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Abstract

In nature there are a variety of self-assembling systems occurring at varying scales which

give rise to incredibly complex behaviors. Theoretical models of self-assembly allow us to

gain insight into the fundamental nature of self-assembly independent of the specific physi-

cal implementation. In Winfree’s abstract tile assembly model (aTAM), the atomic compo-

nents are unit square “tiles” which have “glues” on their four sides. Beginning from a seed

assembly, these tiles attach one at a time during the assembly process in an asynchronous

and nondeterministic manner.

We can gain valuable insights into the nature of self-assembly by comparing different

models of self-assembly which use fundamentally different mechanisms for local interac-

tions. A powerful notion which allows us to compare models of self-assembly is simulation.

The first result of this thesis examines the role of non-determinism in simulation. It shows

that the universal simulation of directed aTAM systems requires undirectedness. A tile as-

sembly model is said to be directed if it always assembles the same final assembly.

We distinguish between two types of aTAM systems: cooperative systems and non-

cooperative systems. In cooperative aTAM systems, we are able to enforce that in order for

a tile to attach to an assembly, the glues of a tile must match two or more glues of neigh-

boring tiles. On the other hand, in non-cooperative aTAM systems, tiles are able to attach

to an assembly provided that one of the tile’s glues match an exposed glue on the assem-

bly. It is well known that the cooperative aTAM is computationally universal, and it is

conjectured that the non-cooperative aTAM is not computationally universal. For our sec-

ond result, we show that if we allow tiles to be polygons with six or more sides, then the

class of non-cooperative systems is capable of universal computation. On the other hand,

we show that the class of systems consisting of polygons with six or less sides is not capa-

ble of computing using any of the currently known methods.
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Chapter 1

Introduction

1.1 Self-assembly

Self-assembly is the process by which components autonomously interact and coalesce

without the intervention of a centralized, controlling force. Self-assembly can be found in a

variety of settings from the nano-scale interactions which allow for the formation of biologi-

cal organisms to the gravitational interactions between stars which lead to the formation of

galaxies. Studying self-assembly can provide insights into a wide range of topics including

the origin of life [38] and bottom-up manufacturing [24, 34, 1].

In order to study the theoretical properties of self-assembling systems, we use an ax-

iomatic system which abstracts the specifics of the underlying implementation. This allows

us to draw conclusions about self-assembling systems in a generalized manner which is in-

dependent of the exact mechanics of the implementation. In this dissertation, we focus on

a set of models which are colloquially known as tile assembly models. In these models, the

atomic components are modeled as “tiles”. Informally, a tile is a polygon where each side

of the polygon has a string associated with it which we call a “glue”. The glues on a tile

and a system parameter called the “temperature” determine if a tile is able to attach to an

existing assembly. The behavior and structures created by these systems are then able to

be controlled by “programming” the glues on the tiles.

These models are based on Erik Winfree’s abstract tile assembly model (aTAM) [39].

The aTAM restricts the tiles to be squares, and models the assembly process as beginning

from a “seed” assembly and proceeding non deterministically and asynchronously with sin-

gle tile attachments. One of the distinguishing features of the aTAM is that a number of

aTAM systems have been experimentally implemented in the laboratory [39, 40] including

systems which leverage algorithmic self-assembly [37, 12]. These systems have been im-

plemented using carefully designed DNA “tiles” which use single-stranded DNA to mimic

the glues of the tiles. The ability to physically implement algorithmic self-assembly allows
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us to build complex structures using relatively few unique tile types. This makes building

complex structures in the laboratory easier and reduces the cost of building these struc-

tures. For example, the non-algorithmic approach to building an n × n square requires n2

tile types while the algorithmic approach only requires O( logn
log logn

) [36].

1.2 Simulation in self-assembly

As experimentalists continue to advance technology, they are presented with an increasing

number of options and trade-offs when designing self-assembling systems. Is it possible to

make design choices which are optimal in terms of the structures which are able to feasibly

assemble? In order to discuss optimal design choices, we need a way to compare models.

The notion of simulation provides us the necessary framework to compare different system

design choices which give rise to different models.

Intuitively, we say that system S simulates a system T provided that, under some block

replacement scheme, S behaves the same as T , and consequently produces the same as-

sembly as T modulo the scale factor of the blocks used. If every system in model B can be

simulated by some system in model A, then it is natural to intuitively consider model A

as being at least as “powerful” as model B. Furthermore, if there are systems in A which

cannot be simulated by any system in model B, then it is natural to consider model A as

being more powerful than model B. This stems from model A being able to do anything

that model B can do (up to scale factor) and more.

A more stringent requirement where one tile set (when properly seeded) must be able

to simulate all systems in a model is known as intrinsic universality. Intrinsic universality

has been studied in numerous models of computation [30, 11, 25] including the aTAM in

which it was shown the aTAM is intrinsically universal[9]. In terms of tile assembly mod-

els, we say that a tile set S is intrinsically universal (IU) for a class of systems C provided

that for every system T ∈ C, there exists some input assembly α composed of tiles from S

such that when S is seeded with α, it simulates T .

2



In addition to assisting in physical design choices, the notion of simulation has been

shown to be mathematically interesting. In [41], Woods provides a survey of universal sim-

ulation in tile assembly models. Woods shows a rich, complex relationship between the

different tile assembly models as well as demonstrates the robustness of the definition of

simulation in tile assembly models. Models which at first seem incomparable are able to

be measured relative to one another when compared using the notion of simulation. One

of the major insights of [41] is to show the complex hierarchy of tile assembly models that

arises when using universal simulation as a measure of comparison.

1.3 Directed self-assembly

Understanding the role of nondeterminism in a variety of models of computation has been

a central focus of several works [5, 22]. One of the most well known open problems in the-

oretical computer science (namely, does P = NP?) centers around understanding the role

nondeterminism plays in Turing machines. Unsurprisingly, the role nondeterminism plays

in self-assembly has attracted a lot of attention. Of particular interest is understanding

how the power of undirected systems relate to directed systems. Informally, a tile assembly

system is said to be directed if the assembly process always results in the same final assem-

bly.

1.4 Dissertation overview

This dissertation focuses on two types of simulation: 1) simulation between tile assembly

models and 2) simulation of Turing machines by tile assembly systems. The first set of re-

sults show an impossibility result relating to the simulation between tile assembly systems

while the second result shows a positive result relating to the simulation of Turing ma-

chines by a non-cooperative tile assembly model. In non-cooperative tile assembly systems,

tiles are able to attach to an assembly provided that just one of the tile’s glues matches an

exposed glue on the assembly.
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1.4.1 The directed aTAM is not intrinsically universal

The construction presented in [9] fundamentally requires nondeterminism in the form of

undirectedness even to simulate directed systems. In [3], it was shown that there are cer-

tain shapes which can be assembled by undirected systems that cannot be assembled by

any directed system. Could it also be the case that the class of undirected systems are also

“more powerful” than the class of directed systems when discussing simulation? Clearly,

directed systems cannot simulate the class of undirected systems since simulating the be-

havior of undirected systems requires undirectedness by definition. Thus, the interesting

scenario to consider is whether the class of directed systems requires undirectedness for any

universal simulator.

In our first main result we show that nondeterminism plays a fundamental role in the

universal simulation of the class of directed aTAM systems. That is, we show that there is

no universal simulator for the class of directed systems which is itself always directed. In

proving this result, we leverage results from structural computational complexity to pro-

vide a suite of new tools for proving impossibility results in tile assembly models. In par-

ticular, we prove a foundational result which shows that no valid simulating system can use

asymptotically more computational resources than the system that it is simulating. We use

this in conjunction with strict versions of the time and space hierarchies to sufficiently con-

fuse any directed universal simulator and force it to resort to nondeterminism resulting in

undirectedness.

1.4.2 The non-cooperative polygonal tile assembly model is computationally

universal

In [39], it was shown that the aTAM with cooperation is computationally universal. In this

context, cooperation refers to the constraint that at least two glues on a tile must match

the glues of its neighboring tiles in order to bind to an assembly. This allows the system

to simulate a Turing machine by only allowing a tile to bind to the assembly if its “input
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sides” match both the current state of the machine and the input symbol which the head is

currently reading. Physically realizing systems which rely on cooperation presents a num-

ber of challenges and requires carefully balancing a number of experimental parameters.

Unfortunately, it is conjectured that the non-cooperative aTAM is incapable of algorithmic

growth [10].

In [4], the first non-cooperative tile assembly model capable of universal computation

was demonstrated. Cook et al. introduced a three-dimensional extension of the aTAM and

showed that for every Turing machine M , there exists a non-cooperative 3D aTAM system

capable of simulating M . A 2D variant of the aTAM was introduced in [21] called the du-

pled aTAM which lifted the restriction that all tiles must be squares and allowed for 2 × 1

rectangular tiles. Hendricks et al. then showed the non-cooperative dupled aTAM is capa-

ble of universal computation. The dupled aTAM was further relaxed in [13] to allow any

mixture of polyominoes as tile shapes. Let P be a polyomino of size three or greater. In

the main result, Hendricks et al. showed that for every Turing machine M , there exists a

system consisting of tiles of shape P capable of simulating M without using cooperation.

In our second set of results, we define the polygonal tile assembly model (polygonal

TAM). Informally, this model is an extension of the aTAM where the only restriction on

the shape of the tiles is that they are polygons. Let P be a regular polygon with seven

or more sides. We begin by showing that for every Turing machine M , there exists a di-

rected, non-cooperative polygonal TAM system consisting of tiles of shape P capable of

simulating M . We then show that if P is a regular polygon with six or less sides, the class

of non-cooperative systems with tiles of shape P cannot compute using currently known

techniques. This result relies on fundamentally different techniques than those used in

[4, 21, 13] since the assembly process occurs in continuous space as opposed to the integer

lattice. The lack of a regular underlying grid presents significant challenges.
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Chapter 2

Preliminaries

In this chapter, we provide an intuitive description of the abstract Tile Assembly Model

(aTAM) as well as a formal definition of the model. For more information about the devel-

opment of the aTAM see [36, 39, 27].

2.1 Informal description of the abstract tile assembly model

This section gives a brief informal sketch of the abstract Tile Assembly Model (aTAM).

See Section 2.2 for a formal definition of the aTAM.

A tile type is a unit square with four sides, each consisting of a glue label, often repre-

sented as a finite string, and a nonnegative integer strength. A glue g that appears on mul-

tiple tiles (or sides) always has the same strength sg. There are a finite set T of tile types,

but an infinite number of copies of each tile type, with each copy being referred to as a tile.

An assembly is a positioning of tiles on the integer lattice Z2, described formally as a par-

tial function α : Z2 99K T . Let AT denote the set of all assemblies of tiles from T , and let

AT<∞ denote the set of finite assemblies of tiles from T . We write α v β to denote that α

is a subassembly of β, which means that dom α ⊆ dom β and α(p) = β(p) for all points

p ∈ dom α. Two adjacent tiles in an assembly interact, or are attached, if the glue labels on

their abutting sides are equal and have positive strength. Each assembly induces a binding

graph, a grid graph whose vertices are tiles, with an edge between two tiles if they interact.

The assembly is τ -stable if every cut of its binding graph has strength at least τ , where the

strength of a cut is the sum of all of the individual glue strengths in the cut.

A tile assembly system (TAS) is a triple T = (T, σ, τ), where T is a finite set of tile

types, σ : Z2 99K T is a finite, τ -stable seed assembly, and τ is a positive integer called

the temperature. An assembly α is producible if either α = σ or if β is a producible as-

sembly and α can be obtained from β by the stable binding of a single tile. In this case

we write β →T1 α (to mean α is producible from β by the attachment of one tile), and we

6



write β →T α if β →T ∗1 α (to mean α is producible from β by the attachment of zero

or more tiles). When T is clear from context, we may write →1 and → instead. We let

A[T ] denote the set of producible assemblies of T . An assembly is terminal if no tile can

be τ -stably attached to it. We let A�[T ] ⊆ A[T ] denote the set of producible, terminal

assemblies of T . A TAS T is directed if |A�[T ]| = 1. Hence, although a directed system

may be nondeterministic in terms of the order of tile placements, it is deterministic in the

sense that exactly one terminal assembly is producible (this is analogous to the notion of

confluence in rewriting systems).

2.2 Formal description of the abstract tile assembly model

In this section we provide a set of definitions and conventions that are used throughout

this thesis.

We work in the 2-dimensional discrete space Z2. Define the set

U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}

to be the set of all unit vectors in Z2. We also sometimes refer to these vectors by their

cardinal directions N , E, S, W , respectively. All graphs in this thesis are undirected. A

grid graph is a graph G = (V,E) in which V ⊆ Z2 and every edge {~a,~b} ∈ E has the

property that ~a−~b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not rotated,

having a well-defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” with

“label” labelt(~u)–a string over some fixed alphabet–and “strength” strt(~u)–a nonneg-

ative integer–specified by its type t. Two tiles t and t′ that are placed at the points ~a

and ~a + ~u respectively, bind with strength strt (~u) if and only if (labelt (~u) , strt (~u)) =

(labelt′ (−~u) , strt′ (−~u)).

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f

and g are both defined and equal on x, or if f and g are both undefined on x.

7



Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an assembly

when T is clear from the context, is a partial function α : Z2 99K T defined on at least

one input, with points ~x ∈ Z2 at which α(~x) is undefined interpreted to be empty space,

so that dom α is the set of points with tiles. We write |α| to denote |dom α|, and we say

α is finite if |α| is finite. For assemblies α and α′, we say that α is a subassembly of α′, and

write α v α′, if dom α ⊆ dom α′ and α(~x) = α′(~x) for all x ∈ dom α.

We now give a brief formal definition of the aTAM. See [39, 36, 35, 27] for other devel-

opments of the model. Our notation is that of [27], which also contains a more complete

definition.

Given a set T of tile types, an assembly is a partial function α : Z2 99K T . An assembly

is τ -stable if it cannot be broken up into smaller assemblies without breaking bonds of total

strength at least τ , for some τ ∈ N.

Self-assembly begins with a seed assembly σ and proceeds asynchronously and nonde-

terministically, with tiles adsorbing one at a time to the existing assembly in any manner

that preserves τ -stability at all times. A tile assembly system (TAS) is an ordered triple

T = (T, σ, τ), where T is a finite set of tile types, σ is a seed assembly with finite domain,

and τ ∈ N. A generalized tile assembly system (GTAS) is defined similarly, but without

the finiteness requirements. We write A[T ] for the set of all assemblies that can arise (in

finitely many steps or in the limit) from T . An assembly α ∈ A[T ] is terminal, and we

write α ∈ A�[T ], if no tile can be τ -stably added to it. It is clear that A�[T ] ⊆ A[T ].

An assembly sequence in a TAS T is a (finite or infinite) sequence ~α = (α0, α1, . . .)

of assemblies in which each αi+1 is obtained from αi by the addition of a single tile. The

result res(~α) of such an assembly sequence is its unique limiting assembly. (This is the last

assembly in the sequence if the sequence is finite.) The set A[T ] is partially ordered by the

relation −→ defined by

α −→ α′ iff there is an assembly sequence ~α = (α0, α1, . . .)

such that α0 = α and α′ = res(~α).
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If ~α = (α0, α1, . . .) is an assembly sequence in T and ~m ∈ Z2, then the ~α-index of ~m is

i~α(~m) =min{i ∈ N|~m ∈ dom αi}. That is, the ~α-index of ~m is the time at which any tile is

first placed at location ~m by ~α. For each location ~m ∈
⋃

0≤i≤l dom αi, define the set of its

input sides IN~α(~m) = {~u ∈ U2|strαiα (~m)(~u) > 0}.

We say that T is directed (a.k.a. deterministic, confluent, produces a unique assembly)

if the relation −→ is directed, i.e., if for all α, α′ ∈ A[T ], there exists α′′ ∈ A[T ] such that

α −→ α′′ and α′ −→ α′′. It is easy to show that T is directed if and only if there is a

unique terminal assembly α ∈ A[T ] such that σ −→ α.

A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, τ) and a set B ⊆ T

such that α−1(B) = X holds for every terminal assembly α ∈ A�[T ]. Essentially, weak

self-assembly can be thought of as the creation (or “painting”) of a pattern of tiles from B

(usually taken to be a unique “color”) on a possibly larger “canvas” of un-colored tiles.

A set X strictly self-assembles if there is a TAS T for which every assembly α ∈ A�[T ]

satisfies dom α = X. Essentially, strict self-assembly means that tiles are only placed in

positions defined by the shape. Note that if X strictly self-assembles, then X weakly self-

assembles. (Let all tiles be in B.)
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Chapter 3

A class of systems that is not intrinsically universal

3.1 Introduction

The aTAM has been shown to be intrinsically universal (IU) [9], meaning that there exists

a single tile set, U , such that given any arbitrary aTAM system T , U can be given an ini-

tial configuration which will cause it to faithfully simulate the full dynamics of T modulo a

constant scale factor (dependent on T ). Since the result of [9], several other results related

to IU have been used to examine and classify the relative powers of a variety of models

of self-assembly and classes of systems within them [7, 20, 14, 19, 18, 29, 16, 13, 6], thus

developing a complexity hierarchy which can be used to categorize models and systems

within them.

In this paper, we investigate the problem of characterizing the role of nondetermin-

ism within the aTAM, which has previously been explored in a variety of different aspects

[2, 8, 23]. At its core, the aTAM is an asynchronous and nondeterministic model in which

tile attachments to a growing assembly, while constrained by the requirement that suf-

ficient matching glues must bind, are random with respect to the sequence of locations

and sometimes the particular types of tiles which bind. The amount of nondeterminism

of different aTAM systems can vary wildly, with some systems having uncountably infi-

nite sets of producible, or even terminal (i.e. those which cannot grow any further), as-

semblies and/or sequences of assembly, to those having exactly one producible assembly

and even some with just one possible assembly sequence. This leads to questions about

whether or not, and possibly how much, nondeterminism is required to give the aTAM its

full power. In this paper, we focus on this question from the perspective of the “univer-

sal aTAM simulator” of [9], which by design has several so-called “points of competition”,

where different assembly sequences of the simulator, as it simulates a system T , race to

grow paths to those points, with the first path to arrive causing a tile type specific to that

path to be placed. The fact that there are multiple assembly sequences, each growing a
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different path first, causes nondeterminism in the types of tiles placed in these locations.

The use of such locations is so fundamental to that universal simulator’s design, allowing

it to continue growth of portions of the assembly without having to rely on future paths

which may or may not ever arrive, that even when it is simulating directed aTAM systems,

which are those that have exactly one terminal assembly and only one possible tile type in

any location regardless of the assembly sequence, the simulator itself must be undirected.

It has remained unknown whether or not such nondeterminism is fundamentally required

by a universal simulator, and in Theorem 1 we prove that it is. That is, we prove that the

class containing all directed aTAM systems is not IU, meaning that there exists no tile set

U such that, given an arbitrary directed aTAM system, U can be configured to create an

aTAM system which simulates it while itself being directed. Stated another way, it means

that any universal simulator for the aTAM must be more nondeterministic than some of

the systems which it simulates.

While our main result presents key insights into the properties required of aTAM and

other tile-based simulators, and shows how nondeterminism with respect to the selection

of assembly sequences can force nondeterminism with respect to assemblies produced by

any universal simulator, other key contributions of this paper include the development

of several new system design techniques and tools useful in proving properties about the

computational resources available to be harnessed by embedded algorithms, which them-

selves provide additional insights into the computations possible using static combinations

of matter filling non-reusable space. More specifically, we make use of computational com-

plexity results which combine extremely tight worst-case and best-case space complexity

bounds for decidable languages [33], as well as novel techniques for controlling the “input

bandwidth” and geometries of carefully designed subassemblies which perform complex

computations that are effectively hidden from each other. These designs are likely to be

useful in further tile-based self-assembly results, especially impossibility results. Further-

more, we develop several important and potentially very useful tools which can be used to
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characterize properties of tile assembly systems which are simulating others, e.g. Lemma 9

which proves that the space complexity of computations which can be performed by a sys-

tem simulating a type of system known as a zig-zag system is asymptotically no greater

than that of the computations which can be performed by the original system, despite the

scale factor allowed the simulator.

Section 3.2 provides a set of preliminary definitions used throughout the paper, and the

following section a formal statement of our main result. Next are two sections dedicated to

a high-level overview of the proof, with sections including the full technical details follow-

ing.

3.2 Preliminaries

In this section we define what it means for one tile assembly system to simulate another,

and the notion of intrinsic universality.

3.2.1 Simulation

To state our main results, we must formally define what it means for one TAS to “simu-

late” another. Our definitions come from [29]. Intuitively, simulation of a system T by a

system S requires that there is some scale factor m ∈ Z+ such that m ×m squares of tiles

in S represent individual tiles in T , and there is a “representation function” capable of in-

specting assemblies in S and mapping them to assemblies in T .

From this point on, let T be a tile set, and let m ∈ Z+. An m-block supertile over T is

a partial function α : Z2
m 99K T , where Zm = {0, 1, . . . ,m − 1}. Let BT

m be the set of all

m-block supertiles over T . The m-block with no domain is said to be empty. For a general

assembly α : Z2 99K T and (x0, x1) ∈ Z2, define αmx0,x1 to be the m-block supertile defined

by αmx0,x1(i0, i1) = α(mx0 + i0,mx1 + i1) for 0 ≤ i0, i1 < m. For some tile set S, a partial

function R : BS
m 99K T is said to be a valid m-block supertile representation from S to T if

for any α, β ∈ BS
m such that α v β and α ∈ dom R, then R(α) = R(β).
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For a given valid m-block supertile representation function R from tile set S to tile set

T , define the assembly representation function1 R∗ : AS → AT such that R∗(α′) = α if

and only if α(x0, x1) = R
(
α′mx0,x1

)
for all (x0, x1) ∈ Z2. For an assembly α′ ∈ AS such that

R(α′) = α, α′ is said to map cleanly to α ∈ AT under R∗ if for all non empty blocks α′mx0,x1 ,

(x0, x1) + (u0, u1) ∈ dom α for some u0, u1 ∈ U2 such that u20 + u21 ≤ 1, or if α′ has at most

one non-empty m-block αm0,0.

In other words, α′ may have tiles on supertile blocks representing empty space in α,

but only if that position is adjacent to a tile in α. We call such growth “around the edges”

of α′ fuzz and thus restrict it to be adjacent to only valid supertiles, but not diagonally

adjacent (i.e. we do not permit diagonal fuzz ).

In the following definitions, let T = (T, σT , τT ) be a TAS, let S = (S, σS, τS) be a TAS,

and let R be an m-block representation function R : BS
m → T .

Definition. We say that S and T have equivalent productions (under R), and we write

S ⇔ T if the following conditions hold:

1. {R∗(α′)|α′ ∈ A[S]} = A[T ].

2. {R∗(α′)|α′ ∈ A�[S]} = A�[T ].

3. For all α′ ∈ A[S], α′ maps cleanly to R∗(α′).

Definition. We say that T follows S (under R), and we write T aR S if α′ →S β′, for

some α′, β′ ∈ A[S], implies that R∗(α′)→T R∗(β′).

Definition. We say that S models T (under R), and we write S |=R T , if for every α ∈

A[T ], there exists Π ⊂ A[S] where R∗(α′) = α for all α′ ∈ Π, such that, for every β ∈ A[T ]

where α →T β, (1) for every α′ ∈ Π there exists β′ ∈ A[S] where R∗(β′) = β and α′ →S β′,

and (2) for every α′′ ∈ A[S] where α′′ →S β′, β′ ∈ A[S], R∗(α′′) = α, and R∗(β′) = β, there

exists α′ ∈ Π such that α′ →S α′′.
1Note that R∗ is a total function since every assembly of S represents some assembly of T ; the func-

tions R and α are partial to allow undefined points to represent empty space.
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The previous definition essentially specifies that every time S simulates an assembly

α ∈ A[T ], there must be at least one valid growth path in S for each of the possible next

steps that T could make from α which results in an assembly in S that maps to that next

step.

Definition. We say that S simulates T (under R) if S ⇔R T (equivalent productions),

T aR S and S |=R T (equivalent dynamics).

3.2.2 Intrinsic universality

Now that we have a formal definition of what it means for one tile system to simulate an-

other, we can proceed to formally define the concept of intrinsic universality, i.e., when

there is one general-purpose tile set that can be appropriately programmed to simulate any

other tile system from a specified class of tile systems.

Let REPR denote the set of all supertile representation functions (i.e., m-block supertile

representation functions for some m ∈ Z+). Define C to be a class of tile assembly systems,

and let U be a tile set. Note that each element of C, REPR, and AU<∞ is a finite object,

hence encoding and decoding of simulated and simulator assemblies can be represented in a

suitable format for computation in some formal system such as Turing machines.

Definition. We say U is intrinsically universal for C at temperature τ ′ ∈ Z+ if there

are computable functions R : C → REPR and S : C → AU<∞ such that, for each

T = (T, σ, τ) ∈ C, there is a constant m ∈ N such that, letting R = R(T ), σT = S(T ), and

UT = (U, σT , τ
′), UT simulates T at scale m and using supertile representation function R.

That is, R(T ) outputs a representation function that interprets assemblies of UT as

assemblies of T , and S(T ) outputs the seed assembly used to program tiles from U to rep-

resent the seed assembly of T .

Definition. We say that U is intrinsically universal for C if it is intrinsically universal for

C at some temperature τ ′ ∈ Z+.
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Definition. We say that C is intrinsically universal if there exists some U that is intrinsi-

cally universal for C and for every T ∈ C and UT which simulates it, UT ∈ C.

3.3 The directed aTAM is not intrinsically universal

Let D represent the class of all tile assembly systems within the aTAM which are directed.

Theorem 1. D is not intrinsically universal.

Theorem 1 states that there exists no aTAM tile set U such that, for any directed

aTAM tile assembly system D ∈ D, where D = (T, σ, τ), there exists a directed aTAM

system UD ∈ D, where UD = (U, σD, τ
′), scale factor m ∈ N, and representation function

R : BU
m → T , such that UD simulates D under m-block representation function R at scale

factor m. Essentially, there exists no “universal” tile set such that for any directed aTAM

system, that tile set can be configured in a simulating system which simulates the original

and is itself directed too.

Our proof of Theorem 1 will be by contradiction. Therefore, assume that such a uni-

versal tile set U , which can be used to simulate any directed system while using a directed

system, exists. Given that U , we define an aTAM system T = (T, σ, 2) which is directed

and forms an infinite terminal assembly, explain the growth of T , and verify that it is di-

rected. We provide a high-level overview of T in Section 3.4. We then show why there ex-

ists no directed aTAM system S = (U, σT , τ
′) which simulates T . Section 3.5 contains a

very high-level overview of that proof. Full details of T can be found in Section 3.6, and

for the impossibility proof in Section 3.7.

3.4 Overview of the directed aTAM system T

At the highest level, T self-assembles an infinite structure, starting from a single seed tile

placed at the origin, and growing from left to right. In well-defined intervals, as the assem-

bly grows eastward it initiates upward growths, an infinite series of sets of three “modules”
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which are subassemblies able to grow almost entirely independently of each other once

the main horizontal growing structure has placed the tiles which serve as the “input” for

the growth of each. The aTAM is computationally universal [39], and in fact it is quite

straightforward to design a tile assembly system which simulates the computation of an

arbitrary Turing machine M (e.g. [32, 26]) by growing rows of tiles, one above the other,

where each row represents the full configuration of M at a given time step (i.e. the tape

contents, read/write head location, and state) in the values of the glues encoded on their

north sides, and the row immediately above it represents the full configuration of M at the

next time step (by designing the tile types appropriately so that the only tiles which can

attach above a given row ensure that the new northern glue above a position which just

had the read/write head encodes the value that would have been output given the state

of M and the cell’s previous value, and depending on the direction the head would have

moved, either the tile representing the cell to the left or write would have a glue encoding

the new state of M and the current value of that cell). To provide a logically infinite tape,

the tiles can be designed to grow rows “on demand” by extending a row by one tile each

time the simulated read/write head attempts to move past the end of the currently repre-

sented row.

The three modules which grow upward are logically grouped so that there is one of each

type in a set. These three modules are designed so that they simulate three computations

which require asymptotically differing space resources. As each set is initiated with inputs

of increasing values, and as the assembly grows infinitely to the right, those space require-

ments ensure that the smallest module cannot perform the computations of the larger two,

and the mid-sized module cannot perform the computations of the largest. The computa-

tions carried out by each set of grouped modules as well as the geometries to which they

are each constrained are carefully designed such that two of the modules are necessarily

completely “ignorant” of the eventual outputs of the others. However, these two modules

are designed so that after performing their computations, they grow assemblies represent-
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ing bit strings corresponding to the outputs of their computations in locations across a one

tile wide gap from each other, which we call the bitAlley. In locations where output bits

of the two computations match, tiles attach between tiles for those bit positions. The third

module independently computes the results of the computations of both other modules and

if and only if there will be no matching bits between them, it grows an assembly which is

a single tile wide path down through the bitAlley (thus it is guaranteed not to crash into

any tiles in the bitAlley, regardless of the ordering of tile attachments). As the overall

assembly grows further right, the inputs to the modules increase and the computations

simulated by the modules require more resources and the bitAlleys become arbitrarily

long. We are able to first show that T is directed, and then that no simulating system can

be built using the tiles of a universal simulating tile set U and be itself directed. This is

because any such directed simulator is forced by the dynamics of correct simulation, the

mutual obfuscation of computations across modules, and geometric constraints, to effec-

tively create bottlenecks which do not allow enough information to be transmitted to the

growing assembly for correct growth and therefore simulation. The intuition is that the

simulator has to make “guesses” about when it may need to place tiles which cooperate

across a bitAlley (i.e. glues from the tiles on both sides of the gap are required to allow

the attachment of one between them) which, due to the fact that space cannot be reused

in the aTAM, doom it to failure. Furthermore, these guesses are required not by nondeter-

minism about which tiles can be placed in locations by T , since after all T is directed, but

rather due to the ordering of arrival of tiles - the particular assembly sequence which may

be followed.

3.4.1 Overview of modules of T

Figure 3.1 shows a schematic depiction of a portion of the terminal assembly of T . We

now give a very high-level description of each of the main modules, and full details can be

found in Section 3.6.

Beginning from the seed, the module which grows horizontally and initiates growth of
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Figure 3.1: A high-level schematic depiction of a portion of the infinite assembly produced
by a directed aTAM system T which cannot be simulated by any directed universal simu-
lator.

sets of modules to its north is called the planter. The planter grows in a zig-zag, up

and down manner, growing one column at a time. Essentially, its job is to manage a set

of nested counters, whose values are used to (1) determine the correct spacing between the

modules to the planter’s north, and (2) serve as input to those modules. The outermost

of the nested counters counts 0 < i < ∞, with each i being what we call an iteration.

For each value of i that it counts, it holds that counter constant while it increments an

inner counter from 0 to (approximately) 2i. For each value of j it initiates the growth of

what we call a subiteration. See Figure 3.2 for a high-level overview of one type of subit-

eration. For each subiteration, the planter counts out a sequence of spacing columns (i.e.

columns whose sole purpose is to put horizontal space between modules) while also com-

puting the value log(i) and then rotating the values of the bits representing log(i) upward

so that they are encoded in a row of glues on the north sides of the northern tiles of the

planter2. From these, a left module begins growth. This module performs a stacked up

series of i Turing machine simulations on progressively increasing input values, with each

simulation outputting a 0 (for a rejecting computation) or a 1 (accepting). At the top of

the stack of computations, the string of output bits is rotated to the right and then grown

downward to the right of the left module. Once that growth reaches a specially marked

location, the values of those bits are rotated to the right where they are presented as the

eastern glues of the tiles forming the bitAlley. (See Figure 3.3 for a depiction of a south-

ern portion of a bitAlley.)

2Note that throughout this paper, log means log2, and we use the shorthand log(i) to mean dlog(i)e.
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Figure 3.2: A high-level schematic depiction of one possible ordering of growth of the mod-
ules of an empty subiteration. (Bottom) The planter lays out the inputs for the modules
at the necessary spacings to prevent them from colliding, (Second) The left, right, and
top modules begin growth, (Top) Once the top completes it initiates the growth of the arm

which grows down through the bitAlley. Note that an arm only grows in the bitAlley of
an empty subiteration, unlike the bitAlley in Figure 3.3 which shows tiles cooperatively
binding across the bitAlley of a non-empty subiteration. Also, empty subiterations occur
exponentially more rarely than non-empty ones.
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After growing a few spacing columns past the initiation point of the left module, the

planter rotates the value of j to its north side to initiate growth of a right module. This

module simply rotates the values of the bits of j to the left so they can be presented across

the bitAlley from the bits output by the left. Note that as the iteration number i in-

creases, so does the number of bits presented on each side of the bitAlley, as the left

performs (approximately) i Turing machine simulations, and right actually receives the

value of j in binary padded with 0’s as necessary to be the same length.

The final module to be initiated by the planter in each subiteration is the top mod-

ule. This module receives as input both the values log(i) and j. It first performs the same

i simulations that the left performs, generating the same output bits. It then compares

those bits to the bits of j to determine if there are any locations where the bits are the

same. If there are, then in the bitAlley there will be tiles which attach between them

across the gap in those locations, and the top module halts its growth (in this subiter-

ation). It is guaranteed that in exactly one subiteration of each iteration that there will

be no matching bits, since each subiteration performs the same left computations on the

same input and there is a unique subiteration for every possible bit string of length i, ex-

actly one of which can be the complement of left’s output on that input. In this special

subiteration of the iteration, which we call the empty subiteration (because the bitAlley

will be empty of tiles cooperating across the gap), the top performs a new set of compu-

tations to determine which of a large number (relative to the number of tile types in the

claimed universal simulator U) of arm modules to grow. The arm module grows over to a

position directly above the bitAlley, then grows a single tile wide column of tiles down

through the bitAlley until it crashes into the planter, with the specific type of tile used

for the arm determined by the final computations performed by the top module. This com-

pletes the growth of a subiteration, and the growth of subiterations and iterations occurs

for infinite numbers of each.
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Figure 3.3: Example bitAlley portion between left and right modules of a non-empty
subiteration.

3.4.2 Directedness of T

The system T is directed because there are no locations where tiles of multiple types might

be placed during different assembly sequences, and this is ensured by carefully dictating

the growth of each module (all grow in zig-zag manners), and the amount of space required

for each is carefully computed and accounted for by the planter so none of them can col-

lide. Finally, the arm will only grow in empty subiterations, which can be assured by the

top module performing the computations of left and comparing the output bits to j, so it

will never collide with tiles in the bitAlley. Thus, despite the fact that there are an infi-

nite number of unique assembly sequences in T , they all result in the exact same terminal

assembly in the limit.
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3.5 Overview of impossibility of simulation

In this section we provide a high-level overview of the proof that S does not simulate T .

More details can be found in Section 3.7.

