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Alcohol use (AU) and alcohol use disorder (AUD) are leading causes of morbidity, premature 

death, and economic burden. They are also associated with high levels of disability and many 

other negative outcomes. Twin and family studies have consistently shown that AU and AUD 

are complex traits influenced by both genetic and environmental factors. Although much has 

been learned about the genetic and environmental etiology of AU and AUD, significant gaps 

remain. These include the need for a more comprehensive understanding of the roles of risk and 

protective factors, and the nature of developmental trajectories underpinning the progression 

from AU to AUD. The aims of this dissertation are: (1) to examine the roles of resilience and 

personality disorders in the etiology of AU and AUD; (2) to investigate the nature of longitudinal 
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changes in genetic and environmental risk factors responsible for individual differences in AU; 

and (3) to determine the moderating roles of key environmental risk factors on the impact of 

aggregate molecular, or polygenic, risk for AU during adolescence. Using both biometrical 

behavioral genetic and molecular genetic methodologies, five key findings were observed: (1) 

Resilience is strongly associated with a reduction in risk for AUD, and this relationship appears 

to be the result of overlapping genetic and shared environmental influences; (2) Borderline and 

antisocial personality disorders are the strongest and most stable personality pathology predictors 

of the phenotypic and genotypic liability to AU and AUD across time; (3) Genetic influences on 

the development of AUD from early adulthood to mid-adulthood are dynamic, whereby two sets 

of genetic risk factors contribute to AUD risk; (4) The specific genetic influences on AU follow 

an unfolding pattern of growth over time, whereas unique environmental risk factors are 

consistent with an accumulation of environmental impacts and risks across time; and (5) High 

peer group deviance and low parental monitoring are associated with increased AU, while early 

parental monitoring moderates the polygenic risk for AU at age 20. The implications of these 

results with regard to prevention and intervention efforts are discussed.         
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Chapter 1: Global Introduction 
 

Introduction 
 

Alcohol use (AU) and alcohol use disorder (AUD) are leading causes of morbidity and 

premature death1,2. Excessive or chronic AU and AUD are a significant economic burden, 

costing the United States as much as $250 billion annually3,4, and are associated with high levels 

of disability5. They are personally costly and associated with a plethora of negative 

consequences, such as greater interpersonal conflict6-8, higher risk of injury6-8, motor vehicle 

accidents6-8, domestic violence9, and neurocognitive impairment10.  

As defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM-511), 

AUD is characterized by “a problematic pattern of alcohol use leading to clinically significant 

impairment or distress.” In a previous edition, the DSM-IV-TR12, AUD was classified into 

alcohol abuse (failing to fulfill role obligations, using in dangerous situations, legal problems, 

social/interpersonal problems) and alcohol dependence (a physical dependence, hallmarked by 

tolerance and withdrawal). However, the DSM-5 no longer maintains this distinction, and instead 

classifies AUD into levels of severity from mild, to moderate, to severe. Irrespective of these 

changes in classification, AUD is very common in the US. The lifetime prevalences of DSM-IV-

TR alcohol abuse and dependence were estimated to be 17.8% and 12.5% respectively. Estimates 

based on the DSM-5 AUD reveal a lifetime prevalence of 29.1%13 in the U.S.  

AU is prevalent among U.S. adolescents with initiation typically occurring by age 1814. 

Over 70% of high school students in the US report having consumed at least one alcoholic 

beverage15, 52.7% of high school seniors report using alcohol in the past 30 days, and 34% 

report drinking to intoxication16. Very early initiation (i.e., before age 14) is associated with 

significant alcohol-related problems17-22. For every year that alcohol initiation is delayed, there is 
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a 5-9% decrease in the risk of alcohol misuse23. Therefore, a comprehensive understanding of the 

etiology of AU within a developmental framework is critical, along with the need to explore and 

identify the behaviors and environmental risk factor that mitigate the risk of progression from 

AU to AUD. 

Among the putative protective factors against AU and AUD is the behavioral trait of 

resilience. Resilience is defined as an “individual’s ability to thrive despite adversity”24-27, and 

has been shown to attenuate risk for AU problems among adult populations25,28,29. To our 

knowledge, resilience has not been examined as a protective trait against AU/AUD among 

adolescent populations or samples. This is somewhat surprising, given the large body of 

literature on resilience in general30-32.      

In terms of the risk factors linked to increased AU and risk for progression to AUD, 

personality disorders (PDs) are known to be significantly associated with AU/AUD among 

adults. In particular, antisocial33-35 and borderline35-38 PDs have been consistently and strongly 

associated with AU/AUD. In fact, antisocial has been shown to increase risk by as much as 

eight-fold33. Antisocial PD describes individuals with “a pervasive pattern of disregard for and 

violation of the rights of others,” while borderline PD describes individuals with “a pervasive 

pattern of instability of interpersonal relationships, self-image, and affect11.” A defining feature 

of both PDs is impulsivity.  

AU and AUD are complex traits influenced by both genetic and environmental factors39-

41. Genetic risk factors have consistently been shown to account for 50% - 60% of the variance, 

leaving 50 to 40% of the remaining variance accounted for in terms of random, non-shared 

aspects of the environment41 including measurement error. The most salient and well-replicated 

environmental risk factors include parental monitoring (PM) (or lack of) and peer group 
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deviance (PGD)20,21,42-46. PM refers to parents’ knowledge of their children’s whereabouts, 

friends, and activities, including sources of parents’ knowledge, such as child disclosure, parental 

solicitation, and parental control47. PGD describes the extent to which one’s peer group engages 

in deviant behaviors, such as substance use and antisocial behavior. Both of these environmental 

risk factors have been shown to moderate the genetic risks in adolescent AU and AUD, whereby 

genetic influences for AU are stronger under conditions of low PM and high PGD48-51. These 

findings are consistent with genetic control of the sensitivity to the environment, whereby the 

risk for AU and progression to AUD is highest when permissive environments (e.g., low PM) 

provide the opportunity for individual differences to be increasingly explained by variance 

attributable to genetic risk factors52,53. Further, results of genetically informative, developmental 

studies suggest that genetic influences increase over time whereas the influence due to shared 

environmental factors decreases. Again, this pattern may be attributable to a relaxing or 

reduction in environmental constraints51,54-56, as individuals mature and move away from 

environments with levels of high cultural constraint and conformity (e.g., the parental home) to 

environments with greater independence and freedom.  

Historically, molecular genetic studies of AU and AUD focused on detecting single loci 

(either single nucleotide polymorphism (SNP) or single gene contributions such as in candidate 

gene studies)57. Apart from inadequate coverage, the limitations associated with candidate gene 

studies include insufficient power to detect true effects, lack of replication, biases resulting from 

specifying a specific gene a priori (which arises from reliance on prior knowledge about 

plausible genes that may not be sufficient, given our limited knowledge about the genes involved 

in complex traits)57,58, and the consensus that behaviors such as AU and AUD are highly 

polygenic. Whereas candidate gene studies examine the association between one gene or one 
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SNP with a disorder, more recent genome-wide association studies (GWAS) examine the 

association between commonly tagged SNPs genome-wide with a particular disorder or 

disorders. Because GWAS is essentially hypothesis-free, conservative p-value corrections are 

required to adjust for multiple testing. However, despite the recognized need for extremely large 

and costly sample sizes, GWAS have already identified variants associated with increased risk of 

AU and AUD58-63. The most consistently replicated genes related to AU and AUD phenotypes 

involve alcohol metabolism, such as ADH1B60, ADH1C59,60, ADH761, and ALDH261,62. These 

variants are found in genes coding for alcohol dehydrogenase (ADH cluster) and aldehyde 

dehydrogenase (ALDH cluster), which are enzymes that help to metabolize alcohol58. Some of 

these variants make it difficult for certain individuals to properly metabolize alcohol, resulting in 

unpleasant side effects, such as facial flushing and nausea, leading to decreased AU64. Other 

variants associated with AU and AUD reside within neurotransmitter systems63,65-67. Although 

evidence for these findings is mixed68, these additional systems include serotonin synthesis 

(TPH2, DDC)63,65, dopamine (ANKK1, DRD2)66, and gamma-aminobutyric acid, or GABA 

(GABRA2)67.  

Despite these advances, the success of AU and AUD GWAS remains limited, with 

variants explaining only a small amount of the total phenotypic variance58,69 (<2%70). Indeed, 

across complex psychiatric and behavioral genetics, attempts to isolate DNA polymorphisms 

associated with substance use disorders in general have had limited success. The primary cause 

is due to the large effect sizes required to overcome the statistical burden of GWAS. Although 

few genetic variants reach genome-wide significance in a typical GWAS, the upper tail of the 

distribution of GWA tests nevertheless likely contain meaningful information58,71. Consequently, 

approaches to predicting AU and AUD based on composite indices of genetic risk across many 



	

	5 

loci (i.e., polygenic risk scores), especially when based on very large meta-analyses of all extant 

GWAS, are likely to have much greater success. Although this method at present typically 

explains between 1-3% of the variance72,73, the approach has been successful in showing that 

polygenic risk scores do indeed predict AUD in independent samples59,72-75.  

Although polygenic risk scores have rarely been used in gene-by-environment (GxE) 

analyses to predict AU/AUD, there is at least one study that used this method and showed that 

polygenic risk predicted alcohol problems under conditions of low parental knowledge and high 

peer group deviance76. Classic GxE studies have historically used candidate genes in these 

analyses. However, this approach suffers from the same limitations posed by candidate gene 

studies, such as insufficient power to detect true effects and lack of consistent replication57,58,77. 

Thus, moving forward, it is likely that GxE studies will increasingly rely on polygenic risk, 

rather than single genes.    

The broad aims of this dissertation will address significant gaps in the AU/AUD literature 

by: (1) examining the roles resilience and personality disorders play in the etiology of AU and 

AUD; (2) investigating the nature of longitudinal changes in the contributions of genetic and 

environmental risk factors in AU; and (3) determining the moderating roles of key environmental 

risk factors on the impact of polygenic risk for AU across adolescence. These three aims and the 

approaches required are summarized below. 

The roles of resilience and personality disorders in the etiology of AU and AUD 

 To date, the few studies examining the extent to which resilience attenuates AUD have 

relied on older veteran adult samples25,28 or samples of adults exposed to childhood abuse29. 

Importantly, only one study has examined the genetic and environmental sources of covariation78 

between resilience and AUD. Thus, the magnitude of the phenotypic relationship between AUD 
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and resilience, and the etiology of the covariance or overlap remain unclear, particularly among 

population-based samples. 

Accordingly, the aim of Chapter 2 is to examine the strength of the relationship between 

resilience and AUD, and investigate the etiology of any covariance, using a large, population-

based sample. The most commonly used multivariate technique to investigate etiological 

covariance is the Cholesky decomposition79. As shown in Figure 1.1, the Cholesky is a method 

of triangular decomposition where the first variable (y1) is assumed to be caused by a latent 

factor that can explain the variance in the remaining variables (y2…yn).  The second variable 

(y2) is assumed to be caused by a second latent factor that can explain variance in the second as 

well as remaining variables. In this way, the second latent variable is restrained from explaining 

variance in the first observed variable. A Cholesky decomposition is specified for each latent 

source of variance (A, C, or E).  One of the most common uses of this method is to determine the 

extent to which genetic and environmental influences are shared between two or more traits 

versus influences that are trait specific79. This method will be used throughout several chapters in 

this dissertation. 

 

Figure 1.1. Cholesky decomposition 

Regarding the second part of the first aim, most previous studies examining the links 

between personality disorders (PDs) and AU/AUD have invariably focused on a single PD80-82. 

Accordingly, it remains unclear which PD or PDs, when jointly analyzed, offer the best 
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phenotypic and genotypic prediction of AU or AUD. Chapter 3 will address this gap by 

examining the relationships between PDs and AU/AUD. Specifically, the aims of Chapter 3 are 

to: (1) identify which personality disorders provide the strongest phenotypic prediction of the 

liabilities to AU and AUD within a multivariate framework, (2) investigate the degree to which 

the significant relationships are due to common genetic or common environmental influences 

using Cholesky decomposition, and (3) determine if these associations are stable over time. 

Importantly, Chapters 2 and 3, which address Aim 1, both utilized large, population-

based samples. Thus, these chapters will identify significant protective and risk factors with a 

high level of precision, and increase our understanding of the genetic and environmental etiology 

shared between these behaviors and outcomes. This knowledge can collectively help to inform 

prevention and intervention efforts by focusing them towards fostering resilience and decreasing 

or avoiding early risk factors linked to personality disorders that are found to be significantly 

associated with increased AU.            

Longitudinal changes in the contributions of genetic and environmental risk factors in AU 

and AUD 

 There is limited, conflicting research examining the question of whether genetic and 

environmental risk factors contributing to AUD are stable or dynamic over time56,83. Critically, 

many previous studies investigating the longitudinal changes in AU have not tested competing 

models with different developmental hypotheses51,55,56,84. Therefore, the precise nature of how 

these underlying mechanisms change over time remains unclear. Chapters 4 and 5 address these 

gaps as part of Aim 2, which is to investigate the nature of longitudinal changes in the 

contributions of genetic and environmental risk factors in AU/AUD.  
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Chapter 4 will investigate whether genetic influences are attributable to a single genetic 

factor or multiple factors that are qualitatively distinct. Chapter 5 will extend these analyses to 

investigate specifically how the genetic and environmental mechanisms influencing AU from 

adolescence through young adulthood change over time by testing competing developmental 

hypotheses. Taken together, these two chapters will improve our understanding of how genetic 

and environmental risk factors change over time to influence AU and AUD. This understanding 

can narrow the time frames where genetic influences are most important, leading to a more 

defined period of time during which prevention and intervention efforts may be most beneficial. 

The moderating role of key environmental risk factors on the impact of polygenic risk 

across adolescence 

 To date, previous studies investigating the moderating effect of key environmental risk 

factors (PM and PGD) on genetic risk have mostly been limited to studies relying on latent 

genetic risk factors48-51 inferred from twin and family data, instead of actual measured genotypes. 

There has only been one study to date that has relied on aggregate estimates of polygenic risk 

and analyzed their interaction with PM and PGD to predict AU/AUD 76. Chapter 6 addresses this 

gap and the final aim of this dissertation by examining whether PM and PGD can moderate the 

impact of polygenic risk for AU through adolescence.  

More specifically, the analyses outlined in Chapter 6 involve the creation of polygenic 

risk scores using data from a large sample of Australian twins, and testing genes-by-environment 

interactions between these polygenic risk scores and the environmental factors. Therefore, 

Chapter 6 will improve our understanding how polygenic risk and environmental factors interact 

to influence risk for adolescent AU across time, which can help determine whether focusing 
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efforts on increasing parental monitoring and decreasing peer group deviance during vulnerable 

adolescent time periods will be beneficial, or if the polygenic risk during this time is stronger.  

 

 Overall, this dissertation will examine risk/protective factors for the development of 

AU/AUD and the developmental trajectories of AU/AUD using both biometrical genetic and 

molecular genetic methodologies. The results will fill critical gaps in the AU/AUD literature, and 

will inform prevention and intervention efforts. This knowledge will be particularly useful to 

clinicians and scientists working within the prevention field, and will also provide a catalyst for 

future behavioral genetic research within the AU/AUD field.  

   

 

 

 



	

	10 

Chapter 2: Resilience and risk for alcohol use disorders: A Swedish twin study1 
 

Introduction 
 

 This chapter addresses the first aim of this dissertation by examining the strength of the 

relationship between resilience and AUD and investigating the degree to which this relationship 

is due to common genetic or common environmental influences. Because there is very little 

currently understood about these sources of covariation, this chapter will help to fill an important 

gap in the literature.  

Resilience is defined as an “individual’s ability to thrive despite adversity”1-4. It has been 

shown to attenuate risk for AU problems among veterans2,5,6 and adults with a history of child 

abuse6. Twin and family studies have revealed that resilience and AUD are each influenced by 

genetic and environmental factors. For instance, the heritability of AUD has been consistently 

estimated to be approximately 50%7,8. Among the three studies that have investigated the 

heritability of resilience, each has operationalized resilience differently (e.g., difference between 

predicted and actual internalizing symptom score, positive affect despite chronic exposure to 

stress, and difference between actual score and score predicted by level of socioeconomic 

deprivation) and outcomes (stressful life events, cognitive and behavioral functioning). 

Consequently, the range of heritability is broad, spanning 31% to 71% (with N’s ranging from 

527 to 7,500 twins)9-11. We are aware of only one study to date that has examined the genetic and 

environmental sources of covariation between resilience and AUD. Amstadter et al.	showed that 

20% of the covariation was attributable to genetic factors, while a negligible amount was due to 

environmental sources12. Given the potentially protective role that resilience may play in risk for 

																																																								
1 This paper was modified from a manuscript that was previously published as: Long, E.C., Lönn, S.L., Ji, 
J., Lichtenstein, P., Sundquist, J., Sundquist, K., Kendler, K.S. (2017). Resilience and risk for alcohol use 
disorders: A Swedish twin study. Alcoholism: Clinical and Experimental Research, 41(1), 149-155. 
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AUD, it is important to validate these results with replication and variation using an independent 

sample.  

 In the present study based on Swedish military conscripts, resilience was operationalized 

by ratings of individuals’ functioning across certain predefined areas of functioning, including 

experiences at school, work, home environment, and leisure time, as well as emotional stability. 

Higher values indicate better functioning. Previous reports have referred to this scale as “stress 

susceptibility”13, “psychological functioning”14, and “psychological strength”15,16. Here, we refer 

to it as resilience. This scale was designed for the Swedish military with the purpose of 

predicting individual differences in coping in response to stressful situations such as combat. 

This scale was designed to “reflect the level of adaptation in everyday life, including 

psychological and physical endurance under stress”16, pg. 3-4. This definition is consistent with 

other commonly used resilience measures such as the Connor-Davidson Resilience Scale1. 

 The aims of the present chapter are to: (1) examine the magnitude of the relationship 

between AUD and the five traits that were components of the resilience assessment (social 

maturity, interest, psychological energy, home environment, and emotional control), as well as 

the total resilience score and (2) explore the extent to which the association between AUD and 

resilience is the result of common genetic or common environmental factors.  

Methods 

Sample 

Using the unique 10-digit identification number that all Swedish residents are given at 

birth or immigration, nationwide Swedish registers were merged. To protect anonymity, this 

number was replaced by a serial number. We used the following eight registries to create our 

dataset: (1) the Total Population Register for year of birth, sex, and annual data on place of 
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residences; (2) the Twin Register for known zygosity; (3) the Swedish Hospital Discharge 

Register for hospitalizations of Swedish residents from 1964 to 2010; (4) the Swedish Prescribed 

Drug Register for prescriptions in Sweden obtained by patients from 2005 to 2010; (5) the 

Outpatient Care Register for information regarding outpatient clinics from 2001 to 2010; (6) the 

Swedish Crime Register for data on all convictions in lower court from 1973-2011; (7) the 

Swedish Suspicion Register for national data on individuals strongly suspected of crime from 

1998-2011; and (8) the Swedish Conscription Register for information regarding the resilience 

assessment used for military service from 1969 to 2008.  

Based on known zygosity, twin pairs were selected from the Swedish Twin Registry with 

birth years from 1950 to 1990 (ages 26-66). A larger age range was allowed to identify male 

twins with AUD.  

To assign zygosity in the same-sex twin pairs, standard self-report items from mailed 

questionnaires were used, which were 95-99% accurate when compared with biological markers 

(for more details, see Lichtenstein et al. 200217). This is an indirect screening for level of 

cooperation because at least one of the pair had to return a questionnaire to the twin registry and 

cooperation was lower in subjects with AUD. Thus, the prevalence is lower in this group, 

compared to twin pairs not returning the questionnaires. 

Measures 

AUD. AUD was coded as a binary variable (present/absent). Individuals with AUD were 

identified from Swedish medical, legal, and pharmacy records. From the Swedish hospital 

discharge and outpatient registers, we used the following codes from International Classification 

of Diseases, 9th revision (ICD918; note the Swedish notation uses letters instead of the numbers, 

as in the U.S.), which are reflective of alcohol abuse and dependence, as well as health-related 
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consequences of heavy drinking, such as liver and heart diseases: V79B, 305A, 357F, 571A-D, 

425F, 535D, 291, 303, 980, and from the ICD1019: E244, G312, G621, G721, I426, K292, K700, 

K701, K702, K703, K704, K709, K852, K860, O354, T510, T512, T511, T513, T518, T519, 

F101-109. Individuals were coded as present if they had any of these diagnoses. The hospital 

discharge and outpatient registries identified 242,949 individuals with AUD. Additionally, we 

identified 199,663 individuals with at least two convictions or suspicions (that did not lead to 

conviction) of drunk driving or drunk in charge of maritime vessel by law 1951:649, paragraph 

4, and 4A, and law 1994:1009, paragraph 4 and 5 and the suspicion codes 3005 and 3201. We 

also identified AUD among 63,169 individuals who had retrieved disulfiram (Anatomical 

Therapeutic Chemical (ATC) Classification System, N07BB01), acamprosate (N07BB03), and 

naltrexone (N07BB04) from the Prescription Registry. From these three sources of information, 

we identified a total of 420,489 individuals with AUD, for a lifetime prevalence of 3.8%.       

Resilience. The resilience scale was designed to measure the ability to cope with 

psychologically stressful situations that might occur in military service. It is assessed with a 1 to 

9 graded scale corresponding to a categorized normal distribution centered at 5. Specially trained 

psychologists assigned the resilience score by administering a semi-structured interview that 

took on average 20–25 minutes to complete. Their training is conducted nationally and therefore 

their performance was unlikely to differ from region to region. During this free form interview, 

the conscript was asked to describe his everyday life. There are five predefined sections 

(experiences from school, work experiences, leisure time, home environment, and emotional 

stability), although the order in which the sections are administered can vary. The interviewer 

was provided with background information such as school grades, job experiences, and other test 

results in advance. Other specific details about the assessment methods, such test-retest or 
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validation data, exist only in Sweden and are classified by the military. Thus, this information is 

unfortunately not available13. Data were available for all males in the conscription register with 

an assessment of resilience between ages 17 and 25 (N = 1,653,721). 

As part of the complete resilience assessment procedure, five single items from the 

assessment were made available to us during the years of 1969-1970 only (n = 49,393; the 

Swedish military restricted these items for the other years). These individual items assessed 

social maturity, interest, psychological energy, home environment, and emotional control. Each 

category corresponded to a categorized normal distribution. 

 We are not able to provide example questions from these five individual items because 

the Swedish military has classified these items. However, we consider it likely that they map 

onto some of the questions included in the Connor-Davidson Resilience Scale1, as follows: 

“know where to turn for help” for social maturity; “likes challenges/strong sense of purpose” for 

interest; “bounce back after hardship/think of self as a strong person” for psychological energy; 

“close and secure relationships” for home environment; and “can handle unpleasant feelings/can 

deal with whatever comes” onto emotional control. 

The Swedish army has demonstrated the predictive power of the resilience scale20. 

Carlstedt (1999) reported that the quality of military performance in both enlisted men and 

officers in the Air Force, under battle conditions, and for support troops was strongly predicted 

by the scale. As an example, for enlisted men serving in the Air Force assigned a resilience score 

of 3, a rating of a good performance was only awarded 30% of the time, compared to 75% who 

were assigned a score of 8 (scores of 3 and 8 were the lowest and highest scores for which 

adequate data were available20). There was also a strong link between resilience scores and the 
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probability of acceptance into the military: 1 – 2.0%, 2 – 14.3%, 3- 38.7%, 4 - 58.1%, 5 – 66.6%, 

6 – 70.5%, 7 – 73.6%, 8 – 75.1%, and 9 – 76.1%.   

Statistical methods 

Logistic Regressions. First, we assessed the unique associations between the five single 

resilience constructs and AUD by conducting five separate logistic regressions using a subset of 

the full sample of Swedish male individuals for the two years this data was available (n = 

49,393). We then assessed the association between the total resilience score and AUD with 

logistic regression, using the full sample of Swedish male individuals who had completed a 

resilience assessment (N = 1,653,721). Linear and quadratic terms were included in all 

regressions (given the nature of the data, shown below in Figure 2.1), and birth year was 

included as a covariate to adjust for age, as older males are more likely to be an AUD case than 

younger males. These analyses were performed in SAS 9.321.  

