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Abstract 

The development of new materials for efficient optoelectronic devices from Group IV 

elements is the heart of Group IV photonics. This has direct ties to modern technology as the 

foundation for the electronics industry is silicon. This has driven the development of silicon-

based optoelectronics using these other Group IV materials as silicon is a poor optical material 

due to its indirect band gap when compared to the III-V semiconductors that are used by most of 

the optoelectronics industry.  While efforts have been made to integrate III-V materials onto 

silicon substrates, the incompatibility with the complementary metal oxide semiconductor 

process has limited the viability of this due to the high cost associated with the integration.  

Germanium has shown potential to be a suitable candidate for possible use though the 

wavelength range that can be covered is limited as it produces direct bandgaps under tensile 

strain.  Tin-based group IV alloys have been studied and have promising potential in achieving 

high efficiency optoelectronic devices integrated on silicon.  Alloys of germanium-tin have 

produced many direct bandgap optical devices that have demonstrated the potential for this 

system.  Silicon-germanium-tin alloys hold promise for further expansion of group IV photonics 

by allowing bandgap and lattice tunability for more complicated device structures and material 

integrations. 

The work presented in this thesis was focused on the critical technologies used to develop 

these materials using ultra-high vacuum chemical vapor deposition for the epitaxial deposition of 

films with high optical material qualities.  Germanium films were grown at low temperature as 

well as germanium-tin alloys with highly diluted gas ratios directly on silicon substrates.  The 

germanium films served as buffer layers onto which high quality germanium-tin was deposited 

using silicon substrates.  The growth conditions for the geranium-tin alloys began with a high 



 

 
 

 

flow fraction of tin (IV) chloride.  The flow fraction of tin (IV) chloride was reduced which led 

to an improvement in material quality.  By using x-ray diffraction, photoluminescence, and other 

characterization tools material and optical qualities could be determined.  This work additionally 

looked at the initial phase of development of silicon-germanium towards a rhombohedral crystal 

phase using sapphire substrates.   
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Chapter 1 Introduction/Background  

Silicon continues to be the primary foundation for technology since its introduction into 

the semiconductor industry over 70 years ago [1].  This material is used in many devices 

including computers, cellphones, televisions, and radios that have had an impact on the daily 

lives of the entire world.  The advancement of high technology into our daily lives guarantees 

that Si will continue to have a place in society for many years to come.  

1.1 Motivation 

The impact that silicon as a semiconductor material has had as an integral part of 

electronics has been limited by its poor optical properties.  Silicon based devices for solar cells 

have been shown to have an efficiency of only 25% for current devices.  Other optical devices 

and detectors based on Si have shown similar poor performance.  It is this issue of efficiency of 

Si photonic devices that has led modern optical systems to use group III-V materials such as, 

GaAs, InSb, and InGaAs semiconductors which are highly efficient for light emission.  This high 

efficiency is due the electronic band structure, in momentum space, of the materials having the 

lowest level of the conduction band align with the highest level of the valence band which is the 

definition of a direct band gap material.  The inefficiency of Si as an emitter is due to it being an 

indirect band gap material in which the previously described alignment does not occur.  This lack 

of alignment requires interaction from phonons, vibrational virtual particles, which reduces the 

efficiency of the radiative recombination process.  The devices developed from III-V materials 

are typically fragile and require distinctive fabrication practices.  These properties lead to III-V 

materials being expensive and ill-suited to expand optical electronics into the future.  This is in 

contrast to Si as its processing practices have been highly optimized and the material is 

inexpensive and sturdy.  These issues have led researchers to develop other means by which to 
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use Si as a base for optical electronic materials.  This search has led to developments such as the 

integration of III-V materials grown on Si-based substrates [2].  It is believed that devices based 

on Group IV material will be more reliable and less expensive than using hybrid III-V on Si 

materials [3].  

1.2 Background 

The electronics revolution began with germanium which from 1947 to 1960 was the primary 

semiconductor material used for transistors and diodes [1].  The shift from Ge to Si in 1960 for 

the fabrication of devices led to its dominance in the electronics industry [1].  Since that time, the 

use of these semiconductor materials has matured and led to the development of advanced 

fabrication techniques and device designs.  The research into these and other Group IV materials 

has continued and led to the development of state-of-the-art materials such as silicon carbide.  

Group IV materials are pure and alloy materials of carbon, silicon, germanium, tin, and lead 

shown in the section of the periodic table in (Figure 1).  For this work, the concentration on the 

Figure 1.1: Section of periodic table highlighting area of interest for this research. 
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growth of the Group IV material system SiGeSn, a ternary alloy, was the primary focus. Many 

technologies have been developed for the epitaxial growth of Group IV materials.  Technologies 

such as chemical vapor deposition (CVD), molecular beam epitaxy, sputtering, and physical 

vapor deposition have all been used.  The growth of the (Si)GeSn materials by MBE have shown 

promise by producing high material qualities with high compositions of Sn for the GeSn material 

[4][5] .  One of the issues with the MBE growth is that growth rates traditionally are low 

resulting in low throughput for reach reactor chamber. This in turn results in increased expense 

for each sample growth.  The CVD system of material deposition is capable of much higher 

growth rates and the ability to deposit on more than one substrate at a time.  This results in 

higher throughput but at the cost of material quality.  In recent years, techniques have been 

developed to improve the material quality and composition of these materials.  For this research, 

the processes related to ultra-high vacuum chemical deposition were investigated. 
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Chapter 2 Cold-Walled Chemical Vapor Deposition System  

2.1 Unique system configuration capabilities 

The cold walled chemical vapor deposition system is comprised of several sections.  

These sections can be broken down into two major groups. The first group is the gas farm that 

houses the gas precursor sources. The second major group is the cold walled chemical deposition 

reactor.  The major groups are comprised of subgroups that include safety systems and secondary 

containment exhaust systems. 

2.1.1 Gas farm basic description with layout and safety systems  

The gas farm for the chemical vapor deposition system (CVD) is detached from the 

building due to the toxic, flammable, and pyrophoric nature of the precursor gases contained 

within.  The gas farm is comprised of gas cabinets, gas cylinders, spark detectors, ventilation, 

secondary containment, and emergency shutoff valves (Figure 2.1).  The precursor gases of 

germane, silane, hydrogen, and methane are contained in high pressure gas cylinders that are 

connected to the chemical vapor deposition system by individual single run lines comprised of 

double walled stainless-steel tubing with an outside diameter of 0.25 in.  Gas flowing through the 

lines leaves the gas cylinders through a pressure regulator that is connected to an automatic 

emergency shutoff valve which is connected to the single run tubing.  The emergency shutoff 

valves have pneumatic control solenoids that allows for manual control of the valve during 

normal operation but automatically closes when a sudden rush of gas would be detected in a line 

to prevent gas leakage in case of line failures.  Precursor process gases from the gas farm flow to 

the gas manifold of the CVD system only when the emergency shutoff valve solenoid is 

energized and the controls for the solenoid are located at the gas farm on each gas cabinet and in 
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the CVD lab. 

