0 kcal /mo le and .GO  = 

- 6 . 0 9 kcal/mo le , re spectively . The change in .GO  with buf 

fer corresponds to a difference of 0 . 7  eu in .Src o ( .H o  held 

constant and .GO = .HO - T . S O ) .  The accuracy of the . Src o 

values reported here i s  ± 1 eu ( 1 5 7 ) whi le the accuracy of  

the formal potentials i s  ± 1 mY . Thus , a change in formal 

potential due to a conformation change resulting from anion 

binding can be eas i ly determined whi le the corresponding 

difference in .S rc o i s  not exper imentally observable . The 

phosphate and chloride anion binding study ( 17 9 ) also 

revealed that there i s  a dif ference in the dynamics of  the 

active s ite region between the two oxidation states . The 

average structures of ferri- and ferrocytochrome c are 

almost identical . I t  i s  the large difference in the 



9 9  

dynamics of the protein s tructures of the two oxidation 

states that accounts for the difference in physicochemical 

properties . The complexity of enzyme dynamics makes it 

dif f icult to c learly def i ne anion binding ef fects . Prob

ably , there are both e lectrostatic interactions with the 

heme and residue vibrational effects resulting from anion 

binding . In  e ither case , i t  does seem reasonable that the 

cathodic shi f t  in f ormal potential  of cytochrome c observed 

in the presence of phosphate anions is due to a stabi l i z a 

tion of the pos i tive ly charged heme in ferricytochrome c .  

As mentioned previous ly , the reduced form of cytochrome 

c i s  very stable , and undergoes mild conformational changes 

throughout the temperature range used for this study ( 6 3 ,  

7 7 , 7 9 ) .  The oxidized form i s  less  s table , and undergoes 

larger conformational change s . The formal potential indi

cates the relative s tabi l i ty o f  the oxidized and reduced 

forms . As the temperature is increased , the crevice around 

the so lvent-exposed heme edge opens , and allows greater 

solvent exposure of the heme , thus stabi l i z ing the pos i 

tively charged heme group o f  ferricytochrome c .  Previous 

s tudies have indicated that in ferricytochrome c ,  the Fe-S 

bond gradual ly and continuously weakens with the increase in 

temperature ( 7 6 ,  8 3 , 8 8 ) . The residues adj acent to the met-

80 group are also f lexible ( 7 6 ,  1 8 1 ) . The conformational 

change on reduct ion is primari ly a c losing of the crevice 

about the solvent-exposed heme edge ( 8 2 ) . The difference in 

conformation i s  associ ated with a change in the Fe- S  bond 
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length which affects conformational changes by a " pull -push" 

mechanism ( 7 6 ) . S imi larly , the temperature dependent Fe- S  

bond length may play a role in controlling the crevice about 

the heme within each redox state as a function of tempera

ture . The . Src o values for cytochrome c determined in both 

buffer media used in this work are small  in magnitude , nega

tive in s ign , and , within exper imental error , the same , 

i . e . , - 1 3  ± 1 eu . The s ign and magnitude of this reaction 

center entropy change are cons i stent with a small  conforma 

tiona l change to a more compact structure in the environment 

about the heme on reduction ( 2 3 ) .  Charge - i nduced outer 

sphere solvent reorgani zation can only be a small  f actor in 

this entropy change s ince the heme is large ly shielded from 

the solvent . Moreover , a pos i t ive contribution to .Src o 

would be expected for a + 1  to a neutral charge change ( 1 5 7 ) . 

The negative entropy change for the reduction of cyto

chrome c ha s  also been attributed to the decrease in s i z e  of 

cytochrome c when reduced , followed by water f i l ling the 

void , with subsequent water s tructure formation through 

hydrogen bonding ( 1 4 ,  1 7 , 2 4 ) . Thi s  mode l is based on the 

biphasic behavior of the temperature dependence of the for

mal potential of cytochrome c in the presence of chloride 

anions ( 0 . 1  M ) . The break occurred at 4 2 ° C .  Be low 4 2  ° C  a 

.Src o of - 1 0 . 2  eu was observed , whi le above 4 2 ° C  a va lue of 

- 7 5 . 0  eu was obtained . Thi s  ef fect should be strongly 

dependent on chloride concentration , but concentration stud

ies were not reported . 
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Three o f  the experiments i n  phosphate buffer were con

ducted in the presence of 0 . 1  M NaCl . No chloride entropy 

ef fect was observed . A s imi lar s tudy of the temperature 

dependence of the formal potential of cytochrome c ,  in pH 

7 . 0  phosphate buf fer , in the presence of NaCl , as deter 

mined by heterogeneous e lectron transfer at a chemically 

modif ied gold e lectrode ( 5 2 )  a l so fai led to reveal the 

chloride ef fect . Thi s  difference in results for tempera

tures above 4 2 ° C  may be due to several f actors . The 

previous work employed spectropotentiostatic exper iments 

using optically transparent thin-layer e lectrode ( OTTLE ) 

cells  and a mediator to couple the redox state of cytochrome 

c to the potential applied to the gold minigrid working 

e lectrode . Therefore , the OTTLE results are based on 

optical measurements that probe redox states in bulk solu

tion . The results presented here are based on cyclic vo lt

arnrnetry responses , and are  therefore dependent on the f lux 

of electroactive species at the electrode / so lution interface 

and bulk solution conditions . The dimens ion of the dif fuse 

double layer under the present experimential conditions , 

i . e . , 0 . 2 0 M ionic s trength , i s  less than 5 A ( 1 8 2 ) , and 

cytochrome c has a diameter of ca . 2 5 - 3 0  A ,  not inc luding 

the solvation sheath ( 6 1 ) . These factors suggest that cyto

chrome c mo lecules undergoing electron transfer reactions in 

these experiments exhibit characteristics that are large ly 

due to the bulk so lvent properties . However , if  the physio

logical binding domain of cytochrome c i s  indeed facing the 
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e lectrode surf ace during e lectron transfer , chloride anions 

may be exc luded form this region , preventing the observation 

of  the chloride-dependent behavior observed by the OTTLE 

technique above 4 2 ° C .  

The OTTLE work employed 1 roM solutions of cytochrome c ,  

whereas the heterogeneous technique described here used 

concentrations ranging f rom 60 to 1 0 0  uM .  An attempt to use 

a pH 7 . 0  phosphate buf fer , 1 roM cytochrome c ,  0 . 1  M NaCl 

solution fai led due to the concentration dependence of the 

electrochemical revers ibi lity of cytochrome c .  Cyc lic volt

ammograms acquired at 1 0  mV/ s  showed peak separations of at 

least 1 6 5  mV at 2 5 ° C .  Table 1 l ists  the peak separation 

and midpoint potentials for this concentration . In  order 

for the average of peak potentials  to be used in determining 

formal potentials , the peak separation should be c lose to 6 0  

mY , i . e . , revers ible behavior mus t  exist . Given thi s 

caveat , it  i s  s t i l l  worth noting that the chloride - i nduced 

break at 4 0 ° C  did not occur . A linear regress ion analysis 

of  the data provided a change i n  reaction center entropy of 

ca . - 9 . 2  eu , which i s  reasonab ly c lose to the - 1 2 . 7  eu 

determined for lower protein concentration , revers ible 

cyc lic voltammograms . 

The ef fect of chloride anions on the formal potential 

temperature dependence of cytochrome c in Tris /cacodylic 

acid buffer was examined by the combined DCVA-CV technique . 

The ef fect of the chloride anions in the nonbinding buf fer 

was to shi ft  the thermodynamic behavior of cytochrome c to 
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TABLE 1 

Temperature, o C .Ep� §np, mV vs NHE 

5 2 1 7a .  2 5 8  
1 5  1 9 2  2 5 6  
2 5  1 6 4  2 5 3  
3 0  1 5 4  2 5 1  
3 5  1 5 0  2 4 9  
4 0  1 4 4  2 4 7  
4 5  1 4 2  2 4 4  
5 0  1 3 9  2 4 1  
5 5  1 4 0  2 3 9  

a .  Peak separation from 1 0  mV! s  scan rate cyc lic vo ltam
mograms . 
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c lose t o  that observed i n  phosphate buf fer . The formal 

potential was shifted c a .  6 mV cathodic of that in the 

absence of chloride anions . Thi s  was determined by repeat

edly alternating between two Tri s / cacodylic acid cytochrome 

c solutions , one with and one without 0 . 1  M NaCl , in the 

s ame e lectrochemical cell . The formal potential varied 

l inea rly from 2 5  to 5 5 ° C  with a 4S rc O of ca . - 1 7  eu . Thi s  

result i s  f rom the average of three DCVA ' s and three back

ground- subtracted CV ' s  obtained in one exper imental run . 

The DCVA results were not as precise ( ±  3 mY ) as  the back

ground- subtracted CV ( ±  1 mY ) results . The temperature 

dependence of the f ormal potential of cytochrome c in pH 7 . 0  

phosphate and Tri s / cacodylic acid buf fers was also evaluated 

by DCVA , and gave the same results as with the background

subtracted CV experiments .  Again , the DCVA experiments were 

not as preci se as the CV exper iments . Thi s  i s  probably due 

to the degradation o f  the s igna l - to-noise ratio resulting 

f rom taking the der ivative of the absorbance s ignal . 

Tris/ cacodylic acid i s  a nonbinding buf fer , whereas 

chloride and phosphate anions bind to ferricytochrome c .  

The cathodic shif t  in formal potential on addition of chlor 

ide anions to Tri s / cacodylic acid buf fer reinforces the 

model that anion binding affects the heme environment of 

ferricytochrome c .  The absence o f  a change in formal poten

tial  of cytochrome c in phosphate buf fer on addi tion of 

chloride anions indicate& that chloride anions do not di s 

place phosphate anions bound t o  ferricytochrome c .  The 
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binding strength o f  phosphate anions t o  ferricytochrome c i s  

s lightly larger than that o f  chloride anions ( 1 7 2 ) . The 

.Src o value of - 1 7  eu for cytochrome c in Tr is /cacodylic 

acid buffer that was 0 . 1  M in NaC l indicates that the inter 

action of chloride anions with cytochrome c differs from 

that of phosphate anions ( - 1 3  eu ) . The more negative .Src o 

observed in the presence of chloride anions relative to that 

observed in phosphate buffer is probably not due to a larger 

conformational or e lectrostatic interaction , induced by 

chloride anions , as  the change in formal potential  is  not as 

pronounced for chloride as for phosphate anion binding . 

Osheroff et al . ( 1 7 2 ) reported that phosphate anions bind to 

both oxidation s tates of cytochrome c ,  whereas chloride 

anions bind only to ferricytochrome c .  The re lease of 

chloride anions contingent on reduction of the protein may 

explain the larger , more negative . Src o value observed in 

the presence of chloride anions . The .Src o of cytochrome c 

i s  the same ( ±  1 eu ) i n  phosphate and Tris/ cacodylic acid 

buffers . Thi s  reinforces the view that phosphate anions 

bind to both oxidation states and that the formal potential 

difference in  the two buf fers i s  due to the additional con

formational weakening of the heme crevice induced by anion 

binding . 

Background CV ' s  were obtained for pH 7 . 0  Tri s / cacodylic 

acid buf fer both with and without added NaCl . The addition 

of  NaCl had no e ffect on their morphology . Thi s  is  in con

trast to the previous ly noted dif ference in  background CV ' s  
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between phosphate and Tri s / cacodylic acid buffers , and indi 

cates that chloride anions do not interact as strongly with 

the surface of the indium oxide e lectrode as phosphate 

anions . A pos s ible reason for thi s i s  that phosphate anions 

adsorb to the e lectrode through hydrogen bonding . Chloride 

anions do not hydrogen bond , and are probably expel led from 

the negatively charged indium oxide e lectrode surface . Thi s  

idea reinforces the explanation given above for the differ

ence in the temperature dependence of  the formal potential 

of  cytochrome c in neutral 0 . 1  M NaCI so lutions , as deter

mined by homogeneous ( 1 4 ,  1 7 , 2 4 ) and heterogeneous ( 5 2 ,  and 

this work ( 5 6 ) ) methods , i . e . , that the chloride anions are 

excluded from the heterogeneous e lectron trans fer reaction 

s i te . 

The model sys tem of ferr i - / ferrocyanide was also eval

uated in the presence of 0 . 1  M NaC I . Direct addition of 

NaCl to the 0 . 2  M ionic s trength Tr i s / cacodylic acid solu

tion changed the aSrc o considerably due to the ionic 

s trength dependence of the reduction of this very negative 

anion ( change o f  - 3  to - 4 ) . However , the temperature depen

dence of the formal potential about 4 2 ° C  was s t i l l  linear . 

Adj ustment of  the Tri s / cacodylic acid concentration so that 

0 . 2  M ionic strength conditions were maintained in the pre

sence of 0 . 1  M NaCl resulted in no difference in thermo

dynamic behavior between 2 5  and 7 5 ° C  f rom that observed in 

the absence of NaC I . Any bulk water structure effects of 

adding 0 . 1  M NaCl should have been observed in thi s reaction 
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due t o  the large outer sphere , i . e . , solvent reorganization 

change accompanying the reduction of ferricyanide . 

2 .  In  pH 5 . 3  Buf fer 

A shift  in solution pH from 7 . 0  to 5 . 3  causes an 

increase in the thermal s tabil i ty of ferricytochrome c ( 8 8 ) . 

Thi s  was determined by monitoring the 6 9 5  nm absorption band 

of ferricytochrome c which arises from a charge transfer 

from the axia l ly bound sulfur of the met- 8 0  to the heme 

iron . In addition , Moore ' s  ( 7 6 )  NMR study of the effect of 

temperature on ferricytochrome c was conducted at a pH of 

5 . 3 .  An increase in pH or temperature lead to the denatura

tion of  ferricytochrome c .  For these reasons , the tempera

ture dependence o f  the formal potenti a l  of cytochrome c in 

pH 5 . 3  Tri s / cacodylic acid and phosphate buffers was 

investigated . 

The irrevers ible e lectrochemical  behavior of cytochrome 

c in pH 5 . 3  phosphate buf fer has already been di scussed . 

Thi s  was partia l ly attributed to the large concentration of  

specif ically ads orbed anions present at the e lectrode / solu

tion interface . The relative ratio of monobasic and dibasic 

phosphate anions changes wi th pH . The dif ferences in  

interaction of monobasic and dibasic phosphate with the 

e lectrode interface and in binding to ferricytochrome c are 

not known . 

The variation of formal potential with temperature in 

pH 5 . 3  Tris /cacodylic acid buf fer ( Fi gure 1 3 ) was linear 

f rom 5 to 7 5 ° C  with a &Src o of - 1 2 . 0  eu . The formal poten-
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tial  was 2 6 8  mV vs . NHE a t  2 5 ° C .  I rreversible e lectrochem

i stry was observed at 8 0  ° C .  The linear range extends 2 0  

° C  beyond that observed for cytochrome c in pH 7 . 0  phosphate 

buf fer and 1 0 ° C  beyond that in pH 7 . 0  Tri s / cacodylic acid 

buf fer . The f ormal potential i s  2 3 9  mV vs . NHE at 7 5 ° C  in 

pH 5 . 3  Tris /cacodylic acid buf fer . Thus , the loss of linear 

formal potential versus temperature behavior occurs at 

approximately the same f ormal potential in pH 5 . 3  Tr i s / caco

dylic acid buf fer and in both pH 7 . 0  buffer systems but at a 

higher temperature . Thi s  indicates that the acidic pH sta

b i l i zes  the conformation of ferricytochrome to thermal dena

turation . Moore ( 7 6 )  reported that ferricytochrome c re

mains in it s  native conformation to 7 7 ° C  at pH 5 . 3 .  Thi s  

strongly supports  the view that the formal potential of 

cytochrome c w i l l  vary l inearly with temperature in neutr al 

and acidic media as long as ferricytochrome c remains in its 

native form . Again , the conformation of ferrocytochrome c 

i s  large ly unaf fected over the temperature ranges discussed 

here . I t  remains in i ts  native conformation to 9 7 ° C  at pH 

7 . 0  ( 7 7 ) . 

The formal potential o f  cytochrome c shifts ca . 4 mV in 

the anodic direction with decrease in pH of 7 . 0  to 5 . 3  in 

Tr i s / cacodylic acid buf fer at the same temperature . Thi s  

empirical result supports the view that the degree of sol

vent exposure of the pos i tively charged heme in ferricyto 

chrome c contributes to determining the reduction potential 

of  cytochrome c .  Under acidic conditions , the posi tive ly 
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Figure 1 3 . Temperature dependence of the E O ' of cytochrome 
c in pH 5 . 3  Tri s /cacodylic acid buffer and pH 8 . 0  phosphate 
and Tr i s / cacodylic acid buffers . Each va lue is the average 
from three experiments .  ( squares )  pH 5 . 3  Tr is/cacodylic 
acid buf fer . dE O ' /dt = - 5 . 5  X 1 0 - 4  v/ o e  ( 5  to 75 ° e ) , .Src o 
= - 1 2 . 6  eu , r = - 0 . 9 97 4 .  Temperatures ( O e )  and formal 
potenti a l s  ( mV vs . NHE ) : 5 ,  2 7 8 ; 1 5 , 2 7 3 ; 2 5 , 2 6 8 ; 3 5 ,  2 6 3 ; 
4 5 ,  2 5 7 ; 5 5 ,  2 5 3 ; 6 0 , 2 4 9 ;  6 5 , 2 4 7 ; 7 0 , 2 4 2 ;  7 5 , 2 3 9 . ( x )  pH 
8 . 0 ,  Tr i s / cacodylic acid buf fer . dE o ' /dt = - 5 . 5  X 1 0 - 4  
v/ o e  ( 5  t o  4 0  ° e ) , .Src o = - 1 2 . 7  eu , r = - 0 . 9 9 5 9 . dE o ' /dT = 
- 1 . 0 4 X 1 0 - 3  v/ o e  ( 4 5 to 6 0  ° e ) , . Sr ° = - 2 4 . 0  eu , r = 
- . 9 9 8 9 . Temperatures ( O e )  and f orma! potentials ( mV vs . 
NHE ) : 5 ,  2 7 4 ; 1 5 ,  2 6 9 ; 2 5 ,  2 6 4 ; 3 0 , 2 6 1 ; 3 5 , 2 5 7 ; 4 0 , 2 5 4 ; 
4 5 ,  2 4 9 ;  5 0 , 2 4 4 ; 5 5 ,  2 3 9 ; 6 0 , 2 3 3 . ( diamonds ) pH 8 . 0  phos
phate buf fer . dE o ' /dT = - 6 . 1  X 1 0 - 4  v/ o e  ( 5  to 4 0  ° e ) , .Src o 
= - 1 4 . 2  eu , r = - 0 . 9 9 5 9 . dE o ' /dT = - 1 . 4 0 X 1 0 - 3  v/ o e  ( 4 5 to 
5 5  ° e ) , . Src o = - 3 2 . 3  eu , r = - 0 . 9 9 6 6 . Temperatures ( O e )  
and formal potentials ( mV vs . NHE ) : 5 ,  2 6 7 ; 1 5 ,  2 6 1 ; 2 5 , 
2 5 6 ; 3 0 , 2 5 2 ; 3 5 , 2 4 8 ; 4 0 , 2 4 5 ; 4 5 , 2 4 0 ; 5 0 , 2 3 4 ;  5 5 ,  2 2 6 . 
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charged heme , located i n  a large ly hydrophobic environment , 

i s  less exposed to so lvent and therefore , is  not as re s i s - 

tant t o  reduction as in neutral o r  basic solutions . 

3 .  I n  pH 8 . 0  Buffer 

The formal potential of cytochrome c in alkal ine pho s 

phate and Tri s /cacodylic acid buf fers showed a c lear 

biphasic temperature dependence ( Figure 1 3 ) ,  with the change 

in slope occurr ing at ca . 4 0 ° C  in both systems . From 5 to 

4 0  ° c ,  there was no dif ference in formal potential from that 

observed in pH 7 . 0  buf fer s . From 4 0  to 5 5  ° c ,  the formal 

potenti a l  at pH 8 . 0  became increasingly negative re lative to 

that observed at pH 7 . 0 .  Thi s  higher temperature region is  

also linear . In  pH 8 . 0  phosphate buf fer , a .Src o of - 3 2  eu 

was found for the temperature range of 4 0  to 5 5  ° C .  The 

.Src o of cytochrome c in pH 8 . 0 ,  from 4 0  to 6 0  ° c ,  was - 2 4  

eu . The . Src o was approximately - 1 3  eu in both buf fers from 

5 to 4 0  ° C .  The pH of the phosphate buffer prepared as pH 

8 . 0  at room temperature was invariant from 5 to 5 5  ° C .  

However , the pH 8 . 0  Tr i s /cacodylic acid buffer changed with 

temperature . A so lution prepared as pH 8 . 0  at room tempera

ture had a pH of 8 . 5  at 5 ° c ,  7 . 6  at 40 ° c ,  and 7 . 3  at 5 5  

° C .  Thi s temperature dependence was more pronounced than 

that for the pH 7 . 0  Tri s / cacodylic acid buf fer due to the 

higher concentration of Tr is  in the alkaline solution . Tr is  

buf fers a re  known to be  very susceptible to  temperature 

e f fects ( 1 7 6 ) . The pH 5 . 3  Tr i s / cacodylic acid buff er was 

found to be virtua l ly temperature independent . The tempera-
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ture dependence o f  the pH 8 . 0  Tris /cacodylic acid buffer i s  

the probable cause o f  the difference i n  the aSrc o va lue s 

obtained for cytochrome c above 4 0 ° C  in the two buffer s .  

Whi le the phosphate buf fer remained at pH 8 . 0  above 4 0  ° C ,  

the Tr i s / cacodylic acid buf fer became increasingly acidic . 