Ordinal data methods. Because all analyses relied on ordinalized data, the twin 

modeling is based on the threshold liability model. By assuming a normal distribution for 

resilience, ordered thresholds can be estimated. These thresholds can then be conceptualized as 

“cut points” along the unobserved distribution. The probability of being in a respective category 

corresponds to the threshold for the lowest category and then increases for each successive 

category.  

Polychoric correlations. The polychoric correlation estimates the correlation between 

two theorized normally distributed continuous latent variables. The likelihood function was set 

so that the parameter estimates are the values giving it its maximum value.  

Twin modeling. Classical bivariate twin modeling was used to examine the sources of 

covariation between AUD and resilience using Swedish male twins. The bivariate twin model 
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included 5,765 twin pairs (2,750 monozygotic; 3,015 dizygotic). Bivariate twin modeling is an 

extension of the univariate twin model, which assumes three sources of liability to a phenotype: 

additive genetic (A), shared environment (C), and unique environment (E). The model assumes 

that monozygotic (MZ) twins share 100% of their genes, while dizygotic (DZ) twins share, on 

average, 50% of their genes. Therefore, the expected twin pair correlations for the additive 

genetic effects are 1.0 and 0.5, respectively. The model also assumes that the shared environment 

factors, which reflect family and community experiences, contribute equally to the similarity 

between MZ and DZ twins. Finally, the unique environment reflects experiences not shared by 

twins, random developmental effects, and random measurement error.  

Bivariate twin modeling uses the additional information in the cross-correlations between 

twins for different traits and permits estimating the extent to which genetic and environmental 

influences are shared by the two traits or are trait specific22. The model specifies that the first and 

second observed variables have paths coming from the first latent component whereas a second 

orthogonal latent component has a path to only the second variable. In this model, the first latent 

component estimates the biometric portion of the covariation that is shared between the two 

observed variables with the second latent component identifying the portion unique to the second 

variable. This same factor structure is specified for each of the etiological sources (A, C, and E). 

The path estimates can then be used to estimate the latent genetic and environmental factor 

correlations. 

We built the bivariate model with the first factor loading on both resilience and AUD, 

while the second loads only on the latter. This method can handle missing items and includes 

both individuals and pairs without a resilience assessment who still contribute to the AUD 

estimates.  
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Sullivan and Eaves23 recommend presenting parameter estimates from the full model 

because they are usually more accurate than those from sub-models even if the sub-models 

provide a better model fit. Although they acknowledge that this may not be the case for large 

sample sizes that can increase precision, such as ours, they also argue that “it may not be sensible 

to search for parsimony,” since large sample sizes can also detect smaller effects of A, C, and E. 

Thus, we chose to present estimates from the full bivariate ACE model with 95% CIs. The 

OpenMx software24 was used to fit the models.  

Results 

Descriptive Statistics 

 The sample sizes and prevalences of individuals with AUD by level of the resilience 

score (M = 5.1; S.D. = 1.913) are shown in Table 2.1. The prevalence of AUD dramatically 

increased as the resilience score decreased (also see Figure 2.1). At the highest level of 

resilience, the prevalence of AUD was 2.9%, whereas at the lowest level, the prevalence was 

23.2%.   

Table 2.1. Sample sizes and prevalence of AUD by resilience score 

Resilience score Number of 
Individuals  

Number of 
Individuals with AUD 

(%) 
1 37,864 8,799 (23.2%) 
2 118,669 15,254 (12.9%) 
3 186,940 16,240 (8.7%) 
4 276,479 16,547 (6.0%) 
5 372,889 16316 (4.4%) 
6 306,998 10,392 (3.4%) 
7 229,016 6,743 (2.9%) 
8 98,335 2734 (2.8%) 
9 26,531 766 (2.9%) 
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Figure 2.1. Prevalence of AUD as a function of total resilience score 
 

The twin-pair correlations for the total resilience score and AUD are displayed in Table 

2.2. The within-pair, cross trait MZ twin correlations, shown on the off diagonals, were modest  

(-0.23 and -0.26). The within-pair, cross trait DZ twin correlations were lower than the MZ 

correlation, but also modest (-0.14 and -0.18), suggesting genetic factors are important in the 

relationship between resilience and AUD. However, the DZ correlations were slightly greater 

than half of the MZ correlations, which suggest that shared environmental influences are also 

important, but may have a minor impact on the sources of familial aggregation underpinning the 

covariance between resilience and AUD.  

Table 2.2. Twin correlations (SE) for resilience and AUD 
Monozygotic Twins   

 T2 Resilience T2 AUD 

T1 Resilience 0.68 (0.01) -0.26 (0.04) 

T1 AUD -0.23 (0.04) 0.66 (0.05) 

Dizygotic Twins   

 T2 Resilience T2 AUD 

T1 Resilience 0.42 (0.02) -0.14 (0.04) 

T1 AUD -0.18 (0.04) 0.43 (0.05) 
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Logistic Regression Analyses 

 The results of the associations between AUD and the five single items from the 

subsample of the conscript registry are shown in Table 2.3. Across all five items, Model 4 was 

always the best fitting model as per the AIC, which included birth year and the quadratic term. 

The odds ratios (ORs) from the linear effects clearly indicate that all five items reduced risk of 

AUD. Social maturity had the strongest effect, while interest was the weakest. However, because 

the quadratic term was also significant across all five items, these effects were not solely linear. 

Rather, the magnitude of the protective effect decreased after a certain point.  

Table 2.3. Unique associations between AUD and five single items included in the resilience 
assessment during the years 1969-1970 (n = 49,393)  
Item Predictors Model 1 Model 2 Model 3 Model 4 

Social Maturity 

Resilience 
(Linear) 0.64 (0.62-0.67) 0.32 (0.27-0.37) 0.65 (0.62-0.67) 0.31 (0.27-0.36) 

Resilience 
(Quadratic)  1.13 (1.11-1.16)  1.14 (1.11-1.17) 

Birth year   1.07 (1.01-1.13) 1.09 (1.03-1.15) 
AIC 29,276.781 29,193.283 29,273.748 29,186.793 

Interest 

Resilience 
(Linear) 0.78 (0.76-0.81) 0.68 (0.59-0.80) 0.78 (0.76-0.81) 0.68 (0.58-0.79) 

Resilience 
(Quadratic)  1.02 (1.00-1.05)  1.03 (1.00-1.05) 

Birth year   1.12 (1.06-1.19) 1.13 (1.06-1.19) 
AIC 29,661.123 29,659.987 29,646.075 29,644.537 

Psychological 
Energy 

Resilience 
(Linear) 0.68 (0.66-0.71) 0.48 (0.41-0.57) 0.68 (0.66-0.71) 0.48 (0.40-0.56) 

Resilience 
(Quadratic)  1.06 (1.03-1.09)  1.07 (1.04-1.10) 

Birth year   1.09 (1.03-1.16) 1.10 (1.04-1.16) 
AIC 29,470.288 29,455.017 29,462.775 29,446.368 

Home 
Environment 

Resilience 
(Linear) 0.65 (0.62-0.67) 0.45 (0.39-0.53) 0.65 (0.62-0.67) 0.45 (0.38-0.52) 

Resilience 
(Quadratic)  1.07 (1.04-1.10)  1.07 (1.04-1.10) 

Birth year   1.13 (1.07-1.20) 1.14 (1.08-1.21) 
AIC 29,320.754 29,302.896 29,303.414 29,283.548 

Emotional 
Control  

Resilience 
(Linear) 0.68 (0.66-0.70) 0.51 (0.44-0.58) 0.68 (0.66-0.70) 0.49 (0.43-0.57) 

Resilience 
(Quadratic)  1.06 (1.03-1.08)  1.06 (1.03-1.09) 

Birth year   1.13 (1.07-1.20) 1.15 (1.08-1.21) 
AIC 29,321.546 29,307.097 29,304.130 29,286.774 
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 The results of the association between AUD and the total resilience score are presented in 

Table 2.4 and depicted graphically in Figure 2.1. Focusing first on the linear effect (Model 1), 

the OR is 0.71, indicating that each increasing point on the resilience scale is associated with a 

29% reduction in the odds of AUD. In Model 3, birth year was included as a covariate, and a 

quadratic effect for resilience was added. All three parameters were significant. The quadratic 

effect is clearly shown in Figure 2.1, as the association between resilience and AUD was 

stronger at lower levels of resilience than at higher levels, where the reduction in risk of AUD 

stabilized.  

Table 2.4. Association between AUD and the total resilience score during years 1969-
2008 (entire sample; N = 1,653,721)	
Item	 Predictors	 Model 1	 Model 2	 Model 3	

Total score 

Resilience 
(Linear)	 0.71 (0.71-0.71) 0.70 (0.69-0.70) 0.49 (0.48-0.50) 

Resilience 
(Quadratic)	  0.96 (0.96-0.96) 1.04 (1.04-1.04) 

Birth year	   0.96 (0.96-0.96) 
AIC	 687,928.05 670,222.35 667,955.52 

 

Bivariate twin analyses of resilience and AUD    

 A bivariate Cholesky decomposition model was then fit to the total resilience score and 

AUD. The within-individual phenotypic correlation for these traits was -0.25. The heritability of 

resilience was 55%. As seen in Figure 2.2, the cross-path from the genetic effects (A) in 

resilience to AUD (-0.18) was of similar strength to the shared environmental (C) cross-path (-

0.23). The 95% CIs for the A and C paths were overlapping, whereas the individual-specific 

environmental (E) pathway was not. However, both the A and C cross-paths were stronger than 

the E cross-path (−0.03). The genetic and shared environmental covariation-paths were both 

significant.  
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Figure 2.2. Parameter estimates and 95% confidence intervals from the bivariate Cholesky 
decomposition for the total resilience score and AUD 
 
 These results are presented in two other informative ways in Table 2.5, with genetic and 

environmental correlations shown in the left panel and proportions of the phenotypic correlation 

shown in the right panel. These are calculated from the parameter estimates shown in Figure 2.2. 

First, the genetic and environmental correlations show negative associations between resilience 

and AUD. The shared environmental correlation between resilience and AUD was quite high 

(−0.63), while the genetic correlation was more moderate (-0.25). The individual-specific 

environmental correlation was small (−0.06). Second, we used the parameter estimates from 

model fitting to decompose the total phenotypic correlation between resilience and AUD (-0.25). 

The proportion of the phenotypic correlation resulting from common individual-specific 

environmental risk factors was very modest (7%), while the proportion of the phenotypic 

correlation resulting from shared environmental factors was higher (36%), and was highest from 

genetic risk factors (57%). Therefore, although the phenotypic correlation between resilience and 

AUD was modest, shared environmental and additive genetic risk factors explained 

approximately one-third and one-half of the association, respectively. 
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Table 2.5. Correlations from bivariate twin model for total resilience score and 
AUD 
Correlation (95% CI)    

 Genetic Shared 
environmental 

Individual specific 
environmental 

 -0.25 
(-0.48, 0.04) 

-0.63 
(-1.0, 0.05) 

-0.06 
(-0.18, 0.05) 

Phenotypic correlation 
(95% CI) 

   

Total % Genetic % Shared 
environmental 

% Individual specific 
environmental 

-0.25 
(-0.28, -0.20) 

56.7 
(10.1, 100) 

36.2 
(-2.1, 73.7) 

7.1 
(-7.3, 23.0) 

 

Discussion 

 The aims of this chapter were to examine the magnitude of the relationship between AUD 

and resilience, and then to explore the degree to which the relationship results from common 

genetic or common environmental factors. First, using logistic regression, the association 

between AUD and the five single items that were used as part of the Swedish resilience 

assessment (social maturity, interest, psychological energy, home environment, and emotional 

control; available on a subsample) was examined. All five of these items themselves relatively 

strongly reduced the risk of AUD, although they were of different strengths. The rank order of 

the strength of association is similar to a recent report investigating the association between 

resilience (referred to as “psychological strength”) and criminal behavior. The authors also found 

that social maturity showed the strongest association while interest showed the weakest15. This 

study also reported results of a factor analysis that revealed a one-factor solution with significant 

loadings from all five items15, which supports the validity of the resilience measure.  

 The association between the total resilience score and AUD was also investigated. 

Consistent with previous studies2,5,6, we showed that overall resilience substantially reduced the 

risk of AUD. The linear effect indicated that a one-point increase on the resilience scale was 
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associated with a 29% decrease in odds for AUD. The change in risk for AUD for a given 

change in resilience was much greater at lower resilience levels than at higher levels. At 

resilience levels of 6 or higher, the reduction of risk for AUD did not continue to decrease 

linearly as resilience levels increased, but instead showed a negligible impact. In other words, 

there is a diminishing return of increased resilience beyond a resilience score of 6. 

 Second, using a Cholesky decomposition model fit to MZ and DZ twin pairs, the 

resilience-AUD association was decomposed into its genetic and environmental components. 

The individual-specific environmental factors contributed very little to the covariance between 

resilience and AUD. The majority of the covariance could instead be attributed to overlapping 

genetic and shared environmental factors. In other words, part of the same genes and shared 

environments that contribute to increased resilience also contributed to reduced risk for AUD. 

These results support a ‘liability index’ model in which resilience reflects genetic and shared 

environmental influences that also impact risk for AUD, rather than a direct causal link.  

We are aware of only one previous study that also examined these sources of covariation 

between resilience and AUD. Based on a smaller sample of 3,084 complete twin pairs from the 

U.S., Amstadter and colleagues12 showed that most of the covariation was due to genetic 

influences with the negligible remainder due to overlapping unique environmental influences 

(E). There was no evidence for overlapping shared environmental influences (C). We also found 

that genetic influences were an important source of covariation between resilience and AUD, but 

to a higher degree (57% vs. 20%), and that unique environmental factors (E) were not. 

Conversely, we showed that 36% of the covariation was attributable to the shared environment 

(C). Potential explanations for this inconsistency may be due to differences in sample size (5,765 

complete twin pairs vs. 3,084 complete twin pairs with 1,325 singletons), different populations 
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(Sweden vs. United States), and different measures of resilience (ability to cope with 

psychologically stressful situations vs. the difference between twins’ total score of internalizing 

symptoms and their predicted score based on their cumulative exposure to stressful life events).  

Limitations 

 These results should be considered within the context of two potential limitations. First, 

our analyses were limited to a Swedish male sample. It is therefore uncertain if our results 

generalize to other populations. However, it is likely that the results are generalizable to other 

industrialized countries.  

Second, our measure of AUD was based on medical, legal, and pharmacy records. 

Although this method is not subject to recall or reporting biases, it can produce false negatives 

and false positives. The extent to which this occurred cannot be estimated. However, a recent 

report using the same sample found the prevalence of AUD to be lower than estimates from most 

epidemiologic surveys25, including the nearby country of Norway26,27. Accordingly, it may be 

that registries only detect more severe cases of AUD compared to population-based interview 

studies. Despite this, there is support of our measure of AUD from high concordance rates for 

registration across the different methods25. In addition, those cases that require hospital care are 

more clinically relevant than those who are based on population-based interviews.   

Conclusions     

 Using a nationwide Swedish male sample, we showed that higher scores on the five 

single items that comprised the resilience assessment (social maturity, interest, psychological 

energy, home environment, and emotional control), as well as a higher total resilience score, 

were all associated with a reduced risk of AUD. This effect was linear and quadratic, such that 

the risk for AUD was most strongly predicted by resilience at resilience levels of 6 or lower. We 
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also showed that the relationship between resilience and AUD was largely attributable to 

overlapping genetic and shared environmental factors. Future research should aim to identify the 

specific genetic and shared environmental factors common to resilience and AUD. Identification 

of shared genes can inform gene-finding efforts by providing plausible networks to locate 

specific genes involved in both phenotypes. Additionally, identification of shared environments 

common to resilience and AUD can inform prevention efforts by focusing prevention and 

intervention efforts on these environments.    
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Chapter 3: The Association Between Personality Disorders with Alcohol Use and Misuse: A 
Population-Based Twin Study2 

 
Introduction 

		
This chapter continues the examination of the associations between personality, AU, and 

AUD, and addresses the second part of Aim 1. Specifically, it examines the association 

personality disorders (PDs) and AU and AUD. Previous research examining these associations 

has nearly always focused on single PDs1-6. Thus, which PDs offer the best prediction of AU and 

AUD when all 10 PDs are simultaneously analyzed, and the nature of the etiologic overlap, 

remains unclear. Gaining a better understanding of these associations will inform prevention and 

intervention efforts, as early detection of the PD or AUD, depending on the direction of 

causality) may help prevent the other disorder.  

The DSM-IV7 and DSM-58 classify PDs into three clusters: Cluster A is characterized by 

odd and eccentric behavior and includes paranoid, schizoid, and schizotypal PDs; Cluster B is 

characterized by dramatic, overly emotional, and impulsive behavior and includes antisocial, 

borderline, histrionic, and narcissistic PDs; and Cluster C is characterized by anxious and fearful 

behavior and includes avoidant, dependent, and obsessive-compulsive PDs. The two PDs most 

consistently associated with AUD criteria are from Cluster B and include antisocial1-3 and 

borderline3-6. This is perhaps unsurprising, given the links between impulsivity and AUD9-14. 

However, as mentioned, previous studies have focused on these PDs alone without accounting 

for the other PDs. 

																																																								
2	This paper was modified from a manuscript that was previously published as: Long, E.C., Aggen, S.H., 
Neale, M.C., Knudsen, G.P., Krueger, R.F., South, S.C., Czajkowski, N., Nesvåg, R., Ystrom, E., Torvik, 
F.A., Kendler, K.S., Gillespie, N.A., & Reichborn-Kjennerud, T. (2017). The association between 
personality disorders with alcohol use and misuse: A population-based twin study. Drug and Alcohol 
Dependence, 174, 171-180.	
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As described in the methods section of Chapter 2, twin studies are the most commonly 

used method to estimate the relative proportions or contributions of latent genetic and 

environmental risk factors to individual differences in human behaviors, phenotypes, or 

disease/disorder outcomes. A number of twin studies provide compelling evidence that AU and 

AUD15-17, and PDs18,19 are all complex, heritable phenotypes. Bivariate Cholesky 

decompositions go beyond the basic univariate twin model and allow us to determine the extent 

to which genetic and environmental influences are shared by two traits or are trait specific20. 

Regarding these putative sources of covariation between AU and AUD with PDs, evidence based 

on bivariate modeling suggests that genetic risk factors are shared between borderline PD, 

alcohol, nicotine, and cannabis misuse21, as well as between antisocial behavior and AU22. These 

shared genetic risks account for up to 50% of the total genetic variance in risk in AUD23. One 

limitation is that most previous studies have relied on the analysis of single or at most two PDs21-

23. Only very recently have fully integrative and genetically informative data on all 10 PDs 

become available to elucidate the genetic and environmental pathways linking PDs to AU and 

AUD. 

We are not aware of any published studies that have investigated the association between 

all 10 DSM-IV PDs, AU, and AUD. To address this gap, we examined the following three aims: 

(1) identify which of the 10 PDs provide the strongest phenotypic prediction of the liabilities to 

AU and AUD; (2) estimate the degree to which the associations between PDs and AU and AUD 

are due to shared genetic or shared environmental risks; and (3) determine if the patterns of 

associations between PDs and AU and AUD are stable across time. 
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Method 
Sample 
	

Twins were recruited by the Norwegian Institute of Public Health (NIPH) Twin Panel 

from the National Medical Birth Registry of Norway, which was established in 196724,25. By 

mandate, the registry receives notification of all births in Norway. The NIPH Twin Panel initially 

ascertained twins born from 1967 through 1974 who were at least 18 years of age. They were 

first contacted for a study of health via a mail-out questionnaire (Q1) in 1992. These twins were 

re-contacted for a longitudinal follow-up using a second health questionnaire (Q2) in 1998. At 

that time, a younger cohort born 1975 to 1979 was also recruited and administered the same Q2. 

Altogether, 8,045 twins (63%) including 3,334 pairs (53%) responded to Q2.  

All complete pairs from the Q2 study in which both twins were willing to be contacted 

again for new studies (N = 3,153 twin pairs) were invited by mail to participate in the Wave 1 

interviews of mental health used in the present analyses. Due to technical problems, an additional 

68 pairs were accidentally drawn from twin pairs that had not completed the Q2. The Wave 1 

structured and semi-structured diagnostic interviews were carried out between 1999-2004 and 

assessed DSM-IV lifetime Axis I and Axis II disorders. Wave 1 interviews were mostly 

conducted face-to-face, with a small amount conducted by telephone (8.3%).  

Data for Wave 2 came from a follow-up telephone interview administered between 2010-

201126. Of the 3,221 twin pairs eligible for Wave 1, there were 1,391 complete pairs (43.2%) and 

19 single twins (0.6% pairwise), totaling 2,801 twins who participated (43.4%) and comprising 

63% females (Mage = 28 years, range = 19-36). Of the 2,801 twins eligible for Wave 2, there 

were 2,393 twins who participated (85.43%), comprising 1,063 complete twin pairs and 267 

single twins, including 64% females (Mage = 38 years, range = 30-44). For more detailed 
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information about the sampling process and twin sample, please see Tambs et al.25 and Nilsen et 

al.26. 

Monozygotic (MZ) males and females as well as dizygotic (DZ) males, females, and 

opposite sex twins were included in all analyses. The sample sizes for each group by sex are as 

follows: MZ males = 225; MZ females = 453; DZ males = 120; DZ females = 267; DZ opposite 

sex = 345. 

Different interviewers assessed each twin pair member. Interviewers at Wave 1 were 

mostly advanced psychology students, or experienced psychiatric nurses, who received 

standardized training and supervision during data collection. Interviewers at Wave 2 included 

senior clinical psychology graduate students, psychiatric nurses, and experienced clinical 

psychologists who were interviewers at Wave 1. Written informed consent was obtained from all 

participants who received stipends of $35 and $70 at Waves 1 and 2, respectively. Ethical 

approval for both assessments came from the Regional Ethical Committee. 

Measures 

Predictors: Personality Disorder Criteria. Lifetime DSM-IV PDs were assessed using 

a Norwegian version of the Structured Interview for DSM-IV Personality (SIDP-IV)27. The 

SIDP-IV is a comprehensive, semi-structured diagnostic interview that includes non-pejorative 

questions organized into topical sections rather than by individual PD thereby improving the 

flow of the interview. The number of criteria for each of the DSM-IV PDs used in the analyses 

were as follows: Cluster A: schizotypal (9 criteria), schizoid (8 criteria), and paranoid (7 

criteria); Cluster B: histrionic (8 criteria), borderline (9 criteria), narcissistic (9 criteria), and 

antisocial (7 criteria); Cluster C: avoidant (7 criteria), dependent (8 criteria), obsessive-

compulsive (8 criteria). The SIDP-IV considers the behaviors, cognitions, and feelings that are 
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reported to be predominately present over the past five years of a participant’s life to be 

representative of the individual’s personality. Importantly, the SIDP-IV interview was conducted 

after the Composite International Diagnostic Interview (CIDI)28,29, which assesses Axis 1 

disorders. This order of assessment allowed us to conclude that the symptoms of PDs were due 

to the PD, and not a temporary effect of an Axis I disorder. All 10 PDs were assessed face-to-

face at Wave 1.  

At Wave 2, six of the 10 PDs were assessed by telephone interview: paranoid, 

schizotypal, borderline, obsessive-compulsive, avoidant, and antisocial. Each criterion was 

scored on a 4-point scale (absent, sub-threshold, present, or strongly present), dichotomized (0 = 

absent, 1 ≥ sub-threshold), and summed into a PD trait score. However, because very few 

participants endorsed most PD criteria, the PD scores had strong positive skewness with a 

predominance of zero values. Therefore, for analytic purposes, each PD score was recoded onto 

a 3-point ordinal scale (0 criteria, 1-2 criteria, ≥3 criteria). This was also done to establish a 

common frame of reference to facilitate interpreting comparisons between odds ratios. Complete 

PD data were available from 2,793 twins for Wave 1 and 2,282 for Wave 2. 

Outcome variables: Alcohol Use and Alcohol Use Disorder Criteria. Lifetime AU and 

AUD based on the number of DSM-IV criteria for alcohol abuse and dependence were assessed 

using a Norwegian version of the Composite International Diagnostic Interview28. The CIDI has 

good test-retest reliability for dependence29-31 (kappas = 0.70 - 0.95), and the Norwegian version 

has been used previously32. Lifetime AU was assessed for the 12-month period where 

consumption was highest using a 3-point ordinal scale (0 = never tried; 1 = less than 1 time per 

month, and 1-3 times per month; 2 = 1-2 times per week, 3-4 times per week, and almost every 

day). This was followed by questions covering the 11 DSM-IV criteria and one craving item. 
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Criteria sum scores were then recoded onto a 3-point ordinal alcohol use disorder (AUD) scale (0 

= 0 criteria, 1 = 1-3 criteria, and 2 = 4 or more criteria) and used for all subsequent analyses. 

