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Abstract 

Computer programming is an integral part of a technology driven society, so there is a 

tremendous need to teach programming to a wider audience. One of the challenges in meeting 

this demand for programmers is that most traditional computer programming classes are targeted 

to university/college students with strong math backgrounds. To expand the computer 

programming workforce, we need to encourage a wider range of students to learn about 

programming. 

 The goal of this research is to design and implement a gesture-driven interface to teach 

computer programming to young and non-traditional students. We designed our user interface 

based on the feedback from students attending the College of Engineering summer camps at the 

University of Arkansas. Our system uses the Microsoft Xbox Kinect to capture the movements 

of new programmers as they use our system. Our software then tracks and interprets student hand 

movements in order to recognize specific gestures which correspond to different programming 

constructs, and uses this information to create and execute programs using the Google Blockly 

visual programming framework.  

 We focus on various gesture recognition algorithms to interpret user data as specific 

gestures, including template matching, sector quantization, and supervised machine learning 

clustering algorithms. 

 

  



 

 

Acknowledgments 

First, I would like to thank my advisor, Dr. John Gauch, for his continuous support of my 

Ph.D. study and related research. Without his guidance, patience, and mentoring, this dissertation 

would not have been possible. 

Besides my advisor, I would also like to express my deepest appreciation to Dr. Susan 

Gauch, Dr. David Andrews, and Dr. Jackson Cothren for agreeing to serve on my committee and 

for their valuable feedback throughout this process. 

Thanks to all of my family and friends for your support and guidance through my 

academic career. 

A very special thanks to all of the faculty and staff at the University of Arkansas for all 

that they do to help the students succeed. Thanks also to the faculty and staff at Northwest 

Technical Institute for all your support and for always believing in me.  

I am also very grateful to Dr. Russell Deaton, who encouraged me to go to graduate 

school and got me started on this journey. 

 

 

 

  



 

 

Dedication 

To my awesome husband, Alden Streeter, and my loving and supportive parents, Jim and 

Rozetta Strother. 

  



 

 

Table of Contents 

1 Introduction .................................................................................................................................. 1 

1.1 Motivation ............................................................................................................................. 1 

1.2 Driving Problem .................................................................................................................... 4 

1.3 Dissertation Organization ...................................................................................................... 5 

2 Review of the Literature .............................................................................................................. 6 

2.1 Visual Programming ............................................................................................................. 6 

2.1.1 Google Blockly ............................................................................................................... 6 

2.1.2 Scratch ............................................................................................................................ 8 

2.1.3 Snap! ............................................................................................................................... 8 

2.1.4 Alice................................................................................................................................ 9 

2.1.5 Summary ....................................................................................................................... 10 

2.2 Kinect-Based User Interfaces .............................................................................................. 10 

2.2.1 Medical Applications .................................................................................................... 11 

2.2.2 In Arts and Entertainment ............................................................................................. 15 

2.2.3 Motion Tracking Applications...................................................................................... 17 

2.3 Gestural Programming Languages ...................................................................................... 19 

3 User Interface and System Design ............................................................................................. 20 

3.1 Student Input ....................................................................................................................... 20 

3.1.1 Student Surveys ............................................................................................................ 20 



 

 

3.1.2 Student Gesture Capture ............................................................................................... 22 

3.1.3 Common Gestures among Students .............................................................................. 25 

3.1.4 Other Observations ....................................................................................................... 26 

3.2 Programming Goals............................................................................................................. 27 

3.3 User Interface Design .......................................................................................................... 28 

3.4 Software/Hardware System Design .................................................................................... 29 

3.4.1 Processing ..................................................................................................................... 30 

3.4.2 Blockly.......................................................................................................................... 33 

3.5 Gestures ............................................................................................................................... 34 

3.5.1 Gesture Variations ........................................................................................................ 35 

4 Gesture Matching Algorithms.................................................................................................... 36 

4.1 Static Poses .......................................................................................................................... 36 

4.2 Fluid Motion of Joints ......................................................................................................... 39 

4.3 Gesture Matching Algorithms ............................................................................................. 40 

4.4 Gesture Normalization ........................................................................................................ 42 

4.5 Template Matching for Loop Gesture ................................................................................. 43 

4.5.1 Minimum/Maximum Scaling Algorithm ...................................................................... 44 

4.5.2 Standard Deviation Scaling Algorithm......................................................................... 46 

4.6 Sector Quantization ............................................................................................................. 53 

4.7 Centroid and Medoid Matching .......................................................................................... 56 



 

 

4.7.1 Nearest Centroid Classification .................................................................................... 57 

4.7.2 Nearest Medoid Classification with Aligned Gestures ................................................. 58 

4.7.3 Nearest Medoid Classification with Point-Set Distances ............................................. 61 

4.8 Gesture Editing .................................................................................................................... 65 

5 Conclusion and Future Work ..................................................................................................... 67 

5.1 Summary ............................................................................................................................. 67 

5.2 Future Work ........................................................................................................................ 69 

6 References .................................................................................................................................. 73 

7 Appendix .................................................................................................................................... 78 

7.1 Institutional Review Board Initial Approval ....................................................................... 78 

7.2 Institutional Review Board Continuation Approvals .......................................................... 79 

 



 

 

List of Figures 

Figure 1. APL keyboard 2 

Figure 2. Blockly IDE 7 

Figure 3. Scratch IDE 8 

Figure 4. Snap! IDE 9 

Figure 5. Alice IDE 10 

Figure 6. Tiger puppet joint mapping (from Zhang 2012) 16 

Figure 7. CaptureGesture interface with joints labeled; the user is drawing a loop with their right 

hand 23 

Figure 8. CaptureGesture interface where the user jumped up and down, then moved left to right 

to show full skeletal tracking 24 

Figure 9. System design 30 

Figure 10. Example code in Processing 31 

Figure 11. Kinect hand tracking example; the user is making a wave gesture 32 

Figure 12. Kinect hand tracking; the user is in the process of drawing an infinity symbol 33 

Figure 13. JavaScript code display after finishing a puzzle in Blockly 34 

Figure 14. Ideal loop A and user gestures B, C, and D 41 

Figure 15. Minimum/maximum scaling for gestures B-D 45 

Figure 16. Minimum/maximum scaling for pared gestures B-D 45 

Figure 17. Standard deviation distributions 47 

Figure 18. Standard deviation scaling for gesture B (all data) 49 

Figure 19. Gesture B point representation 50 

Figure 20. Standard deviation scaling for gesture B (pared data) 50 



 

 

Figure 21. Quantized grid of sectors 54 

Figure 22. Quantized gestures with a sector grid underlay; A. an ideal circle, and B-D. three user 

gestures 54 

Figure 23. Gesture centroids, pared to 50 coordinates 58 

Figure 24. Two loop gestures compared by starting point to starting point 59 

Figure 25. Two loop gestures compared by attempting to align their coordinates 60 

Figure 26. Two loop gestures compared with point-set differences 62 

Figure 27. A spiral pared to 50 coordinates, plotted as points 63 

Figure 28. An infinity symbol pared to 50 coordinates, plotted as points 63 

Figure 29. An infinity symbol incorrectly mapped to a spiral medoid 64 

Figure 30. Cross-finder on a loop gesture 65 

Figure 31. Loop gesture without a crossed section 66 

 



 

 

List of Tables 

Table 1. Pose table for all 15 joints for a simple right hand wave gesture ................................... 38 

Table 2. Possible undo gesture...................................................................................................... 39 

Table 3. Number of files per types of gesture ............................................................................... 41 

Table 4. Accuracy of the minimum/maximum scaling algorithm when using original data versus 

pared data ............................................................................................................................... 43 

Table 5. Minimum/maximum scaling results for figures B-D ...................................................... 46 

Table 6. Gesture B standard deviation scaling match percentages ............................................... 49 

Table 7. Count of "best" standard deviations values .................................................................... 51 

Table 8. Template matching percentages for standard deviation bounding boxes (7 values) ...... 51 

Table 9. Template matching percentages for standard deviation bounding boxes (151 values) .. 52 

Table 10. Percentages of template matching for standard deviation bounding boxes (16 values) 53 

Table 11. Sector quantization matching results ............................................................................ 55 

Table 12. How the files were split for training versus testing ...................................................... 56 

Table 13. Aligned gesture best figure matching results ................................................................ 60 

Table 14. Medoid gesture type sums for five gestures using the align gestures matching 

algorithm ................................................................................................................................ 61 

Table 15. Medoid gesture type sums for all five figures using the point-set difference matching 

algorithm ................................................................................................................................ 64 

Table 16. Medoid gesture type sums for three figures using the point-set difference matching 

algorithm ................................................................................................................................ 65 

Table 17. Matched percentages for gestures ................................................................................. 68 



1 

 

1 Introduction 

1.1 Motivation 

Computer programming is an important field given the rapid advance of technology in 

recent years, but traditional programming classes are not necessarily directed to the masses. They 

are typically more tailored to people who are either already interested in programming or are old 

enough (or have enough self-discipline) to sit in a class, take notes, and then go home and 

experiment with what they have learned in front of a screen. Could there be a better way to teach 

them?  What if, instead of having them sit down and type on a keyboard, they could have a more 

interactive experience?  These are the two questions that motivate our current research. 

Programming is an integral part of the technologically driven society, so there is a need to 

provide a better way to teach programming to a broader audience. Programming is an important 

career skill that teaches problem solving skills that are broadly useful, and well rewarded. For 

example, in 2015 computer science was projected to be the second highest paying career option 

for students graduating with a bachelor degree, with the starting annual salary over sixty 

thousand dollars (Rawes 2015). 

As science, technology, engineering, and math (STEM) jobs are becoming more 

pervasive in society, there is a growing need to grab the attention of younger and non-traditional 

programmers, draw them into the world of computing, and hold their interest. Programming with 

a language meant solely for computation can easily discourage some people since learning 

syntax and rules is typically not as enjoyable as manipulating images and completing fun tasks. 

When people become immersed in learning and having fun, they are more likely to continue onto 

more challenging topics. It was discovered during some very controlled trials for first-time 
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University level programmers that using a visual language like Alice increased retention by 41%, 

and the average grade in the class rose an entire letter grade (Moskal 2004). 

Computer programming has evolved over the years as computer languages have evolved. 

One significant barrier to the masses being able to learn is arcane syntax. A prime example is the 

1960’s language, APL, which required a special keyboard (see Figure 1) with the APL character 

set that was typed by pressing shift and the letter where that symbol was located. Fortunately, 

many commonly taught languages now use full words instead of language specific symbols.  

 

Figure 1. APL keyboard1 

Taxonomy of Programming Languages 

For the purposes of this research, programming languages are classified into four 

categories: textual, visual, gesture-based, or hybrids combining two or more approaches. Textual 

programming languages include any programming language that can be typed, such as Java, 

C++, or APL, among others. Visual programming languages incorporate icons, have a drag-and-

drop interface, or are mouse or graphics based – such as Google’s Blockly or MIT’s Scratch. 

There are also hybrid languages that combine textual and visual programming aspects of the 

previously mentioned languages such as Visual Basic, where the user can create a GUI by 

dragging buttons, textboxes and other form options onto the screen, then coding those buttons to 

                                                 
1 Savard, John J. G. "Picture of an APL Keyboard." Remembering APL. 2012. Web. 

<http://www.quadibloc.com/comp/aplint.htm>. 
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perform certain tasks. Finally, there are gesture-based languages. These can involve multi-touch 

gestures on a tablet device (Lü 2012), using an image or video as input (Kato 2013, Kato 2014), 

determining finger locations using a data glove (Kavakli 2007), or manual selection of symbolic 

markers to control a robot (Dudek 2007). 

Gesture Interfaces 

A wide variety of devices have been developed to capture and process gestures. For this 

research, we are focusing our attention on the Microsoft Kinect because it is inexpensive, widely 

available, and provides at three-dimensional depth map and skeletal tracking. The Kinect made 

its first appearance in the market in November of 2010, where eight million units were sold in 

the first sixty days, and over twenty-four million units have been shipped since February 2013. 

