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abstract: Sexual selection driven bymate choice has generated some
of the most astounding diversity in nature, suggesting that population-
level preferences should be strong and consistent over many genera-
tions. On the other hand, mating preferences are among the least re-
peatable components of an individual animal’s phenotype, suggesting
that consistency should be low across an animal’s lifetime. Despite
decades of intensive study of sexual selection, there is almost no infor-
mation about the strength and consistency of preferences across many
years. In this study, we present the results of more than 5,000 mate
choice tests with a species of wild frog conducted over 19 consecutive
years. Results show that preferences are positive and strong and vary lit-
tle across years. This consistency occurs despite the fact that there are
substantial differences among females in their strength of preference.
We also suggest that mate preferences in populations that are primarily
the result of sensory exploitation might be more stable over time than
preferences that are primarily involved in assessing male quality.

Keywords: túngara frog, Physalaemus pustulosus, sexual selection, mate
choice, mating call.

In the first place, it seems quite incredible, without di-
rect evidence on the point, that a large majority of the
females of any species, over the whole area of its range
and for many successive generations, should agree in
being pleased by the same particular kind of variation.
(Wallace 1876; emphasis added)

Introduction

Mate choice and the preference rules underlying it have been
of both interest and controversy since Darwin (1871) fleshed

out his theory of sexual selection.Unlike selection forces gen-
erated by the environment, mate choice is both an agent and
a target of selection. As an agent of selection it can drive the
evolution of elaborate traits in members of the opposite sex,
and as a target of selection it can influence the fitness of
individuals exercising mate choice (Kirkpatrick and Ryan
1991). We follow Kirkpatrick et al. (2006) and use the term
“mate choice” as the outcome of an animal choosing to mate
with one individual versus others and the term “preference”
as the rules that underlie those choices.
Sexual selection, in general but especially sexual selection

by female mate choice, has generated controversy dating
back to the initial disagreement between Darwin andWallace
(Richards 2017) apparent in the epigraph. Wallace was not
the only one to doubt the ubiquity of female mate choice.
JulianHuxley (1938, p. 417) stated that “competition between
males for mates, accompanied by any form of female choice,
is not the common phenomenon postulated by Darwin.”
More recently, Roughgarden et al. (2006, p. 965) asserted that
“sexual selection is always mistaken, even where gender roles
superficially match the Darwinian templates”; they instead
emphasized the role of cooperation over that of Darwin’s no-
tion of sexual conflict. On the other hand, many if not most
biologists have argued that there is ample evidence to dem-
onstrate that female choice exists and is common (Anders-
son 1994; Prum 2017; Rosenthal 2017; Ryan 2018). Never-
theless, it is not known whether it is consistent over many
generations, as Wallace (1876) doubted.
Why should it matter whethermate choice is consistent or

inconsistent across generations? Lehtonen et al. (2010, p. 21)
state that for male sexual ornaments to evolve “females need
to prefer an extreme expression of the male trait, and the
preferences themselves should be concordant among indi-
viduals within the population and remain fairly consistent
across time (Mead and Arnold 2004).” They further posit
that there is no reason to expect female preferences to be
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more evolutionarily stable than male signal traits (Bakker
et al. 1999; Qvarnström 2001). But these same authors point
out that very little is known about the temporal consistency
of female preferences (see also Jennions and Petrie 1997;
Qvarnström 2001).

It is well known, however, that natural selection can vary
across time. In a classic study by Gibbs and Grant (1987),
fluctuating rainfall across years influenced seed-type avail-
ability, which in turn influenced variation in beak shape in
Galapagos finches; different beak shapes are adapted for dif-
ferent food types. In these and many other examples of nat-
ural selection (e.g., Endler 1986), there is no feedback be-
tween the agent of selection—in this example, rainfall—and
the target of selection, the birds’ beaks.