The general idea behind the proof that S cannot simulate T is based around creating

a situation in T where there is a one tile wide gap between two tiles such that, depending

on their types, they may or may not cooperate to place a tile in between them (i.e. a tile

may bind using one glue from each of them). However, if and only if all of these tiles in

the bitAlley do not cooperate to place a tile between them, another assembly will grow

between them without binding to either of their glues. In T , the gap is exactly one tile

wide and so is the assembly that may grow down through it. Since we are proving by con-

tradiction, assume that such an S exists and that it has tile set U with size |U | = t. We

design T such that the number of unique arm module tiles (which are the ones that grow

between the two tiles if they do not cooperate) is exponentially larger than t. This forces

the simulation scale factor m used by S to be larger than 1 because any macrotile created

from tiles in U must have enough tiles to uniquely identify any of the tile types in T . Then

we also note that geometrically, the only way to get two tiles to cooperate to place a tile

in between them is for them to grow to positions with less than or equal to a single tile

wide gap between them, which is not enough room for the macrotile of an arm module,

with m > 1, to pass through if necessary. While the general idea seems simple, first, care

must be taken in designing T so that an arm module will be grown if and only if the tiles

will not cooperate across the gap, with no chance for a disagreement and collision since

T must be directed, so the portion of the assembly which initiates the growth of the arm

must be able to compute the tiles which will appear across the gap from each other. Then,

it must be shown that S is forced to grow all the way to a single tile wide gap even when

cooperation won’t be necessary, thus blocking the arm. The main difficulties arise with the

realization that the simulating system could attempt to compute in advance if coopera-

tion will occur and, if so, grow to the one tile wide gap which allows for cooperation, but if
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not, stop growth short of that to leave enough room for the arm module to grow through.

The resulting complexity of T arises from the need to create a system which is “confus-

ing” enough for the simulator that the modules growing the macrotiles representing the

tiles which may cooperate across the gap are unable to pre-compute the answer to whether

or not cooperation will be necessary. Essentially, the fact that S cannot both cooperate

and/or grow a full tile-representing assembly through a single tile wide gap dooms it to

failure, but extensive machinery is required to force the situation.

A key tool in the proof is that in an arbitrary subiteration j of an arbitrary iteration i,

the output of the left module is impossible to compute from within either the planter or

the right modules, and the output of the right is impossible to compute from within the

left. The reason for this is that (1) the Turing machines being simulated within the left

modules are deciding languages which cannot be recognized in infinitely often best-case

space complexity [33] which is greater than the space resources available to the planter

and right modules, and thus the outputs of left modules cannot be computed by them,

and (2) the input j passed to the right module is asymptotically much greater in size

than the amount of information which can be input to the left module through the only

log(log(i)) macrotiles allowed in the bottom row of the left module to encode the value

log(i), making it unable to get asymptotically more than a log size chunk of the right

module’s input. It is also important to note the languages being decided within the left

are recognized in almost everywhere worst case space complexity which is accounted for

by the spacing columns of the planter, guaranteeing that for all but a finite number of

computations, the left will be able to successfully complete its computations. It will pre-

maturely abort any computations which attempt to run beyond those space bounds, but

since there are guaranteed to be only a finite number of those, the goals of the construc-

tion and correctness of the proof aren’t compromised. It is important that these essentially

arbitrarily tight bounds on the space complexities of languages is shown to be possible by

Theorem 4.1 of [33], which allows for the computations embedded within the modules to
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be designed with great precision. In a similar manner, the computations performed by the

upper portion of the top module require space complexity greater that that available to

either the planter or left of the same subiteration. We note that Lemma 9 is instrumen-

tal in proving the above facts, and is also an important tool which can be used in future

simulation-based results in the aTAM, as it proves that an assembly performing a simula-

tion of a system growing in a zig-zag manner, despite its arbitrarily large (but constant)

scale factor, has asymptotically no greater space resources available than the orignal sys-

tem. The technical tools we have developed for this proof, as well as the incorporation of

results from complexity theory allowing for precisely defined languages in terms of space

complexity, provide a host of new construction and proof techniques which we feel will be

useful for a variety of future results.

To prevent the simulator from being seeded with answers to the necessary computa-

tions, the assembly of T must grow infinitely many iterations and subiterations. To pre-

vent other types of “cheating”, rather than having potential locations of cooperation across

a single gap between two tiles, the bitAlley becomes arbitrarily long, between an arbi-

trarily large set of pairs of tiles. To prove all of the necessary properties of the simulator S

requires many more details and the use of several additional technical lemmas which may

possibly be of independent interest and utility. Please see Section 3.7 and Section 3.8 for

full details.

3.6 Details of the directed system T

In this section, we provide details of the construction of T as well as explaining its growth

and verifying that T ∈ D, i.e. that T is directed.

3.6.1 Languages and Turing machines used

The decidable languages and the Turing machines which decide them and are simulated

within the left and top modules of T are defined as follows.

24



Let a = 22t where t = |U | is the size of the simulator’s tile set. Also, let s : {0, 1}n ×

N→ {0, 1}∗ be defined by s(x, n) = x · 0n where · represents concatenation. That is s

extends a string by adding n zeros to the end of the string.

Let LA ⊂ N be a decidable language such that LA can be decided in almost every-

where worst-case space complexity 2n and LA cannot be recognized in infinitely often

best-case space complexity (1/2)2n, i.e. for all but finitely many n, LA requires space

greater than (1/2)2n. Let A be a deterministic Turing machine which decides LA

within space 2n almost everywhere, i.e. for all but finitely many n. Note that such

an LA is guaranteed to exist by Theorem 4.1 of [33].

Let A+ be a Turing machine which, on input log(x) of length n, does the following.

For each 0 ≤ i < 2n, A+ simulates A(s(x, i)) and records a 0 if A rejects, and a 1

if it accepts. Furthermore, while A+ is performing any simulation of A(z), it bounds

the space used by the computation and if the machine attempts to use 2|z| + 1 unique

tape cells, it halts that simulation and records a 0 for it. Furthermore, it also bounds

the time used and if it attempts to use more than 22|z| time steps, it halts that simu-

lation and records a 0 for it. Once the full series of simulations of A have completed,

A+ halts with a binary sequence of length 2n on its tape, representing the outputs

of each of the 2n computations. Furthermore, A+ uses a one-way-infinite-to-the-left

tape.

Note that given input log(x) of length n, the maximum amount of space used by A+

will be used during its computation of A(2s(x,2
n)), which is bounded by A+ at 22|x|+1.

Furthermore, by the fact that LA can be decided in almost everywhere worst-case

space complexity 2n, and that for any constant c there exists some i′ such that for

all i > i′, 2i > ci′, then for all computations A(i) beyond those for a constant num-

ber of values, A(i) is guaranteed to halt without using space greater than 2|i| or more

than 22|i| time steps, and thus all computations of A on inputs greater than that will
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successfully complete without being halted by A+.

Let LB ⊂ N be a decidable language such that LB can be decided in almost every-

where worst-case space complexity 3n and LB cannot be recognized in infinitely often

best-case space complexity (1/2)3n, i.e. for all but finitely many n, LB requires space

greater than (1/2)3n. Let B be a deterministic Turing machine which decides LB

within space 3n almost everywhere, i.e. for all but finitely many n. Note that such

an LB is guaranteed to exist by Theorem 4.1 of [33].

Let R be a Turing machine which uses a one-way-infinite-to-the-right tape and takes

as input two binary strings, i and j both of length n, and performs the following

computations:

R first runs A+(log(i)) and compares the resulting i-bit string to j.

If those bit strings match on at least one bit, R halts.

Otherwise (i.e. when they differ on every bit), for 0 ≤ k < a − 1, R simu-

lates B(s(i, k)) and records a 0 if B rejects k, and a 1 if it accepts. Furthermore,

while R is performing any simulation of B(s(i, k)), it bounds the space used by

the computation and if B(k) attempts to use 32|i|+1 unique tape cells (i.e. space

equal to 32|i| + 1), it halts that simulation and records a 0 for it.

Once the full series of simulations of B have completed, R halts with a binary

sequence of length a on its tape, representing the outputs of each of the a com-

putations.

Note that given inputs i and j, the maximum amount of tape cells used by R

will be used during the computation of B(s(i, a)) which requires space 3(|i|+a−1)

for all but finitely many i, which is bounded by R at 3(2|i|).

Furthermore, by the facts that LB ∈ DSPACE(3n), and that for any constant c

there exists some i′ such that for all i > i′, i2 > ci, then for all computations

B(i) beyond those for a constant number of values, B(i) is guaranteed to halt
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without using space greater than 32|i|, and thus all computations of B on inputs

greater than that will successfully complete without being halted by R.

Let T = (T, σ, 2) be the directed aTAM system which self-assembles the infinite shape

sketched in Figure 3.1. We will discuss the assembly it produces in a modular way. The

seed σ consists of a single tile placed at the origin. From the east side of the seed, the

“planter” module forms.

3.6.2 planter

The planter module does the following (and is conceptually somewhat similar to the

“planter” module discussed in Section 4.5 of [26]). It is in general a log-height binary

counter (i.e. a binary counter which represents consecutive numbers by bit strings in con-

secutive columns, and each column having height equivalent to the number of bits in the

number being represented by the counter) which enumerates the positive integers, count-

ing from 1 to ∞. For each positive integer i ∈ Z+, it initiates the growth of an iteration,

which consists of 2i subiterations, each of which initiates growth of a set of modules which

grow from the north side of the planter. The function of the planter is to correctly space

out those modules by putting them at well-defined locations, as well as to provide input to

each via north-facing glues of rows of tiles which initiate the growth of each module.

To do this, the planter actually contains a series of embedded counters, with the

counter for the iterations, i, being the “outer” counter. For each value of i, before the

planter increments i again, it begins a nested counter j which it iterates over the values

0 ≤ j < 22log(i) = 2i3. (During the columns where the value of i is not incremented, its bit

values are simply passed forward, i.e. to the right, unchanged.) For each value of j it will

initiate growth of a subiteration by incorporating additional counters used to guarantee

correct spacing of modules. Therefore, there are also counters nested within each subiter-

3Here and throughout the paper, we will use the shorthand log(x) to mean dlog(x)e and also use the
shorthand x = 2log(x) despite the fact that x ≤ 2dlog(x)e, as it will not impact the correctness of our
arguments.
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ation j. The first of these is a counter which counts from 0 to 22i, by first computing 22i

(simply by starting from the binary string 1 and while counting from 0 to i adds another

bit position for each count, e.g. 10, 100, etc.), and then starting a counter at 0 which in-

crements each column while passing the value 22i through to the right and checking each

counted value until it matches 22i at which point it halts. The horizontal distance grown

by that counter is used to create enough space for the next module whose growth will be

initiated on the north side of the planter at this point.

While continuing to grow to the east, the planter now computes the value log(i)

(by simply counting the length of the binary representation of i) and rotates a copy of

the value log(i), whose length is log(log(i)), northward so that after growing another

log(log(i)) columns, the binary value of log(i) is represented by the north-facing glues of

log(log(i)) tiles. This binary representation of log(i) will serve as the initiation point for

the growth of a left module, to be discussed later. In addition the planter exposes a τ

strength north-facing glue two tiles to the west of the beginning of the north-facing glues

which represent the binary value of log(i) and also exposes a τ north-facing glue two tiles

to the east of the end of the glues which represent the binary value of log(i). These two

glues allow for the growth of two tiles which attach via north and south glues which we call

a bumper. Also, in locations not specifically mentioned, the northern glues of the north-

ernmost tiles of the planter are . The planter now grows an additional 2i + log(i) + 11

columns to the right, at which point it rotates a copy of the binary value of j to the north.

This binary representation of j will serve as the initiation location for a right module,

also to be discussed below. Next, the planter grows another 7 spacing columns to the

right, and then rotates copies of the binary representations of both i and j to the north,

so that the value i,j can serve as the initiation for a top module. Similar to the initiation

point for the left module, we place τ strength glues around the initiation points of the

right and top initiation point which allow for the growth of bumpers.

The last bit of growth for the planter in a subiteration is to grow the spacing rows
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which are necessary for the top module (since for its growth above the planter it will

grow both upward and to the right). For this, in a manner analogous to the way it grew

the 22i spacing rows for the left module, it now grows 32i spacing rows. At this point, the

planter’s growth in relation to the jth subiteration of the ith iteration is complete. It now

increments the value of j (assuming it is < 2i, or specifically < 22log(i)), and grows the nec-

essary columns for the next subiteration, or, if j now equals 2i, it resets j to 0 and incre-

ments the value of i to begin a new iteration. This occurs for infinitely many iterations.

The important features of the planter are that (1) it initiates the appropriate growth

to allow the modules of each subiteration to grow independently of the planter once it has

written the necessary input values for those modules, (2) that in between the inputs for

the modules it creates a necessary amount of spacing columns to ensure that no modules

will collide with each other due to the space complexities of the languages whose accept-

ing Turing machines are being simulated by each (to be explained below), (3) all growth is

performed in an up and down zig-zag manner, with each column completely growing before

the column to its right begins growth either at the top or bottom of the column (depend-

ing on whether the column is zigging or zagging), and (4) the number of tiles used in each

column, i.e. the height of the planter, is never more than the minimum needed for each

position to represent a single bit of each counter value being propagated through. Since

the largest value of any such counter is 32i, that means that the maximum height of the

counter during any iteration i is log(32i) = O(2i). See Figure 3.2 for a sketch of the forma-

tion of an iteration.

3.6.3 left

For all values i, the left module receives the input log(i), whose width is log(log(i)). The

left module performs a simulation of A+(log(i)) by growing a zig-zag Turing machine

which begins with a tape whose width is the width of its input plus one, with the extra

cell representing a specially marked blank tape cell denoting the current end of the tape.

When, and only when, A+ tries to access the leftmost tape cell, that cell is interpreted as
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a regular blank and the end marker is moved one position to the left to a tile which grows

that column one position to the left. In this way, the simulation of A+ uses rows whose

width are the same as the number of tape cells used by A+ + 1. Figure 3.2 shows how the

system T simulates the computations that compose A+. The system simulates the com-

putation A+ by passing each computation A(j) which composes A+ three pieces of infor-

mation via glues exposed on the north of the previous computation A(j − 1): 1) the input

to the machine A(j), 2) the outputs of the previous computations A(k) for all k < j, and

3) the value 2log(i)+1. In this way, the machine is able to simulate the computations which

compose A+, and halt on the last machine A(i), and then write the outputs of all the ma-

chines along the north border of the machine A(i) as shown in Figure 3.2. In addition, we

embed a counter in the left module which counts the number of total time steps used by

all machines. Since each computation in A∗ can use at most 22i time steps, the total time

steps used by all machines is at most i ∗ 22i . Consequently, to store the number of time

steps used, space log(i) + 2i is needed to store the values of the counter. Note that we can

embed this in the same cells which are used in the computation of A+.

Once A+(log(i)) halts, with a bit string of length i (i.e. 2log(i)) and the total number of

time steps ts output to its north, those output bits are rotated up and to the right, three

columns to the right beyond the right side of the computations below, and then a log(i) +

2i-width counter counts down starting from the value ts until it is a distance 8 × 2log(i) + 4

above the planter at which point the output bits of A+(log(i)) are rotated to the right, one

at a time and with 7 tiles vertically between each. Figure 3.3 shows an example of the first

two bits output by the left module. Notice that between each bit that is output there are

seven tiles and a tile which is a distance of three tiles away from each output bit grows two

tiles via E −W glue attachment which we call a bumper.

Recall that for almost all x, A+(x) has worst case space complexity 22|x|. Consequently,

this means that for almost all iterations i the left module will need at most space 22i.

Note that the planter was designed to space the modules so that in iteration i the left
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module has 22i space available for use. Consequently, for almost all i, all of the computa-

tions performed in the left module will complete without prematurely halting.

3.6.4 right

The right module receives the input j and simply rotates those bits upward and to the

left, and also spaces them out with 7 tiles in between each bit, along with 7 before the first

bit, so that they are output on the west side of the right module across 7i rows (since j

consists of i bits). An example of the first two bits output by the right module can be

seen in Figure 3.3.

3.6.5 top

As soon as the planter completes the formation of the portion of its northern row encod-

ing the input for the top module, namely the encoding of i and j near the eastern side of

a subiteration, the top module is able to begin simulating the Turing machine R which is

defined above. Recall that R first runs A+(log(i)). As shown in Figure 3.2 the top module

first simulates the A+ computation on input log(i) in the same manner as the left mod-

ule with the exception that it simulates a TM which computes the A+ computation using

a one-way-infinite-to-the-right tape (rather than to the left). As the top module simulates

A+ on input i, it also propagates the value of j via glues.

Next, the Turing machine R compares the output of A+(i) to the value j, so we design

the top module so that it mimics this behavior. Once top finishes it’s simulation of A+ on

input i, it then compares the output of this computation to the value j. If they match on

any bits, the growth of top terminates. However, if they differ in every single position, the

top module simulates the series of computations B(s(i, k)) for 0 ≤ k < |i| in a manner

similar to it’s simulation of the A+ computation. After the top completes the simulation

of the last machine B(s(i, k)), it outputs the a-bit string which is the output of the series

of computations to its north. This initiates the growth of the arm module as shown in Fig-

ure 3.2.
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Recall that for almost all x, B(s(x, a)) has worst case space complexity 3|x|+a. Conse-

quently, this means that for almost all iterations i the top module will need at most space

32|i|. Note that the planter was designed to space the modules so that in iteration i the

top module has 32|i| space available for use. Consequently, for almost all i, all of the com-

putations performed in the top module will complete.

3.6.6 arm

If top initiates the growth of the arm module, there are a possible 2a different binary val-

ues written as output by the top computations, and the function of the first row of the arm

is to grow to the west across those output bits so that when that completes it has selected

one of 2a possible types of arms to grow. The arm module is essentially first a horizontal

counter which grows leftward 7+j+4 (to pass over the spacing columns between the right

and top modules, the right module, and end up directly over the center position of the bit

alley between the left and right modules. Once the arm reaches the end of its leftward

growth, it then initiates a downward growing column from its leftmost column. This down-

ward growing column consists of a single repeating tile type so that the column eventually

crashes into the planter between the left and right modules of the subiteration. The

tile type of the column is determined by the value written by the top module, and can be

any of 2a types.

3.6.7 bitAlley

Figure 3.3 shows a portion of possible assembly growth between the left and right mod-

ules of a subiteration, say the jth of iteration i. As noted in the above section, the counter

which grows from the top of left causes the growth of tiles as shown in Figure 3.3 which

depends on the output of A+(i). If the bit is a 0, the rightmost of those tiles is of type 0L,

else it’s of type 1L.

The height of right is 8i + 4, and spaced out similarly to the bits on the east side of

the left module, it has the bits of j presented on its west side. Also similarly to the oppo-
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site side, from each bit a pair of tiles attach with the westernmost being of type 0R or 1R,

depending on each bit value of j.

Since the bit strings exposed by left and right are aligned with each other, at each

position where a bit on the left matches one on the right, a tile cooperatively binds to the

two tiles, either 0L and 0R or 1L and 1R. Without loss of generality, assume such a match-

ing bit position has value 0. Then, between the 0L and 0R which are at the same height

and separated horizontally by a single space, a tile of type 0M binds “across the gap.” Fi-

nally, a tile of type 0B attaches to the south of the 0M tile and growth related to this bit is

complete. Such attachments of 0M , 0B, 1M , and 1B tiles occur at each position where bits

match across left and right, and at each position where they differ, the final tile attach-

ments are the 0L, 0R, 1L, and 1R tiles.

Finally, recall that exactly in subiterations where the bits in every position of left

and right differ, an arm grows, which results in a single-tile-wide column of tiles grow-

ing southward from the arm, between the 0L, 0R, 1L, and 1R tiles of the left and right

modules, and crashing into the planter. Since this occurs if and only if every bit position

differs, there is no possibility of a cooperatively placed 0M or 1M tile blocking the growth

of this column.

3.6.8 Summary of computations

Module Input Computation Space complexity Also able to compute
planter none count, log(i) O(i) none - insufficient space

top j,i A+(log(i)),B(log(i)) O(3i) A+(log(i)), R(i)
left log(i) A+(log(i)) O(2i) none - insufficient input
right j none O(i) none - insufficient space

Table 3.1: The computations performed by each module in subiteration i,j.

3.6.9 The system T is directed

Since the interesting components that compose our system are based off zig-zag systems

which are clearly directed, the only potential sources of nondeterminism are 1) the modules
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which perform computations using too much computational resources and crashing into

each other, and 2) the arm growing from the top module causing a race condition to be

created between the arm and a tile that is placed cooperatively in the bit-alley. The first

situation is prevented from arising by the counters embedded in the left and top modules

and the appropriate spacing provided by the planter. The second scenario cannot arise

due to the fact that the top grows an arm if and only if the output of A+(log(i)) disagrees

on all bits with j which means that no tile can be cooperatively placed in the bitAlley.

Thus, T is a directed aTAM system.

3.7 Details of impossibility of simulation

The proof that S does not simulate T consists of two main portions, each geared toward

showing that it is impossible for modules within a subiteration to receive and utilize any

information about the output of the complex computations occurring in the left or top

modules prior to those computations occurring, or outside of the modules performing those

computations. Such information could potentially have allowed S to remain directed while

accurately simulating T , but instead the lack of such prior information and the chance to

effectively utilize it leads to a contradiction that S, and thus U , exists.

We first show that the probes that the left and right modules grow on the sides of

the bitAlley of each subiteration must be grown, in at least an infinite number of itera-

tions, so that there is nothing unique about those in the empty subiteration. Intuitively,

this means that at least infinitely often the probes grown in subiterations must be ignorant

of whether they will need to cooperate across the bitAlley and therefore “attempt” to

grow to positions that leave no more than a single tile wide gap in the bitAlley to allow

for correct simulation in situations where cooperation will be required across the bitAlley.

The second main point shows that, given the infinite set of iterations just proven to

exist, it must be the case that the bottlenecks created across the bitAlley are either not

sufficient to allow the necessary arm modules to grow or conversely for the necessary co-
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operation to occur across the bitAlley. Part of this relies on showing that the only way

the necessary variety of possible arm modules could grow is for the probes which partially

block the bitAlley to encode information about at least which subset of possible arm

modules the actual arm module to be grown will be selected from, in advance of the top

module completing its computations which determine the arm type. This would allow the

probe tiles to assist in the formation of the arm modules, but is shown to be impossible.

The proofs of each of these portions rely upon the fact that if either of those types of

information were provided in advance to the growing modules, then it would be possible

to construct Turing machines which simulate the assembly of S, inspect the subassem-

blies thus created, and utilize that information to solve instances of computations which

are known to require more space resources than such Turing machines would be using, pro-

viding the necessary contradictions. Note the tight reliance upon the computational com-

plexities of the corresponding decidable languages and the ability to use the tools we have

developed to quantify and bound the computational resources available to the subassem-

blies performing the computations. Many of these tools can be found as technical lemmas,

with associated proofs, in Section 3.8.

3.7.1 Empty subiterations cannot be uniquely marked in advance

In this section, we show that it is impossible for the left and right modules of empty

subiterations to “cheat” by not growing valid complementary pairs of probes, and we show

how that prevents S from successfully simulating T . We first define some useful terms and

show some properties which must be true of the assembly produced by S.

Definition. Given a subassembly α @ αU which represents the single tile wide verti-

cal portion of an arm in T , let αr @ α be the largest subassembly of α such that, be-

low some initial subassembly α0 @ α which occurs at the top of α, α consists only of re-

peated, nonoverlapping copies of αr, one immediately below the other, and the topmost

immediately below α0. Note that the bottommost copy of αr may be truncated, and if
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there is no such repeating portion of α then dom (αr) = ∅. We say that the shape of α

is dom (α0) ∪ dom (α′r) where α′r @ α is the topmost copy of αr.

Claim 1. Let S be the set of all unique shapes of arms in αU . Then narms = |S| depends

only upon the number of tile types in U , t = |U |, and the scale factor of the simulation, m.

Proof. To prove Claim 1, we utilize Lemma 5.10, the Closed rectangular window movie

lemma (CRWML), of [21]. Note that each arm is a single tile wide in T , and that in any

empty subiteration it is possible for the top and arm to grow before either the left or

right have even begun growth. In S it must be possible to simulate such an assembly se-

quence, and that means that during the growth of the macrotiles in S representing the arm

tiles of T in such an assembly, there must be no tiles beyond a single macrotile to either

their left or right sides (as those locations must map to empty space and therefore tiles

in those regions are considered fuzz, which is not allowed to extend further than a single

macrotile away from some macrotile which maps to a nonempty location). In such an as-

sembly, the maximum width of any horizontal cut across such an arm subassembly in S is

≤ 3m, or the width of 3 macrotiles. Let h = 2(3m!(4t)3m) be a constant to be explained

below. To characterize all possible arm shapes, we iterate over every possible configura-

tion of tiles from U which form any subset of a 3m-tile-wide line, and for each simulate all

assembly sequences which place tiles only to the south of that line, until they reach a dis-

tance 2h or they produce an assembly to which no additional tiles can attach below that

configuration but which doesn’t reach a distance of 2h. (We don’t need to consider any

which grow above the line because if that growth eventually influences the assembly below,

it must do so via a path containing a tile which crosses that line, and the configuration

consisting of the current configuration plus that tile will also be simulated.) We save the

shape s of the arm created by that configuration in S provided the following hold: (1) all

assemblies produced from all possible assembly sequences starting from that configuration

grew only within the 3 macrotile wide space directly below it, and all place the same tiles

at all locations, and (2) s is not already in S.
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A window movie (as defined in [21, 29]), is a set containing the locations, types, and

orderings of arrival of glues along a cut across an assembly. If we consider windows (i.e.

boxes which separate a grid graph into interior and exterior portions) whose top edges cut

directly across arm subassemblies and whose other edges do not pass through any portion

of an assembly, we note that the number of window movies is ≤ 3m!(4t)3m (hence our pre-

vious choice of h). If we inspect all arms whose shapes were saved into S, we first note that

the number which belong to arms which did not reach distance 2h cannot be larger than

the number of ways to tile the 3m × 2h region using only t tile types, which is a constant

dependent only upon t and m. We then inspect each whose arm did grow to a distance of

2h, and we note that by the pigeonhole principle, any subassembly representing an arm

which longer than h must have two windows w 6= w′ such that their window movies are the

same (i.e. the same glues arrive along those cuts in the same locations and orders). If we

let α and β of the CRWML both be such an arm assembly, and the windows be w and w′,

the CRWML tells us that the subassembly of the arm between the first and second identi-

cal window movie locations could grow again after the second, and this can be applied an

arbitrary number of times to show that that subassembly can be repeated indefinitely (un-

less blocked by some other subassembly). (This repeating subassembly corresponds to the

αr of the definition of the shape of an arm.) Because the number of window movies possi-

ble is determined only by t and m, so is the number of repeating subassemblies correspond-

ing to αr in the definition of the shape of an arm. Since the prefix α0 is also bounded by

height h, there are a fixed number of possible prefixes, again only dependent upon t and m,

so the total number of unique shapes is also bounded by a constant dependent only upon t

and m.

Definition. The set of probes which grow on the left side of the right module of each

subiteration can be compared with every arm shape to generate a subset of arm shapes

which would not be geometrically blocked by those probes. That is, assuming that the

macrotiles representing all probes have fully completed growth, those arms which (start-
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ing from a horizontal offset relative to those probes which would be the same as if they

had grown from a top module) can grow downward past the probes without any colli-

sions occurring, meaning that they would never be able to place a tile, in the absence of

the probes, which disagrees with a tile placed by a probe. We call these subsets of arms the

probe-dodgers of that probe set.

Definition. Given an assembly α ∈ A[S] containing the maximum number of tiles which

can be placed in subassembly ij (i.e. the jth subiteration of the ith iteration) without

growing above the southernmost row of macrotiles of left or any tiles of top, the sig-

nature of a subiteration is the combination of the full specification of the macrotiles rep-

resenting the fully grown bumpers to the left and right of the left module, plus the full

specification of the row of macrotiles below and between them, plus the full definition of

the probe-dodgers set of that subiteration.

A signature can be determined for a subiteration by growing the planter module to

the right beyond the right module, the full right module, and as many tiles as possible

between the bumpers surrounding the left module without growing above the first row

of macrotiles in the left module. This can be always be done because S must be able to

follow the dynamics of T , in which there are assembly sequences which do exactly this.

Lemma 1. For each iteration i of an infinite set of iterations, the empty subiteration ij of

that iteration must have a signature which is identical to that of another subiteration ik,

for j 6= k, of that iteration.

Proof. We will prove Lemma 1 by contradiction. Therefore, assume that for no more than

a constant number c of iterations do the iterations of S have empty subiterations which

have signatures identical to some other in their iteration. Thus, for each iteration i > c, the

empty subiteration has a signature unique among all others in its iteration.

By Lemma 3, we know that the full left module can grow from tiles which form on

paths only from its signature, since the locations of the signature would be analogous to
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γM of the Lemma, and this includes bumpers and it must be possible to grow left com-

pletely with or without the bumpers, thus any additional paths of tiles that could con-

tribute to the growth of the left would have to go through the bumpers and thus by grow-

ing the bumpers the paths which would have grown through them can be continued toward

the left module, allowing it to fully grow.

We now calculate the number of unique signatures in subiteration ij. To fully spec-

ify the path between the macrotiles representing the bumpers to the left and right of the

left module, we first note that that can consist of a maximum of log(log(i)) macrotiles

to represent the first row of the left module plus another constant number of macrotiles

to specify the remaining macrotiles on that path, for a total of O(log(log(i))) macrotiles.

The number of unique ways to fully specify the entire contents of O(log(log(i))) macrotiles

(which is greater than or equal to the number of ways to fully specify just the northern

row), is O(tm
2 log(log(i))) = O(logc(i)). Additionally, we note that narms is a constant inde-

pendent of i (by Lemma 1), and thus that is also true for the size of the power set of all

arm shapes, which represents the full set of possible probe-dodger sets. This means that

the number of unique probe-dodger sets is constant relative to i, and therefore adding in

specification of one of the constant number of probe-dodger set only allows for a constant

multiplier for the number of unique signatures, resulting in a total of O(logc(i)) possible

unique signatures for subiterations of iteration i.

Given the total of O(logc(i)) possibly unique signatures, we can apply Observation 1

where |E| = O(logc(i)) and |x| = log(log(i)) and note that it shows that F (n) ∈ Ω(2n).

However, to calculate the signatures of all subiterations of iteration i requires only that we

simulate the planter in such a way as to remember only the most recent two columns at

any given time, requiring a maximum space O(i) (i.e. bounded by its maximum height),

and also to record the signatures of the unique subiterations, requiring O(logc(i)2) < 2i.

However, this contradicts the F (n) of Observation 1, and therefore it must be the case that

for an infinite number of iterations, the empty subiterations of those iterations have sig-
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natures which are identical to those of at least one other subiteration in their respective

iterations.

The following lemma states that for the empty subiteration, the arm that assembles

between the macro bit-alley must have a “pinch point”.

Lemma 2. For i, j, k ∈ N and some iteration i, suppose that the empty subiteration ij

and a distinct subiteration i, k have identical signatures. Additionally, let armi,j denote the

arm that assembles in the macro bit-alley of subiteration i, j, and let Pk be the left probes

of leftUi,k and P ′k be the right probes of leftUi,k. Then, there exists subconfigurations Pj

and P ′j of armi,j such that Pj is congruent to Pk and P ′j is a congruent subconfiguration

of P ′k. Additionally, the subconfiguration C of armi,k corresponding to armi,k restricted to

dom (armi,k) \ (dom (Pk) ∪ dom (P ′k)) has the property that there exists a single tile tk in C

such that removing this tile from C partitions C − tk into two nonempty sets of tiles such

that no two tiles of these sets are adjacent.

Proof. First, by Lemma 3, the fact that the left computation of subiteration i, j and subit-

eration i, k have bumpers on the left and right side, and the assumption that these subiter-

ation have identical signature, it follows that Pj is congruent to Pk. Then, as both subiter-

ations have the same set of probe-dodgers and this set must be non-empty since the armi,j

must assemble in the i, j subiteration, it must be the case that P ′j is a congruent subconfig-

uration of P ′k.

Finally, by Lemma 4, it must be the case that the gap between Pk and P ′k in ik must

be single tile wide or less in order for the probes in Pk and P ′k to cooperatively place a

tile. Therefore, the subconfiguration C of armi,k corresponding to armi,k restricted to

dom (armi,k) \ (dom (Pk) ∪ dom (P ′k)) has the property that there exists a single tile tk

in C such that removing this tile from C partitions C − tk into two nonempty sets of tiles

such that no two tiles of these sets are adjacent.
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3.7.2 Turing machines simulating tile assembly systems

In this section we prove a couple of claims on the amount of space a Turing machine re-

quires to simulate a system which grows certain modules of the system T .

We call a tile an L tile if it is of type 0L or 1L. We call a tile an R tile if it is of type

0R or 1R. We define the bit-alley region of a subiteration i, j to be the points which lie

in between lefti,j and righti,j (that is, the points which lie on the same row as a tile

in lefti,j and righti,j) and have the same x-coordinates as points which lie between the

L and R tiles in subiteration i, j. We define the macro bit-alley of an iteration i, j to be

the macrotile equivalent of the bit-alley region. Let (x, y) be the bottom leftmost cor-

ner of a macrotile location which lies between an L and R macrotile. We call the region

R = {(x′, y′)|x − 2 ≤ x′ ≤ x + c + 2, y − 2 ≤ y′ ≤ y + c + 2} a probing region. Let

α′ ∈ A[T ]. We say that a module γ v α is not assembled in α′ if dom (γ) ∩ dom (α′) = ∅.

Now, let α′ ∈ A[U ]. Similarly, we say that a macro module γ ⊆ αU is not assembled in α′ if

the module is not assembled in the assembly R∗(α′).

Let T be TAS and let αA[T ]. We say that a subconfiguration γ′ v α grows from a

subconfiguration γ v α provided that there exists a path in the binding graph Gα from a

tile in γ to all tiles in γ′. Here, γ and γ′ are assumed to be connected. Also, we say that

γ and γ′ are a distance of at most 1 apart if there exist tiles t v γ and t′ v γ′ such that

the Manhattan distance between t and t′ in Gα is at most 1. Otherwise we say that the

distance between γ and γ′ is greater than 1.

Claim 2. Let i, j ∈ N. The subconfigurations grown in the macro bit-alley from leftUi,j

and rightUi,j can be output by a Turing machine M ′ which runs in space 22|i|.

In this proof we rely on a straight forward adaptation of Lemma 9. The straight for-

ward adaptation of the lemma we discuss holds because of the key insight in the proof of

Lemma 9 that in order for a Turing machine to simulate a system which is simulating a

zig-zag system, it only needs to “remember” a bounded number of tiles depending on the

scale factor of the simulation and the width of the system that is being simulated. This
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key insight allows a Turing machine to not only output the result of a computation that

takes place in the simulating system, but it also allows us to construct a Turing machine

which outputs the configurations contained in certain macrotile regions of the producible

assemblies of the simulating system.