When the Kinect was first released, Microsoft had intended for it to only be used in conjunction 

with their Xbox gaming platform, and did not provide any packages to enable unlicensed 

developers to create their own programs. Their professional software development kit (SDK) 

was only licensed to game development companies so they could create software for the Xbox 

and Kinect. However, even with Microsoft’s reluctance to enable unlicensed development and 

threats that the warranty would be voided if the Kinect was used in any way other than with the 

Xbox, hackers managed to gain control of the Kinect’s motors within a week of the release. This 

spurred the development of the OpenKinect and libfreenect projects. Shortly thereafter, software 

developers were able to reverse engineer the Kinect’s program, and release it as public domain. 

About seven months later, in June 2011, Microsoft released their Kinect SDK for general public 

use. This research project will build on the OpenNI SDK for the Kinect to investigate gesture-

based programming languages. 
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1.2 Driving Problem 

Since the Kinect made its first appearance in the market in November 2010, it has been 

embraced as an inexpensive off-the-shelf three-dimensional camera for more than just gaming 

(Andersen 2012). It has been used in the medical field to assist clean-room surgery, patient 

rehabilitation, and vocational training, to name a few examples. Various other applications have 

been created such as virtual dressing rooms, interactive whiteboards, handwriting recognition 

tools, and pottery simulations that explore the endless possibilities the Kinect has unlocked for 

user interaction. 

The goal in this project is to create and evaluate a visual and gesture-driven interface to 

teach programming to non-traditional programmers. Hence our interface will be strongly inspired 

by Google’s Blockly and MIT’s Scratch format with drag-and-drop puzzle pieces, along with 

pre-defined gestures that will correspond to functions and available actions. Our long term goal 

is to answer questions such as: 

 What is the vocabulary of gestures that is necessary to create a programming interface? 

 How can we use the three-dimensional nature of gestures effectively in our interface? 

 By introducing a gesture-based interface, will we have better engagement and 

performance by atypical programmers? 

 By making the concept of programming easier to understand, will we help foster an 

interest in programming? 

To judge the effectiveness of changing the programming medium, the results will need to 

be evaluated from observing and testing the users. The programming interface will have two 

different options – using the traditional mouse-and-keyboard, or using a Kinect. One issue that 

may arise is the users’ endurance while using their arms to control the program. This may affect 
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some age groups more than others; therefore the impact will be judged across several different 

age groups. 

1.3 Dissertation Organization 

In Chapter 2 we will explore some related background work to the Kinect, visual 

programming languages, and gestural interfaces. In Chapter 3, we discuss how data was gathered 

from young students attending engineering summer camps at the University of Arkansas, and 

how we used our observations from these camps to design a gesture based user interface for 

programming. This chapter also describes the hardware/software design of the system we 

developed. In Chapter 4 we describe our work on designing, implementing and comparing 

different techniques for gesture recognition using user joint location information obtained from 

the Kinect device. Finally in Chapter 5, we provide a summary of our research and describe 

possible directions for this research in the future.  
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2 Review of the Literature 

In this section we review two categories of research that are relevant to our project. First 

we review visual and gesture-based programming languages. Then we review human-computer 

interaction (HCI) systems that make use of the Kinect and/or gesture recognition as input. We 

will be incorporating elements of both in the design and implementation of our own system. 

2.1 Visual Programming 

A visual programming language is designed so that the user manipulates program 

elements graphically instead of using traditional text oriented systems. Many visual languages 

are designed to appeal to non-traditional programmers by giving goal oriented tasks (e.g. “Make 

your character skate and create a snowflake”) or by encouraging storytelling instead of text-

driven computations that are seen in many introductory programming classes. In this section we 

review four visual programming languages that have been very successful. 

2.1.1 Google Blockly 

Google has created a web-based visual editor that enables users to create programs by 

using a mouse to drag-and-drop connecting puzzle piece blocks together to accomplish a set of 

goals. An example of the Google Blockly programming interface is shown in Figure 2. After the 

user has completed a goal, Blockly shows them how many lines their program would have taken 

in JavaScript (or any other language that is built in). There are eight different games listed on 

Google’s site2 to help teach programming. These games are written in such a way to enable self-

teaching. Each task the user is given can be solved with the information they have been provided, 

and each puzzle builds on the previous in each game. The first is simply a general puzzle to get 

the feel of how the blocks fit together, while the second enables the player to control a person on 

                                                 
2 https://blockly-games.appspot.com/ 
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a map trying to get to a destination (or an astronaut on a space station, or a panda in a bamboo 

jungle). The maze emphasizes looping – continue walking forward until the character runs into a 

wall, for instance. The next two are a bird and the traditional visual programming turtle graphics. 

The bird’s goal is to teach about escape conditions from a loop and angles (fly upwards until the 

bird gets the worm, then fly at a 45 degree angle to get to the nest), while the turtle teaches about 

loops, logic, angles, functions, color, and variables (the goal is to write code, or connect the 

puzzle pieces together, to draw the shape(s) shown on the screen). The last two examples are 

learning how to control and then actually controlling a duck battleship in a pond where the player 

is trying to sink rival battle ducks, teaching about logic, loops, and motion. This section allows 

the user to create code using the drag-and-drop puzzle pieces on one level, then to do the same 

thing in JavaScript code on the next. Everything that is needed to solve the presented problem is 

given to the user. 

 

Figure 2. Blockly IDE 
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2.1.2 Scratch 

Created by the Lifelong Kindergarten Group at the MIT Media Lab and released to the 

public in 2007, Scratch3 is a web-based visual language specifically designed to easily create 

stories, games and animations. Although the software was targeted to young children through 

mid-teenagers, people of all ages use it. Scratch is built to encourage young people to think 

creatively, learn reasoning skills, and work together with others. Scratch features color-coded 

drag-and-drop puzzle pieces that click together with pull-down menus and fill-in-the-blanks on 

form options. An example of the Scratch programming interface is shown in Figure 3. 

 

Figure 3. Scratch IDE 

2.1.3 Snap! 

Scratch also influenced Berkeley’s Snap! language4, formerly Build Your Own Blocks, 

another drag-and-drop web-based visual interface integrated with first class objects from 

Scheme, a Lisp dialect. Snap! is heralded as a fun and exciting programming language for both 

kids and adults that also has meaningful applications for the study of computer science. This 

                                                 
3 https://en.scratch-wiki.info/wiki/Scratch 
4 https://snap.berkeley.edu/ 
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language also offers procedures, recursion, and an introduction to functional programming. An 

example Snap! program and output are shown in Figure 4. 

 

Figure 4. Snap! IDE 

2.1.4 Alice 

The programming language Alice5 was developed by researchers at Carnegie Mellon 

University as a tool to teach computer programming in a three-dimensional environment. This 

visual programming language was developed starting in 1995 to enable students to learn 

fundamental programming concepts while creating animated movies and simple video games. 

Alice also features drag-and-drop tiles to create programs to animate the objects on the screen. 

This is illustrated in Figure 5. 

                                                 
5 http://www.alice.org/about/our-history/ 
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Figure 5. Alice IDE 

2.1.5 Summary 

All of the programming languages we have described (Google Blockly, Scratch, Snap!, 

and Alice) have programming constructs that allow the user to make decisions (conditionals) and 

perform repetitive tasks (iteration). They differ significantly in how data/variables are 

represented and manipulated, and this effects the complexity of programs that can be created 

using these languages. Since our goal is to engage younger students in programming and to show 

how the puzzle pieces translate to a text-based programming language, we have chosen Blockly 

as the language we will be using in our system. 

2.2 Kinect-Based User Interfaces 

The Kinect is a popular, inexpensive, three-dimensional camera that has revolutionized 

human-computer interaction by having depth and RGB cameras in the same easy-to-use unit. 

Although the Kinect was originally developed for video game input, it has been used as an input 

device for a wide range of applications, both because it provides a hands-free interface and 
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because it provides physical engagement for users. In this section, we review Kinect based 

applications in medicine, entertainment, art, and other motion tracking application. 

2.2.1 Medical Applications 

Manipulating Images and Clean-Room Surgery 

When examining medical images, it is crucial to be able to rotate, zoom, and manipulate 

them with ease to make a correct diagnosis. Working with a three-dimensional image on a two-

dimensional computer monitor, and using a mouse which moves in two dimensions makes this 

interaction cumbersome and counter-intuitive. However, replacing mouse control with a glove-

driven interface enables better manipulation of visual data (Tani 2007).  

Making use of a hand and finger motion sensor (a Leap Motion), users were able to 

browse and search for medical images through a web-based interface that found similar images 

to what the user was already viewing (Wachs 2008). Although it also required a keyboard to start 

a text-based search, this system was shown to be useful for gesture-based image search, 

especially in a sterile environment. 

When a surgeon goes into an operating room, it is imperative that they keep everything 

sterile, including all of the instruments they use. Being able to manipulate images in a three-

dimensional space is helpful, however the issue of maintaining a sterile environment is still 

present. Because the computer keyboard is not sterile, the surgeon must either tell an assistant 

where to zoom in or when to change images, or they must leave the sterile room, interact with 

the data glove, rescrub, and then continue the operation, potentially adding hours to the 

procedure. Employing the use of a Kinect (Gallo 2011, O’Hara 2014) or a webcam (Kipshagen 

2009, Widmer 2014) in the room enables the surgeon to examine and scroll forwards and 

backwards through a collection of medical data images with a hands-free interface. 
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Physical Rehabilitation  

After an injury or a stroke, picking up the pieces and continuing on with life can be 

difficult for a patient, especially if physical rehabilitation is needed. Even living with 

developmental disabilities can be difficult, and can negatively impact a person’s social activities 

and job opportunities. Depending on the severity of their condition, the patient may need to rely 

on friends and family members to give them rides to doctor’s appointments, specialists, and 

rehabilitation sessions. Being able to participate in a physical rehabilitation program from the 

comfort of their home can be instrumental in recovery.  

There are systems available for at-home rehabilitation services, but often they require 

extra equipment, such as data gloves, which can be cost-prohibitive or difficult to wear. 

However, even when a data glove is required (Jack 2000), there is substantial improvement in 

the user’s motivation to do the exercises and a reduction in recovery time. Several different types 

of data gloves can also provide tactile feedback which will assist the user to know that the 

exercises they are doing are producing results. 

However, the activities need to be effective in motivating the participants to follow 

through with the therapy (Chang, Y. 2011). The Kinect can provide a virtual reality game-based 

rehabilitation option (Chang, C. 2012, Lange 2011) that challenges the user both physically and 

mentally, keeping them engaged and interested in continuing their rehab every day. A Kinect 

sensor can provide an interactive system that can track the user’s joints and confirm the patient is 

doing the exercise correctly, and provide audio or visual cues to issue any corrections (Huang, J. 

2011). 
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Watchdog System  

As the general population ages, more people are entering assisted care living 

environments, and/or combating debilitating illnesses such as Alzheimer’s disease. The Kinect 

can provide a system to detect falls and fainting spells by identifying a person’s position and 

irregular movements in nursing homes and alert the appropriate people who can help the resident 

(Garrido 2013). A Kinect watchdog system can track the motions of patients within the system’s 

field of view and detect abnormal behavior in the everyday activities of people suffering from 

Alzheimer’s (Coronato 2012). The detection of some abnormal behavior such as falling down on 

the floor are relatively straightforward with the depth map and skeleton tracker, but other 

situations such as  tracking the motions of other objects in the room and recognizing when they 

are being misplaced by the person are much more challenging. 