On the other hand, there is ample opportunity for a feed-
back loop in mate choice as well as in other instances of
social selection more generally (West-Eberhard 1979). This
feedback loop could induce variation in those male traits
that are targeted by female preferences and thus cause pref-
erences to vary across time. Building on theGalapagos finches
example, beak shape can act as a species recognition cue, and
Grant and Grant (1997) suggested that it can also contribute
to premating isolation (see also Price 2008; Grant and Grant
2018). Thus, it might be expected that females would prefer-
entially mate with males with beaks better adapted for the
current and local food supply. The female preference would
act as an agent of selection on beak shape, but the preference
would also be a target of selection as the beak shape of her
partner could influence her reproductive success. As local
food conditions change, so does beak shape as well as the
preferences for beak shape. In such a scenario, referred to as
the ecological crossover hypothesis by Greenfield and Rodri-
guez (2004), different male traits will be more indicative of
male condition in different environments, and this should fa-
vor plasticity in mate choice. Botero and Rubenstein (2012)
reviewed a substantial body of literature on mating systems
in birds and concluded that across species, environmental var-
iability did favor plasticity in femalemate choice.Wenote that
the data analyzed in that study were cross-species compari-
sons and not longitudinal comparisons within species.

Would variation in mating preferences across generations
be surprising? No.We do know that, in general, behavior can
be a quite variable aspect of the phenotype, and this might be
especially true of mate choice behavior, as surveys of repeat-
ability have shown. (Repeatability is a statistical measure of
variability that compares the within- and among-individual
variation in a population: r p s2A=s2 1 s2A, where s2A is the
variance among individuals and s2 is the variance within in-
dividuals; Bell et al. 2009.) In a survey of 759 estimates of
repeatability in behavior representing 98 species,mate choice
was one of the best studied but least repeatable of all behav-
iors (Bell et al. 2009). Similarly, Rosenthal (2017) reviewed
192 studies of repeatability of mate choice and showed that

the average repeatability for major taxonomic groups was
usually less than 0.3, much lower than the repeatability for
many other behaviors summarized by Bell and colleagues.
That mate choice is often inconsistent within individuals

has suggested to some that sexual selection by mate choice
might also be inconsistent across generations (e.g., see Iwasa
and Pomiankowski 1995; Gosden and Svensson 2008; Kasu-
movic et al. 2008). However, we know little about the con-
sistency of mate preferences across more than just a few
generations (Rosenthal 2017) nearly 150 years after Wallace
challengedDarwin’s theory of sexual selection by femalemate
choice because he could not imagine that it was consistent.
Here we report the results of more than 5,000 preference

tests for two mating call types, simple and complex, in a frog
over a period of 19 years. As these frogs appear to live only
1 year in the wild and are sexually mature within a year of
their birth (Ryan 1985), this is equivalent to at least 19 gen-
erations. We addressed two questions: How consistent is
the direction and strength of preference for complex calls
over simple calls across years? And is there any evidence
for substantial variation among females in this preference,
which could contribute to a lack of consistent preferences
among years?

The System

Preference for complex calls by túngara frogs is among the
better documented examples of sexual selection by female
choice (Ryan 1980, 1983, 2011b; Rand and Ryan 1981; Ryan
and Rand 1990, 1993a, 1993b; Rand et al. 1992; Ryan and
Keddy-Hector 1992; Wilczynski et al. 1995, 1999; Kime et al.
1998; Farris et al. 2002; Lynch et al. 2005, 2006; Phelps et al.
2006; Bernal et al. 2009; Akre and Ryan 2010a, 2010b; Baugh
and Ryan 2010a, 2010b, 2010c, 2010d, 2011; Akre et al. 2011;
Dawson and Ryan 2012; Taylor and Ryan 2013; Baugh et al.
2018), and perhaps the first experimental demonstration that
variation in courtship displays within a species influences fe-
male mate preferences (Ryan 1980). This preference has been
documented using a vast array of natural, natural-manipulated,
and synthetic calls.
Túngara frogs produce a mating call with two compo-

nents. All calls begin with a whine, which males can produce
in isolation (simple call) or towhich they can add one to seven
short bursts of sound called chucks (complex calls; fig. 1).
Males in all 30 populations sampled along a 5,000-km tran-
sect throughout the species’ range produced both simple and
complex calls, although there are a number of differences in
the acoustic details of the call among populations as well as
among males in the same population (Ryan et al. 1996).
The túngara frog’s whine is both necessary and sufficient

for species recognition, and female frogs (Ryan 2011b) as well
as predatory bats (Tuttle and Ryan 1981) and parasitic midges
(Bernal et al. 2006) prefer complex calls to simple calls. In ad-
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dition, female frogs and frog-eating bats also prefer calls with
more chucks to calls with fewer chucks (Akre et al. 2011).
Nonetheless, 83% of the calls recorded in natural choruses
are either a whine or a whine with one chuck (Bernal et al.
2007). As there is little energetic cost to adding chucks (Bu-
cher et al. 1982), we surmise that the reluctance of males to
add chucks, despite the mating advantage of doing so, is due
to the high cost of predation (Ryan 2011b). Despite the impor-
tance of sexual selection by female choice in driving the evo-
lution of this sexual communication system, we know little
about how the strength of these female preferences vary
across years or among females within years.