2.1.2 CVD system description    

The chemical vapor deposition system consists of a cold-walled ultra-high vacuum 

plasma enhanced chemical vapor deposition reactor process chamber, load lock chamber, gas 

manifold, vacuum pumps, gas reactor column, and a gas mixing system (Figure 2.2).  The 

process chamber and the load lock chamber are identical in size and are separated by a center 

gate valve. The process chamber for the system is a cold walled design utilizing UHV Design® 

(East Sussex, UK www.uhvdesign.com) Epicentre In-line deposition stage that contains a 

pyrolytic pressed graphite heating element for sample heating up to 1000 ℃.  The heater module 

provides radiative heating to the back side of the substrate that is suspended horizontally below 

Figure 2.1:  Schematic showing layout of gas farm for CVD lab wit layout of gas cabinets for gas 
cylinder connections and safety systems. 
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the heating element by a nickel chromium substrate cradle.  The radiative heating of the substrate 

inside the process chamber is designed to prevent excessive heating of the chamber walls thereby 

reducing the effect on film defects by contaminants released from the walls.  The cradle also acts 

as the upper biased electrode for the plasma enhancement system and is capable of being rotated 

using an external smart motor by way of a magnetic drive coupling.  The plasma systems lower 

electrode is connected to a magnetically coupled transfer arm that is used to raise and lower the 

electrode in the chamber.  Power for the plasma system is provided by a Seren® (Vineland, NJ 

www.serenips.com) RF power source that is tied to an automatic network matching controller.   

The process chamber is differentially pumped using a mechanical pump, a turbo pump, 

and a cryopump.  Using the multiple vacuum pumps the chamber reaches a base pressure in the 

range of 10-10 Torr. The primary pumping is performed by the Edwards model STP 451C 

Figure 2.2:  Schematic of UHV-CVD system with gas manifold connections and controls. 
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(Burgess Hill, UK www.edwardsvacuum.com) corrosive resistant turbo molecular pump that is 

backed by an Edwards QDP-40 corrosive resistant dry mechanical pump. This configuration is 

capable of maintaining a pressure range of 10-9 Torr.  Further pumping using a Marathon® CP-8 

cryopump (San Leandro, CA www.marathonproducts.com) is required for the process chamber 

to reach its maximum vacuum base pressure.  The process chamber pressure is monitored using 

an MKS cold cathode gauge (CCG) (Andover, MA www.mksinst.com) that utilizes an isolation 

valve to prevent damage from excessive heat and high pressure during growth cycles.  During 

the growth cycle, pressure in the growth chamber is monitored using a one of two MKS 

Baratron® gauges.  These gauges are connected to individual MKS pressure controllers.  These 

controllers maintain the possible growth pressures of 10-3 to 100 Torr by actuating throttle valves 

while gas is flowing into the process chamber.   

Gas flows reaching the gas manifold are controlled by individual MKS mass flow 

controllers that are calibrated for each individual process gas that has flow rates less than 100 

standard cubic centimeters per minute (sccm).  Each mass flow controller has the exit solenoid 

connected to a gas manifold.  The mass flow controllers are connected to an MKS power 

supply/display unit that is capable of monitoring four individual mass flow controllers.  The 

gases are mixed in the gas manifold prior to entry into the process chamber through the 

pneumatic final entry valve.  The gases enter the chamber through the port that contains the hot 

wire filament, discussed in a later section, passing through a 25 mm tube before exiting near the 

substrate and cradle.  Process gases are extracted from the process chamber using the turbo pump 

and mechanical backing pump for growths less than 1 Torr or the mechanical pump for growths 

above 1 Torr.  These extracted process gas byproducts are sent to the Edwards gas reactor 

column that takes the volatile gases and renders them safe by creating inert salts using high 
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temperatures while exhausting the remaining inert gas to atmosphere.   

The load lock chamber is differentially pumped to a base pressure of ~10-8 Torr using an 

Edwards turbo molecular pump backed by an Edwards XDS-10 scroll pump.  This configuration 

allows for the mechanical dry pump to act as a backing pump and a roughing pump 

simultaneously without installing separate valves for each pump.  The load lock chamber serves 

as the system’s entry and exit and contains the transfer arm that has the wafer fork for 

transferring samples into and out of the process chamber.  This camber is also used to store 

cleaned and passivated wafers under vacuum conditions lengthening the time passivation will 

prevent oxide formation on the substrate surface.  The chamber is vented using ultra high purity 

argon gas whose flow is maintained while the load lock is open to reduce contamination from 

outside sources.   

2.2 Safety features 

There are many safety features that are installed on the CVD system.  These safety 

systems were installed to ensure safety of not just the lab personnel but the entire facility the lab 

is in.  The systems include the gas monitoring and alarm system, secondary containment system, 

power protection, and safety interlocks. In this section the exhaust and secondary containment as 

well as the gas leak detection and monitoring system will be discussed. 

2.2.1 Exhaust system and secondary containment 

The exhaust and secondary containment are designed to prevent toxic gases from entering the lab 

in case of leak due to seal or line failure.  This system is comprised of gas cabinets, ducting, and 

exhaust fans.  The exhaust fans pull in air from the lab through the ducts and cabinets and pump 

it to the outside air. The duct work is installed to cover every connection along lines that carry 

toxic or flammable gases.  The current configuration has independent exhaust fans for the gas 
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farm gas cabinets, the lab gas cabinets, and the mass flow controller manifold cabinet.  The gas 

manifold and lab gas cabinets system was updated due to inadequacies in terms of air flow 

(measured in cubic feet per minute, CFM) when both the gas manifold and gas cabinets were 

connected to a single exhaust fan.  This was verified by measuring the air flow in the ductwork at 

multiple points and in multiple blast gate configurations using a pitot tube from Dwyer 

Instruments (Michigan City, IN www.dwyer-inst.com) (Figure 2.3).  The results of the 

measurements of the velocity pressure taken from the pitot tube on the original design were used 

to calculate the air flow rate by inputting the system parameters into the online software tool 

from Dwyer (Table 2.1).  The results of this calculation showed that the flow rate through the 

ductwork was not capable of supporting a minimum of 300 CFM as required by the initial design 

parameters due to the addition of a second gas cabinet for the gas mixing system, discussed later 

in Section 8.2.  The system was modified by the addition of a second exhaust fan that allowed 

the gas cabinets and gas manifold to be separated from each other.  Measurements were retaken 

(a) (b) 

Figure 2.3:  Design layout of secondary containment exhaust system (a) before upgrade and (b) 
after upgrade showing the measurement points to determine flow rates for major sections. 
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following the modifications and the results generated showed that the new system had the 

capacity to not only carry the current demands but maintained the extra capacity for expansion in 

the future (Table 2.2b).   

  

Table 2.1:  Table of calculated flow rates from Dwyer online software using measured velocity 
pressures in various blast gate configurations. 

(a) 

(b) 

Table 2.2:  Comparison of results from calculations for flow rates (a) before and (b) after system 
upgrades using online software from Dwyer. 
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2.2.2 Gas leak detection system  

The gas leak detection system consists of a series of Honeywell Analytics Midas 

(Lincolnshire, IL www.honeywellanalytics.com) gas sensing modules  with cartridge inserts 

tailored to individual gases.  These modules are mounted on a wall in the laboratory and 

connected to the exhaust and secondary containment system with sensing input and output tubes 

(Figure 2.4).  These tubes bring gases into the pump of the module which are then transferred 

under pressure to the sensing cartridge.  Following the measurement, the sampled gases are then 

exhausted back into the exhaust system.  These modules have a sensing range in parts per billion 

(ppb) of molecules of a particular gas in an atmospheric mixture.  The modules are connected to 

Figure 2.4:  Image of toxic gas detection monitors installed in UHV-CVD lab. 
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the facility’s fire alarm system that provides a visual and audible alarm should a toxic/flammable 

gas leak be detected.  The system is also tied to the emergency shutoff valves in the gas farm and 

to interlocks on the CVD system.  The gas sensors are tied to a network that allows the units to 

be monitored remotely should a leak be detected.  When a gas leak is detected the triggered 

module will cause all of the valves on the CVD machine and the gas farm to close thereby 

limiting the risk of exposure.  During an alarm condition, the gas sensing modules will also 

trigger a visual and audible alarm inside the CVD lab. An external gas monitoring panel is also 

installed by an entrance to the facility nearest the CVD lab.  The panel is divided into 16 separate 

channels that display the current reading of the gas sensing module by means of a 4 to 20 mA 

signal that is generated by the gas sensing module. 