I t  has already been demonstrated that changing from neutral 

to acidic conditions stab i l i z e s  cytochrome c to the ef fects 

of  temperature .  

The change in aSrc o at 4 0 ° C  i s  probably due to a d i s 

tinct conformational change in ferricytochrome c t o  a form 

which is less structured than that exi sting be low 4 0 ° C .  

The larger conformational change then required on reduction 

to the large ly pH and temperature independent conformat ion 

of ferrocytochrome c i s  ref lected by the more negative 

asrc o .  An interesting point i s  that the di scontinuity in 

the formal potential versus temperature relationship occurs 

at the s ame temperature , but at dif ferent formal potentials , 

in the two buffer s . The f ormal potential  at which the break 

occurs in the pH 8 . 0  phosphate buf fer is  2 4 5  mV versus NHE , 

and 2 5 4  mV vs . NHE in pH 8 . 0  Tri s /cacodylic acid buf fer . I t  

has been sugges ted here that the formal potential of cyto

chrome c is a sensitive indicator of the conformation of 

ferricytochrome c .  Thi s  should be true at least in the 

vicinity of the heme group in that conformational change s 

would change the degree of so lvent exposure of the pos i 

tively charged heme and the hydrophobicity o f  i t s  environ

ment . The finding at pH 8 . 0  that the temperature at which 
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the break occurs i s  independent o f  buffer and formal poten

tial  suggests that the cause of biphasic behavior is not in 

the vicinity of the so lvent -exposed heme edge . 

Taniguchi et al . ( 5 1 )  have also inve stigated the formal 

potential  temperature dependence of cytochrome c at pH 8 . 0  

by the same technique used for this work . They report the 

s ame biphas ic behavior , with the break occurring at 4 0 ° C .  

The . Src o be low 4 0 ° C  was - 1 0 . 3  eu and was - 4 1 . 1  eu from 4 0  

t o  5 5 ° C .  The phosphate buffer used contained 0 . 1  M sodium 

perchlorate . The di f ference in .S rc o in the ir work ( - 4 1  eu ) 

and this work ( - 3 0  eu in phosphate buf fer ) i s  probably due 

to the e ffect of perchlorate anion binding to ferricyto

chrome c .  Perchlorate anions have been shown to interact 

dif ferently with ferricytochrome c than phosphate or chlor

ide anions ( 17 8 ) . Taniguchi ( 5 1 )  points out that no remark

able change s occurred in the Raman spectrum of ferricyto

chrome c in pH 8 . 0  buffer from 0 to 5 5 ° C ,  and conc ludes 

that a change in the heme environment i s  unlikely . He 

attributes the biphas ic behavior in a lkaline solution to a 

change in the structure of the protein moiety of cytochrome 

c that occurs in a more pronounced fashion above 4 0 ° C .  The 

protein i s  sti l l  in i ts  native conformation between 4 0  and 

5 5  ° C  in the a lkaline solution . Thi s  supports the view 

presented here that the biphasic behavior observed at pH 8 . 0  

i s  caused by a conformational event distinct from that which 

causes the onset of irreversible e lectrochemistry that cor

responds to a f ormal potential of 2 4 0  mV vs . NHE observed in 
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the neutral and acidic buf fer s . Myer ( 7 3 ) reported that an 

intermediate s tate I I I b  exi sts  between the native state I I I  

and the alkaline s tate IV . The trans ition from state I I I  to 

s tate I I I b  produces a conformational change in ferricyto

chrome c which doe s  not affect the ligation to the heme or 

the hydrophobic i ty of the heme environment . The transition 

f rom state I I I b  to s tate IV invo lve s both a change in the 

i ron coordination and the hydrophobicity of the heme envi

ronment . The break in the formal potential vs temperature 

plot at 4 0 ° C  in pH 8 . 0  media is probably due to a state I I I  

t o  state I I Ib transi tion . State I I I b  i s  electroactive , but 

has dif ferent adsorption characteristics than state I I I . 

Thi s  wi l l  be di scussed further  in the next section . 

C .  Kinetic and Adsorption Behavior of Cytochrome c 

The pr imary technique used to investigate the hetero

geneous e lectron trans fer kinetics of cytochrome c at indium 

oxide e lectrodes was cyc lic vol tammetry . An advantage of 

cyclic  voltammetry is that both thermodynamic and kinetic 

parameters can be determined for many e lectroactive species . 

Slow scan rate , revers ible cyc lic voltammograms are used to 

determine reduction potentials . The redox ratio of the 

analyte instantaneous ly ,  i . e . , revers ibly , adj usts to the 

f ree energy of the e lectrode as descr ibed by the Nernst 

equation . The current i s  l imited only by mas s transport of 

the analyte to the e lectrode . Experimental conditions l imit 

the mode of transport to dif fus ion . The current is  then a 

function of the concentration gradient of the e lectroactive 
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species a t  the e lectrode surf ace . The current increases 

with scan rate due to the increased rate at which the 

analyte is consumed which cause s  a concomi tant stepping of 

the concentration gradient . A peak i s  observed at an e lec

trode potential which forces the redox ratio to a point 

where the concentration of the species being reduced ( or 

oxidi zed ) i s  e ssentia l ly zero . The concentration gradient 

can not be increased further , and the current begins to 

decrease due to depletion effects . The peak separation of 

reve rsible cyclic voltammograms i s  independent of scan rate . 

Thi s  s ignif icant feature arises from the thermodynamic 

dependence of the redox ratio on the e lectrode potential . 

The potential di f ference between a peak and the formal 

potential of  the redox couple i s  therefore constant . A 

cyclic voltammogram contains both a cathodic and an anodic 

peak . Thus , the midpoint between these two peaks is  the 

formal potential of the system when revers ible behavior is  

observed . Fast scan rate , qua s i - revers ible cyc lic vo ltamm

ograms provide heterogeneous e lectron transfer rate con

s tant s , and also ref lect the type and strength of adsorption 

of an e lectroactive species to the e lectrode surface . The 

e lectron transfer kinetics are calculated from the increase 

in peak separation from that o f  a revers ible system . The 

increase in peak separation i s  caused by the inability of 

the redox potenti a l  to adj us t  to the potential of the elec

trode in the time allowed by the scan rate of the experi

ment . A more robust e lectrode potential , i . e . , an overpo-
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tential , is  then required t o  f orce the redox ratio to the 

point where a peak i s  observed . The current is  also 

affected by e lectron trans fer kinetics since the redox ratio 

does not strictly f o l low the rate of electrode potent ial 

vari ation . The amount of material electrolyzed is  less than 

that for the revers ible case , and sma l ler currents are 

obtained . Figure 1 4  shows a series of revers ible and quas i 

revers ible cycl i c  voltammograms obtained from the s ame solu

tion in an electrochemical cell . The revers ible , 2 0  mV/ s  

scan rate , cyclic vo ltammograms have a linear variation of 

the peak potentials  with change i n  temperature that ref lects 

the linear temperature dependence of the formal potential . 

The larger current at higher temperature i s  caused by an 

increase in the diffusion rate produced by a decrease in 

so lvent viscosi ty with increase in temperature . The quas i 

reversible , 5 0 0  mV/ s  scan rate , cyc lic voltammograms demon

s trate a nonli near variation of peak potential with change 

in temperature , indicating that the current is limi ted by 

both diffus ion and e lectron trans fer kinetics . The hetero

geneous e lectron trans fer rate cons tant was determined from 

the cyclic voltammetric peak separation by the method of 

Nicho lson ( 1 8 3 ) . 

1 .  In  pH 7 . 0  Buf fer 

In  order to evaluate the heterogeneous rate constant , 

k O . ,  by the peak separation method , the dif fus ion coe f f i 

c ient of the e lectroactive species must  b e  known . The tem

perature dependence of the diffusion coe f f icient of 
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Figure 1 4 . Revers ible ( 2 0 mV/ s  scan rate ) and quas i - revers
ible ( 5 0 9  mV/ s  scan rate ) cyc lic voltammetry of cytochrome c 
in  pH 5 . 3  Tr i s lcacodylic acid buf fer . Temperatures ( O C ) , 5 ,  
1 5 , 2 5 , 3 5 , 4 5 ,  5 5 , 6 5 . 
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cytochrome c was determined by potential step chronocoulom

etry ( Figure 1 5 ) ,  as suming a value of 1 . 1 6 X 1 0 - 6  cm2 / s  at 

2 5  ° C ( 1 0 4 ) . Thi s  dif fus ion coef ficient was used in con

j unc t ion with the s lope s of the Q vs . t1 / 2  plots to obtain 

corresponding di f fus ion coeffic ients at the respective tem

peratures ( F igure 1 6 ) . Dif fus ion coeffic ients are directly 

proportional to temperature divided by the viscosity of the 

medium ( 1 8 8 ) . Various equations differ by the parameters 

used to predict the proportionality cons tant . Theoretical D 

values reported in thi s work are based on a proportionality 

constant calculated by using the literature D va lue of cyto

chrome c and the viscos i ty of pure water at 2 5 ° C .  Devi a

tions of experimenta l  va lues f rom theoretical va lues are 

less  than 1 0 %  over the temperature range studied and may be 

explained by the fact that experimental results were 

obta ined in 0 . 2  M ionic s trength buf fer whereas , theoretical 

values are based on the viscosity of pure water . 

Whi le the reduction potential for cytochrome c varied 

linear ly with temperature from 5 to 5 5 ° C  in pH 7 . 0  pho s 

phate buf fer , the heterogeneous electron trans fer rate con

stant showed a sharp break in behavior at approximately 4 1  

° C .  The corresponding reduction potent ial for the maximum 

rate constant i s  2 4 7  mV vs . NHE . Figure 16  shows the 

results from one experiment . Thi s  behavior was observed in 

each of  the experiments ; however , the va lue s of the hetero

geneous e lectron transfer rate constant at any temperature 

varied up to approximately ± 5 0  % between experiments .  
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Figure 1 5 . Temperature dependence of the diffus ion coef fic
ient of cytochrome c .  Exper iment results obtained from the 
average of s i x  exper iments ( open circles ) .  Ca lculated val
ues ( dashed line ) . Temperatures ( O C )  an� values of expe r i 
mental dif fusion coef f i cients ( X  1 0 6 , c m  / s ) :  5 ,  0 . 7 2 ;  1 5 , 
0 . 9 3 ; 2 5 ,  1 . 1 5 ;  3 5 ,  1 . 4 0 ;  4 5 , 1 . 7 2 ;  5 5 , 2 . 0 6 ;  6 5 , 2 . 5 .  
Solution conditions : Tri s /cacodylic acid buf fer , pH 7 . 0 ,  
cytochrome c concentrations form 5 1  to 7 8  � .  
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The electrochemical response for cytochrome c i n  Tr i s /  

cacodylic acid buf fer , a t  the same p H  and ionic strength , 

was evaluated . Figure 1 6  shows the ef fect of temperature on 

the heterogeneous rate cons tant for cytochrome c in Tr i s /  

cacodylic acid buf fer from 5 t o  6 5 ° C .  Two dif ferences in 

behavior were noted : the rate cons tant is larger in Tri s /  

cacodylic acid than in phosphate buff er , and the break in 

kinetic behavior with temperature occurs at approximately 

5 5 ° C  in Tri s / cacodylic acid buffer , as opposed to 4 1 ° C  in 

phosphate buf fer . The reduction potent ial for cytochrome c 

in Tr i s / cacodylic acid buffer at 5 5 ° C  is  2 4 6  mV vs . NHE . 

The reproduc ibility of the ef f ect of  temperature on the 

heterogeneous e lectron trans fer rate constant i s  demonstrat

ed in Figure 1 7 , which shows the kinet ic results from three 

individual exper iment s in Tr i s /cacodylic acid buffer and 

their  average . The break in kinetic behavior is further 

i l lustrated in Figure 18 by observing the dependence of the 

cathodic peak potenti a l  on temperature . Thi s  behavior is  

scan rate dependent . The kinetic effect on the peak current 

is more pronounced at faster scan rates . 

The heterogeneous e lectron transfer rate constant for 

the ferr i - / ferrocyanide mode l sys tem used in this study was 

determined from 5 to 7 5 ° C ,  and it was found to vary lin

early with temperature ( Figure 1 1 ) .  This  indicates that the 

biphasic kinetic behavior of cytochrome c is due to a prop

erty of cytochrome c rather than a characteristic of the 

e lectrochemical cel l . 
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Figure 1 6 . Temperature dependence of the k O l of cytochrome 
c in pH 7 . 0  phosphate ( squares ) and Tr i s / cacodylic acid buf 
fers ( circles ) and in pH 5 . 3  Tri s / cacodylic acid buf fer 
( triangles ) .  Re sults shown for each case were obtained on 
one cytochrome c s olution . 
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Figure 1 7 . Temperature dependence of k O l ( X  1 0 3 , cm/ s )  of 
cytochrome c in pH 7 . 0  Tri s / cacodylic acid buf fer from three 
exper iments .  Squares , diamonds , and plus s igns each repre
sent data from one cytochrome c solution at dif ferent In203 
e lectrodes . 
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Figure 1 8 . Temperature dependence of the i c of quas i 
reve r s ible cyclic vo ltammograms ( a ll  5 0 9  m�s scan rate ) o f  
cytochrome c in pH 5 . 3  ( squares ) ,  7 . 0  ( plus signs ) ,  and 8 . 0  
Tr i s / cacodylic acid buf fers ( diamonds ) .  The peak currents 
are a l l  normal i zed to the peak current obtained at 5 ° C .  



0 
W 
N 
--.J 
<r 
� 
a: 
0 
Z 

1 2 8  

1 .8 

1 .7 

/� 1 .6 

/ .  
1 .5 ;,r 
1 .4 

, 
1J '" 

'\ 
t/! \ 1.2  / 

f 1.1 

0.9 

OJ +---�--�--�--�--�--�--1I--4 
o 20 40 

T ,  ° C  

60 so 



1 2 9  

The maximum k O ' for the reaction o f  cytochrome c occurs 

at the s ame formal potential in the two buf fer sys tems . This  

suggests that there i s  the same relative difference in con

formation between ferr i - and ferrocytochrome c at the peak 

k O ' in both the buffer s ,  even though the temperature at this 

point is 1 4 ° C  lower in phosphate buf fer than in Tri s /caco

dylic acid buf fer . In  both buf fer systems , an increase in 

temperature allows greater so lvent exposure to the posi 

tively charged heme group i n  ferricytochrome c ,  thus elec

trostatic a lly s tabi l i z ing the oxidi z ed form . In phosphate 

buf fer , anion binding to the lysine res idues about the sol

vent- exposed heme edge causes addit ional solvent exposure 

through conformational effects ( 1 2 3 , 1 7 3 ) . Thus , the con

formation at which a maximum k o ' i s  observed occur s at a 

lower temperature in phosphate buf fer than in the noninter

active Tri s /c acodylic acid buf fer . A reasonable assumption 

is that the controlling f actor which accounts for the break 

in  kinetic behavior with change in temperature is the con

formation of ferricytochrome c with respect to the conforma

tion of the electron transfer trans i tion s tate . According

ly , the ease of e lec tron transfer may increase with tempera

ture , due to the above reasons , to the point where the f luc

tuation of the nuc lear coordinates to the trans ition state 

becomes d ifficult . Thi s  may occur at a point where high 

spin character begins to develop . Moore and Wi l l i ams ( 7 6 )  

have reported that ferricytochrome c i s  1 2 %  high spin at 

6 7 ° C  in pH 5 . 2 5 buf fer . Also , the position of the aromatic 
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r ing on the phe - 8 2  residue re lative to the heme may pass 

through an optimum for ef fect ive orbital overlap , resulting 

in an increase in the probabi l i ty of e lectron transfer 

Thi s  argument would require that the e lectron trans fer pro

cess be nonadi abatic . Moore and Williams also reported ( 7 6 )  

that the temperature-dependent NMR shifts of cytochrome c 

res idues which are caused by changes in conformation were 

biphasic , with the break occurring at ca . 6 5 ° C .  The ir work 

was conducted at pH 5 . 2 5 .  Previous work ( 8 8 )  has indicated 

that the Fe-S  bond i s  less perturbed by temperature at pH 

5 . 2 5 than at pH 7 .  Thus , the biphasic behavior of the NMR 

shifts with change in temperature may be re lated to the 

biphas ic kinetic behavior reported in this dissertation . 

E lectrolyte and pH affect the change of the Fe - S  bond length 

with temperature . Opt imum electron trans fer kinetics are 

then observed for a specific Fe- S  bond length and position 

of  adj acent res idue s , which are ref lected by a corresponding 

formal potential . The s o lvent environment of the ferricyto

chrome c af fects the temperature at which thi s optimum con

formation occur s . 

I t  i s  interesting to note that the variation in intra

molecular e lectron transfer rate cons tant with temperature 

has been reported for ruthenium complex modif ied cytochrome 

c .  I s ied et a l . noticed an increase in rate constant with 

temperature from 3 to 4 4 ° C  ( 1 8 4 ) . Thi s  was observed in pH 

7 . 0  phosphate buf fer , for which a maximum rate of heterogen

eous e lectron trans fer at 41 °C i s  reported here . However ,  
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no results were reported for temperatures above 4 4 ° C  i n  the 

work that is cited above ( 1 8 4 ) . Gray and co-workers ( 1 8 5 ) 

studied the same Ru modif ied cytochrome c sys tem , and re

ported no s ignif ic ant change in kinetic behavior over the 

temperature region of 0 to 8 0 ° C .  However , a graph showing 

intramo lecular e lectron trans fer rate constants for this 

complex versus temperature in pH 7 . 0  phosphate buf fer shows 

evidence of a peak at approximate ly 40 D C .  

Another potential  contr ibution to the temperature

dependent break in kinetics i s  the variation of the surface 

exces s  ( the moles of adsorbed reactant per unit e lectrode 

area ) of ferricytochrome c that was observed in thi s work . 

Experimental ly determined va lues of E o r ,  D ,  k o r ,  cytochrome 

c concentration , and electrode area were used to digital ly 

s imulate cyc lic vo ltarnrnograms ( Appendix A ) . The s imulation 

a lgori thm i s  based on Butler-Vo lmer theory . A discrepancy 

was noted between theoretical and experimental currents , 

which varied with scan rate and temperature ( Figure 1 9 ) .  

The difference was largest at fast scan rates and between 3 5  

and 4 0 ° C  i n  both buf fer sys tems . The cathodic peak current 

showed the larges t  difference . This  type of behavior indi

cates that ferricytochrome c i s  weakly adsorbed at the elec

trode surface ( 1 8 6 ) . The strength of adsorption is  describ

ed as being weak s ince the peak potentials are not s igni f i 

cantly shifted relative t o  that expected i n  the absence o f  

adsorption . The s imulated cyc lic voltarnrnograms were based 

on heterogeneous electron transfer rate constants determined 
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by peak separation o f  the cyclic voltammograms . When fast-

er  scan rates are used , the contribution of adsorbed spec ies 

to the total current becomes more important s ince the charge 

consumed by ads orbed reactant remains constant whi le the 

charge consumed by so lution-res ident reactant dec reases .  

Dif ference s between calculated and experimental peak cur

rents were used to determine the surface excess of adsorbed 

ferricytochrome c on the e lectrode ( 1 8 7 ) . At faster cyc lic 

voltammetric scan rates , the total number of cytochrome c 

mo lecules reduced i s  smaller than at s lower scan rates , 

although the measured peak current is  larger . The current 

consumed by a f ixed number of adsorbed cytochrome c mole

cules therefore becomes a larger fraction of the total cur 

rent observed at faster scan rates . Thi s  trend is  indeed 

observed , as shown in Figure 1 9 . It  should be recognized 

that at s low scan rates , where formal potential values were 

determined , the effect of adsorption on the recorded cyc lic 

voltammograms i s  not di scernable . 

A maximum surf ace excess was observed around 4 0 ° C  for 

both buf fer systems , as  determined by the difference in peak 

current method . Table 2 lists  sur face exces s  values for 

various scan rate s , temperatures , and buf fer s .  An important 

point must  be addressed here . At temperature s be low 40 ° C ,  

the above method used to determine surface excess values was 

not as accurate as for the higher temperatures . The error 

in the amount determined increased with decrease in tempera

ture s . The strength of reactant adsorption was strongest at 
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F igure 1 9 . Rea l  and s imulated cyc l i c  voltammograms o f  cyto 
chrome c that demons trate the presence o f  reactant adsorp
t ion . Exper imental conditions : T r i s / c acodylic acid buf fer , 
pH 7 . 0 ,  0 . 2 0 M ionic strength , 9 6  � cytochorme c ,  e lectrode 
area = 1 . 2 5 cm2 , T = 4 0 ° C ,  Scan rates given on f i�ure . 
Forma l potent i a l  = 2 5 5  mV v s  NHE , k O I = 2 . 0 1 X 1 0 - cm/ s , D 
= 1 . 5 6 X 1 0 - 6 cm2 / s . Experimental results ( so l id lines ) and 
s imulated results ( dashed l ines ) .  
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TABLE 2 

Sur f ac e  Exc e s s  o f  Cytochrome c vs . Temperature 

temp , ° c  

5 
1 5  
2 5  
3 0  
3 5  
4 0  
4 5  
5 0  
5 5  
6 0  
6 5  

r X 1 0 1 2 , mo 1 e / cm2 
T r i s l c acodylic acid phosphate 

5 . 8 a 
7 . 3  
8 . 4  

9 . 5  
9 . 9  
9 . 8  
9 . 3  
7 . 8  
5 . 9  
1 . 7  

4 . 4b 
6 . 3  
6 . 8  
7 . 6  
7 . 6  
8 . 1  
8 . 0  
7 . 9  
7 . 7  
6 . 2  

a .  Surface exc e s s e s  c alculated f rom the d i f ference in the 
c a l cu lated and exper imental c athodic peak currents at a scan 
rate o f  0 . 5  Vi s .  b .  As in ( a )  but at a scan rate o f  0 . 2  
Vi s .  
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the lowes t  temperature s tudied and stead i ly decreased with 

increase in temper ature . A dec rease in s trength o f  adsorp- 

t ion i s  expec ted as the temperature i s  rai sed s ince in

creased thermal motion weakens the adsorption interaction . 