Persons with Disabilities 

Communication: Assistive technology for those people who are blind or deaf is not a new 

concept. In the past, in order to use a telephone, a person who is deaf would need to have a friend 

or assistant make and receive calls for them. In the early 1960’s, the teletypewriter (TTY) was 

invented which enabled a person to make “calls” to another person who also had a TTY and they 

would type out their conversation (Berke 2014). However, the cost and incompatibility of 

differing models prevented them from becoming widespread until many years later. With the 

advent of smart phones, webcams, and internet calling services, it has become much easier for a 

person who is deaf to use sign language. For those who are blind, being able to read and send 

emails can present problems. A text-to-speech program can help by translating anything written 

into spoken words.  
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With the Kinect being an inexpensive three-dimensional camera that is readily available 

and requires no additional equipment to use, breaking down the communication barrier between 

persons with disabilities should be easier than ever. Sign language can be translated into audio by 

tracking one user’s hands in a three-dimensional trajectory, and sending the audio to the second 

user’s computer. The second user’s Kinect’s microphone can pick up audio, and an avatar can 

sign the message back to the first user (Chai 2013, Kane 2012, Sharma 2012). Because of 

individual variations in hand motion speed and differing gesture sizes, various image processing 

techniques are used to match the user-given gesture to the predefined symbols in the program’s 

gallery.  

Movement: To improve quality of life and self-reliance, advanced wheelchairs have been 

developed to enable users to control movement through hand gestures, or a simple head turn or 

nod captured by a webcam (Jia 2007). A system such as this has a limited vocabulary of gestures 

since there are only so many different ways of moving one’s head, and the wheelchair only needs 

to handle two-dimensional movement.  

For those with vision problems, participating in exercise programs can be very difficult. 

However, a system using a Kinect camera and skeletal tracking can audibly help correct a 

person’s posture and enable them to do a yoga workout (Rector 2013).  

The chance to live a somewhat normal life and support oneself is a choice often denied to 

those with cognitive disabilities. However, various sensing devices can help give those 

individuals a feeling of independence and improve their quality of life. For instance, a restaurant 

can install a Kinect sensor in the food prep area that will watch an individual’s movements and 

prompt them with the next step whenever they lose track of what they are doing (Chang, Y. 
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2011). This enables the individuals to maintain a degree of freedom and also have a sense of 

accomplishment. 

2.2.2 In Arts and Entertainment 

Being able to animate characters and tell stories interests people of all ages, but 

especially can get children interested in computing. Whether the character is a three-dimensional 

representation of their favorite toy, or two-dimensional character they drew on a sheet of paper, 

bringing those characters to life is usually a challenging task, but can be made easier by recent 

advances using a Kinect. 

Puppetry (two-dimensional characters) 

Imagine drawing a character on a sheet of paper and being able to animate a story using 

your own characters!  By using markers and paper, a cast of characters can be drawn, cut out, 

and moved around on a flat surface so that a story can be told (Barnes 2008). For a simple 

concept, a webcam is sufficient to handle this use case. The cutout characters are tracked in real-

time and depicted on a new background while also removing the animator’s hands. 

It is possible to extend puppetry animation to non-rigid characters by tracking the user’s 

skeletal joints and mapping them to characters. This was demonstrated by (Zhang 2012) who 

used Chinese shadow pupped to animate a famous Chinese drama – Wusong Fights the Tiger. 

Two people can act out this play with one person’s skeleton mapped directly onto Wusong, while 

the tiger puppet is modified for a standing human to control (see Figure 6).  
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Figure 6. Tiger puppet joint mapping (from Zhang 2012) 

Plush animals (three-dimensional characters) 

There has also been research conducted using a three-dimensional object to create an 

animation sequence. From using a plush toy to control a virtual character (Johnson 1999), to a 

character widget such as a kangaroo to simulate hopping (Dontcheva 2003), interacting with 

physical props and toys to tell a story has become easier with the advent of the Kinect sensor 

(Held 2012). In each of these systems, the display mimics the three dimensional motions of the 

input subject. 

Art (three-dimensional sculpting) 

A ceramic artist can bring an idea for a piece of pottery to life without flinging clay 

across the room. By using the Kinect to track the hand motions of an artist, it is possible to sculpt 



17 

 

virtual clay, or their chosen medium, in mid-air without the mess of pottery wheels (Murugappan 

2012). This enables a designer to explore different design concepts quickly and easily. 

2.2.3 Motion Tracking Applications 

Computer security – mid-air passwords 

Instead of employing the use of text-based passwords that only test the user’s knowledge 

of the password instead of the identity of the person attempting to access the system, a Kinect 

can be used to track the user’s hands as they write their passwords in mid-air (Tian 2011). 

Although competent forgers can mimic another person’s handwriting in two dimensions, adding 

the third dimension and the speed at which they sign makes it virtually impossible to replicate. 

Handwriting recognition, virtual keyboards 

The Kinect has also been used to recognize mid-air handwritten digits (Huang, F. 2013), 

and by following the trajectory of the user’s hands has improved the recognition accuracy over 

only comparing the finished gesture path shape. 

The Kinect can also be used as a virtual keyboard, enabling the user to “type” directly 

onto a table (Roith 2013), or to recognize mid-air handwriting by tracking the user’s hand’s 

trajectory with multiple cameras (Schick 2012) or by using a Leap Motion controller - a three-

dimensional motion and gesture control for computers (Vikram 2013).  

Retail – virtual dressing room 

Instead of requiring patrons to physically come to a store and try on new outfits, a virtual 

dressing room can be created so that the shopper can virtually try on clothing from their desk 

using a Kinect as an interactive mirror and order online (Giovanni 2012). This helps save the 

shopper time since they no longer need to drive to a retail store. A virtual dressing room also 

benefits the store since a shopper would be able to see how virtual clothes fit them by 
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superimposing the clothes on an avatar before ordering which should reduce the number of 

returns, saving on shipping fees and restock time. It also helps expand the store’s reach; an 

independent store can attract new customers from out-of-state to whom they would not have 

previously had access. 

Teaching – interactive whiteboard 

An interactive whiteboard is an instructional tool used in teaching or giving a lecture. It 

displays computer images onto a board, but instead of a mouse, the instructor uses his hand to 

manipulate the displayed elements. Even though they are quite useful, they are also expensive 

and usually non-mobile. By utilizing a Kinect, any standard classroom wall can be transformed 

into an interactive whiteboard as long as there are power outlets, a computer, and a projection 

system available (Avancini 2012). Interactive whiteboards increase interactivity and 

collaboration in the classroom, and can save handwritten notes into text.  

Military – training 

Training soldiers in virtual environments is not a new concept (Witmer 1995), but most 

virtual systems have a high cost associated with them. Creating a virtual environment that is non-

obtrusive and inexpensive is ideal (Lim 2013). A single Kinect does not enable a natural 

interface since the user must always be facing forward. However, having multiple Kinects at 

different angles around a large area alleviates this issue, and enables the multiple users to be 

tracked, regardless of which direction they are facing (Williamson 2012). When the Kinects are 

used in conjunction with a head mounted display, this has been shown to be a viable solution for 

training multiple soldiers in complex virtual environments. 
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2.3 Gestural Programming Languages 

A gestural programming language is one that takes input as a movement of the hands, 

face or other parts of the body instead of keyboard or mouse input (Hoste 2014). Consumer 

devices, like mobile phones, tablets, and controller-free sensors such as the Kinect and Leap 

Motion, equipped with many sensors, like cameras and multi-touch screens, have driven the need 

to develop gestural programming languages to better interact with these commercially available 

items.  

There have been several advances made to gestural programming languages, although the 

Kinect has not been seriously considered as a gestural language input device since it is still a 

relatively new sensor. Gestural languages have generally involved taking input other than from a 

typical mouse-and-keyboard setup. Some take input from multiple fingers making movements on 

a screen (Lü 2012), while others take an image or video and analyze the components on the 

screen to determine the operation being specified (Kato 2013, Kato 2014). Another way to read 

and interpret gestures is to use a data glove (Kavakli 2007), although only certain pre-defined 

gestures are recognized. 

Communicating audibly or through keyboard commands is not always a practical 

solution for programmers. For instance, to control an underwater robot, it makes more sense to 

send instructions through a visual interface instead (Dudek 2007). The human operator can select 

a card with symbolic tokens that the robot will interpret as various pre-programmed commands. 

These communication cards could be considered as special cased of static gestures where 

different poses are used to represent different concepts or actions.  
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3 User Interface and System Design 

The goal of our research is to develop a programming interface that is engaging and 

effective for teaching programming concepts to young students with no prior programming 

experience. Our first steps were to gather feedback from students in our target audience, 

determine what gestures they associated with different programming concepts, and to gather 

sample gesture data to assist in the design and implementation of our gesture recognition system. 

Based on student feedback, we designed a gesture-based user interface that uses the Microsoft 

Kinect as an input device, and a combination of gestures and virtual mouse movements to create 

and execute Google Blockly programs. This chapter describes our preliminary research with 

students and our system architecture in more detail. 

3.1 Student Input 

The University of Arkansas runs a variety of engineering summer camps for 6-12th 

graders in three different sessions. There are two half day camps for grades 6-7 and 8-9 that get 

to explore a different engineering discipline for each session, including computing. There is also 

one week long, sleep-away camp for grades 10-12 where the students spend the whole time 

learning about a particular discipline. For this study we worked with 124 students taking part in 

the computer science and computer engineering camps over three consecutive summers. Some of 

these students came in with absolutely no programming experience, while others had used one or 

more programming languages already. Very few, if any, of the students had used Blockly before, 

although around half of the students had utilized Scratch in the past. 

3.1.1 Student Surveys 

The students taking part in our study were instructed for several hours on how to program 

with Blockly and had the opportunity to work with either Scratch. After completing a number of 
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activities, the students then filled out a survey at the end of the session about the platforms used 

and the concepts learned. Not all students filled out the surveys, and for those who did, not 

everyone answered every question.  

 First, students were asked their favorite and least favorite features of each programming 

platform, and how well they understood the following concepts after using each platform: 

 Sequences of Actions/Steps 

 For Loops 

 While Loops 

 If Statements 

 If/Else Statements 

 Functions 

In order to focus our user interface design efforts, we demonstrated the Microsoft Kinect to the 

students, and then asked them to imagine themselves creating programs using gestures instead of 

the mouse and keyboard. We then asked students what type of gestures they would prefer for 

programming – standing and using full body motions, or sitting and using only hand gestures – 

and why. Students who completed the survey were then asked to devise gestures that they 

thought represented the following six programming concepts: 

 If statement 

 If/else statement 

 For loop 

 While loop 

 Run program 

 Undo previous action 
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The questions were left relatively open-ended to allow the students to either describe in words 

the gestures/movements they would make, or to draw the path of the gesture, or a combination of 

both. 

3.1.2 Student Gesture Capture 

After filling out paper surveys, students had an opportunity to capture and record their 

gestures into the computer using the Kinect. In order to do this, we implemented a gesture 

capture program written in Processing that interfaces with the Kinect to capture the (x, y, z) 

coordinates of all fifteen user joints at 30 frames/sec as users make gestures. This program tracks 

full body motions, so users are able to draw gestures with either hand, or other parts of their body 

if desired. Our program saves the (x, y, z) coordinates of each joint into a text file for subsequent 

analysis. At the same time, our program displays the path each joint takes on the screen as the 

user makes their gesture. Finally, a screen shot of this path is saved as a jpg image.  

 The joints are color-coded as seen in Figure 7 and Figure 8 below for easier tracking with 

the human eye. There is also a set of checkboxes in the corner that allow the computer operator 

to choose which of the user’s joints they are viewing. All joints are still being tracked and the 

coordinates are being saved, but it allows the user to only view the relevant joints on the screen. 
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Figure 7. CaptureGesture interface with joints labeled; 

the user is drawing a loop with their right hand 
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Figure 8. CaptureGesture interface where the user jumped up and down, 

then moved left to right to show full skeletal tracking 

In our student gesture capture experiments, the student would indicate that they were 

ready to start, and the operator would press a key to record their gesture. When the student 

completed their gesture, they told the operator, who stopped recording. The program recorded 

the (x, y, z) coordinates of each of the user’s fifteen joints, even though all of our data was drawn 

one-handed, and made note of which joints were intended to comprise the gesture path (typically 

just the right or left hand).  