Proof. Note that in T the planter grows in a zig-zag fashion. Consequently, it follows from

a straight forward adaptation of Lemma 9 that the configuration of the row of macrotiles

which compose the first rows of the leftUi,j and rightUi,j can be determined in space O(i2)

since the width of the counter in T is O(i2).

ji

right

A(1)

C(2i)

planter

left

A(i)

Figure 3.4: A depiction of a portion of the planter, lefti,j, and righti,j of the configura-
tions of the (i, j)-subiteration in T . The blue, red, light green, and dark green regions of
lefti,j correspond to various subassemblies of lefti,j. The dark green region is an i × i
block of tiles which can be determined in O(2i) space.

Figure 3.4 shows a portion of the planter, lefti,j, and righti,j. The configuration

lefti,j has been divided into five regions.

1. The blue region corresponds to the zig-zag assembly which computes A+(i),

2. the red region corresponds to the assembly which turns the i bits calculated by A+(i)

toward the counter,

3. the light green region corresponds to the zig-zag counter assembly which grows to-

ward the planter, counting to 22i before growing the probes of the left side of the

bit-alley, and
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4. the dark green region which corresponds to the subassembly containing the left por-

tion of the bit-alley.

Now consider the subconfiguration L in U which represents the subassembly corre-

sponding to the dark green region in Figure 3.4. A straightforward adaptation of the proof

of Lemma 9 shows that L can be determined in O(2i) space. This adaptation consists of

modifying the proof so that the glue sequence tables and the assemblies produced by the

procedures InitAssembly, InitGST, UpdateAssembly, and UpdateGST follow the zig-zag

assembly sequence of the subassembly in the blue region before turning and following the

zig-zag assembly sequence of the light green region. Both of these zig-zag assemblies have

width in O(2i). Consequently, there exists a Turing machine which runs in space O(2i) and

outputs the configuration in the dark green region of leftUi,j. Then, as rightUi,j consists of

O(i2) tiles, the claim holds.

Claim 3. Let i, j ∈ N be such that i, j is an empty subiteration in αU . Let α′U ∈ A[U ] be

such that the leftUi,j and rightUi,j of subiteration i, j is assembled, but the topUi,j module

has not been assembled. Then if α′U contains configurations P and P ′ which grow from

leftUi,j and rightUi,j respectively in the macro bit-alley of subiteration i, j which are at

most a distance of 1 apart, then there exists a Turing machine M ′ which takes α′U as input

and outputs a set of t arm types, denoted A′, such that the arm which grows in subitera-

tion i, j in αU is in the set A′. Furthermore, M ′ runs in space O(|U | × c2).

Proof. Let the hypotheses hold, and assume that γ is the subconfiguration grown in the

probing region R which contains P and P ′. By assumption there exists subconfigurations

P and P ′ which are a distance of 1 apart. We can use these two subconfigurations to con-

struct |U | different systems Tt = (U, σt, τ). For each t ∈ U the system Tt is constructed by

constructing σt so that it consists of γ with the tile type t placed in the single tile wide gap

between P and P ′. Note that there could be more than one single tile wide gap between

P and P ′. It doesn’t matter which one we choose as long as we choose the same one when

constructing different systems. We can then simulate the growth of all the systems with
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a Turing machine M ′ in the following manner. For each Tt, M ′ simulates the assembly of

the system until two full macrotile regions form. At that point, the Turing machine is then

able to determine what tile types the macrotiles map to in T . Observe that since the con-

figuration γ ∪ t “cuts” the bit-alley region, and an arm must be able to grow in the subit-

eration since it is assumed to be empty, there exists at least one t such that γ ∪ t which

grows into two full macrotile regions and does not place any tiles outside of the bit-alley.

From this, the Turing machine can determine what types of arms are able to grow into the

subiteration. This Turing machine can clearly be designed to run space O(|U | × c2).

3.7.3 A contradiction

Let the B+ machine be defined analogously to the A+ machine described in Section 3.6,

but for the series of computations of B. Note that there does not exist a machine which

outputs B+(x) and runs in time G(n) for G(n) ∈ o(3|2n|) for infinitely many inputs x ∈ N.

This follows from the description of the languages that the machines B+ decides which are

described in Section 3.6.

In this section, we show that under the hypothesis there exists a simulator U for T

we can construct a Turing machine M∗ which outputs B+(x) and runs in time G(n) for

G(n) ∈ o(32n) for infinitely many inputs x ∈ N. This will contradict the assumption that

the language LB cannot be recognized in i.o. space complexity G(n) for G(n) ∈ o(32n).

For each input x ∈ N, M∗ does the following. First, M∗ simulates the growth of an

assembly αe ∈ A[U ] such that αe only grows the planter and signatures (which means

that αe also contains right modules) in order to determine whether the empty subitera-

tion in iteration x is unique. Note that this requires space O(|x|) by Lemma 8 since this is

the space used by the planter in T . If the empty subiteration in iteration x is unique, the

machine M∗ simply runs the machine B+ on input x, outputs B+(x) and halts. That is,

compared to B+(x), M∗ with input x is no more space efficient in this case.
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Creating a set E of t arm types

We refer to the tile types of T that assemble the various arms in T as arm types. By an

abuse of notation, we refer to the macrotile that maps to an arm type as an arm type of

U . Then, if the empty subiteration is non-unique M∗ creates a set E of t arm types such

that the arm type which grows into the empty subiteration ij is guaranteed to be in E. It

does so in the following manner. Denote the empty subiteration by xj and denote the non-

empty subiteration with an identical signature by xk. Next, the TM M∗ determines the

left and right probes grown by leftUxk and rightUxk . It follows from Claim 2 that this can

be done in space 22|x|. It follows from Lemma 2 that any left probe P of leftUx,k and any

right probe P ′ of rightUx,k are such that the armUi,j is consistent with the translation of P

and P ′ by some ~v. That is, they do not have different tiles in the same location after the

translation.

(a) (b)

Figure 3.5: If a subconfiguration γ (shown as the yellow strip in part (a)) grows a strip
of tiles which is consistent with and completely spans another subconfiguration γ′, then
whatever grows in γ′ after the strip can grow as shown in part (b).

Note that at this point we know that there is some strip of armUx,j that contains tiles

in P and is completely consistent with the subconfiguration P ′. Note that it follows from

Lemma 3 that if armUx,j grows a subconfiguration of tiles which completely cuts the re-

gion where it must be consistent with P ′ as shown in Figure 3.5 part (a), then it must be
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the case that it can grow all of P ′ which grows after the cut as shown in part (b) of Fig-

ure 3.5. Furthermore, note that this growth can occur without any tile placements outside

of dom (P ′). Consequently this means if we want to create the set E, all we need to do is

for each tile u ∈ U , create a system which contains only the probe P and the tile u placed

at position pt. We then grow the system until the assembly which we obtain is terminal or

the diameter of the assembly we obtain is greater than 2c. If the diameter of the assembly

is greater than 2c and some portion of it maps to an arm tile ta under the representation

function, then we add ta to our set E. Let A be a subconfiguration and let R be the infi-

nite which consists of infinite columns such that dom (A) ⊂ R and if any column is re-

moved from R, it is no longer true that dom (A) ⊂ R. Then we call the southern boundary

of A the set of points x ∈ dom (A) such that x contains a path p completely contained in

R to a point which lies to the south of any point in dom (A). Intuitively, this is the set of

tiles on the “bottom path” of A. Note this does not just include tiles in A which have an

empty location to the south. If the assembly is terminal and has diameter less than 2c, we

then create a new seed which consists of the previous seed and the tile ts in P ′ such that

1) it is not contained in the previous seed, 2) it is one of tiles in the southernmost bound-

ary of P ′) and 3) the path of points contained in the southern boundary tiles from ts to pt,

denoted ∂s, is such that all the points in ∂s were in the previous seed. We then repeat this

process for all u ∈ U .

The Turing machines M∗ runs the algorithm shown in Algorithm 1. This algorithm is

just a formalization of the intuitive idea discussed above. Here are the variables we use in

this algorithm:

1. P is the left probe grown from leftUx,k.

2. P ′ is the right probe grown from rightUx,k.

3. pt is a point which lies adjacent to both P and P ′ (i.e. the single tile wide gap be-

tween P and P ′).
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4. P ∗ = dom (P ) ∪ dom (P ′) ∪ pt.

5. ∂P ∗ is the southern boundary of P ∗.

6. Intuitively Q is the min queue which contains tiles on the southern boundary of P ′

and they are added to the queue based off of how far they are away from pt.

Input: P, P ′, U, pt as described above
Output: A set E of arm types of size at most |U |.
set Q to be a min queue of tiles in ∂P ′ where the key for a tile t′ is the length of the
path from dom (t′) to pr′ in the grid graph restricted to only points in ∂P ∗ ;

for t∗ ∈ U do
set T ∗ to the system (U, σt, τ) where σt is the assembly P with tile t∗ placed at
point pt;

do
grow T until the assembly α is terminal or diam(α) > 2c;
if diam(α) > 2c then

break;
end
else

σt = σt ∪ pop(Q) (that is, redefine σt to be the assembly P with tile t∗

placed at point pt and the tile popped from Q at its tile location;

end

while Q is not empty ;
if α contains a macrotile which maps to an arm tile, ta say then

add ta to E;
end

end
Algorithm 1: An algorithm for constructing the arm types for a non-unique empty
subiteration.

Using E to compute B+(x)

Note that the arm tiles in E correspond to the output of the machines Bi, so we can think

of each arm tile in E as corresponding to a string x0x1x2...x2t−1 where xi represents the

output of MBi on the input received by top. Once M∗ determines the t potential arms

that can grow into the empty subiteration x, j, it can create a set of t strings of length 2t

which correspond to the arms. Furthermore, it must be the case that one of these t strings

corresponds to the output of B+ on input x. Thus, we have a set of t strings of length 2t
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which contains the solution to B0(x)B1(s(x, 1)) . . . B(s(x, |x|)). Then by Lemma 5, for al-

most all inputs, M∗ requires at least space 3n, but as we observed M∗ only uses space 22n).

This is a contradiction.

Proof of correctness for the algorithm which generates E

We begin by noting that the set E produced by Algorithm 1 is guaranteed to contain a

translation of a macrotile grown in armUxj . The algorithm implicitly described above is

guaranteed to grow a macrotile that the arm grows for the following reasons. Let tp be

the tile such that the arm armUxj is consistent with the configuration P ∪ tp ∪ P ′ and let

∂P ∗ be the southern boundary of this configuration. We show that there is an assembly

sequence in U such that the tiles placed in ∂P ∗ before growth continues to the south of

∂P ∗ is the same as some seed in our algorithm. Let Pj and P ′j be the subconfigurations

grown from leftUx,j and rightUx,j respectively such that Pj ∪ P ′j @∼ P ∪ P ′. First, there

is guaranteed to be an assembly sequence where Pj is present since the assumption that

subiteration ij and subiteration ik have the same signatures implies that there exists an

assembly where their leftU modules are exactly the same up to translation. This means

that there exists an assembly where Pj is present before armUxj grows into the bitAlleyUxj .

In addition, there is an assembly sequence where first Pj appears (because of the previous

point), and then a translation of tp appears next in ∂P so that it prevents the cooperative

growth of the macrotile which grew from the probes in the subiteration xk (otherwise the

macrotile grown in the simulated bit-alley of iteration xk could assemble). Finally, there

exists an assembly sequence where after armUxj places a macrotile on the southern boundary

of dom (P ′j) all of the tiles in P ′j which lie to the west of the strip can grow with only tile

placements in dom (P ′j).

Now, notice that when U and c are fixed, Algorithm 1 runs in constant time.

Finally, we claim that the algorithm adds at most t arm types to the set E. Indeed,

this is true since it is clear from the algorithm that at most one arm type can be added to

E with each iteration of the outer loop of which there are |U |.
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3.8 Technical lemmas

In this section we prove a number of technical lemmas which will be of assistance in later

sections. The first technical lemma we prove shows that in a directed system if a subcon-

figuration γ “grows through” another subconfiguration γ′, then the subconfiguration γ′

can grow the portion of γ that assembles after γ “grows through” γ′. The second techni-

cal lemma roughly states that the growth of macrotile that represents a bit-alley tile in T

must stem from the cooperative placement of tiles by subconfigurations grown from the left

and right machines. In the third lemma, we show that in a system U = (U, σ, τ) the num-

ber of assemblies that can grow from subconfigurations which are exactly the same for all

but one tile is no more than |U |. This lemma will be used in a later section to show that

the number of arms that can grow into an empty subiteration which has at most a one tile

wide gap is at most |U |. The next technical lemma we prove in this section shows that if

a Turing machine M is able to narrow down the solution space for the outputs of a series

of computations on some input x, then M must use the same amount of space as some of

the computations in the series. This lemma will allows us to put constraints on the types

of tricks the adversary is able to use in order to simulate the system T . Finally, we will

prove a technical lemma which proves that the space complexity of computations possi-

ble within an assembly simulating a zig-zag assembly is asymptotically no greater than the

space complexity of the system being simulated.

3.8.1 Miscellaneous definitions

Definition. Let R ⊂ Z2 be an m × n rectangular region with the bottom leftmost corner

at location (0, 0). Then

1) perimS = {x|x = (p, 0), p ∈ [0, n]},

2) perimE = {x|x = (n, p), p ∈ [0,m]},

3) perimN = {x|x = (p,m), p ∈ [0, n]}, and

4) perimW = {x|x = (0, p), p ∈ [0,m]}.
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Definition. Let T = (T, σ, 2) be a directed TAS and let α ∈ A�[T ]. Let γ v α and β v α.

Then we say γ and β are congruent and write γ ∼= β if |dom (β)| = |dom (γ)| and there

exists ~v ∈ Z2 such that for all x ∈ dom (γ), γ(x) = β(x+ ~v).

Definition. Let T = (T, σ, 2) be a directed TAS and let α ∈ A�[T ]. Let γ v α and

β v α. Then we say γ is a congruent subconfiguration of β and write γ @∼ β if there exists

a subconfiguration β′ v β such that γ ∼= β′.

Let i, j ∈ N We call P a left (right) probe if P is grown from leftSij (rightSij) and there

exists P ′ v αS such that P ′ grows from rightSij (leftSij) and P and P ′ are a distance of 1

apart. Throughout this paper, we assume αS is the single terminal assembly of S.

3.8.2 Path-crossing subconfigurations

We now show that in a directed system if a subconfiguration γ “grows through” another

subconfiguration γ′, then the subconfiguration γ′ can grow the portion of γ that assembles

after γ “grows through” γ′.

We now begin with some definitions to allow us to more concretely define what it

means for a subconfiguration to grow another subconfiguration and what it means for a

subconfiguration to grow through another subconfiguration. As we will see, the intuitive

notion of a subconfiguration γ growing a subconfiguration γ′ means that there exists a

path in the directed binding graph from γ to γ′. Also, we will see that the idea of a sub-

configuration γ growing through a subconfiguration γ′ means that all paths in the binding

graph from γ “cut” through the subconfiguration γ′.

Definition. Let T be a directed TAS such that ~α is an assembly sequence of T . We now

define the directed binding graph of an assembly sequence ~α which we denote by G~α. The

vertices of the directed binding graph G~α are tiles in res(~α) and there is an edge from tile t

to tile t′ in G~α provided that a glue on t serves as an input glue to t′.

Definition. Let T be a directed TAS such that ~α is an assembly sequence of T . Also let

α ∈ A�[T ] and let γ v α. Let p be a path from a tile t to a tile t′ in G~α such that p
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contains tiles that belong to a connected subconfiguration γ. Then we say that the path

p cuts γ provided that the subgraph of G~α which contains only tiles in γ is disconnected

when the vertices in p are removed.

(a) (b)

(c) (d)

Figure 3.6: A schematic diagram of the assemblies and subconfigurations discussed in
Lemma 3. Part (a) shows the subconfigurations γS, γM , γN and the terminal assembly
α. Part (b) shows a schematic representation of the assembly γ from condition (1) of the
lemma statement. Part (c) shows a schematic representation of all the paths in the bind-
ing graph of G~α from tiles in γS to γN . Part (d) shows the producible assembly α′ in the
conclusion of the statement.

Figure 3.6 shows the schematic representation of the conditions listed in the statement

of Lemma 3 and it’s conclusion. Intuitively, the first condition of Lemma 3 states that the

growth of γM is not dependent on the growth of γS. Consequently, in our schematic repre-

sentation, this means that there exists an assembly which looks like the one shown in part

(b) of Figure 3.6. The second condition of the lemma statement says that there exists some

assembly sequence such that γN grows independently of γS or γS always grows through

γM to grow γN . This is represented schematically in part (c) of Figure 3.6. The result of

Lemma 3 is that γN can be grown without growing γS which is represented schematically

in part (d) of Figure 3.6.

Lemma 3. Let T be a directed TAS and let α ∈ A�[T ]. If γN , γM , γS v α are subconfigu-

rations such that
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1. there exists γ ∈ A[T ] such that γM v γ and for all x ∈ dom (γS), x 6∈ dom (γ), and

2. there exists ~α of T such that res(~α) = α∗ where γN , γM v α∗ and for all paths p in

G~α from a tile in γS to a tile in γN , p cuts γM ,

then there exists α′ ∈ A[T ] such that γM , γN v α′ and for all x ∈ dom (γS), x 6∈ dom (α′).

Proof. Let the hypotheses hold. We now construct an assembly sequence ~β which contains

an assembly α′ such that γM , γN v α′ and for all x ∈ dom (γS), x 6∈ dom (α′). Let the

assembly sequence ~γi=ki=0 be an assembly sequence in T such that res(~γ) = γ. We construct

~β by passing ~α and ~γ as arguments to Algorithm 2 and store the output of the algorithm

in ~β. Note that for all βi ∈ ~β, βi −→t βi+1 is valid since 1) the algorithm ensures that

Input: ~γ = (γ0, γ1, ..., γk), ~α = (α0, α1, ...)

Output: ~β = (β0, β1, ...)
for i ∈ [0, k] do

βi := γi;
end
for i ∈ [1, |~α|] do

t := dom (αi) \ dom (αi−1);
if t 6∈ dom (res(β)) and t 6∈ dom (γS) then

βk+i := βk+i−1 + t;
end
unless there exists a path from γS to t in G~α which does not cut γM ;

end

Algorithm 2: An algorithm for constructing ~β.

t 6∈ βi and 2) t attaches with strength τ since the algorithm ensures all of t′s input glues

are present. Also note that since it is assumed that for any tile t in γN all paths from γS

to t cut γM , there exists an assembly α′′ ∈ ~β such that γM v α′′, γN v α′′ and for all

x ∈ dom γS, x 6∈ dom (α′′).

3.8.3 Necessity of probes

We say a macrotile is an L-macrotile or an R-macrotile if, under the representation func-

tion R, the macrotile maps to either a 0L or 1L tile type or either a 0R or 1R tile type re-

spectively. Additionally, we say a macrotile is a bit-alley macrotile if the macrotile maps
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to either a 1M , 1B, 0M , or 0B tile under the representation function. Finally, we call the

m × (m + 4) region which consists of the macrotile region between L-macrotiles and R-

macrotiles extended by two tile widths to the west and east the probing region.
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Figure 3.7: An example of subconfigurations of assemblies discussed in Lemma 4 along
with the tiles tl and tr also discussed in the lemma. This left part of this figure shows the
bitAlley subconfiguration of subiteration i, j in αS ∈ A�[S]. The right part of this im-
age shows the bitAlley subconfiguration of subiteration i, j in α∗ ∈ A[S] and also shows
a zoomed in view which shows examples of the tiles tl and tr as described in the lemma
statement.

Next we show a lemma which intuitively says that for a non-empty subiteration, subit-

eration i, j say, a valid simulation of T , it must be the case that simulated probes on the

right side of leftSi,j and the simulated probes on the left side of rightSi,j must in fact co-

operate. Referring to Figure 3.7, in order for S to simulated T , the macrotiles 0L and 0R

depicted in the figure must assemble probes that come within one tile of each other to al-

low for cooperation across the simulated bit-alley. The high-level idea is that the macrotile

0M cannot assemble to represent a non-empty tile of T until the macrotiles 0L and 0R have

assembled. Therefore, the macrotiles 0L and 0R must “coordinate”. Moreover, this coordi-

nation cannot be the result of growing a path through the macrotile regions corresponding

to simulations of bumper tiles.

Lemma 4. Let i, j ∈ N. There exists α∗ ∈ A[S] such that 1) lefti,j and righti,j modules

are grown without assembling any bit-alley macrotiles, and 2) if αS, the terminal assem-
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bly of S, contains a bit-alley macrotile in the probing region R, then α∗ contains the tiles

tl and tr in the probing region R which grow from an L macrotile and R macrotile respec-

tively such that tl and tr are at most one tile width apart.

Proof. Let C denote the (i, j) subconfiguration. Let βi,j be an assembly in A[T ] such that

C contained in βi,j has assembled to where every tile of type 1M , 1B, 0M , or 0B that can

bind has. Now, suppose that no tile of type B in this subconfiguration has attached. Refer

to Figure 3.3 for a depiction of these tiles types and the tile locations where they bind in

a subconfiguration. Under the assumption that S simulates T , it must that there exists β′

in A[S] such that R∗(β′) = β. We now use β′ to construct α∗. First, we have the following

observation.

Claim 4. For each probe region R of β′i,j that contains a bit-alley macrotile, there must be

a path of adjacent tiles with matching glues along their adjacent edge which starts with a

tile at a westernmost location in R and ends with a tile at an easternmost location of R.

We prove Claim 4 by contradiction. Therefore, suppose that there exists a probe region

R in β′i,j that contains a bit-alley macrotile such that there is no path of adjacent tiles with

matching glues along their adjacent edge which starts with a tile on the west edge of R

and ends with a tile on the east edge of R. Let µ and η be the macrotiles subassemblies

of β′i,j that map to 1M or 0M and 1B or 0B respectively. Note that no tile of η can bind

until the macrotile region M above η maps to 1M or 0M under R, for otherwise S is not a

valid simulation. Moreover, M must map to the empty tile until the macrotile to west of

M maps to either a 0L or 1L tile type and the macrotile to the east of M maps to either a

0R or 1R tile type.

Under the assumption that there is no path of adjacent tiles with matching glues along

their adjacent edge which starts with a tile at a westernmost location of R and ends with

a tile at an easternmost location of R, it must be the case that there is a cut v of R such

that the sum of all glue strengths corresponding to glues of adjacent tiles on each side of

this cut is zero.
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Therefore, in any assembly sequence of β′i,j there must be a path p of adjacent tiles

starting from a tile in the L-macrotile and ending with a tile in the R-macrotile. p can-

not cross the cut v since the sum of all glues along this cut is zero. Hence, p must con-

tain tiles in macrotile regions that map to B tile types or map to tile types of the left

or right module that adjacent to B tile types. In any case, now consider the assembly se-

quence in T where tiles of type B always bind before tiles of type 0R, 1R, 0L, or 1L. In the

simulation of this sequence, it must be the case that the macrotile regions mapping to B

tile types or to a tile adjacent to a B tile type contain enough tiles of p to assemble the

portion of p starting from the macrotile regions mapping to B tile types or to a tile adja-

cent to a B tile type and ending with a tile of η. This follows from Lemma 3. This por-

tion of the path p either contains a tile in an L-macrotile or an R-macrotile. Suppose this

portion of the path p contains a tile in an L-macrotile (the R-macrotile case is similar).

Then, note that this portion of the path can assemble even in the absence of any tiles of

the R-macrotile. Therefore, there is an assembly sequence of S such that a tile of η binds

before any tiles of the R-macrotile bind, which is before M can map to 1M or 0M . This vi-

olates valid simulation of T by S since the tile of η that binds is outside of any fuzz region.

Therefore, Claim 4 holds.

To finish the proof of Lemma 4, start with the assembly β′. By Claim 4, it must be the

case that for each probing region R, there is no strength zero cut of R separating tiles of

β′|R. Hence, we can obtain α∗ as follows. For each probing region R, if a single tile wide

gap does not exist in a probing region R, remove a tile from the subassembly of β′ con-

tained in R in such a way that the resulting assembly is still valid until there is a single tile

wide gap. This tile removal corresponds to “rewinding” the assembly sequence of β′ in the

region R just to the point were there is a single tile wide gap between tiles stably attached

to tiles of an L-macrotile and tiles stably attached to tiles of an R-macrotile.
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3.8.4 Narrowing down the outputs of a set of Turing machines

Let R be the Turing machine defined in Section 3.6.1. The next lemma essentially says

that if there is a Turing machine M ′ which outputs a set of strings E such that the of TM

R on input x is in E, then the TM M ′ must use at least space 3|x|. A similar statement

also holds for the Turing machine A+ defined in Section 3.6.1.

Lemma 5 is used in Section 3.7.3. In Section 3.7.3, we must show that in some empty

subiteration i, j, the modules leftSi,j and rightSi,j cannot somehow narrow down the arms

which are going to be grown from the topi,j and grow the probes in the bitAlley region

so that the probes which they grow are “consistent” with the arm which will grow from

topi,j. In Section 3.7.3 we show that it is impossible for the adversary to narrow down the

arms which will grow from topi,j to a set of t arm types. We use Lemma 5 to show this.

Intuitively, this lemma says it is impossible for the adversary to narrow down the arms

which can grow for the following reasons. First note, that there are 2t possible arm types

that can grow from topi,j each of which represents the output of the series of B compu-

tations on input i. So, we can think of this set of arm types as a set of strings which cor-

respond to the output of the series of B computations on input i, and we denote this set

by E. Also, recall that the series of B computations require space O(32|i|) and the leftSi,j

module has space O(22|i|). Suppose the adversary can narrow down the arm type grown

from the topSi,j module to t choices (implying |E| = t). If there exists a bit position k such

that all the strings in set E agree on bit position k, then the adversary knows the output

of machine Bk on input i, which contradicts the space complexity of the language decided

by Bk. So it must be the case that for bit position k in every X0 ∈ E there exists a string

X1 ∈ E so that X0 and X1 disagree on bit position k. But if this is the case, note that the

adversary could then run at most the first |E| B computations to prune his set E down to

a single string which must contain the answer to the last computation of B which requires

asymptotically more space. This implies the adversary is able to recognize the language de-

cided by B in less space than required which is impossible. So, it must be the case he can’t
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narrow down the set of arms that can grow from topSi,j to t choices.

The preceding discussion highlighted the main idea of Lemma 5 which we sate and

prove now.

Lemma 5. Let R, B, s, and a be as defined in 3.6.1, and let B′ be a TM which on input x

outputs a set of m < a strings E ⊂ {0, 1}a such that there exists X ∈ E, so that R(x) =

X. Then for an infinite number of x ∈ {0, 1}∗, R′ requires space at least 3|x|.

Proof. Assume the hypothesis. We now show that we can construct a machine M which

is composed of the computation R′ along with another computation M ′. We show that M

is able to compute the ith bit of output of R. Furthermore, we show that M ′ uses at most

space 3|x|+i−2 to compute B(s(x, i)) for an infinite number of x. Since computing this re-

quires more than space 3|x|+i−2 for almost all x, this implies that R′ requires space at least

1
2
3|x|+i−1.

We now describe the machine M . On input x, M begins by removing any duplicate

strings in E and then it simulates the machine R′ to generate a set of m < a strings. Next,

M simulates the machine M ′ (described below) which takes the m strings output by R′ as

input and outputs a bit of the computation R(x).

Input: A string x and a set E ⊂ {0, 1}a s.t. |E| < a and R(x) ∈ E
Output: A tuple consisting of an integer 0 ≤ i < a and the ith bit of R(x)
for i in {1, 2, ..., a− 1} do

if the ith bit of all strings in E are the same then
output i, the value of the ith bit and halt;

else
Compute B(s(x, i− 1)) and store its output in b ;
Remove any string in E whose ith bit is not equal to b ;
Clear the work tape;

end

end
Algorithm 3: The algorithm performed by M’

The machine M ′ implements the algorithm shown in 3. We now prove that the machine

M ′ will always output a tuple consisting of an integer 0 ≤ i < a and the ith bit of R(x).

To see this, note that each iteration of the for loop does one of two things. It either halts
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and outputs the tuple, or it removes at least one string from the list of penitential outputs

of R (i.e. the set E). By our assumption that R(x) is in the set of strings output by R′(x)

we are guaranteed that at least one string will not be removed from the set E. And, our

assumption that R′ outputs less than a strings (and recall a is the length of the strings)

ensures that at some point during the computation, the ith bit of all strings left in E will

agree. Indeed, with each iteration of the for loop, if some strings disagree on the ith bit

position, at least one of them will be removed. Since, this can occur a − 2 times and there

are at most a − 1 strings in the set, we are guaranteed that at some point all the strings

will agree on the ith bit position.

Note that the machine M ′ is able to compute the ith bit of R(x) using space 3|x|+i−2.

Indeed, for each 0 ≤ k < i, M ′ simulates R(s(x, k)) which requires at most space 3|x|+k−2,

and between each simulation the work tape is cleared for reuse.

To see that M ′ requires space at least 3|x| for an infinite number of x, note that we can

use the machine M to compute B(x) for an infinite number of x. If M ′ used less space

than 3|x|, we would be able to calculate the output of B for infinitely many x using less

space than the space hierarchy theorem requires.

The idea behind Observation 1 is the same as that behind Lemma 5, but is more gen-

eralized to allow the series of Turing machines and set of “guesses” to change size with the

input. This will be needed in the proof of Lemma 1.

Observation 1. Let A+, A, and S be as defined in 3.6.1, and let A′ be a TM which on

input x outputs a set of m < 2|x| strings E ⊂ {0, 1}2|x| such that there exists X ∈ E, so

that A+(x) = X. Then for an infinite number of x ∈ {0, 1}∗, A′ requires space at least 2|x|.

The proof of 1 is identical to that of 5 with A+ substituted for R, A substituted for B,

and the space bounds changed. We present the proof below for completeness.

Proof. Assume the hypothesis. We now show that we can construct a machine M which is

composed of the computation A′ along with another computation M ′. We show that M
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is able to compute the ith bit of the output of A+. Furthermore, we show that M ′ uses

at most space 2|x|+i−2 to compute A(s(x, i)) for an infinite number of x. Since computing

this requires more than space 2|x|+i−2 for almost all x, this implies that A′ requires space at

least 1
2
2|x|+i−1.

We now describe the machine M . On input x, M begins by removing any duplicate

strings in E and then it simulates the machine A′ to generate a set of m < 2|x| strings.

Next, M simulates the machine M ′ (described below) which takes the m strings output by

A+ as input and outputs a bit of the computation A+(x).

Input: A string x and a set E ⊂ {0, 1}2|x| s.t. |E| < 2|x| and A+(x) ∈ E
Output: A tuple consisting of an integer 0 ≤ i < 2|x| and the ith bit of A+(x)
for i in {1, 2, ..., 2|x| − 1} do

if the ith bit of all strings in E are the same then
output i, the value of the ith bit and halt;

else
Compute A(s(x, i− 1)) and store its output in b ;
Remove any string in E whose ith bit is not equal to b ;
Clear the work tape;

end

end
Algorithm 4: The algorithm performed by M’

The machine M ′ implements the algorithm shown in 4. We now prove that the ma-

chine M ′ will always output a tuple consisting of an integer 0 ≤ i < 2|x| and the ith bit of

A+(x). To see this, note that each iteration of the for loop does one of two things. It either

halts and outputs the tuple, or it removes at least one string from the list of penitential

outputs of A+ (i.e. the set E). By our assumption that A+(x) is in the set of strings out-

put by A′(x) we are guaranteed that at least one string will not be removed from the set

E. And, our assumption that A′ outputs less than 2|x| strings (and recall 2|x| is the length

of the strings) ensures that at some point during the computation, the ith bit of all strings

left in E will agree. Indeed, with each iteration of the for loop, if some strings disagree on

the ith bit position, at least one of them will be removed. Since, this can occur 2|x|−2 times

and there are at most 2|x| − 1 strings in the set, we are guaranteed that at some point all
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the strings will agree on the ith bit position.

Note that the machine M ′ is able to compute the ith bit of A+(x) using space 2|x|+i−2.

Indeed, for each 0 ≤ k < i, M ′ simulates A(s(x, k)) which requires at most space 2|x|+k−2,

and between each simulation the work tape is cleared for reuse.

To see that M ′ requires space at least 2|x| for an infinite number of x, note that we can

use the machine M to compute A(x) for an infinite number of x. If M ′ used less space

than 2|x|, we would be able to calculate the output of A for infinitely many x using less

space than the space hierarchy theorem requires.

3.8.5 Zig-zag assembly systems

In [31], a system T = (T, σ, τ) is called a zig-zag tile assembly system provided that (1)

T is directed, (2) there is a single sequence ~α ∈ T with A�[T ] = {~α}, and (3) for every

~x ∈ dom α, (0, 1) 6∈ IN~α(~x). We say that an assembly sequences satisfying (2) and (3) is

a zig-zag assembly sequence. Intuitively, a zig-zag tile assembly system is a system which

grows to the left or right, grows up some amount, and then continues growth again to the

left or right. Again, as defined in [31], we call a tile assembly system T = (T, σ, τ) a com-

pact zig-zag tile assembly system if and only if A�[T ] = {~α} and for every ~x ∈ dom α

and every ~u ∈ U2, strα(~x)(~u) + strα(~x)(−~u) < 2τ . Informally, this can be thought of as

a zig-zag tile assembly system which is only able to travel upwards one tile at a time be-

fore being required to zig-zag again. The assembly sequence of a compact zig-zag system is

called a compact zig-zag assembly sequence. Figure 3.8 depicts a compact zig-zag assembly

sequence. As in the definition of a zig-zag system and throughout this section, we assume

that each row of a zig-zag systems binds to the north of the previous row.

3.8.6 Space complexity of zig-zag systems is invariant under simulation

In this section, we give a formal definition of a language defined by a zig-zag system. We

next show that such a language can be computed in space on the order of the maximal

width of the zig-zag assembly grown to a finite height. While this result is fairly straight-
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forward, we include it for the sake of completeness and because it serves as a basic example

of how we will prove the main result of this section (Lemma 9). We give a formal definition

of a language defined by a simulation of a zig-zag system, and Lemma 9 states that such

a language can be computed in space on the order of the maximal width of the zig-zag as-

sembly grown to a finite height.

Here is some of the notation used in this section. Let T = (T, σ, τ) be a temperature τ

compact zig-zag system with a seed σ consisting of a single tile, and let α be an assembly

in A[T ]. Since all of the results in this section hold regardless of the location of σ, without

loss of generality, throughout this section, we assume that the location of σ is (0, 0). Fi-

nally, we will use the term configuration to denote a partial function from a finite domain

in Z2 to T , and finite configuration when the domain of the partial function from Z2 to T

is finite.

Computational complexity and zig-zag systems

Let T1 ⊆ T be a subset of T , and let r : N→ {0, 1} be the function defined as

r(n) =

 1 (0, n) ∈ dom α and α((0, n)) ∈ T1

0 otherwise.