At temperatures above 3 5 ° C ,  the s trength of reactant 

adsorption was suf f i c iently weak to have no e f f ec t  on peak 

potent i a l s . Therefore , the d i f f e rence between the expe r i 

menta l  c athodic peak current and a s imulated ( adsorption 

e f f ec t s  not cons idered ) c athodic peak current yie lded 

r e l i ab l e  e s t imates of the sur f ace exce s s . At temperatures 

o f  3 5  °C and be low , the s trength o f  reactant adsorption was 

suf f i c ient to cause a smal l  s h i f t  in the c athodic peak 

potent i a l . The degree o f  peak potenti a l  shi f t  caused by 

adsorption was greate s t  at 5 ° C .  Thus , the potenti a l  o f  

maximum current for the adsorbed mate r i a l  and d i f fus ing 

mate r i a l  i s  di f ferent , and the method based on peak current 

d i f ference under e s t imated the surf ace excess at lower temp

er atures .  The e lectron trans f e r  rate constant i s  s lower at 

the lower temperatur e s . The equation used to ca lculate the 

surf ac e  excess is appl icable only to a reversible sys tem . 

I f  the adsorbed mate r i a l  has a s lower e lectron trans fer rate 

constant at the lower temperatures , then this peak separa

t ion method would cause the amount o f  sur f ace excess calcu

lated to be less than the actual amount . I n  the lower temp

e r ature region , the peak separation exhibited by the cyc l i c  

voltarnrnogram results f rom a comp l i c ated mixture o f  both 

kinetic and adsorption e f fects . The Nicholson method o f  
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determining heterogeneous e lectron transfer rate constants 

does not cons ider adsorption . There fore , the rate constants 

determined at temperatures be low 4 0 ° C  are probably larger 

than those c a lculated by the peak separ ation method s ince 

reac t ant adsorption caused a larger peak separation . The 

d i f ference in peak separation caused by reac tant adsorption 

at pH 7 . 0  is s light and was not reali zed unti l  the e f fect of 

s tronger adsorption at pH 8 . 0  ( vide infra ) on fast scan rate 

cyc l i c  voltammograms was not iced . At the lower temper a 

ture s , t h e  e lectron transfer rate cons tant c alculated by 

peak separation is scan rate dependent . Faster scan rates 

yie lded sma l ler rate constant s . Evaluation of the system 

w i th f e r r i - ferrocyanide indicated that this was not due to 

uncompensated current r e s i stance in the e lectrochemical 

c e l l . The scan rate dependence of the rate constant de 

creased with i nc rease in temperature . Thi s  behavior i s  

again due to adsorption ef fects . The ratio of current from 

adsorbed mate r i a l  to that f r om dif fusing species increases 

with scan r ate . The scan rate dependent enhancement of peak 

separat ion f r om reactant adsorption at lower temperatures 

caused the scan rate dependence o f  the apparent e lectron 

transfer rate const ant . The se e f fects are subtle in pH 7 . 0  

buf fers and do not s ignif icantly affect the peak separation 

temperature dependence of the cyc l i c  vo ltammograms . A sma l l , 

negative s h i f t  i n  the cathodic peak potenti a l  caused by 

reactant adsorption i s  accompanied by a smal ler negat ive 

s h i f t  in the anodic peak . Thi s  part i a l ly compensates for 



1 3 8  

the e f fect o f  adsorption on the peak separation o f  a quas i 

reve r s ible cyc l i c  voltammogram . 

The po s s ib l e  e f f ect o f  reactant adsorption on the temp

erature dependence of the kine t i c s  of cytochrome c was eva l 

uated at 5 ° C , where the peak asymmetry about the forma l 

poten t i a l  was the larges t .  A typical series o f  results from 

an ana lys i s  o f  cytochrome c in pH 7 . 0  Tr i s l c acodylic acid 

buf f e r  i s  as f o l lows . The 20 mV/ s  scan rate cyc lic voltam

mogram was reve r s i b l e  with a 62 mV peak separation that was 

symme t r i c a l  about the forma l potenti a l . The peak separation 

i nc reased to 7 0  mY , 8 2  mY , and 1 0 2  mV at scan rates o f  2 0 0 , 

5 0 0 , and 1 0 0 0  mV/ s ,  respect ively . The asymmetry about the 

formal poten t i a l  increased with scan rate . The cathodic 

peak was displaced f rom the formal potential by 57 mY , and 

the anodi c  peak by 4 5  mY , at the 1 0 0 0  mV/ s  scan rate . The 

1 0 2  mV peak separation corresponds to a heterogeneous elec

tron trans f e r  rate constant o f  5 . 3  X 1 0 - 3 cm/ s . Twice the 

d i f f e rence between the anodic peak potenti a l  and the formal 

potent i a l  is 9 0  mY . Thi s  yie lds a rate constant of 7 . 7  X 

1 0 - 3 cm/ s ,  a d i f f e rence o f  approximate ly 4 5  % .  Thi s  repre

sents an extreme in that the anodic peak potenti a l  separa

t ion f r om the f o rmal potential i s  s l i ghtly reduced by reac

t ant adsorption . The rate constant at 5 0 0  mV/ s  i s  7 . 6  X 

1 0 - 3 cm/ s . The s lower scan rate cyc l i c  voltammogram i s  less 

a f fected by reactant adsorption . Again , at temperatures 

above 3 5 ° C ,  s imulated and experimental peak potenti a l s  

agreed , indicating that reactant adsorption w a s  n o t  shif ting 
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the peak potent i a l s . The maximum kinetic behavior was 

observed at 5 5 ° C ,  with a rate cons tant of 2 . 8 3 X 1 0 - 3 cm/ s  

c alculated at the 1 Vi s scan rate and a 2 . 9 0 X 1 0 - 3 cm/ s  

rate constant at the 5 0 0  mV/ s  scan rate . The quasi - reve r s i 

b l e  cyc l i c  voltammograms a r e  symmetrical about the forma l 

potential and k g ' i s  independent o f  scan rate . The main 

point i s  that the maximum e lectron trans f e r  rate cons tant is 

approximate ly 3 . 5  t imes larger than the adsorption- adj usted 

rate cons tant at 5 ° C .  Consequently , the e lectron trans fer 

rate constants in the pH 7 . 0  buf fers determined by the peak 

separation method are valid and only part i a l ly a f f ected by 

reactant adsorpt ion . 

A surface coverage o f  8 . 3  X 1 0 - 1 2  mo le/cm2 corresponds 

to a mono layer of adsorbed cytochrome c when a value of 2 0 0 0  

A2 / adsorbed cytochrome c molecule i s  used ( 8 )  ( Table 2 pro

vide s surf ace coverage values at tempe ratures � 4 0 ° C ) . The 

2 0 0 0  A2 sur f ace area coverage was found for ferricytochrome 

c at a mercury e lectrode in a pH 7 . 0  buf fer so lution . Thi s 

value i s  approximately three time s larger than that calcu

lated for a c lose packed arrangement o f  cytochrome c based 

on X - ray cryst a l  structure s i ze . I t  i s  twice the sur f ace 

area , i f  each cytochrome c mo lecule i s  assumed to occupy a 

rectangle which j us t  f i t s  the crystal structure diame ter . 

The large surf ace area occupied by ferricytochrome c on 

mercury was attributed to a denatured , f lattened conforma

tion for mercury adsorbed cytochrome c .  The i rreversible 

e lectrochemic a l  behavior o f  cytochrome c at mercury e lec -
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trodes has been attributed to strong , irreversible adsorp

tion to mercury . The f ac i le e lectron trans fer kinetics of 

cytochrome c at indium oxide e lectrodes indicates that it i s  

n o t  denatured or f lattened by adsorption t o  the e lectrode 

surf ace . There f ore , the mo les per square cent imeter for a 

monolayer o f  surf ace excess at indium oxide e lectrodes i s  

probably large r  than that determined for mercury . Thi s  

premise i s  reinforced by the morphology of the cyc l i c  vo l t 

ammograms o f  cytochrome c at indium oxide e lectrode s where 

adsorption e f f e c t s  are observed . That i s , the peak poten

t i a l s  are not s trong ly s h i f ted f rom those expected in the 

absence o f  adsorbed e lectroactive reactant . Figure 20 shows 

a s e r i e s  of s imulated cyc l i c  voltammograms that demonstrate 

the e f fect of s trength o f  adsorption o f  reactant at fast 

scan rates . A Langmui r  i sotherm i s  as sumed , but the same 

gene r a l  behav ior would occur for other adsorption i sotherms . 

Weak adsorption i s  indicated by peak current enhancement 

without peak potential s h i f t . Strong adsorption causes two 

peaks to occur : one f o r  d i f fusing species and the other for 

adsorbed spec ies . The peak separation i s  due to the 

enhanced stabi l i ty of a s trong ly adsorbed spec i e s . I nter 

mediate adsorption strength results in cyc lic vo ltammogram 

morpho logy which i s  between the s e  two extremes . 

The digita l s imUlation o f  cyc l i c  vo ltammograms that 

included adsorption e f fects proved to be a va luable too l for 

the analys i s  o f  these data . The important adsorption par a

meters are the l imiting surface coverage , the strength o f  



1 4 1  

F igure 2 0 . S imulated cyc l i c  voltammograms that demonstrate 
the e f fect o f  var iation o f  reactant and product adsorption 
s trength . All scans are based on reve r s ib l e  behavior . Scan 
rate = 1 Vi s ,  e lectrode area = 1 cm2 , D = 1 X 1 0 - 6 cm2 j s  C 
= 1 0 0  � ,  T = 2 5 ° C ,  limiting sur f ace coverage = 2 X 1 0 - 1 1 
mO l e / cm2 . ( a ) : Reactant adsorption , the products o f  the 
reactant adsorption equi l ibrium cons tant , K ,  and the bul k  
concentration , C ,  are : 1 . , 0 ;  2 . , 2 ;  3 . , 1 0 0 ; 4 . , 1 0 0 0 . ( b ) : 
Product adsorpt ion , s ame as a . , except K represents product 
adsorption equ i l ibr ium cons tant . 
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adsorpti on a s  expressed by an equ i l ibrium cons tant , and the 

bulk concentrat ion of the adsorbate . The adj ustment of 

these parameters af fects peak currents and potent i a ls . Weak 

adsorption has been c l as s i f ied as occurr ing when the product 

of the adsorption equ i l ibrium constant and the bulk concen

tration of the adsorbate i s  less than 2 ( 1 8 6 ) . Strong 

adsorption behavior occurs when this product i s  larger than 

1 0 0  ( 1 8 6 ) . Weak adsorption is character i z ed by a sma l l  

negative shi f t  in the cathodic and anodic peak potent i a l s , 

as we l l  as an enhancement of current . The current enhance

ment can be eas i ly s imulated for sma l l  adsorption equ i libr i 

um constants by increa s i ng the limi ting coverage . The peak 

potenti a l  shi f t  can be increased by increasing the adsorp

t ion equi librium constant and/or decreasing the l imiting 

cover age . Matching exper imental current and peak potenti a l  

adsorption e f f ec t s  indicates that both the adsorpt ion equ i 

l ibr ium constant and the l imiting coverage have been a t  

least qual itative ly determined . Limiting the maximum sur 

f ace coverage to that reported for ferricytochrome c on 

mercury resulted i n  an exces s i ve peak potent i a l  shift when 

the s trength of adsorption was increased to a leve l requi red 

to f orce the peak current to that exper imenta l ly observed . 

Good agreement with exper imental results , at the three pH 

condi t ions inve stigated , was obtained with a l imiting sur 

f ac e  coverage of 2 x 1 0 - 1 1  mo l e / cm2 . Thi s  corresponds to a 

surface coverage of c a . 8 3 0  A2 per cytochrome c and a diam

eter of c a . 29 A. Thi s  value i s  approximate ly the crystal 



1 4 4  

s tructure s i z e  o f  cytochrome c .  The Stokes - Einstein d i f fu

sion equat ion ( 1 8 8 ) was used to e s t imate the ef fective 

d i ameter o f  s o lvated cytochrome c :  

D = RT/ 6nrnN 

r :  radius o f  so lute molecule 

n :  v i s c o s i ty o f  so lvent 

N :  Avogadro ' s  number 

A d i f fusion coe f f ic ient o f  1 . 1 6 X 1 0 - 6  cm2 / sec and the v i s 

cos i ty o f  pure water at 2 5 ° C  gave an e f fective diameter o f  

4 2  A.  Thi s va lue i s  s l i ghtly less than the 4 5  A diameter 

f o r  f e r r i cytochrome c adsorbed on mercury . The c alculated 

s o lvated d i ame ter o f  cytochrome c i s  qua l i tative , but it is 

c learly larger than the c rystal s tructure diameter of 

approximate ly 3 0  A and indicates that i t  is surrounded by 

more than one structured water layer . Thi s  highly so lvated 

structure and corre spondingly large diameter suggests that 

f e r r i cytochrome c may not be as f lattened and denatured on 

mercury as proposed ( 8 - 1 1 ) . S trong adsorption i s  requi red 

to f orce a f u l l  monolayer , i . e . , a l imiting surf ace coverage 

of the e lectrode . To achieve a c lose packed arrangement 

based on the dimensions of the c rystal structure , a strength 

of adsorpt ion suf f i c ient to cause the remova l  of the s o l 

vation sheath o f  cytochrome c would b e  required . Thi s  does 

not occur . S imu l ation o f  5 and 4 0 ° C ,  1 V i s  scan rate 

cyc l i c  vo ltammograms o f  cytochrome c in pH 7 . 0  Tri s / cacody

l i c  acid buf f er provided a reactant adsorption equ i l ibr ium 

constant o f  1 to 1 . 3  X 1 0 7 L/mo l e . There was no indication 
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o f  adsorption by 6 5 ° C .  S tronge st reactant adsorption 

occurred at 5 ° C .  Thi s was indicated by a ca . 7 mV negative 

shi f t  o f  the midpoint potent i a l  f rom that o f  a revers ible 

cyc l i c  vo ltammogram . The product o f  the reactant equ i l i 

brium constant and the bulk reactant concentration i s  1 to 

1 . 3 ,  which is in the range of weak adsorption . The s imu l a 

tion l imiting surf ace cove rage , reactant equ i l ibr ium con

stant , and bul k  reactant concentration corre spond to a sur 

f ace coverage o f  c a . 1 to 1 . 5  X 1 0 - 1 1  mole / cm2 . The se 

values indicated that f e r r i cytochrome c is adsorbed to ca . 

one mono layer o f  coverage based on so lvated dimens ions . A 

f ree energy o f  adsorption at 2 5 ° C  o f  ca . 4 0  to 4 3  kJ /mo le 

( 9 . 5  to 1 0 . 2  kca l /mo le ) was ca lculated . The s imulations 

written for this work determine the e f fects of e i ther react 

ant or product adsorption , but do not cons ider mixed react

ant-product adsorpt ion . Discrepanc ies between s imulated and 

exper imenta l cyc l i c  voltammograms revealed that the exper i 

ment a l  anodic peak potent i a l s  were s l i ght ly larger ( le s s  

than 1 0  % )  than s imulat ions based only o n  reactant adsorp

t ion . Thi s indicates that product adsorption i s  also 

a f f ecting the exper imental results . Product adsorpt ion 

decreases the current o f  the cathodi c  peak , and causes a 

po s i t ive shi f t  in peak potent i a l  whi le enhanc ing the anodic 

peak potent i a l . The ove r a l l  e f f ect o f  reactant adsorpt ion 

c learly dominates , howeve r .  

Eddowes and H i l l  ( 3 0 ,  3 5 ) determined a surf ace excess 

o f  cytochrome c o f  1 . 2  X 1 0 - 1 0  mol e / cm2 . Thi s  c learly 
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represents more than a mono layer , a lthough it i s  stated as 

representing monolayer coverage . For a mono layer of cyto

chrome c repre sented by 1 . 2  X 1 0 - 1 0  mol e / cm2 , a surface area 

of c a . 1 4 0  A2 per mo lecule and a diameter o f  c a . 12 A is 

requi red . Thi s diameter i s  less than hal f  o f  the crystal 

s tructure d i ameter . The use o f  this empirical limi ting 

surf ace exc e s s  in the digital s imulator results in very 

large current enhancement occurr i ng prior to peak potenti a l  

variation . Eddowes and H i l l  ( 3 0 ,  3 5 ) report a f ree energy 

o f  adsorption o f  3 0  kJ/mo le for cytochrome c at 4 , 4 ' -bipyr i 

dyl mod i f ied gold electrode a t  room temperature .  The 

strength o f  adsorption corre sponding to this f ree energy of 

adsorption i s  very weak ( K · C  o f  c a . 0 . 0 1 ) , and would not 

perturb the cyc l i c  voltammograms at the scan rates used in 

this work . It is d i f f icult to reconc i le this low s trength 

o f  adsorption with the i r  reported surf ace coverage that i s  

c a . 1 0  t ime s large r  than that determined i n  this work . 

However ,  the cond i t i ons o f  the i r  work are qui te d i f ferent 

f rom the wor k  reported here . A go ld e lectrode was used with 

a so lution that contained a high concentration o f  sur f a c 

tant . The formation o f  several mono l aye r s  o f  cytochrome c 

at an e lectrode sur f ace may occur due to i t s  large dipo le 

moment . I t  has a c luster o f  pos i ti ve ly charged res idue s at 

the act ive s i te and a c luster o f  negatively charged groups 

at the oppos i te s ide of the protein . The large pos i t ive 

charge on cytochrome c may be less e lectrostatically impor 

tant than the dipo le moment due to the high ionic strength 
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o f  the electrolyte s o lution and the s i z e o f  the molecule . 

The ads orpt ion o f  several monolayers o f  cytochrome c at a 

solid e lectrode may explain the concentration dependence of 

the heterogeneous e lectron trans f e r  rate cons tant . At low 

concentrations ( le s s  than 1 0 0  � ) , only a mono layer i s  form

ed . At higher concentrations , several layers form . A much 

s l ower d i f fusion coe f f ic ient would exist for the protein at 

the se higher concentrations . A 1 mM solution o f  cytochrome 

c was examined at room temperature . A 1 6 0  mV peak separa

t ion was observed at 10 mV/ s  ( Table 1 ) . The concentration 

dependence may a l s o  be due to the amount o f  impurities con

tained in the cytochrome c so lution . An important point i s  

that the 1 mM s o lution d i d  not show a decrease in e lectron 

t rans f e r  rate constant above 4 0  ° C ,  an event which a lways 

occurred for pH 7 . 0  phosphate buf fer so lutions of lower 

cytochrome c concentrat ion . Also , the e lectron trans fer 

rate cons tant at any temperature i s  much lower in the 1 mM 

s o lution . The di f f erence may be due to a higher contamina

tion o f  the e l e ctrode surf ace f r om impurities in the higher 

concentration s o lution . As the temperature is increased , 

the impur i t i e s  desorb f rom the e lectrode , a l lowing greater 

rates of e lectron trans fer . I f  multiple adsorbed layers of 

cytochrome c are formed in the higher concentration solu

tion , the enhanced rate with increase in temperature may be 

due to therma lly induced loosening o f  the adsorbed layers 

result ing in greater rates o f  d i f fusion through the adsorbed 

mater i a l . I t  i s  c lear that d i f ferent proce sses are control-
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l ing the kine t i c s  i n  the 1 mM so lution a s  compared to the 6 0  

t o  1 0 0  � so lutions that were used for most o f  this work . 

Although the break in kinetics does not occur in the 5 to 5 5  

° C  tempe r ature range f o r  the 1 mM so lution , the rate con

s t ant at 5 5 ° C  i s  much s lower in the more concentr ated solu

tion than at the s ame temperature in the less concentrated 

solutions . Ten mY/ sec scan rate cyc l ic vo ltammograms o f  the 

low c oncentrat ion so lut ions are revers ible f rom 5 to 5 5 ° C .  

Als o , the bulk so lvent properties o f  the 1 mM so lution are 

probably much d i f ferent than the 1 0 0  � so lutions . The 

Stokes - E instein equation predicts a spec i f ic volume of 1 . 9 2 

g / cm3 o f  cytochrome c .  Thi s  corresponds to a saturated 

cytochrome c s olut ion having a concentration o f  0 . 0 2 2  M .  

The solut ion a l s o  contains 0 . 1  M NaCl and 0 . 0 9 M phosphate 

buf f e r . Thus , the viscosity o f  the so lvent may be af fected , 

and the d i f fusion coe f f i c ient o f  cytochrome c may be quite a 

b i t  s lower than in the concentrated s olution . Thi s  was 

c hecked by s imulating the cyc l i c  voltammogram of 1 mM cyto

chrome c at 2 5 ° C .  A heterogeneous e lectron transfer rate 

cons tant o f  2 . 1  X 1 0 - 4 cm/ s  provided the correct peak separ

ation . The l i te r ature d i f fusion coe f f ic ient o f  1 . 1 6 X 1 0 - 6 

cm2 / s  provided a s imul ated cyc lic vo ltammogram that pre

c i s e ly matched the exper iment a l  result s , s trongly indicating 

that the visco s i ty of the 1mM protein so lution i s  the same 

as in the prote in so lutions of lower concentration . How

ever , both the e lectron trans fer rate constant and d i f fusion 

coe f f ic ient are unknown for this s immulation and the above 
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conc lus ion may the r e f ore b e  incorrect . The s low scan rate 

cyc l i c  voltarnrnograms o f  the 1 roM s o lution are not a f f ected 

by adsorption . There i s  a pos s i b i l i ty that the temperature 

at which the break in kineti c s  appears to occur , as dete r 

mined b y  cyc l i c  voltarnrnetry , i s  a f fected by adsorption . 