Methods

Phonotaxis

We measured preferences for simple calls versus complex
calls in reproductively receptive adult female túngara frogs
captured from the field in and around Gamboa, Panama, be-
tween June and August each year from 1997 to 2015 inclu-
sive. Females were captured in amplexus in early evening,

usually between 1900 and 2000 hours, and then tested that
same night/morning, usually between 2000 and 0400 hours.
After all testing was completed the females were released to-
gether with their male partners at the site where they were
collected. To avoid retesting, females were given a unique
toe-clip combination following Beaupre et al. (2004). Proto-
cols for collecting and testing frogs were approved by the
Institutional Animal Care and Use Committees of the Uni-
versity of Texas at Austin and the Smithsonian Tropical Re-
search Institute. The Autoridad Nacional del Ambiente ap-
proved scientific permits in the Republic of Panama.
Females were tested for their preference between a syn-

thetic whine versus a synthetic whine-chuck. The same syn-
thetic calls were used every year (fig. 1; Rand et al. 1992). As
noted above, the preference for complex calls versus simple
calls has been well documented using a variety of natural,
natural-manipulated, and synthetic calls. In this set of studies
we employed a single pair of stimuli to be used as a bench-
mark against which we measured variation in female pref-
erences. Thus, variation in the response of females could
be contributed to the females themselves rather than to var-
iation in the stimuli with which they were tested. The only
difference between this simple and complex call is a synthetic
chuck added to that same synthetic whine. This protocol al-
lows us to control for all other acoustic variables that could
covary with the complexity of natural calls.
For each test, a female was placed under a cone in the cen-

ter of a 2.7#1.8-m Acoustic Systems sound chamber in our
laboratory at the Smithsonian Tropical Research Institute
facilities in Gamboa. Two speakers at equal distance from
the cone (1.35 m) and opposite one another broadcast the
acoustic stimuli antiphonally. Stimuli were switched between
speakers after each test. Stimulus amplitude was adjusted such
that the whine of each stimulus was 82 dB SPL (re. 20 mPa)
in the center of the arena. Stimulus amplitude was measured
with peak amplitude and flat weighting settings on a Gen-
Rad 1982 SPLmeter (General RadioCorporation,West Con-
cord, MA). An infrared light illuminated the chamber, and
an infrared-sensitive video camera projected an image of the
chamber to a monitor outside the chamber, where female ac-
tivity was scored.
Females were restrained under the cone while the speak-

ers played for 3 min. At this time, we raised the cone from
outside the chamber and the speakers continued playing.
The female could then respond to the stimuli by moving to
a speaker. We scored the female as making a choice when
she approached to within 10 cm of the speaker. If she did
not move from the center of the chamber within 5 min of
raising the funnel, if she remained stationary for 2 min at
any point after leaving the center of the chamber, or if she
did not choose a speaker within 15 min, the test was scored
as no choice. “No-choice” data were not included in the anal-
yses, as many factors could contribute to lack of motivation

W (M) Wc (M)

       Wc (synthetic)  W (synthetic)

100 ms
4

kH
z

0

4

kH
z

0

Figure 1: Oscillograms (top) and spectrograms (bottom) of a synthetic
and natural whine (“W”) andwhine-chuck (“Wc”). The natural calls are
labeled “M,” the population mean call from Ryan and Rand (2003).
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to choose, especially hormone levels at the time of testing
(Lynch et al. 2005).

Testing the preference for whine versus whine-chuck was
often used as a screening test to determine whether females
were motivated to respond in subsequent phonotaxis exper-
iments. Thus, females were tested a variable number of times.
Data have been deposited in the Dryad Digital Repository
(https://dx.doi.org/10.5061/dryad.6c13n16; Ryan et al. 2019).