2.2.3 Unique features  

The CVD system has multiple unique features that have been added to the initial 

configuration.  These additions, combined with the custom in-house built reactor unit, are what  

make the CVD system at the University of Arkansas Fayetteville one of a kind.  The unique 

features of the CVD system include plasma enhancement, hot wire filament, and gas mixing.  

The plasma enhancement system was part of the original reactor system design utilizing an upper 

and lower electrode that can be biased depending on the location of a shorting plug to make one 

of the electrodes connect to the earth ground of the machine exterior (Figure 2.5).  The system 

uses a capacitively coupled plasma at a power frequency of 13.56 MHz.  The system is capable 

of producing power up to a maximum of 50 W with an electrode spacing from 20 mm to over 75 

mm.  The generated plasma generates process gas radicals. 

The hot wire filament enhancement is another unique feature to the CVD system.  This 

feature utilizes a tungsten filament that is shrouded to provide for containment of gases injected 
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into the process chamber to ensure that they pass over the element (Figure 2.6).  The filament 

performs as a heating element that reaches temperature high enough to break down hydrogen 

Figure 2.5.  Image of hot wire element and gas inlet taken during maintenance for filament 
replacement. 

Figure 2.6.  Schematic of plasma electrode configuration in UHV-CVD process chamber 
showing relation to gas inlet. 
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(H2) into atomic hydrogen (H).   The addition of atomic hydrogen to the CVD growth process 

can provide enhanced mobility of process gas radicals on the surface of the substrate.  This is 

accomplished by using a direct electrical current which generates light and heat like the filament 

in an incandescent light bulb.  This additional heating of the process gases is also useful when 

lower growth temperatures are desired by assisting in the breakdown of process gases that 

normally require high temperatures for surface decomposition. 
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Chapter 3 Growth and Characterization Documentation 

3.1 Introduction  

The materials grown for this study were produced in a custom built cold-walled Ultra 

High Vacuum Chemical Vapor Deposition (UHV-CVD) reactor with a base pressure of 10-10 

Torr.  The silicon substrates for those samples were prepared using a standard piranha etch 

cleaning followed by a hydrofluoric acid (HF) passivation.  The sapphire substrates were first 

treated with at titanium coating of the backside of the wafers.  The surface was then cleaned with 

methanol and dried with nitrogen prior to loading into the reactor load-lock.  All films were 

grown as bulk material with no doping as the reactor did not have the capability to use dopants.  

After each growth cycle, the sample was removed from the reactor and the initial 

characterizations were performed. The first characterization was ellipsometry followed by 

Raman spectroscopy, and photoluminescence (PL).  Once the initial characterizations were done, 

samples were chosen for x-ray diffraction (XRD). Transmission Electron Microscopy (TEM) 

samples were selected from those that had been characterized by XRD.  The results of these 

characterizations are described below along with the description of the characterization set-up 

used for the measurements. 

3.2 Ellipsometry 

The first characterization used on the grown films was ellipsometry.  This 

characterization was mainly used to determine the film thickness of the grown thin films.  The 

characterization method uses the principle of phase and intensity changes in linearly polarized 

light as it interacts with a sample.  The changes in polarization can occur in one of two forms. 

The first is a circular polarization in which the light is 90° out of phase, and the second is an 

elliptical polarization with an arbitrary amplitude and intensity.  For this research, a V-Vase® 
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ellipsometer from J.A. Woollam (Lincoln, NE www.jawoolam.com) was used for the 

characterizations.  The ellipsometer is divided in to two sections with the sample to be measured 

between them.  The first section contains the light source and the polarizer that passes light of a 

specific polarization.  The second section contains the detector and polarization analyzer.  The 

polarized light from the emitter section is reflected off of the sample and is collected by the 

detector section. The polarization analyzer contains a constantly rotating polarizer that allows 

different polarizations of light to be sent to the detector.  The changes in the polarization of the 

incident light is measured as psi and delta by the ellipsometer.  By using a material model and 

regression analysis the measurements of psi and delta can be used to accurately describe a thin 

film sample.  The operating software for the ellipsometer contains a database of material models. 

However, for materials that are not included in the database, a generalized model must be 

generated.  For the measurements taken, the SiGe and Ge material models were used to provide 

film thickness and, in the case of SiGe, an estimate of the percent of incorporation of Si in the 

Ge-rich film.  In the case of the GeSn thin films, a generalized model was used to estimate the 

film thickness and incorporation amount of Sn.  This characterization allowed for the 

determination of growth rates and provided information that could be used to infer the 

repeatability of a particular growth recipe by comparing the thickness and alloy percentages for 

multiple samples utilizing the same recipe. 

3.3 Raman spectroscopy 

The second characterization used on the grown films was Raman spectroscopy.  Raman 

spectroscopy is a useful tool in the characterization of epitaxially grown films.  Raman can 

provide insight into a film’s crystallinity (whether a film is amorphous or crystalline) based on 

the shape of the peak and the Raman shift wave number (with units of cm-1) of the peak. Many 
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factors affect the Raman shift wave number of a sample including composition and strain of the 

films.  The setup used for this study consisted of two light sources, the first of which was a 500 

mW 532 nm solid state laser which was filtered to produce 50 mW at the sample. The second 

light source was a helium neon 632.8 nm producing 5 mW at the sample.  The spectrometer used 

for this setup was a Horiba iHR 550 (Kyoto, JA www.horiba.com) with an attached liquid 

nitrogen (LN) cooled charge coupled device (CCD) camera. There were multiple mirrors and the 

appropriate notch filters and beam splitters were used for each laser. The CCD camera was 

cooled to a temperature between 140 and 150 K.  The system was set so only one source could 

be used at a time and the beam paths were set so that they both converged at the focusing 

objective and the spectrometer (Figure 3.1). 

Figure 3.1: Schematic of Raman spectroscopy setup. 



 

18 
 

 

3.4 Photoluminescence 

The third characterization used on the grown films was photoluminescence.  