Again , the inf luence o f  adsorbed mate r i a l  on the morphology 

o f  a cyc l i c  voltarnrnogram i s  more pronounced at f as ter scan 

rates and at lower electroactive spec ies concentrations . 

Bowden ,  e t  a l . detec ted cytochrome c i rreversibly 

adsorbed to an e lectrode by conducting f i lm trans fer expe r i 

ments ( 4 5 ) . The cytochrome c so lut i on was removed f rom the 

e lectrochemic a l  c e l l , which was then l ightly r i nsed and 

f i l led with e lectrolyte . The presence of adsorbed material 

was c learly indic a ted by cyc l i c  voltarnrnograms with no peak 

separation . The reduct ion potent i a l  was shif ted 1 5  mV neg

at ive o f  that for d i f fusing cytochrome c .  A sur f ace excess 

o f  0 . 1  monolayer was ca lculated . These experiments were 

repeated , and the same behavior was observed with pur i f ied , 

lyoph i l i z ed cytochrome c .  Peak separations o f  1 5  to 4 0  mV 

were observed at a 1 0 0  mY/ sec scan rate . The peak currents 

did not change with variation of temperature f rom 25 to 5 5  

° C .  The temper ature studies reported here required long

term stabi l i ty o f  the e lectrochemic a l  response of cytochrome 

c .  I t  was f ound that freshly pur i f ied sample which had not 

been lyoph i l i z ed was required ( see Experiment a l  section ) to 

achieve long- term stabi l i ty ,  i . e . , on the order of 8 to 12  

hours .  The background cyc lic voltarnrnograms of e lectrolyte 
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al one were obtained after the cytochrome c exper imental 

work . Moder ate r insing o f  the c e l l  ( approximate ly 10  

rinse s ) l e f t  n o  indication of adsorbed cytochrome c .  The 

i r reve r s ibly adsorbed cytochrome c obse rved f o l lowing volt

ammetry o f  lyoph i l i zed cytochrome c may accordingly be 

attri buted to denatured f orms of cytochrome c that arise 

f rom the lyoph i l i z at ion proce s s , e . g . , ol igomers o f  cyto

chrome c .  The removal o f  any adsorbed ferricytochrome c by 

moderate rins i ng reinforces the argument that i t s  adsorption 

i s  weak in the two pH 7 . 0  buf fers . 

Eddowes and H i l l  ( 3 5 )  have sugge s ted that reversible 

adsorption i s  nec e s s ary for fac i le e lectron trans fer between 

cytochrome c and e lectrodes . Other groups have indic ated 

that i r reve r s ib l e  adsorption o f  cytochrome c at many e lec

t rode sur f ac e s  results in i rreve r s ible e lectrochemical 

behavior ( 4 3 ) . Eddowe s and Hi l l  de scr ibe the adsorpt ion 

proc e s s  o f  the i r  sys tem as hydrogen bonding between the 

lys i ne res idue adj acent to the solvent -exposed heme edge and 

the 4 , 4 ' -bipyr idyl mo lecules of the chemic a l ly mod i f ied gold 

e lectrode used in the i r  work . For the indium oxide e lectrode 

used in thi s study , the lys ine res idue s may hydrogen bond to 

the oxide groups of the e lectrode surface . Thi s  view i s  

supported by the pH dependence of the strength of adsorption 

o f  cytochrome c to the indium oxide e lectrodes . The 

s trength of adsorption is stronge st at pH 8 . 0  and weakest at 

pH 5 . 3 .  

Another kinetic parameter of heterogeneous e lectron 



trans f e r  i s  the e lectrochemic a l  trans fer coef f i c ient , a ,  

that r e f lects the symmetry o f  the activation energy about 

the t rans ition s tate and varies between 0 and 1 .  An a of 
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0 . 5  r e f lects a symme t r i c a l  approach t o  the trans ition s tate 

f rom e i ther product or reactant . A low a indicates that 

oxidation is f avored , and a high a corresponds to a relat ive 

ease of reduction as compared to oxidation . Figure 21 shows 

the e f f ec t  of a on cyc l i c  vo l t ammograms exhibiting quas i -

rever s i b l e  e lectrochemis try . Nei ther a nor k O  have any 

e f fect on a s low scan rate , revers ible cyc l i c  voltammogram . 

The peak separation o f  qua s i - rever sible cyc l i c  vo ltammograms 

is r e l ative ly insens i tive to variations of a f r om 0 . 3  to 

0 . 7 .  

S ingle potent i a l  s tep chronoabsorptomet ry ( 1 6 5 )  expe r i -
• I ments were used to determ1ne a and k O  for cytochrome c in 

both pH 7 . 0  phosphate and T r i s / c acodylic acid buf fers . 

Potenti a l  s teps o f  various magni tude , i . e . , overpotenti a l , 

we re app l ied to f e r r i cytochrome c f rom an initial potential 

where no e le c trochemis try occurred . A forward heterogeneous 

rate constant , kf , was determined for each overpotent i a l . 

The formal heterogeneous rate constant , k O I , i s  c alculated 

f rom the intercept of a plot o f  log kf ve rsus overpotenti a l . 

The s lope o f  this plot provides a .  

Two methods were used to determine kf : the use o f  a 

working c urve in conj unction with norma l i z ed absorbance 

values ( 1 6 5 ) , and a method based on the s lope and intercept 

of an absorbance versus the square root o f  time p lot ( 1 8 9 ) . 
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Figure 2 1 . S imulated qua s i - reve r s ible cyc l i c  voltarnrnograrns 
that demonstrate the e f f ect O f  var iation o f  a .  Scan rate = 
1 Vi s ,  e lectrode area = 1 cm2 , D = 1 X 1 0 - 6  cm2 / s ,  C = 1 0 0  
W1 , T = 2 5  ° C ,  k 0 '  = O .  0 1  cm I s . ( a ) : a = O .  7 and O .  3 ,  .6. Ep = 
8 4  mV for both a value s . ( b ) : s ame as ( a ) , except k g ' = 
0 . 0 0 5 , .6. Ep = 1 0 4  mV for a = 0 . 7 ,  and .6. Ep = 1 1 0  mV for a = 
0 . 3 .  
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The advantage o f  the f ir s t  method i s  that i t  i s  mathemat i 

c a l ly prec i s e , i . e . , i t  does not inc lude approximations . 

The second method proved to be more applicable to this sys

tem s ince a d i f fus ion-contro l led , i . e . , large overpotent i a l  

step , was n o t  required . Application of large potenti a l  

steps to the indium oxide e lectrode in contact with a cyto

chrome c so lution has the unfortunate e f fect of causing a 

dec rease in e l e ctrochemical reve r s i b i l ity . The expe riments 

which began with the d i f fus ion-control led s tep yie lded much 

lower kf values and corre spondingly unre l iable a values , as 

compared to those that began with the smal ler steps . I n  

o rder to evaluate the e f fect o f  temperature o n  the kinetic 

parameters of cytochrome c ,  a dif fus ion-control led step i s  

requ i r ed at e a c h  temperature . A subsequent kinetic evalua

t ion at a d i f f erent temperature then ref lected the cons e 

quence s  o f  the exper imenta l  technique rather than the e f fect 

o f  tempe r ature . One other important note on this technique 

is that the re sponse f rom adsorbed mate r i a l  mus t  be removed 

f rom the total re sponse . This can eas i ly be overlooked 

s i nce the loga r ithm of the response to both adsorbed and 

d i f fus ing mate r i a l  varies l i nearly with overpotent i a l . The 

correction f o r  adsorption increases with larger overpoten

t i a l  s teps . Thi s  leads to an art i f i c i a l ly large s lope , 

resulting in a higher c alculated a and , to a lesser degree , 

larger k O ' than r e a l ly exi st s . The amount of adsorbed 

mate r i a l  can only be determined f rom a dif fusion-contro l led 

step , so even the second mathematical treatment of the data 
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that does not require norma l i z ation t o  a diffusion- contro l 

led s tep does not negate the requirement of obtaining this 

large overpotent i a l  step . Consequently , potenti a l  step 

exper iments were not as informat ive as hoped . 

The potential step experiments were a l l  s tarted at 

2 5 ° C .  D i f fusion- contro l led s teps revealed the presence of 

an adsorbed l ayer o f  f e r r icytochrome c at the indium oxide 

e lectrode sur f ace . A surface exces s  o f  c a . 1 . 0  X 1 0 - 1 1  

mo le / cm2 was determined f rom the posi tive intercept o f  the 

s lope of absorbance versus the square root of time plot of a 

d i f fus i on -control led step . Thi s  i s  the same amount as 

determined by cyc l i c  vo ltammetry . Step exper iments were 

performed at 5 ° C  interva l s . The surface exces s  diminished 

w i th increase in temperature . At 4 0 ° C ,  no surface excess 

was indicated . Cyc l i c  voltammetry c learly indicated that 

there is ads orbed reactant at this temperature . Thi s  ano

malous behavior is due to the e f f ect o f  repeated , large 

potenti a l  s teps on the kinetics of the system . When the 

c e l l  was heated to 4 0 ° C  prior to any e lectrochemi s try , a 

surface excess o f  approximately a monolayer ( based on 2 0 0 0  

A2 ) was detected with the f ir s t  d i f fus ion- control led step . 

This sur f ac e  excess then dimini shed with each subsequent 

step to the point where negative A vs . t 1 / 2  intercepts were 

observed , i . e . , the s teps were no longer d i f fusion- cont r o l 

led . The negative e f fect o f  large overpotenti a l  steps 

occurred throughout the temperature range o f  25 to 5 5 ° C ,  

and became more pronounced at higher tempe r atures . Final 
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s tep potenti a l s  o f  less than c a . 1 0 0  mV vs . NHE , i . e . , a 

potent i a l  step o f  � 4 2 2  mV f rom the s tarting potent i a l  o f  

5 2 2  mV vs . NHE , appeared to have no de leterious ef fect . 

Thi s was conf i rmed by repeatedly s tepping to these sma l ler 

overpotent i a l s  wi thout e li c i ting a change in response . 

However ,  a noticeably sma l ler re sponse was obtained a f ter 

returning to a smal ler overpotenti a l  f o l lowing a large ove r 

potent i a l  step . Also , repeated app l i c at ions of a large 

overpotenti a l  at e levated temperatures yie lded a sma ller 

response with each subsequent exper iment . Thi s  was most 

noticeable in the pH 8 . 0  buf f e r s . Despite the se prob lems , 

reasonab le results were obtained at a particular temperature 

if the sma l l  s teps were f o l lowed by the d i f fusion- control led 

s tep and the electrode was not used f o l lowing the app l i c a 

t ion o f  a large ove rpotenti a l  step . For both o f  the pH 7 . 0  

buf fe r s , a i s  0 . 6 1 ± 0 . 0 6 for the temperature range o f  2 5  to 

5 5 ° C .  This value i s  s lightly higher than the va lue o f  0 . 5 0 

reported at indium oxide e lectrodes by earlier work with 

nonpur i f ied type VI cytochrome c ( 3 7 ) . A change o f  a f rom 

0 . 5  to 0 . 6  has l i t t le e f fect on the morphology o f  a cyc l i c  

voltammogram . 

At the beginning o f  this section , the determination o f  

d i f fusion coe f f ic ients by potential s t e p  chronocoulometry 

was discus sed . The d i f f iculties encountered with potent i a l  

step chronoabsorptometry raise que s tions concerning the 

r e l i ab i l i ty of chronocoulometry data . Frankly , a fortuitous 

s e lection of exper imenta l  condi t ions avoided the problems 
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associated with large overpotential steps . The experiments 

were performed in Tris/cacodylic acid buffer , a so lvent in 

which cytochrome c exhibits quas i - reversible behavior to 6 5  

° C  a t  pH 7 . 0 .  The dif fus ion coe f f icient was evaluated from 

5 to 6 5 ° C .  This buf fer was chosen s ince its response to 

potential steps is more ideal than the phosphate buffer . 

The negative kinetic ef f ect of large overpotential steps is  

less  pronounced i n  Tr i s /cacodylic acid buffer than in pho s 

phate buf fer , and the heterogeneous kinetics are faster . 

Therefore , a smaller potential s tep was required to achieve 

diffus ion contro l . The beginning of the cathodic wave 

observed in background ( electrolyte alone ) cyc lic voltammo

grams occurs at ca . 1 0 0  mV vs . NHE . A f inal step potential 

of  1 2 2  mV vs . NHE was chosen for the chronocoulometry exper 

iment s . Thi s  provided an overpotent ial of at least 1 0 0  mV 

at any temperature , and was suf f icient to cause dif fusion 

contro l .  I t  was found in the chronoabsorptometry work that 

potential s teps to values cathodic of 1 0 0  mV vs . NHE 

resulted in the deter ioration of the kinetic response for 

cytochrome c ,  e spec i a l ly at elevated temperatures . Thi s  

potenti a l  region was avoided . The nature of the experiment 

also avoided some of the consequences of large potential 

s teps . Only a few s teps were obtained at each temperature , 

and at least 1 5  minutes elapsed between temperatures . Thus , 

few s teps were taken , and their s i ze was not large enough to 

cause a collapse o f  the system but suf f icient to achieve 

diffusion control .  Current was recorded in these experi-
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ments and then digitally summed t o  calculate charge . The 

current pro f i le consi s t s  of a large spike in current which 

decays exponenti a l ly with time . The ca lculation of the 

di f fus ion coe f f icient requi red only the s lope of the charge 

versus square root of time re lationship . The early spike in 

current was not recorded i n  order to gain sens itivity and 

accuracy at later times and therefore , adsorption data 

could not be calculated f rom Q versus t1 / 2  plots . 

2 .  In  pH 5 . 3  Buf fer 

The temperature dependence of the heterogeneous elec

tron transfer rate constant of cytochrome c in Tri s /cac

odylic acid buf fer was determined from 5 to 7 5 ° C .  The 

variation of rate constant with temperature was less pro

nounced than at pH 7 . 0  ( Figure 1 6 ) .  Thi s  is attributed to 

the added conformational s tabi lity to temperature variation 

of ferricytochrome c at pH 5 . 3  re lative to pH 7 . 0 .  The 

temperature of maximum kinetics was ca . 5 5 ° C ,  i . e . , the 

s ame as at pH 7 . 0  in Tri s / cacodylic acid buf fer . The accur 

acy o f  the point of maximum kinetics i s  not as reliable as 

the pH 7 . 0  results s ince the temperature dependence of the 

e lectron transfer kinetics was not as pronounced as at pH 

7 . 0 .  The formal potential at 6 5 ° C  i s  2 4 7  mV vs . NHE , ie . ,  

the formal potential at which the maximum kinetics occurs in 

the pH 7 . 0  buf f er s . Some factor is  limiting the increase in 

rate constant with temperature at formal potentials below 

2 4 7  mY , i f  this potential represents the optimum confor

mation for fac i le e lectron transfer . The failure of the 
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system t o  show a sharp kinetic peak a t  2 4 7  mV may be due to 

the inabi l i ty of ferricytochrome c to bind to the electrode 

surface at temperatures above 5 5 ° c .  Adsorption to an elec 

trode may be a necessary pre liminary step preceding electron 

trans fer . The combination of acidic pH and higher tempera

tures may weaken adsorption to the point that ef fective 

binding is prec luded . The rates of adsorption , electron 

transfer , and des orption can each be the rate- l imiting step . 

Above 5 5  ° c ,  the rate of adsorption may be rate- limiting . 

Regretfully , no results were obtained for pH 5 . 3  phosphate 

buf fer , so a compar i son could not be made between the kinet

ics of cytochrome c in the two buffer systems . As mentioned 

earlier , cytochrome c in pH 5 . 3  phosphate buf fer exhibited 

i rreve r s ible e lectrochemistry . 

Fast scan rate cyclic voltammograms indicated the pre 

sence of adsorbed reactant . The surface excess is  approxi

mately half that observed at pH 7 . 0 .  S imulations of 5 ° C  

and 4 0 ° C ,  1 V i s  scan rate cyc l ic vo ltammograms indicated 

that the reactant adsorption rate constant i s  between 4 to 6 

X 1 0 6 L/mo le . Thi s  corresponds to a free energy of adsorp

tion of ca . 40 kJ/mole , or 9 . 7  kcal /mole , at 2 5 ° C .  A sur 

face excess o f  ca . 6 . 0  X 1 0 - 1 2  mole/cm2 is  given by these 

parameters and the Langmuir adsorption isotherm . The de 

crease in strength of adsorption may be attr ibuted to the 

decrease in cationic binding s i tes on the metal oxide elec

trode surface resulting from the decrease in solution pH . 

Evidence of adsorbed reactant disappeared at temperature s 



above 6 0 ° C .  

3 .  In  pH 8 . 0  Buf fer 

1 6 0  

Fast scan rate cyc lic voltammograms of cytochrome c in 

pH 8 . 0  buf fers demons trated c learly dif ferent behavior than 

that observed in pH 7 . 0  and pH 5 . 3  buf fers . The cathodic 

peak current f rom qua s i - revers ible cyc lic voltammograms had 

a more pronounced temperature dependence which was not due 

to less  fac i le kinetics ( Figure 1 8 ) .  Also , the fast scan 

rate asymmetry o f  the peak potentials  about the formal 

potential is c learly more evident ( Figure 2 2 ) .  Finally ,  the 

cons iderable scan rate dependence of the peak separation 

meant that the Nicho l son method ( 1 8 3 ) of determining elec

tron transfer rate constants could not be used for this 

system . The asymmetry of the peak potentials could be caus

ed by an a value of much less than 0 . 5  at low temperatures 

and much larger than 0 . 5  at high temperatures . However , the 

peak currents support an oppos ite trend in a .  Single poten

tial s tep chronoabsorptometry experiments indicated an a of 

ca . 0 . 5 6 ( ±  0 . 0 5 )  be low 4 0 ° C  and ca . 0 . 3 6 ( ±  0 . 0 5 )  above 4 0  

° C .  The low a va lue above 4 0 ° C  is  suspect . As di scus sed 

below , product adsorption occurs at temperatures above 4 0  

° C .  Thi s  would l imit the absorbance response to a potential 

step and cause an unrealistically low a to be calculated . 

Alpha i s  c learly not the cause of the electrochemical behav

ior described above . Figure 2 3  shows a temperature series 

of quas i - reve rs ible cyc lic voltammograms of cytochrome c in 

pH 8 . 0  buf fer . A maximum current is  obtained at ca . 4 0 ° C .  
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Figure 2 2 . Temperature dependence of the asymmetry of the 
cyc lic voltammetric peak potentials about E O . of cytochrome 
c in pH 5 . 3  ( ups ide down triangles ) ,  7 . 0  ( x ) , and 8 . 0  
( squares )  buffers .  Scan rate = 5 0 9  mV/ s  for all  values . 
Asymmetry i s  calculated by : ( Ep , c  - E O . ) / ( Ep , a  - E O ' ) .  
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Thi s  occurred i n  both phosphate and Tri s /cacodylic acid 

buf fers . The change in current is  not attr ibuted to elec

tron transfer kinetics . A cons iderable change in the tem

perature dependence of the asymmetry of the peak potentials 

about the formal potential and the point of maximum current 

both occur at ca . 4 0 ° C .  Thi s  is the same temperature at 

which the break in the temperature dependence of the formal 

potential occur s . F igure 2 4  shows a series of cyc lic vo lt

ammograms obtained at 5 ° C .  The shi ft in the cathodic peak 

potential is larger than that of the anodic peak potential . 

The low temperature behavior i s  due to reactant adsorpt ion 

of weak to moderate s trength . The midpoint potential of a 

1V/ s  scan rate cyclic voltammogram is  shifted 1 0  mV negative 

from the formal potential . For the same scan rate , the 

corresponding shifts in midpoint potential are 5 and 7 mV in 

pH 5 . 3  and pH 7 . 0  buf f ers , respective ly . The strength of 

reactant adsorption steadi ly decreases with increase in 

temperature . A 4 0 ° C ,  reactant adsorption is  still  indicat

ed . Fitting s imulations to 5 °C and 4 0 ° C  1 Vis scan rate 

exper iments indicated an adsorption equi libr ium rate con

s tant of  8 to 12 X 1 0 6 L/mole . Thi s  is in the same range as 

at pH 7 . 0 ,  yet the potential variation at 5 °C indicates 

that the strength of adsorption i s  slightly stronger at pH 

8 . 0 .  The pH 8 . 0  voltammograms were the most  difficult to 

f i t . The experimental peak currents were sma l ler than 

expected for the peak potential shi f t . Fitting to experi 

menta l peak potentials  yie lded an adsorption strength 
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Figure 2 3 . Temperature dependence of quasi-reversible 
cyc lic vo ltammograms of cytochrome c in pH 8 . 0  Tr is /caco 
dylic acid buf fer . Scan rate = 1 . 0 3 Vi s .  Temperatures , D C ,  
are 5 ,  1 5 ,  2 5 , 3 5 , 4 5 , 5 5 ,  6 5 . 
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Figure 2 4 . Scan rate dependence of cyc lic voltamrnmetry of 
cytochrome c in  pH 8 . 0  Tri s / cacodylic acid buf fer at 5 ° C .  
Temperature = 5 ° C .  Scan rates are 0 . 0 2 ,  0 . 5 1 ,  and 1 . 0 3 
V i s . 
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s tronger than that a t  pH 7 . 0 ,  whereas f itting to peak cur

rents indicated weaker reactant adsorption . Product adsorp

tion was also evident . Both product and reactant adsorption 

are probably stronger at pH 8 . 0  than in the more acidic 

solutions , and evaluating the empirical data with a simula

tion that only considers reactant adsorption is  less accu

rate . Reactant and product adsorption have opposi te effects 

on peak currents and potentials . However ,  the effect of 

reactant adsorption c lear ly dominates at the lower tempera

ture s . There i s  a difference in the adsorption current 

between pH 5 . 3  and 7 . 0 .  At pH 5 . 3 ,  the area occupied by 

ferricytochrome c i s  ca . 2 8 0 0  A2 ( � square with 5 3  A s ides ) . 