Statistics

We used a generalized linear random effects modeling strat-
egy with logit link function to estimate the variation in whine-
chuck preference rates across both time (year) and individ-
ual. This strategy models the probability pit that frog i tested
in year t will prefer the whine-chuck call by

pit p
1

11 exp(2m2 fi 2 yt)
, ð1Þ

where the latent parameters fi and yt are modeled by random
variables Fi and Yt, respectively, with

Cov[Fi, Fj]p j2dij,

Cov[Yt ,Yu]p t2dtu,

Cov[Fi,Yt]p 0

ð2Þ

(dij is the Kronecker delta, equal to 1 if i p j and 0 other-
wise). We used the function glmer from the R package lme4
to fit this model and to obtain maximum likelihood estimates.

Given the estimates of the parameters m̂, ĵ, t̂ thus ob-
tained, we calculate the means and variances of the prefer-
ence rates Pit in terms of the moments

E[Pn
itjm̂, Fi p fi, t̂] p

ð∞
2∞

�
1

11 exp(2m̂ 2 fi 2 yt)

�n

#P[Yt p yt] dyt , ð3Þ

E[Pn
itjm̂, ĵ ,Yt p yt] p

ð∞
2∞

�
1

11 exp(2m̂ 2 fi 2 yt)

�n

# P[Fi p fi] dfi, ð4Þ

E[Pn
itjm̂, ĵ , t̂] p

ð∞
2∞

�
1

11 exp(2m̂ 2 fi 2 yt)

�n

#P[Fi p fi]P[Yt p yt] dfi dyt , ð5Þ

where Fi ∼ N (0, ĵ2) and Yt ∼ N (0, t̂2). The overall mean of
the random variable Pit representing the preference rate of
a frog i in year t is then given by equation (5) with n p 1,
while the corresponding overall variance is given by

V[Pitjm̂, ĵ , t̂] p E[P2
itjm̂, ĵ , t̂]2 E[P1

itjm̂, ĵ , t̂]2: ð6Þ

We characterize the relative contributions of year-to-
year variance and frog-to-frog variance by

V[Pitjm̂, Fi p 0, t̂] p E[P2
itjm̂, Fi p 0, t̂]

2 E[P1
itjm̂, Fi p 0, t̂]2: ð7Þ

V[Pitjm̂, ĵ ,Yt p 0] p E[P2
itjm̂, ĵ ,Yt p 0]

2 E[P1
itjm̂, ĵ ,Yt p 0]2: ð8Þ

Here we have made the estimates for the contribution of
each random effect with the value of the other random ef-
fect terms held at its average value (zero, by definition).

Results

We conducted 5,123 phonotaxis tests with 2,464 females.
Sample sizes of tests over the 19 years ranged from 43 to
714, and in 16 of the 19 years sample sizes were 100 tests or
greater (fig. 2): 1,379 females were tested once, 7 were tested
between seven and nine times, while the remainder, 1,078,
were tested between two and six times (fig. 3).
Summing all of the data across years, females preferred

the whine-chuck to the whine in 4,404 of the 5,123 prefer-
ence tests, while in only 719 tests did females choose the
whine (cumulative binomial P ! :00001). Thus, the strength
of preference for the complex call was 0.8597. If we consider
only the first test with each female, 2,116 of the 2,464 females
tested preferred the whine-chuck to the whine (cumulative
binomial P ! :00001), a strength of preference of 0.8588,
nearly identical to the strength of preference when multiple
tests by females are taken into account.
Our generalized linear model obtained maximum likeli-

hood estimates m̂ p 2:1 for the mean parameter in equa-
tion (1) as well as ĵ2 p 0:79 and t̂2 p 0:11 for the variance
parameters in equation (2). These parameters correspond to
estimates of a within-year standard deviation of 0.10 across
frogs and a much lower standard deviation of 0.033 across
years in the preference rates pit (with an average preference
rate of 0.86).
We compared model (1) to three simpler models:

pit p
1

11 exp(2m2 yt)
, ð9Þ

pit p
1

11 exp(2m2 fi)
, ð10Þ

pit p
1

11 exp(2m)
p p0: ð11Þ

Equation (9) simplifies equation (1) by assuming that there
is no variation in preference rates between individual frogs.
On the other hand, equation (10) retains the frog-to-frog var-
iation but assumes no variation between years. Finally, equa-
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tion (11) omits both sources of variation, thus collapsing down
to a simple single-parameter binomial model.