Complete AU and AUD data were available from 2,482 twins for Wave 1. At Wave 2, data were 

available from 2,238 twins for AU and 2,239 twins for AUD. See Table 1 for the prevalences of 

AU and AUD at both waves.  

Prevalences of AU and AUD and Reliability. The sample size and prevalences of AU 

and AUD are shown in Table 3.1. To obtain reliability estimates between the two waves of data, 

we estimated weighted kappa coefficients and polychoric correlations. The weighted kappas for 

AU and AUD between Wave 1 and Wave 2 were 0.31 and 0.40, respectively. The polychoric 

correlations were 0.49 for AU and 0.58 for AUD. Typical values of weighted kappa for 

psychiatric diagnoses range from .40 to .6033-35, and although the weighted kappa for AU was 

low, the polychoric correlations suggest that agreement between the two waves is adequate. 

Table 3.1. Sample size and prevalence of alcohol use (AU) and DSM-IV alcohol use disorder (AUD) 
criteria at Wave 1 and Wave 2  

AU Number of Twins Never tried (0) Less than 1x/month; 1-
3 times/month (1) 

1-2x/week; 3-4x/week; 
Almost every day (2) 

Wave 1  2,482 58.2% (1,445) 39.8% (987) 0.02% (50) 
Wave 2  2,238 77.1% (1,726) 20.7% (464) 0.02% (48) 
AUD  0 criteria (0) 1-3 criteria (1) More than 4 criteria (2) 
Wave 1  2,482 74.2% (1,842) 18.8% (467) 0.07% (173) 
Wave 2  2,239 84.1% (1,884) 10.6% (238) 0.05% (117) 

 

Statistical Analyses 

Logistic Regressions. Given the number of predictors, we implemented an empirical 

approach to identify a subset of PD criteria sum scores for inclusion in the bivariate twin 

analyses to explore the genetic and environmental associations between PDs with AU and AUD. 

First, univariate ordinal logistic regressions using the polr() function in R3.1.1
36

 were fitted for 

each PD as a predictor at Wave 1 and Wave 2 in order to examine the effects of PD criteria 
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scores independently. Second, four separate multiple regressions were run using the polr() 

function with a stepwise algorithm: (i) the regression of Wave 1 AU onto all 10 Wave 1 PDs; (ii) 

the regression of Wave 1 AUD onto all 10 Wave 1 PDs; (iii) the regression of Wave 2 AU onto 

all 6 Wave 2 PDs; and (iv) the regression of Wave 2 AUD onto all 6 Wave 2 PDs. All 

regressions included sex and age as covariates. PDs that significantly predicted AU and AUD in 

the multiple regressions were then brought forward into the bivariate twin analyses.     

Twin Methods. Data were analyzed using the Full Information Maximum Likelihood 

(FIML) raw ordinal data method in the R3.1.1 OpenMx2.0 package37. This approach makes use of 

all available data from both complete and incomplete twin pairs, thereby increasing the precision 

of threshold estimates and improving estimation of the correlations between predictors and 

outcomes. Our approach assumes a multivariate normative liability threshold model in order to 

estimate thresholds, which are conceptualized as “cut points” along an unobserved continuous 

distribution of liability on which individuals can be ordered based on the observed frequencies of 

the ordinal categories.  

Standard biometrical genetic methods20,38 were used to exploit the expected genetic and 

environmental correlations of monozygotic (MZ) and dizygotic (DZ) twin pairs to estimate the 

size and significance of the genetic and environmental risk pathways between each selected 

predictor and the ordinalized AU and AUD criteria variables. The biometrical genetic model 

assumes that the covariance between MZ and DZ twin pairs can be decomposed into additive (A) 

genetic, shared environmental (C), and non-shared or unique (E) environmental variance 

components. Because MZ twin pairs are genetically identical while DZ twin pairs share, on 

average, half of their genes, the expected twin pair correlations for the genetic (A) effects are 

fixed at 1.0 and 0.5, respectively. An important assumption in the model is that C is equal in MZ 
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and DZ twin pairs since the model fixes this correlation to 1 for twin 1 and twin 2 in both MZ 

and DZ twin pairs. E is by definition uncorrelated and also includes random measurement error.  

Our approach assumes that regardless of twin order and zygosity, subjects have the same 

threshold distribution for the AU and AUD outcomes. We were able to equate the thresholds 

across twin order (p = 0.36) and zygosity (p = 0.33) without any significant deterioration in 

model fit for Wave 1 AU. Threshold distributions for Wave 1 AUD could also be constrained 

equal across twin order and zygosity (p = 0.77 for twin order, p = 0.78 for zygosity). 

Bivariate Cholesky decompositions use the additional information in the cross-

correlations between twins for different traits and permit estimating the extent to which genetic 

and environmental influences are shared by the two traits or are trait specific20. The bivariate 

Cholesky decomposition specifies that the first and second observed variables have paths coming 

from the first latent component whereas a second orthogonal latent component has a path to only 

the second variable. In this decomposition, the first latent component estimates the biometric 

portion of the covariation that is shared between the two observed variables with the second 

latent component identifying the portion unique to the second variable. This same factor 

structure is specified for each of the etiological sources A, C, and E. 

The antisocial and borderline criteria included items that made reference to substance 

use, or substance use related problems. Therefore, in order to determine if any degree of genetic 

or environmental associations with AU and AUD arise from overlapping content, the analyses 

were repeated after dropping the items ‘Impulsivity in at least two areas that are potentially self-

damaging (e.g., spending, sex, substance abuse, reckless driving, binge eating)’ and ‘Failure to 

conform to social norms with respect to lawful behavior as indicated by repeatedly performing 
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acts that are grounds for arrest’ from the borderline and antisocial aggregate criteria sum scores, 

respectively. These variables are referred to as the “trimmed” PDs. 

All models were run with age and sex as covariates, since the prevalence of AUD is 

greater among males and younger individuals39. To determine the best fitting model, the fully 

saturated ‘ACE’ model served as a baseline reference to compare models with the shared 

environmental (i.e., the additive genetic model; A+E model) and genetic (i.e., the shared 

environmental model; C+E model) parameters dropped by fixing these component pathways to 

zero. Model comparisons were evaluated using the Akaike Information Criterion (AIC)40. A 

stronger emphasis for model selection is placed on this parsimony index because model fit, 

measured as the Maximum Likelihood (-2LL, -2 times the log likelihood) values, will decrease 

with the addition of more parameters, which can lead to ‘over-fitting’ (i.e., including too many 

parameters relative to the number of observations). Indices of parsimony penalize models with 

increasing numbers of parameters, thereby providing a balance between model complexity and 

model or data misfit.  

Results 

Univariate and multiple logistic regressions 

Wave 1 Alcohol Use. In the univariate regressions, five of the PDs significantly predicted 

AU at Wave 1 (see Table 3.2). In the stepwise multiple regression, only paranoid, borderline, and 

antisocial PDs remained significant and showed a positive association (see Table 3.3). Obsessive 

compulsive and dependent PDs also emerged as statistically significant, such that higher sum 

scores were associated with reduced AU. 
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Wave 1 Alcohol Use Disorder. In the univariate regression models predicting Wave 1 

AUD criteria, eight out of the 10 PDs were significant positive predictors. In the multiple 

regression, borderline and antisocial PDs were significant predictors of AUD symptoms, with 

both showing positive associations. Schizoid and schizotypal PDs also emerged as significant, 

showing negative associations with AUD criteria.  

Wave 2 Alcohol Use. In the univariate regressions predicting Wave 2 AU, four of the six 

PDs that were assessed at Wave 2 predicted increased AU. In the multiple regression that 

included the six PDs, only borderline and antisocial remained significant, positive predictors of 

AU.  

Wave 2 Alcohol Use Disorder. In the univariate regression models predicting Wave 2 

AUD criteria, all six PDs predicted increased AUD criteria. However, in the multiple regression, 

borderline and antisocial were again the only PDs that remained significant and positive 

predictors of AUD symptoms.  

Table 3.2. Univariate logistic regression results of personality disorders predicting WAVE 1 AND 2 ALCOHOL USE and the 
symptoms of WAVE 1 AND WAVE 2 ALCOHOL USE DISORDER 

 ALCOHOL USE  Symptoms of  
ALCOHOL USE DISORDER 

 Wave 1  Wave 2  Wave 1  Wave 2 
 OR (95%CIs)  OR (95%CIs)  OR (95%CIs)  OR (95%CIs) 

Schizoid PD 1.03 (0.85 - 1.24)      1.04 (0.83 - 1.29)     
Paranoid PD 1.33 (1.15 - 1.52)  1.45 (1.19 - 1.75)  1.50 (1.28 - 1.75)  1.70 (1.38 - 2.09) 
Schizotypal PD 1.16 (0.96 - 1.39)  1.24 (0.98 - 1.57)  1.22 (0.99 - 1.51)  1.58 (1.21 - 2.04) 
Histrionic PD 1.28 (1.12 - 1.46)      1.39 (1.20 - 1.61)     
Borderline PD 1.59 (1.39 - 1.81)  1.62 (1.38 - 1.90)  2.12 (1.83 - 2.46)  2.04 (1.71 - 2.44) 
Obsessive Compulsive PD 0.99 (0.87 - 1.12)  1.23 (1.06 - 1.42)  1.17 (1.01 - 1.35)  1.31 (1.10 - 1.55) 
Dependent PD 1.03 (0.89 - 1.20)      1.32 (1.12 - 1.55)     
Avoidant PD 1.04 (0.91 - 1.18)  1.03 (0.86 - 1.22)  1.27 (1.09 - 1.47)  1.24 (1.02 - 1.50) 
Narcissistic PD 1.29 (1.12 - 1.48)      1.53 (1.31 - 1.78)     
Antisocial PD 2.10 (1.70 - 2.60)  2.11 (1.62 - 2.74)  3.08 (2.49 - 3.80)  2.67 (2.03 - 3.51) 
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Table 3.3. Multiple logistic regression results using forward selection with personality disorders predicting WAVE 1 AND WAVE 2 
ALCOHOL USE and the symptoms of WAVE 1 AND WAVE 2 ALCOHOL USE DISORDER 

 ALCOHOL USE  Symptoms of  
ALCOHOL USE DISORDER 

 Wave 1  Wave 2  Wave 1  Wave 2 
 OR (95%CIs)  OR (95%CIs)  OR (95%CIs)  OR (95%CIs) 

Sex 2.08 (1.70 - 2.56)  2.46 (1.96 - 3.08)  2.65 (2.11 - 3.35)  3.35 (2.59 - 4.35) 
Age at interview 0.94 (0.92 - 0.96)  0.95 (0.93 - 0.98)  0.93 (0.90 - 0.95)  0.94 (0.91 - 0.97) 
Schizoid PD         0.77 (0.60 - 0.98)     
Paranoid PD 1.18 (1.01 - 1.39)             
Schizotypal PD         0.75 (0.58 - 0.97)     
Histrionic PD                
Borderline PD 1.50 (1.28 - 1.75)  1.45 (1.20 - 1.75)  1.75 (1.47 - 2.09)  1.79 (1.48 - 2.16) 
Obsessive Compulsive PD 0.83 (0.72 - 0.95)             
Dependent PD 0.82 (0.70 - 0.96)             
Avoidant PD                
Narcissistic PD                
Antisocial PD 1.74 (1.39 - 2.19)  1.69 (1.28 - 2.23)  2.29 (1.82 - 2.89)  2.02 (1.51 - 2.69) 

 

Bivariate Twin Analyses (Cholesky decompositions)  

All significant predictors of AU and AUD based on the multiple regressions for Waves 1 

and 2 were then brought forward into the bivariate twin analyses: paranoid, obsessive 

compulsive, dependent, schizoid, schizotypal, borderline, and antisocial PDs. Results showed 

very little phenotypic (rP), genetic (rA), or environmental (rE) correlations between Wave 1 AU 

with paranoid, obsessive-compulsive, and dependent PDs, as well as between Wave 1 AUD with 

schizoid and schizotypal PDs. Thus, full results of models with all correlations less than 0.2 are 

shown in Supplementary Table 3.8.  

Predictors of Wave 1 Alcohol Use. For all of the Wave 1 AU bivariate models, the 

additive genetic (A+E) model in which the shared environmental components were removed 

provided the “best” parsimonious fit. As shown in Table 3.4, there were moderate correlations 

between AU with borderline and antisocial PDs. The proportions of total variance in AU 

explained by the genetic and environmental risks in the PDs were obtained by squaring the 

corresponding path coefficients. Despite the moderate genetic correlations between AU and 
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borderline or antisocial PDs, the additive genetic factors in each of the PDs explained relatively 

little total variance in AU. Additive genetic factors in borderline PD explained 4% of the total 

variance in AU, a small but statistically significant amount. Additive genetic factors in antisocial 

PD explained 3% of the total variance in AU, a statistically non-significant amount. Likewise, 

unique environmental risk factors in each of the PDs explained very little of the total variance in 

AU (2% and 6%, respectively). Although the environmental risks in antisocial PD explained a 

modest amount of the variance, it was a statistically significant amount.  

Bivariate modeling results for the trimmed PD sum scores are shown at the bottom of 

Table 3.4. For borderline PD, note the reduction in the estimated genetic correlation from 0.32 to 

0.21, as well as a corresponding drop from 4% to 1% of the total variance in AU attributable to 

genetic risk factors. For antisocial PD, the changes in the estimates for the trimmed vs. original 

PD were in the opposite direction, as the genetic correlation with AU increased from 0.33 to 

0.39, which was consistent with the corresponding increase from 3% to 4% in terms of the total 

AU variance explained by antisocial PD genetic risk factors. All proportions of variance for the 

trimmed variables were statistically non-significant.  

Table 3.4. Bivariate Cholesky A, C, and E decomposition comparisons and summaries for each personality disorder with WAVE 1 ALCOHOL USE  

Bivariate model fit comparisons  Correlations (95% CI)  Proportion of total variance in ALCOHOL USE shared 
(with each predictor) versus unshared (95% CI)  

Predictor Model -2LL df AIC  rP rA rE  Ashared Aunshared Eshared Eunshared 

Borderline PD 
(total) 

ACE 9065.33 5266 -1466.67          
AE 9066.74 5269 -1471.27  0.22 0.32 0.17  4% 30% 2% 65% 
CE 9073.87 5269 -1464.13  (0.16 - 0.28) (0.26 - 0.52) (0.06 - 0.19)  (1 - 9%) (20 - 40%) (0 - 5%) (55 - 75%) 

 E 9173.62 5272 -1370.38          

Antisocial PD 
(total) 

ACE 6589.46 5266 -3942.54          
AE 6589.66 5269 -3948.34  0.30 0.33 0.29  3% 27% 6% 64% 
CE 6602.51 5269 -3935.50  (0.23 - 0.36) (0.07 - 0.58) (0.15 - 0.42)  (0 - 10%) (16 - 37%) (2 - 12%) (53 - 75%) 

 E 6648.52 5272 -3895.48          

Borderline PD 
(trimmed) 

ACE 8746.26 5266 -1785.74          
AE 8746.29 5269 -1791.71  0.14 0.21 0.11  1% 32% 1% 65% 
CE 8756.47 5269 -1781.53  (0.09 - 0.20) (0.00 - 0.42) (-0.01 - 0.22)  (0 - 6%) (22 - 42%) (0 - 3%) (55 - 75%) 

 E 8843.32 5272 -1700.68          



	

	38 

Antisocial PD  
(trimmed) 

ACE 6166.89 5266 -4365.11          
AE 6167.68 5269 -4370.32  0.26 0.39 0.21  4% 26% 3% 67% 
CE 6178.42 5269 -4359.58  (0.19 - 0.33) (0.10 - 0.69) (0.06 - 0.35)  (0 - 14%) (16 - 37%) (0 - 8%) (56 - 78%) 

 E 6219.48 5272 -4324.52          
CI = confidence interval; -2LL = -2 X Log Likelihood; AIC = Akaike Information Criteria; ACE = additive genetic + shared environment + unique environmental 
risks; Trimmed = Borderline PD excluded ‘Impulsivity in at least two areas that are potentially self-damaging (e.g., spending, sex, substance abuse, reckless driving, 
binge eating)’; Antisocial PD excluded ‘Failure to conform to social norms with respect to lawful behavior as indicated by repeatedly performing acts that are 
grounds for arrest.’  

Predictors of Wave 1 Alcohol Use Disorder. For all of the Wave 1 AUD models, the 

additive genetic (A+E) model again showed the best fit. As shown in Table 3.5, the phenotypic 

correlations between AUD symptoms and borderline or antisocial PDs were higher (0.33 and 

0.43, respectively). The genetic correlations were also higher (0.41 and 0.60), as were the unique 

environmental correlations (0.29 and 0.35). However, as with AU, the proportions of genetic and 

unique environmental variance that each PD explained in AUD were modest, but statistically 

significant (5-10%). 

After removing the potentially confounding substance use criteria from the antisocial and 

borderline PDs, the phenotypic correlations were lower. For the trimmed borderline PD, the 

phenotypic correlation declined from 0.33 to 0.25 with the corresponding genetic correlation 

declining from 0.41 to 0.33. Therefore, the proportion of total variance in AUD symptoms 

attributable to the genetic risks in this PD also dropped from 5% to 3%, a non-significant 

amount. However, for the trimmed antisocial PD, the genetic correlation showed less of a decline 

(from 0.60 to 0.57). The proportion of total variance explained by the genetic risks 

correspondingly only dropped from 10% to 9% and remained statistically significant.  

Table 3.5. Bivariate Cholesky A, C, and E decomposition comparisons and summaries for each personality disorder with WAVE 1 DSM-IV ALCOHOL 
USE DISORDER ordinal symptom criteria composite 

Bivariate model fit comparisons  Correlations (95% CI)  
Proportion of total variance in symptoms of 

ALCOHOL USE DISORDER shared (with each 
predictor) versus unshared (95% CI)  

Predictor Model -2LL df AIC  rP rA rE  Ashared Aunshared Eshared Eunshared 

Borderline PD 
(total) 

ACE 8806.52 5266 -1725.48          

AE 8809.00 5269 -1729.00  0.33 0.41 0.29  5% 26% 6% 63% 

CE 8817.40 5269 -1720.61  (0.28 - 0.39) (0.20 - 0.62) (0.18 - 0.40)  (1 - 12%) (14 - 37%) (2 - 12%) (52 - 75%) 

 E 8900.76 5272 -1643.241          
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Antisocial PD 
(total) 

ACE 6296.44 5266 -4235.56          

AE 6296.47 5269 -4241.53  0.43 0.60 0.35  10% 18% 9% 63% 

CE 6311.77 5269 -4226.23  (0.37 - 0.49) (0.34 - 0.88) (0.22 - 0.47)  (3-21%) (5-30%) (3-17%) (51 - 76%) 

 E 6343.73 5272 -4200.268          

Borderline PD 
(trimmed) 

ACE 8515.76 5266 -2016.24          

AE 8515.87 5269 -2022.13  0.25 0.33 0.21  3% 29% 3% 65% 

CE 8528.44 5269 -2009.57  (0.19 - 0.31) (0.10 - 0.56) (0.08 - 0.33)  (0 - 10%) (16 - 40%) (0 - 7%) (53 - 77%) 

 E 8598.42 5272 -1945.58          

Antisocial PD 
(trimmed) 

ACE 5903.17 5266 -4628.84          

AE 5903.17 5269 -4634.84  0.38 0.57 0.29  9% 18% 6% 67% 

CE 5914.90 5269 -4623.10  (0.31 - 0.44) (0.27 - 0.90) (0.14 - 0.42)  (2 - 21%) (4 - 31%) (1 - 14%) (55 - 80%) 

 E 5942.26 5272 -4601.74          

CI = confidence interval; -2LL = -2 X Log Likelihood; AIC = Akaike Information Criteria; ACE = additive genetic + shared environment + unique 
environmental risks; Trimmed = Borderline PD excluded ‘Impulsivity in at least two areas that are potentially self-damaging (e.g., spending, sex, 
substance abuse, reckless driving, binge eating)’; Antisocial PD excluded ‘Failure to conform to social norms with respect to lawful behavior as indicated 
by repeatedly performing acts that are grounds for arrest.’  

 

Predictors of Wave 2 Alcohol Use. Similar to the models from Wave 1 AU and AUD, 

the additive genetic (A+E) model also provided the best fit for all Wave 2 AU models (see Table 

3.6). The phenotypic correlations between borderline and antisocial PDs with AU were similar to 

those for Wave 1 AU. However, the genetic correlations showed a substantial increase from 

Wave 1 (0.44 and 0.77 from 0.32 and 0.33, respectively), while the unique environmental 

correlations decreased dramatically (0.06 and 0.04 from 0.17 and 0.29, respectively). Despite the 

higher genetic correlations, the genetic factors in each of the PDs similarly explained a relatively 

small, but statistically significant, amount of the total variance in AU (8% and 23%, 

respectively), although this was still an increase from Wave 1. The unique environmental risk 

factors in each of the PDs explained none of the total variance in Wave 2 AU. 

For the trimmed borderline PD, the estimated genetic correlation dropped from 0.44 to 

0.25. The total variance in AU attributable to genetic risk factors correspondingly dropped from 

8% to 3% and was no longer statistically significant. This reduction was similar to the decrease 

shown in Wave 1. For the trimmed antisocial PD, the changes in the estimates from the original 
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PD were in the opposite direction, similar to Wave 1 AU. The genetic correlation increased from 

0.77 to 1.00 for the trimmed PD. The total AU variance explained by the trimmed antisocial PD 

genetic risk factors increased from 23% to 38% and remained significant. 

Table 3.6. Bivariate Cholesky A, C, and E decomposition comparisons and summaries for each personality disorder with WAVE 2 ALCOHOL USE 

Bivariate model fit comparisons  Correlations (95% CI)  Proportion of total variance in ALCOHOL USE 
shared (with each predictor) versus unique (95% CI) 

Predictor Model -2LL df AIC  rP rA rE  Ashared Aunshared Eshared Eunshared 

Borderline PD 
(total) 

ACE 6470.03 4511 -2551.97          

AE 6472.89 4514 -2555.11  0.20 0.44 0.06  8% 34% 0% 58% 

CE 6475.83 4514 -2552.18  (0.13 - 0.26) (0.20 - 0.70) (-0.09 - 0.21)  (2-20%) (18-47%) (0-3%) (46-72%) 

 E 6475.83 4514 -2552.18          

Antisocial PD 
(total) 

ACE 4133.74 4510 -4886.26          

AE 4133.79 4513 -4892.22  0.28 0.77 0.04  23% 16% 0% 61% 

CE 4139.39 4513 -4886.61  (0.20 - 0.37) (0.39 - 0.99) (-0.15 - 0.24)  (6-49%) (0-37%) (0-4%) (49-75%) 

 E 4139.39 4513 -4886.61          

Borderline PD 
(trimmed) 

ACE 6277.30 4511 -2744.70          

AE 6278.74 4514 -2749.26  0.10 0.25 0.02  3% 40% 0% 58% 

CE 6282.48 4514 -2745.52  (0.03 - 0.17) (-0.01 - 0.52) (-0.14 - 0.17)  (0-11%) (25-53%) (0-2%) (45-71%) 

 E 6282.48 4514 -2745.52          

Antisocial PD*  
(trimmed) 

ACE 3453.59 4512 -5570.41          

AE 3453.64 4515 -5576.36  0.23 1.00** 0.00  38% 0% 0% 62% 

CE 3456.92 4515 -5573.08  (0.13 - 0.32) (1.00 - 1.00) (-0.19 - 0.20)  (7-51%) (0-35%) (0-2%) (49-76%) 

 E 3487.41 4518 -5548.59          
CI = confidence interval; -2LL = -2 X Log Likelihood; AIC = Akaike Information Criteria; ACE = additive genetic + shared environment + unique environmental 
risks; Trimmed = Borderline PD excluded ‘Impulsivity in at least two areas that are potentially self-damaging (e.g., spending, sex, substance abuse, reckless 
driving, binge eating)’; Antisocial PD excluded ‘Failure to conform to social norms with respect to lawful behavior as indicated by repeatedly performing acts 
that are grounds for arrest.’ *The Antisocial PD and alcohol use variables were recoded into binary variables for this model only due to empty cells. **Model 
estimation of the upper and/or lower 95% CIs failed.   
 