The only processing that the program does to the coordinates before saving is to make 

sure that the exact same coordinate is not saved twice in a row. Instead of checking to make sure 

that coordinates differed for at least one of fifteen joints, the assumption was made (using 

collected student data) that the user would be moving at least one of their hands at least a little 

bit at any given time. Therefore, the program compares the previous coordinate of the left hand 

to the current left hand coordinate, and compares the previous coordinate of the right hand to the 
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current right hand coordinate, and as long as one of the x, y, or z coordinates is different than the 

previous of one of the hands, the new coordinate is recorded. This mainly prevents the initial 

searching for the skeletal tracking from recording multiple identical sets of coordinates, or the 

instances when the user gets too close to the Kinect and the tracking is lost, so the last set of 

coordinates is continually recorded until the skeleton is rediscovered. No other processing of the 

coordinates took place at the time of data gathering, and no other user data was recorded. 

3.1.3 Common Gestures among Students 

While the students were given relatively open-ended prompts to generate gesture shape 

information, there were six distinct gestures that appeared consistently throughout the student 

surveys: circle, spiral, thumbs up, wave, figure-eight, and infinity symbol. The rest of the 

gestures described or drawn were less common or unique. 

The most popular gesture was a circle or loop gesture, with 162 gestures being drawn or 

described under the “for loop” or “while loop” options, either while standing or sitting. Twenty-

seven students chose a spiral gesture, with almost half of them choosing this gesture for one of 

the loop options while standing. Twenty-two students chose thumbs up gesture, with fifteen of 

them choosing it to run the program while they were seated at the computer. Eighteen students 

chose the wave gesture. Finally, twenty-nine students chose either the figure-eight or infinity 

symbol to represent programming concepts.  

Therefore, we decided to limit the gesture vocabulary for our user interface to the circle, 

infinity symbol, figure-eight, and wave. The spiral is very similar to a circle, so for the sake of 

simplicity and distinct gestures, we decided not to focus on it. The Microsoft Kinect software we 

are currently using for skeletal tracking does not track individual fingers, and we are looking 
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more towards dynamic gestures instead of static poses, so the thumbs up gesture was also 

discarded. 

In order to obtain more gesture data for testing purposes, we performed a smaller scale 

experiment with around twenty-five young adults interesting in computing. In this case, we 

asked each of these students to draw each of our final four gestures (circle, infinity symbol, 

figure-eight, and wave). Students were not told where to start the shape, which direction to go, or 

which hand to use. The (x, y, z) coordinates for all fifteen joints were saved for each of these 

gestures in text files, and screen shots of the gesture paths were saved as images for future 

review. 

3.1.4 Other Observations  

Although our instructions to students were intentionally open-ended, we found that the 

gestures that students invented were surprisingly consistent in many ways. First of all, the 

majority of gestures were drawn with one hand, regardless of if the student was sitting or 

standing. We had expected more two handed gestures with hands coming towards each other 

from different angles or moving together to represent different operations. We also expected a 

variety of gestures with feet or legs, but only a few students proposed kicking gestures. 

Secondly, most of the student gestures involved two-dimensional motions, with one hand 

or the other tracing a path on an imaginary plane half way between the user and the computer 

screen. Again, we had expected the students to create more three-dimensional gestures with their 

hands/feet moving forwards and backwards relative to the computer screen. For example, the 

student using their hand push an on/off button in mid-air in front of them. 

Another common concept for gestures was to use the letter of the command or construct 

as the gesture, for instance tracing an ‘R’ in mid-air for ‘Run’. Upon further consideration, we 
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decided that this approach would cause more frustration because of the variances in handwriting 

styles, and some letters require multiple brush strokes to complete which is challenging when 

drawing in mid-air.  

In hindsight, we did not capture enough sample gestures from the students participating 

in the summer camps. We should have asked every student to repeat their gesture two or more 

times so we could see how consistent the gestures are over time and to better understand gesture 

variations. However, when we gathered our test data from a few small groups of young adults, 

each user provided four to seven gestures for each type so we would have a large test base and to 

see how differently users would draw the same shape multiple times in a row. 

3.2 Programming Goals 

There are several major concepts covered in an introduction to programming class, but 

we have selected a subset that maps out a framework for our target audience. After careful 

consideration, we believe the following four items are the most beneficial for a new programmer 

to learn: 

 Sequences of actions/steps 

 Conditions (if and if/else statements 

 Loops (for and while loops) 

 Abstraction or functions (reusable code) 

There are other topics that are also important, but not imperative to learn initially when working 

with a visual-based or gesture-driven interface. These include: 

 Variables and data types 

 Input/output 
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Although this is a relatively small list of programming concepts, implementing a system to 

represent and execute programs using these programming features would require almost as much 

work as creating a general purpose programming language. Since this is infeasible for our 

research, we have chosen to build our gesture-based programming environment on top of an 

existing visual programming language. 

3.3 User Interface Design 

One question that we have examined in detail is how to manage working with gestures. 

While traditional programming typically involves using a mouse-and-keyboard, we have been 

careful not to create a user interface that merely replaces the mouse with the user’s hand 

motions. However, since technology is very pervasive in present-day society, many people have 

already had computer experience and are familiar with using a mouse. That familiarity may 

assist in increasing the interest levels of participants, and may increase the user’s attention span, 

especially for younger children. Another advantage to having the user’s hand control the pointer 

instead of using a mouse is being able to use three-dimensional movement that a traditional 

mouse does not accommodate. 

We also had to decide whether to create a brand new gestural language, or modify the 

concept of using one’s hand as the mouse, and adding new gestures that naturally go with the 

code. For instance, if a person wants to program a loop that runs three times, they could draw a 

circle in mid-air, and trace over it two additional times (three total revolutions) to indicate this. 

One challenge here is that making users do repetitive motions to enter numbers is only effective 

for small numbers, because the user either would get tired or lose count for larger values. 

Our design for the look and feel of the interface was in part decided by answers to the 

above question. If we choose to use the user’s hand as the mouse, a drag-and-drop interface 
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would work fine. We could represent different parts of the code as building blocks that can be 

stacked on top of each other, or as puzzle pieces fitting together. We have several options to 

display the actions themselves. For example, we could create a virtual world or game interface 

with a character or robot that navigates and completes tasks. We will need to display the action 

in some manner, but we need to be mindful of the tradeoff between making it enjoyable and 

functional.  

3.4 Software/Hardware System Design 

Our system design consists of hardware and software components that work together to 

enable programmers to create and execute programs using hand gestures to control mouse 

movement. For user input, we are using the Microsoft Kinect since it is capable of capturing the 

locations of the user’s hands and other joints in real-time. To make our system visually engaging, 

we are writing our code to interact with Google Blockly to show the game, intended tasks, and 

finished animation, and a smaller window to the side for the Processing application to show the 

joints that are being tracked and give visual cues when a gesture has been recognized. The 

Processing application captures user motions from the Kinect and processes this information to 

track hand motions and recognize user gestures. The output of this Processing application is a 

sequence of mouse motions and actions that are used to communicate with the visual 

programming framework, Blockly. We chose this framework for students to create and execute 

programs after seeing its success during the summer camps. The high level design of our 

hardware and software is illustrated in Figure 9 below. The remainder of this section describes 

all of these components in more detail. 
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Figure 9. System design 

3.4.1 Processing 

Processing is a relatively new language created specifically to make programming with 

graphics easier and more fun for new programmers to use. The language is designed so that with 

a single statement, a shape (an ellipse for example), can be drawn to the screen. It is a derivative 

of Java and can run any imported Java packages and utilities. A small sample of Processing code 

is shown in Figure 10 below. We use Processing and its built-in libraries to communicate with 

the Kinect to obtain the user’s joint locations in real-time, to process this data and recognize 

hand motions and gestures, and also to communicate with our Blockly programming framework. 
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Figure 10. Example code in Processing 

Kinect 

When users are creating programs using our system, they can stand or sit in from of the 

Microsoft Kinect device. The Kinect captures RGBD images of the user in real-time, where the 

RGB component is a traditional color image, and the D component corresponds to the depth of 

each point in the scene. Depth is calculated using an infrared laser CMOS sensor and stereo 

triangulation. The Kinect SDK provides tools to access the image and depth map. There is also 

an interface that allows programmers to obtain the (x, y, z) locations of the user’s joints as the 

move in front of the sensor. The device has two big advantages compared to other human motion 

tracking solutions. First, the user does not need to wear any special clothing, hold any other 

devices, or attach markers at their joints in order for the system to work. Second, the Kinect is 

inexpensive and widely available. 
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Joint Trajectory by Skeletal Tracking 

Skeletal tracking is controlled by the SimpleOpenNI package, which is the Processing 

subset of OpenNI (Open Natural Interaction). OpenNI is a multiple language, cross-platform 

framework that provides an interface to interact with the Kinect and track a user’s skeleton and 

joint positions. The skeletal tracking module passes joint (x, y, z) positions back to Processing. 

For full skeletal tracking, we will predominately be focusing on upper body joints, with the 

assumption people will not be programming with their feet. We will also develop an interface 

that allows the user to sit at the computer and use hand gestures in mid-air to interact with the 

system. An example of a user making a wave gesture with hand joint tracking (instead of full 

skeletal tracking) is shown in Figure 11. 

 

Figure 11. Kinect hand tracking example; 

the user is making a wave gesture 

Extrapolate Gesture Based on Matching Score 

The Kinect device and skeletal tracking software provide our software with a continuous 

stream of the user’s joint positions. The purpose of this software module is to filter this stream of 

data to determine what movements from the user are gestures related to their programming task, 
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and which are either just idle movements (e.g. standing around) or irrelevant movements (e.g. 

scratching their head). The techniques we devised for this purpose are described in Chapter 4 

Gesture Matching.  

 

Figure 12. Kinect hand tracking; the user is in the 

process of drawing an infinity symbol 

Create a Programming Construct 

Once a gesture is recognized, the action that the user intended with their gesture needs to 

occur. For example, if the user draws a loop gesture which for this example is mapped to a while 

loop, a while loop should appear in the sandbox area of Google Blockly. 

3.4.2 Blockly 

 Once the gesture has been recognized and the action intended has been executed, the rest 

of the user experience will lie in their interaction with Blockly, until another gesture is 

recognized. 

Display and Execute Code 

After the user has completed the tasks given and clicked the “Run Program” button (or 

executed a gesture that is mapped to the “Run Program” button), the code that they have written 
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will be executed through Blockly so they can see what their program does. The output of the 

program is displayed as a simple graphics animation on the screen, and after successfully 

completing the task given, their puzzle piece code is translated into JavaScript so the user can see 

what the code looks like in a text-based language (Figure 13). 

 

Figure 13. JavaScript code display after finishing a puzzle in Blockly 

3.5 Gestures 

We also need to consider how to define, train, recognize and adapt gestures. The simplest 

and most straightforward way of recognizing gestures would be to have predefined gestures in 

the system and train the user how to do those gestures. For instance, left hand moving towards 

the left side of the screen means turn left, and right hand moving towards the right side of the 

screen means turn right. This version of the system would only accept gestures that match what 

is previously defined. Or, on the other hand, we could enable the user to create their own gesture 

for each action – two hops means turn left, while stomping the right foot means turn right. This 

would be more difficult to program, and more challenging to compare since no two people would 

have the exact same experience. However, it would enable more personalization of the program, 

which in turn may increase the user’s interest if they feel like they are more in control of what is 

happening. Our final thought on gesture recognition would be a combination of the previous two 

concepts – show the user what gesture is expected and enable them to ‘practice’ it while the 
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system learns how the user will interpret each gesture. Instead of using the predefined left hand 

towards the left side of the screen to turn left, the user may move their right hand towards the left 

side of the screen – the system would learn from what the user repeats back to it and set that as 

the accepted gesture. This would give them some level of control, while giving them a starting 

point for what gesture would naturally make sense to them. 