We apply the Akaike information criterion (AIC; Akaike
1974) to estimate the relative quality withwhich each of these
models fits the data as quantified by Kullback-Leibler diver-
gence from the (unknown) true data generation process.
Lower AIC values indicate better model fits, with the quan-
tity exp([1=2]DAIC) approximating the odds that the lower
AIC model is actually superior to the higher AIC model in a
head-to-head comparison (Burnham and Anderson 2003);
for example, DAIC p 6 indicates that the lower AIC model
is about 20 times more likely to be preferable than the higher
AICmodel,while forDAIC 1 30 theoddsexceed205p3:2mil-
lion to 1. Table 1 presents the variance estimates and AIC
values for each of these models: the full model equation (1)
is preferred by AIC, followed closely by the reduced model
equation (10) accounting for variation among frogs but ne-
glecting variation among years. Model (1)–estimated vari-
ance among frogs is much larger than the estimated variance
among years (roughly corresponding to a510% preference
rate from frog to frog and a53% preference rate from year
to year; see eqq. [7] and [8] in “Methods” for details). Inspec-
tion of figure 2 suggests that the variation among yearsmight
be driven by data solely from 1999. Excluding these data
yields a model in which all variation in preference rate is es-

timated to be frog to frog (513%), with zero variation asso-
ciated with year. There are no reasons, however, to suspect
that the data from 1999 are aberrant in any way. In general,
our results show that there is minor variation among years in
the strength of female preference for the complex call over
the simple call despite the fact that there is substantial vari-
ation among females within years.

Discussion

Despite intense interest in sexual selection and mate choice
over the past 50 years, there is an astounding lack of informa-
tion on how consistent mating preferences are across years
(Rosenthal 2017). This is despite a recent emphasis through-
out science on the importance of replicability of studies (Ryan
2011a; McNutt 2014; Fraser et al. 2018).
Numerous studies have shown that mating preferences

within individuals are often inconsistent (summarized in Bell
et al. 2009; Rosenthal 2017). There are only a few studies that
examine patterns of mate choice across years. Qvarnström
et al. (2006) analyzed a large multiyear data set in which
mate choice by collared flycatchers was inferred by pheno-
type of the male partner. These data were then used to infer
heritabilities of female preferences and male phenotype. But
they do not report variation among years. In another study
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effects model equation (1) are presented as the jagged dashed line.
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of the same species, Qvarnström et al. (2000) argue that there
is adaptive variation in preferences among females within
a breeding season, but again there are no data examining
inferred preferences across years. One study that examined
mating preferences across years was that byChaine and Lyon
(2008), who, like the previous authors, also inferred mate
preferences from examining pairing data. They showed that
inferred mating preferences for lark buntings vary consider-
ably among male traits and even reversed direction in some
cases over just a 5-year period. These studies, combined with
the notion that behavior in general and mate preferences in
particular are quite variable, reinforcewhat seems to be a con-
sensus that the strength of mating preferences are not con-
sistent over years (Iwasa and Pomiankowski 1995; Gosden
and Svensson 2008; Kasumovic et al. 2008; Cornwallis and
Uller 2010).

In this study, we show that there is substantial variation
among females tested multiple times in the strength of their
preference for complex calls over simple ones. Nevertheless,
despite the fact that there is interindividual variation in this
preference in túngara frogs, the preference has a constant di-
rection, favoring complex calls over simple calls, and is con-
sistently strong over the 19 consecutive years in which it
was measured. There is, however, noticeable variation in the
strength of preference among some of the years. These data
reject the notion that if there is variation among females in
strength of preferences, this necessarily results in a lack of
consistency of preferences among years. This clearly is not
the case in this data set. The causes of these two types of
variation, among females and among years, have yet to be
explored.

We do know that there are a number of factors that can
influence acoustic mate preferences in these frogs, including
light level (Rand et al. 1997), distance/amplitude of the call
(Ryan and Rand 1990), perceived predation risk (Bonachea
and Ryan 2011), the number of males that are being assessed
by females (Lea and Ryan 2015), the degree to which females
are gravid (Baugh and Ryan 2009), and circulating hormone
levels (Lynch et al. 2006). Among the six studies of these

factors, only those of light levels and call distance/amplitude
involve preferences for simple versus complex calls. In addi-
tion, other studies of túngara frogs have shown that there was
significant variation among females in the degree to which
they generalize signals, even though females were not very
consistent (Ryan et al. 2003). However, another study showed
that the lack of a population preference between certain pairs
of calls was not due to females having competing strong pref-
erences that averaged out to no preference but was due to
similar lack of preferences among females (Kime et al. 1998).
In summary, depending on the task, female túngara frogs
are sometimes quite variable in their acoustic mate prefer-
ences and other times not at all variable.
Theremight be an important difference in the femalemat-