This i s  s igni ficantly larger than the 4 1  A diameter calcu

lated trom the di f fusion coefficient . Thus , a moderate 

increase in adsorption s trength would eas i ly increase the 

surface exce s s . At pH 7 . 0 ,  the calculated surf ace excess 

indicate s that cytochrome c i s  in a close packed arrangement 

to dimens ions of the solvated s tructure . Increasing the 

surface excess would then require a signi ficant increase in 

adsorption s trength to overcome the requirement that some of 

the solvation sheath of the protein must  be removed . There

fore , stronger ads orption would s t i l l  shift the peak poten

t i a l s , but a corresponding larger current is not observed 

s ince the surf ace excess has not changed s igni f icantly . The 

s imulation used for this work i s  based on a Langmuir iso

therm which does not consider interactions between adsorbed 

specie s . A Frumkin i sotherm , which does consider adsorbate-
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to- adsorbate interactions , probably more accurate ly de 

scribes the ads orption behavior of cytochrome c .  A Frumkin 

i sotherm was not s imulated due to the added complexity of 

the a lgorithm .  The present digital s imulation algorithm is 

a qual itative analys i s  too l , and the addition of more 

adj ustable parameters did not seem suitable for thi s prob

lem . When the adsorption i sotherm of cytochrome c has been 

determined , it can then be inc luded in the s imulation rou

tine to provide further accuracy in evaluating the strength 

of adsorption and the l imiting surface excess .  

Figure 2 5  shows a series of cyc lic vo ltammograms 

obtained at 6 0 ° C  i n  Tri s / cacodylic acid buf fer . The 

cathodic peak potential shift i s  smal ler than the anodic 

peak potenti a l  shi f t , and the cathodic peak current . is much 

sma l le r  than that which would occur in the absence of 

adsorption effects . Thi s  behavior i s  attr ibuted to product 

adsorption of  moderate s trength . The strength of product 

adsorption increases with temperature . Temperatures above 

4 0 ° C  in pH 8 . 0  buf fers are the only experimental conditions 

in  which the ef fect of product adsorption on fast scan rate 

cycl ic  voltammograms is seen to predominate . Simulation of 

the 1 Vis scan rate cyc lic voltammograms in Tri s / cacodylic 

acid buf fer above 5 5 ° C  proved to be difficult because peak 

currents were not affected as strongly as the peak potential 

variation would indicate . The e lectron transfer kinetics of 

the reaction are decreasing rapidly above thi s temperature , 

which further compl icates the evaluation of adsorption 



Figure 2 5 . 
cytochrome 
Temperture 
Vi s .  

1 7 0  

Scan rate dependence of cyc lic voltammmetry of 
c in pH 8 . 0  Tri s /cacodylic acid buffer at 6 0 ° C .  
= 6 0  ° C .  Scan rates are 0 . 0 2 ,  0 . 5 1 ,  and 1 . 0 3 
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ef fects . Thi s  complicat ion also limits the ana lys is a t  low 

temperatures . The use of the Frumkin isotherm , which accu

rately includes the interactions between adsorbed molecules , 

could result in good f i ts . As mentioned in the discuss ion 

of the low temperature , pH 8 . 0  results , a signi ficant var i

ation in adsorption s trength may be  required to  cause a 

surf ace excess above that obtained from c lose packing of 

fully solvated s tructures .  A reasonable f i t  to experimental 

data was obtained at 5 5 ° C  for 1 Vi s scan rate cyclic volt

ammograms using a s imulation routine that inc luded the 

e f fects of produc t adsorption . An equi librium constant of 

1 . 2  to 1 . 5  X 1 0 7 L/mole was calculated . This  indicates a 

surface exces s  of 9 . 9  X 10 - 12  to 1 . 1  X 10 - 1 1  mole/cm2 . This  

represents a c lose packed arrangement of fully solvated 

ferrocytochrome c .  

The determination of a temperature of maximum electron 

trans fer kinetics in the pH 8 . 0  buf fers is limi ted by the 

occurrence of product adsorption ef fects in the cyclic vo lt

ammograms . The onset of product adsorption behavior occur 

red at ca . 4 0 ° C  in both buffer sys tems . The maximum e lec

tron tr ansfer rate constant in phosphate buf fer is  clearly 

lower than in phosphate buffer bec ause irrevers ible electro

chemistry at low scan rates occurred approximately 10 ° C  to 

1 5  ° C  earlier in phosphate buffer . Thi s  indicates that the 

formal potential of maximum electron transfer kinetics may 

be the s ame in binding and nonbinding pH 8 . 0  media , since 

there is an equivalent shift in formal potential between the 
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two buf fers a t  pH 8 . 0  and pH 7 . 0 ,  where a 1 4 ° C  dif ference 

in maximum kinetics was observed . 

The temperature dependence of the formal potentials of 

cytochrome c in both buffer systems is  not affected from 5 

to 4 0 ° C  by increasing the pH from 7 . 0  to 8 . 0 .  The e lec

tron transfer kinetics appear to be nearly equivalent in 

this temperature range also , although the perturbation of 

peak potentials  from reactant adsorption is  more pronounced 

at low temperatures in the pH 8 . 0  buffer . The electron 

trans fer rate constant was not evaluated above 4 0 ° C  in the 

pH 8 . 0  buf fers due to the clear dependence of peak poten

tials  on adsorption behavior . The structure of ferricyto

chrome c may not be affected by changing the pH from 7 . 0  to 

8 . 0 ,  at least be low 4 0 ° C .  Thi s  is  indicated by the lack of 

ef fect on the formal potential of the protein . Adsorption 

s trength is s tronger at pH 8 . 0  due to an increase in the 

number of anionic s i tes on the electrode . 

The onset of product adsorption ef fects on the electro

chemical behavior occurs at the s ame temperature in both 

buf fer medi a ,  but at dif ferent formal potentials , indicating 

that the heme environment i s  not altered by the change that 

occurs at 4 0 ° C .  Thi s  temperature , 4 0 ° C ,  is the point of 

the break in the linear temperature dependence of the for

mal potential which occurs in both buffer media , again , at 

dif ferent formal potentials . As mentioned previous ly , 

Tani guchi et al . ( 5 1 )  attributed the break in formal poten

tial  at 4 0 ° C  to a s tructural event remote from the heme 
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environment . Thi s  conformational change may be that which 

ref lects the transition from s tate I I I  to state I I Ib de 

scr ibed by Myer et al . ( 9 0 ) . State I I I b  is  the intermediate 

between the alkaline i somerization of state I I I  to state IV , 

and i s  produced by a conformational event which doe s not 

affect the heme environment . I f  this is  occurring , the 

change in ads orption ef fects from reactant to product con

trol may be due to a difference in desorption rates between 

s tate I I I  and s tate I I I b . 

The e f fect of pH and temperature on the electrode must  

also be  cons idered as a poss ible cause of the break in the 

temperature dependence of formal potential and adsorption 

characteri s tics . The e lectrostatic surface characteristics 

of  the e lectrode may be altered by a change in specific 

anion binding and/or by a change in the structured so lvent 

layer and the e lectrode surface . Electrostatical ly- induced 

adsorption of cytochrome c may then be strong enough so that 

the rate of ferrocytochrome c desorption from the electrode 

becomes s low and product adsorption effects are observed . 

There i s  no c lear experimental evidence that indicates 

whether a transi tion to state I I I b  or a change in electrode 

sur f ace characteristics is caus ing the observed behavior . 

The fact that Taniguchi et a l . ( 5 1 )  report the same tempera

ture for the break in formal potential temperature depen

dence at a different e lectrode suggests that a change in the 

conformation of cytochrome c i s  caus ing the change in elec 

trochemical behavior . It  i s  unlike ly that the two di fferent 
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e lectrodes would undergo an interfacial change a t  the same 

temperature . Whether a change in the electrode or a change 

in the conformation of cytochrome c occurs ar 4 0 ° C ,  it is 

c lear that reactant and product adsorption strength is  

enhanced . 

D .  Summary 

The thermodynamic and kinetic data determined for cyto

chrome c in pH  7 . 0  binding and nonbinding media indicate 

that the formal potential of the protein ref lects the con

formation of ferricytochrome c about the heme . The observa

tion that a maximum in e lectron trans fer kinetics occurred 

at the s ame formal potential ( ca .  2 4 7  mV vs . NHE ) but at 

different temperatures ( 4 2 ° C  in phosphate buf fer and 5 5 ° C  

in  Tri s /cacodylic acid buffer ) suggests that there is  an 

opt imum conformation of ferricytochrome c for fac i le elec

tron trans fer . Adsorption phenomena prevented a s imilar 

comparison between formal potential and a maximum in kine 

tics in pH 8 . 0  buf fers . Cytochrome c was only e lectrochem

ically revers ible in the nonbinding media at pH 5 . 3 .  This  

disal lowed the comparison of the formal potential of maximum 

kinetics of the protein in acidic binding and nonbinding 

media . 

The d if ference in formal potential at any temperature 

between the two pH 7 . 0  electrolytes is attributed to the 

e f fect of anion binding to the positively charged res idues 

in the vicini ty of the so lvent -exposed heme edge . The for

mal potential i s  shifted in a negative direction , and 
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ref lects the enhanced stabi lity of ferricytochrome c when 

anion binding occur s . The negatively charged anions par

tially compensate the pos i tive charge of the heme group in 

its large ly hydrophobic environment . Also , binding to the 

pos i tively charged residue s about the solvent-exposed heme 

edge has been sugges ted to cause an increase in the size  of 

the heme crevice ( 1 3 3 , 1 7 3 ) . This  greater degree of so lvent 

exposure also s tabi l i z e s  the posi tively charged heme group 

of  ferricytochrome . 

Fast scan rate cyclic voltammograms indicated the pre 

sence of weakly adsorbed reactant and product . The strength 

of reactant adsorption is larger than the strength of pro

duct adsorption under all conditions except for above 4 0 ° C  

in pH 8 . 0  buffer s . Approximately 1 X 1 0 - 1 1  mole/cm2 of 

ferr icytochrome c was found to be adsorbed to the electrode 

surf ace in pH 7 . 0  buf fers . Thi s  corresponds to monolayer 

coverage of a fully so lvated structure . Lowering the pH to 

5 . 3  decreased the s trength of adsorption , whereas an 

increase in the strength of adsorption occurred at pH 8 . 0 .  

The pH dependence of the strength of adsorption i s  attri

buted to the pH properties of the indium oxide e lectrode 

used for this work . A Langmuir i sotherm was used in the 

digital s imulation routine . Adsorption behavior at pH 8 . 0  

suggest s  that a Frumkin i sotherm may be more appropriate . 

Cytochrome c wi l l  fol low Langmuir ian behavior until the 

surf ace i s  covered with a c losely packed layer of fully 

so lvated molecules . The solvation layer probably cons ists 
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of several layers of water molecules , each being more 

loosely he ld than the preceding layer . Further adsorption 

requires a larger amount of energy to overcome interadsor

bate interaction , i . e . , some of the solvation sheath must be 

removed . At thi s po int , Frumkin isotherm adsorption behav

ior is observed . 

Lowering the s o lution pH to 5 . 3  resulted in a decrease 

in  the strength of reactant adsorption to approximate ly one 

half of that observed at pH 7 . 0  in Tr is/cacodylic acid 

media .  Cytochrome c was electrochemically irreversible in 

pH 5 . 3  phosphate buf fer . Thi s  may be due to the inability 

of  ferricytochrome c to bind to the e lectrode under these 

conditions . The onset of irreversible e lectrochemistry in 

pH 5 . 3  Tr i s / cacodylic acid buf fer occurred at a higher tem

perature than in the pH 7 . 0  buf fers and at ca . 2 4 0  mV vs . 

NHE , i . e . , the s ame value at which this occurred in the pH 

7 . 0  buffer s .  The increase in temperature stability is  

attr ibuted to the added conformational res i stance to temper 

ature ef fects o n  the opening of the crevice about the sol

vent - exposed heme edge . The smal ler degree of so lvent expo

sure is ref lected by the pos itive shift  of the formal poten

tial  with change in pH from 7 . 0  to 5 . 3 .  The variation of 

e lectron transfer kinetics with change in temperature is not 

near ly as pronounced at pH 5 . 3 .  The optimum in kinetics 

occurred at the s ame temperature as in pH 7 . 0  Tris /cacodylic 

acid buffer , but at a formal potential of ca . 2 5 3  mV vs . 

NHE . The formal potent ial of ca . 2 4 7  mV vs . NHE , at which 
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opt imum kinetics were obtained the pH 7 . 0  buf fer s ,  did not 

occur unt i l  6 5 ° C .  The fai lure to observe an optimum elec

tron trans fer rate at this same temperature may be due to 

weaker adsorption in the acidic media .  

The temperature dependence of the formal potential and 

the adsorption behavior of cytochrome c changed at ca . 4 0 ° C  

i n  both binding and nonbinding pH 8 . 0  buffers . These 

changes in the e lectrochemical characteristics of the pro

tein may be caused by a conformational trans ition of ferri

cytochrome c from s tate III  to state I I I b . The heme 

environment i s  not affected by this transition . A change in 

pH from 7 . 0  to 8 . 0  does not af fect the thermodynamic and 

kinetic properties of cytochrome c be low 4 0 ° C .  

E .  Mode l o f  Heterogeneous Electron Transfer 

Albery and Hill ( 3 0 ,  3 5 ) have proposed that there are 

three essential  events for effective e lectron transfer 

between an electrode and cytochrome c :  adsorption , electron 

trans fe r , and desorption . Any of these factors can be a 

rate - limiting s tep in the apparent kinetics of the system . 

The results o f  thi s  research support this mechanism . 

The strength o f  adsorption depends on the electrode 

surf ace characteri stics . The electrode should have binding 

s i tes of sui table s trength for rapid adsorption of ferri 

cytochrome c .  The p z zp of the e lectrode will play a s igni 

f icant role in the initial electrostatic interaction with 

the protein . The e lectrode material , solvent pH , and elec 

tro lyte determine the pzzp . A negatively charged surface 
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wi l l  attract the pos i tively charged exterior o f  cytochrome c 

and interact with the its dipole moment to orient the struc 

ture so  that the s o lvent -exposed heme edge is  adj acent to 

the e lectrode surface . The pos i tive ly charged lys ine res i 

dues that surround the active s ite w i l l  then bind t o  the 

electrode surface . Thi s  binding interaction may serve to 

enhance e lectron transfer by holding the structure in the 

correct orientation for effective orbital overlap with the 

heme unt i l  an appropriate transi tion state is achieved . 

Binding to the active s i te residues has been proposed 

to weaken the heme crevice and the Fe-S bond , which may lead 

to an a lteration of the heme environment that activates the 

complex toward e lectron trans fer ( 1 2 3 ) . This  action wi l l  

a l so increase the exposure of the hydrophobic inter ior o f  

the crevice . The combination of a closer approach to the 

electrode due to binding and an increase in the hydrophobic 

nature of the domain wi thin the ring of binding s ites that 

surround the heme edge may serve to expel water from the 

e lectron transfer s ite . Thi s  model of the binding interac 

tion of  ferricytochrome c with an e lectrode is  similar to 

that reported for the reaction of ferricytochrome c with 

cytochrome bS ( 1 1 8 , 1 2 3 ,  1 3 9 ) . These studies conc luded that 

charge neutra l i z ation resulting from the surface residue 

interactions and the exclus ion of water from the reaction 

s ite in the complex both serve to create a hydrophobic , low 

die lectric environment along the e lectron trans fer path 

between heme edge s . Adsorption decreases with increase in 
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temperature . The break observed i n  the heterogeneous e lec

tron transfer rate with change in temperature may be due to 

the s trength of adsorption decreasing to the point where an 

active e lectron trans fer complex becomes difficult to 

obtain . The i nner s tructured layer of a solvent at an e lec

trode surface i s  probably not penetrated , or at least is  

more diff icult to remove than that from the heme edge of the 

cytochrome c phys i o logical redox partners . For this reason , 

it  i s  unlike ly that phys io logical e lectron trans fer rates 

wi l l  be attained for heterogeneous e lectron transfer between 

cytochrome c and an e lectrode . 

Whi le the binding interaction must  be strong enough to 

cause the structural a lterations required for a suitable 

trans i tion s tate , i t  mus t  be suf f iciently weak to a l low the 

protein to disengage from the e lectrode following electron 

trans fer . Cytochrome c exhibits irrevers ible electrochemis 

try a t  mos t  e lectrodes ( 4 3 ) . Thi s  has been attr ibuted to 

i rreve rsible adsorption . The strength of adsorption to 

mercury may be suf f iciently strong to denature ferricyto 

chrome c .  Weak reactant adsorption and product adsorption 

occurs at indium oxide e lectrodes . Thus , an effective elec

trode / so lvent combination for interaction with cytochrome c ,  

o r  other e lectron trans fer proteins , must  have appropriate 

e lectrostatic and adsorption characteri stics . 

As mentioned , binding weakens the crevice and the Fe- S  

bond in  a manner such as t o  promote the formation of the 

trans i tion state . The strength of the crevice and the Fe -S 



1 8 1  

bond are af fected by temperature and pH . I t  seems reason

able that there exi sts an optimum combination of heme edge 

exposure , Fe-S bond s trength , and adsorption strength for 

faci le e lectron transfer with an e lectrode . The formal 

potential of cytochrome c i s  an indicator of the heme envi 

ronment . Thi s  dependence i s  ref lected by the temperature 

and pH dependence of the formal potential of cytochrome c .  

Thus , there may be an optimum conformation of ferricyto

chrome c ,  that is indicated by a spec i f ic formal potential , 

for e f fective e lectron trans fer with an electrode . This  

opt imum conformation results from a combination of tempera

ture , solvent pH , and anion binding . The formal potential 

at which thi s  optimum combination occurs may be dif ferent 

for various e lectrodes s ince the strength of �dsorption is  

also a f actor in the activation proces s  towards electron 

transfer . The increase in electron trans fer rate cons tant 

with increase in temperature may be due to a weakening of 

the heme crevice and Fe - S  bond which allows the f lexibility 

requi red for rapid attainment of the transition state . The 

break in  kinetics may occur at a po int where the conforma

tion of ferricytochrome c becomes increasingly removed from 

the conf iguration of the trans i tion state . The desorption 

proc e ss  may be s igni f icantly facili tated by the dif ferences 

in  the conformat ion of ferri- and ferrocytochrome c .  On 

reduct ion , the heme moves into the hydrophobic interior of 

the protein sheath , and the heme crevice closes . The con

formational consequence of electron transfer has been 
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described a s  a " c lamshe l l - like" opening and clos ing of the 

heme crevice ( 8 2 ) . The motion of residues in the protein 

structure are interconnected . The movement of the heme 

crevice may aid in the desorption of cytochrome c from the 

electrode surface f o l lowing e lectron transfer . A decrease 

in the strength o f  this interaction may cause the break to 

occur in the e lectron transfer kinetics . Temperature 

affects the s trength of the Fe- S  bond and the extent of the 

heme c revice opening in ferricytochrome c ,  whi le having very 

litt le effect on ferrocytochrome c .  Consequently , the con

formational change accompanying e lectron transfer changes 

with temperature .  The extent of change increases with tem

perature to the po int where ferricytochrome c is denatured . 

The larger dif ference in conformation with increase in tem

perature promotes the rate of desorption through a larger 

conformational change . As the temperature is increased 

further , the crevice opening and the strength of the Fe -S 

bond may have been altered to the point that the driving 

force to change to the reduced conformational form is not 

suffic ient to overcome the strength of adsorption . 

In  conc lusion , the heme of cytochrome c is  contained in 

the hydrophobic interior of a globular protein structure . 

The tertiary structure i s  maintained through an extensive 

combination of chemical bonds , hydrogen bonds , and hydropho

bic interactions . The complex i s  solubi li zed by charged 

surface groups . The residues about the e lectron transfer 

s i te serve as binding sites to reaction partners . The 
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action o f  binding serves to alter the conformation o f  the 

protein so that the e lectron trans fer trans ition state is  

achieved . Electron transfer causes a conformational change 

which a s s i s t s  desorption through a concerted motion of the 

interconnected , mobi le heme crevice res idues . The apparent 

rate constant of heterogeneous electron transfer of cyto

chrome c with an e lectrode i s  potentially control led by 

rates of adsorption , e lectron transfer , and desorption . As 

mentioned in the previous discus sion , each may play the 

dominant role under different conditions . I t  i s  clear that 

the processes are interrelated . The strength of adsorption 

af fects the conformation of cytochrome c ,  which is  also 

affected by temperature , e lectrolyte , and pH . The ability 

to de sorb f rom the e lectrode , depends both on the strength 

of the adsorption and the conformational difference between 

ferricytochrome c and ferrocytochrome c .  The s ignificant 

result of this research is that all  three proces ses are 

c learly a part of the heterogeneous electrochemistry of 

cytochrome c .  The re lative contr ibution of each of these 

parameters to e lectron transfer rates with electrodes 

depends on the e lectrode material , e lectrolyte , pH , and 

tempe rature . 

Se lective adsorption , fac i le electron transfer , and 

desorption are the critical phys iological parameters . 