Now, let f : N→ N be the function

f(n) = max{wj | wj is the width of the jth row of α for 0 ≤ j ≤ n}.

Finally, let Lr = {n ∈ N | r(n) = 1}. We call r the characteristic function for T given

T1, and Lr the language defined by T given r. Notice that r is a computable function, f is

a proper function, and Lr is a computable set. See Figure 3.8 for a description of how r(n)

is computed.

The following lemma gives an upper bound on the space complexity of a language de-

fined by a zig-zag system.
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Figure 3.8: An assembly with a zig-zag assembly sequence. The assembly sequence is indi-
cated with arrows. The tile labeled S makes up the seed σ, and r(n) = 1 if and only if the
tile type of the tile labeled t is in T1.

Lemma 6. Let T = (T, σ, τ) be a zig-zag system with tile set T , seed assembly σ,

and temperature τ . Let T1 be some subset of T , let r be the characteristic function for

T given T1, and let Lr be the language defined by T given r. Finally, let f(n) denote

the width of the longest row of the assembly of T consisting of n completed rows. Then,

Lr ∈ DSPACE(f(n)).

Proof. Algorithm 5 defines steps for computing r(n).

For an input n ∈ N, notice that Algorithm 5 decides if n belongs to Lr. Notice that

to perform this algorithm, as the top row of α assembles, the jth row say, only the top two

non-empty rows of the zig-zag assembly are needed. In other words, there is a computa-

tion that only requires space on the order of the tiles with locations (i, j − 1) or (i, j) for

some i ∈ Z. This is due to the fact that for zig-zag systems, once a tile is added to the

jth row, only tiles in these locations have glues that allow for the binding of an additional

tile. There are at most 2f(n) tiles with locations (i, j − 1) or (i, j) for some i ∈ Z by the

definition of f , and hence at most 2|T |f(n) tiles are required to compute r(n). Therefore,

Lr ∈ DSPACE(f(n)).

There are many generalities of Lemma 6 that can be made at this point. In the lemma,

r is defined in terms of α, a compact zig-zag system, such that each row of α assembles
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Input: n ∈ N
Output: r(n)
α := σ;
while ∂τα 6= ∅ do

choose (i, j) ∈ Z2 such that (i, j) ∈ ∂τα;
if j = n+ 1 then

break;
end
l := (i, j);
choose t ∈ T such that l ∈ ∂τt α;
α := α + (l 7→ t);

end
if (0, n) ∈ dom (α) and α((0, n)) ∈ T1 then

return 1;
else

return 0;
end

Algorithm 5: An algorithm for computing r(n).

to the north of the previous row. We could just as easily have defined a compact zig-zag

system so that each row assembles to the south, east, or west of a previous row. Also,

note that it is not necessary that α is an assembly in a zig-zag system. In fact, T could

be any TAS. It is only necessary that α in A[T ] has a compact zig-zag assembly sequence.

Finally, the function r can also be generalized. r is defined using a single tile location,

namely (0, n), and the output of r is determined by α((0, n)) and a subset of tile types T1.

Lemma 6 also holds if we define r to be defined using any finite number of tile locations

and a set of configurations.

Paths in the binding graph

Before we proceed with the proof of Lemma 8, we give a way to find special paths in the

binding graph of assemblies. Let S = (S, σS, τ
′) be a TAS and let α be in A[S]. Let S1

and S2 be some nonempty finite sets of nonempty finite subassemblies in α. We say that

S1 and S2 are pairwise nonoverlapping if for any pair of subassemblies β1 ∈ S1 and β2 ∈ S2,

dom (β1) ∩ dom (β2) = ∅. Moreover, we say that S2 requires S1 if for any assembly se-

quence ~α with result α, there exists an assembly α1 in ~α such that some subassembly of S1
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is a subassembly of α1 and no subassembly of S2 is a subassembly of α1. Less formally, S2

requires S1 if at least one subassembly in S1 must completely assemble prior to the assem-

bly of any subassembly in S2. Now we can state the following lemma about finding paths

in the binding graph of an assembly.

Lemma 7. Let α be a stable finite assembly with an arbitrary valid assembly sequence ~α,

and let S1 and S2 be nonempty finite sets of nonempty finite subassemblies of α such that

1) S1 and S2 are pairwise nonoverlapping and 2) S2 requires S1. Also, let α1 be the first

assembly in the assembly sequence ~α containing any assembly of S1, and let α0 be the as-

sembly in ~α that immediately proceeds α1 in ~α. Then there exists a path p in the binding

graph of α with vertex set V ⊆ Z2 such that

1. for some γ1 ∈ S1 and γ2 ∈ S2, V ∩ dom (γ1) 6= ∅ and V ∩ dom (γ2) 6= ∅, and

2. V ∩ dom (α0) = ∅

Proof. Since α is a stable assembly, it is clear that at least one path p in the binding graph

of α satisfying Property 1 always exists. That we can find such a path satisfying Prop-

erty 2 follows from the assumption that S2 requires S1.

The path p in Lemma 7 corresponds to a path of tiles in α, and we call such a path the

a new path of tiles connecting S1 and S2 to emphasize Property 2. Property 2 essentially

says that such a path p forms only after a configuration in S1 has assembled. To help mo-

tivate Lemma 7, consider that for a simulation S of a zig-zag system T , in order for S to

capture the dynamics of T correctly, for a row of macrotiles simulating a row of zig-zag

growth from left to right from a tile t1 to a tile t2 say (respectively right to left), the set S1

of macrotile subassemblies that represent t1 requires the set S2 of macrotile subassemblies

that represent t2. By Lemma 7, this implies that there is a new path of tiles connecting S1

and S2. In the proof of Lemma 8, we will use Lemma 7 to limit the amount of space that

can be used as assembly in the simulating system proceeds.
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Simulations of zig-zag systems

Let S = (S, σS, τ
′) be a TAS that simulates T with representation function R and scale

factor c. Since all of the results here hold upto translation of assemblies in Z2, without loss

of generality, throughout this section we assume that the bottom-right tile of σT has loca-

tion (0, 0). Also let α′ in A[S] and α in A[T ] be assemblies such that R∗(α′) = α. Fur-

thermore, let ~α′ be an assembly sequence with result α′. Here we give a similar result to

Lemma 6 for systems such as S that simulate zig-zag systems.

First, we introduce some notation similar to the notation used for stating Lemma 6.

Let α′n denote the subassembly of α′ such that for all (i, j) ∈ dom (α′n), j ≤ n and for all

(i, j) ∈ ∂τ ′α′n, j ≥ n+ 1. For some L ⊂ Z2 such that |L| <∞ and for ~v ∈ Z2, let L~v denote

{~l + ~v | ~l ∈ L}. Also, for ~n = (0, n), let Cn ⊆ {w | w : L~n → S is a partial function} be

a subset of configurations over S with domain in L~n. Then we let r′ : N → {0, 1} be the

function

r′(n) =

 1 α′n|L~n ∈ Cn

0 otherwise.

Essentially, r′ is the function obtained by growing α′ to the point where the next tile

added must be at a location above the line y = n, and then considering some finite config-

uration of this assembly. r′(n) = 1 if and only if this configuration is in Cn. Furthermore,

let f ′ : N → N be the function defined as the maximum width w such that w = |x1 − x2|

where (x1, y1) and (x2, y2) are locations of some tiles in α′ such that 0 ≤ y1, y2 ≤ n. Finally,

let L′r = {n ∈ N | r′(n) = 1}. As with zig-zag systems, we call r′ the characteristic function

for S given Cn and Lr′ the language defined by S given r′ and Cn. Notice that r′ is a com-

putable function and Lr′ is a computable set. Lemma 8 gives an upper bound on the space

complexity of a language defined by a system that simulates a zig-zag system.

Lemma 8. Let T = (T, σ, τ) be a zig-zag system and let S = (S, σT , τ
′) be a directed sys-

tem that simulates T with terminal assembly α′. Moreover, let L be a finite subset of Z2

and let Cn be a set of finite configurations over S with domain in L~n, r′ be the character-
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istic function for S given Cn. Finally, Lr′ the language defined by S given r′ and Cn, and

let f ′(n) be the maximum width w such that w = |x1 − x2| where (x1, y1) and (x2, y2) are

locations of some tiles in α′ such that 0 ≤ y1, y2 ≤ n. Then, Lr′ ∈ DSPACE(f ′(n)).

Overview of the proof of Lemma 8

In order to prove Lemma 8, we show that r′(n) can be computed using space in O(f ′(n)).

Let c denote the scale factor of the simulation of T by S, and let h denote the height of

the smallest rectangle bounding L. We let k = max{c2 + 2c + 2, h}. As assembly pro-

ceeds from σT , we take note of two regions where tiles may bind. First, tiles may bind in

macrotile regions representing leftmost or rightmost tiles of the simulated zig-zag system or

fuzz regions to the left or right of these macrotile regions. We call these macrotile regions

the left or right sides of an assembly of S. The second region where tiles may bind is the

complement of the left or right sides of an assembly of S.

The proof relies on a data structure called a glue sequence table4. This table, which we

define later, is essentially a constant size (depending on U and c) lookup table that maps

sequences of glues along a portion of a cut corresponding to the left or right sides of an as-

sembly to sets of glues. The cut divides the Z2 lattice into two regions. One “above” the

cut and one “below”. The sets of glues mapped to by the table correspond to the glues

that appear on the cut under the assumption that the sequence of glues are exposed along

the cut in the order given by the sequence. Then, by using these exposed glues, tiles bind

below the cut until there are no tile locations below the cut where a tile can stably bind.

The glue sequence table has an entry for every possible glue sequence that can appear

along the portion of the cut. Basically, the glue sequence table captures all “what-if” sce-

narios in the sense that it tells us what glues may be exposed along a cut by tiles binding

below the cut if a glue (or a sequence of glues) is exposed along the cut by tiles located

above the cut. See Figure 3.11 for a depiction of this process. We will describe the con-

struction of a GST in the formal proof. It should be noted that it may not be possible for

4A glue sequence table is closely related to a window-movie (GST) as described in [29].
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a sequence in the domain of a glue sequence table to correspond to an actual valid assem-

bly.

(a) InitAssembly and InitGST (b) UpdateAssembly and UpdateGST

Figure 3.9: Determining configurations over L~n.

In the proof, we describe four procedures for computing configurations over L~n start-

ing from σT . These procedures are 1) InitAssembly, 2) InitGST, 3) UpdateAssembly, and

4) UpdateGST. Figure 3.9 depicts a sketch of the assemblies formed by these procedures.

Referring to Figure 3.9a, starting from the seed σT , InitAssembly is the process of attach-

ing all tiles that can stably bind at tile locations with y values ≤ 2k. InitGST constructs

the glue sequence table corresponding to cut shown in red by considering assemblies below

the line that may form assuming that some glue (or sequence of glues) is exposed along the

cut. Referring to Figure 3.9b, with the assembly below the line l5 present, UpdateAssem-

bly is the process of attaching all tiles that can stably bind a tile locations below l6. This

process uses the existing assembly between l3 and l5 and the glue sequence table corre-

sponding to a cut shown in red. The result of UpdateAssembly is that the assembly be-

low the the line l6 and above the the line l3 is terminal. Once UpdateAssembly is finished,

UpdateGST constructs a new glue sequence table corresponding to a cut shown in blue.

When the assembly below l6 and above l3 has formed and the glue sequence table has been

67



updated, the tiles below the line l4 are no longer necessary for continuing the assembly of

the simulation of the zig-zag system to the north. Using this fact, to finish the proof, we

show that the four methods InitAssembly, InitGST, UpdateAssembly, and UpdateGST re-

quire space on the order of f ′(n) and can be used to compute α′n|L~n in order to determine

r′(n).

Proof of Lemma 8

Proof. For n ∈ N, we let Hn denote the set {(x, y) ∈ Z2 | y ≤ n}. Based on Algorithm 6,

we will give a means of computing r′(n) that requires space in O (f ′(n)).

Input: n ∈ N
Output: r′(n)
InitAssembly;
InitGST;

while ∂τ
′
α′ ∩Hn 6= ∅ do

UpdateAssembly;
UpdateGST;

end
if α′(L~n) ∈ Cn then

return 1;
else

return 0;
end

Algorithm 6: An algorithm for computing r′(n).

The algorithm consists of four procedures that we describe next. Before we describe

each of the procedures used in Algorithm 6, we introduce some notation. Let h denote the

height of L~n and let k = max{c2 + 2c+ 2, h}.

InitAssembly

We begin assembly in S by attaching tiles to σS until any tile that can stably bind to be-

low the line y = 2k has attached. We denote this step as the “InitAssembly” procedure.

The InitAssembly procedure consists of the steps given in Algorithm 7.
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Input: σT
Output: α′2k
α′ := σS;

while ∂τ
′
α′ ∩H2k 6= ∅ do

choose (i, j) ∈ Z2 such that (i, j) ∈ ∂τ ′α′ and j ≤ 2k;
l := (i, j);

choose t ∈ T such that l ∈ ∂τ ′t α′;
α′ := α′ + (l 7→ t);

end
Algorithm 7: An algorithm describing the InitAssembly procedure.

InitGST

Before we describe the InitGST procedure, we define a data structure that is used in the

algorithm called a glue sequence table. A glue sequence table is defined relative to a cut in

the binding graph of α′k ∈ A[S]. Figure 3.10 depicts this cut, which we now describe.

To define the cut, we find two tiles such that the location of each of these tiles is above

the line y = k. Let i = dk/ce and let M r
i be the macrotile region that maps to the tile,

tri say, in α that is farthest to the right on the ith row α. Similarly, let M l
i be the macrotile

region that maps to the tile, tli say, in α that is farthest to the left on the ith row α. More-

over, let Sri (respectively Sli) be sets of configurations over S with domain in M r
i (respec-

tively M i
i ) such that each configuration of Sri (respectively Sli) maps to tri (respectively

tli). Note that depending on the direction of growth (left or right) of the ith row of the zig-

zag system T , either Sri requires Sli or Sli requires Sri . In either case, there must be a new

path pi of tiles from a tile of a configuration in Sri to a tile of a configuration in Sli. Note

that for i between k and 2k, each pi is disjoint. This follows from Lemma 7. Now, pi ei-

ther contains a tile at a tile location that is below any tile of σT or it does not. The former

case can only occur fewer than 2c times. This follows from the fact that if there were 2c

or more such paths pi, then these paths must contain tiles outside of any valid macrotile

region representing a tile as well as outside of any fuzz regions of such macrotiles. In the

latter case, there must be two tiles contained in M r
i and M l

i , which we denote by tl and tr

respectively, such that these tiles are connected by a path of tiles in α′2k and this path does
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not contain a tile at a location below any tile of σT . We will use the locations of tl′i and tr′i

to define a cut of the grid graph.

Let (xr, yr) be the location of tr and let (xl, yl) be the location of tl. For the assembly

α′2k produced by the InitAssembly procedure, the cut, fk say, is defined by the edges in the

grid graph that intersects lines

1. y = yl +
1

2
for x in (−∞, xl)

2. x = xl +
1

2
for y between yl and yr

3. y = yr +
1

2
for x in (xl, xr)

4. y = yr +
1

2
for x in (xr,∞)

At a high-level, we have chosen this cut so that as assembly proceeds, tiles must either

cross the portion of the cut corresponding to Lines 1 and 4 or are prevented from growing

lower than all of the tiles of the path of tiles from tl to tr divide the plane into two disjoint

sets. This idea is depicted in Figure 3.10.

We then denote the glue sequence table associated to the cut fk by GSTfk . Note that

this cut extends infinitely to the left and right dividing the Z2 lattice into points “above”

fk and points “below” fk. Analogously, for j ∈ N, fjk is defined as in fk so that fjk is a cut

corresponding to lines that lie between the lines y = ik and y = (i+ 1)k.

Figure 3.10: The cut used to define a GST. Glues which cross the red dotted portion of the
cut are not in the domain of the GST. The green path is a representation of a path of tiles
from tl to tr.
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Let G be the set of glues associated to tiles in S and let D = {(0, 1), (0,−1),

(1, 0), (−1, 0)} be a set corresponding to the north, south, east, and west edges of a tile

respectively. In addition, let G̃ denote the product G × D × Z2 such that (t, d, l) is in G̃

iff l = (x, y) where y − 1

2
is not a point on Line 2 or 3. We say that g̃ ∈ G̃ crosses the cut

fk iff g̃ = (g, d, l) for g ∈ G, d ∈ D, and l ∈ Z2 such that l lies on one side of the cut

fk and l + d lies on the other side of the cut fk. Moreover, if l is above (respectively be-

low) the cut, we say that g̃ crosses the cut from above to below (respectively crosses the cut

from below to above). Also, we take the phrase g̃ is present to mean that for g̃ = (g, d, l)

for g ∈ G, d ∈ D, and l ∈ Z2, there is a tile at location l with glue g exposed on its edge

corresponding to d.

Then, GSTfk is a relation between the set of all sequences of length at most 4c over G̃

to the power set P
(
G̃
)

. For a sequence of glues Σ = 〈g̃i〉0≤i<4c,g̃i∈G̃ and a set F in P
(
G̃
)

,

a pair (Σ, F ) is in GSTfk if and only if each g̃i in Σ crosses the cut fk from above to below

and F is the set of elements of G̃ obtained as follows. First, assume that the subassembly

below the cut fk is terminal and that the set F is empty. Now, consider assembly below

the cut while assuming that g̃0 is present. Note that it may not even be possible for a tile

to be part of a valid assembly so that g̃0 is present. With g̃0 present, attach tiles at tile

locations below the cut fk. g̃0 must be used to start tile attachment below the cut fk. Con-

tinue attaching tiles until the newly assembled subassembly below the cut fk is terminal.

Call the new configuration of tiles β′0. Then add any glues crossing the cut fk from below

to above to the set F . See Figure 3.11 for more detail. Now, assume that g̃1 is present and

attach tiles to β′0 below the cut fk until the produced assembly below the cut fk is termi-

nal. Add any new glues of this assembly that are crossing the cut fk from below to above

to the set F . Continue this process for each g̃i in Σ to construct the set F . This process

is described in Algorithm 8. In this algorithm, we use the notation ∂τ
′
(α′ ∪ g̃) to denote

empty tile locations where, under the assumption that g̃ is present, exposed glues of α′ and

g̃ allow for a tile to be placed so that the sum of the glue strengths of glues of this tile that
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match exposed glues of α′ and/or g̃ is greater than or equal to τ ′. It should be noted that

in the following algorithm, α′ does not necessarily denote a stable assembly; it only denotes

a configuration of tiles.

Input: α′2k
Output: GSTfk
α′ := α′2k;

set Σ∗ to the set of all sequence over G̃;
set B to the set of all (i, j) ∈ Z2 below fk;
for Σ ∈ Σ∗ do

set F to the empty set;
set E to the empty set;
for g̃ ∈ Σ do

assume g̃ is present;

while B ∩ ∂τ ′(α′ ∪ g̃) 6= ∅ do
choose (i, j) ∈ Z2 such that (i, j) ∈ B ∩ ∂τ ′(α′ ∪ g̃);
l := (i, j);

choose t ∈ T such that l ∈ ∂τ ′t (α′ ∪ g̃);
α′ := α′ + (l 7→ t);

b̃ := (t, d, l);

if b̃ crosses the cut fk from below to above then

add b̃ to E;
end

end

end
set F to F ∪ E;
add (Σ, F ) to GSTfk ;

end
Algorithm 8: An algorithm describing the procedure InitGST.

UpdateAssembly

Let Bi be the set of all (x, y) ∈ Z2 such that (i − 2)k ≤ y ≤ ik. Moreover, let β′ik be

the subconfiguration of α′ik contained in Bi. In other words, β′ik is the map α′ik|Bi . The Up-

dateAssembly procedure consists of the steps given in Algorithm 9. This algorithm com-

putes β′ik using β′(i−1)k and GSTf(i−2)k
. The idea is to assemble the portion of β′ik by al-

lowing tiles to bind to tiles of β′(i−1)k when appropriate glues are present for strength two

binding. In addition, when a tile is placed so that a glue, g say, on the tile crosses the cut
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Figure 3.11: Construction of a glue sequence table. The bold line along with the red dot-
ted line depict the cut fk. Dark grey tiles are part of the existing assembly. The sub-
assembly below the cut fk is assumed to be terminal. If the blue glue g1 is present, then
assembly of the blue tiles may be possible resulting in glue g2 crossing the cut fk from
below to above. This glue is added to the set F .

f , rather than continue to attach tiles below the cut using this exposed glue, the table

GSTf(i−2)k
is used to lookup which glues will cross the f from below to above as a result

of g.

It still remains to be shown that this algorithm correctly yields β′ik. To see this, we

prove the following claim.

Claim 5. For tiles a and b in α′ik but not in α′(i−1)k such that the location (x1, y1) of a is

above the line y = (i − 1)k and b is a tile belonging to a macrotile such that the location

(x2, y2) of b is not contained in a macrotile belonging to the left or right side regions of α′ik,

it must be the case that |y2 − y1| < c2 + 2c+ 2.

Note that a requires b. That is, b must be placed prior to a in any assembly sequence.

By Lemma 7 there is a path of tiles from a to b. Let pab denote this path. Tiles a and b

as described in Claim 5 are depicted in Figure 3.12. To prove the claim, consider the two

tiles on the left and right ends of each row in the simulated zig-zag system. Call the tile

farthest to the left t1 and the other t2. For the macrotile regions M1 and M2, where M1 is

to the left of M2, of the simulating system that map to the tiles t1 and t2 respectively. We

define S1 to be the set of configurations over M1 that map to t1 under R∗. Similarly, we

define S2 to be the set of configurations over M2 that map to t2 under R∗. Note that for S
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Input: β′(i−1)k and GSTf(i−2)k

Output: β′ik
α′ := β′(i−1)k;

set Σ to the empty sequence over G̃;
set B to the set of (x, y) ∈ Z2 such that (i− 2)k ≤ y ≤ ik;

while ∂τ
′
α′ ∩B 6= ∅ do

choose (i, j) ∈ Z2 such that (i, j) ∈ ∂τ ′α′ ∩B;
l := (i, j);

choose t ∈ T such that l ∈ ∂τ ′t α′;
α′ := α′ + (l 7→ t);
for d ∈ {(0,−1), (1, 0), (−1, 0)} do

g̃ := (t, d, l);
if g̃ crosses the cut f(i−2)k from above to below then

add g̃ to Σ as last element;
assume that any unexposed glues in GSTf(i−2)k

(Σ) along the cut f(i−2)k are

present;

end

end

end
β′ik = α′|B;

Algorithm 9: An algorithm describing the procedure UpdateAssembly.

to be a valid simulation of T , either S2 requires S1 or S1 requires S2. Assume that S2 re-

quires S1 (the other case is similar). Lemma 7 implies that there is a new path p of tiles

from S1 to S2. In Figure 3.12a and 3.12b, p is depicted as the green line. Note that since b

is not a tile in α′(i−1)k, we can assume that the path p from S1 to S2 does not intersect pab.

Now we consider two cases. First, as the path p assembles, a tile is placed below any tile of

the seed σT . Second, as the path p assembles, a tile does not bind at a tile location that is

below any tile location of the seed σT . In the first case, the path must grow down the left

or right side regions of α′ik, and by our choice of cut fik, this path must cross the cut. For

a valid simulation, the maximum number of such paths that can assemble is 2c, for oth-

erwise the paths would exceed the fuzz region allowable in simulation. In the second case,

it must be the case that the tiles belonging to the path p place a tile in the middle region

below b. In this case, the most such paths that can assemble is c2. This follows from the

fact that each such path places tiles either in the macrotile region containing the location
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of b or below the macrotile region containing b. c2 such paths would prevent any tiles from

being placed in the macrotile region containing b, however, this would contradict the fact

that S is a valid simulation. Therefore, Claim 5 holds.

(a) In this case, the tile b is contained in a
macrotile region that is not a subregion of the
left or right side regions shown as gray blocks.

(b) In this case, the tile b is contained in a
macrotile region that is a subregion of the left
or right side regions.

Figure 3.12: The blue, green, and red paths represent non-overlapping paths tiles of tiles
that must assemble by Lemma 7.

By Claim 5, we see that since we have chosen k to be larger than c2 + 2c + 2, Update-

Assembly can be used to determine the tiles of β′ik from β′(i−1)k and GSTf(i−2)k
.

UpdateGST

For each i < n/k, the procedure UpdateGST is used to create a new glue sequence table

relative to the cut fik. The UpdateGST procedure is similar to the InitGST procedure,

except that GSTfik is constructed with the help of GSTf(i−1)k
. This procedure is given as

Algorithm 10.

The space complexity of the computation of r′(n) is O (f ′(n))

In this section, we prove two claims. First, that Algorithm 6 correctly computes r′(n), and

second, that Algorithm 6 can be computed in space O(f ′(n)). We first argue that Algo-

rithm 6 can be computed in space O(f ′(n)). Algorithm 6 consists of four procedures: Ini-
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Input: β′ik and GSTf(i−2)k

Output: GSTf(i−1)k

α′ := β′ik;

set Σ∗ to the set of all sequence over G̃;
set B to the set of all (x, y) ∈ Z2 below fik;
for Σ ∈ Σ∗ do

set F to the empty set;
set M to the empty set;
for g̃ ∈ Σ do

set Π to the empty set; assume that g̃ is present;

while B ∩ ∂τ ′(α′ ∪ g̃) 6= ∅ do
choose (x, y) ∈ Z2 such that (x, y) ∈ B ∩ ∂τ ′(α′ ∪ g̃);
l := (x, y);

choose t ∈ T such that l ∈ ∂τ ′t (α′ ∪ g̃);
α′ := α′ + (l 7→ t);

b̃ := (t, d, l);

if b̃ crosses the cut f(i−1)k from below to above then

add b̃ to M ;
end
for d ∈ {(0,−1), (1, 0), (−1, 0)} do

d̃ := (t, d, l);

if d̃ crosses the cut f(i−2)k from above to below then

add d̃ to Π as last element;
expose any unexposed glues in GSTf(i−2)k

(Π) along the cut f(i−2)k;

end

end

end

end
set F to F ∪M ;
add (Σ, F ) to GSTf(i−1)k

;

end
Algorithm 10: An algorithm describing the procedure UpdateGST.
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tAssembly, InitGST, UpdateAssembly, and UpdateGST. First, we make the following ob-

servation.

Observation 2. |{(x, y) | GSTfk(x) = y}| is bounded by a constant that only depends

on c and |U |. We denote this constant by KGST . In particular, if g is the number of glues

of tiles of U , (g + 1)4c(4c)! is such a constant as this is the total number of sequences of g

glues (plus the null glue) of length 4c.

From Algorithm 7 and 8, it is clear that InitAssembly and InitGST each require

O(f ′(n) + KGST ) space. Moreover, since for all i, β′ik is bounded in width by f ′(n) and

in height by 2k, UpdateAssembly and UpdateGST each require O(f ′(n)) space, with each

procedure requiring at most f ′(n) ∗ 3k tile locations.

Now let Bi denote the set of (x, y) ∈ Z2 such that (i − 2)k ≤ y ≤ ik. It remains to be

shown that Algorithm 6 correctly computes r′(n). To see this, note that UpdateAssembly

computes β′ik = α′ik|B and Ln ⊆ B. It follows that, β′ik|Ln = α′ik|Ln . Therefore, Algorithm 6

correctly computes r′(n).

Note that in Lemma 8, the assumption that S is directed can be removed by defining

the glue sequence table to map into the set of sets of glues corresponding to each possible

set of glues that may cross the cut corresponding to this glue sequence table. This set of

sets is still bounded by a constant depending on c and S. Fix an enumeration of this set of

sets. Then, we modify the procedures UpdateAssembly and UpdateGST so that if a glue

crosses the cut from above to below, we expose glues corresponding to the first set of glues

in the enumeration of the set of sets of glues. Now we can state Lemma 9 which we refer to

as the “no cheating lemma”.

Lemma 9 (No Cheating Lemma). Let T = (T, σ, τ) be a zig-zag system and let S =

(S, σS, τ
′) be a system that simulates T at temperature τ ′ with scale factor c. Let n be

in N, and let f(n) be the width of the longest row of the assembly of T consisting of n
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completed rows. Moreover, let Ccn be a set of finite configurations, let r′ be the charac-

teristic function for S given Ccn, and let Lr′ be the language defined by S given r′. Then,

Lr′ ∈ DSPACE(f(n)).

Proof. For the scale factor c, this follows from the fact that f ′(n) ≤ cf(n) + 2c. The addi-

tion of 2c accounts for fuzz regions.
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Chapter 4

A computationally universal, non-cooperative model

4.1 Introduction

A long standing open conjecture in regards to the aTAM is that systems in which tile at-

tachments depend only on one exposed glue (we call such systems temperature-1 systems)

are not computationally universal [10, 29, 28]. It may appear clear that this conjecture is

certainly true, but the ability of tile assembly systems to place a tile which prevents the

attachment of a later tile gives these systems a surprising amount of power [15, 13, 20, 6]

and has made proving such a result elusive. In fact, the exploitation of this ability has

been used to show that temperature-1 systems in other models are computationally uni-

versal [31, 4, 15, 20, 13].

This paper examines the computational power of a model which is similar to the aTAM

with the exception that the shape of the tiles in the systems is relaxed to include any

shape which is a polygon. Unlike all previous work, our model makes no assumption about

an underlying lattice and discrete space. Instead, we must work in the real plane, and

fundamentally exploit continuous space to precisely position polygonal tiles. We call this

model the polygonal TAM and show that certain classes of temperature-1 systems in the

polygonal TAM are computationally universal. In order to show our results about compu-

tational universality, we explicitly construct “lattices” for polygons and create geometric

“bit-readers”. In the case of regular polygons with n > 6 sides, we exploit the inability

of these polygons to tile the plane to read bits. In fact, we show that for regular polygons

which do tile the plane, bit-reading gadgets are impossible to construct. Interestingly, our

exploits do not work for pentagons. In particular, we show that even though pentagons

cannot tile the plane, bit-reading gadgets are impossible to construct with them.

The layout of the paper is as follows. We first introduce the polygonal TAM. Next,

we introduce our main results which concentrate on the computational power of polygo-

nal TAM systems at temperature 1. Our first main result states that for any regular poly-
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gon P with n > 6 sides, there exists a polygonal TAM system consisting of tiles of shape

P which simulates any Turing machine on any input. We then provide evidence that this

computational boundary is tight by showing that the class of polygonal TAM systems com-

posed only of tiles of a single shape which is any regular polygon P with n ≤ 6 sides can-

not compute using any currently known techniques. On the other hand, we show that the

class of polygonal TAM systems whose tiles are composed of any two regular polygons is

capable of simulating any Turing machine on arbitrary input. We then show two positive

results about computing with systems whose tiles have the shape of non-regular polygons

with less than seven sides. In order to show these results we have two supporting sections.

One shows how we can create a “lattice” in the plane out of any regular polygon. The

other uses these “lattices” to connect together several components which “read bits”.

4.2 Preliminaries

We now give a description of the Polygonal TAM1 .

Polygonal Tiles A simple polygon is a plane geometric figure consisting of straight, non-

intersecting line segments or “sides” that are joined pair-wise to form a closed path. As is

commonly the case, we omit the qualifier “simple” and refer to simple polygons as poly-

gons. A polygon encloses a region called its interior. The line segments that make-up a

polygon meet only at their endpoints. Exactly two edges meet at each vertex. We define

the set of edges of a polygon to be the line segments that make-up a polygon. In our defi-

nition we find it useful to give a polygon a default position and rotation. First, we assume

that the centroid, c say, of any polygon is at the origin in R2. Then, for a polygon Pn with

n edges, let v = (x, y) ∈ R2 be some vertex of Pn such that v 6= c. By possibly rotating

Pn about c, we can ensure that y = 0 and x > 0. For a given polygon P and some vertex v

of P that is not equal to the centroid of P , we call this position and rotation the standard

1The Polygonal TAM is simply a case of the polygonal free-body TAM defined in [6] with no rotational
restriction and no tile flipping. We define it here for completeness.
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position for P given v.

A polygonal tile is a polygon with a subset of its edges labeled from some glue alpha-

bet Σ, with each glue having an integer strength value. Two tiles are said to be adjacent if

they are placed so that two edges, one on each tile, intersect completely. Two tiles are said

to bind when they are placed so that they have non-overlapping interiors and have adja-

cent edges with matching glues and matching lengths; each matching glue binds with force

equal to its strength value. An assembly is any connected set of polygons whose interiors

do not overlap such that every tile is adjacent to some other tile. 2 Given a positive integer

τ ∈ N, an assembly is said to be τ -stable or (just stable if τ is clear from context), if any

partition of the assembly into two non-empty groups (without cutting individual polygon)

must separate bound glues whose strengths sum to ≥ τ . We say that a tile is in standard

position, if the underlying polygon defining the shape of the tile is in standard position.

We also refer to the centroid of a polygonal tile as the centroid of the underlying polygon

defining the shape of the tile.

Tile System A tile assembly system (TAS) is an ordered triple T = (T, σ, τ) where T is

a set of polygonal tiles, and σ is a τ -stable assembly called the seed. τ is the temperature

of the system, specifying the minimum binding strength necessary for a tile to attach to

an assembly. Throughout this paper, the temperature of all systems is assumed to be 1,

and we therefore frequently omit the temperature from the definition of a system (i.e. T =

(T, σ)). If the tiles in T all have the same polygonal shape, T is said to be a single-shape

system; more generally T is said to be a c-shape system if there are c distinct shapes in T .

If not stated otherwise, systems described in this paper should by default be assumed to be

single-shape systems.

We define a configuration of T to be a (possibly empty) arrangement of tiles in R2

where tiles of this arrangement are translations and/or rotations of copies of tiles in T .

2As with the aTAM, the edges of two tiles of an assembly may intersect, but we do not allow for the
interiors of two tiles of an assembly to have non-empty intersection.
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Formally, we define a configuration of T as follows. For a c-shaped system T = (T, σ, τ),

let P1, P2, . . . , Pc denote the polygons that make up the shapes of T . For each i such that

1 ≤ i ≤ c, assume that each Pi is in standard position given some vertex vi of Pi. Then,

a configuration of T is a partial function α : R2 99K T × [0, 2π). One should think

of this function as mapping centroid locations, r say, to a tile-angle pair (t, θ) with tile t

in T and orientation angle θ as follows. Starting from t in standard position, t is rotated

counter-clockwise by θ and translated so that the centroid of t is at r. Note that the def-

inition of configuration makes no claim as to whether or not two tiles of a configuration

have overlapping interiors or have matching glues. Similarly, we can define an assembly to

be a configuration such that every tile is adjacent to some other tile and the intersection

of the interiors of any two distinct tiles is empty. Then an assembly α′ is a subassembly of

α if dom (α′) ⊆ dom (α) and if (r, θ) ∈ dom (α′) then α((r, θ)) = α′((r, θ)). We define

subconfiguration analogously to the way we defined subassembly.