There are several ways we could define gestures. One way is to have a set of static poses, 

which, when performed in a certain order, comprise the gesture. Another would be to have a 

fluid set of coordinates which comprise the gesture and compare them to predefined gesture 

paths in the system. The gesture paths would need to be normalized in some way, then using the 

Euclidean distance between the given gesture path and the predefined gesture paths, the most 

likely one could be extrapolated. A third option would be to combine static poses and gesture 

paths so that they work together. That will be discussed in Chapter 4 Gesture Matching 

Algorithms. 

3.5.1 Gesture Variations 

Another possible issue will be gesture variations. Will the user’s gestures change over 

time, and what will be done about it?  If this tool were intended to be used to aid in teaching a 

semester long class, then the user’s complacency would most likely play a part in degrading 

gesture precision. However, with a half-day summer camp, this issue will probably not be 

evident. 

We will also be more closely exploring how much accuracy is lost when using gestures 

instead of a point-and-click mouse-and-keyboard setup. We would like there to be a fair trade-off 

between fun, the precision of gestures, and ease-of-use.  
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4 Gesture Matching Algorithms 

We have built a gesture-driven interface to teach programming to the broader masses of 

non-traditional programmers. As part of this work, we have developed and compared several 

gesture matching algorithms. We explored two very different approaches. The first detects static 

poses while the second method focuses on the motions of joints. 

4.1 Static Poses 

To detect static poses, there are a number of different approaches we could take starting 

by looking at the relationships between the user’s joints. One of the least elegant and not easily 

extensible ways would be a long sequence of “if” statements that trigger when the user’s joints 

are lined up in a particular configuration, such as if both hands are above the user’s head. This 

does not lend itself to being easily expanded, and the code gets very sloppy with as few as three 

poses detected. To make more object oriented code, those “if” statements could be moved to 

separate functions, but it would still not be a good choice overall. 

Another option would be to use a data driven method of possible gestures. A table, or 

database, would be created that would have as many columns as recognized joints. As mentioned 

earlier, the OpenNI package can track the following fifteen joints: 

 Head (H) 

 Neck (N) 

 Left/Right shoulders (LS and RS) 

 Left/Right elbows (LE and RE) 

 Left/Right hands (LH and RH) 

 Torso (T) 

 Left/Right hips (LHips and RHips) 
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 Left/Right knees (LK and RK) 

 Left/Right feet (LF and RF) 

The table or database must also contain information in each column that described the desired 

joint relationships in order to recognize a static pose. If the pose can be done either left-handed 

or right-handed, there would be two separate entries in the table. Let us examine a wave gesture 

using the right hand. For this example, we would only be looking at the right hand, right elbow, 

torso, and maybe neck or right shoulder. Table 1 describes the sequence of poses for a hand 

wave gesture in relation to the right shoulder. The gesture will start out with pose 1 with the right 

hand near the torso to the left of the right shoulder and right elbow. Pose 2 would consist of the 

right hand being to the right of the torso, right shoulder, and right elbow. A wave would consist 

of a sequence of pose 1 – pose 2 pairs. With only four joints as part of the two poses that would 

comprise of the gesture, only eight of the possible thirty boxes in the table are holding data. If the 

user were doing a more complex full-body movement for a gesture, this table would hold 

significantly more data. However, for most gestures we are examining, this method would leave 

many empty boxes in the table which is not particularly efficient.  
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Table 1. Pose table for all 15 joints for a simple right hand wave gesture 

Joint Right hand wave pose 1 Right hand wave pose 2 

Head - - 

Neck - - 

Left Shoulder - - 

Right Shoulder 
RS.x > RH.x 

RS.y ≈ RH.y 

RS.x < RH.x 

RS.y ≈ RH.y 

Left Elbow - - 

Right Elbow 
RE.x & y > RH.x & y 

RE.x & y > RS.x & y 

RE.x & y < RH.x & y 

RE.x & y < RS.x & y 

Left Hand - - 

Right Hand RH.x & y ≈ T.x & y 
RH.x > T.x 

RH.y ≈ T.x 

Torso T.x & y ≈ RH.x & y 
T.x < RH.x 

T.y ≈ RH.y 

Left Hip - - 

Right Hip - - 

Left Knee - - 

Right Knee - - 

Left Foot - - 

Right Foot - - 

A more compact representation would to be to store all poses in a table with one row per 

pose. The first column would hold all of the conditions, connected together, the second column 

would have the previously expected pose, and final column would have the action taken when 

the gesture is matched. 

For instance, if we were to create an undo gesture that has the user make a “slash” motion 

in front of their body (using either their left hand or right hand, starting above their opposite 

shoulder), we could track their start pose (Table 2 Label A or C) and their end pose (Label B or 

D) and detect the action they have executed.   
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Table 2. Possible undo gesture 

Pose 

Label 

Conditions 

(Psuedocode) 
Conditions (English) 

Previous 

Expected 

Pose 

Action 

A 

RE.x ≈Torso.x 

RH.x <Torso.x 

RH.y <LShoulder.y 

Right elbow aligned with 

torso, right hand to the left of 

torso and above left shoulder 

(none) 
Look for 

following pose  

B 

RE.x > Torso.x 

RH.y > RE.y 

RH.y >RHips.y 

Right elbow on right side of 

torso, right hand below right 

elbow and right hip 

A 

Undo previous 

action (right 

handed) 

C 

LE.x ≈ Torso.x 

LH.x > Torso.x 

LH.y < 

RShoulder.y 

Left elbow aligned with torso, 

left hand to the right of torso 

and above right shoulder 

(none) 
Look for 

following pose 

D 

LE.x < Torso.x 

LH.y > LE.y 

LH.y > LHips.y 

Left elbow on left side of 

torso, left hand below left 

elbow and left hip 

C 

Undo previous 

action (left 

handed) 

4.2 Fluid Motion of Joints 

Instead of choosing a series of static poses to represent a gesture, it could be defined in 

terms of fluid motions of the user’s joints. The user’s gesture could be saved as a set of joint 

coordinates, normalized in some way, and then compared to predefined gesture paths in the 

system. There are many ways we could compare gesture paths to identify the user’s gesture. 

One way to compare gestures would be to use the sum of the Euclidean distances 

between the given gesture path and the predefined gesture paths. This approach has the 

advantage of being simple to execute, but it may be sensitive to small changes in orientation. For 

example, if the user stands at a 45° angle relative to the Kinect and makes a gesture, the (x, y, z) 

coordinates along the path will not align well with the (x, y, z) coordinates from a straight on 

gesture. 

Another matching approach would be to take the first and second derivatives of the 

gesture and use the Frenet-Serret Formula, a coordinate independent method. This would enable 

the user to stand anywhere and have the gesture recognized regardless whether it was drawn on 
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the left or the right. There is more computation needed for this approach, but it may be necessary 

for robust gesture matching. 

Finally, we could combine static pose detection and gesture path recognition so that the 

start and end poses would indicate where the gesture was drawn. This way, a circle drawn on the 

left side of the body would be recognized as a different gesture than when it is drawn on the right 

side of the body. 

4.3 Gesture Matching Algorithms 

An important part of controlling the computer with gestures is the ability to recognize 

when a gesture has been drawn. By far, the most popular gesture created by students was a circle 

motion for a loop gesture. So to refine the gesture matching algorithms, it was decided to 

concentrate on matching the loop gesture first.  

Using the data collected in 608 gesture files, we did a statistical analysis of the lengths of 

these five gestures shown in Table 3. The minimum length and maximum length for each gesture 

covered a large range, with the shortest gesture at 38 coordinates and the longest gesture at 230 

coordinates. There was also a wide range in average gesture length for the five gestures, with 

loops averaging 78 coordinates and spirals averaging almost twice as many coordinates with 147. 

The overall average length of all gestures was around 94 coordinates. When this system is 

implemented with live data (instead of saved gesture files), we should be able to look at a 

window of around 150 coordinates at a time to decide whether the person’s movement contains a 

recognizable loop gesture. 

  



41 

 

Table 3. Number of files per types of gesture 

Gesture Type Files 
Total 

Coordinates 

Average 

Coordinates 
Minimum Maximum 

Figure-eight 172 16454 95 42 211 

Infinity symbol 179 18026 100 39 230 

Loop 190 14872 78 38 157 

Spiral 40 5890 147 97 193 

Wave 27 2138 79 53 131 

All 608 57380 94 38 230 

For the following analysis, we have decided to focus on three loop gestures generated by 

students in our research studies. The first example (Figure 14-B) is a very obvious loop that has 

very little overlap at the beginning and end of the gesture. Our second example (Figure 14-C) is 

very circular, but there is a significant overlap between the two ends. Our third example (Figure 

14-D) is roughly loop shaped, but it has significant indentations along the loop path. Figure 14-D 

represents how the Kinect can occasionally lose a person’s joints while tracking (due to loose 

clothing or bad lighting for example). Figure 14-A represents an ideal loop, at the size to which 

the other gestures will be scaled. 

 

Figure 14. Ideal loop A and user gestures B, C, and D 
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 Although we collected the (x, y, z) coordinates of all fifteen user joints, we focused only 

on the (x, y) coordinates of the user’s left and right hands. This was determined from the student 

feedback we received from the summer camps. We also focused on a number of different gesture 

matching algorithms specifically for loops, discussed later in this chapter including two forms of 

template matching, sector quantization, centroid matching, and two forms of medoid matching. 

4.4 Gesture Normalization 

One issues that arises when trying to compare two gestures is the number of coordinates 

in each gesture varies from user to user. From the data above, we see that our figures could have 

between 38 and 230 unique coordinates. It is very difficult to compare the similarity of two 

figures when one has more than five times the number of coordinates as the other. For this 

reason, we perform extrapolation and interpolation to normalize each figure so they have the 

same number of coordinates. 

We tested a few different numbers to which to subsample our data, and discovered that 

50 coordinates produced the best results. We tested 190 loop gestures files consisting of 38 – 157 

coordinates each, and brought each eligible file down to 25, 50, 75, and 100 coordinates for 

analysis. Because our average loop only has 78 coordinates, paring to 100 coordinates was 

ineffective, and that option was removed from consideration. 

While there were a few figures with fewer than ‘x’ coordinates, it was not necessary to 

add coordinates to bring those up to ‘x’ coordinates. When running this program in real-time, the 

code will be looking for the average number of coordinates (closer to 150) and trying to find a 

gesture within those. The program will not be looking for a gesture in a 40 coordinate range 

since the average loop takes 78 coordinates. Because we would never be looking at such a small 

range in real-time, it was not necessary to do anything to our test data. To test the accuracy of the 
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pared, or subsampled data, if the number of coordinates in the files were smaller than the pare 

size, they were not included in the average accuracy in Table 4 (referencing the data in section 

4.5.1 Minimum/Maximum Scaling Algorithm) below. However, all other gestures that had more 

than ‘x’ coordinates were pared down to ‘x’, removing points at even intervals. 

Table 4. Accuracy of the minimum/maximum scaling algorithm 

when using original data versus pared data 

 
Original Data Pared Data 

Min/Max 25 50 75 

Average accuracy 45.67% 45.73% 45.30% 44.29% 

Number of files analyzed 190 190 178 98 

As we can see, the average difference between the minimum/maximum template scaling 

matching algorithm of the full data files and the data files pared to 25 coordinates for the loop 

gesture resulted in a minor gain of 0.06% accuracy, while paring to 50 coordinates was a loss of 

0.37% accuracy. For a simple gesture such as a loop, 25 coordinates will still preserve the 

integrity of the gesture, but for a more complex gesture like an infinity symbol or a spiral, we 

decided the gesture shape would be compromised with that few. Therefore, we have decided to 

pare to 50 coordinates for all of the paring calculations. We have provided an original data 

(shown as “All Data” in the following tables) versus pared data calculation for accuracy for the 

template matching algorithms. It is unnecessary for the sector quantization algorithm, but a 

necessity for the algorithm in section 4.7.2 Nearest Medoid Classification with Aligned Gestures. 