Therefore , the mechanism by which cytochrome c ,  or othe r 

e lectron transfer proteins , interacts with an electrode may 

be s imi lar to the phys io logical mechanism . Heterogeneous 
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e lectrochemical i nvestigations o f  enzymes provide a tract

able approach to determining phys iological reaction mecha

ni sms . An understanding of the e lectrochemical interaction 

of  a biological substance with an e lectrode will also assist 

in the des ign of e lectrochemical bio logical sensors . 
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APPENDIX - DIGITAL SIMULATION OF CYCLI C  VOLTAMMETRY 

Digital s imulations of the experimental cyc lic voltam

mograms of  cytochrome c proved inva luable in detecting and 

analyz ing reactant and product adsorption . Experimenta l ly 

determined formal potentials ( E O ' ) ,  dif fus ion coefficients 

( D ) , heterogeneous e lectron transfer rate constants ( k O ' ) ,  

and e lectrode areas ( A )  were used to s imulate the experimen

tal results . A s imulation program that does not contain 

adsorption e ffect s , CVSIM , agreed with s low potential scan 

rate experiments , but did not match fast potential scan rate 

results where the current aris ing from e lectrolysis of 

adsorbed materials is s ignif icant . Ana lysis of these fast 

scan rate exper iments was facilitated by the use of two 

s imulation programs : CVADOX , which included the ef fects of 

adsorbed reactant , and CVADRED , which accounted for adsorbed 

product e ffect s . Thes e  programs are based entirely on the 

publ i shed a lgorithms of Fe ldberg ( 1 ,  2 ) . 

I n  a process where a reactant , 0 ,  is  reduced by an 

e lectrode to form a product , R ,  the electron f lux , i . e . , 

current , that f lows during e lectrolys i s  i s  a function of 

e lectrode area , e lectron transfer kinetics , and the concen

trat ion of e lectroactive species ( Cr ( O , t )  and Co ( O , t ) ) at 

1 9 8  
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the e lectrode surface . Prior t o  electrolys is , the surface 

concentrations equal the bulk concentrat ions ( Cr
* and Co

* ) .  

When the e lectrode potential i s  adj usted to a point where 

e lectrolys i s  occur s , the surface concentrations no longer 

equa l the bulk concentrations . At thi s point , the movement 

of 0 toward the e lectrode and R away from the e lectrode i s  

determined by a concentration gradient , Co ( x , t ) . The calcu

lation of the current requires so lving the linear diffus ion 

equation ( F ick ' s Second Law ) : 

o Co ( x , t ) / o t = Do o 2Co ( x , t ) / ox2 

Thi s  i s  a parabo l ic , second- order , partial differential 

equation . Semi- inf inite diffus ion is  assumed for the outer 

boundary condi tion . Thi s  condit ion states that the bulk 

concentrations are not af fected by electro lys i s  at the e lec

trode sur f ace . The f lux of 0 and R at the electrode sur face 

is de scribed by Fick ' s  First Law : 

f lux = D [ oC ( X , t ) / o x ] x=O 

F lux balance i s  maintained at the e lectrode surface ( in the 

absence of adsorption ) ;  thus , the f lux of 0 equals the f lux 

of R :  

Do [ OCo ( X , t ) / oX ) ] X=O - Dr [ oCr ( x , t ) / ox ) ] x=O = 0 

The current i s  given by : 

i = nFADo ( OCo ( x , t ) / o x ) x=O 

For a reversible system : 

Do ( OCo ( x , t ) / ox ) x=o = Co ( O , t )  - Cr ( O , t )  

For a quasi - revers ible system : 

Do ( OCo ( x , t ) / ox ) x=O = kfCo ( O , t )  - kbCr ( O , t )  



, , 
kf = k O  exp [ -an ( F/RT ) ( E  - EO ) ]  

, , 
= kO  exp [ ( l -a ) n ( F/RT ) ( E  - EO  ) ]  

2 0 0  

Digital s imulation determines the concentration grad

ient at any given time by us ing a finite difference itera-

tive method . The Fe ldberg method is an explicit finite 

dif ference method . Implicit methods are also used ( 3 ) ,  and 

are inherently more accurate . However , the explicit method 

i s  mathematically less sophisticated and therefore , easier 

to implement . An important point is  that the accuracy of 

the explicit f inite difference simulation is  at least as 

good as that o f  the experimental data ( 4 ) . Orthogonal col-

location ( 5 )  has been used as an alternative to f inite dif-

ference methods to s imulate e lectrochemical problems . Thi s  

method uses orthogonal po lynomials t o  represent the concen-

trat ion gradient . 

Bard and Faulkner ( 6 )  present an excel lent overview of 

explicit f inite dif ference s imulations . Explicit methods 

use a forward difference approximation . Implicit methods 

use an estimate of the n+ l variable in the calculation of 

the n+l variable . Thi s  procedure adds complexity to the 

method , but also increased accuracy . Hanafay et al . ( 7 )  and 

Sandifer and Buck ( 8 )  have presented modif ications to Fe ld-

burg ' s a lgorithm that may be of interest to potential users 

of the s imulation routines presented here . 

The f inite difference method i s  implemented by es tab-

l i shing discrete dis tance , AX , and discrete time , At , e le

ment s . Accuracy i s  increased by us ing smal l  AX elements . 



Fe ldburg uses a linear array of evenly spaced boxes , each 

containing a f ractional concentration . ( Concentration is  

norma li zed . )  The f inite difference equation is : 

C ( x , t  + at ) = 

2 0 1  

C ( x , t )  + ( Da t / ax2 ) [ ( X+ax , t )  - 2C ( x , t )  + C ( x- aX , t ) ] 

Dat/ ax2 i s  a dimensionless parameter , Dm , that is  the mode l 

dif fus ion coef f i cient . Thi s  parameter determines the size  

of the space elements . Greater accuracy is  achieved with 

large values , but Dm mus t  be less than 0 . 5  to avoid oscilla

t ions ( fai lure in the model ) in the simulation results . 

Dur ing each i teration , dif fus ion is  expected to occur only 

between adj acent boxe s . A value of Dm larger than 0 . 5  

cause s  aX to be too sma l l  for the corresponding at , and the 

mode l fails . The distance aX is  determined by Dm , the time 

of the experiment , tk ( sweep time for cyclic voltarnrnetry ) ,  

and the number of iterations , I ,  by : 

aX = ( Dtk/DmI ) 1 / 2  

The s i ze o f  the dif fuse layer increases with time . 

The concentrations of only those boxes within the dif fuse 

layer require adj us tment with each iteration loop . This  

dis tance is  estimated by : 

n = 6 ( Na tDm / ax ) 1 / 2  

n = number o f  space e lements 

N = iteration number 

Thus , the concentrations of only those boxes within the 

dif fuse layer determined for a particular time , Nat , are 

adj us ted during each i teration . It is noteworthy that the 
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difference i n  concentration between adj acent space elements 

decreases with distance away from the electrode . Converting 

from evenly s i zed boxes to a series of variable size , with 

the smallest next to the e lectrode , can signi f icant ly 

decrease the s imulation time wi thout sacrificing accuracy 

( 9 - 1 1 ) . 

Fundamenta l ly , a fraction of 0 is  converted to R ( or R 

to 0 )  at the electrode surface dur ing each iteration . The 

amount of materi al  converted depends on the overpotential ( E  
, 

- EO  ) ,  surf ace concentration , and heterogeneous kinetics . 

The amount of 0 reduced i s  subtracted from the box which 

represents the concentration of reactant adj acent to the 

e lectrode surface of the array that represents the concen-

tration gradient of 0 ,  and is added to the first  box of the 

R array . Dif fus ion i s  then allowed to occur between ad-

j acent boxes throughout the array by use of the finite dif-

ference equation . The current corresponding to this itera-

tion is calculated from the amount of 0 converted to R .  The 

next iteration i s  begun , and the fract ion of 0 converted to 

R now depends on a new overpotential and surface concentra

t ion . Rea l  currents are calculated from the dimens ionless 

f lux by using input e lectrode areas , reactant concentra-

t ions , diffusion coe f f icients , temperature , and number of 

e lectrons transferred per molecule . 

The specific detai l s  of the algorithm are given by 

Fe ldberg ( 1 ) . Also , a listing of program CVSIM is  given at 

the end of this section . The purpose of inc luding the pro-
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gram i s  two- fold . One i s  to provide the detai ls o f  convert

ing normali zed f lux to real current ( not inc luded in 

Fe ldberg ' s  li sting ) , and the second reason is  to give an 

example of  use of the IBM PC AT system to future members of 

Dr . Hawkridge ' s  group . 

The simulations that inc lude the ef fects of adsorption 

are also based on a Fe ldberg algorithm ( 2 ) . A Langmuir 

adsorption i sotherm was used . The amount of adsorbed mater 

i a l , T ,  i s  related to the maximum surface coverage , Ts , the 

adsorption equi l ibrium cons tant , K ,  and the bulk concentra

tion , C .  

T = TsKC / ( l  + KC ) 

Thi s  can be rearranged to : 

KC = T/ ( Ts - T )  

Weak adsorption behavior i s  observed for KC va lue s less than 

2 .  Strong adsorption behavior is  indicated by KC values 

larger than 1 0 0 . The free energy of adsorption , AGO , is  

ca lculated from by : 

K = exp ( AG o / RT ) . 

The iteration code for the reactant adsorption pro

gram , CVADOX , and product adsorption program , CVADRED , is 

given at the end of this section . These are inc luded since 

Fe ldberg ( 2 )  does not give program listings for the adsorp

tion programs . Feldberg ( 2 )  presents a general algori thm for 

the reactant adsorption case . The same procedure was fol

lowed to deve lop the product adsorption simulation , CVADRED . 

The spec i f ic equations are contained in the program lis ting . 
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The adsorption equi l ibrium cons tant and the current 

due to adsorbed material were normali zed with re spect to the 

bulk solution concentration by : 

Knorm = K/C 

Tnorm = T/ [ ( RTD/vnF ) 1 / 2C ]  

v = scan rate 



PROGRAM TITLE : CVSIM 

2 0 5  

1 0 ' THIS I S  A CYCLI C VOLTAMMETRI C  SIMULATION PROGRAM FOR 

2 0 ' THE SIMPLE PROCESS : 0 + nE = R .  WHERE ONLY 0 IS 

30  ' INITIALLY PRESENT . 

4 0 ' 2 . 0  

WRITTEN IN BASICA 2 . 0 ,  MSDOS 

5 0  DIM X ( 2 5 0 ) , Y ( 2 5 0 ) , X1 ( 2 5 0 ) , Y1 ( 2 5 0 ) , E ( 2 5 0 0 ) ,  1 ( 2 5 0 0 ) 

6 0  CLS : SCREEN O : WI DTH 8 0  

7 0  DEFINT J , K , L , N , P  

8 0  LOCATE 4 , 3 5 

9 0  PRINT " cv SIMULATION MENU" ; 

1 0 0  LOCATE 8 , 3 0 

1 1 0  PRINT " 1 . RETRI EVE DATA FROM DI SK" ; 

1 2 0  LOCATE 1 0 , 3 0 

1 3 0  PRINT " 2 .  RUN SIMULATION" ; 

1 4 0  LOCATE 1 2 , 3 0 

1 5 0  PRINT " 3 .  TYPED OUTPUT OF DATA" ; 

1 6 0  LOCATE 1 4 , 3 0 

1 7 0  PRINT " 4 .  STORE DATA ON DI SK" ; 

1 8 0  LOCATE 1 6 , 3 0 

1 9 0  PRINT " 5 .  PLOT CV" ; 

2 0 0  LOCATE 1 8 , 3 0 

2 1 0  PRINT " 6 . TERMINATE PROGRAM " ; 

2 2 0  LOCATE 2 0 , 5  

2 3 0  PRINT " SELECT OPTION NUMBER" ; 

2 4 0  Z $  = INKEY$ : IF Z $  = '" ' THEN 2 4 0  

2 5 0  IF  Z $  = " 6 "  THEN CLS : END 

2 6 0  IF  VAL ( Z $ )  < 1 OR VAL ( Z$ )  > 6 THEN GOSUB 3 0 0 : GOTO 1 0 0  



2 7 0  PRINT VAL ( Z $ )  

2 8 0  ON VAL ( Z $ )  GOSUB 2 9 4 0 , 1 8 2 0 , 3 0 6 0 , 2 8 3 0 , 4 7 0  

2 9 0  GOTO 6 0  

3 0 0  PRINT : LOCATE 2 2  

3 1 0  PRINT " INVALID SELECTION - RE-ENTER" ; 

3 2 0  GOSUB 3 6 0  

3 3 0  LOCATE 2 2  

3 4 0  PRINT " 

3 5 0  RETURN 

3 6 0  FOR N = 1 TO 1 0 0 0 : NEXT N :  RETURN 

" . 
, 

3 7 0  ' THI S  FINDS PEAK CURRENTS AND POTENTIALS 

3 8 0  CLS 

3 9 0  MAX = 0 :  MIN = 0 

4 0 0  FOR J = 1 TO POINTS 

4 1 0  I F  MAX < I ( J ) THEN MAX = I ( J ) : MAXLOC = J 

4 2 0  I F  MIN > I ( J )  THEN MIN = I ( J ) : MINLOC = J 

4 3 0  NEXT J 

4 4 0  CATPEAKE = E ( MAXLOC ) 

4 5 0  ANODPEAKE = E ( MINLOC ) 

4 6 0  RETURN 

4 7 0  ' THI S  I S  THE SCREEN PLOTTING ROUTINE 

4 8 0  CLS 

4 9 0  GOSUB 3 7 0  

5 0 0  LOCATE 8 , 3 0 

5 1 0  PRINT " CATHODIC PEAK CURRENT I S : 

5 2 0  PRINT USING " # # # # . # " ; MAX ; 

5 3 0  PRINT " MI CROAMPS "  

" . 
, 
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5 4 0  LOCATE 1 0 , 3 0 

5 5 0  PRINT "ANOD I C  PEAK CURRENTS I S : 

5 6 0  PRINT USING " # # # # . # " ; MIN ; 

5 7 0  PRINT " MI CROAMPS" 

5 8 0  LOCATE 1 4 , 1 0 

" . 
, 

5 9 0  INPUT " INPUT CURRENT SCALE FROM 0 TO MAX :  

6 0 0  ISCAL1 = ISCALE/ 6 6 . 5  

" , I SCALE 

6 1 0  PRINT : PRINT " INITIAL POTENTIAL FOR SIMULATION WAS : " ;  

6 2 0  PRINT USING " + # . # # # " ; INITE 

6 3 0  LOCATE 1 7 , 1 0 

6 4 0  INPUT " INPUT INITIAL POTENTIAL FOR PLOT : " , INITEI 

2 0 7  

6 5 0  PRINT : PRINT " SWITCHING POTENTIAL FOR SIMULATION WAS : " ;  

6 6 0  PRINT USING " + # . # # # " ; SWITCHE 

6 7 0  LOCATE 2 0 , 1 0 

6 8 0  INPUT " INPUT FINAL POTENTIAL FOR PLOT : 

6 9 0  KEY OFF : CLS : SCREEN 2 

7 0 0  ESCALE = ABS ( INITE1 - SWITCHE1 ) 

7 1 0  ESCAL 1 = ESCALE/ 3 2 0  

7 2 0  I F  R O  = - 1  THEN 8 2 0  

" , SWITCHE1 

7 3 0  OFFSET = INITE1 - E ( O ) : SET = OFFSET : IF SET < 0 THEN SET 

= 0 

7 4 0  PSET ( SET/ESCAL1 + 1 6 0 , 7 4 . 5  - I ( 0 ) / I SCAL1 ) 

7 5 0  FOR J = 0 TO ( KOUNT - 1 )  

7 6 0  MOVE = ( E ( 0 ) -E ( J ) ) /ESCAL1 + OFFSET/ESCAL1 

7 7 0  IF  MOVE < 0 THEN MOVE = 0 

7 8 0  IF  MOVE > 3 2 0  THEN MOVE = 3 2 0  

7 9 0  LINE - ( MOVE+1 6 0 , 7 4 . 5 - I ( J ) / I SCAL1 ) 



8 0 0  NEXT J 

8 1 0  GOTO 9 0 0  

8 2 0  OFFSET = INITE1 - E ( O ) : SET = OFFSET : I F  SET > 0 THEN 

SET = 0 

8 3 0  PSET ( 4 8 0  + SET/ ESCAL1 , 7 4 . 5  - I ( 0 ) / I SCAL1 ) 

8 4 0  FOR J = 0 TO ( KOUNT - 1 )  

8 5 0  MOVE = ( E ( 0 ) -E ( J ) ) /ESCAL1 + OFFSET/ESCAL1 

8 6 0  IF  MOVE > 0 THEN MOVE = 0 

8 7 0  I F  MOVE < - 3 2 0  THEN MOVE = - 3 2 0  

8 8 0  LINE - ( 4 8 0+MOVE , 7 4 . 5 - I ( J ) / I SCAL1 ) 

8 9 0  NEXT J 

9 0 0  PSET ( 1 6 0 , 1 4 1 ) 

9 1 0  FOR L = 1 TO 4 

9 2 0  FOR J = 1 TO 1 0  

9 3 0  

9 4 0  

9 5 0  

9 6 0  

IF  L= l THEN LINE - ( 16 0+J* 3 2 , 1 4 1 ) : LINE 

- ( 1 6 0+J * 3 2 , 1 3 7 . 6 5 ) : LINE - ( 1 6 0+J * 3 2 , 1 4 1 ) 

IF  L=2 THEN LINE - ( 4 8 0 , 1 4 1 - J * 1 3 . 3 ) : LINE 

- ( 4 7 2 , 1 4 1 - J * 1 3 . 3 ) : LINE - ( 4 8 0 , 1 4 1 -J * 1 3 . 3 )  

I F  L=3 THEN LINE - ( 4 8 0 - J* 3 2 , 8 ) : LINE 

- ( 4 8 0 -J * 3 2 , 1 1 . 3 5 ) : LINE - ( 4 8 0 -J* 3 2 , 8 )  

IF  L=4 THEN LINE - ( 1 6 0 , 8+J* 1 3 . 3 ) : LINE 

- ( 1 6 8 , 8 +J* 1 3 . 3 ) : LINE - ( 1 6 0 , 8+J* 1 3 . 3 )  

9 7 0  NEXT J 

9 8 0  NEXT L 

9 9 0  LOCATE 1 , 3 5 

1 0 0 0  PRINT " cv SIMULATION" 

1 0 1 0  LOCATE 2 1 , 3 9 :  PRINT "VOLTS " 
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1 0 2 0  IF  RO = 1 THEN A = INITE1 : B = SWITCHE1 

ELSE A = SWITCHE1 : B = INITE1 

1 0 3 0  LOCATE 19 , 1 9 :  PRINT USING " + # . # # " ; A  

1 0 4 0  LOCATE 1 9 , 5 9 :  PRINT USING " + # . # # " ; B  

1 0 5 0  LOCATE 1 0 , 4 :  PRINT " MI CROAMPS"  

1 0 6 0  LOCATE 2 , 1 6 :  PRINT USING " # # # " ; ISCALE 

1 0 7 0  LOCATE 1 0 , 1 8 :  PRINT " 0 "  

1 0 8 0  LOCATE 2 2 , 5  

1 0 9 0  PRINT " SEND TO HP7 4 7 0A? ( Y/N ) "  

1 1 0 0  Z $  = INKEY$ : IF  Z $  = " "  THEN 1 1 0 0  

1 1 1 0  IF  Z $  = "N"  OR Z $  = " n "  THEN 1 1 5 0  

1 1 2 0  IF  Z $  = " Y "  OR Z $  = " y" THEN 1 1 4 0  

1 1 3 0  GOTO 1 0 8 0  

1 1 4 0  GOSUB 1 1 6 0  

1 1 5 0  RETURN 

1 1 6 0  I SEND TO HP7 4 7 0A PLOTTER 

1 1 7 0  OPEN " COM1 : 9 6 0 0 , S , 7 , 1 , RS , CS 6 5 5 3 5 , DS , CD"  AS # 1  

1 1 8 0  DEFINT X , Y  

1 1 9 0  SCREEN O : CLS : LOCATE 10 , 1 0 

1 2 0 0  PRINT " SELECT RECTANGLE SIZE IN INCHES" 

1 2 1 0  INPUT " INPUT X AXIS : " AXI SX 

1 2 2 0  INPUT " INPUT Y AXI S :  " AXI SY 

1 2 3 0  Xl = ( 5 . 1 -AXI SX/ 2 ) * 1 0 1 0  

1 2 4 0  X2 = ( AXISX/ 2+5 . 1 ) * 1 0 1 0 

1 2 5 0  Y1 = ( 3 . 7 5 -AXI SY/ 2 ) * 1 0 2 0  

1 2 6 0  Y2 = ( AXI SY/ 2+3 . 7 5 ) * 1 0 2 0  

1 2 7 0  PRINT # 1 , " IN ; I P "X1 " , "Y1 " , "X 2 " , "Y2 " ; "  

2 0 9  
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1 2 8 0  PRINT # 1 ,  " IW " X1 " , " Y1 " , "X2 " , " Y2 " i "  

1 2 9 0  PRINT # 1 ,  " sc 0 , 1 0 0 0 0 , - 1 0 0 0 0 , 1 0 0 0 0 i "  

1 3 0 0  I F  RO = -1 THEN 1 4 1 0  

1 3 1 0  X = ( INITE 1 -E ( 0 ) ) /ESCALE * 1 0 0 0 0  

1 3 2 0  Y = I ( 0 ) / I SCALE* 1 0 0 0 0  

1 3 3 0  PRINT # 1 ,  " SP 1 i PA "X" , "Y" i PD i " 

1 3 4 0  FOR J = 0 TO ( KOUNT- 1 )  

1 3 5 0  X = ( ( E ( 0 ) - E ( J ) ) / ESCALE+ ( INITE1-E ( 0 ) ) /ESCALE ) * 1 0 0 0 0  

1 3 6 0  Y = I ( J ) / I SCALE* 1 0 0 0 0  

1 3 7 0  PRINT # 1 ,  " PA "X" , " Y "  i "  

1 3 8 0  NEXT J 

1 3 9 0  PRINT # 1 ,  " SP i "  