Assembly Process Given a tile-assembly system T = (T, σ, τ), we now define the set of

producible assemblies A[T ] that can be derived from T , as well as the terminal assemblies,

A�[T ], which are the producible assemblies to which no additional tiles can attach. The

assembly process begins from σ and proceeds by single steps in which any single copy of

some tile t ∈ T may be attached to the current assembly A, provided that it can be trans-

lated and/or rotated so that its placement does not overlap any previously placed tiles and

it binds with strength ≥ τ . For a system T and assembly A, if such a t ∈ T exists, we say

A →T1 A′ (i.e. A grows to A′ via a single tile attachment). We use the notation A →T A′′,

when A grows into A′′ via 0 or more steps. Assembly proceeds asynchronously and nonde-

terministically, attaching one tile at a time, until no further tiles can attach. An assembly

sequence in a TAS T is a (finite or infinite) sequence ~α = (α0 = σ, α1, α2, . . .) of assem-

blies in which each αi+1 is obtained from αi by the addition of a single tile. The set of pro-

ducible assemblies A[T ] is defined to be the set of all assemblies A such that there exists

an assembly sequence for T ending with A (possibly in the limit). The set of terminal as-
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semblies A�[T ] ⊆ A[T ] is the set of producible assemblies such that for all A ∈ A�[T ]

there exists no assembly B ∈ A[T ] in which A →T1 B. A system T is said to be directed if

|A�[T ]| = 1, i.e., if it has exactly one terminal assembly.

4.3 Geometric bit-reading, grids, and Turing machine simulation

In this section we state our main results and then give a high-level description of the ma-

chinery used to prove these results. In particular, we describe bit-reading gadget assem-

blies and grid assemblies, and briefly show how to simulate a Turing machine using these

assemblies. The general strategy that motivates the work in this paper is similar to the

techniques used in [4, 20, 13]. Unlike the techniques used in [4, 20, 13], we do not have an

underlying integer lattice that is being tiled, and therefore, must rely on analysis of polygo-

nal tile assemblies in R2.

4.3.1 Main results

We now state our main results. The first set of results are positive and state that there

are a variety of systems with polygons which can simulate any Turing machine. The last

result is a negative result which states that the class of systems whose tiles are composed

of regular polygons with less than 7 sides cannot compute using known techniques in self-

assembly.

Informally, our first theorem states that if P is a regular polygon with ≥ 7 sides, then

the class of systems with tiles of shape P is computationally universal.

Theorem 2. Let Pn be a regular polygon with n sides such that n ≥ 7. Then for every

standard Turing machine M and input w, there exists a directed TAS with τ = 1 consist-

ing only of tiles of shape Pn that simulates M on w.

The following theorem states that if we are allowed two different regular polygons as

tile shapes, then the class of systems consisting only of these two shapes is computationally

universal.
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Theorem 3. Let Pn and Qm be regular polygons with n and m sides of equal length.

Then for every n ≥ 3 and m ≥ 3 such that n 6= m, and every standard Turing machine

M with input w, there exists a directed 2-shaped system Tn,m = (Tn,m, σn,m) consisting

only of tiles of shape Pn or Qm that simulates M on w.

The next theorem differs from the previous two theorems in that it discusses the com-

putational power of polygons which are not regular. Roughly, it states that if we relax the

condition that the polygon is regular (but still equilateral), then there exist polygons with

only four sides which are capable of composing a class of computationally universal single

shape systems. It also implies this for shapes with five and six sides as well.

Theorem 4. Let M be a standard Turing machine with input w. Then for all n ≥ 4,

there exists an equilateral polygon Pn with n sides and a directed single-shaped system

Tn = (Tn, σn) consisting only of tiles of shape Pn that simulates M on w.

Our final positive result shows that there exists a class of single-shaped systems of ob-

tuse isosceles triangle which is computationally universal.

Theorem 5. Let M be a standard Turing machine with input w. Then, there exists an

obtuse isosceles triangle P and a directed single-shaped system T = (T, σ) consisting only

of tiles of shape P that simulates M on w.

We now state the negative result, which is based on the fact that regular polygonal tiles

with ≤ 6 sides cannot form paths capable of blocking each other in specific ways allowing

important geometric information encoding and decoding.

Theorem 6. Let n ∈ N be such that 3 ≤ n ≤ 6. Then, there exists no temperature

1 single-shaped polygonal tile assembly system T = (T, σ, 1) where for all t ∈ T , t is a

regular polygon with n sides, and a bit-reading gadget exists for T .

Due to space constraints in this extended abstract, the proofs of most results are rele-

gated to the Appendix. However, in the main body we now sketch an overview of how the

positive results work, and we provide the proof of the negative result in full.
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4.3.2 Bit-reading gadgets overview

First, we discuss a primitive tile-assembly component that enables computation by self-

assembling systems. This component is called the bit-reading gadget, and essentially con-

sists of pre-existing assemblies, bit writers, that appropriately encode bit values (i.e., 0 or

1) and paths that grow past them and are able to “read” the values of the encoded bits;

this results in those bits being encoded in the tile types of the paths beyond the encod-

ing assemblies. The notion of bit-reading gadget was defined in [13]. For completeness, we

present the definition here and note that the definition applies even to systems of polygo-

nal tiles. Figure 4.1 provides an intuitive overview of a temperature-1 system with a bit-

reading gadget. Essentially, depending on which bit is encoded by the assembly to be read,

exactly one of two types of paths can complete growth past it, implicitly specifying the bit

that was read. It is important that the bit reading must be unambiguous, i.e., depending

on the bit written by the pre-existing assembly, exactly one type of path (i.e., the one that

denotes the bit that was written) can possibly complete growth, with all paths not repre-

senting that bit being prevented. Furthermore, the correct type of path must always be

able to grow. Therefore, it cannot be the case that either all paths can be blocked from

growth, or that any path not of the correct type can complete, regardless of whether a

path of the correct type also completes, and these conditions must hold for any valid as-

sembly sequence to guarantee correct computation.

The key to the correct functioning of a bit-reading gadget at temperature-1, where glue

cooperation is not available and one source of “input” to the growing bit-reader must in-

stead be provided by geometry, in the form of geometric hindrance which prevents exactly

one path from continuing growth but allows another to proceed, is the fact that it must

work when reading either of two different bit values. Using Figure 4.1 as a guide, one can

see that it is easy to read the “1” bit in this example by blocking the blue path. However,

the difficulty which is encountered is in correctly blocking the yellow path while allowing

the blue to continue in order to read a “0” bit. With square tiles (and as we show, several
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others), this is in fact impossible. However, with most polygonal tiles this can be accom-

plished by careful design of paths and blocking assemblies so that a gap remains between

the blocked path and the blocking assembly in such a way that the other path can assem-

ble through the gap. The techniques for accomplishing this will be demonstrated through-

out this paper.

Here and throughout the paper, if we refer to a tile having an x (or y) coordinate i, we

are referring to its centroid being on the line x = i (or y = i) for i ∈ R.

Definition. We say that a bit-reading gadget exists for a tile assembly system T =

(T, σ, τ), if the following hold. Let T0 ⊂ T and T1 ⊂ T , with T0 ∩ T1 = ∅, be subsets

of tile types which represent the bits 0 and 1, respectively. For some producible assembly

α ∈ A[T ], there exist two connected subassemblies, α0, α1 v α (with w equal to the maxi-

mal width of α0 and α1, i.e., the largest extent in x-direction spanned by either subassem-

bly), such that if:

1. α is translated so that α0 has its minimal y-coordinate ≤ 0 and its minimal x-

coordinate ≥ 0,

2. a tile of some type t ∈ T is placed at (w + n, h), where n, h ≥ 1, and

3. the tiles of α0 are the only tiles of α in the first quadrant to the left of t,

then at least one path must grow from t (staying strictly above the x-axis) and place a tile

of some type t0 ∈ T0 as the first tile with x-coordinate < 0, while no such path can place

a tile of type t′ ∈ (T \ T0) as the first tile to with x-coordinate < 0. (This constitutes the

reading of a 0 bit.)

Additionally, if α1 is used in place of α0 with the same constraints on all tile place-

ments, t is placed in the same location as before, and no other tiles of α are in the first

quadrant to the left of t, then at least one path must grow from t and stay strictly above

the x-axis and strictly to the left of t, eventually placing a tile of some type t1 ∈ T1 as the
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first tile with x-coordinate < 0, while no such path can place a tile of type t′ ∈ (T \ T1) as

the first tile with x-coordinate < 0. (Thus constituting the reading of a 1 bit.)

We refer to α0 and α1 as the bit writers, and the paths which grow from t as the bit

readers. Also, note that while this definition is specific to a bit-reader gadget in which the

bit readers grow from right to left, any rotation of a bit reader is valid by suitably rotating

the positions and directions of Definition 4.3.2.

x

y

t

t1

x

y

t

t0

Figure 4.1: Abstract schematic of a bit-reading gadget. (Left) The blue path grown from t
“reads” the bit 0 from α0 (by being allowed to grow to x < 0 and placing a tile t0 ∈ T0),
while the yellow path (which could read a 1 bit) is blocked by α0. (Right) The yellow path
grown from t reads the bit 1 from α1, while the blue path that could potentially read a 0 is
blocked by α1. Clearly, the specific geometry of the used polygonal tiles and assemblies is
important in allowing the yellow path in the left figure to be blocked without also blocking
the blue path.

4.3.3 Formal definition of bit-reading gadget

The following definition is taken from [13] and modified slightly to account for the fact

that polygonal tiles are placed in continuous, rather than discrete, space. Here and

throughout the paper, if we refer to a tile having an x (or y) coordinate i, we are referring

to its centroid being on the line x = i (or y = i) for i ∈ R.

Definition. We say that a bit-reading gadget exists for a tile assembly system T =

(T, σ, τ), if the following hold. Let T0 ⊂ T and T1 ⊂ T , with T0 ∩ T1 = ∅, be subsets

of tile types which represent the bits 0 and 1, respectively. For some producible assembly
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α ∈ A[T ], there exist two connected subassemblies, α0, α1 v α (with w equal to the maxi-

mal width of α0 and α1, i.e., the largest extent in x-direction spanned by either subassem-

bly), such that if:

1. α is translated so that α0 has its minimal y-coordinate ≤ 0 and its minimal x-

coordinate ≥ 0,

2. a tile of some type t ∈ T is placed at (w + n, h), where n, h ≥ 1, and

3. the tiles of α0 are the only tiles of α in the first quadrant to the left of t,

then at least one path must grow from t (staying strictly above the x-axis) and place a tile

of some type t0 ∈ T0 as the first tile with x-coordinate < 0, while no such path can place

a tile of type t′ ∈ (T \ T0) as the first tile with x-coordinate < 0. (This constitutes the

reading of a 0 bit.)

Additionally, if α1 is used in place of α0 with the same constraints on all tile place-

ments, t is placed in the same location as before, and no other tiles of α are in the first

quadrant to the left of t, then at least one path must grow from t and stay strictly above

the x-axis and strictly to the left of t, eventually placing a tile of some type t1 ∈ T1 as the

first tile with x-coordinate < 0, while no such path can place a tile of type t′ ∈ (T \ T1) as

the first tile with x-coordinate < 0. (Thus constituting the reading of a 1 bit.)

We refer to α0 and α1 as the bit writers, and the paths which grow from t as the bit

readers. Also, note that while this definition is specific to a bit-reader gadget in which the

bit readers grow from right to left, any rotation of a bit reader is valid by suitably rotating

the positions and directions of Definition 4.3.3.

4.3.4 Grid assemblies

As we will see in Section 4.3.5, our construction to simulate a Turing machine with a

Polygonal TAM system consisting of the polygon P will require us to string together sev-

eral bit writers which we will then read with a series of bit readers. In order to ensure that
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the path which is assembling the bit readers is placing the bit readers at the correct po-

sitions, we need to keep track of where the bit writers are located. We accomplish this

by constructing a lattice in the plane with P . We can then place our bit writers at peri-

odic positions in this lattice so that the path which is assembling the bit readers will know

where to place the bit readers.

4.3.5 Turing machine simulation

The text and figures in this section is taken from [13], which deals with polyomino shaped

tiles. In order to show that a polygon shape (i.e., a system composed of tiles of only that

shape) is computationally universal at τ = 1, we show how it is possible to simulate an ar-

bitrary Turing machine using such a polygon system, which is done in a manner logically

identical to that described for polyminoes, allowing polygons to be substituted through-

out the descriptions in this section. In order to simulate an arbitrary Turing machine, we

show how to self-assemble a zig-zag Turing machine [4, 31]. A zig-zag Turing machine at

τ = 1 works by starting with its input row as the seed assembly, then growing rows one by

one, alternating growth from left to right with growth from right to left. As a row grows

across the top of the row immediately beneath it, it does so by forming a path of single

tile width, with tiles connected by glues, which pass information horizontally through their

glues, while the geometry of the row below causes only one of two choices of paths to grow

at regular intervals, effectively passing information vertically via the geometry, using bit-

reading gadgets.

Each cell of the Turing machine’s tape is encoded by a series of bit-reader gadgets that

encode in binary the symbol in that cell and, if the read/write head is located there, what

state the machine is in. Additionally, as each cell is read by the row above, the necessary

information must be geometrically written above it so that the next row can read it. See

Figure 4.2 for an example depicting a high-level schematic without showing details of the

individual polyominoes. Figure 4.3 shows the same system after two rows have completed

growth.
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bit writer bit writer bit writer bit writer

bit writer bit writer

bit reader bit reader bit reader

bit writer bit writer bit writer bit writer

bit writer

bit reader bit reader

bit writer bit writer bit writer bit writer

bit writer

bit reader

bit writer bit writer bit writer bit writer

bit reader

bit writer bit writer bit writer bit writer

bit reader

bit writer bit writer bit writer bit writer

Figure 4.2: High-level schematic view of a zig-zag Turing machine and the bit-
reading/writing gadgets that make up each row of the simulation. The bottom shows
the seed row, consisting of bit-writer gadgets separated by spacers. Then, depicted as con-
secutive upward figures, the second row begins its growth. Yellow/blue portions depict
locations of bit-reader gadgets (for 0 and 1, respectively), which grow pink paths upward
after completing in order to grow bit writer gadgets (grey), and then gold spacers back
down to the point where the next bit reader can grow.
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bit writer bit writer bit writer bit writer

bit writer bit writer bit writer bit writer

bit writer bit writer bit writer bit writer

bit reader bit reader bit reader bit reader

bit reader bit reader bit reader bit reader

Figure 4.3: High-level schematic view of a zig-zag Turing machine and the bit-
reading/writing gadgets that make up the first two rows of simulation.

For a more specific example that shows the placement of individual, actual polyomino

tiles as well as the order of their growth, see Figure 4.4. Note that the simulation of a zig-

zag Turing machine can be performed by horizontal or vertical growth, and in any orienta-

tion.

Thus, to show our positive results, our task has become to 1) show that bit reading

gadgets exist for the claimed systems and 2) show that we can string them together. The

first task is accomplished in Section 4.8 and the grid which allows us to show the latter is

shown in Section 4.5.

Given an n-sided regular polygon P where n > 6, a Turing machine M and an input

w, Algorithm 11 shows a high-level schematic view of an algorithm that produces a sin-

gle shape Polygonal TAM system which simulates the Turing machine M on input w and

consists of tiles of shape P . Note that here, we are abstracting the way in which the math-

ematical structures appearing in the algorithm are represented. In Section 4.5, we give a

construction which implicitly defines an algorithm which we call FORM GRID. This algo-

rithm takes an integer n as input and returns a grid formed by the n-sided regular poly-

gon. Given a grid G and an n-sided regular polygon, in Section 4.9 our construction im-

plicitly gives an algorithm which we call FORM GADGETS, that takes a grid G and an
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Figure 4.4: The system of Figure 4.2 after two rows of the zig-zag simulation have been
completed (omitting the output bit writer gadgets of the second row), implemented with
“plus-sign” polyominoes. The bottom left shows 0 and 1 bit-writer and reader combina-
tions, with the writer having grown from right to left and the reader from left to right.
The bottom right shows the same, but with growth directions reversed. Grey tiles repre-
sent bit-writer gadgets. Green tiles represent the beginning of bit-reader gadgets that are
common to either bit; yellow represents the path that can grow to signify a 0 bit being
read, and blue a 1 bit. Other colors correspond to those for the gadgets used in Figure 4.2,
with numbers corresponding to the growth order of the tiles in each gadget.
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integer n, and produces a normalized bit-reading gadget. Once we have a normalized bit

reading gadget, we can use the algorithm implicitly described in Section 3.2 of [13], which

we call INITIALIZE, that produces a system, say T = (T, σ), which grows a geometric

representation of the input w. Finally, also in Section 3.2 of [13], an algorithm is implicitly

given, which we call TRANSITION TILES, that returns a set of tiles which are added to T

so that the system T is able to simulate a transition of the Turing machines M .

Data: n, M , w
Result: Tile assembly system T which simulates M on w
G ← FORM GRID(n);
NRG ← FORM GADGETS(G, n);
T = (T, σ)← INITIALIZE(n, M , w, NRG);
T ← T ∪ TRANSITION TILES(n, M , NRG);
return T ;

Algorithm 11: High level algorithm for constructing a system T which simulates M on
w.

4.4 Regular polygonal tile analysis with complex roots

In order to construct the grid assemblies and to show the correctness of the bit-reading

gadgets we must show that the grid configurations and the bit-reading gadget configura-

tions result in a valid assembly. In other words, we must show that the intersection of the

interiors of any two distinct polygonal tiles in the configuration is empty. Moreover, in or-

der to show that this assembly is indeed a valid bit-reading gadget we show that in the

presence of the bit writer tiles, only one of two bit reading assemblies (representing either a

0 or a 1) can assemble depending on the bit writer tiles.

To prove that each bit-reading gadget configuration can be used to obtain a valid as-

sembly, we must compute the distances from the center of a given polygon to the center of

another polygon. For convenience, we assume that the length of the apothem (the line seg-

ment from the center of a polygon to the midpoint of one of its sides) of all of the regular

polygons is 1
2
, so that the distance from the centers of abutting polygons is 1. Then, let t

be a polygonal tile, and let t′ be a polygonal tile that abuts t. We say that a polygonal tile
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has the standard orientation if after being translated so that it is centered at the origin, it

has a side that corresponds to a vertical line l segment with midpoint at
(
1
2
, 0
)
. See Fig-

ure 4.5a for a depiction of a polygonal tile with standard orientation that is also centered

at the origin. For a polygonal tile with an odd number of sides, we say that a polygonal

tile has negated orientation if after being translated so that it is centered at (0, 0), it is the

reflection of a tile which has standard orientation across the imaginary axis. This is de-

picted in Figure 4.5b.

(a) A polygonal tile with
standard orientation
with center (0, 0).

(b) A polygonal tile with
negated orientation with
center (0, 0).

Figure 4.5: Regular polygonal tile orientations

We enumerate the sides of t counter-clockwise starting from the side s0 corresponding

to l and ending at sn−1 where n is the number of sides of t. Similarly, if t has negated ori-

entation, then we enumerate the sides as {s′i}n−1i=0 as shown in Figure 4.5b. Then, relative

to t, if t′ abuts t along s0, then the center of t′ is (1, 0). In general, for θ = 2π
n

, if t′ abuts t

along sm, then the center of t′ is (cos (mθ) , sin (mθ)). For the calculations in the following

sections, it is convenient to identify R2 with the complex plane C so that (x, y) is identified

with x + iy. Then according to Euler’s formula, (cos (mθ) , sin (mθ)) ∈ R2 corresponds to

the complex number emiθ = cos (mθ) + i sin (mθ). In other words, when t has standard

orientation, the centers of abutting polygons correspond to complex nth roots of unity, as

the centers correspond to the roots of the complex polynomial xn − 1 = 0 (recall that n

is the number of sides of t). Now let ω = eiθ. Then these roots of unity are {ωi}n−1i=0 . See

Figure 4.7 for an example in the heptagonal tile case. Finally, notice that if t has negated
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orientation and t′ abuts t along s′m, then the center of t′ is (− cos (mθ) ,− sin (mθ)), and so

the center of t′ corresponds to −ωm.

Figure 4.6: Relative to T , the center of T1 corresponds to ω6 and the center of T2 corre-
sponds to ω6 − ω3.

Now let T be a TAS with tiles of a single regular polygon shape, and let α be an as-

sembly in T such that α contains a tile, t, with standard orientation and let t′ be any tile

in α (including t). Then, since addition (respectively, subtraction) of complex numbers cor-

responds to vector addition (respectively, subtraction) in R2, the center of t′ corresponds to

some polynomial in ω with integer coefficients. See Figure 4.6 for an example of the corre-

spondence to the centers of heptagonal tiles to such polynomials.

4.4.1 Complex roots of unity example using heptagonal tiles

In this section, we give example assemblies using heptagonal tiles by computing the dis-

tances of relevant tile centers using 7th roots of unity. Let ω = e
2π
7 . For a polygonal tile t

with standard orientation, Figure 4.7(a) depicts the complex roots of unity corresponding

to the centers of adjacent tiles. Similarly, for a polygonal tile t with negated orientation,

Figure 4.7(b) depicts the negated complex roots of unity corresponding to the centers of

adjacent tiles.

For a more in depth example of computing the centers of heptagonal tiles, consider the

following TAS. Let T be the polygonal tile assembly system consisting of 10 tile types all

with shape of a single regular heptagon. Moreover, suppose that each tile type has two
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(a) (b)

Figure 4.7: Representing the vector from the center of a heptagon (gray) to each center of
an adjacent heptagon using the 7th roots of unity.

Figure 4.8: An example of computing the centers of heptagons using polynomials of com-
plex roots of unity. The center of each heptagonal tile is labeled with a corresponding
polynomial in ω. Glue labels are not shown.
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edges with strength-1 glues, and that there are 10 glues appropriately defined so that start-

ing from a single seed tile (the gray tile in Figure 4.8), the assemble proceeds until the

closed “loop” of heptagonal tiles shown in Figure 4.8 assembles. At this point the assembly

is terminal. Call this assembly α. Then let t be the seed tile. Keeping Figure 4.7 in mind,

we can compute the centers of each polygonal tile in α relative to t. These are shown in

Figure 4.8. In fact, we can even compute that the center of t to obtain the polynomial

ω6 − ω3 + ω5 − 1 + ω4 − ω6 + ω3 − ω5 + 1 − ω4, and note that this polynomial is 0 re-

flecting the fact that α is a closed “loop” of heptagonal tiles.

4.5 Overview of polygonal grid construction

Given a regular polygon P , a junction polyform P is constructed in the following manner.

We begin with a polygon in standard position centered at the origin. Starting from side

s0, we traverse the sides of the polygon counterclockwise until we come across the edge sk

where k is such that Re(ωk) ≤ 0 and j ≥ k for all j ∈ Z such that Re(ωj) ≤ 0. We place

our next polygons of type P in non-standard positions centered at locations ωk and ωk as

shown in Figure 4.9a. Call this shape X. We create a new shape X ′ by reflecting X across

the line x = 1
2
. We then take the union of the shapes X and X ′ obtaining our junction

polyform shown in Figure 4.9b.

(a) Left half

a

ab

b

(b) Fully formed

Figure 4.9: Constructing a junction polyform.

We form a “grid” of these junction polyforms by attaching an infinite number of them

97



to each other so that the polygons with sides labeled “a” are adjacent to each other and

the polygons labeled “b” are adjacent to each other. An example “grid” of these junction

polyforms is shown in Figure 4.10.
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b

Figure 4.10: An example (where n=13) assembly formed by the system described in Sec-
tion 4.5.

4.6 Polygonal grid construction

Given a polygon P , we now show how to form a lattice consisting of P . This grid will act

as a coordinate system for our polygonal TAM systems and allow us to string several bit

reading gadgets together so that we may simulate any Turing machine on any input. In

order to do this, we first show that we can construct a single polyform from P which can

“grid” the plane. It will then follow that we can form a lattice in the plane with P by plac-

ing polygons at the same locations and with same orientations as the polygons composing

the grid formed with polyforms.

We begin by describing the construction of the polyform which we will use to construct

our grid. We then show that this is indeed a valid polyform. Next, we shown that there

exists a polygonal system which can tile the grid formed by the polyform.

Before we begin our construction, it is necessary to introduce a couple of definitions.

Definition. Let P be a regular polygon. A polyform P is a connected shape in the plane
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which is constructed by combining a finite number of copies of P so that the following re-

quirements are met:

1. the interior points of all instances of P are disjoint

2. every instance of P completely shares a common edge with some other instance of P .

The bounding rectangle B around a polyform P is the rectangle with minimal area that

contains the interior points of P .

Junction polyforms

Given a regular polygon P , a junction polyform P is constructed in the following manner.

We begin with a polygon which has standard orientation centered at the origin. Starting

from side s0, we traverse the sides of the polygon counterclockwise until we come across

the edge sk where k is such that Re(ωk) <= 0 and j ≥ k for all j ∈ Z such that

Re(ωj) <= 0. We place our next polygons of type P with negated orientations centered at

locations ωk and ωk as shown in Figure 4.11a. Call this shape X. We create a new shape

X ′ by reflecting X across the line x = 1
2
. We then take the union of the shapes X and X ′

obtaining our junction polyform shown in Figure 4.11b. We call k the polyform constant.

We now prove that this is indeed a valid polyform. First, we begin with some observa-

tions.

Observation 3. For any n ∈ N with n > 2, there exists a point p in the nth roots of unity

such that −
√
3
2
≤ Re(p) ≤ 0.

For 3 < n < 8, this observation is mechanical. If n >= 8, the observation must hold

since the nth roots of unity are evenly spaced around the unit circle.

Observation 4. Let P be a regular polygon with n sides in standard orientation. Also, let

k ∈ N ∪ {0} be such that k ≤ n and Im(−ωk) ≤ 0. Denote the vertices that compose side

sk by ~vl and ~vr where ~vl is the counterclockwise most vertex and ~vr is the clockwise most

vertex. Set ~v = ~vr − ~vl. Then the following hold:
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(a) The left half of a
junction polyform.

6

4

52

1

3

(b) The fully formed
junction polyform.

Figure 4.11: The construction of a junction polyform.

1. if Re(−ωk) > 0, then Im(~v) > 0, and

2. if Re(−ωk) ≤ 0, then Im(~v) ≤ 0.

This observation falls out of the fact that ωk and ~v must be orthogonal.

Observation 5. Let k be the polyform constant for some polyform composed of regular

polygons with n sides. Let P be a regular polygon with n sides centered at the origin in

standard orientation. Then

1. the clockwise most vertex that composes s′k is a southernmost point in P , and

2. the location of the counterclockwise most vertex that composes sk, call this point ~z,

is such that Im(~z) ≥ 0.

To see the first part of this observation, note that Re(−ωk−1) < 0. This along with the ob-

servation 4 implies that the clockwise most vertex of side s′k−1 must lie to the north of the

clockwise most vertex that composes s′k. Note that the clockwise most vertex of side s′k+1

also must not lie to the south of the counterclockwise most vertex of side s′k. Consequently,
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because P is convex, the clockwise most vertex that composes s′k is a southernmost point

in P .

The second part of this observation follows from Observation 3 and the fact that a reg-

ular polygon in standard orientation centered at the origin will always have a vertex with

an absent imaginary part and a real part that is less than 0.

Lemma 10. Let P be a regular polygon, and let k be the junction polyform constant ob-

tained from the junction polyform composed of P . Then the sets of interior points of the

following polygons are pairwise disjoint: 1) the polygon in standard orientation centered at

the origin, 2) the polygon with negated orientation centered at ωk, and 3) the polygon with

negated orientation centered at ωk.

Proof. It follows from the discussion in Section 4.4 that the interior points of the polygon

centered at the origin and the polygon centered at ωk are disjoint. Also since the complex

conjugate of a root of unity is also a root of unity, it follows from the discussion in Sec-

tion 4.4 that the interior points of the polygon centered at the origin and the polygon cen-

tered at ωk are disjoint.

It is left to show that the interior points of the two polygons centered at the roots of

unity are disjoint. To see this, first note that it follows from Observation 5 that no interior

point of the polygon centered at the location ωk has real part that is less than or equal to

0. Indeed, first note that the clockwise most vertex of side s′k of the polygon centered at

location ωk will overlap the counterclockwise most vertex of side sk of the polygon centered

at the origin by construction. It follows immediately from Observation 5 that all interior

points in the polygon centered at ωk have imaginary parts greater than 0. Since the poly-

gon centered at ωk is a reflected copy of the polygon centered at ωk, it follows that the in-

terior points in this polygon have imaginary parts less than 0. Consequently, the interior

points of the two polygons are disjoint.

Lemma 11. Given a regular polygon P , the junction polyform constructed above is indeed
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a valid polyform.

Proof. To see that the junction polyform constructed above is a valid polyform, we check

that all of the requirements in the definition of polyform are met. Since the center of poly-

gons labeled “2” and “3” are each located at one of the nth roots of unity, it follows from

the discussion in Section 4.4 that polygons labeled “1” and “2” as well as polygons labeled

“1” and “3” are joined along a common edge and share that edge entirely. This same line

of reasoning shows that the polygon labeled “4” is joined along a common edge and shares

that edge entirely with the polygon labeled “1”. Since the shape formed by polygons la-

beled “4”, “5” and “6” is a reflection of the left side of the shape, all of the polygons are

joined along a common edge and shares that edge entirely. It is readily seen from this ar-

gument that our shape is also connected.

It is now left to show that no two polygons in the shape overlap. We denote the poly-

form constant obtained from P by k. It follows from Lemma 10 that the interior points of

the polygons labeled “1”, “2”, and “3” are pairwise disjoint. Since, the polygons labeled

“4”, “5”, and “6” are a reflection of the polygons labeled “1”, “2”, and “3”, they too are

pairwise disjoint. To show that the polygons in the two reflected halves of the shape are

pairwise disjoint, first observe that the centers of the polygons labeled “2” and “3” have

real parts less than or equal to the real part of the polygon labeled “1”. Consequently, af-

ter the reflection and “attachment” of the two halves, the polygons labeled “2” and “5”

and the polygons labeled “3” and “6” have no less distance between each other than the

polygons labeled “1” and “4”. Since the polygons labeled “1” and “4” have disjoint inte-

rior points, it follows that the polygons mentioned above have disjoint interior points. Con-

sequently, no two polygons in the shape overlap.
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Polygonal Grid Technical Lemmas

The following lemma will assist us in proving Lemma 13. Informally, it states that the

bounding rectangle of the junction polyform described above and shown in Figure 4.11b

will “touch” sides s′0 of the polygons labeled “2” and “3” and sides s0 of the polygons la-

beled “5” and “6”. This will imply that we can attach the polyform junctions by attaching

sides s0 of polygons labeled “5” and “6” to sides s′0 of polygons labeled “5” and “6”.

Lemma 12. Consider the polygons composing the junction polyform P constructed above

from some regular polygon P (shown in Figure 4.11b). Also, let B be the bounding rect-

angle around P . Let E be the set of points consisting of the union of the following sets of

points: 1) the set of boundary points on side s′0 of the polygon labeled “2”, 2) the set of

boundary points on side s′0 of the polygon labeled “3”, 3) set of boundary points on side

s0 of the polygon labeled “5”, and 4) the set of boundary points on side s0 of the polygon

labeled “6”. Then E ⊂ E ∩B.

Proof. We prove that the boundary points on side s0 of the polygons labeled “4” and “6”

in Figure 4.11b lie on the bounding rectangle B. The proof that the boundary points on

side s′0 of the polygons labeled “2” and “3” lie on the bounding rectangle will then follow

from a similar argument.

First, observe that for a polygon P with standard position centered at the origin, the

boundary points on side s0 are the easternmost points contained in the polygon. Further-

more, all of these points lie on the line x = 1
2
. Now note that by our construction of the

junction polyform, one of the tiles labeled “5” and “6” will contain the easternmost point

of the polyform. Indeed, let x4 be the real part of the point in the center of the polygon

labeled “4”. Since our construction ensures the real part of the point in the center of the

polygon labeled “5” is of the form x4 + r for r ∈ [0,
√
3
2

], the polygon labeled “5” will con-

tain a point as east or further east than the points in the polygon labeled “4”.

We claim that the polygons labeled “5” and “6” have centers with equal real parts.

To see this, recall that the centers of the polygons labeled “2” and “3”have the same real
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parts since they are conjugates of each other. Since the polygons labeled “5” and “6” are

in the same position relative to each other as the polygons labeled “2” and “3” just re-

flected across the line y = 1
2
i, it follows that the polygons labeled “5” and “6” have equal

real parts.

From our construction of the junction polyform, it is clear that none of the polygons

labeled “1”, “2”, or “3” have a point that is an easternmost point of the polyform. Thus,

the s0 sides of the polygons labeled “5” and “6” are all easternmost points of the polyform.

Consequently, these points lie on the bounding box B.

Observation 6. Let P be a regular polygon, P be a polyform junction formed from P ,

B be the bounding rectangle for P , and let k be the polyform constant. Furthermore,

let hb be the height of the bounding rectangle and let hw be the width of the bounding

rectangle. Then, the following constraints hold for hb and hw: 1) hb ≤ 4 Im(ωk) and 2)

hw = 2 Re(−ωk + 1).

Figure 4.12 shows the dimensions of the polyform. Note that the width of the polyform

is clearly 2 Re(−ωk + 1). To see that hb ≤ 4 Im(ωk), note that by the way we constructed

the junction polyform no interior points of the polyform can lie on the dotted lines shown

in Figure 4.12. Since the distance between these two dotted lines is 4 Im(ωk), it must be

the case that hb ≤ 4 Im(ωk).

The next lemma states that given any regular polygon, we can form a a periodic grid of

the plane.

Constructing the polygonal grid

Lemma 13. Given a regular polygon P , there exists a directed, polygonal tile system T =

(T, σ) (where the seed is centered at location (0, 0) and the tile set T contains a tile t) and

vectors ~v, ~w ∈ Z2, such that T produces the terminal assembly α, which we refer to as a

grid, with the following properties. (1) Every position in α of the form c1~v + c2 ~w, where

c1, c2 ∈ Z, is occupied by the tile t, and (2) for every c1, c2 ∈ Z, the position in Z2 of the
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Figure 4.12: The vectors showing the dimensions of the polyforms.

a

ab

b

Figure 4.13: The preformed assembly which is composed of the tile set of the system de-
scribed in the proof of Lemma 13. The preformed assembly has two glues labeled “a” and
“b” placed as shown.
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Figure 4.14: An assembly formed by the system described in the proof of Lemma 13.
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(a) The path of vectors which yields
the vector ~v.
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(b) The path of vectors which yields
the vector ~w.

Figure 4.15: Choosing the vectors ~v and ~w.
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form c1~v + c2 ~w is occupied by the tile t.