Predictors of Wave 2 Alcohol Use Disorder. In contrast to all of the other models thus 

far, the additive genetic (A+E) model was not the best fitting model for all of the predictors of 

Wave 2 AUD symptoms (see Table 3.7). For both the borderline PD and the trimmed borderline 

PD, the ACE model was the best fitting model, indicating that the shared environmental (C) 

components could not be dropped to zero. Therefore, Table 3.7 shows the phenotypic, additive 

genetic, and unique environmental correlations between the PDs and Wave 2 AUD criteria, as 

well as the shared environmental correlations for the borderline and trimmed borderline PDs. 

The phenotypic and unique environmental correlations between borderline PD and AUD 



	

	41 

symptoms were moderate, with a reduction in the correlation for the trimmed phenotype. The 

genetic correlation dropped from 0.75 to -0.01 for the trimmed PD, while the shared 

environmental correlation showed an increase from 0.33 to 0.50. Borderline PD explained a 

small and statistically non-significant amount of the genetic risk in AUD symptoms (17%), while 

the trimmed borderline PD explained none of the risk. The proportions of shared environmental 

and unique environmental variance that borderline PD and the trimmed borderline PD explained 

in AUD were negligible and statistically non-significant (1-4%). 

The pattern of results for the antisocial and trimmed antisocial PDs was similar to those for 

Wave 1 AU and Wave 2 AU. The additive genetic (A+E) model provided the best fit for both 

models. The phenotypic correlations were similar to those for Wave 1 AUD (0.37 and 0.31, 

respectively). As with Wave 2 AU, the genetic correlations increased from 0.85 to 1.00 for the 

trimmed PD, while the unique environmental correlations decreased from 0.11 to 0.05. The 

genetic factors in the antisocial and trimmed antisocial PD correspondingly explained a more 

moderate and statistically significant portion of the total variance in AUD (33% and 44%, 

respectively). The unique environmental risk factors explained virtually none of the total 

variance in AUD. 

Table 3.7. Bivariate Cholesky A, C, and E decomposition comparisons and summaries for each personality disorder with WAVE 2 DSM-IV ALCOHOL USE 
DISORDER ordinal symptom criteria composite 

Bivariate model fit comparisons  
 

Correlations (95% CI)  
Proportion of total variance in symptoms of 

ALCOHOL USE DISORDER shared (with 
each predictor) versus unshared (95% CI) 

Predictor Model -2LL df AIC  rP rA rC rE  Ashared Aunshared Cshared Cunshared Eshared Eunshared 

Borderline PD 
(total) 

ACE 6127.23 4512 -2896.77  0.27  0.75**  0.33**  0.18  
 17% 14% 2% 13% 2% 53% 

AE 6130.44 4515 -2899.56  (0.20 - 0.34) (-0.99 - 0.99) (-1.00 - 0.99) (0.01 - 0.36)  (0-59%) (0-53%) (0-38%) (0-40%) (0-7%) (38-69%) 

CE 6129.11 4515 -2900.89             
 E 6197.97 4518 -2838.03             

Antisocial PD 
(total) 

ACE 3777.41 4511 -5244.59             

AE 3777.96 4514 -5250.04  0.37 0.85 - 0.11 
 33%  12%  - - 1%  55%  

CE 3781.50 4514 -5246.50  (0.28 - 0.45) (0.49 - 0.99)  (-0.09 - 0.31)  (10-57%) (0-37%)   (0-6%) (41-70%) 

 E 3818.39 4517 -5215.61             
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Borderline PD 
(trimmed) 

ACE 5948.43 4512 -3075.57  0.15 -0.01** 0.50** 0.10  0% 30% 4% 13% 1% 53% 

AE 5950.88 4515 -3079.12  (0.07 - 0.22) (-1.00 - 1.00) (-0.99 - 0.99) (-0.09 - 0.29)  (0-60%) (0-59%) (0-44%) (0-44%) (0-4%) (38-70%) 

CE 5950.38 4515 -3079.62             
 E 6017.44 4518 -3018.56             

Antisocial PD* 
(trimmed) 

ACE 2979.70 4513 -6046.30             

AE 2980.02 4516 -6051.98  0.31 1.00** - 0.05  44% 0% - - 0% 56% 

CE 2981.67 4516 -6050.33  (0.21 - 0.41) (0.99 - 1.00)  (-0.15 - 0.25)  (13-58%) (0-33%)   (0-4%) (42-72%) 

 E 3014.49 4519 -6023.51             
CI = confidence interval; -2LL = -2 X Log Likelihood; AIC = Akaike Information Criteria; ACE = additive genetic + shared environment + unique environmental 
risks; Trimmed = Borderline PD excluded ‘Impulsivity in at least two areas that are potentially self-damaging (e.g., spending, sex, substance abuse, reckless 
driving, binge eating)’; Antisocial PD excluded ‘Failure to conform to social norms with respect to lawful behavior as indicated by repeatedly performing acts 
that are grounds for arrest.’ *The Antisocial PD and alcohol use disorder variables were recoded into binary variables for this model only due to empty cells. 
**Model estimation of the upper and/or lower 95% CIs failed.   

 

Discussion 
	

This is the first study to examine jointly all 10 PDs with AU and AUD and to analyze the 

genetic and environmental etiology between PDs and AU/AUD. Although there were a number 

of PDs that significantly predicted AU and AUD, borderline and antisocial PDs emerged as the 

strongest phenotypic correlates of AU and AUD. Twin analyses also revealed that individual 

differences in borderline and antisocial PD criteria were the strongest phenotypic and genotypic 

correlates of AU and AUD at Waves 1 and 2. However, neither the genetic nor unique 

environmental risk factors in these PDs explained much of the total liability to AU or AUD at 

Wave 1. Instead, the genetic associations between borderline and antisocial PDs with AU and 

AUD increased with age. These results are consistent with previous research showing that 

genetic influences on AU and progression to AUD become more important over time41-44. 

Our estimates of the total genetic variance in AU and AUD attributable to antisocial PD 

criteria were lower than those reported by Fu et al.23. However, our confidence intervals span 

their estimated 50% of total genetic variance explained by antisocial PD in Wave 2 AUD. The 

moderate genetic correlation we found between borderline PD and Wave 1 AU is commensurate 

with a recent report finding the genetic correlation with alcohol abuse-dependence to be 0.3345. 
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This correlation was slightly higher for Wave 1 AUD and Wave 2 AU (0.41-0.44), and highest 

for Wave 2 AUD (0.75). In terms of sources of covariation, Few et al.45 found that the 

association between borderline and alcohol abuse-dependence was attributable to genetic risk 

factors only in the absence of neuroticism. In contrast, Distel et al.46 found the association 

between heavy AU and borderline PD to be attributable largely to unique environmental risks. 

Distel et al.’s46 results are somewhat inconsistent with our findings since most of the individual 

differences in borderline PD, AU, and AUD across both Waves were explained by unique 

environmental risks, which were unshared.  

We also found a number of novel findings. For instance, our multiple regression analyses 

showed that increased obsessive compulsive and dependent PD criteria were associated with 

lower risk of Wave 1 AU, while increased paranoid PD criteria predicted increased risk of Wave 

1 AU. In addition, schizoid PD predicted a decreased risk of Wave 1 AUD. Although our effect 

sizes were modest, we are unaware of any previous similar findings. Hasin et al.’s47 analysis of 

National Epidemiologic Survey on Alcohol and Related Conditions data found no associations 

between these PDs and persistent alcohol abuse-dependence. One potential explanation for our 

results is that alcohol consumption may differ across samples and country of origin. Another 

explanation is that the analyses conducted by Hasin et al.47 had lower power than ours. Although 

they had a larger sample size, they used only dichotomous diagnoses, which resulted in fewer 

cases and larger confidence intervals. Consequently, in the absence of a suitable replication 

sample, it should be emphasized that obsessive compulsive, dependent, paranoid, and schizoid 

PD criteria each explained very little of the total phenotypic and genetic variance in both AU and 

AUD. Accordingly, these other PDs remain less informative. 
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In terms of inconsistent findings, our Wave 1 findings are in sharp contrast to the pattern 

of results that we have recently observed with cannabis use and misuse (Gillespie et al., 

manuscript submitted for publication). Based on a similar design using PDs to predict cannabis 

use and misuse with personality as covariates, it was found that genetic risks in borderline and 

antisocial PDs shared 29-30% with the genetic risks in cannabis use, and 31-45% of the genetic 

risks in cannabis use disorder. Despite the fact that alcohol and cannabis use and misuse are 

frequently comorbid48,49, one explanation for this discrepancy, apart from cannabis use being 

more deviant, could be related to AU and AUD being partially genetically distinct from cannabis 

use and misuse50. However, we note that our Wave 2 findings are more consistent with the 

cannabis use and cannabis use disorder estimates. 

Our findings are also inconsistent with those of Hasin et al.47, who found that in addition 

to antisocial and borderline, schizotypal PD also predicted three-year persistence of cannabis, 

alcohol, and nicotine use disorders. In our results, schizotypal PD had a significant negative 

association with Wave 1 AUD, rather than a positive association. 

In a broader context, our results are consistent with role of PDs in the spectrum of 

externalizing disorders, which is highly heritable51 and characterized by conduct and substance 

use disorders, including AUD52, antisocial PD52, and borderline PD53 (Eaton et al., 2011). 

Elsewhere, we have shown that correlations across time between these two PDs can be attributed 

to common, longitudinally stable genetic risk factors54. Overall, our findings suggest that among 

the DSM-IV PDs, borderline and antisocial PD criteria are the key phenotypic and genotypic 

correlates of AU and AUD, and that these patterns of association are stable across time. 
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Limitations 

Our results should be interpreted in the context of five potential limitations. First, all 

regression models assume independent observations. Failure to account for non-independence or 

clustered samples, such as twin data, typically does not impact parameter estimates, but may lead 

to slightly narrower estimates of confidence interval ranges. However, non-independence is in 

general much less problematic when group or cluster sizes are uniform and small, which is the 

case for twin pairs.  

Second, although our twin analyses identified significant shared genetic pathways 

between PD criteria to alcohol use and misuse, the set of possible models examined was not 

exhaustive. In particular, we did not test competing causal hypotheses, which were beyond the 

scope of this report. Bornovalova et al.21 have recently shown that associations between 

borderline PD and the frequency of past 12-month tobacco, alcohol, and cannabis use could be 

best explained by a correlated liabilities model, as opposed to any causal mechanism based 

model. Additionally, it is possible that a high genetic correlation with a high environmental 

correlation cancelled out any phenotypic association for some of the AU/AUD – PD pairings. A 

multivariate genetic analysis would be required to determine this.  

Third, a natural limitation of twin models is that they cannot identify genetic processes 

underlying the observed covariation between the PDs and AU and AUD. There is, however, 

substantial evidence showing that AU and AUD15-17 and PDs18,19 are highly polygenic. In other 

words, the genetic variances and covariance are unlikely to be attributable to a single or pair of 

discrete genetic structures that influence the development of PDs, AU, or AUD, but rather to 

many genes of very small effect contributing to these phenotypes. Therefore, we can speculate 



	

	46 

that the observed genetic covariation between AU and AUD and the PDs are also highly 

polygenic. 

Fourth, while the sample is broadly representative of the Norwegian population, some 

attrition occurred from when the NIPH began recruiting twins through to Wave 1 (see Tambs et 

al.25. This may have introduced some bias if attrition was non-random with respect to the 

dependent variables55. We have shown that only demographic, and not mental health, or AU 

indicators predicted participation at Wave 125. Participation in Wave 2 was predicted by high 

education (p < 0.001 adjusted for sex and age), female sex (p = 0.003), and monozygosity (p = 

0.001). Non-participants in Wave 2 had on average 0.82 more sub-threshold PD criteria than 

participants (p < 0.001).  Of the 10 PDs assessed at Wave 1, criteria were significantly higher in 

non-participants in Wave 2 only for antisocial PD (0.09 criteria difference, p < 0.001) and 

narcissistic PD (0.09 criteria difference, p = 0.002). Borderline PD did not predict participation 

(0.05 criteria difference, p = 0.06). Neither the total number of axis I disorders nor any specific 

disorder were significantly higher in the non-participation group54. 

Finally, the sample was underpowered to detect sex differences20. A power analysis 

would be required to determine the sample size needed, but this not done in the present study. 

Because endorsement of the PD symptoms were so low, the bivariate models had a difficult time 

converging themselves, and it was clear the sample was underpowered to detect sex differences. 

However, previous research has suggested that the magnitude of genetic influences among males 

and females were equally high, and that these sources of liability were partially overlapping 

between the two sexes56. 
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Conclusion 

Using a large Norwegian twin sample, we have shown that borderline and antisocial PDs 

were the strongest correlates of the phenotypic and genotypic liability to AU and AUD. These 

patterns of associations remained consistent across time. Our findings suggest that effective 

prediction of AU and misuse can rely more heavily on criteria for these two PDs in preference to 

other PD diagnoses. By contributing to our understanding of the etiologic overlap between PDs 

and AU/AUD, our findings may ultimately help to improve the treatment of individuals with 

these disorders.   
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Supplementary 

Supplementary. Bivariate Cholesky A, C, and E decomposition comparisons and summaries for each personality disorder with WAVE 1 
ALCOHOL USE and ALCOHOL USE DISORDER (correlations less than 0.2) 

Bivariate model fit comparisons  Correlations (95% CI)  Proportion of total variance in WAVE 1 ALCOHOL USE 
shared (with each predictor) versus unshared (95% CI)  

Predictor Model -2LL df AIC  rP rA rE  Ashared Aunshared Eshared Eunshared 

Paranoid PD 
ACE 8776.15 5266 -1755.86          

AE 8777.90 5269 -1760.10  0.14 0.12 0.15  1% 33% 2% 65% 

CE 8783.38 5269 -1754.62  (0.11 - 0.20) (-0.17 - 0.41) (0.05 - 0.26)  (0 - 6%) (23 - 43%) (0 - 4%) (63-75%) 

 E 8833.65 5272 -1710.56          

Obsessive 
Compulsive PD 

ACE 9589.75 5266 -942.25          

AE 9589.75 5269 -948.25  0.01 0.10 -0.03  0% 32% 0% 67% 

CE 9604.16 5269 -933.84  (-0.05 - 0.03) (-0.13 - 0.35) (-0.14 - 0.07) 
 

(0-4%) (22-42%) (0-0%) (57-78%) 
 E 9695.57 5272 -848.43          

Dependent PD 
ACE 8679.74 5266 -1852.27          

AE 8679.73 5269 -1858.27  0.01 -0.04 0.03  0% 33% 0% 67% 

CE 8690.50 5269 -1847.50  (-0.05 - 0.07) (-0.27 - 0.20) (-0.08, 0.14)  (0-1%) (23-43%) (0-1%) (57-77%) 

 E 8777.74 5272 -1766.26          

    
Proportion of total variance in symptoms of WAVE 

1 ALCOHOL USE DISORDER shared (with 
each predictor) versus unshared  

          Ashared Aunshared Eshared Eunshared 

Schizoid PD 
ACE 7156.67 5266 -3375.33          

AE 7156.82 5269 -3381.18  -0.01 0.13 -0.07  1% 29% 0% 70% 

CE 7167.00 5269 -3371.00  (-0.08 - 0.06) (-0.18 - 0.47) (-0.20 - 0.07)  (0-6%) (16-42%) (0-0%) (58-83%) 

 E 7221.01 5272 -3323.00          

Schizotypal PD  
ACE 7322.14 5266 -3209.86          

AE 7324.69 5269 -3213.31  0.06 0.07 0.06  0% 32% 0% 68% 

CE 7331.12 5269 -3206.88  (-0.01 - 0.13) (-0.24 - 0.39) (-0.08, 0.19)  (0-5%) (19-44%) (0-3%) (56-80%) 

 E 7378.31 5272 -3165.69          
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Chapter 4. A National Swedish Longitudinal Twin-Sibling Study of Alcohol Use Disorders3 
 

Introduction 

 The second aim of this dissertation is to investigate the nature of longitudinal changes in 

the contributions of genetic and environmental risk factors in AU and AUD. This chapter will 

determine the number of genetic factors needed to account for genetic variance over time and 

whether these genetic factors are qualitatively distinct. This knowledge will contribute to our 

understanding of the ways in which these etiologic mechanisms contribute to AUD over time and 

will fill important gaps in the literature.  

AUD is very common in both the United States and Sweden (the population used in the 

current analyses), affecting 12.5% of the U.S. population1 and 6-11% of the Swedish 

population2,3. AUD is also a significant public health burden and a leading cause of premature 

death in both countries3-7. As previously mentioned, it has been well established that the 

development of AUDs are influenced by both genetic and environmental contributions, with 

consistent heritability estimates of 50% - 60%8,9. The majority of research to date has suggested 

that genetic influences on alcohol consumption become stronger with age, while shared 

environmental influences attenuate during adulthood10-13. However, these studies relied on AU, 

and thus, it is unclear whether the genetic contributions to the development of AUD are the same 

or qualitatively different across different age periods.  

The findings of the limited studies to date are conflicting. One study showed that risks for 

AUD in male and female Dutch twins between the ages of 15 to 32 are attributable to a single, 

stable set of risk genes of increasing magnitude across time14. Conversely, another study showed 

																																																								
3 This paper was modified from a manuscript that was previously published as: Long, E.C., Lönn, S.L., 
Sundquist, J., Sundquist, K., Kendler, K.S. (2017). A national Swedish longitudinal twin-sibling study of 
alcohol use disorders. Addiction, 112, 1378-1385. 
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that two genetic factors accounted for the variance in alcohol consumption among male twins in 

the United States ages 12 to 3313. One factor was most influential during adolescence through 

age 21, when the influence of the other factor became pronounced. This discrepancy may be 

explained by different phenotypes – van Beek et al.14 used symptoms of alcohol abuse and 

dependence while Edwards and Kendler13 used alcohol consumption. However, high levels of 

consumption are often a significant predictor of AUD symptoms15,16 and thus, may serve as a 

rough proxy for AUD.  

Due to the limited, conflicting extant literature, more research is needed to clarify the 

underlying mechanisms of genetic influences on AUD across time. Examining these influences 

within a developmental framework can narrow the time frames where genetic influences are 

most important, leading to a better understanding of the etiologic mechanisms contributing to 

AUDs over time. Therefore, the aim of the present chapter is to examine whether genetic 

influences on the development of AUD from emerging adulthood through mid-adulthood are 

attributable to a single factor or multiple, qualitatively distinct factors.  

Methods 

Sample 

We linked nationwide Swedish registers via the unique 10-digit identification number 

assigned at birth or immigration to all Swedish residents. The identification number was replaced 

by a serial number to ensure anonymity.  

The following sources were used to create an analysis dataset: the Total Population 

Register, containing data such as year of birth, sex, and annual data on place of residences; the 

Swedish National Census; the Swedish Mortality Register, containing dates of death; the Multi-

generation register, linking children born after 1932 to their parents; The Swedish Twin Register, 
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containing information about know zygosity; the Swedish Inpatient Register, containing 

hospitalizations from 1964 to 2010; and the Swedish Crime Register, which include national data 

an all convictions in lower court from 1973 to 2011.  

We included male-male twin and full sibling pairs born between 1955 and 1971 with both 

individuals alive at least until age 20. Twins with known zygosity were identified from the Twin 

Register and full siblings were identified from the Multigenerational Register. We require that 

the siblings are born within two years of each other and reared together, defined as living 

together for at least 80% of the possible years until age 18. Females were not included in this 

analysis because the prevalence of AUD was too low (0.4% - 0.8% across the three age groups).  

We previously noted that the prevalence of externalizing behavior, including AUD, is 

lower in same-sex monozygotic (MZ) and dizygotic (DZ) twin pairs than in opposite sex twin 

pairs17,18. This is almost surely because the former but not the latter were screened for level of 

cooperation because at least one of the pair had to return a questionnaire to the twin registry and 

cooperation was lower in subjects with AUD. 

As detailed elsewhere19, zygosity in the same-sex pairs from the twin registry was 

assigned using standard self-report items from mailed questionnaires. When validated against 

biological markers, these questionnaires were 95-99% accurate.  

Measures 

Our longitudinal measure of AUD requires sources covering the whole follow-up period. 

These sources include the Inpatient Register and the Crime Register. AUD was identified from 

the Inpatient Register by the following medical diagnoses: ICD-8 codes: 571.0, 291, 303, 980, 

ICD-9 codes: V79B, 305A, 357F, 571A, 571B, 571C, 571D, 425F, 535D, 291, 303, 980 and 

ICD-10 codes:  E244, G312, G621, G721, I426, K292, K700, K701, K702, K703 ,K704, K709, 
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K852, K860, O354, T510, T511, T512, T513, T518, T519, F101, F102, F103, F104, F105, F106, 

F107, F108, and F109. AUD was identified from the Crime Register if individuals were 

convicted for at least two records of drunk driving (suspicion code: 3005 and law 1951:649 and 

Paragraph 4 and 4A) or drunk in charge of maritime vessel (suspicion code: 3201 and law 

1994:1009 and Paragraph 4 and 5 and Chapter 20). The date of the second crime was chosen as 

the timing of the first AUD event while each following crime was counted as an event. The data 

were measured during three age ranges meant to correspond to meaningful developmental 

periods: 18-25 (emerging adulthood); 26-33 (early adulthood); and 33-41 (mid-adulthood). 

Individuals were defined to have an AUD during an age period if they had at least one 

hospitalization or conviction during that period. 

Statistical analyses 

We utilized an extended sib-pair design to decompose the sources of variation in AUD 

into additive genetic (A), shared environment (C), and unique environment (E). The need for an 

extended sib-pair design arose because the number of DZ twin pairs concordant for AUD in 

these age periods was insufficient to produce stable estimates. Therefore, we added full sibling 

pairs born within two years of each other and reared together with their siblings to the DZ pairs. 

The model assumes that MZ twins share all their genes while DZ twins and siblings share half of 

their genes identical by descent, and that the shared environment, reflecting family and 

community experiences, contributes equally to the similarity between each twin or sibling pair. 

Unique environment includes stochastic developmental effects, environmental experiences not 

shared by siblings, and random error.  

We assumed the same thresholds for AUD for MZ and DZ twins – given they both were 

weakly screened for cooperation by returning zygosity questionnaires – and permitted a separate 
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threshold for full siblings who did not undergo a parallel screening. As illustrated in Figure 4.1, 

developmental changes in the genetic and environmental influences on AUD over the three age 

periods (18-25, 26-33, and 33-41) were modeled as a Cholesky decomposition. This 

developmentally informative approach divides genetic and environmental risk into three factors, 

the first of which begins during the first period (ages 18-25) and is continually active over the 

entire developmental period. The strength of its effect at each age is reflected in the path 

coefficients from this factor to AUD at ages 18-25, 26-33, and 33-41. The second factor begins 

in the second period (ages 26-33) and impacts on AUD at ages 26-33 and 33-41. The third and 

final factor begins at ages 33-41 and acts only during this period. To account for possible cohort 

effects, we allow each threshold to linearly depend on birth year by including the corresponding 

regression parameters (referred to as age regression). 

 
Figure 4.1. Cholesky decomposition for AUD across three age periods 
 

The objective is to quantify the nature and magnitude of developmental changes in 

genetic and environmental risk factors for AUD. A full ACE model with no age regression was 

first run (Model 1). We then tested whether including the age regression would result in 

improved model fit (Model 2). Finally, we tested if removal of two C factors (one common C 

across the ages; Model 3) would result in deterioration of fit and if complete removal of the C 

factor would deteriorate fit (Model 4). Because the twin correlations suggested that genetic 
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factors are likely playing a more important role than shared environmental factors, we did not 

test sub-models removing any A factors. Sub-models were compared with the larger baseline 

model utilizing Akaike’s Information Criterion (AIC)20. All models were fit with the OpenMx 

software21. 

Results 

Descriptive Statistics 

 The total prevalences of AUD and prevalences by registration type for MZ twins, DZ 

twins, and full siblings born less than two years apart across the three age periods are shown in 

Table 4.1. The patterns of results across the years show a slight increase in prevalence from age 

18 through age 41. Rates of AUD are similar in MZ and DZ twins, but are slightly higher in the 

full siblings.  