1 4 0 0  GO TO 1 5 0 0  

1 4 1 0  X = ( 1 + ( INITE 1 - E ( 0 ) ) /ESCALE ) * 1 0 0 0 0  

1 4 2 0  Y = I ( 0 ) / I SCALE * 1 0 0 0 0  

1 4 3 0  PRINT # 1 ,  " SP1 i PA "X" , "Y" i PD i "  

1 4 4 0  FOR J = 0 TO ( KOUNT- 1 )  

1 4 5 0  X = ( ( ( ESCALE+E ( O ) -E ( J ) ) /ESCALE+ 

( INITE 1 -E ( 0 ) ) /ESCALE ) * 1 0 0 0 0  

1 4 6 0  Y = I ( J ) / I SCALE* 1 0 0 0 0  

1 4 7 0  PRINT # 1 ,  " PA "X" , "Y" i "  

1 4 8 0  NEXT J 

1 4 9 0  PRINT # 1 , " SP i " 

1 5 0 0  LOCATE 2 0 , 1 0 

1 5 1 0  PRINT " DO YOU WANT TO FRAME THI S  

1 5 2 0  Z $ =INKEY$ : I F Z $ = " "  THEN 1 5 2 0  

1 5 3 0  I F  Z $= "N" OR Z $ = " n" THEN 1 5 7 0  

GRAPH? ( Y/N ) " . 
, 



1 5 4 0  IF  Z $ = "Y"  OR Z $ = " y" THEN 1 5 6 0  

1 5 5 0  GOTO 1 5 2 0  

1 5 6 0  GOSUB 1 5 8 0  

1 5 7 0  DEFSNG X , Y :  CLOSE # 1 : RETURN 

1 5 8 0 ' FRAME ROUTINE TO HP7 4 7 0A 

1 5 9 0  PRINT # 1 ,  " IW ; " 

1 6 0 0  PRINT # 1 ,  " SP1 ; "  

1 6 1 0  PRINT # 1 ,  " sc 0 , 1 0 0 , 0 , 1 0 0 ; "  

1 6 2 0  PRINT # 1 ,  " PAPU O , O , PD ; "  

1 6 3 0  FOR L = 1 TO 4 

1 6 4 0  FOR J = 1 0  TO 1 0 0  STEP 1 0  

1 6 5 0  

1 6 6 0  

1 6 7 0  

1 6 8 0  

1 6 9 0  NEXT J 

1 7 0 0  NEXT L 

IF  L = 1 THEN PRINT # 1 ,  

"TL1 . 5 , 0 ; PA"J" , 0 ; XT ; " 

I F  L = 2 THEN PRINT # 1 ,  

"TLO , 1 . 5 ; PA1 0 0 , " J " ; YT ; " 

IF  L = 3 THEN P = 1 0 0 - J : 

PRINT # 1 ,  "TLO , 1 . 5 ; PA"P"  , 1 0 0 ; XT ; " 

I F  L = 4 THEN P = 1 0 0 - J : 

PRINT # 1 ,  " TL1 . 5 , 0 ; PAO , " P" ; YT ; " 

1 7 1 0  A$=STR$ ( INITE1 ) :  B$=STR$ ( SWITCHE1 ) :  C$=STR$ ( I SCALE ) 

1 7 2 0  L = - ( LEN ( C$ ) +l )  

1 7 3 0  PRINT # 1 ,  " PU ; PAO , 0 ; SR2 , 2 ; CP - 1 , - 1 . 5 ; LB " A$ " " +CHR$ ( 3 )  

1 7 4 0  PRINT # 1 ,  " PU ; PA1 0 0 , 0 ; CP - l , - 1 . 5 ; LB " B$ " " +CHR$ ( 3 )  

1 7 5 0  PRINT # 1 ,  " PU ; PA5 0 , 0 ; CP - 4 , - 3 ; LBE ( VOLTS ) " +CHR$ ( 3 )  

1 7 6 0  PRINT # 1 ,  " PU ; PAO , 5 0 ; CP- 2 , 0 ; LB O " +CHR$ ( 3 )  
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1 7 7 0  PRINT # 1 ,  " PU i PAO , 1 0 0 i CP " L " , O i LB " C$ " "+CHR$ ( 3 )  

1 7 8 0  PRINT # 1 ,  " PU i PAO , 5 0 i CP - 5 , - 4 i DI O , 9 0 i LBI 

( MI CROAMPS ) " + CHR$ ( 3 )  

1 7 9 0  PRINT # 1 ,  " PU i DI i SR3 , 3 i PA5 0 , 1 0 0 i CP-6 , l i LBCV 

SIMULATION" +CHR$ ( 3 )  

1 8 0 0  PRINT # 1 ,  " PAO , O i SP i "  

1 8 1 0  PRINT # 1 ,  " SP i " :  CLOSE # 1 :  RETURN 

1 8 2 0  CLS 

2 1 2  

1 8 3 0  INPUT " INPUT VALUE O F  REDUCTION POTENTIAL I N  VOLTS " , E O 

1 8 4 0  PRINT 

1 8 5 0  INPUT " INPUT VALUE OF INITIAL POTENTIAL IN VOLTS " , INITE 

1 8 6 0  PRINT 

1 8 7 0  INPUT " INPUT VALUE OF SWITCHING POTENTIAL IN VOLTS " ,  

SWITCHE 

1 8 8 0  PRINT 

1 8 9 0  INPUT " INPUT SCAN RATE IN VOLTS/ SEC" , SCANRAT 

1 9 0 0  PRINT 

1 9 1 0  INPUT " INPUT NUMBER OF ELECTRONS TRANSFERRED" , N 

1 9 2 0  PRINT 

1 9 3 0  INPUT " INPUT AREA OF ELECTRODE , CM - 2 " , AREA 

1 9 4 0  PRINT 

1 9 5 0  INPUT " INPUT TEMPERATURE IN DEGREES C" , TEMP 

1 9 6 0  PRINT 

1 9 7 0  INPUT " CONCENTRATION OF PRECURSOR ( MOLAR ) " , CONC 

1 9 8 0  PRINT 

1 9 9 0  INPUT " DIFFUSION COEFFI CENT OF PRECURSOR ( CM - 2 / SEC ) " ,  

DI FFUSE 



2 0 0 0  PRINT 

2 0 1 0  INPUT " INPUT ALFA" , ALFA 

2 0 2 0  PRINT 

2 0 3 0  INPUT " INPUT HETEROGENEOUS RATE CONSTANT ( CM/SEC ) " ,  

HETKIN 

2 0 4 0  PRINT 

2 1 3  

2 0 5 0  INPUT " INPUT DATA RATE FOR SIMULATION ( SEC/PT ) " ,  RATE 

2 0 6 0  PRINT 

2 0 7 0  CLS 

2 0 8 0  REM INITIALI ZE SIMULATION VARIABLES 

2 0 9 0  F = 9 6 4 8 4 . 6  

2 1 0 0  R = 8 . 3 1 4 4 1  

2 1 1 0  SCANRAT = - SCANRAT 

2 1 2 0  I F  SWITCHE = 0 THEN 2 1 7 0  

' FARADAYS CONSTANT 

' GAS CONSTANT 

2 1 3 0  IF INITE / SWITCHE > 0 THEN 2 1 7 0  

2 1 4 0  TEMPE = SWI TCHE 

2 1 5 0  INITE = INITE 

2 1 6 0  SWITCHE = 0 

SWITCHE : EO = EO - SWITCHE 

2 1 7 0  IF INITE > SWITCHE THEN RO = 1 ELSE RO = - 1  

2 1 8 0  INITE = RO * INITE 

2 1 9 0  E O  = RO *EO 

2 2 0 0  SWITCHE = RO * SWITCHE 

2 2 1 0  TEMP = TEMP + 2 7 3  

2 2 2 0  FACTOR = N*F/ ( R*TEMP ) 

2 2 3 0  FACTOR1 = -ALFA* FACTOR 

2 2 4 0  FACTOR2 = ( l -ALFA ) *FACTOR 

2 2 5 0  M O  = 0 



2 2 6 0  C1  = 0 

2 2 7 0  KOUNT = 0 :  G = 0 

2 2 8 0  POINTS = 2 * ( SWITCHE- INITE ) / ( RATE*SCANRAT ) + 2 

2 2 9 0  V = SCANRAT*RATE 

2 3 0 0  D1 = . 4 5  

2 3 1 0  R2 = SQR ( DIFFUSE ) 

2 3 2 0  R3  = SQR ( D1 )  

2 3 3 0  FACTOR3 = HETKIN* SQR ( RATE ) /R2 

2 3 4 0  FACTOR4 = R 2 * CONC * 1 0 0 0 / ( R3 * SQR ( RATE ) ) 

2 3 5 0  FACTOR5 = 2 *D1 : INVFACT5 = 1 / FACTOR5 

2 3 6 0  FACTOR6 = RO *N*F*AREA 

2 3 7 0  REM SIMULATION ROUTINE 

2 3 8 0  FOR J = 0 TO 2 5 0  

2 3 9 0  X ( J )  = 1 

2 4 0 0  Y ( J )  = 0 

2 4 1 0  NEXT 

2 4 2 0  CLS : LOCATE 5 , 5 :  PRINT " * * * * * * * * * *  ACQUIRING DATA 

* * * * * * * * * * " . , 

2 4 3 0  LOCATE 7 , 5  

2 4 4 0  PRINT "NUMBER OF LOOPS REQUIRED TO COMPLETE 

SIMULATION : " ;  POINTS ; 

2 4 5 0  LOCATE 9 , 5  

2 4 6 0  PRINT " CURRENT LOOP NUMBER I S :  " . , 

2 4 7 0  KOUNT = KOUNT + 1 

2 4 8 0  LOCATE 9 , 3 3 :  PRINT KOUNT ; 

2 4 9 0  J1  = 6 *SQR ( D1 *KOUNT ) + 3 

2 5 0 0  FOR J=2 TO J1 

2 1 4  



2 5 1 0  X1 ( J )  = X ( J )  + D1* ( X ( J+1 ) 

2 5 2 0  Y1 ( J )  = Y ( J )  + D1* ( Y ( J+1 ) 

2 5 3 0  NEXT 

2 5 4 0  IF MO = 1 THEN 2 5 7 0  

2 5 5 0  E 3  = INITE + ( KOUNT - l ) *V 

2 5 6 0  GOTO 2 5 9 0  

2 5 7 0  G = G+1 

2 5 8 0  E3 = SWITCHE + G*V 

2 5 9 0  F1  = EXP ( FACTOR1 * ( E 3 EO ) )  

2 6 0 0  B1  = EXP ( FACTOR2 * ( E3 EO ) )  

2 6 1 0  R5 = F 1 / B 1  

2 6 2 0  B2  = FACTOR3 *B1 

2 * X ( J )  + X ( J- 1 ) ) 

2 *Y ( J )  + Y ( J - 1 ) ) 

2 6 3 0  B 3  = 1 / ( B2 *R3 ) + R5/ ( FACTOR5 ) + INVFACT5 

2 6 4 0  Z = ( R5 *X ( 1 ) -Y ( 1 ) ) / B3  

2 6 5 0  F3  = FACTOR4 * Z  

2 6 6 0  C1  = FACTOR6 *F3  

2 6 7 0  X1 ( 1 )  = X ( l )  + D 1 * ( X ( 2 ) -X ( 1 ) ) - Z 

2 6 8 0  Y1 ( 1 )  = Y ( l )  + D 1 * ( Y ( 2 ) -Y ( 1 ) ) + Z 

2 6 9 0  E ( KOUNT 1 )  = E3 *RO + TEMPE : I ( KOUNT - 1 )  = C1 

2 7 0 0  FOR J = 1 TO J1 

2 7 1 0  X ( J )  = X1 ( J )  

2 7 2 0  Y ( J )  = Y1 ( J )  

2 7 3 0  NEXT 

2 7 4 0  I F  MO = 1 THEN 2 7 8 0  

2 7 5 0  I F  KOUNT < POINTS / 2  THEN 2 4 7 0  

2 7 6 0  V = -V 

2 7 7 0  M O  = 1 

2 1 5  



2 7 8 0  IF  KOUNT > ( POINTS - 2 )  THEN 2 8 0 0  

2 7 9 0  GOTO 2 4 7 0  

2 1 6  

2 8 0 0  INITE = INITE*RO + TEMPE : SWITCHE = SWITCHE*RO + TEMPE : 

EO = EO *RO + TEMPE 

2 8 1 0  BEEP : CLS 

2 8 2 0  RETURN 

2 8 3 0  I DISK WRITE SUBROUTINE , SEQUENTIAL FILE 

2 8 4 0  CLS 

2 8 5 0  LOCATE 8 , 1  

2 8 6 0  INPUT " input f i le name , inc lude path if  required 

FILE$ 

2 8 7 0  OPEN FILE$ FOR OUTPUT AS # 1  

" 

2 8 8 0  WRITE # l , EO , INITE , SWITCHE , N , AREA , TEMP , CONC , DI FFUSE , 

ALFA , HETKIN , RATE , POINTS , KOUNT , RO , SCANRAT 

2 8 9 0  FOR J = 0 TO POINTS 

2 9 0 0  WRITE # 1 ,  E ( J ) , I ( J )  

2 9 1 0  NEXT J 

2 9 2 0  CLOSE # l  

2 9 3 0  RETURN 

2 9 4 0  I DISK READ SUBROUTINE , SEQUENTIAL FILE 

2 9 5 0  CLS 

2 9 6 0  LOCATE 4 , 2 0 

2 9 7 0  LOCATE 10 , 1  

2 9 8 0  INPUT " input f i le name , inc lude path if  required 

FILE$ 

2 9 9 0  OPEN FILE$ FOR INPUT AS · # 1  

" 

3 0 0 0  INPUT # 1 ,  EO , INITE , SWITCHE , N , AREA , TEMP , CONC , DIFFUSE , 



ALFA , HETKIN , RATE , POINTS , KOUNT , RO , SCANRAT 

3 0 1 0  FOR J = 0 TO POINTS 

3 0 2 0  INPUT # 1 ,  E ( J ) , I ( J )  

3 0 3 0  NEXT J 

3 0 4 0  CLOSE # 1  

3 0 5 0  RETURN 

3 0 6 0 ' WRITE TO SCREEN AND PRINTER SUBROUTINE 

3 0 7 0  CLS 

3 0 8 0  GOSUB 3 7 0  

3 0 9 0  SEPPEAK = ABS ( E ( MAXLOC ) - E ( MINLOC ) ) 

3 1 0 0  RESOLUTION = ABS ( SCANRAT*RATE ) 

3 1 1 0  LOCATE 1 , 3 5 

3 1 2 0  PRINT " cv SIMULATION" 

3 1 3 0  LOCATE 4 , 1  

3 1 4 0  PRINT TAB ( 1 0 )  " REDUCTION POTENTIAL ( VOLTS ) " ;  

3 1 5 0  PRINT TAB ( 5 9 )  USING " # # . # # # " ; EO 

3 1 6 0  PRINT TAB ( 1 0 )  " INITIAL POTENTIAL ( VOLTS ) " ;  

3 1 7 0  PRINT TAB ( 5 9 )  USING " # # . # # # " ; INITE 

3 1 8 0  PRINT TAB ( 1 0 )  " SWITCHING POTENTIAL ( VOLTS ) " ;  

3 1 9 0  PRINT TAB ( 5 9 )  USING " # # . # # # " ; SWITCHE 

3 2 0 0  PRINT TAB ( 1 0 )  " SCAN RATE ( VOLTS/ SEC ) " ;  

3 2 1 0  PRINT TAB ( 6 0 )  USING " # . # # # " ; ABS ( SCANRAT ) 

3 2 2 0  PRINT TAB ( 1 0 )  "NUMBER OF ELECTRONS " ;  

3 2 3 0  PRINT TAB ( 6 0 )  USING " # . # # # " ; N 

3 2 4 0  PRINT TAB ( 1 0 )  " ELECTRODE AREA ( CM - 2 ) " ;  

3 2 5 0  PRINT TAB ( 6 0 )  USING " # . # # # " ; AREA 

3 2 6 0  PRINT TAB ( 1 0 )  " TEMPERATURE ( DEG C ) " ;  

2 1 7  



2 1 8  

3 2 7 0  PRINT TAB ( 5 8 ) USING " # # # . # " ;  TEMP - 2 7 3  

3 2 8 0  PRINT TAB ( 1 0 )  " CONCENTRATION OF PRECURSOR ( CM- 2 / SEC ) " ;  

3 2 9 0  PRINT TAB ( 5 9 )  USING " # # . # # - - - - " ;  CONC 

3 3 0 0  PRINT TAB ( 1 0 )  " DIFFUS ION COEFFICIENT OF PRECURSUR 

( CM/SEC ) " ;  

3 3 1 0  PRINT TAB ( 5 9 )  USING " # # . # # - - - - " ;  DIFFUSE 

3 3 2 0 PRINT TAB ( 1 0 )  " ALFA" ; 

3 3 3 0  PRINT TAB ( 6 0 )  USING " # . # # # " ; ALFA 

3 3 4 0  PRINT TAB ( 1 0 )  "HETEROGENEOUS RATE CONSTANT" ;  

3 3 5 0  PRINT TAB ( 5 9 )  USING " # # . # # - - - - " ;  HETKIN 

3 3 6 0  PRINT TAB ( 1 0 )  "NUMBER OF POINTS USED IN SIMULATION" ; 

3 3 7 0  PRINT TAB ( 5 9 )  POINTS 

3 3 8 0  PRINT TAB ( 1 0 )  " SPACING BETWEEN POINTS ( mV ) " ;  

3 3 9 0  PRINT TAB ( 6 0 )  USING " # # . # " ;  RESOLUTION * 1 0 0 0  

3 4 0 0  PRINT TAB ( 1 0 )  " PEAK SEPARATION ( mV ) " ;  

3 4 1 0  PRINT TAB ( 5 9 )  USING " # # # . # # # " ; SEPPEAK * 1 0 0 0  

3 4 2 0  PRINT TAB ( 1 0 )  "MAXIMUM CATHODI C CURRENT ( MI CROAMPS ) " ;  

3 4 3 0  PRINT TAB ( 5 8 )  USING " # # # # . # " ;  MAX 

3 4 4 0  PRINT TAB ( 1 0 )  "MAXIMUM ANODIC CURRENT ( MI CROAMPS ) " ;  

3 4 5 0  PRINT TAB ( 5 8 )  USING " # # # # . # " ;  MIN 

3 4 6 0  PRINT TAB ( 1 0 ) " CATHODI C  PEAK POTENTIAL ( mV ) " ;  

3 4 7 0  PRINT TAB ( 5 8 ) USING " # # # # . # # # " ; E ( MAXLOC ) * 1 0 0 0  

3 4 8 0  PRINT TAB ( 1 0 )  " ANODIC PEAK POTENTIAL ( mV ) " ;  

3 4 9 0  PRINT TAB ( 5 8 )  USING " # # # # . # # # " ; E ( MINLOC ) * 1 0 0 0  

3 5 0 0  PRINT : PRINT " SEND TO PRINTER? ( Y/N ) " ;  

3 5 1 0  Z $  = INKEY$ : IF  Z $  = " "  THEN 3 5 10  

3 5 2 0  I F  Z $  = "N"  OR  Z $  = "n"  THEN 3 5 6 0  



3 5 3 0  I F  Z $  = " Y" OR Z $  = "y"  THEN 3 5 5 0  

3 5 4 0  GOTO 3 5 0 0  

3 5 5 0 GOSUB 3 5 7 0  

3 5 6 0  RETURN 

3 5 7 0  LPRINT : LPRINT 

3 5 8 0  LPRINT TAB ( 3 5 )  " cv SIMULATION" 

3 5 9 0  LPRINT 

3 6 0 0  LPRINT TAB ( l O )  " REDUCTION POTENTIAL ( VOLTS ) " ;  

3 6 1 0  LPRINT TAB ( 5 9 )  USING " U . # # # " ; EO 

3 6 2 0  LPRINT TAB ( 1 0 )  " INITIAL POTENTIAL ( VOLTS ) " ;  

3 6 3 0  LPRINT TAB ( 5 9 )  USING " U .  U # " ; INITE 

3 6 4 0  LPRINT TAB ( 1 0 )  " SWITCHING POTENTIAL ( VOLTS ) " ;  

3 6 5 0  LPRINT TAB ( 5 9 )  USING " # # . # U " ; SWITCHE 

3 6 6 0  LPRINT TAB ( 1 0 )  " SCAN RATE ( VOLTS/ SEC ) " ;  

3 6 7 0  LPRINT TAB ( 6 0 )  USING " # . U # " ; ABS ( SCANRAT ) 

3 6 8 0  LPRINT TAB ( 1 0 )  "NUMBER OF ELECTRONS " ;  

3 6 9 0  LPRINT TAB ( 6 0 )  USING " # . U # " ; N 

3 7 0 0  LPRINT TAB ( 1 0 )  " ELECTRODE AREA ( CM - 2 ) " ;  

3 7 1 0  LPRINT TAB ( 6 0 )  USING " # . # U " ; AREA 

3 7 2 0  LPRINT TAB ( l O )  "TEMPERATURE ( DEG C ) " ;  

3 7 3 0  LPRINT TAB ( 5 8 )  USING " U # . # " ;  TEMP - 2 7 3  

2 1 9  

3 7 4 0  LPRINT TAB ( 1 0 )  " CONCENTRATION O F  PRECURSOR ( CM - 2 / SEC ) " ;  

3 7 5 0  LPRINT TAB ( 5 9 )  USING " # # . # # - - - - " ;  CONC 

3 7 6 0  LPRINT TAB ( 1 0 )  " DI FFUSION COEFFICIENT OF PRECURSUR 

( CM/SEC ) " ;  

3 7 7 0  LPRINT TAB ( 5 9 )  USING " # # . U - - - - " ;  DIFFUSE 

3 7 8 0  LPRINT TAB ( 1 0 )  " ALFA" ; 



3 7 9 0  LPRINT TAB ( 6 0 )  USING " # . # # # " ; ALFA 

3 8 0 0  LPRINT TAB ( 1 0 )  " HETEROGENEOUS RATE CONSTANT" ; 

3 8 1 0  LPRINT TAB ( 5 9 )  USING " # # . # # - - - - " ;  HETKIN 

2 2 0  

3 8 2 0  LPRINT TAB ( 1 0 )  "NUMBER OF POINTS USED I N  SIMULATION" ; 

3 8 3 0  LPRINT TAB ( 5 9 )  POINTS 

3 8 4 0  LPRINT TAB ( 1 0 )  " SPACING BETWEEN POINTS ( mV ) " ; 

3 8 5 0  LPRINT TAB ( 6 0 )  USING " # # . # " ;  RESOLUTION * 1 0 0 0  

3 8 6 0  LPRINT TAB ( 1 0 )  " PEAK SEPARATION ( mV ) " ; 

3 8 7 0  LPRINT TAB ( 5 9 )  USING " # # # . # # # " ; SEPPEAK * 1 0 0 0  

3 8 8 0  LPRINT TAB ( 1 0 )  " MAXIMUM CATHODIC CURRENT ( MICROAMPS ) " ;  

3 8 9 0  LPRINT TAB ( 5 8 ) USING " # # # # . # " ;  MAX 

3 9 0 0  LPRINT TAB ( 1 0 )  " MAXIMUM ANODI C  CURRENT ( MI CROAMPS ) " ;  

3 9 1 0  LPRINT TAB ( 5 8 ) USING " # # # # . # " ;  MIN 

3 9 2 0  LPRINT TAB ( 1 0 )  " CATHODI C PEAK POTENTIAL ( mV ) " ; 

3 9 3 0 LPRINT TAB ( 5 8 ) USING " # # # # . # # # " ; E ( MAXLOC ) * 1 0 0 0  

3 9 4 0  LPRINT TAB ( 1 0 )  "ANODI C  PEAK POTENTIAL ( mV ) " ; 

3 9 5 0  LPRINT TAB ( 5 8 ) USING " # # # # . # # # " ; E ( MINLOC ) * 1 0 0 0  

3 9 6 0  RETURN 



2 2 1  

PROGRAM TITLE : CVADOX 

1 0  I THI S  I S  A CYCLI C  VOLTAMMETRI C SIMULATION PROGRAM FOR 

THE PROCESS OF : 0 + nE = R ,  WHERE 0 IS ADSORBED TO 

THE ELECTRODE . ADSORPTION I S  CONTROLLED BY A 

LANGMUIR I SOTHERM . THE ALGORITHM I S  FROM S .  W .  