Proof. For the first part of this proof, we think of our polygonal tile system as first forming

the junction polyform P before attaching it to our assembly. Later on in the proof, we will

see that this is a valid assumption. Our tile set T , will consist of tiles of shape P that form

the junction polyform with the glues labeled “a” and “b” exposed as shown in Figure 4.13.

Note that for the first part of the proof we are essentially thinking of the assembly shown

in Figure 4.13 as a tile. Thus, we refer to the junction polyform as a tile and we refer to

a polygon composing the polyform as a pixel. More formally, a pixel in the polyform is a

location in the complex plane given by the center of a tile in the polyform shown in Fig-

ure 4.11 (where we assume that the center of the tile labeled “1” is placed at the origin).

To begin, we position our single seed so that the polygon labeled “1” in Figure 4.11b is

centered at the origin. An assembly formed by such a system is shown in Figure 4.14.

Let P be a junction polyform composed of the polygon P and let k be the polyform

constant as discussed in the construction of the junction polyform. Set ~v = −ωk+(1+0i)−

−ωk + (1 + 0i) = −2ωk + 2(1 + 0i) and ~w = −ωk + (1 + 0i) − ωk + (1 + 0i) − ωk + ωk =

−2ωk + 2(1 + 0i). The intuition behind choosing these vectors is shown in Figure 4.15a and

Figure 4.15b.

The following terminology is borrowed from [13]. Define P [i, j] = p + i · ~v + j · ~w for

i, j ∈ Z2. Here, p acts as a distinguished pixel that we use as a reference point. Then, for

two polyforms P [i, j] and P [k, l], we say that these polyforms are neighboring if i = k and

|j − l| = 1 or j = l and |i− k| = 1.

As in [13] we prove the following claim.

Claim: P [i, j] for all i, j ∈ Z2 defines a grid of non-overlapping polyforms such that any

two neighboring polyforms P [i, j] and P [k, l] contain pixels with a shared edge. Such a grid

of polyforms is shown in Figure 4.14.

To begin, we show that if i 6= k or j 6= l, then the interior points of P [i, j] and P [k, l]

are disjoint. Let a = (k − i) and b = (l − j). In order to show that P [i, j] does not overlap
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P [k, l], we show that 1)|Re(a~v + b~w)| ≥ |2 Re(−ωk + 1)| or 2) | Im(a~v + b~w)| ≥ |4 Im(ωk)|.

Since, by Lemma 6, these are the dimensions of the bounding box of P , it will then follow

that their interiors are disjoint.

We consider three cases 1) a+ b > 0, 2) a+ b = 0, and 3) a+ b < 0. First note that

a~v + b~w = a(−2ωk + 2(1 + 0i)) + b(−2ωk + 2(1 + 0i))

= −2(aωk + bωk) + 2(a+ b)

For case 1, observe that

|Re(a~v + b~w)| = |Re(−2(aωk + bωk) + 2(a+ b))|

= | − 2(aRe(ωk) + bRe(ωk)) + 2(a+ b)|

= | − 2 Re(ωk)(a+ b) + 2(a+ b)|

≥ | − 2 Re(ωk) + 2|.

In the case that a+ b = 0, we have

| Im(a~v + b~w)| = | Im(−2(aωk + bωk) + 2(a+ b))|

= | Im(−2(aωk + bωk))|

= | Im(−2((−b)ωk + bωk))|

= | − 2(b)(Im(−ωk) + Im(ωk))|

= | − 2(b)(2 Im(ωk))|

≥ | − 4 Im(ωk)|.

Although case 3 is similar to case 1, we include it here for completeness. If a + b < 0,
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notice that

|Re(a~v + b~w)| = |Re(−2(aωk + bωk) + 2(a+ b))|

= | − 2(aRe(ωk) + bRe(ωk)) + 2(a+ b)|

= | − 2 Re(ωk)(a+ b) + 2(a+ b)|

≥ |2 Re(ωk)− 2|.

Now suppose that P [i, j] and P [k, l] are neighboring polyforms. First, suppose that i =

k and |j − l| = 1. We consider the case where l = j + 1 and note that the case where

l = j − 1 is similar. Consider the polygons in the lower left hand corner of the bounding

rectangle of the polyforms and denote this polygon p. Note that the polygon p in P [k, l]

lies at a position

(k~v + l ~w)− (i~v + j ~w) = (i~v + (j + 1)~w)− (i~v + j ~w)

= ~w

relative to the polygon p in P [i, j].

Now, notice that P [i, j] has a polygon that lies at position −ωk + (1 + 0i) − ωk relative

to p in P [i, j](this is the polygon that lies in the bottom right hand corner of the bounding

box), and P [k, l] has a polygon that lies at position −ωk + ωk relative to p in P [k, l] (this is

the polygon that lies in the top left hand corner of the bounding box). Call the first pixel

described p′ and the latter p′′. Observe that by the construction of the junction polyform,

p′ has standard orientation and p′′ has negated orientation. Furthermore, observe that p′′

lies at location

(~w + (−ωk + ωk)− (−ωk + (1 + 0i)− ωk)

= −2ωk + 2(1 + 0i) + (−ωk + ωk)− (−ωk + (1 + 0i)− ωk)

= (1 + 0i)

109



relative to p′. Since p′ has standard orientation, p′′ has negated orientation and p′′ lies at

position (1 + 0i) relative to p′, it follows from the discussion in Section 4.4 that polygon p′

and polygon p′′ completely share a common edge.

Conversely, assume that j = l and |i − k| = 1. We consider the case where k = i − 1,

and, once again, note that the case where k = i + 1 is similar. Notice that the polygon p in

P [k, l] lies at a position

(k~v + l ~w)− (i~v + j ~w) = ((i− 1)~v + j ~w)− (i~v + j ~w)

= −~v

relative to the polygon p in P [i, j].

Denote the polygon that lies at position −2ωk + (1 + 0i) relative to p in P [k, l] by p′

(this is the polygon that lies in the top right hand corner of the bounding box). Observe

that, relative to polygon p in P [i, j], the polygon p′ in P [k, l] lies at position

−~v + (−2ωk + (1 + 0i)) = −(−2ωk + 2(1 + 0i)) + (−2ωk + (1 + 0i))

= −(1 + 0i).

Since p in P [i, j] has negated orientation, p′ in P [k, l] has standard orientation, and p′ lies

at a position −(1 + 0i) relative to p, it follows from the discussion in Section 4.4 that poly-

gon p and polygon p′′ completely share a common edge.

Now, note that since none of the “polyform junction tiles” overlap, there are not any

race conditions. Consequently, we can build the assembly described above by attaching one

polygon tile at a time (instead of an assembly of polygons). The seed of our assembly will

be the southwest tile of P [0, 0].
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4.6.1 Grid notation

For some polygon P , we let gα denote the terminal assembly of the tile system given in

Lemma 13 (i.e. the grid assembly obtained from P ). Furthermore, for a tile system T of

shape P , α ∈ A[T ], and t a tile of α centered at the location ~x, we say that t is on grid

with respect to gα if there exists a tile t′ ∈ gα such that t′ is centered at the location ~x and

has the same orientation of t. If there does not exist such a t′, then we say that t is off grid

with respect to gα.

4.6.2 Normalized bit-reading gadgets

Let a bit reading gadget have the properties that: 1)the tile from which the bit writer be-

gins growth is on grid, 2) the last tile to be placed in the bit writer is on grid, and 3) the

tile t from which the bit reader grows is also placed on grid. We call such a bit-reading

gadget an on grid bit-reading gadget. A pair of normalized bit-writers αu0 and αu1 have the

property that 1) αu0 and αu1 are the two bit writers for some bit reading gadget and 2) the

location and position of the first tile placed in the two assemblies is the same as well as the

location and position of the last tile placed. A normalized bit-reading gadget is an on grid

bit-reading gadget with normalized bit-writers.

4.7 Polygons which “can not compute” at temperature 1

In this section, we prove Theorem 6 by showing a set of polygons for which it is impossible

to create bit-reading gadgets at τ = 1, namely regular polygons with less than 7 sides (i.e.

equilateral triangles, regular pentagons, and regular hexagons), as this was already shown

to be true for squares in [13]. This provides a sharp dividing line, since we have shown that

all regular polygons with ≥ 7 sides can form bit reading gadgets, and thus are capable of

universal computation, at τ = 1.

We now restate the Theorem for completeness and give its proof.
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Theorem 7. Let n ∈ N be such that 3 ≤ n ≤ 6. Then, there exists no temperature

1 single-shaped polygonal tile assembly system T = (T, σ, 1) where for all t ∈ T , t is a

regular polygon with n sides, and a bit-reading gadget exists for T .

To prove Theorem 7, we break it into two main cases and prove lemmas about (1) equi-

lateral triangles and hexagons, and (2) pentagons.

4.7.1 Equilateral triangles, squares, and regular hexagons

Equilateral triangles, squares, and regular hexagons are all capable of tessellations of the

plane. That is, using tiles of only one of those shapes it is possible to tile the entire plane

with no gaps. (As a side note, these are the only regular polygons which can do so.) In

a system consisting of tiles of only one of those shapes, all tiles must be placed into po-

sitions aligning with a regular grid (i.e. no tile can be offset or rotated from the grid). It

was shown in [13] that squares cannot form bit-reading gadgets at τ = 1, and because of

the tessellation ability of equilateral triangles and regular hexagons and their restriction to

fixed grids, the proof of [13] can be extended in a straightforward way to also prove that

equilateral triangles and regular hexagons cannot form bit reading gadgets at τ = 1. Thus,

the following proof is nearly identical to that for squares of [13].

Lemma 14. There exists no temperature 1 polygonal tile assembly system T = (T, σ, 1)

where for all t ∈ T , t is an equilateral triangle, and a bit-reading gadget exists for T .

Lemma 15. There exists no temperature 1 polygonal tile assembly system T = (T, σ, 1)

where for all t ∈ T , t is a regular hexagon, and a bit-reading gadget exists for T .

Proof. We prove Lemmas 14 and 15 by contradiction. Also, since each will use exactly

the same arguments, we will prove both simultaneously and note the single location in

the proof where the shapes of the tiles is relevant. Therefore, assume that there exists a

single-shape system T = (T, σ, 1) such that T has a bit-reading gadget. (Without loss of

generality, assume that the bit-reading gadget reads from right to left and has the same
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orientation as in Definition 4.3.2.) Let (tx, ty) be the coordinate of the tile t from which the

bit-reading paths originate (recall that it is the same coordinate regardless of whether or

not a 0 or a 1 is to be read from α0 or α1, respectively). By Definition 4.3.2, it must be the

case that if α0 is the only portion of α in the first quadrant to the left of t, then at least

one path can grow from t to eventually place a tile from T0 at x = 0 (without placing a

tile below y = 0 or to the right of (tx − 1)). We will define the set P0 as the set of all such

paths which can possibly grow. Analogously, we will define the set of paths, P1, as those

which can grow in the presence of α1 and place a tile of a type in T1 at x = 0. Note that

by Definition 4.3.2, neither P0 nor P1 can be empty.

Since all paths in P0 and P1 begin growth from t at (tx, ty) and must always be to the

left of t, at least the first tile of each must be placed in location (tx − 1, ty). We now con-

sider a system where t is placed at (tx, ty) and is the only tile in the plane (i.e. neither α0

nor α1 exist to potentially block paths), and will inspect all paths in P0 and P1 in paral-

lel. If all paths follow exactly the same sequence of locations (i.e. they overlap completely)

all the way to the first location where they place a tile at x = 0, we will select one that

places a tile from T0 as its first at x = 0 and call this path p0, and one which places a tile

from T1 as its first at x = 0 and call it p1. This situation will then be handled in Case

(1) below. In the case where all paths do not occupy the exact same locations, then there

must be one or more locations where paths branch. Since all paths begin from the same

location, we move along them from t in parallel, one tile at a time, until the first location

where some path, or subset of paths, diverge. At this point, we continue following only the

path(s) which take the clockwise-most branch. We continue in this manner, taking only

clockwise-most branches and discarding other paths, until reaching the location of the first

tile at x = 0. (Figures 4.16a and 4.17a show examples of this process.) We now check to

see which type(s) of tiles can be placed there, based on the path(s) which we are still fol-

lowing. We again note that by Definition 4.3.2, some path must make it this far, and must

place a tile of a type either in T0 or T1 there. If there is more than one path remaining,
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since they have all followed exactly the same sequence of locations, we randomly select one

and call it p′. If there is only one, call it p′. Without loss of generality, assume that p′ can

place a tile from T0 at that location. This puts us in Case (2) below.

x

y

t

p'

(a) Example sets P0 and P1, with p′

traced with a red line. Red triangles
represent branching points of paths,
gold triangles represent overlapping
points of different branches.

blocked by p'

x

y

t

p'

(b) An example of the growth of p′

(traced with a red line) blocked by
α1. By first letting as much of p′

grow as possible, it is guaranteed
that all other paths must be blocked
from reaching x = 0.

Figure 4.16: Failed bit-readers with equilateral triangles.
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(a) Example sets P0 and P1, with p′

traced with a red line. Red hexagons
represent branching points of paths,
gold hexagons represent overlapping
points of different branches.

x

y

t

blocked by p'

p'

(b) An example of the growth of p′

(traced with a red line) blocked by
α1. By first letting as much of p′

grow as possible, it is guaranteed
that all other paths must be blocked
from reaching x = 0.

Figure 4.17: Failed bit-readers with regular hexagons.

Case (1) Paths p0 and p1 occupy the exact same locations through all tile positions and

the placement of their first tiles at x = 0. Also, there are no other paths which can grow

from t, so, since by Definition 4.3.2 some path must be able to complete growth in the
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presence of α0, either must be able to. Therefore, we place α0 appropriately and select an

assembly sequence in which p1 grows, placing a tile from T1 as its first at x = 0. This is a

contradiction, and thus Case (1) cannot be true.

Case (2) We now consider the scenario where α1 has been placed as the bit-writer ac-

cording to Definition 4.3.2, and with t at (tx, ty). Note that path p′ must now always, in

any valid assembly sequence, be prevented from growing to x = 0 since it places a tile from

T0 at x = 0, while some path from P1 must always succeed. We use the geometry of the

paths of P1 and path p′ to analyze possible assembly sequences.

We create a (valid) assembly sequence which attempts to first grow only p′ from t (i.e.

it places no tiles from any other branch). If p′ reaches x = 0, then this is not a valid bit-

reader and thus a contradiction. Therefore, p′ must not be able to reach x = 0, and since

the only way to stop it is for some location along p′ to be already occupied by a tile, then

some tile of α1 must occupy such a location. This means that we can extend our assem-

bly sequence to include the placement of every tile along p′ up to the first tile of p′ occu-

pied by α1, and note that by the definition of the regular grid of equilateral triangle tiles,

or of regular hexagon tiles, some tile of p′ must now have a side adjacent to some tile of

α1. At this point, we can allow any paths from P1 to attempt to grow. However, by our

choice of p′ as the “outermost” path due to always taking the clockwise-most branches,

any path in P1 (and also any other path in P0 for that matter) must be surrounded in the

plane by p′, α1, and the lines y = 0 and x = tx (which they are not allowed to grow be-

yond), and thus cannot be connected and extend beyond that boundary. (Examples can be

seen in Figures 4.16b and 4.17b.) Therefore, no path from P1 can grow to a location where

x = 0 without colliding with a previously placed tile or violating the constraints of Defini-

tion 4.3.2. (This situation is analogous to a prematurely aborted computation which termi-

nates in the middle of computational step.) This is a contradiction that this is a bit-reader,

and thus none must exist.
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4.7.2 Regular pentagons

Because regular pentagons don’t tessellate the plane, the proof that they can’t form bit-

reading gadgets is slightly different than for equilateral triangles, squares, and regular

hexagons. However, the fact that they can only bind in two relative rotations and the ra-

tio of their side lengths to perimeters ensure that they are still unable to form bit-reading

gadgets due to the fact that it is still impossible for one path of regular pentagons to be

blocked from continued growth without trapping all other paths on one side. This means

that the “outermost” path, along with any part of the bit-writer which blocks its full

growth, can always prevent any inner paths from sufficient growth.

Lemma 16. There exists no temperature 1 polygonal tile assembly system T = (T, σ, 1)

where for all t ∈ T , t is a regular pentagon, and a bit-reading gadget exists for T .

Proof. The proof of Lemma 16 is nearly identical to that for Lemmas 14 and 15, with

the only slight change being due to the fact that regular pentagons aren’t constrained to

a single fixed grid. First, because of this we will slightly adapt Definition 4.3.2 so that

rather than requiring tiles to be at specific discrete coordinates, they instead are con-

strained by lines in R2. For instance, we no longer require the bit-reader to grow a path

to x-coordinate 0, but instead just beyond a set vertical line x = r for some r ∈ R. (with-

out loss of generality we’ll assume x = r = 0 for that constraint.) This change is merely

a technicality and does not affect the proof, and therefore, we will use the previous proof

up to the point where Case (2) makes the argument that the regular grid of tiles ensures

that the last tile which can be placed along p′ must have an edge adjacent to a tile of α1.

Due to the lack of such a grid, we will now only be able to guarantee that some portion of

the next position of p′, i.e. the location where α1 first prevents the addition of another tile

(which we will now refer to as location p′b), is occupied by a tile of α1 (whose location we

will now refer to as p′α. Referring to the location of the last tile which can be placed on p′

as p′end, by the fact that p′ would have been a connected path which included p′b, and that

the tile at pα prevents its placement, the location p′b must consist of the area of a tile ori-
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ented so that it has an edge adjacent to p′end. Also, although the tiles at p′α and pend need

not share an adjacent edge and there may in fact be a gap between them, p′α must overlap

with p′b. (See Figure 4.18b for an example.)

x

y

t

p'

(a) Example sets P0 and P1, with
p′ traced with a red line. Red pen-
tagons represent branching points
of paths, gold hexagons represent
overlapping points of different
branches.

x

y

t

(b) An example of the growth of p′

(traced with a red line) blocked by
α1. By first letting as much of p′

grow as possible, it is guaranteed
that all other paths must be blocked
from reaching x ≤ 0. The location
outlined in dashed red represents the
location of the first tile of p′ which is
blocked by α1.

Figure 4.18: Failed bit-readers with regular pentagons.

At this point, we continue the direction of the previous proof and allow any paths from

P1 to attempt to grow. However, by our choice of p′ as the “outermost” path due to al-

ways taking the clockwise-most branches, any path in P1 must be surrounded in the plane

by p′, α1, and the lines y = 0 and x = tx (which they are not allowed to grow beyond),

with the only discontinuity being the possible gap consisting of the portion of p′b which is

not occupied by the tile at p′α. We prove that this gap must be insufficient to allow a path

p from P1 to grow through using a simple case analysis. A key feature of regular pentago-

nal tiles is the fact that although their relative offsets are not fixed on a grid, their relative

rotations are constrained to a total of only two orientations while allowing them to be con-

nected to the same assembly.

To prove the gap is insufficient for p, we perform a case analysis as outlined in Fig-

ure 4.19. We first note that the blocker may never occupy space inside the black diagonal
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2

1

3

(a) Tile 2 has the same orien-
tation as p′b and attaches at an
offset slightly below

2

1

(b) Tile 2 has the same orien-
tation as p′b and attaches at an
offset slightly above

3

2
1

(c) Tile 2 has the opposite orien-
tation as p′b and attaches with its
nearest vertex below the bottom
corner of p′end and p′b

3

2
1

(d) Tile 2 has the opposite orien-
tation as p′b and attaches with its
nearest vertex above the bottom
corner of p′end and p′b

Figure 4.19: A case analysis of why one path, p′, of regular pentagonal tiles cannot be
blocked while allowing another, p, to grow through a gap. Let the yellow tile be at p′end,
the location of the last placed tile of path p′, the grey represent some blocking tile of α1,
at p′α (which may be in either possible orientation), and the red dashed location be p′b,
the first tile of p′ prevented from being placed. The blue tiles represent a portion of path
p which attempts to grow from below to above p′, with the tiles labeled in order of their
placements.
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shown across a portion of the red dashed box, since that would leave a maximum distance

of one side length for the gap throughout a portion of the gap, and for any pair of regular

pentagonal tiles, the narrowest location is never less than that, occurring at the boundary

of two adjacent tiles and immediately increasing on both sides of that. We now analyze the

various cases.

In Figure 4.19a, having the tile at position 2 at the same orientation but an offset be-

low p′b requires that that tile fill the bottom edges of the location p′b, leaving the blocker

only the top left edge through which to block. However, in order to allow the tile at lo-

cation 3 to bind to the top right side, the tile at location 2 must be offset up and left in

order not to collide with the yellow tile at p′end (since the width of the pair of adjacent tiles

increases on both sides of their adjacent edge), forcing it (or a portion of tile 3) to overlap

with the blocker. In order for the tile at location 3 to instead bind to the top left side of

the tile at location 2, it would have to overlap with the blocker. This means that p would

be blocked and the bit-reader fails, so this case must not be true.

In Figure 4.19b, having the tile at position 2 at the same orientation but an offset

above p′b requires that that tile fill the entire right side of p′b in order to avoid the yellow

tile at p′α, thus making it collide with the blocker and the bit-reader again fail.

In Figure 4.19c, having the tile at position 2 at the opposite orientation as p′b but with

its southeast corner below the southwest corner of the tile at p′end forces the tiles at posi-

tions 2 and 3 to cover all of the left side of p′b and thus collide with the blocker, once again

making the bit-reader fail.

In Figure 4.19d, having the tile at position 2 at the opposite orientation as p′b with with

its southwestern corner above the southwest corner of the tile at p′end again requires that

the tiles at positions 2 and 3 to cover the entire left side of p′b, colliding with the blocker

and making the bit-reader fail.

The cases discussed, along with all others which are the same up to rotation, prevent

the growth of path p. Therefore, no path from P1 can grow to a location past the line
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x ≤ 0 without colliding with a previously placed tile or violating the constraints of Defini-

tion 4.3.2. (This situation is analogous to a prematurely aborted computation which termi-

nates in the middle of computational step.) This is a contradiction that this is a bit-reader,

and thus none must exist.

The combination of Lemmas 14, 15, 16, and Theorem 6.1 of [13] suffice to prove Theo-

rem 7.

4.8 Bit-reading gadgets

In this section, we give configurations that are then used to construct bit-reading gad-

gets for 1) single shape systems with regular polygonal tiles with 7 or more sides (See Sec-

tion 4.8.1.), 2) 2-shaped systems with regular polygonal tiles for pairs of distinct polygons

with 3 to 6 sides (See Section 4.8.2.), and 3) single shaped systems with equilateral polyg-

onal tiles with 4, 5, or 6 sides (See Section 4.8.3.). Finally, in Section 4.8.4, we give a bit-

reading gadget for a single shaped system with tiles having the shape of an obtuse isosceles

triangle. All of the configurations presented here will be used to obtain bit-reading gadgets

that read bits from right to left. It should be noted that for all of the polygons considered

here, configurations that yield left to right bit-reading gadgets can be obtained by simply

reflecting the corresponding right to left configurations.

4.8.1 Single shape systems with regular polygonal tiles

In the following subsections, we give configurations that will be used to construct bit-

reading gadgets for single shape systems with regular polygonal tiles with 7 or more sides.

While the configurations presented here do not technically fit Definition 4.3.2, we describe

how to turn these configurations into bit-reading gadgets that do conform to that defini-

tion. In this section, we are concerned with showing how to use the geometry of polygonal

tiles to ensure that our bit-reading gadgets properly read and write bits as described in
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Definition 4.3.2. Therefore, combining the results of this section with Sections 4.3-4.5, we

show the following lemma.

Lemma 17. Let Pn be a regular polygon with n sides. Then, for all n ≥ 7, there exists a

single-shaped system Tn = (Tn, σn) with shape Pn such that a bit-reading gadget exists for

Tn.

In order to prove Lemma 17, we first consider the cases where n is 7, 8, 9, 13, or 14,

since these cases are handled by giving a specific bit-reading gadget for each case. Second,

we give bit-reading gadgets for the cases where n is 10, 11, or 12. These cases are simpler

than the former cases and are handled using a more generic approach. Finally, we give the

bit-reading gadgets for the cases where n ≥ 15. These cases are handled by using a single

generic scheme for constructing the bit-reading gadgets for each case.

Tiles with 7, 8, 9, 13, or 14 sides

In this section we give a description of the bit-reading gadget for heptagonal tiles and give

a brief example of a calculation that shows that certain tiles do not overlap. Figure 4.20

gives a depiction of a bit-reader for heptagonal tiles.

(a) A 0 is read, and a 1 cannot be read
by mistake since the tile B prevents a
heptagonal tile from attaching via the
glue labeled g1.

(b) A 1 is read. This time a 0 cannot be
read by mistake since the tile B prevents
growth of a path of heptagonal tiles that
attach via the glue labeled g0. Note that
some of this path may form, but B pre-
vents the entire path from assembling,
and thus prevents a 0 from being read.

Figure 4.20: A connected bit-gadget consisting of heptagonal tiles.
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In Figure 4.20, the gray tiles represent the bit writer tiles (representing either 0 or 1),

while the white tiles are the bit reader tiles. In our construction, we ensure that we have

an assembly sequence such that the gray tiles of a bit-reading gadget bind before any white

tiles. Figure 4.20b depicts the case in which a 1 has previously been written and is then

read. In this case, we observe that the bit writer tiles prevent the formation of the path of

tiles depicted in 4.20a from R to T1, ensuring that a tile binds to the glue g1, resulting in a

1 being read. Moreover, since the configuration of Figure 4.20b consists of abutting heptag-

onal tiles with non-overlapping interiors, we see that with appropriately defined glues, the

bit writer configuration and the bit reader configuration are valid assemblies. We can also

see that no two tiles of the bit writer configuration and the bit reader configuration have

overlapping interiors; this ensures that these two assemblies can be part of the same larger

assembly.

Similarly, Figure 4.20a depicts the case in which a 0 has previously been written and

is being read. Though much of this configuration consists of abutting heptagonal tiles

with non-overlapping interiors, it is not clear that all of the heptagonal tiles have non-

overlapping intersection. For example, it is indeed the case that R and T2 have non-

overlapping intersection (It turns out that they do share a portion of an edge.) but it is

not clear that the interiors of these tiles do not overlap on some tiny set of points. More-

over, it is not clear that a tile could not attach to the glue g1. Therefore, we must calcu-

late the distance between these tiles to show that, with appropriately defined glues, the bit

reader configuration is a valid assembly, and that no two tiles of the bit writer configura-

tion and the bit reader configuration have overlapping interiors.

Referring to Figure 4.20a, we will first show that the tile labeled R does not prevent

the binding of the tile labeled T1 or the tile labeled T2. Let c denote the center of the tile

R, c1 denote the center of T1, and c2 denote the center of T2. Then, to calculate c1 and c2

relative to c, we assume that R has standard orientation and is centered at the origin. Fol-

lowing the path of tiles from R to T1 and summing the appropriate roots of unity, we ob-
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tain the polynomials c1 = ω6 − ω3 + ω − ω4 + 1 − ω4 + ω − ω3 + 1 − ω2 + ω5 − ω2 + ω4 −

ω6 + ω4 − ω6 + ω4 − ω + ω4 − 1 + ω3 − ω6 + ω2. Note that c2 = c1 − ω6. By simplifying c1,

we get c1 = 1 + ω − ω2 − ω3 + 2ω4 + ω5 − 2ω6. Then, as multiplying by ω corresponds to

rotating counterclockwise by 2π/7, multiplying by ω2 rotates Figure 4.20a so that R is still

centered at the origin, and the edge of R and the edge of T1 that appear to overlap in the

figure are parallel to the imaginary axis. Hence, to show that R and T1 do not overlap, it is

enough to show that Re(ω2c1) ≥ 1, and to see this, consider the following.

ω2c1 = ω2 + ω3 − ω4 − ω5 + 2ω6 + ω7 − 2ω8

= ω2 + ω3 − ω4 − ω5 + 2ω6 + 1− 2ω

= ω2 + ω3 − ω−3 − ω−2 + 2ω6 + 1− 2ω−6

= 1 + (ω2 − ω−2) + (ω3 − ω−3) + 2(ω6 − ω−6)

Finally, since (ω2 − ω−2), (ω3 − ω−3), and 2(ω6 − ω−6) are purely imaginary, we see

Re(ω2c1) = 1. It follows that the intersection of the interiors of R and T1 is empty. The

remainder of the distance calculations are given in the technical appendix. For tiles con-

sisting of regular polygons with 8, 9, 13, or 14 sides we also give the bit-reading gadgets and

calculations in the technical appendix.

Tiles with 10, 11, or 12 sides

In the cases where tiles consist of regular polygons with 10, 11, or 12 sides, bit-reading gad-

gets are relatively simple to construct. Figure 4.21 depicts the configurations that we will

use to construct our bit-reading gadgets for each case. Note that since each polygonal tile

of these configurations is adjacent to another tile, we need only show that for each configu-

ration depicted in Figure 4.21, of the two exposed glues, g0 and g1 of the tile R, a tile can

only attach to one of these glues depending on the position of the tile B in the figure. In
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other words, for each configuration depicted in Figure 4.21, we show that in the top con-

figuration, B prevents a tile from binding to g1, and that in the bottom configuration, B

prevents a tile from binding to g0.

(a) Bit-reading gadget configuration for
decagonal tiles.

(b) Bit-reading gadget configuration for
hendecagonal tiles.

(c) Bit-reading gadget configuration for
dodecagonal tiles.

Figure 4.21: (a), (b) and (c) each depict two configurations of polygonal tiles which repre-
sents either a 0 (bottom) or a 1 (top).

Like the bit-reading gadgets themselves, the calculations used to show the correctness

of these bit-reading gadgets are relatively simple when compared to the previous cases.

For example, for decagonal tiles, in top configuration depicted in Figure 4.21a, to show

that B prevents a tile from binding to g0, note that a polygon centered at c2 and a poly-

gon centered at c3 overlap. Let ω be the 10th root of unity e
2πi
10 . Note that relative to c2,

c3 = ω + ω9 − 1. Hence, c3 = ω + ω9 − 1 = 2 Re(ω) − 1 = 2 cos
(
2π
10

)
− 1. Then the

distance d from c3 to c2 satisfies d = |2 cos
(
2π
10

)
− 1| < .62, and therefore the intersection of

the interiors of a decagon centered at c3 and a decagon centered at c2 is nonempty. Hence,

a decagonal tile cannot bind to the glue g0. The remaining calculation for the decagonal

tiles case as well as the calculations for the hendecagonal and dodecagonal cases are given

in Section 4.10.1.
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Tiles with 15 or more sides

In the cases where tiles consist of regular polygons with 15 or more sides, we give a general

scheme for obtaining bit-reading gadgets for each case. Figure 4.22 depicts the bit-reading

gadgets for each case. For the top configurations of Figure 4.22, note that since each polyg-

onal tile of these bit-reading gadgets is adjacent to another tile, we need only show that for

each top configuration depicted in Figure 4.22, of the two exposed glues, g0 and g1 of the

tile R, B prevents a tile from binding to g0. In the bottom configurations of Figure 4.22,

we not only need to show that B prevents a tile from binding to g1, but we must also show

that B does not prevent a tile (the tile centered at c2 in the bottom configurations for Fig-

ure 4.22) from binding to the tile that binds to g0. The latter statement ensures that when

we use the bit-reading gadgets obtained from these configurations to simulate a Turing

machine, in the case that a 0 is read by attaching a tile to g0, B does not prevent further

growth of an assembly.

(a) Bit-reading gadget configuration for
pentadecagonal tiles.

(b) Bit-reading gadget configuration for
hexadecagonal tiles.

(c) Bit-reading gadget configuration for
heptadecagonal tiles.

Figure 4.22: (a), (b) and (c) each depict two configurations of polygonal tiles which repre-
sents either a 0 (bottom) or a 1 (top).

Now, consider a polygon Pn with n ≥ 15 sides and let ω be the nth root of unity e
2πi
n .

Then, the general scheme for constructing a bit-reading gadget falls into two cases. First, if

n is odd (the cases where n is even are similar), relative to a tile with negated orientation

(the polygon labeled R in the configurations in Figure 4.22), the two configurations that
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give rise to the bit-reading gadget are as follows. Let k be such that n = 2k + 1 (n = 2k

if n is even). Referring to the top configurations of Figure 4.22. To “write” a 1, the config-

uration is obtained by centering a blocker tile with negated orientation, labeled B in the

top configurations of Figure 4.22, at −ωn−1 + ωk+1 (whether n is even or odd) relative

to R. Then to “read” a 1, R exposes two glues g1 and g0 such that if a tile binds to g1, it

will have standard orientation and be centered at −ωn−1 (whether n is even or odd) and

if a tile that binds to g0, it will have standard orientation and be centered at −1. We will

show that B will prevent this tile from binding. This gives the configuration depicted in

the top figures of Figure 4.22. Now, referring to the bottom configurations of Figure 4.22,

to “write” a 0, the configuration is obtained by centering a blocker tile with negated ori-

entation, labeled B in the bottom configuration of Figure 4.22a, at −1 + ωk−1 (−1 + ωk−2

if n is even) relative to R. In this case, we will show that B prevents a tile from binding

to g1. In addition, we place a glue on the tile that binds to g0 that allows for another tile

to bind to it so that its center is at c2 = −1 + ωb
k−1
2
c (c2 = −1 + ω

k−2
2 if n is even) rela-

tive to R. This gives the configuration depicted in the bottom figures of Figure 4.22a and

Figure 4.22c. Moreover, we show that neither R nor B prevent the binding of this tile.

In order to perform the calculations used to show the correctness of these bit-reading

gadgets, we consider the cases where n is even and where n is odd. Here we give brief ver-

sions of the calculations when n is odd. For more detail and calculations for the case where

n is even, see the technical appendix.

Suppose that n = 2k+1. We now refer to the bottom configurations of Figure 4.22a. To

show that a polygon centered at c1 and a polygon centered at c2 do not overlap, consider

the case where k is odd (the case where k is even is similar). Note that relative to c0, c1 =

1 and c2 = ω
k−1
2 . Then the distance dn from c1 to c2 satisfies the following equation.

d2n =

(
1− cos

(
(k − 1) π

n

))2

+ sin2

(
(k − 1) π

n

)

Substituting k = n−1
2

for k and simplifying, we obtain d2n = 2 + 2 sin
(
3π
2n

)
. It is well
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known that for regular polygons with n sides and apothem 1
2
, the circumradius is given

by 1

2 cos(πn)
. Hence, to show that a polygon centered at c1 and a polygon centered at c2 do

not overlap, we show that d2n > 1

cos2(πn)
for n ≥ 15. To see this, note that cos2

(
π
n

)
d2n =

2 cos2
(
π
n

) (
1 + sin

(
3π
2n

))
. Then for n ≥ 15, 2 cos2

(
π
n

) (
1 + sin

(
3π
2n

))
> 2 cos2

(
π
4

)
= 1. It

then follows that dn >
1

cos(πn)
. Therefore, dn is greater than twice the circumradius of our

polygons. Hence, a polygon centered at c1 and a polygon centered at c2 do not overlap.