Table 4.1. Sample size and prevalence of AUD  
  Prevalence of AUD 

Relationship Number of 
Pairs Ages 18-25 Ages 26-33 Ages 34-41 

MZ twins 1,532 37 (1.2%) 39 (1.3%) 56 (1.8%) 
Registration type     

Hospitalization  20 (0.7%) 23 (0.8%) 35 (1.1%) 
Crime  21 (0.7%) 25 (0.8%) 29 (0.9%) 

DZ twins 1,940 55 (1.4%) 53 (1.4%) 77 (2.0%) 
Registration type     

Hospitalization  31 (0.8%) 33 (0.9%) 54 (1.4%) 
Crime  27 (0.7%) 28 (0.7%) 33 (0.9%) 
Full siblings, born 
0-2 years apart 66,033 3,001 (2.3%) 3,176 (2.4%) 3,451 (2.6%) 

Registration type     
Hospitalization  1,290 (1.0%) 1,671 (1.3%) 2,119 (1.6%) 
Crime  2,086 (1.6%) 1,986 (1.5%) 1,835 (1.4%) 

 

 The tetrachoric twin and sibling correlations for AUD by age period are displayed in 

Table 4.2. The within-pair twin/sibling correlations are shown along the diagonal for each age 

period. The within-pair MZ twin correlations are greater than both the within-pair DZ twin and 

within-pair sibling correlations, suggesting that genetic influences are playing an important role. 
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Of note is the increasing MZ correlation across the years, while the correlations for DZ twins and 

full siblings remain similar, suggesting that genetic factors increase in importance. Additionally, 

at ages 18-25 and 34-41, the within-pair within-trait DZ twin pair correlations are greater than 

half their MZ twin pair counterparts, suggesting that shared environmental effects also explain 

familial aggregation during these two later age periods, although these effects may be minimal. 

Both the within-DZ twin and within-sibling correlations were fairly stable across time. The DZ 

twin correlations are also quite similar to the full siblings, indicating that there is no evidence for 

the special twin environment. The cross-twin/sibling cross-time correlations are shown on the 

off-diagonals.  

Table 4.2. Tetrachoric twin correlations (SE) for AUD by age period 
 Twin 2   
Twin 1 Ages 18-25 Ages 26-33 Ages 34-41 
Monozygotic Twins    

Ages 18-25 0.546 (0.138) 0.695 (0.103) 0.706 (0.089) 

Ages 26-33 0.421 (0.164) 0.679 (0.105) 0.688 (0.091) 

Ages 34-41 0.211 (0.202) 0.564 (0.123) 0.716 (0.080) 

Dizygotic Twins    

Ages 18-25 0.317 (0.156) 0.419 (0.137) 0.284 (0.155) 

Ages 26-33 0.181 (0.192) 0.333 (0.157) 0.150 (0.190) 

Ages 34-41 0.399 (0.123) 0.399 (0.123) 0.477 (0.105) 
Full siblings, born 
0-2 years apart    

Ages 18-25 0.385 (0.019) 0.362 (0.019) 0.318 (0.020) 

Ages 26-33 0.358 (0.019) 0.379 (0.019) 0.386 (0.018) 

Ages 34-41 0.320 (0.020) 0.352 (0.019) 0.365 (0.018) 
 

Multivariate Twin Modeling 

 Model fit statistics for the four models are shown in Table 4.3. The best-fitting model as 

per the AIC was Model 4, which included the age regression (i.e., age as a covariate on the item 

thresholds) and eliminated the C component (i.e., an AE model), indicating there is no evidence 
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for shared environmental influences on the development of AUD across the ages of 18-41. The 

parameter estimates and 95% confidence intervals for the genetic and individual-specific 

environmental risk factors from our AE Cholesky model are depicted in Figure 4.2. As illustrated 

in Figure 4.3, the first genetic factor (A1) was robust and strongly impacted the liability to AUD 

at ages 18-25 (0.84; CI: 0.83, 0.88). The influence of this factor was sustained at ages 26-33 and 

34-41, although its relative importance declined modestly. A second genetic factor (A2) of much 

less impact contributed at ages 26-33 and increased modestly at ages 34-41 (0.31; CI: 0.05, 

0.47). The third genetic factor (A3) had virtually no influence on the liability to AUD at ages 34-

41.  

 The first unique environmental factor (E1) also has a strong influence on AUD at ages 18-

25 but decreased substantially with time. A second unique environmental factor (E2) contributed 

at ages 26-33 and also showed a declining influence over time. Finally, the third unique 

environmental factor (E3) had the same effect at ages 34-41 as E2 did at ages 26-33.  

Table 4.3. Model fit statistics for AUD multivariate Cholesky decompositions 

Model -2LL # Parameters AIC Compared to 
model p -value 

1. No age regression 79,483.22 21 -754,534.80  - 
2. With age regression 
(ACE model) 79,303.11 27 -754,702.90 1 3.6·10-36 

3. With age regression, 
common C (ACE model 
with 1 C factor) 

79,303.14 24 -754,708.90 2 0.999 

4. With age regression, 
no C (AE model) 79,304.08 21 -754,713.90 2 0.990 
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 Figure 4.2. Parameter estimates (and SEs) for the genetic and unique environmental effects 
from the AE Cholesky Model. ‘A’ refers to additive genetic factors and ‘E’ refers to unique 
environmental factors. The subscripts 1, 2, and 3 indicate that the respective effects come online 
at ages 18–25, 26–33, and 34-41, respectively. 
 

 
Figure 4.3. The proportion of total variance in alcohol use disorders accounted for by genetic 
factors from ages 18 to 41. The y-axis represents the cumulative proportion of variance. The first 
genetic factor, which starts at ages 18–25, is represented in dark grey. Light grey represents the 
second genetic factor, starting at ages 26–33. 
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The parameters from the full ACE model (Model 3) are shown in Supplementary Table 

4.5. As shown, the C parameters are not statistically significant and could be dropped from the 

model without a significant deterioration of fit. Thus, the AE model was chosen on the basis of 

parsimony.  

 The standardized proportions of variance attributable to A and E (and their 95% 

confidence intervals) at each time period based on the best fitting multivariate models are 

displayed in Table 4.4. Both the heritability and unique environmental effects are stable across 

the three age periods. 

Table 4.4. Estimates of additive genetic (a2) and unique 
environmental (e2) effects by age  
 a2 (95% CI) e2 (95% CI) 
Ages 18-25 70.6% (68.9, 77.4) 29.2% (25.0, 34.8) 

Ages 26-33 70.5% (55.0, 89.3) 28.2% (26.9, 36.0) 

Ages 34-41 71.6% (52.5, 99.1) 27.3% (24.5, 41.7) 
Note. Totals may not equal 100% due to rounding. 

 

The cross-temporal genetic and unique environmental correlations are shown in 

Supplementary Table 4.6. The genetic correlations across the age groups are high, ranging from 

0.84 to 0.98. The unique environmental correlations are low to moderate, ranging from -0.03 to 

0.34. 

Discussion 

 The aim of the present chapter was to determine the number of genetic factors needed to 

account for genetic variance over time and whether these genetic factors are qualitatively 

distinct. Our results showed significant changes in genetic variation over time that are consistent 

with both innovation and attenuation. Although the total heritability remained stable between 

ages 18 and 41, we showed evidence for two distinct but correlated genetic risks on AUD: one 

originating in emerging adulthood (ages 18-25) and another set with less impact coming online 
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during early adulthood (ages 26-33). By mid-adulthood (ages 34-41), there was no evidence for 

any additional genetic variation.  

 These results are inconsistent with those of van Beek et al.14, who showed that risks for 

AUD are attributable to a single, stable set of risk genes. They are, however, broadly consistent 

with those of Edwards and Kendler13, who showed that two genetic factors influenced risk for 

alcohol consumption, with one factor most influential during adolescence through age 21 and the 

second factor becoming more pronounced thereafter. This is somewhat surprising, given that our 

phenotype was similar to the phenotype used in the van Beek et al.14 study. Similar age ranges 

were also used in all three studies, and, importantly, captured the important developmental 

period of emerging adulthood. However, one possible explanation for the inconsistency in results 

may be due to different prevalences of AUD in the three countries the samples were drawn from. 

Van Beek et al.14 used a sample from the Netherlands, where the past 12-month prevalence of 

alcohol dependence is the lowest (0.7%) 22. We used a Swedish sample and Edwards and 

Kendler13 used a U.S. sample, where the past-12 month prevalences were more similar (6.3% 

and 3.8%, respectively)1,3. Thus, an important area for future research is to further examine how 

cultural influences may impact genetic influences across time.  

Another possible explanation may be due to the different modeling approaches used. The 

present study and Edwards and Kendler13 used Cholesky decompositions, whereas van Beek et 

al.14 used both Cholesky decomposition and autoregressive “simplex” models. Future research 

should use more comprehensive modeling approaches that test competing developmental 

hypotheses for a deeper understanding of how genetic processes influence AUD risk over time.  

Congruent with the findings of Grant et al. (2006)23, we found no evidence for shared 

environmental influences in the development of AUD. However, because our first age group 
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started at age 18, we could not determine the role of these influences prior to this age. It is likely 

though that shared environmental risks impact alcohol consumption during adolescence but 

decline with age, due to relaxing social constraints during adulthood10-12. 

 In terms of heritability estimates, our estimates are higher than those that are typically 

reported (50% - 60%)8,9. One possible explanation for this may be that we restricted our sample 

to ages 18 through 41, which further adds to the research showing that genetic factors become 

more important with increasing age. However, we are not able to make any conclusions 

regarding the role of genes after age 41. Another possible explanation is that our use of registries 

detected more severe cases where genes may play a more important role, thereby increasing our 

heritability estimates.  

Our data also relied exclusively on males, and the degree to which our results can be 

generalized across sex or to Swedish females is unclear. One large recent study found a 

substantial sex difference where the heritability of AUD was estimated to be 22% for females, 

but 57% for males18. This study also showed that shared environmental influences and twin-

specific environmental effects were more important in females than males.   

 Our finding that there are two major sets of genetic risk factors for AUD is broadly 

consistent with other developmental twin studies of externalizing behaviors and disorders. For 

example, genetic factors for antisocial behavior are more influential after the age of 15, and the 

heritability increases from childhood to adulthood24,25. There is also evidence that the genetic 

influences on childhood and adolescent conduct disorder (before age 18) overlap with those of 

adult antisocial behavior (after age 18)26.  

Likewise, the development of externalizing behavior is influenced by genetic continuity, 

but with some genetic innovation during early and late adolescence27. The genetic variation in 
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externalizing disorders has also been shown to increase from ages 17 to 2428. Relatedly, Kendler 

et al.29 found evidence for two genetic factors influencing risk for criminal behavior. One began 

during the ages 15-19 and declined over time, while the other came online at ages 20-24 and 

showed stability over time. Taken together, these results suggest that genetic risk for AUD and 

the associated phenotypes (e.g., externalizing disorders) are developmentally dynamic from early 

adolescence through middle adulthood. 

 Our findings can help to inform gene-finding efforts. Recent genome-wide association 

studies have had limited success in identifying the genetic variants that increase the risk for 

developing AUD30,31. Our results suggest that this may be because these studies used a sample 

with too wide of an age range, thus increasing the amount of genetic heterogeneity. By 

restricting the sample to early adulthood (ages 18-25) or more likely, mature adults (age 26 or 

older), gene-finding efforts may be improved.   

Limitations 

 These results should be considered within the context of three potential limitations. First, 

our analyses were limited to Swedish males between the ages of 18 and 41. It is therefore 

uncertain if our results generalize to women as well as other populations. However, it is likely 

that the results are generalizable to other industrialized countries. Additionally, although we had 

a large sample size, prevalence for AUD before age 18 and in females was too low to be able to 

obtain stable statistical results, and thus were not included in this analysis.  

Second, we relied on medical and legal records for our measure of AUD. This method 

has the advantage of not being subject to recall or reporting biases, but it can produce false 

negatives and false positives. Although the extent to which this occurred could not be estimated, 

we suspect that registries detect more severe cases of AUD than population-based interview 
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studies, due to a recent report using the same sample that found the prevalence of AUD to be 

lower than estimates from most epidemiologic surveys2,3, including the nearby country of 

Norway32,33. However, a previous study using the same registry data showed high concordance 

rates for registration across the different methods, providing support for our AUD measure2. In 

addition, those cases that require hospital care are more clinically relevant than those who are 

based on population-based interviews.   

Third, individuals who were assigned a diagnosis based on inpatient registrations entered 

treatment for both voluntary and involuntary reasons. Accordingly, it is possible that including 

treatment-seeking individuals rather than using a population-based sample only may have 

resulted in different conclusions about the genetic and environmental influences on AUD risk 

across time34,35. For example, Prescott and Kendler34 found evidence for shared environmental 

influences on AUD risk when using a treatment-seeking population, but not a population-based 

sample. However, it should be noted that we also diagnosed AUD cases from the criminal 

registry, which required no treatment seeking.   

Conclusion 

 Using a nationwide sample of Swedish male twins and full siblings born less than two 

years apart, we showed stable heritability across time with two sets of genetic risk factors, one 

originating during the ages 18-25 and another coming online at ages 26-33. These results 

contribute to our understanding of the etiologic mechanisms contributing to AUDs by elucidating 

the nature of genetic influences across time. 
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Supplementary 
 

Supplementary Table 4.5. Path coefficients from full ACE model (95% CI)  
 A1

  A2  A3  
Ages 18-25 0.68 (0.00, 0.88)   

Ages 26-33 0.64 (0.63, 0.88) 0.17 (0.00, 0.31)  

Ages 34-41 0.63 (-0.60, 0.89) 0.29 (-0.30, 0.57) 0.14 (0.00, 0.24) 
 C1

  C2  C3  
Ages 18-25 0.37 (0.00, 0.58)   

Ages 26-33 0.33 (-0.38, 0.57) 0.21 (0.00, 0.30)  

Ages 34-41 0.26 (-0.37, 0.60) 0.24 (-0.21, 0.37) 0.04 (0.00, 0.25) 
 E1

  E2  E3  
Ages 18-25 0.63 (0.47, 0.74)   

Ages 26-33 0.32 (0.30, 0.46) 0.55 (0.45, 0.59)  

Ages 34-41 0.20 (0.18, 0.42) 0.25 (0.08, 0.33) 0.53 (0.45, 0.57) 
 
 

Supplementary Table 4.6. Genetic and environmental correlations  
 Genetic 
Ages 18-25 1   

Ages 26-33 0.92 (0.86, 0.98) 1  

Ages 34-41 0.84 (0.77, 0.96) 0.98 (0.96, 1.00) 1 
 Environmental 
Ages 18-25 1   

Ages 26-33 0.34 (0.23, 0.41) 1  

Ages 34-41 0.16 (-0.03, 0.19) 0.28 (0.16, 0.38) 1 
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Chapter 5. Contributions of Genes and Environment to Developmental Change in Alcohol 
Use4 

 
Introduction 

This chapter will address the second part of Aim 2 by investigating the precise 

mechanisms by which underlying genetic and environmental risk factors influence AU over time 

from adolescence through young adulthood. Understanding these etiologic mechanisms of 

change underlying the development of AU is important, given the high rates of AU initiation in 

early adolescence1. For example, over 70% of U.S. high school students report consumption of at 

least one alcoholic beverage2,  and 34% of high school seniors report drinking alcohol to 

intoxication3. Excessive AU among adolescents is associated with risky behaviors, such as 

physical fighting, automobile deaths, and homicides4. Understanding how the genetic and 

environmental risk factors emerge and change over time from adolescence through early 

adulthood will inform intervention and prevention efforts aimed at reducing AU-related risks and 

negative outcomes.  

Developmental studies of AU have consistently shown that AU increases linearly 

throughout adolescence5-9, with heavy drinking peaking among individuals in their early 

twenties, before decreasing10. Although these studies have been successful in identifying 

common trajectories of AU, they have not tested competing developmental models aimed at 

capturing the different processes that may be driving patterns of AU change over time.  

As previously stated, twin and family studies have demonstrated that AU is influenced by 

genetic and environmental factors, with genetic risk factors explaining 50%-60% of AU 

variance11-13. Genetic influences have been shown to become relatively more prominent over 

																																																								
4 This paper was modified from a manuscript that was previously published as: Long, E.C., Verhulst, B., 
Aggen, S.H., Kendler, K.S., Gillespie, N.A. (in press). Contribution of genes and environment to 
developmental change in alcohol use. Behavior Genetics.    
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time, whereas shared environmental factors become less salient over time14-17. Previous 

longitudinal analyses of the data from the Virginia Adult Twin Study of Psychiatric and 

Substance Use Disorders (VATSPSUD) used in this present study also found that genetic 

variation increased over time15,16. Further, Van Beek and colleagues found evidence of single, 

stable set of genetic risk factors17. In contrast, Edwards and Kendler18 found that while genetic 

variance increases over time, the genetic risks were attributable to two significant, dynamic and 

qualitatively different genetic risk factors18, whereby one factor declines in young adulthood, 

while the other increases in variance.  

The genetically informative reports to date, including the previous chapter, have been 

largely atheoretical insofar as they did not leverage the classical twin design within a defined, 

developmental framework, but instead relied on Cholesky decompositions. This approach makes 

no theoretical prediction with regard to the emerging and evolving genetic and environmental 

mechanisms underpinning changes in AU or AUD over time15,16. In other words, they did not 

specify and test competing models representing different developmental hypotheses17,19.  

It is plausible that genetic and environmental risk factors increase over time as predicted 

by latent growth models (LGMs)20-24. In LGMs, the rates of change (slope) from baseline levels 

(intercept) may be linear or non-linear. These processes have been referred to as an “unfolding” 

of risk factors or effects across time25. Alternatively, there may be an accumulation of random 

genetic or environmental effects as predicted by autoregressive models (ARMs)26-28. It is also 

possible that both processes may act jointly on the risk of AU as predicted by dual change score 

(DCS) models29-31. This hybrid approach is mathematically and statistically equivalent to a 

random coefficient, multilevel or hierarchical linear model32-36. Costanzo and colleagues10 have 

used this approach to examine rates of change in AU (i.e., latent growth effects) and changes in 
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the probability of heavy drinking relative to the previous probability (i.e., autoregressive effects). 

Although based on genetically uninformative data, their results showed that heavy drinking was 

most common in the early 20’s, but decreased thereafter, and that for a subset of individuals, 

heavy drinking persisted into later adulthood. The intent of the DCS modeling approach here was 

to simply identify age trajectories of heavy drinking for use in subsequent mixture modeling, 

rather than to compare the fits of the sub-models (i.e., latent growth vs. autoregressive effects). 

The DCS model has been applied to other complex psychiatric behaviors. For example, 

Gillespie et al. have used this method to distinguish genetic and environmental mechanisms 

underlying adolescent depression25. They found that environmental risks were best explained 

with accumulating, autoregressive factors, whereas genetic risks were best explained in terms of 

latent growth factors that unfold or change at different rates across time. To our knowledge, this 

hybrid DCS method has not been used to examine the genetic and environmental influences 

underlying adolescent AU.   

Given the importance of gaining a complete understanding of how genetic and 

environmental influences contribute to the etiology of adolescent AU, investigating these 

developmental features within a genetically informative, developmental framework is needed. 

This approach has the potential to identify critical time-dependent developmental periods for 

effective prevention and early intervention efforts.  

Therefore, the aim of the present chapter is to examine within a broader developmental 

framework the nature of longitudinal changes in the contributions of genetic and environmental 

risk factors to AU from mid-adolescence through young adulthood. Because of the phenotypic 

and genetic correlations between internalizing disorders and AU37-40, it is hypothesized that the 

developmental pattern of genetic and environmental risks in AU will be broadly similar and 
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follow the same patterns observed elsewhere25. Accordingly, consistent with the results of 

Gillespie et al. (2015)25, we predict that (i) autoregressive effects will better characterize 

environmental influences on AU, and (ii) latent growth effects will describe genetic risk factors. 

Method 

Sample 

 Participants came from the Virginia Adult Twin Study of Psychiatric and Substance Use 

Disorders (VATSPSUD)41. VATSPSUD consists of Caucasian male, female, and opposite sex 

twin pairs from the Virginia Twin Registry (now the Mid-Atlantic Twin Registry) born between 

1940 and 1974. Between 2000-2004, a subsample of the adult same sex male twin pairs were 

assessed as part of an interview to study the nature and pattern of risk and protective factors for 

psychoactive substance use and psychoactive substance use disorders across the lifespan. This 

study was completed by 1,794 males, aged 24-62 years (M = 40.3, SD = 9.0), and consisted of 

752 complete twin pairs (467 monozygotic and 285 dizygotic) and 290 singletons. Zygosity was 

determined using a combination of self-report measures, photographs and DNA analysis42.  

Measures 

 The outcome variable used in the models was AU. AU was assessed using retrospective 

self-reports of the ages at which changes in AU occurred over the lifespan. A Life History 

Calendar method43-45 was used to assess several variables related to AU. This method has shown 

that although human memory can be relatively poor when attempting to recall past behavior, 

self-report information may be improved significantly when probed with careful directed 

questioning involving specific time periods and events. Using this method, participants were 

asked how old they were when they first started drinking, at what age they drank the heaviest, 

how much they drank (quantity; drinks per day), and how often they drink (frequency; days 
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drank per month). Twins were asked to report on these consumption variables at the age when 

their alcohol intake changed. To reduce the number of missing values in the person year data, 

values were filled in for ages where no change in consumption was reported with the previous 

change amount. Interviews were administered via telephone or in-person interviews. The 

calendar alcohol response data was organized into a person year data set with person ages 

ranging from 0 to 61.  The full interview included a number of retrospective assessments to 

coincide with the timing of major developmental milestones, such as alcohol initiation, leaving 

the parental home, finishing high school, and college entry and completion46.  

A person year change in average number of drinks per month variable was created using 

a ‘standard’ unit for a drink that equaled one and one half ounces of spirits, six ounces of wine, 

or twelve ounces of beer. All longitudinal modeling used this average number of drinks per 

month variable as the outcome for the selected range of person years 15-25. This age range was 

selected to correspond to the meaningful developmental milestones listed above. To adjust for 

wide ranges of the mean AU, we applied a log transformation to the data.  

Statistical Analyses 

Autoregressive (ARMs), latent growth (LGMs), and dual change score (DCS) 

developmental models were fitted to the AU data to test competing hypotheses regarding the 

nature of the genetic and environmental risk factors involved in changes in AU over time. ARMs 

predict an accumulation of time-specific random effects and formally capture the ‘remembering’ 

or the ‘forgetting’ of time-dependent risk factor influences. Genetic or environmental risks at 

each time point are a function of new time-specific random effects (“innovations”) plus 

individual differences expressed from earlier times (“accumulation”). The “innovations” reflect 

novel, time-dependent genetic effects or environmental influences. Cross temporal correlations 
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within subjects arise because innovations may persist over time and accumulate during 

development, resulting in developmental increases in the genetic or environmental variances, and 

increasing correlations between adjacent measures.  

 LGMs predict that developmental change in a phenotype is a function of unfolding, 

random risks in baseline levels (intercept) and rates of change (slope) over time that can be 

decomposed into genetic and environmental sources of variance. Rates of change can be linear or 

non-linear. These models correspond with special cases of the latent factor model in which factor 

loadings for the baseline levels and change factors are functions of the coefficients of a priori 

contrasts on the ages at which the measures were taken.  

DCS models are hybrid models specifying that change within the genetic or 

environmental risk factors is a function of both autoregressive and latent growth factors. The 

DCS model is a more complex developmental model, as it combines the LGM (linear and 

quadratic rates of changes) with first-order ARM effects for both genes and environment. The 

diagram in Figure 5.1 summarizes the principal features of this model and how these two types of 

developmental processes are integrated. For simplicity, the Figure only considers the elements of the 

model without distinction between genetic and environmental components, although our analysis 

evaluates the genetic and environmental components (A, C, and E) independently. This allows for the 

possibility that different processes underlie genetic and environmental components of developmental 

change. 
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 Figure 5.1. Path diagram of a structural model for the developmental changes in alcohol use for 
autoregressive and latent growth curve effects for ages 15 through 25. I = intercept (constant); S 
= slope (linear rate of change); Q = quadratic (nonlinear rate of change); β	=	first-order, 
autoregressive coefficients (the accumulation of risks due to the constant and change factors 
including latent residual error over time); Ψ	=	item-specific or residual variances; ϵ	=	error 
variances for the latent AU factors.	This model can be applied to genetic or environmental 
developmental change, or both.   
 