ing preferences inferred for the passerine birds discussed
above and the experimentally demonstrated female mating
preferences of túngara frogs for the chuck. This difference
might highlight how utilitarian and aesthetic female prefer-
ences vary. In the study of the passerines cited above, it is
argued that females assess male traits that indicate perfor-
mance in different ecological conditions. The preference for
chucks by túngara frogs, as we have argued elsewhere, seems
to involve sensory exploitation (Ryan et al. 1990).
In contrast to birds, frogs have two inner ear organs:

the amphibian papilla (AP) and the basilar papilla (BP). In
most if not all frogs studied to date, there is a goodmatch be-
tween themost energetic frequencies in the frog’s mating call
and the tuning of the inner ear. In some frogs only the AP or
only the BP is recruited in communication, while in some
others both inner ear organs are involved in communication
(Gerhardt and Schwartz 2001; Gerhardt and Huber 2002).
The túngara frog is one of the latter; the dominant frequency
of the whinematches themost sensitive frequency of the AP,
while the dominant frequency of the chuck tends to match
that of the BP (Ryan et al. 1990). In other closely related spe-
cies in the genus Physalaemus, most species do not add a
chuck-like component to their whine-like mating calls, and
the dominant frequencies of their whines tend to match
the sensitive frequencies of their AP. Even though these other
species do not use the BP in communication, all but one of
the eight species examined have a BP tuning that is statisti-
cally similar to that of the túngara frog (Wilczynski et al.
2001). These data suggest that the spectral properties of the
chuck evolved tomatch the preexisting tuning of the BP rather
than the tuning of the inner ear evolving to match the spec-
tral quality of the chuck. It is thought that this excitation
of both inner ear organs by complex calls and the resulting
enhanced excitation and functional connectivity in sensory,
sensory-motor, and motor areas in the brain (Hoke et al.
2004, 2005, 2007) contribute to the greater female preference
for complex calls over simple calls. Although sensory tuning
clearly can evolve, we doubt that it is as sensitive to the vaga-
ries of the environment, such as rainfall, that influence male

Table 1: Comparison of models accounting for preference
rate variation between individuals and/or years

Model ĵ2 t̂2 AIC DAIC

Equation (1) .788 .109 4,064.7 0
Equation (9) . . . .171 4,100.9 36.18
Equation (10) 1.782 . . . 4,070.6 5.82
Equation (11) . . . . . . 4,157.7 92.98

Note: The model column references the equation number defining the model,
ĵ2 indicates estimated variance Var[Fi] across individuals, and t̂2 indicates esti-
mated variance Var[Yt] across years. The Akaike information criterion (AIC)
column gives the AIC value for the indicated model, and the DAIC column indi-
cates the difference between the AIC for each model and the AIC for the best-
fitting model.
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sexual traits and the preferences that females have for them
in some other species.

Another important factor that differs between túngara
frogs and songbirds is that frogs in general do not learn their
species-specific mating call (Gerhardt and Huber 2002). We
know specifically in túngara frogs that males do not learn
their calls (Dawson and Ryan 2009), nor do females learn
their call preferences (Dawson and Ryan 2012). In song-
birds, however, both conspecific songs and the preferences
for those songs are learned (Catchpole and Slater 2003), and
sexual imprinting is thought to play an important role in
speciation in some groups of birds (Grant and Grant 2018).
Learned traits are susceptible to influence from changes in
the social and physical environment, and change can spread
through a population quickly even within a generation. Lack
of learning might explain why this particular preference in
túngara frogs—the preference for complex calls over sim-
ple calls—is not as variable as some other preferences in
this frog, as we discussed above. The preference for chucks
in túngara frogs is apparently much more stable than mat-
ing preferences shown in some other species, especially in
passerines, which constitute a sizable portion of sexual selec-
tion studies.

In summary, we show that strong and consistent mating
call preferences of túngara frogs across years are evident de-
spite significant variation among females. It seems that most
females have strong preferences for complex calls, but some
are significantly stronger than others. In general, our study
reinforces the notion that sexual selection by mate choice has
been a potent force generating much of the spectacular bio-
diversity we see in the animal kingdom.We also humbly sug-
gest that although Alfred Russell Wallace was correct about
many things, he was wrong about sexual selection.
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