To show that a polygon centered at c3 and a polygon centered at c4 overlap, note that

relative to c1, c3 = −1 + ωk−1 and c4 = −ωn−1. Therefore, the distance dn from c3 to c4 is

satisfies the equation

d2n =

(
−1 + cos

(
2(k − 1)π

n

)
+ cos

(
2(n− 1)π

n

))2

= +

(
sin

(
2(k − 1)π

n

)
+ sin

(
2(n− 1)π

n

))2

Substituting k = n−1
2

for k and simplifying, we obtain,

d2n = 1 + 2
(

2 sin2
(π
n

)(
1− 2 cos

(π
n

)))
.

Note that for each n > 2, d2n < 1. To see this, it suffices to show that

2 sin2
(π
n

)(
1− 2 cos

(π
n

))
< 0.

This follows from the fact that 2 sin2
(
π
n

)
> 0 and 1 − 2 cos

(
π
n

)
< 0 for n > 2. Now, since

for each n > 2, d2n < 1, we see that dn < 1. Since the length of the apothem for each tile is

assumed to be 1
2
, we can conclude that a polygon centered at c3 and a polygon centered at

c4 must overlap.
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4.8.2 2-shaped systems with regular polygonal tiles

In this section we describe bit-reading gadgets for 2-shaped systems whose tileset consists

of two distinct regular polygons. We assume that the edges of all polygonal tiles have the

same length. The bit-reading gadgets that we give here are normalized on-grid bit-readers.

Lemma 18. Let Pn and Qm be a regular polygons with n and m sides of equal length.

Then, for all n ≥ 3 and m ≥ 3 such that n 6= m, there exists a 2-shaped system Tn,m =

(Tn,m, σn,m) with shapes Pn and Qm such there a bit-reading gadget exists for Tn,m.

(a) A 1 is read. This time a 0 cannot be read
by mistake since the tile B prevents growth of a
path of tiles that attach via the glue labeled g0.

(b) A 0 is read, and a 1 cannot be read by
mistake since the tile B prevents a tile from
attaching via the glue labeled g1.

Figure 4.23: A connected bit-gadget consisting of tiles shaped like a regular triangle or
square.

(a) and (b) of Figure 4.23 depict bit-reading gadgets which give a scheme for “writing

a bit” as growth proceeds from left to right, and “reading a bit” as growth proceeds from

right to left. To write a bit, we can define unique glues that enforce the assembly of the

path of tiles (light gray tiles in (a) and (b) of Figure 4.23) starting from the tile labeled B0

and ending at a tile labeled B2 in (a) and (b). Assuming that the light gray tiles are part

of an existing assembly, to read a bit, we define unique glues that enforce the (dark gray

tiles in (a) and (b)) starting from the tile labeled R0 and ending with the tile labeled R1.

Then, R1 exposes two glues labeled g0 and g1 in Figure 4.23. Now, depending on whether
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an assembly which represents a 0 is present or an assembly which represents a 1 is present,

either a triangular tile with a glue labeled g1 binds to R1 via the glue g1 exposed by R1

(depicted in Figure 4.23a) or a square shaped tile with a glue labeled g0 binds to R1 via

the glue g0 exposed by R1 (depicted in Figure 4.23b).

In the former case, denote the triangular tile which binds to R1 by R2; this tile is la-

beled R2 in Figure 4.23a. Then, we can define glues that allow the tiles Ri for i = 3, 4, 5, 6

or 7 to bind in that order as depicted in Figure 4.23a. Finally, we define a set of tiles that

form the path of tiles from R7 to R8. The latter case, depicted in Figure 4.23b, is similar.

In this case, a square tile (labeled R2) binds to g0. We define this tile such that the path of

tiles from R2 to R4 assembles. Note that the square tile labeled R3 ensures that the trian-

gular tiles along this path of tiles from R3 to R4 are on-grid. In particular, R4 is on-grid.

Lastly, we refer to each configuration in Figure 4.23 and note that relative to the underly-

ing grid (shown as dashed lines), B0, B2, R0 and R8 in (a) and respectively B0, B2, R0 and

R4 in (b) are on-grid and in the same location. It is straightforward to see that such con-

figurations can be extended to give a normalized on-grid bit-reading gadget that conforms

to Definition 4.3.2.

Constructions for normalized on-grid bit-reading gadgets for pairs of regular polygons

with sides m and n where 3 ≤ m ≤ 6, 5 ≤ n ≤ 6 and m 6= n are similar and are given in

Section 4.10.2.

4.8.3 Single shaped systems with equilateral polygonal tiles

In this section we describe bit-reading gadgets for single-shaped systems whose tile set con-

sists of an equilateral polygon. The bit-reading gadgets that we give here are normalized

on-grid bit-readers. Note that for polygons with 7 or more sides, Lemma 17 implies the

following lemma. Hence, we need only show Lemma 19 for equilateral polygons with 4,

5, or 6 sides. Therefore, we give normalized on-grid bit-reading gadgets for all three cases

showing the following lemma. It should be noted that the general grid construction given

in Section 4.5 pertain to regular polygons. Similar techniques can be used to obtain grids
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for the equilateral polygonal tiles in this section. The grids themselves are depicted using

dashed lines in the figures of this section.

Lemma 19. For all n ≥ 4, there exists an equilateral polygon Pn with n sides and a single-

shaped system Tn = (Tn, σn) with shape Pn such a bit-reading gadget exists for Tn.

(a) A 0 is read, and a 1 cannot be read
by mistake since the tile B prevents a
quadrilateral tile from attaching via the
glue labeled g1.

(b) A 1 is read. This time a 0 cannot be
read by mistake since the tile B prevents
growth of a path of quadrilateral tiles
that attach via the glue labeled g0.

Figure 4.24: A connected bit-gadget consisting of quadrilateral tiles. This figure also de-
picts the tile shape.

(a) and (b) of Figure 4.24 depict bit-reading gadgets which give a scheme for “writing

a bit” as growth proceeds from left to right, and “reading a bit” as growth proceeds from

right to left. To write a bit, we can define unique glues that enforce the assembly of the

path of tiles (light gray tiles in (a) and (b) of Figure 4.24) starting from the tile labeled B0

and ending at a tile labeled B2 in (a) and (b). Assuming that the light gray tiles are part

of an existing assembly, to read a bit, we define unique glues that allow R0, R1 and R2 to

bind in that order. Then, R2 exposes two glues labeled g0 and g1 in Figure 4.24. Now, de-

pending on whether an assembly which represents a 0 is present or an assembly which rep-

resents a 1 is present, either a quadrilateral tile with a glue labeled g1 binds to R2 via the

glue g1 exposed by R2 (depicted in Figure 4.24a) or a quadrilateral tile with a glue labeled

g0 binds to R2 via the glue g0 exposed by R2 (depicted in Figure 4.24b). In the former

case, denote the quadrilateral tile which binds to R2 by R3; this tile is labeled R3 in Fig-

ure 4.24a. Then, we can define glues that allow the tiles Ri for 3 ≤ i ≤ 10 to bind in that

order as depicted in Figure 4.24a. Moreover, we note that B1 prevents a tile from binding

to g0. The latter case, depicted in Figure 4.24b, is similar. In this case, a quadrilateral tile
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(labeled R2) binds to g0. We define this tile such that the path of tiles from R2 to R4 as-

sembles. In the case of Figure 4.24b, we also note that B1 prevents a tile from binding to

g1. Finally, we note that relative to the underlying grid (shown as dashed lines in (a) and

(b) of Figure 4.24) this configuration can then be used to obtain a normalized on-grid bit-

reading gadget.

Constructions for normalized on-grid bit-reading gadgets for equilateral polygons with

sides 5 or 6 sides are similar and are given in Section 4.10.3.

4.8.4 A single shaped system with triangular tiles

In this section we describe bit-reading gadgets for single-shaped systems whose tile set con-

sists of a particular obtuse isosceles triangle. We assume that the edges of all triangular

tiles have the same length. The bit-reading gadgets that we give here are normalized on-

grid bit-readers. Again, it should be noted that while the general grid construction given in

Section 4.5 pertain to regular polygons. Similar techniques can be used to obtain grids for

the triangular tiles in this section. The grids themselves are depicted using dashed lines in

the figures of this section.

Lemma 20. There exists an obtuse isosceles triangle P and a single-shaped system T =

(T, σ) with shape P such a bit-reading gadget exists for T .

Figure 4.25 depicts the configurations that give rise to bit-reading gadgets for single-

shaped systems whose tiles have the shape of an obtuse isosceles triangle. As in Sec-

tion 4.8.3, one can see that these configurations can be used to obtain a normalized on-grid

bit-reading gadget.

4.9 Building normalized bit-reading gadgets

Let P be a regular polygon with 7 or more sides, and let gα denote the terminal assembly

of the tile system given in Lemma 13. We now show that given a bit-reading gadget from
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(a) A configuration of polygonal tiles which represents a
0

(b) A configuration of polygonal tiles which represents a
1.

Figure 4.25: Bit-reading gadget configuration for tiles with the shape of an irregular trian-
gle.
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proceeding section corresponding to the regular polygon P , we can form an on grid bit-

reading gadget (with respect to gα). In order to show this, we first show how the individual

bit-writers can be grown in an on grid manner (with the bit reader that reads these writers

also on grid), and then we show how to find positions common to these bit-writers so that

up to translation, the bit writers start and end in the same place. Before we begin our con-

struction, we introduce a couple of definitions. We denote the location of the center of a

tile P in the complex plane by c(P ). We say that a tile P is x-centered on grid gα provided

that c(P ) = c(P ′) and P and P ′ have the same orientation for some tile P ′ ∈ gα.

At a high-level, we construct a normalized bit-reading gadget from one of the gadgets

presented in Section 4.8 in the following way. Consider Figures 4.26 and 4.27 where nor-

malized bit-reading gadgets are given in the case of heptagonal tiles. In those figures a bit

is written from west to east and read from east to west. When writing a bit and starting

from the southwest-most black tile, assembly proceeds via attachment of a single tile at a

time on some fixed grid gα (shown in the background in the figures as white heptagons).

Then, the blue tiles “shift” off this grid and onto another grid, g′α say. This shifting ensures

that the tile labeled R in those figures is on the grid gα. Then, the portion of a bit-reading

gadget which encodes a 0 (Figure 4.26) or 1 (Figure 4.27) is assembled. The tiles which

make up this portion are purple in the figures. Call the set of these tiles S. At this point,

we are possibly on a grid g′′α which may or may not be distinct from gα or g′α. Finally, we

“shift” back onto the grid gα by assembling the remaining portion of a bit-reading gadget

(those tiles of the bit-reading gadget that are not in S). The tiles which produce this final

shift are green in Figures 4.26 and 4.27. At this point, a path of tiles (each of which is on

gα) assemble until the southeast-most black tile in the figures attaches. This bit is read us-

ing the orange, red and yellow tiles. The tile R is on grid gα. The red tiles are the path of

unblocked tiles whose assembly indicates that the appropriate bit is read. The final red tile

that is placed may not be on grid gα. Therefore, the yellow tiles (whose assembly sequence

is essentially that of the red tiles in reverse order) “shift” back onto grid gα. Note that the
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black tiles and the end tiles of the reading path of tiles (the orange, yellow, and red tiles)

in Figure 4.26 have locations that match the locations of the respective tiles in Figure 4.27.

This ensures that we can “plug” these gadgets into a zig-zag growth pattern to simulate a

Turing machine.

4.9.1 Constructing on grid bit-writer configurations

The α0 on grid bit writer will consist of three parts which we call: 1) a blocker subconfig-

uration, 2) an east shifting subconfiguration and 3) a west shifting subconfiguration. The

three subconfigurations are all formed by modifying a “base” configuration which we de-

scribe now. The base configuration is formed by modifying the assembly obtained when

the bit-reading gadget described in Section 4.8 “reads a 0”.

If the bit-reading gadget for P is simple (e.g. those shown in Figures 4.21 and 4.8.1),

we first extend the bit writing portion of the gadget in the following way. To begin, ob-

serve that the bit writer portion of the bit reading gadget will consist of a tile with negated

orientation which we will call B. Note that by the construction of these simple bit reading

gadgets, we can always place a tile which has standard orientation at a position of ωd
3k
4
e

relative to B. After placing this tile, we continue placing tiles so that we form a path of

tiles from B such that the last tile placed in this path is the northernmost tile in the bit

reading gadget configuration and has standard orientation (see Figure 4.28b). Next we

grow a path of tiles from B that extends south so that the last tile placed in this path is

the southernmost tile in the bit reading configuration as shown in Figure 4.28b.

We say that the first tile to be placed in the bit-writer subconfiguration of the bit-

reading gadget is the northernmost “end tile” in the path. The other “end tile” in the path

we refer to as the last tile to be placed in the bit-writer subconfiguration. Also, recall that

the tile R in the bit reading gadget is the tile from which the bit reader grows. To con-

struct the base configuration, we simply remove the tiles in the configuration which do not

lie on either the path from the first tile in the bit-writer to the tile R or the path from the

last tile in the bit-writer to the tile R. Furthermore, we extend a path from the first tile
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Figure 4.26: The completed bit-reading gadget for heptagons when a 0 is “read”. The grey
tiles represent paths which connect the subconfigurations in the bit writer. The blue tiles
represent Cαw , and the dark blue tile represents tww. The purple tiles represent Cα, and
the dark purple tile represents ts. The pink tile represents tw. The green tiles represent
Cαe , and the dark green tile represents tse. All other color of tiles represent tiles compos-
ing the bit reader. In this figure the bit is written from west to east and read from east to
west.
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Figure 4.27: The completed bit-reading gadget gadget for heptagons when a 1 is “read”.
The grey tiles represent paths which connect the subconfigurations in the bit writer. The
blue tiles represent Cαw , and the dark blue tile represents tww. The purple tiles represent
Cα, and the dark purple tile represents ts. The pink tile represents tw. The green tiles
represent Cαe , and the dark green tile represents tse. All other color of tiles represent tiles
composing the bit reader. In this figure the bit is written from west to east and read from
east to west.
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(a) A simple
bit read-
ing gadget
formed from
a regular
polygon
with 10
sides which
has read
a 0 (also
shown in
Figure 4.21.

(b) Extending the bit
reading gadget to form
our base configuration.

Figure 4.28: A simple bit reading gadget (which “read a 0”) and its extension (which will
form our base configuration). The darkly shaded tiles are the bit writer portion of the bit
reading gadget.

to be placed in the bit-writer portion of the bit-reading gadget so that the last tile placed

in this path has negated orientation and is the westernmost tile in the bit reading gadget

configuration. Call this configuration Cα.

Let the tile ts represent the westernmost tile of the set of southernmost tiles in the bit-

writer portion of the configuration Cα. We consider two cases: 1) the tile ts has negated

orientation and 2) the tile ts has standard orientation. In case 1, we add a tile in standard

orientation to the configuration at location −ωb k4 c relative to the tile ts. We know that this

is still a valid configuration by the construction of the bit reading gadgets in the previous

section and the assumption that ts is the westernmost tile of the set of southernmost tiles.

Note that after this modification we are now in case 2. In the case that ts has standard

orientation, we translate Cα so that the tile ts is 1-centered on the grid gα. We denote the

bounding box of Cα by Bα and the dimensions of Bα by mB × nB.

Now, let Cαe be the configuration obtained by taking a copy of Cα and removing all

tiles which do not lie on the shortest path from ts to R. For clarity we denote the tile ts in
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Cαe by tse. Translate this configuration so that it has the following properties: 1) the tile

tse is 1-centered on the gird gα, 2) Re(c(tse))−Re(c(ts)) ≥ 5, and 3) Im(c(ts))−Im(c(tse)) ≥

nB.

Define the tile tw to be the westernmost tile of Cα. Translate the configurations Cα

and Cαe so that they remain in the same positions relative to each other and the tile tw

is 4-centered on the grid gα. We now make a copy of configuration Cα, which we call Cαw ,

and denote the tile tw in Cαw by tww. We translate the configuration Cαw so that its lo-

cation meets the following requirements: 1) the tile tww is 4-centered on the grid gα, 2)

Re(c(tw)) − Re(c(tww)) ≥ nB′ + 5, and 3) Im(c(tw)) − Im(c(tww)) ≥ mB′ + 5. Call this

configuration C ′′.

The blocker subconfiguration consists of a modified version of the configuration Cα.

Namely, it consists of the configuration Cα with all the tiles which do not lie on the min-

imal path from tw to ts removed. We leave these extra tiles in the figures in the hopes that

it will make the proof of correctness clearer. The east shifting subconfiguration is given by

Cαe and the west shifting subconfiguration is given by Cαw .

(a) Positioning the configuration αe
relative to the configuration α.

(b) Positioning the configuration αv
relative to the configuration α.

Figure 4.29: The three configurations and their positions relative to each other.
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4.9.2 Connecting the bit-writer subconfigurations

Intuitively, we connect the blocker configuration to the east shifting configuration in the

following way. We shift the three configurations so that they remain in the same posi-

tions relative to each other, and the tile ts is 1-centered. Note that by construction, the

tile tse lies at least 5 tiles to the right of ts. Thus, we can grow an almost straight line of

tiles, which all lie on grid, until there is a tile which lies south of ts in the path. Call this

path pse. We then grow a path on grid from the last tile placed in pse that attaches to the

southernmost side of the tile ts. An example of this can be found in Figure 4.30a.

Similarly, to attach the blocker configuration to the west shifting configuration, we first

shift the two unconnected configurations (note there are now only two unconnected con-

figurations now since the blocker configuration and the east shifting configuration are now

attached) so that they remain in the same positions relative to each other, and the tile tw

is 4-centered on the grid. Then we grow an on grid path of tiles from tn to the west (while

keeping the path as straight as possible) until the path has tiles which lie to the west of

tnw at which time the path turns (while still on grid) and grows south until it attaches to

tnw. An example of this can be found in Figure 4.30b.

More formally, to connect the configurations Cα to Cαe in the configuration C ′′, we

grow a path in the following manner. The first tile is placed with negated orientation and

3-centered so that it completely shares a common edge with ts. We then grow a periodic

path of tiles to the south with the tiles in the same positions and grid locations as the

path of tiles in Figure 4.30a. This repeats until a 1-centered tile is placed so that it has

the same imaginary part as tile tse. Once this occurs, we grow a periodic path of appro-

priately positioned tiles to the east in the same positions and grid locations as the path of

east growing tiles in Figure 4.30a. We do this until the 2-centered tile completely shares an

edge with the tile tse as shown in Figure 4.30a. We call this configuration Ce.

To connect the configurations Cα to Cαw in Ce, a path is grown from Cα to Cαw as fol-

lows. First, we shift the configuration Ce so that the tile tw is 4-centered. Note that this
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also means the tile tww is also 4-centered. We then grow a periodic path of 1-centered, 2-

centered, 6-centered, 4-centered, 1-centered, 3-centered, 5-centered, and 4-centered tiles to

the west (as shown in Figure 4.30b) until a 4-centered tile is placed so that it has the same

real part as the tile tww. Once this occurs, we grow the periodic pattern south shown in

Figure 4.30b until the 1-centered tile in our path completely shares a common edge with

tww. Call this configuration C ′.

(a) Connecting Cαe
to Cα. (b) Connecting Cαw

to Cα.

Figure 4.30: Connecting the configurations.

(a) Positioning the configurations so
that the R tile is on grid.

(b) Growing the final paths of the bit
writer configuration and removing the
non-bit-writer portion of the configura-
tion α. We refer to this configuration as
the α0 bit-writer.

Figure 4.31: Completing the bit writer.

Now we describe how to grow out “arms” from the bit writer that are on grid which

will allow the bit writers to connect to each other. First, we translate the configuration C ′

so that the tile R in Cα is 4 centered. Note that this will imply the R tiles in the config-

urations Cαe and Cαw are also 4-centered as shown in Figure 4.31a. We then place a tile
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such that it has negated orientation, 3-centered, and both the southernmost tile and east

most tile in the configuration C ′ (call this tile twb). Likewise, we also place a tile such that

it has standard orientation, it is 6-centered, and both the southernmost tile and eastern-

most tile in the configuration C ′ (call this tile teb). Next, we place tiles on grid so that a

path of tiles is formed from the R tile in Cαw to the 3-centered tile placed above as shown

in Figure 4.31b. Similarly, we place tiles on grid so that a path of tiles is formed from the

R tile in Cαe to the 6-centered tile placed above. Call this configuration C.

We construct α1 in a manner similar to our construction of α0. The only difference in

our construction of α1 will be that the configuration obtained from the bit reading gadget

“reading a 0” will be used as our base configuration.

4.9.3 Normalizing bit-writers

Now that we have constructed on grid bit reading gadgets, we can describe the construc-

tion of normalized bit-writers.

Construction of the normalized bit-writers begins by laying down the configurations

Cα0 and Cα1 in the plane so that the tile labeled R in each configuration (see above for

the description of R) lies centered at the same point. Next, we remove all tiles in the two

configurations except for the tiles twb and teb in each bit writer. We now place two new ex-

tremal tiles. The first tile we place should be both the southernmost and westernmost tile

in the configuration as well as 3-centered. Denote this tile tmaxw. The location of the sec-

ond tile’s center should have the same imaginary part as the location of the center of the

tile tmaxw. In addition, this tile, which we denote tmax e should be the easternmost tile in

the configuration. See Figure 4.33 for an example.

Now, we consider the configuration obtained above with all tiles contributed by Cα1

removed. We place a connected path of tiles from the tile twb to the tile tmaxw as shown

in Figure 4.34a. Note that this path of tiles is such that none of the interior points of tiles

overlap and every tile is connected to some other tile in the path by a completely shared

edge. Similarly, we place tiles so as to form a path from the tile teb to the tile tmaxw which
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is also shown in Figure 4.34a. These paths of tiles are then attached to configuration Cα0

in the same manner they are attached to the extremal tiles in the current configuration to

form the configuration for the normalized α0 bit writer (shown in Figure 4.35a.

We also repeat this same process for the configuration obtained by considering the

configuration in Figure 4.33 with all tiles contributed by Cα0 removed which yields Fig-

ure 4.34b. After “copying and pasting” these paths, we obtain the configuration for the

normalized α1 bit writer which is shown in Figure 4.35b.

(a) An example schematic of an α0

bit-writer.
(b) An example schematic of an α1

bit-writer.

Figure 4.32: Completing the bit writer.

Figure 4.33: The extremal points of the bit writer configurations (lightly shaded) and the
newly created extremal points (darkly shaded).
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(a) (b)

Figure 4.34: Growing a path of tiles from the old extremal points to the new ones.

(a) (b)

Figure 4.35: The normalized bit writers.
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4.9.4 Shifting on grid after the read

Call the last tile placed by the bit reader T1. We now describe how the bit reader shifts

back on grid after “reading a bit”. This part of the construction is very similar to the con-

struction of the on grid bit writers in Section 4.9.1. For our shifting configuration we will

use the configuration obtained by removing all tiles in the bit reading configuration ex-

cept for the tiles that lie on the path from the tile T1 to the tile R (where tiles T1 and R

are as described above in Section 4.8. Without loss of generality, we assume that T1 has

standard orientation since if it is not, we can add one more tile to the path so that the last

tile placed in the bit reader path is in standard orientation. We then construct an on grid

bit reader in a manner similar to the way the on grid bit writers were constructed in Sec-

tion 4.9.1.

4.9.5 Proof of correctness

To see that the configurations above, are indeed on grid bit reading gadgets (and thus as-

semblies) we make three claims: 1) every tile in the configuration completely shares an

edge with another tile in the configuration and the configuration is connected, 2) the in-

teriors of all the tiles in the configurations are pairwise disjoint, and 3) the beginning and

end tiles are on grid as well as the R tile. After we see that these claims are true, then we

can easily give a system which contains a bit reading gadget.

The first claim follows immediately from our construction. The construction ensured

that every tile placed was next to a pre-existing tile in the assembly and in the proper

orientation. The second claim also follows from the construction since we were careful to

place subconfigurations sufficiently far away from each other so that there is no overlap

and paths can be grown between them without overlapping.

To see claim 3, observe that the R tiles in all of the subconfigurations lie in the same

position relative to some polyform on the grid (see Figure 4.31a. Consequently, once we

connect the subconfigurations and shift R so that it is on grid, all of the R tiles in the sub-
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configurations are on grid. Thus when the “arms” of the bit writer are grown, they start

and end on grid with respect to the tile R. Hence, the beginning and end tiles are on grid

as well as the R tile.

To see that we can create a system which contains a bit reading gadget using our nor-

malized bit writers, note that we can grow a path of tiles from the last tile placed in the

normalized bit writer so that it starts the growth of a bit reader at an appropriate position

in relation to the bit writer. Using this notion, Figure 4.36 shows an example schematic of

the complete bit reading gadget which results from reading a particular bit. The system

shown can be constructed by placing appropriate glues on the tiles so that they come to-

gether as shown.

Figure 4.36: The complete bit reading gadget reading a particular bit. The arrow in this
picture points to the seed of the system.

4.10 Technical appendix

In the following sections we will use this technique for computing the positions of the cen-

ters of polygonal tiles in order to show that the bit gadgets that we construct are indeed

valid bit gadgets.

4.10.1 Systems with tiles shaped like a single regular polygon

In this section, we present the bit-reading gadgets for tiles shaped like a single regular

polygon and the relevant calculation to show that these bit-reading gadgets are valid.

Throughout this section we will use complex number to analyze configurations of polygonal
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tiles. This idea is presented in Section 4.4. Many of these calculations rely on well known

properties of complex numbers and regular polygons. In particular, for a complex number

z, we use the equations 2 Re(z) = z + z−1 and 2 Im(z) = z − z−1. We also apply Euler’s

identity (eiθ = cos (θ) + i sin (θ)) when needed. Moreover, for a regular polygon Pn with

n sides and apothem .5 (which we assume for all of the regular polygons considered here),

the diameter dn of Pn is given by the following equation which will often be used to show

that two polygons do not overlap..

dn =
1

2 cos
(
π
n

)
A bit gadget for heptagonal tiles

Now that we have a means of computing the exact positions of the centers of polygonal

tiles, we give a bit-reader gadget that works for heptagonal tiles at temperature-1. Fig-

ure 4.37 gives a depiction of this bit-reader. Given this bit-reader, the burden of proof is

two fold. 1) We must calculate the distances of the tiles in the bit-reader assembly in or-

der to show that when a 1 is read, a 0 cannot be read and vice versa, and 2) we must show

that these gadgets assemble in regular (grid-like) positions. In this section we will handle

the first burden of proof, and show the second burden in Section 4.9.

In Figure 4.37, the gray tiles represent a “written” bit (either 0 or 1), while the white

tiles are “reading” this bit. We ensure that the assembly sequence of a bit-gadget is such

that all of the gray tiles bind before any white tiles. Referring to Figure 4.37a, we will first

show that the tile labeled R in does not prevent the binding of the tile labeled T1 or the

tile labeled T2.

Let s denote the center of the tile R, c1 denote the center of T1, and c2 denote the cen-

ter of T2. This is depicted in Figure 4.38. Then, to calculate c1 and c2 relative to s, we as-

sume that R is in standard orientation. Following the path of tiles lying on the dotted line

in Figure 4.38 and summing the appropriate roots of unity, we obtain the polynomials c1 =
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(a) A 0 is read, and a 1 cannot be read
by mistake since the tile B prevents a
heptagonal tile from attaching via the
glue labeled g1.

(b) A 1 is read. This time a 0 cannot be
read by mistake since the tile B prevents
growth of a path of heptagonal tiles that
attach via the glue labeled g0. Note that
some of this path may form, but B pre-
vents the entire path from assembling,
and thus prevents a 0 from being read.

Figure 4.37: A connected bit-gadget consisting of heptagonal tiles.

ω6−ω3+ω−ω4+1−ω4+ω−ω3+1−ω2+ω5−ω2+ω4−ω6+ω4−ω6+ω4−ω+ω4−1+ω3−ω6+ω2

and c2 = c1 − ω6. By simplifying c1, we get c1 = 1 + ω − ω2 − ω3 + 2ω4 + ω5 − 2ω6.

Figure 4.38: A possible configuration of the bit-reader given in Figure 4.37. We must show
that the heptagonal tiles centered at c1 and c2 do not overlap the tile centered at s.

First, as multiplying by ω is a rotation by 2π/7, it is enough to show that Re(ω2c1) ≥

1, and to see this, consider the following.

147



ω2c1 = ω2 + ω3 − ω4 − ω5 + 2ω6 + ω7 − 2ω8

= ω2 + ω3 − ω4 − ω5 + 2ω6 + 1− 2ω

= ω2 + ω3 − ω−3 − ω−2 + 2ω6 + 1− 2ω−6

= 1 + (ω2 − ω−2) + (ω3 − ω−3) + 2(ω6 − ω−6)

Then since (ω2 − ω−2), (ω3 − ω−3), and 2(ω6 − ω−6) are imaginary, we see Re(ω2c1) = 1.

Therefore, the heptagon with negated orientation centered at c1 and the heptagon in stan-

dard orientation centered at s do not overlap. Note that since Re(ω2c1) = 1, it may be that

these two heptagons partially share an edge, however, the intersection of their interiors is

empty.

To show that the heptagon, Hc2 , with standard orientation centered at c2 and the

heptagon, Hs, with negated orientation centered at s do not overlap, note that c2 =

1 + ω − ω2 − ω3 + 2ω4 + ω5 − 3ω6. Then, one can approximate |c2| and observe that

|c2| > 1.11 > 1

cos(π7 )
. Hence the distance from s to c2 is greater than twice the diameter of

one of these heptagonal tiles. Therefore, Hc2 and Hs do not overlap.

Figure 4.39: A possible configuration of the bit-reader given in Figure 4.37. We must show
that the heptagonal tiles centered at c1 and c2 do not overlap those centered at b1 and b2.

Referring to Figure 4.39, relative to b1, c1 = −ω + ω4 − ω + ω5 − ω2 + 1− ω4 + ω − ω4 +

ω − ω6 + ω2, and c2 = c1 − ω6. Simplifying, c1 = 1− ω4 + ω5 − ω6.

To show that a heptagonal tile in negated orientation centered at b1 and a heptagonal
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tile in negated orientation centered at c1 do not overlap, it suffices to show that Re(c1) >=

1
2

+ 1

2 cos(π7 )
. Hence, it is enough to show that Re(c1) = 1− cos

(
8π
7

)
+ cos

(
10π
7

)
− cos

(
12π
7

)
=

1
2

+ 1

2 cos(π7 )
. Equivalently, we show 1− 2 cos

(
8π
7

)
+ 2 cos

(
10π
7

)
− 2 cos

(
12π
7

)
= 1

cos(π7 )
. To see

this, observe

2 = −2 cos (π)

= −
(
eπi + e−πi

)
= −eπi − e−πi + e

πi
7 − e

πi
7 + e

−πi
7 − e

−πi
7

= e
πi
7 − e−πi − e

−πi
7 + e

−πi
7 − eπi − e

πi
7

= e
πi
7 − e−πi − e

13πi
7 + e

−πi
7 − eπi − e−13

πi
7

= e
πi
7 − e

9πi
7 − e

−7πi
7 + e

11πi
7 + e

−9πi
7 − e

13πi
7 − e

−11πi
7

+ e
−πi
7 − e

7πi
7 − e

−9πi
7 + e

9πi
7 + e

−11πi
7 − e

11πi
7 − e−13

πi
7

=
(
e
πi
7 + e

−πi
7

)(
1− e

8πi
7 − e

−8πi
7 + e

10πi
7 + e

−10πi
7 − e

12πi
7 − e

−12πi
7

)

The last equality gives

1− e
8πi
7 − e

−8πi
7 + e

10πi
7 + e

−10πi
7 − e

12πi
7 − e

−12πi
7 =

2

e
πi
7 + e

−πi
7

In other words, 1 − 2 cos
(
8π
7

)
+ 2 cos

(
10π
7

)
− 2 cos

(
12π
7

)
= 1

cos(π7 )
, which was what we

wanted. Therefore, a heptagonal tile in negated orientation and centered b1, and a heptag-

onal tile in negated orientation and centered at c1 do not overlap.

From Figure 4.39, it is now clear that a heptagonal tile in negated orientation and cen-

tered at b1, and a heptagonal tile in standard orientation and centered at c2 do not overlap,

and that a heptagonal tile in standard orientation and centered b2, and a heptagonal tile in

standard orientation and centered at c2 do not overlap.

Now, referring to Figure 4.40, we must show that a heptagonal tile, Ha, in negated ori-
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Figure 4.40: A possible configuration of the bit-reader given in Figure 4.37. We must show
that the heptagonal tile centered at a overlaps the tile centered at b.

entation and centered a, and a heptagonal tile, Hb, in negated orientation and centered at

b overlap. Note that relative to a, b = −ω4 + ω6− ω3 + ω− ω4 + 1− ω4 + ω− ω3 + 1− ω2 +

ω5−ω2 +ω4−ω6 +ω4−ω6 +ω4−ω+ω4−1+ω3−ω+ω4−ω+ω4−1+ω2−ω5 +ω−ω4 +ω.

We can simplify b to obtain b = ω − ω2 − ω3 + 2ω4 − ω6. Then we approximate |b| to show

that |b| < 1. Therefore Ha and Hb must overlap. Given these calculations, we can obtain a

bit-reading gadget for systems whose tiles have the shape of a heptagon.

Octagonal tile assembly

(a) A 0 is read, and a 1 cannot be read
by mistake since the tile B prevents a
octagonal tile from attaching via the glue
labeled g1.

(b) A 1 is read. This time a 0 cannot be
read by mistake since the tile B prevents
growth of a path of octagonal tiles that
attach via the glue labeled g0. Note that
some of this path may form, but B pre-
vents the entire path from assembling, and
thus prevents a 0 from being read.

Figure 4.41: The configurations for a bit-reading gadget consisting of octagonal tiles.
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Figure 4.41 depicts two possible configurations of a bit-reading gadget construction for

single-shaped systems with octagonal tiles, the gray tiles represent “bit-writer” tiles (rep-

resenting either 0 or 1), while the white tiles are the “bit-reader” tiles. We ensure that the

assembly sequence of a bit-gadget is such that all of the gray tiles bind before any white

tiles. Referring to Figure 4.41a, we will first show that the tiles labeled R and B do not

prevent the binding of the tile labeled T1 or the tile labeled T2. Then we will show that the

tile labeled B prevents an octagonal tile from binding to the glue labeled g1.

Figure 4.42: A possible configuration of the bit-reader given in Figure 4.41. We must show
that the octagonal tiles centered at c1 and c2 do not overlap those centered at b1 and b2.