Photoluminescence is a characterization technique that, as the term suggests, uses the emission 

of light from a sample while using a light source for a provider of energy.  The process, in 

general, is that photons of light from the source, that have energy above the band gap energy of 

the material, are absorbed in the sample.  These absorbed photons interact with electrons in the 

sample and excite them to a higher energy state. This excitation of the electrons creates an 

electron-hole pair, or exciton.  Radiative recombination of the exciton generates the release of a 

photon that has an energy that is equal to the band gap energy of the material.  The emitted 

photons are collected and measured using a spectrometer.  This characterization provides 

information on the band gap, recombination process, carrier lifetimes and more information on 

the sample being studied [6].  For this research, an in-house built PL setup was used for room 

temperature measurements (Figure 3.2).  The set-up was designed to be multifunctional with 6 

Figure 3.2:  Schematic of photoluminescence setup 
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laser sources and different detectors, to provide a wide range of wavelength coverage, such as 

PbS, InSb, and InGaAs.  The set-up was capable of off-axis PL, microPL and optical pumping at 

both low temperature and room temperature using separate collection paths.  The lasers that were 

available were a 532 nn continuous wave (cw), a 1064 nm cw, 2000 nm cw, 1550 cw, 780 nm 

pulse Ti-sapphire, Nd: YAG, and a fempto second laser.  A Horiba IHR 320 grating-based 

spectrometer along with a detector, either PbS or InSb, was used for the detection of the emitted 

light.  Samples for this research were measured in the off-axis configuration using only the 532 

nm, 1550 nm, and the 1064 nm lasers.  The PbS detector was primarily used for the 

characterization as the wavelength coverage cut-off of 3.0 µm was longer than the emitted 

wavelength for most of the samples. 

3.5 X-ray diffraction 

The x-ray diffraction (XRD) characterization technique is used to show the atomic 

structure of a crystalline material. Using the reflections of x- ray intensity in relation to the 

angles of omega and/or 2-theta, the crystal structure can be determined (Figure 3.3). The angle 

between the incident x-ray and the surface of the sample for these measurements is the incident 

angle, omega. The angle between the extended incident beam and the detector angle is the 

diffracted angle, 2theta. When x-rays are incident to the crystal of a material whose atoms are in 

a periodic order, electrons will be scattered from the atoms as periodic electromagnetic waves. 

These waves form an interference pattern which can be detected in terms of intensity at a specific 

angle. When the function of scanned intensity versus the scanned angles is plotted the resulting 

plot is called a rocking curve. From the rocking curve, the material quality can be inferred, and 

lattice constant calculations can be made. 

X-ray diffraction is a non-destructive technique that uses x-rays to determine the 
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arrangement of atoms in crystal materials.  The diffraction of the x-rays interacting with a 

material was determined by the ordered arrangement of the atoms in the material was first shown 

by William Lawrence Bragg and William Henry Bragg, [7].  Therefore, using this spacing they 

were able to determine the atomic arrangement of many materials.  This technique has become 

one of the dominant methods for the characterization of the atomic structure of a material.  For 

this research, a Panalytical X’Pert Materials Research Diffractometer (Malvern, UK 

www.malvernpanalytical.com) that had an incident Cu Kα1 beam with a wavelength value of 

1.5406 Å was used. 

3.6 Description of documentation procedures  

Maintaining proper documentation is critical for any successful laboratory, project, 

Figure 3.3. Schematic of XRD setup. 
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business, or venture.  The ability to receive information rapidly from a specific event for 

confirmation of data or to look for new trends that were not noticed before can mean the 

difference in success or failure.  For this work, the ability to quickly obtain information from the 

results of a growth in less than one day provided the ability to adjust recipes for growths and 

allowed research towards goals to progress in a more efficient manner.  To accomplish this, a 

procedure was established to grow a sample, have it characterized visually and optically, and 

have those results documented and back to the growth personnel in the same day.  The procedure 

had three main parts: the growth, characterization, and documentation. This section will focus on 

the documentation procedures. 

The documentation procedures consisted of the documents and how they were handled.  

The documents started with the growth documents. The first of the growth documents was the 

growth traveler which provided information on the general procedures on the machine operation 

and was a record of the recipe used for the growth. The growth traveler had to be signed by two 

individuals as part of a two-man rule that ensured that at no time a single individual was alone in 

the lab while the machine was in operation (Figure 3.4).  The individuals that were required to be 

in the lab during the growth were the grower and the growth buddy.  They had different 

responsibilities that will be discussed in the next section.  The growth documents were the 

responsibility of the grower to complete. The major growth documents that were required for this 

research were the growth traveler, mentioned above, the sample cross section, and a sample 

wafer map.  The sample cross section document was designed to contain a general description of 

the sample to be grown that includes the designed thickness of each epitaxial layer, the relation 

between the layers, the recipe for that layer, the substrate (material, orientation, and doping 

type), and the sample identifying nomenclature.  The sample wafer map contained an oriented 
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diagram of the sample and was used to identify sections of the sample as they were removed for 

testing that could not be done on the sample as a whole piece.  This document contained a record 

of the piece that was missing, its original location on the sample wafer, and who removed it from 

the wafer.  These documents were placed in binders for hard copy records of each growth 

ordered by specific document type and sample identifier (Figure 3.5).  

The characterization documents were used to document the individual characterizations 

that were performed on a sample.  These documents had individual templates for each 

measurement.  They contained the sample identifier, the date of characterization, the individual 

performing the characterization, and the conditions that the characterization was performed 

under.  Templates were created for the ellipsometry, Raman spectroscopy, photoluminescence, 

and x-ray diffraction measurements.  The documents were created after each characterization 

was performed by the individual performing the characterization.  The completed documents 

Figure 3.4:  Image of growth traveler first page showing system required checks and signatures. 
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were printed and bound to be maintained for hard copy records as noted above in (Figure 3.5).  

All of the documents were stored as soft copies on a SharePoint site to be made available to any 

member of the research team at any time for use or discussion of results. 

3.7 Description of typical growth day  

The typical growth day consisting of the growth and characterization of three samples 

started with a discussion of the last growth of the previous day while growth pre-checks were 

being performed.  These checks started with checking the gas reactor column followed by the 

chamber purge gas regulators.  These checks were to ensure that the gas reactor column was in a 

condition that would allow for the harmful byproducts of the process gas reaction to be rendered 

harmless by converting them into salts at high temperature (above 550 ℃) with a catalyst.  The 

checks continued to the process chamber base pressures and secondary containment condition.  

Figure 3.5:  Image of documentation binders for hardcopy records of all documents pertaining to 
each sample. 
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The last checks inside the lab were to ensure the status of the toxic gas detection system for all 

active channels.  The checks were continued in the chase to verify backing pump and the 

associated chiller condition.  The final checks in the laboratory chase were to verify the pressure 

setting on all of the outside supplied nitrogen gas regulators.  Following all of the checks, the 

decision was made on the first growth recipe for the day. This decision was based off of the 

results of the second growth from the previous day. 

During the UHV-CVD machine pre-checks, members of the growth team would perform 

the pre-checks and start the individual characterization tools so that they would be in a ready 

condition.  The last growth from the previous day was collected by members of the growth team 

to be characterized, while the grower and buddy were performing the growth of the first daily 

samples.   

At that time the recipe was finalized and the prepared sample substrate that was 

preloaded into the process chamber the previous day was placed on to heat by setting the desired 

growth temperature and allowing the substrate to come to temperature at a slow ramp rate of < 

40 ℃/min to avoid major overshoot of the temperature and to reduce thermal shock.  Once the 

desired temperature was reached, the substrate was allowed to heat soak for 20 min to reduce 

temperature gradients across the wafer surface as the sample cradle acted like a heatsink to 

remove heat from the edges of the wafer.  Following the heat soak, the growth recipe was 

followed using the procedures in the previously discussed growth traveler.  The process chamber 

was purged of all gases following the growth process.  This purge was completed using the 

carrier gas for the sample growth by increasing the pressure in the process chamber to above 750 

mTorr and then pumping the chamber down to a pressure level of 10-5 Torr multiple times.  This 

was to ensure that no process gases remained in the chamber before the sample was removed 
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from the chamber and transferred to the load lock chamber.  The sample was allowed to cool to a 

temperature below 150 ℃ before it was then transferred to the load lock chamber.  Following 

transfer to the load lock, the sample was removed from the machine by bringing the load lock 

chamber to atmospheric pressure by inflating the chamber pressure with non-reactive purge gas 

with the load lock door unlatched.  