4.5 Template Matching for Loop Gesture 

The first gesture matching algorithm we tried was based on matching the (x, y) 

coordinates of the user’s gesture to an image representing an ideal loop. To do this, we created a 

perfect circle template in a 100x100 two-dimensional array. Instead of drawing the circle as a 

1x1 pixel line, we used a 5x5 pixel mask to give the user’s gesture some wiggle room so as to 
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not require an exact 1-to-1 match. For example, instead of one point being plotted at (25, 72), 

there will be 25 points plotted from  

x U y where x = {23, 24, 25, 26, 27} and y = {70, 71, 72, 73, 74} 

Also, since all of the gesture point calculations are rounded to integers, this will also give us a 

little more of a buffer when plotting the user gesture against the ideal gesture. We can match 

64.23564 instead of exactly 64.235. 

One advantage of using template matching is that it does not matter where the gesture 

starts or stops, if it is drawn clockwise or counter-clockwise, or how fast it is drawn. Plotting the 

user’s gesture against the template and measuring hit and miss percentage for all the points 

should give us a good idea of whether or not the user’s gesture matches the template. 

As explained in section 4.4 Gesture Normalization, the number of coordinates varied 

greatly between gestures and users, so we normalized all gestures to have the same dataset size 

of 50 uniformly sampled coordinates from the original saved gesture. We discovered there was 

no discernable loss of matching precision when comparing 50 pared coordinates instead of up to 

157 for the longest recorded loop gesture.  

4.5.1 Minimum/Maximum Scaling Algorithm 

To use a template matching algorithm, we needed to normalize our gesture coordinates so 

they map onto the template – 100 by 100. Our first attempt was to take the gesture, find the 

minimum x and y values, and the maximum x and y values, and linearly scale the gesture 

coordinates in both directions independently to fit the template.  

𝑥𝑛𝑒𝑤 =  
(𝑥 − 𝑥𝑚𝑖𝑛)∗100

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
  𝑦𝑛𝑒𝑤 =  

(𝑦 − 𝑦𝑚𝑖𝑛)∗100

𝑦𝑚𝑎𝑥− 𝑦𝑚𝑖𝑛
 

  As the coordinates for the drawn gesture are plotted onto the loop gesture template, the 

number of hits and misses are counted, and then using these, the percentage match is calculated. 
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If the percentage is above a certain threshold, the drawn gesture should be recognized as a match 

to the template gesture. 

When the gesture was well-drawn and easily recognizable as a circle, this algorithm 

worked well (Figure 15-B). However, when the gesture had significant overlap (Figure 15-C), or 

was drawn shakily (Figure 15-D), the gestures did not match as well. This can be seen in the 

figure below where two of our sample gestures miss large portions of our circle template. 

 
Figure 15. Minimum/maximum scaling for gestures B-D 

We also tried subsampling coordinate this data down to fifty points to see if the results differed 

greatly (Figure 16).  

 
Figure 16. Minimum/maximum scaling for pared gestures B-D 

 The resulting gestures still look very similar to the originals, and the matching 

percentages were within 1-4% of the match percentages of the original data (Table 5). 
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Table 5. Minimum/maximum scaling results for figures B-D 

 
All Data Pared Data 

Number of 

Coordinates 

Match 

Percentage 

Number of 

Coordinates 

Match 

Percentage 

B 68 91.18% 50 94.00% 

C 75 49.33% 50 48.00% 

D 112 33.04% 50 34.00% 

4.5.2 Standard Deviation Scaling Algorithm  

While the minimum/maximum scaling algorithm works well for many cases, one 

problem is that it is designed to match a saved gesture, not a real-time gesture. The files we are 

using for comparison were started when the user said they were ready to start and finished when 

they said they completed the gesture, or appeared to have completed the gesture, so the 

minimums and maximums are relatively accurate to create a bounding box for the gesture. 

However, when trying to compare a gesture from a real-time feed, there is no predefined start 

and stop, but we still need to be able to detect it. For example, if the user reaches up and 

scratches their head before drawing a loop, how can we detect that and ignore it as irrelevant 

data? 

Our first attempt to overcome this problem was to try using standard deviation in the x 

and y directions to define a bounding box with the hope that it would help eliminate the 

irrelevant “straggler” coordinates before and after the intended gesture. The thought was that we 

should be able to take something like the number “9” and be able to detect where the loop 

section starts and ends without including the leg of the number. To this end, the means, �̅� and �̅�, 

were calculated using the equations 

�̅� =
∑ 𝑥

𝑛
  �̅� =

∑ 𝑦

𝑛
 

and were used when calculating the standard deviations, 𝜎𝑥 and 𝜎𝑦.  



47 

 

𝜎𝑥 = √
∑(𝑥−�̅�)2

𝑛
  𝜎𝑦 = √

∑(𝑦−�̅�)2

𝑛
 

Using this mean and standard deviation, we defined a unique bounding box for each 

gesture that that was kx standard deviations units wide and ky standard deviations tall, and we 

used those values to be the floor and ceiling of x and y coordinates of the gesture respectively.  

If our gesture coordinates resulted in normal distribution, then 68.2% of the coordinates 

should fall within one standard deviation away from the average coordinate (�̅�, �̅�), as shown in 

Figure 17. Furthermore, 95.44% of all coordinates should fall within two standard deviations, 

and 99.74% within three standard deviations.  

 
Figure 17. Standard deviation distributions6 

The bounding box for an ideal circle lies at 1.44 standard deviations from the center, so it 

was decided to use 1.44 as a starting point and increase from there. We also examined whether 

the coordinates that fell outside of the bounding box should be ignored, or if they should be 

mapped back to the nearest point inside the bounding box. 

Next, to remove “straggler” points that were not part of the gesture itself, we tried a 

standard deviation scaling algorithm to define the bounding box for the gesture with many 

different values for sigma.  

                                                 
6 Toews, M. W. “File:Standard Deviation Diagram.svg.” Standard Deviation - Wikimedia 

Commons, 7 Apr. 2007, commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg. 
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Unfortunately, we found there was no one good value for standard deviation across all 

gestures, because the matching percentage for this algorithm rarely went above 50. We originally 

tested seven different standard deviation values of 1.44, 1.5, 1.7, 1.75, 1.9, 2.0, and 2.5. We also 

checked if we should throw out the coordinates that fell outside the bounding box, or map them 

to the nearest coordinate inside the bounding box. Finally, we compared the original, full-length 

coordinate sets to running the same calculation with the coordinate sets uniformly subsampled to 

only 50 coordinates. 

We utilized 190 different files that had been recorded as loop gestures for this data. Using 

the seven previously mentioned values for standard deviation, comparing the original coordinate 

sets to the pared coordinate sets showed positive results for paring the data. 67.89% of the files 

we were working with had an equal or better match percentage by using the subsampled 

coordinate sets: 

 61 files had a better match percentage with the original files 

 106 files had a better match percentage with the subsampled data 

 23 files had the same match percentage with the original and subsampled data 

There was not a significant difference between the original and pared data in regards to how to 

handle the coordinates that fell outside of the bounding box, but 82.6-87.9% of the files showed 

a better match percentage by mapping the coordinates outside of the box back into the bounding 

box. 

 When examining gesture B (Figure 18), the top row shows the results of mapping the 

coordinates that fell outside the bounding box back to into the bounding box, while the bottom 

row shows how the bounding box bisected the original gesture. As our sigma value became 

larger, a larger portion of our gesture is scaled into the bounding box. Even though gesture B is 
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clearly circular in nature, standard deviation scaling did not do an adequate job of creating a 

bounding box for template matching. 

 
Figure 18. Standard deviation scaling for gesture B (all data) 

However, as seen in Table 6 and Figure 20, using the subsampled data did not 

particularly change the effectiveness of this matching algorithm. We should note that even 

though the gestures are shown as line segments, they are represented as individual coordinates in 

the code, and while it looks like the line crosses over the template, there may not be any points 

that actually fall on the template (Figure 19). 

Table 6. Gesture B standard deviation scaling match percentages 

 Ignore outside points 

(true) 

Map outside points back 

to bounding box (false) 

Sigma All data Pared data All data Pared data 

1 11.36% 11.36% 14.71% 14.00% 

1.5 0.00% 0.00% 7.35% 8.00% 

2 3.51% 4.00% 7.35% 6.00% 

2.5 17.65% 18.00% 17.65% 18.00% 
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Figure 19. Gesture B point representation 

 

Figure 20. Standard deviation scaling for gesture B (pared data) 

For each gesture, we calculated the match score for seven standard deviation values and 

counted the number of times each standard deviation value produced the best match (Table 7). 

Our results were surprisingly uniform. Although it is not significantly better than the other six 

values listed, 1.44 standard deviations showed to be the “best” value tested since it produced the 

highest percentage match values for the most files.  
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Table 7. Count of "best" standard deviations values 

Standard Deviations 
Number of Original 

Data Files Matched 

Number of Pared Data 

Files Matched 

1.44 50 50 

1.5 28 26 

1.7 26 28 

1.75 18 20 

1.9 27 24 

2 28 29 

2.5 13 13 

Examining this data a little bit closer, and comparing both the original and pared data 

sets, the average match percentage against the loop gesture template was only around 23% and 

the median match percentage was around 20% (see Table 8). The minimum/maximum scaling 

algorithm for creating a bounding box was significantly more effective.  

Table 8. Template matching percentages for standard 

deviation bounding boxes (7 values) 

 
Original Data Pared Data 

Average 22.76% 23.11% 

Maximum 58.11% 56% 

Minimum 5.65% 6% 

Median 20.24% 20% 

To ensure that the standard deviation values that were somewhat arbitrarily chosen were 

not the cause of bad matching, the same algorithms were run with standard deviation values from 

1.00 up to and including 2.50 in increments of hundredths. Upon testing the 151 different 

possible values, we found that eighty-four of them constituted the “best” match for the original 

data, and 86 for the pared data. The percent matched did increase a bit by expanding our standard 

deviation value options, but not enough to call this method a success (see Table 9). 
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Table 9. Template matching percentages for standard 

deviation bounding boxes (151 values) 

 Original Data Pared Data 

Average 36.76% 37.29% 

Maximum 86.96% 86.96% 

Minimum 6.45% 8% 

Median 31.46% 32% 

A few more items of note when finding the “best” standard deviation using 151 different 

possible values. First, more of these files had a better match percentage when ignoring the 

coordinates that fell outside of the calculated bounding box instead of mapping them back to the 

nearest point within the box. In fact, 55.3-55.8% of the gestures got a higher match percentage 

when ignoring them, as opposed to the 12.1-17.4% from the original seven values we tested. 

Moreover, 86.8% of these gestures had equal or better match percentages when using the pared 

data. Upon closer examination however, we discovered that when the coordinates outside the 

bounding box were ignored, there were significantly fewer coordinates available to match the 

template, so there were fewer coordinates that did not match to the template so the match 

percentage was higher.  

To get more meaningful data from multiple possible values of standard deviations, we 

also tested from 1.0 up to and including 2.5 in increments of tenths. Even with only 16 values, 

each of them were represented as the “best” matching percentage against the loop gesture 

template. 53.1-58.4% of the gestures had better match percentages when ignoring coordinates 

outside of the bounding box, and 78.9% of the gestures had equal or better matching percentages 

when using the pared data. The average and median match percentages (see Table 10) for only 

16 possible standard deviations was still not acceptable for this project. 
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Table 10. Percentages of template matching for standard 

deviation bounding boxes (16 values) 

 
Original Data Pared Data 

Average 34.53% 34.85% 

Maximum 85.71% 85.71% 

Minimum 6.45% 8% 

Median 28.95% 29.34% 

Unfortunately, no matter how many or how few values we chose to test for standard 

deviation, there was no one good value that would create an acceptable bounding box for 

template matching for the loop gesture. Since the loop gesture should be the easiest to match, and 

this method was not successful, we did not attempt it for any other gestures. 