FELDBERG , IN " COMPUTERS IN CHEMISTRY" . 

1 8 4 0  INPUT " INPUT VALUE OF REDUCTION POTENTIAL IN VOLTS" , EO 

1 8 5 0  INPUT " INPUT VALUE OF INITIAL POTENTIAL IN VOLTS " , INITE 

1 8 6 0  INPUT " INPUT VALUE OF SWITCHING POTENTIAL IN VOLTS " ,  

SWITCHE 

1 8 7 0  INPUT " I NPUT SCAN RATE IN VOLTS / SEC" , SCANRAT 

1 8 8 0  INPUT " INPUT NUMBER OF ELECTRONS TRANSFERRED" , N  

1 8 9 0  INPUT " I NPUT AREA OF ELECTRODE" , AREA 

1 9 0 0  INPUT " INPUT TEMPERATURE IN DEGREES C" , TEMP 

1 9 1 0  INPUT " CONCENTRATION OF PRECURSOR ( MOLAR ) " , CONC 

1 9 2 0  INPUT " DI FFUSION COEFFI CENT OF PRECURSOR ( CM - 2 / SEC ) " ,  

DIFFUSE 

1 9 3 0  INPUT " INPUT ALFA" , ALFA 

1 9 4 0  INPUT " INPUT HETEROGENEOUS RATE CONSTANT ( CM/SEC ) " ,  

HETKIN 

1 9 5 0  INPUT " INPUT DATA RATE FOR SIMULATION ( SEC/PT ) " , RATE 

1 9 6 0  INPUT " INPUT OX ADSORPTION EQUI LIBRIUM CONSTANT " , EOX 

1 9 7 0  INPUT " INPUT RED ADSORPTION EQUILIBRIUM CONSTANT" , ERED 

1 9 8 0  INPUT " INPUT ADSORBED ELECTRON TRANSFER RATE CONSTANT" ,  

HETKINA 

1 9 9 0  INPUT " INPUT MAX SURFACE COVERAGE ( MOLE/CM - 2 ) " , MAX 

2 0 0 0  CLS 



2 0 1 0  REM INITIALIZ E  SIMULATION VARIABLES 

2 0 2 0  F = 9 6 4 8 4 . 6  ' FARADAYS CONSTANT 

2 0 3 0  R = 8 . 3 1 4 4 1  ' GAS CONSTANT 

2 0 4 0  SCANRAT = - SCANRAT 

2 0 5 0  I F  SWITCHE = 0 THEN 2 1 0 0  

2 0 6 0  IF  INITE / SWITCHE > 0 THEN 2 1 0 0  

2 0 7 0  TEMPE = SWITCHE 

2 0 8 0  INITE = INITE - SWITCHE : EO = EO - SWITCHE 

2 0 9 0  SWITCHE = 0 

2 1 0 0  I F  INITE > SWITCHE THEN RO = 1 ELSE RO = - 1  

2 1 1 0  INITE = RO * INITE 

2 1 2 0  E O  = RO *EO  

2 1 3 0  SWITCHE = RO * SWITCHE 

2 1 4 0  TEMP = TEMP + 2 7 3  

2 1 5 0  D1  = . 4 5 

2 1 6 0  R2 = SQR ( DIFFUSE ) 

2 1 7 0  R3 = SQR ( D1 )  

2 1 8 0  FOR J = 0 TO 2 5 0  

2 1 9 0  X ( J )  = 1 

2 2 0 0  Y ( J )  = 0 

2 2 1 0  NEXT 

2 2 2 0  EOX = EOX* CONC / 1 0 0 0  

2 2 3 0  ERED = ERED* CONC / 1 0 0 0  

2 2 4 0  TMAX = TMAX * 1 0 0 0 / ( SQR ( R*TEMP *DI FFUSE/ 

( F *ABS ( SCANRAT ) ) ) * CONC ) 

2 2 5 0  ADSORBX = TMAX*EOX*X ( l ) / ( l+EOX*X ( l ) ) 

2 2 6 0  FACTOR = N*F/ ( R*TEMP ) 

2 2 2  



2 2 7 0  FACTOR1 = -ALFA* FACTOR 

2 2 8 0  FACTOR2 = TMAX * ( EOX � ( l -ALFA ) ) * ( ERED � ALFA ) * HETKINA 

2 2 9 0  FACTOR4 = R2 * CONC * 1 0 0 0 ! ( R3 * SQR ( RATE ) ) 

2 3 0 0  FACTORS = 2 *D1  

2 3 1 0  FACTOR6 = RO *N*F*AREA 

2 3 2 0  M O  = 0 :  C1  = 0 :  KOUNT = 0 :  G = 0 

2 3 3 0  POINTS = 2 * ( SWITCHE- INITE ) ! ( RATE* SCANRAT ) + 2 

2 3 4 0  V = SCANRAT*RATE 

2 3 5 0  CLS : LOCATE 5 , 5 :  PRINT " * * * * * * * * * *  ACQUIRING DATA 

* * * * * * * * * * " . , 

2 3 6 0  LOCATE 7 , 5  

2 3 7 0  PRINT "NUMBER OF LOOPS REQUIRED TO COMPLETE 

SIMULATION : " i POINTS i 

2 3 8 0  LOCATE 9 , 5  

2 3 9 0  PRINT " CURRENT LOOP NUMBER I S : " . , 

2 4 0 0  KOUNT = KOUNT + 1 

2 4 1 0  LOCATE 9 , 3 3 :  PRINT KOUNT i 

2 4 2 0  J1  = 6 * SQR ( D1 * KOUNT ) + 3 

2 4 3 0  FOR J=2 TO J1 

2 4 4 0  X1 ( J )  = X ( J )  + D1* ( X ( J+ 1 ) - 2 * X ( J )  

2 4 5 0  Y1 ( J )  = Y ( J )  + D 1 * ( Y ( J+l ) - 2 *Y ( J )  

2 4 6 0  NEXT 

2 4 7 0  THETA = ADSORBX!TMAX 

2 4 8 0  I F  MO=l THEN 2 5 10  

2 4 9 0  E3 = INITE + ( KOUNT-1 ) *v 

2 5 0 0  GOTO 2 5 3 0  

2 5 1 0  G = G+1 

+ X ( J- l ) ) 

+ Y ( J- l ) )  

2 2 3  



2 5 2 0  E 3  = SWITCHE+G*V 

2 5 3 0  F1 = ( 1 -THETA ) * ( HETKIN+FACTOR2 ) * EXP ( FACTOR1 * ( E 3 - EO ) ) 

2 5 4 0  B 1  = F 1 * EXP ( FACTOR* ( E3 - EO ) ) 

2 5 5 0  FAMAX = FACTOR5*X ( 1 )  

2 5 6 0  FAMIN = -FACTOR5 * Y ( 1 ) -ADSORBX 

2 5 7 0  Z = ( FAMAX+FAMIN ) / 2 

2 5 8 0  DADSORBX = ( Z * ( 1+F1 /FACTOR5+B 1 /FACTOR5 ) 

+B 1 *Y ( 1 ) - F 1 *X ( 1 ) ) / ( 1+B 1 / FACTOR5 ) 

2 5 9 0  IF  ( ADSORBX+DADSORBX ) < O THEN FAMIN = Z : GOTO 2 5 7 0  

2 6 0 0  IF  ( ADSORBX+DADSORBX » TMAX THEN FAMAX = Z : GOTO 2 5 7 0  

2 6 1 0  FCHECK = ( ADSORBX+DADSORBX ) / ( EOX* ( X ( 1 ) - Z / FACTOR5 ) 

* ( TMAX-ADSORBX-DADSORBX ) )  

2 6 2 0  IF  FCHECK< . 9 9 9 9  THEN FAMIN=Z : GO TO 2 5 7 0  

2 6 3 0  IF  FCHECK> 1 . 0 0 0 1  THEN FAMAX=Z : GOTO 2 5 7 0  

2 6 4 0  ADSORBX = ADSORBX+DADSORBX 

2 6 5 0  Z B  = DADSORBX- Z :  ZF = Z -DADSORBX 

2 6 6 0  X1 ( 1 )  = X (  1 )  + D1 * ( X ( 2 ) -X ( 1 ) ) - Z 

2 6 7 0  Y 1 ( 1 )  = Y (  1 )  + D 1 * ( Y ( 2 ) -Y ( 1 ) ) - ZB 

2 6 8 0  C 1  = FACTOR4 *FACTOR6 * ZF 

2 6 9 0  E ( KOUNT - 1 )  = E3 *RO + TEMPE : I ( KOUNT -

2 7 0 0  FOR J = 1 TO J1  

2 7 1 0  X ( J )  = X1 ( J )  

2 7 2 0  Y ( J )  = Y1 ( J )  

2 7 3 0  NEXT 

2 7 4 0  I F  MO = 1 THEN 2 7 8 0  

2 7 5 0  I F  KOUNT < POINTS / 2  THEN 2 4 0 0  

2 7 6 0  V = -V 

1 )  = C1  

224  



2 7 7 0  MO = 1 

2 7 8 0  I F  KOUNT > ( POINTS - 2 )  THEN 2 8 0 0  

2 7 9 0  GOTO 2 4 0 0  

2 2 5  

2 8 0 0  INITE = INITE*RO + TEMPE : SWITCHE = SWITCHE*RO + TEMPE : 

E O  = EO *RO + TEMPE 

2 8 1 0  BEEP : CLS 

2 8 1 2  EOX = EOX* 1 0 0 0 / CONC 

2 8 1 4  ERED = ERED* 1 0 0 0 / CONC 

2 8 2 0  RETURN 



2 2 6  

PROGRAM TITLE : CVADRED 

1 0 ' THI S  I S  A CYCLI C VOLTAMMETRI C SIMULATION PROGRAM FOR 
THE PROCESS OF : 0 + nE = R ,  WHERE R IS ADSORBED TO 

THE ELECTRODE . ADSORPTION IS CONTROLLED BY A 

LANGMUIR I SOTHERM . THE ALGORITHM I S  FROM S .  W .  

FELDBERG , IN " COMPUTERS IN CHEMISTRY" . 

1 8 4 0  INPUT " INPUT VALUE OF REDUCTION POTENTIAL IN VOLTS" , EO 

1 8 5 0  INPUT " I NPUT VALUE OF INITIAL POTENTIAL IN VOLTS" , INITE 

1 8 6 0  INPUT " INPUT VALUE OF SWITCHING POTENTIAL IN VOLTS" ,  

SWITCHE 

1 8 7 0  INPUT " INPUT SCAN RATE IN VOLTS / SEC" , SCANRAT 

1 8 8 0  INPUT " INPUT NUMBER OF ELECTRONS TRANSFERRED" , N 

1 8 9 0  INPUT " INPUT AREA OF ELECTRODE" , AREA 

1 9 0 0  INPUT " INPUT TEMPERATURE IN DEGREES C" , TEMP 

1 9 1 0  INPUT " CONCENTRATION OF PRECURSOR ( MOLAR ) " , CONC 

1 9 2 0  INPUT "DIFFUSION COEFFI CENT OF PRECURSOR ( CM � 2 / SEC ) " ,  

DIFFUSE 

1 9 3 0  INPUT " INPUT ALFA" , ALFA 

1 9 4 0  INPUT " INPUT HETEROGENEOUS RATE CONSTANT ( CM/SEC ) " ,  

HETKIN 

1 9 5 0  INPUT " INPUT DATA RATE FOR SIMULATION ( SEC/PT ) " , RATE 

1 9 6 0  INPUT " INPUT OX ADSORPTION EQUILI BRIUM CONSTANT" , EOX 

1 9 7 0  INPUT " INPUT RED ADSORPTION EQUILIBRIUM CONSTANT" , ERED 

1 9 8 0  INPUT " INPUT ADSORBED ELECTRON TRANSFER RATE CONSTANT" ,  

HETKINA 

1 9 9 0  INPUT " INPUT MAX SURFACE COVERAGE ( MOLE/CM � 2 ) " , MAX 

2 0 0 0  CLS 



2 0 1 0  REM INITIALI ZE SIMULATION VARIABLES 

2 0 2 0  F = 9 6 4 8 4 . 6  ' FARADAYS CONSTANT 

2 0 3 0  R = 8 . 3 1 4 4 1  ' GAS CONSTANT 

2 0 4 0  SCANRAT = - SCANRAT 

2 0 5 0  IF SWITCHE = 0 THEN 2 1 0 0  

2 0 6 0  I F  INITE / SWITCHE > 0 THEN 2 1 0 0  

2 0 7 0  TEMPE = SWITCHE 

2 0 8 0  INITE = INITE - SWITCHE : EO = EO - SWITCHE 

2 0 9 0  SWITCHE = 0 

2 1 0 0  IF  INITE > SWITCHE THEN RO = 1 ELSE RO = -1  

2 1 1 0  INITE = RO * INITE 

2 1 2 0  E O  = RO *EO  

2 1 3 0  SWITCHE = RO * SWITCHE 

2 1 4 0  TEMP = TEMP + 2 7 3  

2 1 5 0  D1 = . 4 5 

2 1 6 0  R2 = SQR ( DIFFUSE ) 

2 1 7 0  R3  = SQR ( D1 )  

2 1 8 0  FOR J = 0 TO 2 5 0  

2 1 9 0  X ( J )  = 1 

2 2 0 0  Y ( J )  = 0 

2 2 1 0  NEXT 

2 2 2 0  EOX = EOX*CONC / 1 0 0 0  

2 2 3 0  ERED = ERED* CONC / 1 0 0 0  

2 2 4 0  TMAX = TMAX* 1 0 0 0 / ( SQR ( R*TEMP *DIFFUSE/ 

( F* ABS ( SCANRAT ) ) ) * CONC ) 

2 2 5 0  FACTOR = N*F/ ( R*TEMP ) 

2 2 6 0  FACTOR1 = -ALFA*FACTOR 

2 2 7  



2 2 7 0  FACTOR2 = TMAX* ( EOX - ( l-ALFA ) ) * ( ERED- ALFA ) *HETKINA 

2 2 8 0  FACTOR4 = R 2 * CONC* 1 0 0 0 / ( R3 * SQR ( RATE ) ) 

2 2 9 0  FACTORS = 2* D1 

2 3 0 0  FACTOR6 = RO *N*F*AREA 

2 3 1 0  MO = 0 :  C 1  = 0 :  KOUNT = 0 :  G = 0 

2 3 2 0  POINTS = 2 * ( SWITCHE -INITE ) / ( RATE* SCANRAT ) + 2 

2 3 3 0  V = SCANRAT*RATE 

2 3 4 0  CLS : LOCATE 5 , 5 :  PRINT " * * * * * * * * * *  ACQUIRING DATA 

* * * * * * * * * * " . , 

2 3 5 0 LOCATE 7 , 5  

2 3 6 0  PRINT " NUMBER OF LOOPS REQUIRED TO COMPLETE 

SIMULATION : " ; POINTS ; 

2 3 7 0  LOCATE 9 , 5  

2 3 8 0  PRINT " CURRENT LOOP NUMBER I S : " . , 

2 3 9 0  KOUNT = KOUNT + 1 

2 4 0 0  LOCATE 9 , 3 3 :  PRINT KOUNT ; 

2 4 1 0  J 1  = 6 *SQR ( D 1 * KOUNT ) +3 

2 4 2 0  FOR J=2 TO J1  

2 4 3 0  X1 ( J )  = X ( J )  + D 1 * ( X ( J+1 ) - 2 *X ( J )  

2 4 4 0  Y1 ( J )  = Y ( J )  + D 1 * ( Y ( J+1 ) - 2 *Y ( J )  

2 4 5 0  NEXT 

2 4 6 0  THETA = ADSORBY/TMAX 

2 4 7 0  I F  MO=l THEN 2 5 0 0  

2 4 8 0  E 3  = INITE + ( KOUNT- 1 ) *V 

2 4 9 0  GOTO 2 5 2 0  

2 5 0 0  G = G+1 

2 5 1 0  E3  = SWITCHE+G*V 

+ X ( J- 1 ) ) 

+ Y ( J - 1 ) ) 

2 2 8  



2 5 2 0  F1 = ( 1 -THETA ) * ( HETKIN+FACTOR2 ) * EXP ( FACTOR1* ( E3 - EO ) )  

2 5 3 0  B1  = F 1 * EXP ( FACTOR* ( E3 - EO ) )  

2 5 4 0  FAMAX = FACTOR5 *Y ( 1 )  

2 5 5 0  FAMIN = - FACTOR5*X ( 1 ) -ADSORBY 

2 5 6 0  Z = ( FAMAX+FAMIN ) / 2 

2 5 7 0  DADSORBY = ( Z * ( 1+F 1 / FACTOR5+B 1 / FACTOR5 ) 

-B1*Y ( 1 ) +F 1 * X ( 1 ) ) / ( 1+F1 /FACTOR5 ) 

2 5 8 0  I F  ( ADSORBY+DADSORBY ) < O THEN FAMIN = Z : GOTO 2 5 6 0  

2 5 9 0  I F  ( ADSORBY+DADSORBY » TMAX THEN FAMAX = Z : GOTO 2 5 6 0  

2 6 0 0  FCHECK = ( ADSORBY+DADSORBY ) / ( ERED* ( Y ( l )  

- Z /FACTOR5 ) * ( TMAX-ADSORBY-DADSORBY ) )  

2 6 1 0  IF  FCHECK< . 9 9 9 9  THEN FAMIN=Z : GOTO 2 5 6 0  

2 6 2 0  IF  FCHECK> 1 . 0 0 0 1  THEN FAMAX=Z :  GOTO 2 5 6 0  

2 6 3 0  ADSORBY = ADSORBY+DADSORBY 

2 6 4 0  ZF = DADSORBY- Z 

2 6 5 0  X1 ( 1 )  = X ( l )  + D 1 * ( X ( 2 ) -X ( 1 ) ) - ZF 

2 6 6 0  Y1 ( 1 )  = Y ( l )  + D1 * ( Y ( 2 ) -Y ( 1 ) ) - Z 

2 6 7 0  C 1  = FACTOR4 *FACTOR6 * ZF 

2 6 8 0  E ( KOUNT 1 )  = E 3 *RO + TEMPE : I ( KOUNT - 1 )  = C1  

2 6 9 0  FOR J = 1 TO J1 

2 7 0 0  X ( J )  = X1 ( J )  

2 7 1 0  Y ( J )  = Y1 ( J )  

2 7 2 0  NEXT 

2 7 3 0  IF  MO = 1 THEN 2 7 7 0  

2 7 4 0  I F  KOUNT < POINTS / 2  THEN 2 3 9 0  

2 7 5 0  V = -V 

2 7 6 0  MO = 1 

2 2 9  



2 7 7 0  IF  KOUNT > ( POINTS - 2 )  THEN 2 7 9 0  

2 7 8 0  GOTO 2 3 9 0  

2 3 0  

2 7 9 0  INITE = INITE*RO + TEMPE : SWITCHE = SWITCHE*RO + TEMPE : 

EO  = EO *RO + TEMPE 

2 8 0 0  BEEP : CLS 

2 8 0 2  EOX = EOX* 1 0 0 0 / CONC 

2 8 0 4  ERED = ERED * 1 0 0 0 / CONC 

2 8 1 0  RETURN 
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