The sample was removed from the chamber and the next prepared substrate was loaded 

Figure 3.6:  Typical image of a sample after removing from load lock prior to initial 
characterization. 
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on to the transfer arm to be transferred to the process chamber.  The load lock was placed in a 

pump down condition to reach a pressure ~10-7 Torr before moving the sample onto the growth 

process chamber sample cradle.  A visual inspection of the sample was performed after removing 

it from the UHV-CVD machine and photos of the sample were taken for documentation purposes 

and uploaded to the SharePoint site (Figure 3.6).  The visual inspection was to determine the 

success or failure of the growth, and the initial description of the growth was noted on the growth 

traveler.   

The sample was then taken by the member that is scheduled to go to the ellipsometry 

characterization tool for the initial characterization work.  The individual that was operating the 

ellipsometry tooling notified the team member that was running the photoluminescence and 

Raman tooling that the first growth was completed, and that the individual was needed in the 

growth lab for the second growth of the day.  The individual that brought the sample to 

ellipsometry was responsible for performing the characterization.  The data from ellipsometry 

was collected and fit using models in the software from J.A. Woollam.  The data collected 

included information on the individual layer thicknesses and was used to calculate the growth 

rate of each layer.  The data that was fit to the model was used to find the absorption coefficients 

of the targeted layer as a function of wavelength.  This data was saved and transferred to the 

template using Origin Labs’s (Northampton, Ma www.originlab.com) Origin software (Figure 

3.7).  The documents from the ellipsometry characterization were printed for the hardcopy 

records and uploaded to the SharePoint site.  The individual in the lab with the 

photoluminescence and Raman tooling finished the remaining characterizations on the previous 

days last sample and ensured that the documents were printed for hard copy records and 

uploaded to the SharePoint site.   
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When the ellipsometry characterization of the sample was finished, the sample was taken 

to the Raman spectroscopy tool and the characterization was performed by the individual that 

had been at the ellipsometry station.  The Raman characterization was performed by first 

ensuring the alignment of the system using the standard operating procedures developed for the 

system.  The system’s operating software was then checked to ensure that operating parameters 

for the characterizations were properly set.  The first measurement of the characterization set was 

a calibration measurement of a reference sample of bulk substrate, primarily Ge, that was 

determined based on the desired composition of the sample to be measured.  The data from each 

measurement was saved on the computer containing the operating software using the sample 

Figure 3.7:  Template for ellipsometry measurements to be used during the initial 
characterization of samples. 
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identification as the primary folder and the measurement description as the filename of a .csv file 

type.  Following the calibration measurement, measurements were made of the sample at three 

locations along the sample surface.  The measurement locations were the sample center, a point 

approximately ½ the radius of the sample, and a point ~10 mm from the sample edge.  The 

measurement locations allowed for the comparison of the sample for growth uniformity based on 

how much refocusing needed to be done to the objective lens between measurements, the 

difference in peak intensity of the measurements, and the difference in peak wavelength position 

of the measurement.  Once all of the measurements were taken and the data saved, the data was 

copied to a flash drive to be processed using the individual’s laptop before placing the processed 

data into the template for the Raman measurements (Figure 3.8).   

The data for the calibration sample was extracted into an Excel spreadsheet for the 

purpose converting the plot intensity as a function of wavelength to a plot of wavenumber versus 

intensity by using Equation 3.1. 

n =  ((1/λ
) − (1/λ�)) ∗ 10�                                                     (Equation 3.1) 

where n is the wavenumber in cm-1, λ1 is the wavelength of the incident laser source in nm, and 

λ2 is the wavelength output from the spectrometer for each intensity measured in nm.  The peak 

position of the calibration sample was linearly shifted by the amount requited to ensure the peak 

position was maximized at 300 cm-1 to eliminate day-to-day variations in the measurement setup.  

This corrected data from the Excel template was transferred to the Raman template in Origin and 

the intensity data for the sample measurements were then transferred to the template in the 

Origin software and the template was completed by the individual that performed the 

characterization.  This completed document was printed for binding in the hardcopy records as 

well as uploaded to the SharePoint site.   
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The photoluminescence measurement was performed on the sample following the 

completion of the other measurements.  This characterization started with the reference sample 

of bulk substrate, typically Ge, for a comparison of the peak intensity with the measurements 

taken from the sample to be characterized.  This data was collected as an intensity versus 

wavelength plot using the same locations on the sample to be characterized and saved in an 

Origin work book as the photoluminescence spectrometer is operated using the supplied Origin 

software to control the experiment.  This data was saved to a flash drive as well as the tool’s 

computer.  The flash drive was used to transfer the data to the individual’s computer for fitting 

Figure 3.8:  Typical Raman template with data from measurement and reference showing a plot 
of the intensity as a function of Raman shift wavenumber using Equation 3.1. 
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into the Origin template for photoluminescence (Figure 3.9). The completed photoluminescence 

characterization document was uploaded to the SharePoint site and printed for the hardcopy 

records.   

Following the completion of the three initial characterizations, the sample was returned to 

the UHV-CVD growth lab and placed in sample storage.. The results for the inital 

characterizations were brought to the growth lab and discussed with the growth team members 

who were finishing the second growth of the day (which had its recipe based on the last growth 

of the previous day), so as to prepare for the third growth of the day using the results from the 

first.  This near same day turnaround for characterization data allowed for the efficient 

adaptation of needed changes to rapidly progress toward the objectives of the long term growth 

Figure 3.9:  Typical photoluminescence template showing measurement and reference data plots. 
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plan.  The characterization process of running one sample through the characterizations while the 

next sample was growing ensured that at no point was the characterization more than one sample 

behind the growth.  When the final growth of the day was finished and all of the day’s 

characterizations had been completed, printed , and uploaded, the documents were distributed to 

the binder groups in each of the characterization labs.  The final task of the day was the 

responsibility of the growth team leader.  This task was the distribution of a daily growth 

summary that contained  a spreadsheet of the day’s growth recipes and characterization results  

and a brief description of the growth’s purpose, success or failure, and any issues that may have 

occurred during that day with the equiptment.  The efficient use of the obtained characterization 

data and equipment reports allowed the research to progress rapily and plan for possible issues 

with equipment. 
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Chapter 4 UHV-CVD Growth Development of Ge Buffer on Si     

4.1 Introduction 

The growth of GeSn on silicon substrates has given the field of silicon photonics a 

material system that has the potential for complementary metal oxide semiconductor (CMOS) 

compatibility and with a means to tune the material’s band gap to improve device performance.  

These can be high performance devices such as lasers, light emitting diodes, and photodetectors.  

The GeSn material system incorporated to the silicon platform has shown high 

commercialization value as indicated by the high rates of success of photonic devices in recent 

years[8][9][10]. 