4.6 Sector Quantization 

Instead of trying to match the exact (x, y) coordinates of the user’s gesture to an ideal 

circle, we developed a sector quantization technique to reduce the need for exact accuracy of 

coordinates and to “smooth out” the small variations that occur in gestures. As we convert the 

original (x, y) coordinates of a gesture to a sequence of sector numbers, we remove duplicate 

values as they occur. This gives us very compact gesture data. We implement sector quantization 

by linearly scaling the (x, y) coordinates into three sectors each, represented by 0, 1, or 2. We 

first linearly scaled the gesture to the range (0, 100) in both the x and y directions, then used the 

following formulas: 

𝑥: [𝑥𝑚𝑖𝑛 . . 𝑥𝑚𝑎𝑥]  →  [0. .100]  𝑦: [𝑦𝑚𝑖𝑛 . . 𝑦𝑚𝑎𝑥]  →  [0. .100] 

𝑥𝑠𝑒𝑐𝑡𝑜𝑟 = {

[0, 33), 𝑥 = 0
[33, 66), 𝑥 = 1

[66, 100], 𝑥 = 2
  𝑦𝑠𝑒𝑐𝑡𝑜𝑟 = {

[0, 33), 𝑦 = 0

[33, 66), 𝑦 = 1
[66, 100], 𝑦 = 2

 

We give each sector a unique number for easier reference when following gesture paths. 

𝑠𝑒𝑐𝑡𝑜𝑟𝑛𝑢𝑚 = 𝑥 + 3 ∗ 𝑦 + 1 

This gives us sectors numbered as shown in Figure 21 below. 
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Figure 21. Quantized grid of sectors 

For each of our target gestures, we follow its path and note which sectors it appears in 

and in what order. We store the ideal paths of clockwise and counter-clockwise loops, figure-

eights, and infinity symbols. To perform matching, we compare each user provided gesture path 

to these ideal sequences and label each gesture-figure based on the largest matching percentage. 

 

Figure 22. Quantized gestures with a sector grid underlay; 

A. an ideal circle, and B-D. three user gestures 

Because gestures can start in any sector, we extended the length of our predefined gesture 

paths to circle around twice. Instead of just [2, 3, 6, 9, 8, 7, 4, 1, 2] (see Figure 22-A) for a 

clockwise loop, the path is doubled to [2, 3, 6, 9, 8, 7, 4, 1, 2, 3, 6, 9, 8, 7, 4, 1, 2] so 

subsequences of the arrays can be utilized without having to wrap the array index back to zero. 

Because the predefined paths are almost twice as long as the actual path we are trying to match, 

either the match percentage must be doubled, or the threshold of matching must be halved. We 

chose to go with the latter; therefore, the matching percentages look lower, but they are being 

compared to a predefined gesture that is almost twice as long as the expected gesture. An ideal 

loop gesture would visit eight or nine sectors, depending whether it starts and ends in the same 
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one, or stops just short of completing the path. Our predefined loop gesture visits seventeen 

sectors, visiting each one twice, and the initial sector three times. Thus, a valid loop gesture 

match should have at least a 47% match percentage (eight sectors/seventeen possible locations).  

We also added some logic for the scenario in which a user hovers around the sector 

dividing lines, jumping back and forth between two sectors a bit. When there is a slight bobble 

between sectors, the quick hop should be ignored. Also, if the user does miss one sector in their 

gesture path, the program should still be able to recognize the general shape that is trying to be 

achieved.  

 As you can see from the table below (Table 11), we achieved a 66.17% matching rate 

using sector quantization. Even more impressively, we got a 93.68% recognition rate on loops, 

even though twelve of the loop gestures in the testing data set had little resemblance to a loop. 

There are several gesture files that were recorded by the test subjects that would be considered 

bad gesture samples. For instance, one student wanted to draw a figure-eight with both hands – 

using one hand to draw a numeral three, and the other to draw the mirror image of the three 

simultaneously to form a figure-eight. There were also some files that matched a gesture, but not 

the correct type – those were classified as an incorrect match. 

Table 11. Sector quantization matching results 

 
All Figure-eight Infinity symbol Loop 

Correct match 358 66.17% 101 58.72% 79 44.13% 178 93.68% 

No match 164 30.31% 60 34.88% 92 51.40% 12 6.32% 

Incorrect match 19 3.51% 11 6.40% 8 4.47% 0 0.00% 

Total Files 541 
 

172 
 

179 
 

190 
 

While these results were significantly more accurate than template matching, there is still 

one more algorithm we want to explore – centroid and medoid matching. We are mainly 

focusing on loop recognition at the moment, and while almost 94% match accuracy is laudable, 
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the program will not be very useful if it can only recognize a single gesture. The figure-eight and 

infinity symbol sector quantization matching percentages need to be improved for our system to 

be useable. 

4.7 Centroid and Medoid Matching 

K-nearest neighbors classification has been used successfully in a wide range of machine 

learning and artificial intelligence applications. In order to apply this technique to gesture 

matching, we must first define the centroid/medoid for gesture data, and then develop 

appropriate methods to measure the “nearness” of gestures to these centroids/medoids. 

The centroid of a set of figures is simply the mean figure of a set of data points, while a 

medoid is the best matching figure of the data set that has the least dissimilarity from all other 

members of the data set. For training data, we took around 70% of the files of each gesture type’s 

file data randomly chosen from our pre-gathered data to calculate the centroid of each gesture 

shape (Table 12). We used the remaining 30% of our pre-gathered data for testing. We tried both 

using all five gesture shapes for this classification for a more accurate representation of types of 

figures we might see, and also only testing for figure-eights, infinity symbols, and loops since we 

did not obtain enough training data for the spiral and the wave. We are also attempting to answer 

beyond the shadow of a doubt whether a loop and a spiral are centroidally distinguishable from 

each other. 

Table 12. How the files were split for training versus testing 

Gesture Type 
Training Testing 

Total 
Num Files Percent Num Files Percent 

Figure-eight 120 69.77% 52 30.23% 172 

Infinity symbol 125 69.83% 54 30.17% 179 

Loop 133 70.00% 57 30.00% 190 

Spiral 28 70.00% 12 30.00% 40 

Wave 19 70.37% 8 29.63% 27 

Total 425 69.90% 183 30.10% 608 
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 We tried three different techniques: 1.) nearest centroid classification, 2.) nearest medoid 

classification with aligned gestures, and 3.) nearest medoid classification with point-set 

distances. For each of these techniques, we first converted all of the gestures from N coordinates 

to 50 coordinates so our gesture representations would all be the same size. To pare the 

coordinates down, first the gestures had missing coordinates interpolated (the speed at which the 

gesture was drawn effects the number of coordinates recorded and the spacing of those 

coordinates), and then fifty coordinates were chosen, spaced evenly around the figure.  

For the nearest medoid classification algorithms, we evaluated two different methods of 

matching between both the align-compare and point-set distance algorithms in two ways each. 

Since there was limited data for spirals and waves, we compared our test data to all five gestures, 

and also only to the gestures for which we had enough data to accurately train the models 

(figure-eights, infinity symbols, and loops). Our first method of evaluation was to do a modified 

k-nearest neighbors algorithm where k=1. Our second method was to do a sum of medoid gesture 

types. 

4.7.1 Nearest Centroid Classification 

For our first experiment, we calculated the sample-by-sample average (x, y) coordinate 

for all of the loops in the training data. The first point on this average shape was the average of 

all first points, the second point was the average of all second points, and so on. Unfortunately, 

this technique does not take into consideration the different starting points for the gesture, nor the 

direction in which the gesture was drawn so many of our “average” gestures are barely 

recognizable. The figure-eight centroid was relatively recognizable, since that is a common 

symbol that is taught in grade school. There were still differences and variations amongst users, 

but for the most part, the centroid looks similar. Unfortunately, the loop gesture and infinity 



58 

 

symbol failed terribly. This is primarily because students are taught to draw these shapes in 

different ways, some students drew shapes in clockwise order while others drew them in counter-

clockwise order. Students also had multiple different starting points for these shapes. We can see 

the results in Figure 23. 

 

Figure 23. Gesture centroids, pared to 50 coordinates 

Since centroids do not take into consideration the starting points or direction of travel, a 

pure centroid calculation failed terribly. Because the centroids were not recognizable as the 

figures they were supposed to represent, other than the figure-eight, we did not pursue this 

experiment any further. Instead, we chose to use a nearest medoid classification, in two uniquely 

different ways. 

4.7.2 Nearest Medoid Classification with Aligned Gestures 

Our next gesture classification method is based on aligned gesture matching – using the 

medoid gesture. Our first step was to calculate the distance between all gestures in the training 

set to each other using aligned differences. There is a one-to-one relationship between each 

figure’s coordinates. If we compare the first gesture’s first coordinate to the second gesture’s 

first coordinate, it is not necessarily going to be the best match (see Figure 24).  
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Figure 24. Two loop gestures compared by 

starting point to starting point 

However, when we shift which coordinate is being compared from the first gesture to the 

second gesture, we can see that the distance between each set of coordinates is significantly 

smaller (see Figure 25). We continued shifting the starting point of the second figure until every 

coordinate was compared with every other coordinate. We also reversed the order of the second 

figure’s coordinates to check for clockwise versus counter-clockwise comparisons.  

𝐷(𝑖, 𝑗, 𝑜𝑓𝑓𝑠𝑒𝑡) =  
1

50
∑ √[𝑥𝑖(𝑝) −  𝑥𝑗((𝑝+𝑜𝑓𝑓𝑠𝑒𝑡)%50)]2  +  [𝑦𝑖(𝑝) −  𝑦𝑗((𝑝+𝑜𝑓𝑓𝑠𝑒𝑡)%50)]2

49

𝑝=0

 

After running all of these calculations, we then chose three medoids of each gesture type as the 

gestures with the lowest total distances to all other gestures in that category.  

𝐷(𝑖, 𝑗) =
arg 𝑚𝑖𝑛

𝑜𝑓𝑓𝑠𝑒𝑡
 𝐷(𝑖, 𝑗, 𝑜𝑓𝑓𝑠𝑒𝑡) 

These medoids were then used for nearest medoid classification by calculating the aligned 

distance between all of the testing set gestures and the medoids chosen above. 
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Figure 25. Two loop gestures compared by attempting 

to align their coordinates 

For k-nearest neighbors where k=1, we compared each test data file against each of the 

fifteen best match medoids (three medoids for each of the five gesture types). If the best aligned 

match gesture type was the same as the test gesture type, then it was successful. We had 178 out 

of the 183 test files match correctly (97.27% accuracy) (see Table 13 below). We also compared 

each test data file against the nine best match medoids representing only figure-eights, infinity 

symbols, and loops and got a slightly better match rate at 159 files match of the 163 test files 

(97.55%). This method was definitely a success! 

Table 13. Aligned gesture best figure matching results  
Five medoid gesture types Three medoid gesture types 

Accurate matches 178 159 

Number of files 183 163 

Percent accurate 97.27% 97.55% 

We also attempted a sum of medoid gesture type matching algorithm by taking sums of 

the best matches per medoid gesture type and taking the lowest medoid gesture type sum as the 

matching gesture type. So instead of just comparing TestFile1 against LoopMedoid1, 

LoopMedoid2, LoopMedoid3, InfinityMedoid1, InfinityMedoid2, etc. we compared TestFile1 to 

the five medoid gesture type sums: (LoopMedoid1 + LoopMedoid2 + LoopMedoid3), 
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(InfinityMedoid1 + InfinityMedoid2 + InfinityMedoid3), etc. This was also quite effective with a 

total match accuracy of 96.17%. The individual gestures were relatively accurate as well as 

shown in Table 14. 

Table 14. Medoid gesture type sums for five gestures using 

the align gestures matching algorithm 

Gesture Type Percent Accurate 

Figure-eight 100% 

Infinity symbol 94.44% 

Loop 98.25% 

Spiral 100% 

Wave 62.50% 

Overall 96.17% 

 We also tested the medoid gesture type sum against only the main three gesture types 

(figure-eight, infinity symbol, and loop gesture), and their match percentages did not change, 

although the overall match percentage did increase to 97.55%. Therefore we know that the best 

file match (aligned gesture) and best sum match (medoid gesture type sum) work equally well 

with the three main gestures we were attempting to match. As we can see in the above table, the 

wave gesture was not as well recognized.  