Normalized orthogonal contrasts were used for the latent growth factor loadings for the 

intercept (I), linear slope (S), and quadratic (Q) latent growth factors in the saturated DCS model 

are shown in Supplementary Table 5.3. In Figure 5.1, the first-order, autoregressive coefficients 

are denoted by β	and reflect the accumulation of risks due to the constant and change factors 

including latent residual error over time. These were set to be equal across ages. The item-

specific or residual variances in the observed AU frequencies are represented by Ψ, and finally, 

the error variances for the latent AU factors at each age (ages 15 - 25) not explained by the 

constant and change factors are represented by ϵ.   
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The variance components for the innovations in the autoregressive features, as well as the 

intercept and slope factors in the latent growth processes can be decomposed into additive (A) 

genetic, shared (C), and unique (E) environmental variance components using standard 

biometrical genetic methods47,48. Because monozygotic (MZ) twin pairs are genetically identical, 

while dizygotic (DZ) twin pairs share on average half of their segregating genes, the expected 

twin pair correlations for the genetic (A) effects are 1.0 and 0.5, respectively. An important 

assumption in twin modeling is that the common environments (C) contribute equally to the 

similarity in MZ and DZ twin pairs, and because non-shared environments (E) are by definition 

uncorrelated, E must also reflect measurement error. The developmental models were fitted and 

compared using structural equation modeling within the R-based OpenMx software package 

using Full Information Maximum Likelihood (FIML)49-51.  

The full DCS model (Model 1) can be modified by removing the LGM component to 

produce a pure ARM (Model 2), or by removing the ARM, resulting in a pure LGM (Model 3). 

Within the twin model, the structure can then be further simplified. Model 4 removed the effect 

of shared environmental influences for both the LGM and ARM components. Model 5 removed 

the genetic ARM component and the unique environmental LGM component. Thus, Model 5 

predicted that LGM effects account for genetic risk factors, while ARM effects accounted for 

unique environmental influences on AU.    

The best fitting model was identified by examining the lowest Akaike Information 

Criterion (AIC)52, Bayesian Information Criterion (BIC), and sample-size adjusted BIC (sBIC)53, 

which are information based parsimony indices. Selecting a best-fitting model based solely on 

log-likelihoods can be misleading due to 'over-fitting' since model-data misfit will decrease 

simply by adding more parameters to a model. Therefore, the advantage of parsimony indices is 
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that they penalize models with larger numbers of parameters, thereby providing an index of each 

model's efficiency to explain the patterning in observed data when balanced against model 

complexity. Our rationale for including BIC and sBIC is also based on simulations54, which have 

shown that these indices outperform AICs55. Information based indices are appropriate when 

model comparisons are to be made for models that are not all nested, as is the case here. Under 

Model 5, the means for the unshared environmental (E) ARM component were necessarily 

modeled on the latent true scores for each observed phenotype, as opposed to the intercept, slope 

and quadratic in the full DCS model (Model 1). 

Results 

Descriptive Statistics 

The full MZ and DZ twin correlation matrices by age are presented in Supplementary 

Tables 5.4 and 5.5, respectively. Generally, the MZ twin correlations showed an increase until 

peaking at age 21 (r = 0.50), after which the correlations stabilize or decline slightly, ranging 

between 0.46 and 0.48. Conversely, the DZ within-pair twin correlations are more modest, 

ranging between 0.17 and 0.37. Despite a slight increase from age 15 through age 18, the 

correlations subsequently decrease steadily. The size of the MZ correlations are greater than the 

DZ correlations at all time points, but the DZ correlations are also greater than twice the MZ 

correlations. This suggests that familial aggregation is likely attributable to a combination of 

additive genetic and shared environmental risk factors.  

Developmental Models 

Table 5.1 shows a summary of the fit indices for the different model comparisons. As 

hypothesized, the best-fitting developmental model as determined by the AIC, BIC, and sBIC 

was Model 5, which predicted that LGM effects account for genetic risk factors, whereas an 
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ARM better characterizes how unique environmental influences operate on AU. Figure 5.2a 

shows the expected means for AU change by age as predicted by Model 5. There is an 

approximately linear increase in changes in AU from age 15 through age 21, at which point 

changes in consumption stabilize. Figure 5.2b shows the patterns of change in the genetic, 

unique environmental, and total phenotypic unstandardized variances. The pattern of mean 

changes in AU roughly corresponds to the patterns of change in the variance of AU across the 

ages measured. There is a marked increase in the total phenotypic variance from age 15 to age 

18, at which time the effect stabilizes followed by relatively small changes through age 25. The 

average contribution of the unique environment also shows a sharp increase from age 15 to age 

18, but then shows a decline. The genetic variance, however, increases fairly linearly with age. 

Table 5.1. Model fit statistics for developmental modeling 
Model EP df AIC BIC sBIC 
1. Full DCS 55 19668 11826.45 -85508.46 51369.95 
2. Autoregressive 45 19678 14735.04 -82649.36 54260.81 
3. Latent Growth 24 19699 16317.53 -81170.79 55806.08 
4. AE (No C) 38 19685 11826.00 -85593.05 51339.36 
5. A growth +  
E autoregressive 23 19700 11185.57 -86307.70 50672.35 

Note. EP = estimated parameters; df = degrees of freedom; AIC = Akaike Information Criteria; BIC = Bayesian 
Information Criterion; sBIC = sample-size adjusted Bayesian Information Criterion; DCS = dual change score; A = 
additive genetic risks; C = shared environmental risks; E = unique environmental risks. 

 
Figure 5.2a. Changes in the phenotypic means across age  
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Figure 5.2b. Changes in the phenotypic, genetic, and unique environmental unstandardized 
variances across age 
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heterogeneity in the nonlinear curvature. Finally, the autoregressive parameter, 𝛃 (0.77, 95% CI 

= 0.75 - 0.79), represents the consistency of changes in AU over time. 

Notably, the genetic correlations between the intercept and the linear slope and the 

intercept-quadratic slope correlations were relatively small and not statistically significant. 

However, the correlation between the linear and quadratic slopes is much larger and statistically 

significant, but caution should be used when interpreting this association because the magnitude 

of the variances of the two slopes (and hence the covariance) is quite small. 

Table 5.2. Parameter estimates from best-fitting developmental model (95% CI) 

 Intercept Linear Slope Quadratic Slope 

Intercept 1.05 
(0.85, 1.28)   

Linear Slope -0.14 
(-0.30, 0.02) 

0.13 
(0.08, 0.18)  

Quadratic Slope -0.07 
(-0.31, 0.16) 

-0.48 
(-0.95, -0.21) 

0.06 
(0.02, 0.10) 

Means 1.95 
(1.81, 2.04) 

-0.05 
(-0.12, 0.02) 

-0.29 
(-0.32, -0.24) 

Autoregressive 
Parameter (𝛃) 

0.77 
(0.75, 0.79)   

Note. The top panel presents the variances of the latent growth factors on the diagonal and 
the correlations between them on the off-diagonal.  

Discussion 

 We investigated the nature of longitudinal contributions of genetic and environmental 

risk factors to changes in AU from mid-adolescence through young adulthood. While a cursory 

inspection of the twin correlations may suggest that familial aggregation in AU is potentially 

attributable to a combination of additive genetic and shared environmental risk factors, we were 

able to drop the shared environmental variance components with no statistically significant 

reduction in model fit. This type of global parameter testing is often performed first to determine 

if a more parsimonious model fits the data better. Therefore, on the basis of parsimony, we chose 

the best fitting model to be Model 5. Despite this, these patterns underscore the need for follow-

up inspection of the shared environment as part of the developmental process. 
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With Model 5 as the best fitting model, the way genetic risk factors contribute to changes 

in AU over time between ages 15 and 25 were best described by expectations from a quadratic 

LGM (i.e., an unfolding). In other words, genes were found to affect baseline levels of AU and 

rates of change across time. The main implication of the LGM best describing how genes 

influence changes in AU is that the same genes may be expressed at different stages of 

development, although their effects, and potentially their expression, may increase with age. In 

contrast, unshared environmental influences were best described by expectations from the ARM 

(i.e., an accumulation), suggesting that the impact of idiosyncratic aspects of the environment is 

cumulative, or remembered. Thus, significant life events, adverse or protective, occurring at age 

15, such as a break-up with a significant other, or becoming involved with a sport, can continue 

to influence AU at later ages, in addition to other life events.    

 Our results based on this more exhaustive, hybrid DCS model are broadly consistent with 

previous results based on the same data16. These results showed that genetic variation increased 

over time in AU, which we also found. However, as mentioned in the introduction, Kendler et 

al.16 relied on Cholesky decomposition, which, while useful for describing the strength of genetic 

correlations over time, provides no information or posits no theory about the underlying 

mechanisms contributing to any changes in genetic and environmental variance components. The 

DCS model goes beyond the Cholesky decomposition to elucidate how these underlying 

mechanisms are changing over time.  

Although DCS models have been applied to a variety of complex behaviors, to our 

knowledge, this is the first study to specify and compare a broader set of competing longitudinal 

developmental models within the context of a twin design to characterize the sources of genetic 

and environmental risks involved in changes in AU from mid-adolescence to young adulthood. 
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Previously, Gillespie and colleagues compared the fits of competing developmental models to 

investigate longitudinal change in adolescent depression25. Similar to our findings, 

environmental risks were best explained as an accumulating, autoregressive process, and genetic 

risks were best explained as an unfolding, latent growth process. One possible explanation for 

why both complex behaviors appear to follow similar genetic and environmental models for 

change is that they are modestly correlated56,57. It is possible that one pathway to problematic 

alcohol use is through internalizing disorders58,59. Thus, it may be that the genes and the 

environment that influence adolescent depression operate broadly in similar ways as do the 

processes influencing adolescent AU.  

 Another study that is relevant to the current findings is the report by Costanzo and 

colleagues10. Although they did not use genetically informative data, they used a similar 

modeling approach to examine rates of change in AU and changes in the probability of heavy 

drinking. They showed that heavy drinking is most common in the early 20’s, but decreases 

thereafter, and that for a subset of individuals, heavy drinking persists into later adulthood. This 

is consistent with our findings that the mean changes in AU increased through age 21. Also of 

interest is that our MZ twin correlations and pattern of genetic variance increased steadily until 

age 21, when they peaked, and then stabilized thereafter. Accordingly, it is possible that genetic 

factors underlie the pattern of drinking behavior shown in the Costanzo et al.10 study. 

These results are also broadly consistent with the notion of there being two discernable 

genetic risk factors involved in changes in AU over time: an adolescent-limited genetic risk 

factor and an adult-onset genetic risk factor18. Because externalizing disorders and alcohol 

problems are genetically correlated during adolescence 60, it may be that the adolescent-limited 

genetic risk factor is broadly capturing liability to externalizing disorders, which includes AU, 
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while the adult-onset genetic risk factor is capturing liability specifically for alcohol use 

disorder18.     

Limitations 

 The findings of the present study should be considered in the context of three limitations. 

First, our sample only consisted of white male twins, and therefore, our results may not 

generalize beyond this population. However, white males were targeted because they have 

significantly higher rates of AU than other populations61,62. Previous analyses have shown that 

this sample is broadly representative of white U.S. males and do not differ from the general 

population in rates of psychopathology, drug use, and abuse42. 

 Second, these analyses were carried out on retrospectively assessed data, which may be 

subject to various degrees of recall bias. A Life History Calendar (LHC) method63 was used to 

improve recall accuracy when assessing the twins by providing multiple cues to improve recall. 

The reliability of retrospective recall of AU using the LHC method is good64,65 and previous 

studies suggest that retrospective assessments might suffer less from underreporting than 

prospective assessments of AU64,65. The sampling time frame was also limited to age 25. It is 

unclear how genetic and environmental risks will continue to impact AU at later ages.  

 Third, because values were filled in for ages where no change in consumption was 

reported with the previous change amount, it is possible that participants’ use was not constant in 

between the reported ages. To determine if this possibility would change the best-fitting model, 

we fitted the same sequence of models using only the actual reported change data. Because of the 

large amount of missing data, model solutions and parameters estimates were unable to reliably 

converge.   
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Conclusions 

 Using a large sample of male twins, we formally tested and compared hypothetical 

longitudinal developmental models to investigate the nature of genetic and environmental 

influences contributing to changes in AU over a developmentally relevant period from mid-

adolescence through to young adulthood. Model fitting results showed that genetic influences 

were consistent with an unfolding, growing pattern of risks as predicted by a latent growth 

model, while unshared environmental factors were best described by an accumulating pattern of 

risk as predicted by autoregressive effects. These findings add to our understanding of how 

genetic and environmental risk factors may operate to influence changes in AU across time. The 

results of this study will inform gene identification efforts and ultimately help to identify critical 

developmental periods for effective prevention and early intervention efforts. 
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Supplementary 
 

Supplementary Table 5.3. Normalized coefficients of contrasts (fixed factor loadings) for the constant, linear, and 
quadratic growth factors 
Age 15 16 17 18 19 20 21 22 23 24 25 
Constant 0.3105 0.3105 0.3105 0.3105 0.3105 0.3105 0.3105 0.3105 0.3105 0.3105 0.3105 
Linear -0.4767 -0.3814 -0.2860 -0.1907 -0.0953 0.0000 0.0953 0.1907 0.2860 0.3814 0.4767 
Quadratic 0.5121 0.2048 -0.0341 -0.2048 -0.3073 -0.3414 -0.3073 -0.2048 -0.0341 0.2048 0.5121 

 
 
 

Supplementary Table 5.4. MZ twin correlations of log-transformed means for alcohol use across time 
 Twin 1           

Twin 2 Age 15 Age 16 Age 17 Age 18 Age 19 Age 20 Age 21 Age 22 Age 23 Age 24 Age 25 

Age 15 0.27 0.23 0.26 0.18 0.18 0.12 0.13 0.11 0.09 0.14 0.11 

Age 16 0.31 0.35 0.35 0.29 0.26 0.21 0.24 0.24 0.22 0.23 0.19 

Age 17 0.25 0.35 0.36 0.38 0.39 0.33 0.32 0.30 0.28 0.31 0.26 

Age 18 0.16 0.27 0.37 0.44 0.42 0.38 0.38 0.36 0.33 0.35 0.28 

Age 19 0.17 0.26 0.35 0.48 0.48 0.46 0.45 0.43 0.38 0.40 0.35 

Age 20 0.19 0.25 0.33 0.44 0.46 0.44 0.44 0.41 0.38 0.40 0.37 

Age 21 0.22 0.31 0.38 0.43 0.48 0.47 0.50 0.47 0.45 0.48 0.43 

Age 22 0.16 0.24 0.34 0.40 0.45 0.44 0.50 0.47 0.45 0.47 0.44 

Age 23 0.15 0.25 0.32 0.37 0.42 0.43 0.49 0.47 0.46 0.49 0.48 

Age 24 0.13 0.22 0.29 0.37 0.42 0.41 0.45 0.44 0.48 0.48 0.49 

Age 25 0.15 0.22 0.29 0.37 0.41 0.39 0.41 0.41 0.46 0.48 0.48 
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Supplementary Table 5.5. DZ twin correlations of log-transformed means for alcohol use across time 

 Twin 1           

Twin 2 Age 15 Age 16 Age 17 Age 18 Age 19 Age 20 Age 21 Age 22 Age 23 Age 24 Age 25 

Age 15 0.26 0.24 0.20 0.23 0.26 0.23 0.23 0.21 0.21 0.20 0.17 

Age 16 0.26 0.26 0.24 0.30 0.31 0.27 0.29 0.25 0.24 0.23 0.21 

Age 17 0.23 0.26 0.31 0.38 0.35 0.32 0.33 0.28 0.27 0.26 0.25 

Age 18 0.19 0.24 0.28 0.37 0.37 0.33 0.32 0.26 0.24 0.21 0.22 

Age 19 0.17 0.23 0.27 0.33 0.34 0.31 0.29 0.23 0.20 0.19 0.17 

Age 20 0.14 0.19 0.26 0.32 0.34 0.32 0.30 0.24 0.22 0.22 0.19 

Age 21 0.19 0.21 0.25 0.29 0.32 0.32 0.30 0.27 0.25 0.26 0.23 

Age 22 0.19 0.19 0.26 0.31 0.32 0.34 0.32 0.31 0.29 0.29 0.27 

Age 23 0.19 0.19 0.24 0.28 0.28 0.28 0.25 0.24 0.22 0.22 0.20 

Age 24 0.17 0.18 0.21 0.27 0.27 0.28 0.25 0.23 0.21 0.21 0.21 

Age 25 0.17 0.14 0.18 0.28 0.27 0.23 0.19 0.16 0.15 0.17 0.17 
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Chapter 6: The Moderating Role of Parental Monitoring and Peer Group Deviance on 
Polygenic Risk for Adolescent Alcohol Use Across Time 

 
Introduction 

 
This chapter addresses the final aim of this dissertation, which is to determine the 

moderating role of key environmental risk factors on the impact of polygenic risk for AU across 

adolescence. Given the substantial environmental influences on adolescent AU1-4, testing specific 

measured genetic and environmental risk factors may inform interventions that focus on 

increasing adolescent skills when exposed to such environmental influences. Specifically, peer 

group deviance (PGD) and parental monitoring (PM) are among the most salient predictors of 

adolescent AU and AUD5-17. PGD is the extent to which one’s peer group engages in deviant 

behaviors, such as substance use and antisocial behavior. PM measures parental knowledge of 

children’s whereabouts, friends, and activities, including sources of parental knowledge, such as 

child disclosure, parental solicitation, and parental control18. Twin studies have shown that these 

risk factors moderate latent genetic variance in adolescent AU2,19,20, such that genetic influences 

are stronger under conditions of low PM and high PGD21,22. Accordingly, genetic risk seems to 

become more pronounced when there is less social control and more social opportunity23. 

Despite twin heritability estimates for AU and AUD ranging 50 to 60%24, genome-wide 

association studies (GWAS) have had limited success in identifying molecular genetic variants 

contributing to risk for AU/AUD, accounting for no more than 2% of the total variation in AU or 

AUD phenotypes25. Among the few variants identified include alcohol metabolizing genes, such 

as those coding for alcohol dehydrogenase (ADH cluster) and aldehyde dehydrogenase (ALDH 

cluster)26-29. However, these variants explain only a small fraction of the total phenotypic 

variance30. Thus, the polygenic approach31 was developed to help remedy this issue. It is based 

on the expectation that the upper tail of the distribution of test statistics from large GWAS 
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studies are very likely to be enriched with true signals, and, in aggregate, can increase the 

amount of variance explained.  

Measured gene-by-environment interactions are defined as genetic sensitivity to the 

environment32. In addition to problems arising from scale artifact33, measured gene-by-

environment moderation studies have been criticized for being underpowered, due to the 

inability of small sample sizes to detect the small effect sizes typically associated with genetic 

findings32. Thus, a more advantageous approach is to rely on the aggregate genome-wide genetic 

risk associated with AU and AUD. However, we are aware of only one study that has 

investigated the interaction between estimates of polygenic risk and environmental risk factors 

related to AU/AUD. In a sample of 14 year old Finnish twins34 the authors found that individual 

differences in PGD and PM moderate the polygenic risk for alcohol related problems. 

Specifically, genetic risk for alcohol problems appear to be stronger under conditions of low PM 

and high PGD. Although the effect sizes were relatively small, these findings are consistent with 

results from twin studies2,19,20, and support the hypothesis that environmental factors can 

moderate polygenic risk for behavioral outcomes.   

However, these twin reports relied on estimates of imputed of latent genetic risk and not 

genetic risk based on molecular data. The one study that has investigated polygene by 

environmental interactions was cross-sectional34. Thus, the effects of PGD and PM on polygenic 

risk in terms of predicting adolescent AU within and across time remain unknown. 

Understanding how key environmental influences interact with polygenic risk over time has the 

potential to inform prevention and intervention efforts by targeting these environmental 

influences among adolescents with genetic predispositions. It can also provide insight as to what 

age these efforts may be most beneficial for preventing AU.  



	

	84 

By applying a developmental framework to the study by Salvatore et al.34, this chapter 

addresses three research questions: (1) Does polygenic risk predict AU across late adolescence? 

(2) Does peer deviance moderate the impact of polygenic risk on AU? (3) Does early parental 

monitoring moderate the impact of polygenic risk on AU?  

Methods 

Samples 

 The polygenic risk approach requires the use of a discovery and target sample to ensure 

that the samples are independent. Ensuring independence between the samples is important 

because non-independence will inflate the amount of variance accounted for by polygenic risk 

score. Thus, we relied on two large, independent population-based samples for these samples. 

Discovery GWAS results came from the Australian Adult Registry35 and were used to create 

polygenic risk scores in the Avon Longitudinal Study of Parents and Children (ALSPAC36). 

These samples and the measures used are described below.   

Australian Adult Registry. As described in detail elsewhere (Heath et al., 201135), 

participants were drawn from a pool of approximately 11,700 Australian families identified 

through diagnostic interview surveys of two cohorts of same-sex and opposite-sex twin pairs 

from a volunteer Australian twin panel (Cohort 1: 5,995 twins born 1895–1964,37 but for the 

purposes of this study twins were mostly born 1940–1964 (ages 53-77); and Cohort 2: 6,257 

twins born 1964–1971 (ages 46-5338). Families were also identified through an interview survey 

of the spouses/partners of the former cohort (N = 3,84639). Index cases from these families, their 

full siblings, and parents were recruited for three coordinated studies: (1) the NAG (Nicotine 

Addiction Genetics) Study40, which identified heavy smoking index cases; (2) the OZALC-

EDAC study, which identified index cases with a history of alcohol dependence or scoring above 
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the 85th percentile for heaviness of drinking factor score41; and (3) the OZALC-BIGSIB study, 

which identified large sibships37,41, regardless of sibling phenotypic values. Additional cases and 

controls were recruited from Cohorts 1 and 2, who did not complete the new interview protocol 

but had comparable alcohol use/dependence assessments. All projects underwent IRB review at 

the participating institutions. GWAS genotyping, using the Illumina 370K array, was performed 

on a total of 6,852 individuals selected from the BIGSIB and EDAC series (including 336 

parents), on a subsample of the NAG families that had previously been selected for 10cM 

microsatellite scans40, and on a smaller number of additional alcohol dependent cases and 

controls from Cohorts 1 and 2.   

Australian Sample Genotyping and GWAS. All genotyping was conducted on Illumina 

platforms, with genotypes called using Illumina BeadStudio software. Standard quality control 

(QC) filters were applied, and are described in greater detail elsewhere (see Medland et al.42).  

The following single nucleotide polymorphisms (SNPs) were excluded for QC purposes43: SNPs 

with a mean Genotype Call score (GenCall; a confidence value for the reliability of SNP call 

rates) less than 70%; SNPs with call rates less than 95% to exclude SNPs of poor quality; SNPs 

with deviation from Hardy-Weinberg Equilibrium (HWE) significant at p <10−6, which can be 

reflective of genotyping error and population stratification; and SNPs with Minor Allele 

Frequency (MAF) less than 1% to exclude rare variants, which have extremely low power to 

detect an association. For the present study, Illumina CNV370-Quadv3 GWAS data were 

available on 4,241 individuals (including most alcohol dependent cases) genotyped at CIDR and 

an additional 2,611 individuals genotyped by deCODE for the OZALC project. Illumina 317K 

data were available for 53 individuals genotyped at the University of Helsinki Genome Center 

and Illumina 610 Quad data were available for the remaining individuals genotyped by deCODE. 
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Duplicate samples allowed comparison of genotyping across platforms/locations: a single SNP 

was identified, genotyped using the CNV370-Quadv3, that was called very differently at CIDR 

versus deCODE, and therefore deleted from the dataset. Checks were run on genetic relatedness, 

with incorrect relationships corrected prior to analysis to ensure that SNPs are independent. As 

discussed above, non-independence between SNPs will inflate the amount of variance accounted 

for, as well as Type I and II error rates. Polymorphisms with an R2 imputation quality metric of 

<0.3 were excluded to ensure the imputation was of high quality (note these markers were 

filtered again before inclusion in the analysis using a more stringent threshold of 0.5 to match 

that of the target sample). After quality controls were applied, there were 7,681,669 markers 

remaining (from 39,210,718 markers available). 