 The growth of this material system on silicon is not without issues.  The most significant 

issues are the large lattice mismatch between GeSn and Si which is larger than 4.2% along with a 

low solubility of Sn in Ge which is smaller than 0.5%. Another issue is the crystal stability of Sn 

that changes from a diamond cubic structure (α-tin) to body centered tetragonal (β-tin).  This α-β 

transition typically occurs around a nominal temperature of 13.2 ℃.  Due to these issues, 

multiple techniques have been developed to perform the growths of GeSn under non-equilibrium 

conditions such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).  The 

growth of GeSn by CVD has been studied by many groups for more than a decade 

[11][12][13][14][15].  During these investigations, different precursors were used for both Ge 

and Sn.  The most recent Sn precursors used for CVD growth have been stannane (SnD4) and 

stannic chloride (SnCl4), with commercially available SnCl4 being the lower cost and more stable 

of the two.  The precursors for Ge have varied as well from high order hydrides such as 

digermane (Ge2H6) and trigermane (Ge3H8) to the low cost germane (GeH4).  In this section, the 

growth of the silicon-germanium-tin (SiGeSn) material system will be discussed.    



 

33 
 

 

4.2 Growth matrix that led to buffer recipe  

The lattice mismatch between GeSn and Si causes compressive strain that increases as 

the amount of Sn incorporation increases. This induced strain results in poor crystal quality and 

reduces amounts of Sn in the grown films.  To reduce this strain, high quality Ge buffers have 

been grown on Si substrates. The growth of high-quality Ge on Si has been studied using three 

primary methods.  The two main methods used have been: (i) using a graded SiGe buffer 

[16][17], and (ii) using a two-step buffer with an annealing step [18][19][20].  The third method 

used is aspect ratio trapping, where a pattern of windows whose depth to width ratio is >1 is 

formed in a silicon dioxide layer that is deposited on the substrate and the threading dislocations 

are trapped in the patterned area.  The issue with this method comes from the dislocations that 

form on the surface when the lateral overgrowth from each patterned window merges. The 

graded SiGe buffer layer uses a multiple layer film growth technique that increases from low Ge 

composition SiGe to only Ge in the final layer.  This buffer growth method has produced buffer 

layers that have a threading dislocation density (TDD) in the range of 106 cm-2[21].  The primary 

issue with this method is that the buffer layers typically average several micrometers in 

thickness.  The two-step growth method uses a low temperature first step, that promotes two-

dimensional growth, and a high temperature second step followed by an anneal.  This technique 

has been shown to produce high quality Ge films with TDD in the range of mid 106 cm-2 with 

buffer thicknesses in the range of 1 µm[22].  The growths for this study used the two-step 

method without an anneal step due to technical issues with the equipment.  

The Ge buffer that was developed used a LT/HT growth method that produced films that 

were suitable to be the foundation for the growth of GeSn.  The process started with the growth 

of high temperature Ge directly on Si.  These growths were done to find a starting point for the 
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low temperature step using a fixed growth pressure of 1 Torr.  This step involved varying the 

temperature, from 300 ℃ to 400 ℃, and the GeH4 mass flow rates to provide a growth rate that 

prevented island formation and promoted two-dimensional growth (Table 4.1).   

Table 4.1:  Low temperature growth matrix for early stage development of Ge buffer layer. 

These growths were examined using ellipsometry and Raman spectroscopy.  The 

ellipsometry measurements were used to determine film thickness (Figure 4.1a).  Raman 

spectroscopy measurements were used to determine the wave number difference between the as-

grown film and bulk Ge wafer and as a confirmation of film thickness from pumping laser 

penetration depth (Figure 4.1b).  The second set of growths were used to determine the 

temperature that provided the best growth rate and film quality to produce a high-quality Ge 

buffer layer.  These growths used the same growth pressure of 1 Torr as the low temperature 

step.  The temperatures and GeH4 flow rates were again varied to find the best combination to 

produce possible results without using an annealing step (Table 4.2). These samples were 

measured using ellipsometry and Raman spectroscopy to determine the starting point for the full 

LT/HT buffer growth conditions. The grown films were measured using ellipsometry, Raman 

Ge First Step 

GeH4: 10 sccm; Ar: 25 sccm; time 60 min 

                     Press 
Temp 

0.1 torr 0.5 torr 1 torr 

 330 °C    

 350 °C    

 370 °C    
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spectroscopy, and photoluminescence (PL).  The growth conditions for the full buffer were 

determined through an optimization of the first and second step by varying the flow rates of the 

second step and the temperatures for both steps to achieve the best quality using the PL results 

for comparison with the highest intensities being the determining factor for further  

Table 4.2  High temperature growth matrix for early stage development of Ge buffer layer. 

Ge Second Step 

GeH4: 10 sccm; Ar: 25 sccm; time 20 min 

                     Press 
Temp 

0.1 Torr 0.5 Torr 1 Torr 

550 °C    

600 °C    

650 °C    

Figure 4.1:  (a) Plot to determine growth rates at varying deposition temperatures based on 
ellipsometry thickness measurements and, (b) a typical Raman spectroscopy plot. 
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characterization (Figure 4.2).  The results of the measurements were compared to reference 

samples of a bulk Ge wafer to provide a standard by which film quality could be compared to 

earlier growth initial characterizations to identify samples warranting further characterization by 

transmission electron microscopy (TEM). Etch pit density would be performed to determine 

TDD of the films.  The samples for development of the Ge buffer were grown using 4-inch p-

type Si (001) wafers.  The wafers were prepared using a standard piranha etch (a solution of 

H2SO4 and H2O2 in a ratio of 1:1) followed by a HF passivation dip as reported in previous work 

by Mosleh, et al [23].  The film thickness measured from the ellipsometry data fitting was also 
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Figure 4.2:  Typical results from samples used for LT/HT Ge buffer layers from (a) ellipsometry 
measurements, (b) photoluminescence measurements, and (c) Raman measurements. 
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confirmed by TEM as shown in (Figure 4.3).  The buffer recipe, once finalized, was highly 

repeatable as was determined through characterization of later grown samples discussed in 

Chapter 6 (Figure 6.6) and produced a buffer that had a first layer of ~350 nm thickness followed 

by the second layer that gave a total film thickness of ~ 1 µm. 

The PL of the grown films was the final determining factor as to which samples got 

further testing.  The early growths of the buffer layer started with no PL response when 

compared to the bulk Ge reference (Figure 4.4).  The final optimized buffer layer growth showed 

a PL response that showed a ratio of 1/8 when the direct band gap peaks were compared.  This 

response measurement also showed a shifting to longer wave lengths as compared to the bulk 

reference that could be attributed to tensile strain in the buffer layer.  This tensile strain occurred 

Figure 4.3:  TEM image of GeSn sample showing Ge buffer. 
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due to a difference in the thermal expansion coefficients between Si and Ge which are 2.6 x 10-6 

cm ℃-1 and 5.9 x 10-6 cm ℃-1, respectively.  This caused the high temperature second step Ge 

layer to develop tensile strain as the sample cooled.  The buffer samples producing the lowest 

reference to sample direct peak intensity ratio were chosen for the etch pit analysis where an 

iodine-based etchant was prepared by mixing 67 mL of acetic acid (CH3COOH), 20 mL of nitric 

acid (HNO3), 10 mL of hydrogen fluoride (HF), and 30 mg of iodine (I2) described by H.C.Luan, 

et al [20]. This etchant was applied to the sample then a SEM image was taken of the surface.  