4.7.3 Nearest Medoid Classification with Point-Set Distances 

Finally, we calculated nearest medoids with point-set distances. In this case, we 

calculated the distances between all of the gestures in the training set by calculating the sum of 

the distances between the closest points for two gestures. This calculation represents a many-to-

one relationship between the second figure (shown in blue) and the first figure (shown in purple) 

(see Figure 26). This distance can be expressed as follows: 

𝐷(𝑖, 𝑗) =  
1

50
∑

arg 𝑚𝑖𝑛

𝑞
√[𝑥𝑖(𝑝) −  𝑥𝑗(𝑞)]2  +  [𝑦𝑖(𝑝) −  𝑦𝑗(𝑞)]2

49

𝑝=0
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This searches for a point q on our test data file that is closest to point p on our medoid training 

data file. 

 

Figure 26. Two loop gestures compared with 

point-set differences 

We again calculated the best three medoids for each gesture type so we have a set of 

fifteen best medoids to train against, and performed nearest medoid classification using the 

point-set differences. We tried the same two methods of matching as the align-compare 

algorithm above, with all of the training and testing data, and also with a subset of each, 

removing the wave and spiral gestures. 

 We were very surprised to see that the best figure match came in at only 59.56% 

accuracy (109 out of 183 files). Even using a subset of the data and only checking for figure-

eights, infinity symbols, and loops brought the accuracy up to 93.87% (153 out of 163 files). We 

were initially expecting this to yield a significantly higher match percentage than the align-

compare algorithm since these points were finding the closest point and the distance should be 

much lower. However, because we were not forcing our test data points to correspond to points 

in the same order as those in the gesture itself, multiple test data points would cluster around the 

most convenient nearest coordinate in the medoid, which may or may not be the correct one 
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corresponding to the equivalent one in the correct medoid gesture type. As we can see below, the 

spiral in Figure 27 has many points spread over the matching area, as does the infinity symbol in 

Figure 28. 

 

Figure 27. A spiral pared to 50 coordinates, plotted as points 

 

Figure 28. An infinity symbol pared to 50 coordinates, plotted as points 

 In fact, out of our 183 test files, 85 of them (46.45% of them) matched as a spiral since 

those points are scattered rather evenly over the entire matching area so it is very easy for any 

shape to match to the closest spiral coordinate. See Figure 29 as an example. The infinity symbol 

incorrectly maps to the spiral because the points can cluster around the spiral points instead of 

following an infinity symbol path. 
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Figure 29. An infinity symbol incorrectly 

mapped to a spiral medoid 

Because we are not forcing a one-to-one ratio between the test gesture and the training 

medoid, over a third of our test gestures matched with a spiral since those points were more 

uniformly distributed over the matching area. We also tried the sum of each medoid gesture type, 

and when we tested all five gesture types, the matching percentage was only 66.67%. However, 

as we can see in Table 15, spirals had a 100% match rate. 

Table 15. Medoid gesture type sums for all five figures using 

the point-set difference matching algorithm 

Gesture Type Percent Accurate 

Figure-eight 55.77% 

Infinity symbol 62.96% 

Loop 80.70% 

Spiral 100% 

Wave 12.50% 

Overall 66.67% 

 When we removed the spiral and wave files from our testing, our match percentages did 

increase significantly as see in Table 16. Our figure-eight and loop results are much lower than 
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our aligned matching (92.31% versus 100%, and 91.23% versus 98.25% respectively), while our 

infinity symbol match is slightly better (98.15% versus 94.44%). 

Table 16. Medoid gesture type sums for three figures using 

the point-set difference matching algorithm 

Gesture Type Percent Accurate 

Figure-eight 92.31% 

Infinity symbol 98.15% 

Loop 91.23% 

Overall 93.87% 

4.8 Gesture Editing 

We also experimented with methods to clean up some of the saved loop gestures we had 

by finding the cross point of the figure. The goal was to find where the legs of the figure crossed 

and remove unwanted points on either side of the crossing point. This was very successful for 

editing some of the loops (such as Figure 30), but it only worked if there was a crossed section 

(such as Figure 31).  

 

Figure 30. Cross-finder on a loop gesture 
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Figure 31. Loop gesture without a crossed section 

Because this approach was not a practical solution for figure-eights or infinity symbols, 

we did not pursue this any further than brief consideration. It did, however, help clean up any 

figures that had a long “tail” of irrelevant data leading or trailing the loop gesture itself. 
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5 Conclusion and Future Work 

 We set out to create a gesture-based interface to encourage younger and non-traditional 

programmers to get involved with computers. Through the use of surveys conducted with 

students between the sixth and twelfth grades, we chose to implement our interface on top of 

Google’s visual programming language, Blockly. We also discovered that the majority of 

students would prefer to sit and program using only their hands instead of standing and using full 

body movement. We were surprised that overwhelmingly students created gestures that were 

one-handed, two-dimensional instead of making use of the space around them. The majority of 

this project was spent on finding the best way to recognize gestures when they were drawn. 

5.1 Summary 

We attempted many different gesture matching algorithms, including template matching 

with the bounding box comprised of the minimum and maximum x and y values, template 

matching with the bounding box comprised of standard deviation values, sector quantization, 

centroid matching, and medoid matching.  

We started trying to match only the loop gesture, with the justification that if we couldn’t 

match the easiest gesture, the more challenging ones didn’t stand a chance. We showed our 

progress through the template matching algorithm, standard deviation bounding box algorithm, 

and sector quantization algorithm with three sample loop gestures. 

Sector quantization allowed us to cut down our gesture path to a three-by-three grid of 

nine total sectors. We required the gesture to match at least 47% of the path’s sector order we 

expected to see for a loop which gave us 178 matching files out of our test group of 190 loop 

gestures (93.68% success rate). The percent match rate for each of these three algorithms for our 

sample three gestures (see Figure 22-B, C, and D) is shown in Table 17. 



68 

 

By requiring at least a 90% match for the template matching algorithms, and at least a 

47% match on sector quantization to confirm that a drawn gesture matches what our program 

expects to see for a predefined gesture, template matching was not nearly as successful as sector 

quantization. When we break template matching into two subsections, none of the standard 

deviation scaling options give us a match, while only a very precise loop is matched using the 

minimum/maximum scaling. By using sector quantization, all three user drawn gestures are 

matched as a loop gesture. 

Table 17. Matched percentages for gestures 

 Total 

Coordinates 

Template Matching 

Sector 

Quantization 

Minimum/ 

Maximum Scaling 

Standard Deviation 

Scaling - All Data 

All 

Data 

Pared 

Data 

Sigma = 

1.75 

Sigma = 

1.9 

B 68 91.18% 94.00% 12.50% 16.96% 58.82% 

C 75 49.33% 48.00% 30.67% 6.67% 64.71% 

D 112 33.04% 34.00% 11.48% 16.39% 52.94% 

While the minimum/maximum scaling algorithm gave better results on a consistent basis 

than the standard deviation scaling approach for template matching, sector quantization was 

significantly more accurate for loops. However, when we attempted to match figure-eights and 

infinity symbols, the accuracy was underwhelming. 

We then turned to some machine learning algorithms and attempted centroid and medoid 

matching. Because the centroid matching didn’t take into account the different starting points, 

directions, and speeds at which the gestures were drawn, the produced centroids were 

unrecognizable for the gesture they were supposed to represent (other than the figure-eight). 

Instead, we went with medoid calculation with shift-align and point-set distances. We split all of 

our data into a 70% training set and a 30% testing set to see how effective the algorithms were. 
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  We improved upon the centroid matching by trying to align our training gestures first. 

Once we got the gestures aligned, we found the top three figures that had the most similarity 

amongst the same gesture types (figure-eight, infinity symbol, loop, spiral, and wave), resulting 

in fifteen medoids of five different gesture types. Then, we compared our testing data to the 

fifteen medoids with a one-to-one relationship between the points and found the medoid with the 

most similarity and pulled a 97.27% accuracy rate with all five gesture types. 

We also attempted to do point-set distances between the training medoids and the testing 

data, but because the points were not held to a strict adherence to the intended gesture path, they 

ended up clustering around the closest point which caused problems. This was especially 

apparent with the training spiral data since those points were uniformly spread across the 

matching area. 

 After implementing and comparing the five different gesture matching algorithms 

described above, medoid matching of aligned gestures has proven to be the most effective for our 

application. 

5.2 Future Work 

Along with creating a gesture-based programming interface, we must also think ahead to 

how we will test its effectiveness. To do so, we will have groups of students use the tool we 

developed to perform various tasks and observe their performance. We will develop surveys and 

skill tests to be taken both before and after activities to measure their interest levels towards 

programming, the amount of material learned, and the effectiveness of this interface for teaching 

difficult concepts. 



70 

 

We have developed two similar, but unique approaches to gathering information on the 

effectiveness of our gesture-based programming framework. For both evaluation plans, we will 

split the students into several groups using different programming methods, labeled as below: 

a. Gesture-based interface using the Kinect 

b. Mouse-and-keyboard version of the same interface 

c. Traditional textual programming 

The first plan requires three groups of students randomly assigned to groups a, b, or c. They 

would learn ‘x’ number of basic programming skills using the assigned method. Once they have 

completed the assigned method, we will have all groups continue onto the same second step 

using traditional textual programming, learning one or two slightly more advanced programming 

skills. An advantage to this method would be our ability to use the students who start with group 

c as a control group, since that is the way traditional introduction to programming classes are 

taught. We would also be able to judge the degree of improvement and comprehension since all 

students will do the same second task using the same method. However, a distinct disadvantage 

would be that those who start with text programming will have an advantage going into step two, 

while the students who started out using the gesture interface will need to learn things like 

variable declaration and semicolons at the end of almost every line. That may be alleviated by 

showing the gesture interface students what their code snippet would look like after they 

complete a task. Depending on the age levels of the students, and their attention spans, that may 

help the transition from gesture to text interfaces go smoother. 

Our second plan is to randomly split the students into four groups to learn the same 

programming skills using two different methods. Since we will be judging the effectiveness of 

the gesture-based interface, we would start two groups of students on set a, transitioning half of 
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them to set b, and the other half to set c. The other two groups of students would be split to start 

on set b and set c respectively, before both transitioning to set a. Learning the same thing with 

two different methods will help reinforce the concepts, but many students will prefer the first 

method they learn more than the second – we will need to find a way to compensate for those 

biases. 

Part of our evaluation plan will be to judge which option out of the three listed above 

worked better, which helped their understanding, and which one is easier to use. We will also 

want to determine which group can accomplish tasks faster and which method leads to the least 

amount of frustration and highest accuracy. We will want to find out if learning programming on 

a gesture-based interface has helped or hurt them when they switch over to text programming. 

Since most programming jobs available in the real world take place in an office, or even just a 

cubicle, it is not currently practical to keep programmers only on a gesture-based interface. 

Not only do we need to know how we are planning to evaluate this tool, we need to think 

ahead to who we will be evaluating it on. Since our main goal is to be able to increase interest in 

programming by non-traditional programmers, that includes a younger audience (middle and 

high school students), non-computer science/computer engineering majors, and more broadly, 

non-engineers. Engineering majors are taught how to problem solve, so providing this tool to 

non-engineers will give some good insight about its effectiveness as well. We will defer this 

decision until we have a pilot application working, at which time we will determine the 

appropriate audience. 

We would also like to update the hardware we are using in this project. The Xbox 360 

Kinect was discontinued by Microsoft in April 2016, and the Xbox One Kinect was discontinued 

in October 2017. While Microsoft made the decision not to pursue Kinect development in 
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regards to a gaming device, they are still developing the platform for developers, and the Azure 

Kinect launches later this year. It is very compact and has some of Microsoft’s best artificial 

intelligence sensors in a single device. 
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