Genome-wide genotype data can be used to assess ethnic ancestry. This was 

accomplished via Eigenstrat analyses44, which involves principal components (PCs) analysis to 

first infer genetic variation typically reflective of geographic regions. Then, the genotypes are 

continuously adjusted by amounts attributable to ancestry and association statistics are computed 

using ancestry-adjusted genotypes. Cohorts 1 and 2 were almost entirely of European ancestry, 

reflecting restrictive Australian immigration policies through to 1972, However, the Eigenstrat 

analyses44, which included data from other Australian GWAS series, identified (operationalized 

by +/− 6 standard deviations) a small number of families from other ancestries as outliers. These 

included: mixed European and Asian ancestry (principally Chinese, Burmese, Indian or 

Malaysian); middle eastern (Lebanese) ancestry, with one or more grandparents of Aboriginal, 

Torres Strait Islander or Maori ancestry; and some African heritage (including individuals of 

self-report Maltese ancestry, consistent with the known population genetics of the Maltese 

population)42. A total of 153 individuals from 60 families were identified as outliers (i.e., as non-
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European) and excluded from further analyses. This included 34 alcohol dependent and 119 

unaffected individuals. In the present analyses, genotypes were imputed using the Michigan 

Imputation Server and the Haplotype Reference Consortium (HRC Release 1). 

The GWAS was performed using RareMetalWorker45. Covariates included sex and ten 

PCs to adjust for ancestry. Age information was not available because some participants joined 

more than one project at different times that collected alcohol data. The phenotype was 

operationalized as the mean number of drinks consumed per week calculated across all projects 

(log-transformed; N = 14,296; assessed via the Semi-Structured Assessment for the Genetics of 

Alcoholism (SSAGA46,47). 

Avon Longitudinal Study of Parents and Children (ALSPAC).  ALSPAC is an 

ongoing, longitudinal birth-cohort study investigating the genetic and environmental risks 

affecting health and development in women and their children. It consists of 15,247 pregnancies 

from women living in Avon, UK, with delivery dates between April 1991 and December 1992, 

resulting in 15,458 children. Children have been followed-up annually from birth through to 18 

years of age, and approximately every two years after age 18. Response rates were steady 

(~70%) from 33 months of age until 13 years of age, and declined slightly to 48% during 

adolescence. Approximately 82% of mothers have remained engaged throughout the study36. 

Data come from unrelated individuals who completed alcohol assessments and have genotypic 

data available (N = 4,304).  

ALSPAC Genotyping. Genotyping was based on the Illumina HumanHap550 quad 

platform. Individuals were excluded on the basis of: excessive or minimal heterozygosity, which 

can reflect sample contamination or inbreeding); gender mismatch, which can reflect errors in 

external data or sample mix-up; individual missingness (0.3%) to remove low quality DNA; 
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cryptic relatedness as measured by genome-wide IBD (0.1%), which results in non-independence 

and can increase Type I and II error rates; and sample duplication to ensure sample 

independence. Population stratification was assessed using multi-dimensional scaling modeling 

seeded with HapMap Phase II release 2248-50 reference populations to ensure that any 

associations with AU/AUD are due to predisposing loci, rather than ancestral differences. All 

individuals with non-European ancestry were excluded, with ancestry estimated using Eigenstrat 

analyses44.  Single nucleotide polymorphisms (SNPs) were excluded based on final call rates 

<0.95%, MAF <1%, and significant departure from HWE (p < 5e-7). All individual genotypes 

were imputed based on the 1000 Genomes Phase 1 Version 351 reference panel by ALSPAC 

analysts using MACH for phasing52 and Minimac for imputation53. Polymorphisms with an R2 

imputation quality metric of <0.5 were excluded to ensure high quality imputation. The 

association analysis was run using MACH2QTL52 and included sex as a covariate. After quality 

controls were applied, genetic data were available for 4,304 individuals with phenotypic data 

(42.9% male), resulting in 423,140 markers available (from 8,232,035).  

ALSPAC Measures 

Alcohol use (AU). AU frequency was assessed using the Alcohol Use Disorder 

Identification Test (AUDIT54) at ages 16, 17, 18, and 20. Grams of ethanol per month were 

calculated using the raw frequency variable, the raw quantity variable, and multiplying by 8 (8 

grams equals one alcoholic unit in the UK). The raw frequency item was a 5-level ordinal 

variable and asked the frequency with which the person has a drink. The raw responses included: 

never = 1; monthly or less = 2; 2-4 times per month = 3; 2-3 times per week = 4; 4 or more times 

per week = 5. These raw responses were recoded into the midpoints between the levels to obtain 

a proxy for frequency per week, as follows: never = 0 (and not asked the quantity question, so 
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are coded as missing); monthly or less = 0.5; 2-4 times per month = 3; 2-3 times per week = 

10.7; 4 or more times per week = 23.54.     

The raw quantity item was also a 5-level ordinal variable and asked the number of drinks 

containing alcohol on a typical day when drinking. The raw responses included: 1 or 2 = 1; 3 or 4 

= 2; 5 or 6 = 3; 7-9 = 4; 10 or more = 5. These raw responses were also recoded into the 

midpoints between the levels, as follows: 1 or 2 = 1.5; 3 or 4 = 3.5; 5 or 6 = 5.5; 7-9 = 8; 10 or 

more = 15.5.     

Peer group deviance (PGD). PGD was assessed at ages 10, 12 and 15 using 11, 13 and 

17 items, respectively, that asked whether each participant’s peers had engaged in deviant 

behaviors such as fighting, skipping school, theft, arson, property destruction, cruelty to animals, 

and cruelty to others. PGD sum scores were computed from the raw binary (yes/no) variables 

and were mean-centered to aid interpretation.  

Parental monitoring (PM). PM was assessed via child report at ages 12 and 13 and via 

parent report at age 15 using a 24-item self-report version of the Parental Monitoring 

Questionnaire (PMQ)55, designed to capture four domains: parental monitoring (9 items) 

measuring parents’ knowledge of the child’s location, activities, and associations; child 

disclosure (5 items) measuring whether the child provides information to the parent about school 

and activities; parental solicitation (5 items) measuring whether the parent initiates conversations 

with the child about their day, what happens during free time, and if the parent talks with the 

child’s friends; and parental control (5 items) measuring whether the child is required to ask 

permission to explain plans, to be out late, and to explain why if they are past curfew. Internal 

consistencies (alpha) ranged from .68 to .81. The disclosure, solicitation, and control subscales 

load onto three factors, with loadings ranging from .56 to .82, demonstrating sufficient validity18. 
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Each PMQ item was scored on 5-point scale levels of ordinal response (1 = never to 5 = always). 

Sum scores were computed from the raw responses and were mean-centered. The available 

measures and ages at which they are available are summarized in Table 6.1. 

Table 6.1. Available ALSPAC measures and ages 
 Age 10 Age 12 Age 13 Age 15 Age 16 Age 17 Age 18 Age 20 

Alcohol use     X X X X 
Peer group deviance X X  X     
Parental monitoring  X X X     

 

Statistical Analyses 

Polygenic Scoring. Standard methods for estimating polygenic risk scores (PRSs) were 

applied using PLINK31. The PRS approach assumes that the upper tail of the distribution of 

SNPs from a well-powered GWAS that do not meet the stringent genome-wide significance 

threshold should be enriched with true signals31. Thus, the PRS method makes use of as much 

GWAS data as possible by including influential SNPs that would otherwise be discarded, 

following a true Fisherian approach. A set of “independent” SNPs that are in linkage equilibrium 

were first selected from a discovery sample (Australian Twin Registry) to generate p-values and 

their associated weights for SNPs below an arbitrary threshold. These independent SNPs were 

then used to create polygenic sum scores in the independent sample (ALSPAC). A series of 9 

polygenic scores based on p-value thresholds ranging from 0.0001 to 0.50 were used. Currently, 

there are no criteria for creating or determining a maximally informative PRS56. In other words, 

the number of p-value thresholds to include for a PRS that provides the greatest signal is unclear, 

and we accordingly used a range. 

Standard data cleaning and quality control procedures were applied. The R2 information 

score (a measure of imputation quality) was filtered using a threshold of 0.5, the minor allele 

frequency was filtered using a threshold of 1% to exclude rare variants, which have extremely 



	

	91 

low power to detect an association, and ambiguous SNPs were removed (i.e., SNPs with strands 

that cannot be differentiated). Common SNPs were pruned out using the linkage disequilibrium 

(LD) clumping method. The LD clumping method prunes out markers that are in LD with one 

another (i.e., alleles that are non-randomly associated with another) and only extracts SNPs that 

represent LD-independent regions. Thus, the markers are not redundant and provide independent 

signals specific to their region. Finally, 264 SNPs with mismatched alleles were removed.  

PRSxE moderation analyses. Using the lm function in R57, the 9 PRSs were each 

regressed onto AU at each of the four time points (ages 16, 17, 18, and 20) to test if the PRS 

predicted AU in the independent target sample (ALSPAC). Sex and ethnic ancestry measured as 

the first ten principal components were included as covariates. Although the analyses were 

restricted to Europeans, it is possible there is still subtle background genetic variation (which can 

lead to spurious results if unaccounted for)58 and that the self-reported ancestry does not match 

that of the PCs59 (e.g., admixture from African ancestry). The PRS that accounted for the most 

variance at each age was used in subsequent moderation analyses.  

Multiple linear regressions were run with PRSxE interactions to test the hypothesis that 

PM and PGD moderate the association between PRS and AU at each time point. The parameters 

of interest were the statistical interactions between the environmental factors (PM and PGD) and 

the polygenic risk scores. PM, PGD, and the PRSs were included as main effects. Since our 

analyses are exploratory, Bonferroni corrections were used to correct for multiple testing, as 

failure to do so will inflate the Type I error rate (i.e., increase the likelihood of false positives). 

After quality control and data cleaning procedures were applied, the final N for subjects with 

complete data was 1,670. 
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Results 

 Pearson correlations. Table 6.2 shows the correlations between the nine PRSs and AU 

at each of the four ages. The correlations between the PRSs were mostly significant and 

increased with more liberal p-value thresholds. The correlations between the PRSs and AU at 

age 16 were non-existent to very small, but increased slightly with more liberal thresholds. For 

ages 17 and 18, they were all less than 0.1 and none were statistically significantly (all standard 

errors were approximately 0.05, not shown). However, by age 20, the correlations were higher 

than at any other age (all above 0.13, starting at the threshold of p = 0.01). Although small, these 

correlations were mostly significant, and were in the expected direction (i.e., positive 

correlations, suggesting the PRS predicted increased AU).  

Table 6.2. Pearson correlations between the PRSs and AU 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 
PRSs              
1. PRS, p = 0.0001 1.000             
2. PRS, p = 0.001 0.449 1.000            
3. PRS, p = 0.01 0.268 0.567 1.000           
4. PRS, p = 0.05 0.174 0.437 0.782 1.000          
5. PRS, p = 0.1 0.137 0.379 0.717 0.925 1.000         
6. PRS, p = 0.2 0.110 0.346 0.680 0.879 0.955 1.000        
7. PRS, p = 0.3 0.096 0.335 0.663 0.856 0.936 0.979 1.000       
8. PRS, p = 0.4 0.090 0.326 0.647 0.841 0.923 0.970 0.991 1.000      
9. PRS, p = 0.5 0.087 0.315 0.641 0.836 0.920 0.965 0.985 0.995 1.000     
AU              
10. AU, age 16 -0.016 -0.002 0.028 0.106 0.120 0.137 0.124 0.136 0.131 1.000    
11. AU, age 17 -0.031 0.019 0.002 0.031 0.015 0.027 0.013 0.017 0.015 0.544 1.000   
12. AU, age 18 0.070 0.085 0.069 0.012 0.022 0.030 0.038 0.036 0.037 0.376 0.522 1.000  
13. AU, age 20 0.018 0.086 0.141 0.139 0.162 0.162 0.166 0.164 0.165 0.274 0.359 0.425 1.000 

 

 Table 6.3 shows the correlations between AU at the four ages, PGD, and PM. The 

correlations within the AU variables were moderate to high (ranging from 0.27 to 0.54) and 

followed a simplex pattern, whereby the size of the correlation decreases with increasing time 

points. Turning to the associations between PGD and AU, all correlations were < 0.10 at age 10. 
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At age 12, they showed a small but significant positive correlation (at p = 0.05) with AU at ages 

16 (r = 0.14) and 17 (r = 0.14), but the effect diminished with time. The same pattern was seen 

for PGD at age 15. Finally, in terms of the relationship between PM at ages 12, 13 and 15 and 

AU there was a small but significant correlation between AU at age 16 and PM at age 12 (r = -

0.18), but not at later ages. This pattern was very similar for PM at age 13. However, for age 15 

PM, they all were less than 0.10.  

Table 6.3. Pearson correlations between AU, PGD, and PM  
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 
AU           
1. AU, age 16 1.000          
2. AU, age 17 0.544 1.000         
3. AU, age 18 0.376 0.522 1.000        
4. AU, age 20 0.274 0.359 0.425 1.000       
Peer group deviance           
5. Peer group deviance, age 10 0.045 0.024 0.017 -0.070 1.000      
6. Peer group deviance, age 12 0.142 0.140 0.012 -0.020 0.313 1.000     
7. Peer group deviance, age 15 0.198 0.168 0.120 0.096 0.134 0.356 1.000    
Parental monitoring           
8. Parental monitoring, age 12 -0.176 -0.026 0.047 0.039 -0.081 -0.203 -0.176 1.000   
9. Parental monitoring, age 13 -0.185 -0.073 -0.055 0.043 -0.143 -0.189 -0.224 0.422 1.000  
10. Parental monitoring, age 15 -0.041 0.059 -0.017 0.042 -0.014 -0.019 -0.068 0.232 0.120 1.000 

 

 Age 16 Results. Table 6.4 shows the results of the linear regressions to test if PRSs 

predict age AU at 16. None of the scores remained significant after Bonferroni correction for 

nine tests was applied (adjusted p = 0.005) and all scores explained <1% of the total variance. 

However, because the first PRS accounted for the most variance on age 16 AU (r2 = 0.008), we 

moved this score forward into the moderated multiple regressions. 

Table 6.4. Univariate linear regressions of age 16 AU on PRSs at each threshold 
 R-squared 

(Adjusted) P-value Beta (SE) 

Score 1 (p = 0.0001) 0.0080 0.0437 -0.1578 (0.0782) 
Score 2 (p = 0.001) 0.0063 0.1563 -0.0391 (0.0276) 
Score 3 (p = 0.01) 0.0053 0.3884 -0.0087 (0.0101) 
Score 4 (p = 0.05) 0.0048 0.6944 0.0021 (0.0053) 
Score 5 (p = 0.1) 0.0054 0.3538 0.0038 (0.0041) 
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Score 6 (p = 0.2) 0.0058 0.2361 0.0039 (0.0032) 
Score 7 (p = 0.3) 0.0057 0.2627 0.0033 (0.0029) 
Score 8 (p = 0.4) 0.0064 0.1498 0.0040 (0.0028) 
Score 9 (p = 0.5) 0.0061 0.1828 0.0036 (0.0027) 
 

 Table 6.5 shows the results of the regressions testing the moderating effect of PGD at 

ages 10, 12, and 15 and PM at ages 12, 13, and 15 on polygenic risk for AU at age 16. Prior to 

correction for multiple testing, there were no significant main effects of the PRS across all ages. 

There was a significant influence of PGD at ages 12 and 15 on AU. The main effects of PGD at 

these ages remained significant after correcting for multiple testing in six tests (p = 0.008). There 

was a significant influence of PM at all ages, with high levels of PM being associated with 

significantly reduced AU at all ages. The main effects of PM remained significant after 

correcting for multiple testing. Regarding the results the PRS x PGD and PRS x PM analyses, 

there were no significant moderating effects of PGD or PM at any age. 

Table 6.5. Moderated multiple regressions of age 16 AU 
on sex, PRS, PGD (top), and PM (bottom) 
Peer Group Deviance   
 Beta (SE) P-value 
AGE 1O   
Intercept 1.786 (0.038) <2e-16 
Sex -0.072 (0.047)  0.126 
PRS -0.144 (0.082) 0.079 
Peer group deviance, age 10 0.027 (0.018) 0.144 
PRS x Peer group deviance, age 10  0.032 (0.067) 0.634 
AGE 12   
Intercept 1.788 (0.037) <2e-16 
Sex -0.080 (0.046)  0.086 
PRS -0.150 (0.082) 0.068 
Peer group deviance, age 12 0.053 (0.011) 2.22e-06 
PRS x Peer group deviance, age 12 0.001 (0.044)  0.9875 
AGE 15   
Intercept 1.766 (0.037) <2e-16 
Sex -0.064 (0.046) 0.1657 
PRS -0.137 (0.081) 0.090 
Peer group deviance, age 15 0.059 (0.007) 2.4e-16 
PRS x Peer group deviance, age 15 0.017 (0.025) 0.5036 
Parental Monitoring   



	

	95 

 Beta (SE) P-value 
AGE 12   
Intercept 1.801 (0.041)  <2e-16 
Sex -0.112 (0.051) 0.027 
PRS -0.121 (0.090)  0.179 
Parental monitoring, age 12  -0.007 (0.002) 0.0004 
PRS x Parental monitoring, age 12  -0.016 (0.008) 0.036 
AGE 13   
Intercept  1.796 (0.037) <2e-16 
Sex -0.103 (0.046) 0.025 
PRS -0.136 (0.082) 0.097 
Parental monitoring, age 13 -0.015 (0.002) 6.17e-12 
PRS x Parental monitoring, age 13  0.001 (0.008)  0.931 
AGE 15   
Intercept 1.762 (0.039) <2e-16 
Sex -0.071 (0.048) 0.141 
PRS -0.116 (0.085) 0.173 
Parental monitoring (parent-
reported), age 15 

-0.008 (0.002) 0.0007 

PRS x Parental monitoring (parent-
reported), age 15 

0.001 (0.009)  0.908 

 

 Age 17 Results. Table 6.6 shows the results of the linear regressions testing if the PRSs 

predict age 17 AU. None of the PRSs were statistically significant. However, the score that 

accounted for the most variance was again the first score and was moved forward into the 

multiple regressions.  

Table 6.6. Univariate linear regressions of age 17 AU on PRSs at each threshold 
 R-squared 

(Adjusted) P-value Beta (SE) 

Score 1 (p = 0.0001) 0.0016 0.1581 -0.1019 (0.0721) 
Score 2 (p = 0.001) -0.0002 0.7656 -0.0077 (0.0258) 
Score 3 (p = 0.01) 0.0003 0.4315 0.0076 (0.0096) 
Score 4 (p = 0.05) -0.0003 0.7696 0.0015 (0.0051) 
Score 5 (p = 0.1) -0.0002 0.7042 -0.0014 (0.0038) 
Score 6 (p = 0.2) -0.0003 0.8741 -0.0004 (0.0031)  
Score 7 (p = 0.3) -0.0002 0.6885 -0.0011 (0.0028) 
Score 8 (p = 0.4) -0.0003 0.8238 -0.0006 (0.0027) 
Score 9 (p = 0.5) -0.0003 0.7796 -0.0007 (0.0026)  
 

 Table 6.7 shows the results of the regressions testing the moderating effect of PGD at 

ages 10, 12, and 15 and PM at ages 12, 13, and 15 on polygenic risk for AU at age 17. Using the 
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Bonferroni corrected p-value of 0.008, there was a significant influence of PGD at ages 12 and 

15 on AU. However, there were no main effects of the PRS or PM at any age, and there were no 

significant moderating effects of the PRS x PGD or the PRS x PM at any age.   

Table 6.7. Moderated multiple regressions of age 17 AU on sex, PRS,  
PGD (top), and PM (bottom) 
Peer Group Deviance   
 Beta (SE) P-value 
AGE 1O   
Intercept 1.9814 (0.0340) <2e-16 
Sex -0.1112 (0.0429) 0.0096 
PRS -0.1280 (0.0745) 0.0860 
Peer group deviance, age 10 -0.0054 (0.0176) 0.7582 
PRS x Peer group deviance, age 10  0.0286 (0.0601) 0.6348 
AGE 12   
Intercept 1.9810 (0.0334) <2e-16 
Sex -0.0965 (0.0420) 0.0217 
PRS -0.1484 (0.0749) 0.0480 
Peer group deviance, age 12 0.0464 (0.0105) 1.13e-05 
PRS x Peer group deviance, age 12 -0.0494 (0.0417) 0.2358 
AGE 15   
Intercept 1.9828 (0.0334) <2e-16 
Sex -0.1188 (0.0419) 0.0047 
PRS -0.1640 (0.0737) 0.0262 
Peer group deviance, age 15 0.0450 (0.0066) 1.96e-11 
PRS x Peer group deviance, age 15 0.0284 (0.0228) 0.2127 
Parental Monitoring   
 Beta (SE) P-value 
AGE 12   
Intercept 1.9817 (0.0377) <2e-16 
Sex -0.1149 (0.0471) 0.0149 
PRS -0.0687 (0.0833) 0.4096 
Parental monitoring, age 12 -0.0006 (0.0018) 0.7570 
PRS x Parental monitoring, age 12  -0.0009 (0.0067) 0.8916 
AGE 13   
Intercept 1.9802 (0.0336) <2e-16 
Sex -0.1143 (0.0421) 0.0068 
PRS -0.1075 (0.0751) 0.1522 
Parental monitoring, age 13 -0.0045 (0.0020) 0.0239 
PRS x Parental monitoring, age 13  0.0026 (0.0075) 0.7294 
AGE 15   
Intercept 1.9868 (0.0351) <2e-16 
Sex -0.1330 (0.0440) 0.0026 
PRS -0.1379 (0.0775) 0.0757 
Parental monitoring (parent-reported), 
age 15 

5.051e-07 (0.0020) 0.9998 
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PRS x Parental monitoring (parent-
reported), age 15 

0.0043 (0.0081) 0.5953 

 
Age 18 Results. Table 6.8 shows the results of the linear regressions testing if the PRSs 

predict age 18 AU. The score that accounted for the most variance was the second score and was 

moved forward into the multiple regressions. However, none of the scores were significantly 

associative of AU.  

Table 6.8. Univariate linear regressions of age 18 AU on PRSs at each threshold 
 R-squared 

(Adjusted) P-value Beta (SE) 

Score 1 (p = 0.0001) 0.00745 0.2593 -0.0907 (0.0804) 
Score 2 (p = 0.001) 0.00751 0.2493 -0.0332 (0.0288) 
Score 3 (p = 0.01) 0.00613 0.9698 0.0004 (0.0107) 
Score 4 (p = 0.05) 0.00613 0.9988 -0.00001 (0.0057) 
Score 5 (p = 0.1) 0.00613 0.9902 0.00005 (0.0043) 
Score 6 (p = 0.2) 0.00616 0.8455 0.0006 (0.0034) 
Score 7 (p = 0.3) 0.00634 0.6498 0.0014 (0.0031) 
Score 8 (p = 0.4) 0.00624 0.7401 0.0010 (0.0029) 
Score 9 (p = 0.5) 0.00622 0.7548 0.0008 (0.0028) 

 

 Table 6.9 shows the results of the regressions testing the moderating effect of PGD at 

ages 10, 12, and 15 and PM at ages 12, 13, and 15 on polygenic risk for AU at age 18. Using the 

Bonferroni corrected p-value of 0.008, there was a significant influence of PGD at age 15 on 

AU. There were no main effects of the PRS or PM at any age, and there were no significant 

moderating effects of the PRS x PGD or the PRS x PM at any age. 

Table 6.9. Moderated multiple regressions of age 18 AU 
on sex, PRS, PGD (top), and PM (bottom) 
Peer Group Deviance   
 Beta (SE) P-value 
AGE 1O   
Intercept 2.2654 (0.0405) <2e-16 
Sex -0.1161 (0.0501) 0.0207 
PRS -0.0320 (0.0307) 0.2976 
Peer group deviance, age 10 0.0008 (0.0190) 0.9681 
PRS x Peer group deviance, age 10  -0.0002 (0.0252) 0.9941 
AGE 12   
Intercept 2.2595 (0.0404) <2e-16 
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Sex -0.0913 (0.0498) 0.0670 
PRS -0.0160 (0.0311) 0.6079 
Peer group deviance, age 12 0.0254 (0.0128) 0.0467 
PRS x Peer group deviance, age 12 0.0097 (0.0172) 0.5727 
AGE 15   
Intercept 2.2673 (0.0404) <2e-16 
Sex -0.1219 (0.0500) 0.0150 
PRS -0.0215 (0.0309) 0.4865 
Peer group deviance, age 15 0.0383 (0.0082) 0.0000 
PRS x Peer group deviance, age 15 0.0212 (0.0103) 0.0403 
Parental Monitoring   
 Beta (SE) P-value 
AGE 12   
Intercept 2.2432 (0.0440) <2e-16 
Sex -0.1169 (0.0543) 0.0317 
PRS 0.0195 (0.0339) 0.5641 
Parental monitoring, age 12 0.0005 (0.0022) 0.8034 
PRS x Parental monitoring, age 12  -0.0035 (0.0029) 0.2184 
AGE 13   
Intercept 2.2554 (0.0405) <2e-16 
Sex -0.1023 (0.0499) 0.0409 
PRS -0.0114 (0.0312) 0.7139 
Parental monitoring, age 13 -0.0019 (0.0023) 0.4261 
PRS x Parental monitoring, age 13  -0.0047 (0.0030)  0.1185 
AGE 15   
Intercept 2.2574 (0.0425) <2e-16 
Sex -0.1169 (0.0522) 0.0255 
PRS -0.0160 (0.0324) 0.6219 
Parental monitoring (parent-
reported), age 15 

-0.0012 (0.0025) 0.6254 

PRS x Parental monitoring (parent-
reported), age 15 

0.0016 (0.0032) 0.6216 

 

Age 20 Results. Table 6.10 shows the results of the linear regressions testing if the PRSs 

predict age 20 AU. None of the PRSs were significantly associative of AU, but the score that 

accounted for the most variance was the seventh score and was moved forward into the multiple 

regressions.  