This image showed pits in the surface where the etchant attacked the points where threading 

dislocations terminated at the surface.  These pits were counted and a TDD was calculated 

(Figure 4.5).  The results from these measurements showed that the optimized buffer had a TDD 

that was in the range of 1 x 107 cm-2.  This measurement was within one order of magnitude of  

the range of high-quality optimized Ge buffer layers which have been reported in the range of 

~105 to 106 cm-2 and used a final annealing step to further reduce the TDD in the film [20].  The 

buffers were determined to be of sufficient quality that GeSn growth work onto the buffer layers 

could begin.  Further improvements in the buffer layer may be possible using an annealing step 

Figure 4.4:  Photoluminescence plots of (a) initial and (b) final Ge buffer growths. 
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which was not possible during the buffer development due to limitations caused by technical 

issues with the substrate heater in the UHV-CVD chamber.  

 

 

  

Figure 4.5:  SEM image of etch pits showing a calculated TDD of 1.1 x 107 cm-2. 
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Chapter 5 Growth of SiGe on Si  

5.1 Introduction 

The materials grown for this study were produced in a custom built cold-walled Ultra 

High Vacuum Chemical Vapor Deposition (UHV-CVD) reactor with a base pressure of 10-10 

Torr.  The substrates for those samples which were silicon were prepared using a standard 

piranha etch cleaning solution of H2SO4 and H2O2 at a ratio of 1:1 followed by a hydrofluoric 

acid (HF) passivation.  When sapphire substrates were used, they were treated with a 1 µm 

titanium coating on the backside of the wafers to aid in heating the wafer from the radiative 

heating in the process chamber due to the transparency of the sapphire substrates.  The wafer 

surface was then prepared with methanol and dried with nitrogen prior to loading into the reactor 

load-lock.  All films were grown as bulk material with no doping since the reactor did not have 

the capability to use dopants.  After each growth cycle, the sample was removed from the reactor 

and the initial characterizations were performed.  These characterizations of ellipsometry and 

Raman spectroscopy allowed for quick feedback so that recipe adjustments could be made to 

reduce the amount of time required to complete the matrix and advance toward the research 

goals. 

5.2 Growth on Si (100)  

The planning for this series of growths started with the formulation of a growth matrix.  

The matrix was determined using known working recipes for the growth of Ge buffers using the 

custom built cold walled Ultra High Vacuum Chemical Vapor Deposition (UHV-CVD) reactor.  

The matrix was broken into two divisions based on growth pressure.  The first division was 

defined using a growth pressure of 0.1 Torr was used with the second division being 1.0 Torr.  

The pressure stetting for these growths were determined from previous work done for 
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germanium growth on silicon and these pressures were found to provide the best starting point 

for low growth rate.  Prior to growth, the substrates were cleaned using the above described 

wafer preparation and loaded in to the load lock of the ultra-high vacuum chemical vapor 

deposition chamber.   The sample substrates in the load lock were kept at a base pressure of 10-7 

Torr to reduce native oxide formation.  The substrates were then transferred individually to the 

process chamber of the chemical vapor deposition reactor where they were heated to growth 

temperature.  The growth temperature was maintained for 20 minutes for a heat soak to ensure 

that the substrate was uniform in temperature to prevent thermal gradients due to the sample 

cradle acting as a heat sink.  The temperature range for these growths was from 450 °C to 700 

°C.  The germanium precursor flow rates were set at 5 sccm for the growth pressure of 0.1 Torr. 

A flow rate of 10 sccm was used for growths at a pressure of 1.0 Torr.  The flow rates for the 

silicon precursor varied between 1 sccm and 10 sccm for both growth pressures.  The flow rates 

for the argon carrier gas was set at 200 sccm for the 0.1 Torr growth pressure and a flow rate of 

25 sccm was chosen for the 1.0 Torr growth pressure. The length of time for all growths was 

fixed at 15 minutes.  The growth matrices from these growths were used to develop the growth 

recipes for the later silicon-germanium growths on sapphire.  The growth matrices for growths 

on silicon (100) are shown in Tables 5.1 and 5.2, respectively.  

A1 D1 B1

C1

E110

15 0.1200

Precurssor GeH4 F.R. (sccm):   10

550 600 650 700

 Low Pressure SiGe                        

Growth Matrix Si (100)
Grown samples shown

Time
FR (sccm)of Carrier 

Gas (Ar) 

Growth Pressure 

(Torr)

                                        Temperature          

Precurssor SiH4                                                          

F.R. (sccm)                                    

450 500

1

2.5

5

Table 5.1:  The growth matrix for SiGe on Si (100) using low pressure (0.1 Torr). 
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5.2.1 Material characterization 

The initial characterization of the grown samples was taken using ellipsometry and 

Raman spectroscopy.  This characterization was used to determine which samples were to be 

further characterized using x-ray diffraction measurements.  The ellipsometry results from these 

growths showed that under low pressure and high dilution of carrier gas, the growth rates of the 

films ranged from no film growth to a maximum of 11 nm/min.  The absorption coefficients 

generated from the fitting of ellipsometry data showed that the absorption cutoff wavelength 

reduced as the percent incorporation of silicon increased in the samples.  Typical results from the 

fitting of the ellipsometry data can be seen in Figure 5.1 where the silicon percentage was about 

Figure 5.1:  Ellipsometry results typical for two samples grown on Si (100) substrates. 

E2

A2/F2 B2 D2

G2

C2

Precurssor GeH4 F.R. (sccm):   10

700

25 1

1

2

4

6

8

10

15

 High Pressure SiGe                        

Growth Matrix Si (100)
Grown samples shown

Time
F.R. (sccm)of 

Carrier Gas (Ar) 

Growth Pressure 

(Torr)

                                           Temperature          

Precurssor SiH4                                                          

F.R. (sccm)                                    

450 500 550 600 650

Table 5.2:.  The growth matrix for SiGe on Si (100) using high pressure (1.0 Torr). 
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18% and the cutoff was below 1000 nm.  The samples showed a peak around 395 cm-1 in the 

Raman spectroscopy measurements. Since the films that were grown were an alloy of both 

germanium and silicon, they had an expected critical thickness of less than 100 nm [24].  The 

assumption for relaxed layers was made for those sample grown on silicon due to thickness 

fittings from ellipsometry.  The assumption of relaxation allowed for any shifting of the Raman 

wavenumber for the longitudinal optical (LO) phonons to be attributed to the incorporation of 

silicon in the grown films when compared to the germanium bulk samples (Figure 5.2).   

The XRD rocking curve measurements for the samples grown at lower pressure showed 

that the films were defective which was determined from the low intensity and the full width half 

maximum of the peaks. The incorporation of Si in the films varied with temperature and flow 

rate changes as shown in the shifting of the peak positions (Figure 5.3).  With the increase in 

growth pressure and dilution, the quality of the grown films improved.  This improvement of 

quality of the grown films was determined from the intensity gains and the narrowing of the 

FWHM of the XRD rocking curves of the measured samples (Figure 5.4).  From the fitting of the 

peak positions, calculations were used to determine the d-spacing of the crystal structure of the 

Figure 5.2:  Typical Raman results for two SiGe growths on Si(100). 
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films.  From the d-spacing calculations the lattice size was calculated. Using the calculated 

lattice size, calculations were made to determine the percent of incorporation of silicon into the 

film using Vegard’s law (Table 5.3). The calculations for the d-spacing were made using Bragg’s 

law  

���� =  1.54 Å/2�������         (Equation 5.1) 

where ���� is the d-spacing and ���� the fitted peak angle for the 2θ-omega plot/2 (in radians). 