When analyzing even sided polygons, note that we can always assume that each polyg-

onal tile has the standard orientation. Let Tc denote the octagonal tile centered at c and

let Tc1 denote the octagonal tile centered at c1 as shown in Figure 4.42. To show that Tc

and Tc1 do not overlap, let ω now denote e
2π
8 and note that relative to c, c1 is given by the

following equation.

c1 = 13ω7 + ω5 + 8ω4 + ω2 + 2ω3 + 7ω2

= 8ω2 + 2ω3 + 8ω4 + ω5 + 13ω7

Then, after multiplying by ω we need only show that Im(ωc1) ≤ −1. To see this, note

that ωc1 = 8ω3+2ω4+8ω5+ω6+13ω8. Then, since ω8 = 1, ω2 = i, ω4 = −1, and ω3 = ω−5,

we see that ωc1 = 11 + 8(2 Re(ω3))− i, and hence, Im(ωc1) = −1. Therefore, Tc and Tc1 do

not overlap.
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To show that Tc and Tc2 do not overlap, note that c2 = c1 + ω2. Then, after multiplying

c2 by ω we need only show that Re(ωc2) ≤ −1. To see that this inequality holds, consider

the following.

Re (ωc2) = Re
(
ωc1 + ω3

)
= Re

(
11− i+ 8(2 Re(ω3)) + ω3

)
= Re

(
11 + 17 Re(ω3)

)
= 11− 17

√
2

2

< 11− 17
1.414

2
< −1

Then, since Re(ωc2) ≤ −1, we see that Tc and Tc2 do not overlap. Therefore, Tc does

not overlap Tc1 and Tc2 do not overlap. We now show that an octagonal tile, Tc1 say, with

center c1 and an octagonal tile, Tb1 say, with center b1 do not overlap. It will then also be

clear that an octagonal tile with center c1 or c2 and an octagonal tile with center b1 or b2

do not overlap. To see that Tc1 and Tc1 do not overlap, note that relative to c1, b1 = 7ω6 +

2ω7 + ω6 + 2ω4 + 3ω3 + ω+ 7ω2 + 1. It suffices to show that Re(b1) = −1. Then we see that

Re(b1) = 1 +
√
2
2
− 3

√
2
2
− 2 + 2

√
2
2

. Hence, Re(b1) = −1, and an octagonal tile with center c1

and an octagonal tile with center b1 do not overlap.

Figure 4.43: A configuration of the bit-reader given in Figure 4.41. We must show that the
octagonal tile centered at a overlaps the tile centered at b.

Now, referring to Figure 4.43, in remains to be shown that an octagon with center a

and an octagon with center b overlap. That is, an octagonal tile (in an existing assembly)
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centered at b prevents the binding of an octagonal tile centered at a. To see this, note that

relative to a, b = 1 + 13ω7 + ω5 + 10ω4 + 3ω3 + ω + 7ω2 + 1. Simplifying b gives b =

2 + ω + 7ω2 + 3ω3 + 10ω4 + ω5 + 13ω7. Then one can check that |b| < 1. Given these

calculations, we can obtain a bit-reading gadget for systems whose tiles have the shape of a

octagon.

Nonagonal tile assembly

Figure 4.44 depicts two possible configurations of a bit-reading gadget construction for

single-shaped systems with nonagonal tiles, the gray tiles represent a “bit-writer” tiles

(representing either 0 or 1), while the white tiles are the “bit-reader” tiles. We ensure

that the assembly sequence of a bit-gadget is such that all of the gray tiles bind before any

white tiles. Referring to Figure 4.44a, we will first show that the tiles labeled R and B do

not prevent the binding of the tile labeled T1 or the tile labeled T2. Then we will show that

the tile labeled B prevents an octagonal tile from binding to the glue labeled g1.

(a) A 0 is read, and a 1 cannot be read
by mistake since the tile B prevents a
nonagonal tile from attaching via the glue
labeled g1.

(b) A 1 is read. This time a 0 cannot be
read since the tile B prevents growth of
a path of nonagonal tiles that attach via
the glue labeled g0. Note that some of this
path may form, but B prevents the entire
path from assembling, and thus prevents a
0 from being read.

Figure 4.44: The configurations for a bit-reading gadget consisting of nonagonal tiles.

Referring to Figure 4.45, let Tc be a nonagonal tile with negated orientation centered

at c and let Tc1 be a nonagonal tile with negated orientation centered at c1. We first show
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that that Tc and Tc1 do not overlap. Let ω now denote e
2π
9 .

Figure 4.45: A possible configuration of the bit-reader given in Figure 4.44. We must show
that the nonagonal tiles centered at c1 and c2 do not overlap those centered at c, b1, and
b2.

Note that relative to c, c1 = −ω4+ω8−ω3+ω6−ω2+ω4−ω7+ω2−1+ω3. Simplifying c1

gives c1 = −1+ω8+ω6−ω7. Then, after multiplying by ω−1 (which corresponds to rotating

the Figure 4.45 clockwise by 2π
9

), it suffices to show that Re(ω−1c1) = −1
2
− 1

2 cos(π9 )
. To see

this, first note that ω−1c1 = ω5−ω6+ω7−ω8. Therefore, Re (ω−1c1) = cos
(
10π
9

)
−cos

(
12π
9

)
+

cos
(
14π
9

)
− cos

(
16π
9

)
. Hence, it suffices to show that

cos
(
10π
9

)
− cos

(
12π
9

)
+ cos

(
14π
9

)
− cos

(
16π
9

)
= −1

2
− 1

2 cos
(
π
9

) .
To see this, consider the following equations.

−2 = e
πi
9 + e−

πi
9 + eπi + e−πi − e−

πi
9 − e

πi
9

= e
πi
9 + e−

πi
9 + e

9πi
9 + e−

9πi
9 − e

17πi
9 − e−

17πi
9

= e
πi
9 + e

11πi
9 + e−

9πi
9 − e

13πi
9 − e−

11πi
9 + e

15πi
9 + e−

13πi
9 − e

17πi
9 − e−

15πi
9

+ e−
πi
9 + e

9πi
9 + e−

11πi
9 − e

11πi
9 − e−

13πi
9 + e

13πi
9 + e−

15πi
9 − e

15πi
9 − e−

17πi
9

=
(
e
πi
9 + e−

πi
9

)
×
(

1 + e
10πi
9 + e−

10πi
9 − e

12πi
9 − e−

12πi
9 + e

14πi
9 + e−

14πi
9 − e

16πi
9 − e−

16πi
9

)
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Therefore, − 2
eπi/9+e−πi/9

= 1 + e10πi/9 + e−10πi/9 − e12πi/9 − e−12πi/9 + e14πi/9 + e−14πi/9 −

e16πi/9 − e−16πi/9. Using the identity cos(θ) = eiθ+e−iθ

2
, we can see that −1 − 1

cos(πi9 )
=

2 cos
(
10πi
9

)
− 2 cos

(
12πi
9

)
+ 2 cos

(
14πi
9

)
− 2 cos

(
16πi
9

)
. Therefore, Tc and Tc1 do not overlap.

Now we let Tb1 denote a nonagonal tile with negated orientation centered at b1 and

show that Tb1 and Tc1 do not overlap. Relative to c1, b1 = −ω3 + ω6 − 1 + ω2. It suf-

fices to show that Re(ω−1b1) < −1
2
− 1

2 cos(π/9)
, which we can numerically verify is true by

approximating each side of the inequality.

Similarly, we let Tb2 denote a nonagonal tile with standard orientation centered at b2

and show that Tb2 and Tc1 do not overlap. Relative to c1, b2 = −ω3 + ω6 − 1 + ω2 − ω7.

Then, it suffices to show that Re(b2) = −1. To see this, note that b2 = −1 − (ω3 − ω−3) +

(ω2 − ω−2). Since ω3 − ω−3 and ω2 − ω−2 are imaginary, Re(b2) = −1. Therefore, Tc1

and Tb2 do not overlap. Similarly, we can see that a nonagonal tile centered at c2 that is in

standard orientation and a nonagonal tile centered at b2 that is in standard orientation do

not overlap.

Figure 4.46: A configuration of the bit-reader given in Figure 4.44. We must show that the
nonagonal tile centered at a overlaps the tile centered at b.

Now, referring to Figure 4.46, it remains to be shown that a nonagonal tile, which we

will denote by Ta, centered at a that is in standard orientation and a nonagonal tile, which

we will denote by Tb, centered at b that is in standard orientation overlap. Relative to a,

b = 1 − ω4 + ω8 − ω3 + ω6 − ω2 + ω4 − ω7 + ω2 − 1 + ω6 − 1 + ω2 − ω7. Simplifying b

gives b = −1 + ω2 − ω3 + 2ω6 − 2ω7 + ω8. Then we can approximate |b| to see that |b| < 1.
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Therefore, Ta and Tb overlap.

Polygonal tile assembly with 10, 11, or 12 sided regular polygonal tiles

In the cases where tiles consist of regular polygons with 10, 11, or 12 sides, bit-reading gad-

gets are relatively simple to construct. Figure 4.47 depicts the bit-reading gadgets for each

case. Note that since each polygonal tile of these bit-reading gadgets abuts another tile,

we need only show that for each configuration depicted in Figure 4.47, of the two exposed

glues, g0 and g1 of the tile R, a tile can only attach to one of these glues depending on the

position of the tile B in the figure. In other words, for each configuration depicted in Fig-

ure 4.47, we show that the intersection of the interiors of a polygon with the same shape,

position and orientation as B and a polygon with the same shape, position and orientation

of the gray tile’s position and orientation.

(a) Bit-reading gadget
configuration for decagonal
tiles.

(b) Bit-reading gadget con-
figuration for hendecagonal
tiles.

(c) Bit-reading gadget con-
figuration for dodecagonal
tiles.

Figure 4.47: (a), (b) and (c) each depict two configurations of polygonal tiles which repre-
sents either a 0 (bottom) or a 1 (top).

For decagonal tiles, let ω = e
2πi
10 and consider Figure 4.47a. To show that this gives

a valid bit-reader, we first show that using the top assembly depicted in the top figure of

Figure 4.47a, a polygon centered at c2 and a polygon centered at c3 overlap. Note that rel-

ative to c1, c3 = −1 and c2 = ω4 + ω6. Hence, c2 = ω4 + ω−4 = 2 Re (ω4) = 2 cos
(
8π
10

)
. Then

the distance d from c3 to c2 satisfies d = | − 1− 2 cos
(
8π
10

)
| < .62.

Secondly, we show that in the bottom figure of Figure 4.47a, a polygon centered at c3

and a polygon centered at c4 overlap. Relative to c4, c3 = ω9 − 1 + ω2 − 1. Hence, c3 =

−2 + ω2 + ω9. Then, |c3| =
(
−2 + cos

(
4π
10

)
+ cos

(
18π
10

))2
+
(
sin
(
4π
10

)
+ sin

(
18π
10

))2
< .91.

For hendecagonal tiles, let ω = e
2πi
11 and consider Figure 4.47b. To show that this

gives a valid bit-reader, we first show that using the top assembly depicted in the top fig-
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ure of Figure 4.47b, a polygon centered at c2 and a polygon centered at c3 overlap. Note

that relative to c3, c2 = 1 − ω10 + ω6. Hence, |c2|2 =
(
1− cos

(
20π
11

)
+ cos

(
12π
11

))2
+(

− sin
(
20π
11

)
+ sin

(
12π
11

))2
< .71

Secondly, we show that in the bottom figure of Figure 4.47b, a polygon centered at c2

and a polygon centered at c1 do not overlap. Relative to c1, c2 = −1 + ω2. Then, |c2|2 =(
−1 + cos

(
4π
11

))2
+ sin2

(
4π
11

)
> 1

cos( π
11)

.

For dodecagonal tiles, let ω = e
2πi
12 and consider Figure 4.47c. To show that this

gives a valid bit-reader, we first show that using the top assembly depicted in the top fig-

ure of Figure 4.47c, a polygon centered at c2 and a polygon centered at c3 overlap. Note

that relative to c3, c2 = 1 + ω5 + ω7. Hence, |c2|2 =
(
1 + cos

(
10π
12

)
+ cos

(
14π
12

))2
+(

sin
(
10π
12

)
+ sin

(
14π
12

))2
< .54

Secondly, we show that in the bottom figure of Figure 4.47c, a polygon centered at c2

and a polygon centered at c1 do not overlap. Relative to c1, c2 = −1 + ω2. Then, it suffices

to show that ω2c2 = −1. Note that

ω2c2 = −ω2 + ω4 = ω−4 + ω4

= 2 Re
(
ω4
)

= 2 cos
(
8π
12

)
= 2 cos

(
2π
3

)
= −1

Tridecagonal tile assembly

Figure 4.48 depicts two possible configurations of a bit-reading gadget construction for

single-shaped systems with tridecagonal tiles, the gray tiles represent a “bit-writer” tiles

(representing either 0 or 1), while the white tiles are the “bit-reader” tiles. We ensure

that the assembly sequence of a bit-gadget is such that all of the gray tiles bind before any

white tiles. Referring to Figure 4.48a, we will first show that the tiles labeled R and B do

not prevent the binding of the tile labeled T1 or the tile labeled T2. Then we will show that
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(a) A 0 is read, and a 1 cannot be read
by mistake since the tile B prevents a
tridecagonal tile from attaching via the
glue labeled g1.

(b) A 1 is read. This time a 0 cannot be
read by mistake since the tile B prevents
growth of a path of tridecagonal tiles
that attach via the glue labeled g0. Note
that some of this path may form, but B
prevents the entire path from assembling,
and thus prevents a 0 from being read.

Figure 4.48: The configurations for a bit-reading gadget consisting of tridecagonal tiles.

the tile labeled B prevents an octagonal tile from binding to the glue labeled g1.

Figure 4.49: A possible configuration of the bit-reader given in Figure 4.48. We must show
that the nonagonal tiles centered at c1 and c2 do not overlap those centered at c and b.

We now refer to Figure 4.49 and let ω be e
2πi
13 . Let Tc denote the tridecagonal tile with

negated orientation centered at c and let Tc1 denote the tridecagonal tile with negated ori-

entation centered at c1. To show that Tc and Tc1 do not overlap, note that relative to c, c1

is given by c1 = −ω5 + 1− ω5 + ω11 − ω1 + ω11 − ω2 + ω5 − ω12 + ω5 − ω12 + ω6 − ω9 + ω2

and c2 = c1 − ω9. Simplifying c1, we obtain c1 = −2ω12 + 2ω11 − ω9 + ω6 − ω + 1. Then

by approximating |c1| we can see that |c1| > 1.13 > 1

cos( π
13)

. Therefore, Tc and Tc1 do not

overlap.

Now let Tc2 denote the tridecagonal tile with standard orientation centered at c2. Since

c2 = c1 − ω9, we see that c2 = −2ω12 + 2ω11 − 2ω9 + ω6 − ω + 1. Then we approximate |c2|
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to show that |c2| > 1.21 > 1

cos( π
13)

. Therefore, Tc and Tc2 do not overlap.

Let Tb denote the tridecagonal tile with standard orientation centered at b. Then, rela-

tive to b, c1 = ω7 − ω2 + ω5 − ω2 + ω7 − ω2 + ω10 − ω7 + ω − ω6 + ω10 − ω7 + ω3 − ω9 + ω2.

We can simplify c1 to obtain c1 = 2ω10 − ω9 − ω6 + ω5 + ω3 − 2ω2 + ω. Also note that

c2 = c1 − ω9.

Then, we approximate |c1| to show that |c1| > 1.06 > 1

cos( π
13)

. Therefore, Tb and Tc1 do

not overlap. Similarly, |c2| > 1.04 > 1
2

+ 1
2 cos(π/13)

, and so Tb and Tc1 do not overlap.

Figure 4.50: A configuration of the bit-reader given in Figure 4.48. We must show that the
tridecagonal tile centered at a overlaps the tile centered at b.

Now, referring to Figure 4.50, it remains to be shown that a tridecagonal tile, which

we will denote by Ta, centered at a that is in standard orientation and a tridecagonal tile,

which we will denote by Tb, centered at b that is in standard orientation overlap. Relative

to b,

a = ω7 − ω2 + ω5 − ω2 + ω7 − ω2 + ω10 − ω7 + ω − ω6 + ω10 − ω7 + ω3 − ω6 + ω12 − ω5

+ ω12 − ω5 + ω2 − ω11 + ω − ω11 + ω5 − 1 + ω5 − ω12

= −1 + 2ω − 2ω2 + ω3 + ω5 − 2ω6 + 2ω10 − 2ω11 + ω12

Then we can approximate |a| to see that |a| < 1. Therefore, Ta and Tb overlap.
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(a) A 0 is read, and a 1 cannot be read
by mistake since the tile B prevents a
tetradecagonal tile from attaching via the
glue labeled g1.

(b) A 1 is read. This time a 0 cannot be
read by mistake since the tile B prevents
growth of a path of tetradecagonal tiles
that attach via the glue labeled g0. Note
that some of this path may form, but B
prevents the entire path from assembling,
and thus prevents a 0 from being read.

Figure 4.51: The configurations for a bit-reading gadget consisting of tetradecagonal tiles.

Tetradecagonal tile assembly

Figure 4.51 depicts two possible configurations of a bit-reading gadget construction for

single-shaped systems with tetradecagonal tiles, the gray tiles represent a “bit-writer”

tiles (representing either 0 or 1), while the white tiles are the “bit-reader” tiles. We ensure

that the assembly sequence of a bit-gadget is such that all of the gray tiles bind before any

white tiles. Referring to Figure 4.51a, we will first show that the tiles labeled R and B do

not prevent the binding of the tile labeled T1 or the tile labeled T2. Then we will show that

the tile labeled B prevents an octagonal tile from binding to the glue labeled g1.

Figure 4.52: A possible configuration of the bit-reader given in Figure 4.51. We must show
that the nonagonal tiles centered at c1 and c2 do not overlap those centered at c, b1 and b2.
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We now refer to Figure 4.52 and let ω be e
2πi
13 . Let Tc, Tc1 , Tc2 , Tb1 , and Tb2 denote

the tridecagonal tile with standard orientation centered at c, c1, c2, b1, and b2 respec-

tively. Then, to show that Tc and Tc1 do not overlap, note that relative to c, c1 is given

by c1 = c1 = 3ω12 + ω10 + ω8 + ω6 + 2ω5 + ω2. Then by approximating |c1| we can see that

|c1| > 1.2 > 1

cos( π
14)

. Therefore, Tc and Tc1 do not overlap. Moreover, c2 = c1 + ω4. Then,

consider the following.

c2 = 3ω12 + ω10 + ω8 + ω6 + 2ω5 + ω4 + ω2

= (2ω12 + 2ω5) + (ω12 + ω10 + ω8 + ω6 + ω4 + ω2) (4.1)

= (2ω12 − 2ω12) + (ω12 + ω10 + ω8 + ω6 + ω4 + ω2 + 1− 1) (4.2)

= −1

Equation (4.1) follows from the following equalities that

ω5 = e(
10πi
14 ) = −e(

10πi
14

+ 14πi
14 ) = −e(

24πi
14 ) = −ω12.

Equation (4.2) follows from the fact that ω12 + ω10 + ω8 + ω6 + ω4 + ω2 + 1 = 0. To see this,

note that ω12 + ω10 + ω8 + ω6 + ω4 + ω2 + 1 = ω2 (ω12 + ω10 + ω8 + ω6 + ω4 + ω2 + 1), and

so,

(ω2 − 1)
(
ω12 + ω10 + ω8 + ω6 + ω4 + ω2 + 1

)
= 0.

Then, since ω2 − 1 6= 0, it follows that ω12 + ω10 + ω8 + ω6 + ω4 + ω2 + 1 = 0. Therefore, Tc

and Tc2 do not overlap.

Now, to show that Tb1 does not overlap Tc1 or Tc2 , note that relative to b1, c1 = −1 +

2ω9 + 2ω12 + ω13 + 2ω + 2ω5 + ω2. Simplifying c1, we obtain c1 = −1 + ω9 + ω13 + 2ω.

Then we can approximate |c1| to see that |c1| > 1.1 > 1
cos(π/14)

. Similarly, relative to b1,

|c2| > 1.06 > 1
cos(π/14)

. Therefore, Tb1 does not overlap Tc1 or Tc2 . This also shows that Tb2
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and Tc2 do not overlap since relative to b2, c2 = −ω4 + c1 + ω4.

Figure 4.53: A configuration of the bit-reader given in Figure 4.51. We must show that the
tetradecagonal tile centered at a overlaps the tile centered at b.

Now, referring to Figure 4.53, it remains to be shown that a tetradecagonal tile, which

we will denote by Ta, centered at a that is in standard orientation and a tetradecagonal

tile, which we will denote by Tb, centered at b that is in standard orientation overlap. Rela-

tive to b, a = −1 + 2ω9 + 2ω12 + ω13 + 2ω + ω13 + ω + 2ω5 + ω3 + ω5 + ω8. Simplifying a,

we see a = −1 + 3ω + ω3 + ω5 + ω8 + 2ω9 + 2ω13. Then we can approximate |a| to see that

|a| < 1. Therefore, Ta and Tb overlap.

Polygonal tile assembly with regular polygonal tiles with 15 or more sides

In the cases where tiles consist of regular polygons with 15 or more sides, we give a gen-

eral scheme for obtaining bit-reading gadgets for each case. Figure 4.54 depicts the bit-

reading gadgets for each case. Note that since each polygonal tile of these bit-reading gad-

gets abuts another tile, we need only show that for each configuration depicted in Fig-

ure 4.54, of the two exposed glues, g0 and g1 of the tile R, a tile can only attach to one of

these glues depending on the position of the tile B in the figure. In other words, for each

configuration depicted in Figure 4.54, we show that the intersection of the interiors of a

polygon with the same shape, position and orientation as B and a polygon with the same

shape, position and orientation of the gray tile’s position and orientation.
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(a) Bit-reading gadget
configuration for pen-
tadecagonal tiles.

(b) Bit-reading gadget
configuration for hex-
adecagonal tiles.

(c) Bit-reading gadget
configuration for hep-
tadecagonal tiles.

Figure 4.54: (a), (b) and (c) each depict two configurations of polygonal tiles which repre-
sents either a 0 (bottom) or a 1 (top).

Now, consider a polygon Pn with n ≥ 15 sides and let ω be the nth root of unity e
2πi
n .

Then, the general scheme for constructing a bit-reading gadget falls into two cases. First, if

n is odd (the cases where n is even are similar), relative to a tile with negated orientation

(the polygon labeled R in the configurations in Figure 4.54), the two configurations that

give rise to the bit-reading gadget are as follows. Let k be such that n = 2k + 1 (n = 2k

if n is even). To “read” a 1, the configuration is obtained by centering a blocker tile with

negated orientation, labeled B in the top configurations of Figure 4.54, at −ωn−1 + ωk+1

(whether n is even or odd). Then R exposes two glues g1 and g0 such that if a tile binds

to g1, it will have standard orientation and be centered at −ωn−1 (whether n is even or

odd) and if a tile that binds to g0, it will have standard orientation and be centered at −1.

We will show that B will prevent this tile from binding. This gives the configuration de-

picted in the top figures of Figure 4.54. Similarly, to “read” a 0, the configuration is ob-

tained by centering a blocker tile with negated orientation, labeled B in the bottom con-

figuration of Figure 4.54a, at −1 + ωk−1 (−1 + ωk−2 if n is even) relative to R. In this

case, we will show that B prevents a tile from binding to g1. In addition, we place a glue

on the tile that binds to g0 that allows for another tile to bind to it so that its center is at

c2 = −1 + ωb
k−1
2
c (c2 = −1 + ω

k−2
2 if n is even). This gives the configuration depicted in the

bottom figures of Figure 4.54a and Figure 4.54c. Moreover, we show that neither R nor B

prevent the binding of this tile.

In order to perform the calculations used to show the correctness of these bit-reading

gadgets, we consider the cases where n is even and where n is odd.
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Case 1: (n is odd)

Suppose that n = 2k + 1 for some k. To show that a polygon centered at c1 and a polygon

centered at c2 do not overlap, consider the case where k is odd. Note that relative to c0,

c1 = 1 and c2 = ω
k−1
2 . Then the distance dn from c1 to c2 satisfies the following equation.

d2n =

(
1− cos

(
(k − 1) π

n

))2

+ sin2

(
(k − 1) π

n

)

Substituting k = n−1
2

for k and simplifying, we obtain d2n = 2 + 2 sin
(
3π
2n

)
. Now to show

that a polygon centered at c1 and a polygon centered at c2 do not overlap, we show that

d2n >
1

cos2(πn)
for n ≥ 15. To see this, note that cos2

(
π
n

)
d2n = 2 cos2

(
π
n

) (
1 + sin

(
3π
2n

))
. Then

for n ≥ 15, 2 cos2
(
π
n

) (
1 + sin

(
3π
2n

))
> 2 cos2

(
π
4

)
= 1.

It then follows that dn > 1

cos(πn)
, and therefore dn is greater than twice the circumra-

dius of our polygons. Hence, a polygon centered at c1 and a polygon centered at c2 do not

overlap.

In the case where k is even, let m be such that k = 2m. Then relative to c0, c1 = 1 and

c2 = ωm−1. In this case, dn satisfies the following equation.

d2n =

(
1− cos

(
(2m− 2) π

n

))2

+ sin2

(
(2m− 2) π

n

)
Substituting m = k

2
for m and k = n−1

2
for k we obtain d2n = 2 + 2 sin

(
5π
2n

)
. Now to show

that a polygon centered at c1 and a polygon centered at c2 do not overlap, we show that

d2n >
1

cos2(πn)
for n ≥ 15. To see this, note that cos2

(
π
n

)
d2n = 2 cos2

(
π
n

) (
1 + sin

(
5π
2n

))
. Then

for n ≥ 15, 2 cos2
(
π
n

) (
1 + sin

(
5π
2n

))
> 2 cos2

(
π
4

)
= 1.

It then follows in the case where k is even, dn >
1

cos(πn)
, and therefore dn is greater than

twice the circumradius of our polygons. Hence, a polygon centered at c1 and a polygon

centered at c2 do not overlap.

Now, to show that a polygon centered at c3 and a polygon centered at c4 overlap, note

that relative to c1, c3 = −1 + ωk−1 and c4 = −ωn−1. Therefore, the distance dn from c3 to

164



c4 is satisfies the following equation.

d2n =

(
−1 + cos

(
2(k − 1)π

n

)
+ cos

(
2(n− 1)π

n

))2

+

(
sin

(
2(k − 1)π

n

)
+ sin

(
2(n− 1)π

n

))2

Substituting k = n−1
2

for k and simplifying, we obtain,

d2n = 1 + 2
(

2 sin2
(π
n

)(
1− 2 cos

(π
n

)))

. Note that for each n > 2, d2n < 1. To see this, it suffices to show that

2 sin2
(π
n

)(
1− 2 cos

(π
n

))
< 0

. This follows from the fact that 2 sin2
(
π
n

)
> 0 and 1− 2 cos

(
π
n

)
< 0 for n > 2.

Now, since for each n > 2, d2n < 1, we see that dn < 1. Since the length of the apothem

for each tile is assumed to be 1
2
, we can conclude that a polygon centered at c3 and a poly-

gon centered at c4 must overlap.

Case 2: (n is even)

Let k be such that n = 2k. Then, relative to c0, c1 = 1 and c2 = ωb
k−2
2
c. Then the distance,

dn say, from c1 to c2 satisfies the following equation

dn =

(
1− cos

(
(k − 2) π

n

))2

+ sin2

(
(k − 2) π

n

)

.

Substituting k = n
2

for k and simplifying, we obtain d2n = 2 + 2 sin
(
2π
n

)
. To show that

c0 and c1 do not overlap, it suffices to show that d2n > 1

cos2(πn)
. To see this, note that

cos2
(
π
n

)
d2n = 2 cos2

(
π
n

) (
1 + sin

(
2π
n

))
. Then for n ≥ 16, 2 cos2

(
π
n

) (
1 + sin

(
2π
n

))
>
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2 cos2
(
π
4

)
= 1.

As in the case where n is odd, it then follows that in the case where n is even, dn >

1

cos(πn)
, and therefore dn is greater than twice the circumradius of our polygons. Hence, a

polygon centered at c1 and a polygon centered at c2 do not overlap.

Now, to show that a polygon centered at c3 and a polygon centered at c4 overlap, note

that relative to c1, c3 = −1 + ωk−2 and c4 = −ωn−1. Therefore, the distance dn from c3 to

c4 is satisfies the following equation.

d2n =

(
−1 + cos

(
2(k − 2)π

n

)
+ cos

(
2(n− 1)π

n

))2

+

(
sin

(
2(k − 2)π

n

)
+ sin

(
2(n− 1)π

n

))2

Substituting k = n
2

for k and simplifying, we obtain, d2n = 1 − 8
(
sin2

(
π
n

)
cos
(
2π
n

))
. Note

that for each n ≥ 16, d2n < 1. To see this, it suffices to show that −8
(
sin2

(
π
n

)
cos
(
2π
n

))
<

0. This follows from the fact that 8 sin2
(
π
n

)
> 0 and cos

(
2π
n

)
> 0 for n > 16.

Now, since for each n ≥ 16, d2n < 1, we see that dn < 1. Since the length of the

apothem for each tile is assumed to be 1
2
, we can conclude that a polygon centered at c3

and a polygon centered at c4 must overlap.

4.10.2 2-shaped systems with regular polygonal tiles

The following figures give configurations for normalized on-grid bit-reading gadgets that

can be used to obtain bit-reading assemblies for 2-shaped systems where the tiles of the

system have the shape of two different regular polygons. Note that the grid construction

techniques from Section 4.5 can be used to obtain the grids shown using dashed lines in

the figures below.
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(a) (b)

Table 4.1: Configurations for normalized on-grid bit-reading gadgets that can be used
for 2-shaped systems using whose tiles have the shape of a regular triangle and a regular
pentagon. (a) represents a 0, and (b) represents a 1.

(a) (b)

Table 4.2: Configurations for normalized on-grid bit-reading gadgets that can be used
for 2-shaped systems using whose tiles have the shape of a regular triangle and a regular
hexagon. (a) represents a 0, and (b) represents a 1.

(a) (b)

Table 4.3: Configurations of for normalized on-grid bit-reading gadgets that can be used
for 2-shaped systems using whose tiles have the shape of a square and a regular pentagon.
(a) represents a 0, and (b) represents a 1.
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(d) (e)

Table 4.4: Configurations for normalized on-grid bit-reading gadgets that can be used for
2-shaped systems using whose tiles have the shape of a square and a regular hexagon. (a)
represents a 0, and (b) represents a 1.

Figure 4.55: Bit-reading gadget configuration for tiles with the shape of either a pentagon
or a hexagon. This figure depicts a configuration of polygonal tiles which represents a 0,
while Figure 4.56 depicts a configuration of polygonal tiles which represents a 1.

Figure 4.56: This figure depicts a configuration of polygonal tiles with the shape of either a
pentagon or a hexagon which represents a 0.
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4.10.3 Single shaped systems with equilateral polygonal tiles

(a) (c)

(b) (d)

Table 4.5: Configurations of for normalized on-grid bit-reading gadgets that can be used
for 1-shaped systems using whose tiles have the shape of a particular equilateral pentagon
((a) and (b)) or a particular equilateral hexagon ((c) and (d)).
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Chapter 5

Conclusion and future work

We have introduced the polygonal TAM and proved two main results about simulation by

directed tile assembly systems. The first result we proved answers an open question posed

in [17] and shows that there is no universal simulator in the aTAM for the class of directed

aTAM systems which is itself always directed. This reveals the essential role that nonde-

terminism plays in universal simulation in the aTAM. For the simulation of some directed

systems, a universal simulator will face a situation where in order to faithfully simulate the

target system, necessary race conditions require the simulator to be undirected. Our sec-

ond set of results prove a positive result about the simulation of Turing machines by non-

cooperative polygonal TAM systems and a negative result about the simulation of Turing

machines by non-cooperative polygonal TAM systems using known techniques. In coop-

erative systems, the constraint that two glues on a tile must match the glues of neighbor-

ing tiles allows bit-reading which in turn provides a mechanism for simulating Turing ma-

chines. In non-cooperative systems, tiles bind to an assembly if one or more glues match.

This means the mechanism used for bit-reading in cooperative systems cannot be used in

non-cooperative systems. As an alternative, our positive result shows that geometry in

conjunction with information stored in glues can be used to mimic bit-reading in systems

where the shape of tiles are regular polygons with seven or more sides. On the other hand,

we show that bit-reading is impossible in non-cooperative polygonal TAM systems where

the shape of the tiles are regular polygons with six or less sides.

5.1 Intrinsic universality of systems with varying levels of nondeterminism

In this dissertation, we examined whether a universal simulator required undirectedness

to simulate the class of directed systems. Even in directed systems, nondeterminism can

still be present. A directed system can have several sequences of intermediate assemblies

which lead to the final terminal assembly. Thus, a further restriction we can place on non-
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determinism in tile assembly systems is that there is only one assembly sequence which

leads to the terminal assembly. This is equivalent to saying that at any given time dur-

ing the assembly process of a directed system, there is exactly one tile which can attach

to the assembly. The following questions about the role nondeterminism plays in simula-

tion remain open. (1) Are single assembly sequence systems intrinsically universal? (2) Is

there a directed simulator for the class of single assembly sequence systems? (3) A zig-zag

system is a sub-class of single assembly sequence systems in which growth must occur in

a zig-zag like manner. It is known that this class of systems is computationally universal.

There is a straight forward proof to see that zig-zag systems are not intrinsically univer-

sal when macrotiles are restricted to be square, but the proof fails to hold for rectangular

macrotiles. Is the class of zig-zag systems intrinsically universal when allowing for rectan-

gular macrotiles? (4) Our impossibility result fundamentally relies on the simulator assem-

bling in the plane. Is the 3D directed aTAM intrinsically universal?

By answering these questions, we could gain further insights into the role nondetermin-

ism plays in self-assembly.

5.2 Simulation in the polygonal TAM

We now present two separate directions of further research in the polygonal TAM. The

first direction builds on the results presented in this dissertation and is concerned with

further exploring the requirements for a polygonal TAM system to simulate a Turing ma-

chine. The second direction involves simulating polygonal TAM systems with other polyg-

onal TAM systems to understand the role tile shape plays in self-assembly. The following

questions remain open. (1) What are the necessary and sufficient conditions required for a

polygon P so that there exists a non-cooperative system containing tiles of shape P which

has a bit reading-gadget? Recall that this would imply the class of systems containing tiles

of shape P is capable of universal computation. (2) How should simulation be defined in

the polygonal TAM? The definition of simulation should be robust enough to allow for sys-
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tems with different shape tiles to potentially simulate each other. Recall that the aTAM

definition of simulation allows for fuzz (which is necessary to allow the simulator to imitate

he local interactions which occur in the target system). A key part of this definition will

involve defining fuzz in polygonal TAM systems. (3) What does the simulation landscape

look like in the polygonal TAM? Let P be a regular polygon with n sides and let P ′ be a

regular polygon with less than n sides. More specifically, can the class of polygonal TAM

systems with tiles of shape P ′ be simulated by the class of systems with tiles of shape P?

What about vice versa? Is there a hierarchy of simulation based on the shapes of the tiles

in the systems or are the powers of these classes of systems disjoint?
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