Table 6.10. Univariate linear regressions of age 20 AU on PRSs at each threshold 
 R-squared 

(Adjusted) P-value Beta (SE) 

Score 1 (p = 0.0001) 0.0337 0.2648 -0.0683 (0.0613) 
Score 2 (p = 0.001) 0.0332 0.5203 -0.0141 (0.0219) 
Score 3 (p = 0.01) 0.0331 0.6067 0.0042 (0.0081) 
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Score 4 (p = 0.05) 0.0343 0.1344 0.0064 (0.0043) 
Score 5 (p = 0.1) 0.0349 0.0693 0.0060 (0.0033) 
Score 6 (p = 0.2) 0.0363 0.0162 0.0062 (0.0026) 
Score 7 (p = 0.3) 0.0367 0.0113 0.0060 (0.0024) 
Score 8 (p = 0.4) 0.0364 0.0155 0.0054 (0.0022) 
Score 9 (p = 0.5) 0.0365 0.0131 0.0053 (0.0021) 

 

 Table 6.11 shows the results of the regressions testing the moderating effect of PGD at 

ages 10, 12, and 15 and PM at ages 12, 13, and 15 on polygenic risk for AU at age 20. Using the 

Bonferroni corrected p-value of 0.008, there was a significant influence of PGD at age 15 on 

AU. There was also a significant main effect of the PRS within the age 12 PM model and a 

significant moderating effect of the PRS x age 12 PM on AU.  

Table 6.11. Moderated multiple regressions of age 20 AU 
on sex, PRS, PGD (top), and PM (bottom) 
Peer Group Deviance   
 Beta (SE) P-value 
AGE 1O   
Intercept 2.2919 (0.0295) <2e-16 
Sex -0.2138 (0.0374) 0.0000 
PRS 0.0054 (0.0025) 0.0301 
Peer group deviance, age 10 -0.0050 (0.0144) 0.7300 
PRS x Peer group deviance, age 10  0.0008 (0.0019) 0.6700 
AGE 12   
Intercept 2.2914 (0.0295) <2e-16 
Sex -0.2099 (0.0371) 0.0000 
PRS 0.0062 (0.0025) 0.0153 
Peer group deviance, age 12 0.0077 (0.0090) 0.3956 
PRS x Peer group deviance, age 12 0.0022 (0.0012)  0.0794 
AGE 15   
Intercept 2.2817 (0.0308) <2e-16 
Sex -0.2227 (0.0388) 0.0000 
PRS 0.0058 (0.0026) 0.0274 
Peer group deviance, age 15 0.0110 (0.0059) 0.0008 
PRS x Peer group deviance, age 15 0.0005 (0.0008) 0.5012 
Parental Monitoring   
 Beta (SE) P-value 
AGE 12   
Intercept 2.2777 (0.0322) <2e-16 
Sex -0.1936 (0.0403) 0.0000 
PRS 0.0076 (0.0027) 0.0053 
Parental monitoring, age 12 0.0019 (0.0015) 0.2161 
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PRS x Parental monitoring, age 12  -0.0006 (0.0002) 0.0070 
AGE 13   
Intercept 2.2901 (0.0297) <2e-16 
Sex -0.2278 (0.0373) 0.0000 
PRS 0.0062 (0.0026)  0.0163 
Parental monitoring, age 13 -0.0027 (0.0017) 0.1191 
PRS x Parental monitoring, age 13  -0.0002 (0.0002) 0.4354 
AGE 15   
Intercept 2.2859 (0.0313) <2e-16 
Sex -0.2161 (0.0394)  0.0000 
PRS 0.0059 (0.0027) 0.0292 
Parental monitoring (parent-
reported), age 15 

-0.0020 (0.0018) 0.2865 

PRS x Parental monitoring (parent-
reported), age 15 

-0.0001 (0.0003) 0.8519 

 

Discussion 

Using a large, population-based sample of adolescents in the U.K., we examined whether 

polygenic risk is associated with AU across late adolescence, and whether PGD and PM 

moderated the impact of polygenic risk on AU. We found that higher polygenic risk at age 12 

predicted increased AU at age 20, as well as a significant interaction of PRS by PM at age 12 for 

age 20 AU, such that under conditions of high PM at age 12, polygenic risk for AU at age 20 was 

lower. These findings build upon those of Salvatore et al34 and extend them to a developmental 

framework. Additionally, although PRS-by-environment studies are in their infancy and future 

research based on large discovery and replication samples are needed, initial findings from the 

present study and those of Salvatore et al34 suggest that prevention and intervention efforts 

focused on increasing PM may be effective in decreasing the impact of polygenic risk for AU.    

Of note is that polygenic risk did not significantly predict AU until age 20. One likely 

explanation for this is the consistent finding that genetic influences become more important over 

time1-4. It is possible the aggregate genetic influences were not strong enough at the younger ages 

for us to be able to detect them. However, a post-hoc power analysis revealed that we had 
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enough power to be able to do so if they were present. The results of the power analysis 

suggested that we were able to detect 1% of the heritability with 80% power (with an N of 

1,670).    

With regard to the main effects of PGD and PM, we found main effects of PGD, such 

that PGD at age 12 increased AU at ages 16 and 17, and PGD at age 15 increased AU at ages 16, 

17 18, and 20. We also found main effects of PM, such that PM at ages 12, 13, and 15 decreased 

AU at age 16 only. These findings are consistent with prior literature showing that PGD and PM 

are important predictors of adolescent AU5-17. 

Our results suggest that the influence of PGD on AU is enduring and stable across time. 

PGD at age 12 predicted increased AU until age 17. Following this, PGD at age 15 predicted 

increased AU until age 20. Given these results, future research should examine the temporal 

pattern into young adulthood since alcohol becomes more socially available during this 

developmental stage. The influences of PM were shorter lived, with the protective effect not 

extending beyond age 16. One possible explanation for this finding is that, as adolescents 

become older and more independent, parents have less control and ability to monitor their 

activities compared to peers and siblings.  

Such findings have important implications for prevention and intervention programming. 

It appears that targeting deviant peer groups at all ages may be beneficial, since the effects 

appear to be stable. Additionally, educating parents on the means of increasing monitoring has 

the potential to delay AU initiation. This is important for the prevention of alcohol misuse, given 

the finding that for every year that alcohol initiation is delayed, there is a 5-9% decrease in the 

risk of alcohol misuse60. 
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Limitations 

 These findings should be considered within the context of three limitations. First, 

participants in both our discovery and target samples were exclusively of European ancestry. 

Thus, it is unclear if our results will generalize to other populations with different ancestral 

backgrounds. Second, the effect size for our PRS that significantly predicted AU at age 20 was 

small, accounting for only about 3% of the variance (in the univariate regression). However, it 

should be noted that this effect size is larger than the results of similar polygenic studies that 

have accounted for approximately 1% of the variance in AU34. The effect size for the moderating 

effect of the PRS x age 12 PM on AU at age 20 was also very small, and accounted for <1% of 

the variance. Third, the polygenic approach by its nature does not provide any information 

regarding the specific genes involved in AU. Fine mapping approaches are required for this 

information, which is beyond the scope of this chapter. Finally, our discovery sample was based 

on adults, while our target (replication) sample was based on adolescents. Thus, age related 

genetic heterogeneity in AU might downwardly bias the predictive power of the PRS. We expect 

that as the target sample approaches the age of the discovery sample, predictive power will 

increase, as we saw with the analyses at age 20.  

Conclusions 

 PGD at age 12 increased AU at ages 16 and 17, and PGD at age 15 increased AU at ages 

16, 17, 18, and 20, while PM at ages 12, 13, and 15 decreased AU at age 16. Higher polygenic 

predispositions for AU (based on GWAS estimates from a population-based sample of adults) 

predicted increased AU at age 20 in an independent, population-based sample. Further, PM at 

age 12 moderated polygenic risk for AU at age 20. Polygenic risk for AU at age 20 was less 

influential under conditions of high PM at age 12. Given these findings, prevention and 
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intervention efforts that focus on decreasing exposure to deviant peers at all ages during 

adolescence, and focus on encouraging high levels of parental monitoring, particularly during 

early adolescence, may reduce risk for alcohol misuse. 
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Chapter 7: Global Discussion 

 The overarching aim of this dissertation was to fill critical gaps in the AU/AUD 

literature. These gaps include: (1) the magnitude and nature of the relationships between 

AU/AUD and resilience, and which personality disorder offers the best prediction of 

AU/AUD, as well as the nature of their etiologic overlap; (2) the ways in which 

longitudinal changes in genetic and environmental influence risk for AU over time; and 

(3) the moderating effects of key environmental risk factors on polygenic risks for AU 

within a developmental framework. Therefore, the specific aims of this dissertation were: 

(1) to examine the roles that resilience and personality disorders play in the etiology of 

AU and AUD; (2) to investigate the nature of longitudinal changes in the contributions of 

genetic and environmental risk factors in AU; and (3) to determine the moderating role of 

key environmental risk factors on the impact of polygenic risk for AU across 

adolescence.  

Review of main findings 

 Chapter 2 examined the magnitude of the relationship between AUD and the five 

traits that were components of the resilience assessment (social maturity, interest, 

psychological energy, home environment, and emotional control), as well as the total 

resilience score. It was found that higher scores on the five single items that comprised 

the resilience assessment and a higher total resilience score were associated with a 

reduced risk of AUD (a 29% decrease in the odds of AUD). However, this effect was also 

non-linear, such that risk of AUD abruptly increased with resilience levels in the middle 

range. In other words, there is a diminishing return for increasing levels of resilience. The 

extent to which the resilience–AUD relationship is the result of common genetic or 
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common environmental factors was also explored using a bivariate Cholesky 

decomposition from which we showed that the relationship was largely attributable to 

overlapping genetic and shared environmental factors (57 and 36%, respectively). 

 Chapter 3 continued examining the associations between personality, AU, and 

AUD by specifically focusing on the role of personality disorders (PDs). This chapter 

investigated which of the 10 PDs provided the strongest phenotypic prediction of the 

liabilities to AU and AUD, the degree to which the associations between PDs and AU 

and AUD were due to shared genetic or shared environmental risks using Cholesky 

decomposition, and if the patterns of associations were stable across time. Borderline and 

antisocial PDs were the strongest correlates of the phenotypic and genotypic liability to 

AU and AUD. These patterns of associations remained consistent across time (at ages 28 

and 38). 

 Chapter 4 tested the second aim of this dissertation and investigated whether the 

changes in genetic variation in AUD between early and mid adulthood were attributable 

to a single factor or multiple, qualitatively distinct factors. Developmental changes in the 

genetic and environmental influences on AUD over three age periods (18-25, 26-33, and 

33-41) were investigated using Cholesky decomposition. We found evidence for two sets 

of qualitatively distinct genetic risk factors: one originated during the ages 18-25 and 

declined in magnitude, while the other came online or emerged at ages 26-33.  

 Chapter 5 went further by investigating the precise mechanisms of how 

underlying genetic and environmental risk factors influence AU from adolescence 

through young adulthood. The fits of five competing developmental hypotheses that each 

making different predictions about the nature of genetic and environmental influences in 
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AU over time were compared. The best-fitting model suggested that genetic influences 

were consistent with an unfolding, growing pattern of risks as predicted by a latent 

growth model, while unshared environmental factors were best described in terms of 

accumulating or remembering of environmental risk, as indicated by the significant 

autoregressive components. 

 Finally, Chapter 6 explored whether polygenic risk predicted AU across late 

adolescence. In addition, it tested whether peer group deviance (PGD) and parental 

monitoring (PM) moderated the impact of polygenic risk on AU. Polygenic risk scores 

were created based on GWAS results from the Australian adult sample and were first 

regressed onto AU at four time points (ages 16, 17, 18, and 20) to test if the PRS 

predicted AU in an independent sample of adolescents in the U.K. Multiple linear 

regressions were then run with PRSxE interactions to test the hypothesis that PGD and 

PM moderate the association of the PRS for AU at each of the four time points. PGD at 

age 12 increased AU at ages 16 and 17, and PGD at age 15 increased AU at ages 16, 17, 

18, and 20, while PM at ages 12, 13, and 15 decreased AU at age 16. Higher polygenic 

predispositions for AU predicted increased AU at age 20 in an independent, population-

based sample. Further, PM at age 12 moderated polygenic risk for AU at age 20, with 

polygenic risk for AU at age 20 being less influential under conditions of high PM at age 

12.  

The bigger picture: Implications and future directions 

 Although many published behavioral genetic research papers mention that, 

“findings can inform prevention and intervention efforts,” rarely are the mechanisms 

describing how results can be translated discussed or elucicated. In fact, there have been 
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relatively few efforts to translate behavioral genetics research findings directly into 

prevention efforts 1. Although the field of behavioral genetics is a basic science, it exists 

on a translational pathway and the broader implications of results should be discussed. 

This will facilitate an understanding of mechanisms of behavior change and provide 

advancement toward the long-term goal of personalized prevention approaches1.  

The observed finding that nearly all complex psychiatric disorders are not 

Mendelian, are highly polygenic, and report heritability < 100% implies that AU/AUD 

are influenced by the environment, and consequently can potentially be modified through 

prevention and intervention efforts2. Behavioral genetics research within a developmental 

framework provides invaluable insights for understanding how critical environmental 

factors are during adolescence3-6, suggesting that adolescent AU will be heavily 

influenced by family, peer, and school prevention and intervention efforts2. However, this 

pattern evolves as individuals age, such that genetic factors become more important than 

environmental influences. This suggests that the protective effects of environmental 

efforts or attempts to delay AU or reduce the symptoms of AUD become less salient over 

time at least with respective to population-based samples that have not received any form 

of clinical intervention. Importantly, although environmental efforts may be less 

impactful during adulthood, we speculate that they would not be futile. However, this is 

critical for informing the importance of prevention efforts during early adolescence, when 

these efforts are likely to show the greatest benefit. Taken together, we can speculate that 

the large-scale implication from this research is that for environmental interventions to be 

successful they ought to be implemented during periods when environmental influences 

reach their peak during mid-adolescence.  
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 More specific to this dissertation, the associations between resilience and AU 

found in Chapter 2 suggest that interventions aimed at encouraging and teaching greater 

resilience may result in delayed AU and reduced AUD symptomatology, as we showed 

resilience reduced the risk of developing AUD by as much 29%. Further, the protective 

effect or benefit of resilience began to asymptote beyond resilience scores of 6 or more. 

Accordingly, moderate levels of resilience may be sufficient in order to reduce risk of 

AUD. These results build upon previous studies showing that resilience can attenuate risk 

for AU problems7-9. Collectively, it is clear that focusing prevention and intervention 

efforts on increasing resilience may be an effective means of reducing risk of AUD.  

The results of the bivariate Cholesky decomposition showed that much of the 

resilience-AUD relationship was attributable to overlapping genetic (57%) and shared 

environmental factors (36%). Accordingly, these shared genes inform gene-finding 

efforts by providing plausible networks to locate specific genes involved, and the shared 

environments can be targeted for prevention efforts. Although the results of this chapter 

do not directly inform when these efforts would be of greatest benefit, we can infer based 

on previous findings that the optimal timing would be when environmental influences 

have the greatest impact (i.e., before mid-adolescence)3-6.   

 Chapter 3 showed that among all of the DSM-IV PDS, borderline and antisocial 

PDs are the strongest correlates of increased risk for AU and AUD, and that this effect 

remains constant over lengthy time periods (i.e., 10 years apart). These findings are 

consistent with a large body of literature that has implicated these two personality 

disorders in the development of AUD10-15. Thus, individuals with borderline and 

antisocial PDs appear to be at higher risk for developing AUD, which is informative for 
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clinicians treating them. However, the question of whether the PDs are a pre-cursor for 

AU/AUD, or whether AU/AUD causally increases the risk of PDs has not been resolved. 

If the direction of causation suggests that the PDs are a causal pre-cursor for AU/AUD, 

the implication for prevention would be that individuals displaying characteristics of 

borderline and antisocial PD would be likely to benefit from efforts targeted towards 

teaching healthy coping mechanisms targeted for the PD, with downstream reduction of 

risk for AU/AUD. However, if the opposite is true (that AU/AUD increases risk of PDs), 

then the focus of the prevention should directly target risk reduction for AU/AUD.   

Although we have not formally modeled competing causal hypotheses between 

PDs and AU/AUD, the bivariate results are consistent with the hypothesis that risk of 

antisocial PD, borderline PD, and AUD can be attributable to correlated genetic factors 

and to a much lesser extent shared environmental risk factors. In other words, the genes 

that influence the development of AUD are shared with those that influence levels of 

borderline and antisocial PD. As described above, these shared genes can inform gene-

finding efforts.      

 The findings from Chapter 4 helped to clarify the question of whether genetic 

variation can be accounted for by a single factor or multiple factors across time. Because 

the extant literature is conflicting6,16, this remains an important research area. While the 

present results, which are based on a very large population-based sample, shows evidence 

for two qualitatively distinct genetic risk factors, further research with an independent 

sample are required to validate our findings. If our results replicate, they can inform 

gene-finding efforts by identifying the age ranges at which genetic variance is greatest. 

Alternatively, if replication efforts provide more support for a single set of genes, the 
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implication for gene-finding efforts would be that the ages of the sample used should not 

impact the success of such efforts. 

 The results from Chapter 5 extended the findings from Chapter 4 by showing that 

two distinct developmental processes influence adolescent and young adult AU between 

the ages of 15 to 25. Genetic effects not only influence baseline levels of AU but the rate 

of change in AU across time, whereas unique environmental effects appear to be 

‘remembered’ and accumulate over time. Our hypothesis that the same genetic influences 

on AU ‘unfold’ or are increasingly expressed over time is broadly consistent with reports 

showing that genetic variation increases over time3-6. As previously mentioned, the 

primary implication here is that prevention efforts are likely to be most optimal when 

targeted or implemented during early adolescence, before genetic influences become 

prominent. Further, the finding that unique environmental influences were consistent with 

an accumulating pattern of risk suggests that prevention efforts should focus on ways to 

reduce the number of unique risk factors that adolescents are exposed to, such as 

associations with deviant peers.          

A significant innovation of this chapter is that it is the first study to apply and test 

dual change score (DCS) or dynamic developmental models to adolescent AU. Our 

results were consistent with those of the report by Gillespie et al.17 who applied the DCS 

approach to examine adolescent depression, which is consistent with the literature 

supporting the links between AU and internalizing disorders18-21. Future research should 

formally test whether the same developmental patterns in genetic and environmental risk 

can be observed in all forms of adolescent psychopathology. To what extent the 

development of normative or non-psychiatric phenotypes (e.g., height, weight, stature) 
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follow the same developmental patterns is unclear. If there were support for this notion, 

the implications for prevention efforts discussed above would be similar, but would be 

generalizable to other forms of psychopathology.  

Finally, the findings from Chapter 6 have clear implications for prevention 

programming focused on reducing associations with deviant peer groups and increasing 

parental monitoring. Further, because the analyses were conducted at multiple time points 

across adolescence, an interesting temporal patterning was revealed, such that prevention 

programs targeting deviant peer groups are likely to be beneficial at all ages during 

adolescence, since the protective effects appeared to last for several years. In contrast, the 

protective effects of parental monitoring appear to be of shorter duration, and not 

extending beyond age 16. Despite this, efforts that focus on increasing parental 

monitoring may still delay AU, which can prevent the development of downstream 

alcohol problems22.     

Regarding the results of the polygenic risk and moderation analyses, the finding 

that polygenic risk did not significantly predict AU until age 20 is consistent with the 

twin literature showing that the impact of genetic variation increases over time3-6. It is 

also consistent with the need for significantly larger discovery samples with more precise 

phenotyping in order to improve the beta weights used to derive and estimate PRS in 

independent samples, as well as the fact that the weights were based on an older 

discovery GWAS sample. There was, however, one interaction that passed the Bonferroni 

corrected p-value threshold of 0.008, which revealed that under conditions of high 

parental monitoring at age 12, the polygenic risk for AU at age 20 is lower. To date, there 

has only been one study showing genetic risk for alcohol problems was stronger under 
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conditions of low parental knowledge or high peer deviance23. Clearly, more research 

examining polygenic risk by environment effects is needed, and with the release of the 

U.K. Biobank data24 and the forthcoming Psychiatric Genetics Consortium-AUD GWAS 

meta- and mega-analyses, we anticipate that the sensitivity and specificity of PRS scores 

will be significantly enhanced.  

Also of note here is the line of research examining gene by intervention (GI) 

effects. Before the development of polygenic methods, GI studies examined how 

individuals with a specific gene might respond to a given prevention or intervention (see 

Brody et al.25 for a review). For example, one such study found that toddlers who carried 

the 7-repeat version of the dopamine receptor-4 gene (DRD4) showed a greater decrease 

in disruptive behavior following a parenting skill intervention than toddlers who did not 

carry this allele 26. Although compelling, this candidate gene literature suffers from the 

critical limitations described in Chapters 1 and 6, such as lack of power to detect true 

effects27,28. In the current genomic era, it is now understood that many genes of small 

effect influence the development of psychiatric disorders27. Thus, an important area for 

future research is to increase power by using post-GWAS candidate selection, polygenic 

scoring, or pathway analysis to conduct these types of GI trials29. A recent article by 

Latendresse and colleagues29 presents guidelines for these approaches, including 

genotype quality control and correction for population stratification.   

Taken together, within the context of the three aims of this dissertation, four key 

implications for prevention and intervention efforts emerge: (1) Programs targeting 

environments that foster resilience, and decrease risk for borderline and antisocial PDs by 

treating the early psychiatric symptoms of these PDs may also reduce AU; (2) Programs 
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are likely to be more beneficial during early adolescence, before genetic influences for 

AU increasingly explain a greater proportion of the total phenotypic variation in AU and 

AUD; (3) Because of the accumulative nature of unique environmental risk factors on 

AU, efforts should focus on decreasing the number of these risk factors adolescents are 

exposed to; and (4) Peer group deviance and parental monitoring are critical areas and 

opportunities for focus on prevention efforts, with initial findings showing support for the 

ability of parental monitoring to decrease the polygenic impact of AU.  

Conclusions 

This dissertation examined risk/protective factors for the development of 

AU/AUD and the developmental trajectories of AU/AUD using both biometrical 

behavioral genetic and molecular genetic methodologies. We showed five main findings: 

(1) Resilience was strongly associated with a reduction in risk for AUD, and this 

relationship appeared to be the result of overlapping genetic and shared environmental 

influences; (2) Borderline and antisocial personality disorders were the strongest 

predictors of the phenotypic and genotypic liability to AU and AUD, and this effect 

remained consistent across time; (3) Genetic influences on the development of AUD 

observed during early adulthood through mid-adulthood were dynamic, with two sets of 

genetic risk factors contributing to AUD risk: one set of risks originating during ages 18-

25 and a second set of risk emerging during ages 26-33; (4) Genetic influences in AU 

appear to follow a pattern of unfolding and growth over time, whereas unique 

environmental risk factors were consistent with an accumulation of environmental 

impacts across time; and (5) High peer group deviance and low parental monitoring were 

associated with increased AU, and early parental monitoring moderated polygenic risk 
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for AU at age 20. These findings have important prevention and intervention implications 

for reducing AU and risk for AUD.   
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