Figure 5.3:  Combined plot of XRD rocking curve for SiGe (004) for growths on Si (100) 
performed at 0.1 Torr using recipes in Table 5.1. 
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The lattice size was calculated using. 

 ��  =  ����  /√ℎ� + #� + $�      (Equation 5.2)  

where the parameter �� is the lattice size, ����is the d-spacing from Equation 5.1 and h, k, and l 

are the Miller indices of the incident plane for the x-ray beam  The percent of incorporation of Si 

(x) and Ge (1 − &) could be calculated using Vegard’s law for binary alloys  

�0
'�& ()1−& =  (1 − x)�0

Ge +  �0
Si− .'�() &(1 − &)    (Equation 5.3)  

where ��
/01 23451

, ��
67, and  ��

89 are the lattice constants of SixGe1-x, Ge, and Si, respectively.  The 

Figure 5.4:  Combined plot of SiGe (004) Rocking curves from growths on Si(100) performed at 
1.0 Torr using recipes in Table 5.2. 
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bowing parameter of SiGe is taken as  .'�()
= 0.026 nm [3]. As film thickness increased, the films 

relaxed more and a 125 nm film with 19% Si was nearly fully relaxed on Si (100) (Figure 5.5). 

The growths at higher pressure had XRD rocking curve measurements that showed 

crystal quality improvement through all temperature ranges. The FWHM calculations from the 

XRD rocking curves showed that the lower pressure growths varied between 0.30 to as high as 

0.60 degrees.  The high pressure growths showed a FWHM ranging from 0.18 to 0.23 degrees 

(Figure 5.6), which was indicative of higher quality material when compared to the growths at 

lower pressure.  These measurements showed a definitive shift in peak position as incorporation 

of Si increased with increases in flow rate of silane and also that temperature above 500 °C only 

provided minor improvement in crystal quality.  The calculated growth rates of the films were 

Vegard's 

law 

lattice 

constant

Si% Ge%

Vegard's 

law 

lattice 

constant

Si% Ge%

Si (100) A2 1811 0.224 66.444 1.406 5.62 13.3 86.7 5.62 15.1 84.9

Si (100) A1 69 0.401 66.323 1.408 5.63 9.8 90.2 5.63 11.1 88.9

B1 High 

Peak
0.396 66.888 1.398 5.59 25.9 74.1 5.59 29.6 70.4

B1 Low 

Peak
0.507 67.498 1.387 5.56 42.4 57.6 5.55 49.3 50.7

Si (100) C1 125 0.352 66.642 1.402 5.61 19.0 81.0 5.61 21.6 78.4

D1 Low 

peak
0.380 66.319 1.408 5.63 9.7 90.3 5.63 10.9 89.1

D1 High 

peak
0.411 66.793 1.399 5.60 23.2 76.8 5.60 26.5 73.5

Si (100) E1 149 0.303 67.075 1.394 5.58 31.0 69.0 5.58 35.7 64.3

Si (100) B2 3689 0.190 66.598 1.403 5.61 17.7 82.3 5.61 20.1 79.9

Si (100) C2 2548 0.200 67.049 1.395 5.58 30.3 69.7 5.58 34.8 65.2

Si (100) D2 2221 0.180 66.609 1.403 5.61 18.0 82.0 5.61 20.5 79.5

Si (100) E2 2482 0.182 66.349 1.408 5.63 10.6 89.4 5.63 11.9 88.1

Si (100) F2 1388 0.233 66.576 1.403 5.62 17.1 82.9 5.61 19.4 80.6

Si (100) G2 3581 0.201 66.901 1.397 5.59 26.3 73.7 5.59 30.1 69.9

Si (100) 138

Substrate Sample #
Thickness 

(nm)

with bowing factor Linear

Si (100) 160

FWHM

Fitted 

2Theta 

Position

d-Spacing

Table 5.3:  Calculations showing d-spacing and lattice constant from Bragg’s Law, and 
percentage of incorporation with and without the bowing parameter from Vegard’s Law. 
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from 93 nm/min to as high as 246 nm/min for the high pressure growths as compared to the low 

pressure growths  which ranged from 4.6 nm/min to 10.6 nm/min.  The growth rates of the 

samples as a function of temperature show a reduced growth rate through the entire selected 

growth window for low pressure growths when compared to the high pressure growths (Figure 

5.7a).  It was noted that the high pressure growths increased in growth rate until 500 °C where 

the rate peaked and the decrease following this peak was indicative of a gas-phase transport 

regime to mass flow limited regime crossover.  The temperatures above 500 °C entered the mass 

Figure 5.5: Typical XRD-RSM plot showing relaxed film growth. 
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flow limited regime as some precursors decomposed faster than others and deposited elsewhere 

in the chamber.   It was determined the higher growth rates of the high pressure growths would 

(a) (b) 

Figure 5.7: Plots of growth rate as a function of temperature (a) and SiH4 flow rate (b). 

Figure 5.6:  Typical XRD rocking curve with Gaussian fitting for SiGe samples grown on 
Si(100) at 1.0 Torr. 
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provide the needed recipes for the planned future growths as the growth rate was expected to be 

reduced when other substrates with different crystalline orientations were used. The recipes 

developed here and their high growth rates were used to subsequently develop the recipes for the 

matrices for the growths of SiGe on Si (111) substrates. 

5.3 Growth on Si (111) growth matrix  

The growth on Si (111) was done with the intention of using the growths as a comparison 

for the planned growths on c-plane sapphire.  The planning for this series of growths started with 

the formulation of a growth matrix.  The matrix was determined using recipes from the growth of 

SiGe on Si (100) using the custom built cold walled Ultra High Vacuum Chemical Vapor 

Deposition (UHV-CVD) reactor.  Prior to growth the substrates were cleaned using the above 

described wafer preparation and loaded in to the load lock of the ultra-high vacuum chemical 

vapor deposition chamber.   The sample substrates in the load lock were kept at a base pressure 

of 10-7 Torr to reduce native oxide formation.  The substrates were then transferred individually 

to the process chamber of the chemical vapor deposition reactor where they were heated to 

growth temperature.  The growth temperature was maintained for 20 minutes for a heat soak to 

ensure that the substrate was uniform in temperature to prevent thermal gradients due to the 

sample cradle acting as a heat sink.  The temperature range for these growths was from 500-600 

°C.  The flow rate for the germanium precursor was 10 sccm for a growth pressure of 1.0 Torr.  

The flow rate for the silicon precursor was set at 4 sccm.  The flow rate for the carrier gas was 

set at a rate of 25 sccm. The length of time for all growths was fixed at 15 minutes (Table 5.4).  

These growths had a reduced growth rate when compared to the above-mentioned high-pressure 

growths on Si (100) (Figure 5.8).  

The XRD rocking curve measurements of the samples showed that the material quality 
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was poor but that the quality improved as the growth temperature increased. These 

measurements also showed a definitive narrowing of the peak shape with increase in temperature 

indicating improvement in the crystal quality (Figure 5.9).  The samples showed a peak around 

395 cm-1 in the Raman spectroscopy measurements (Figure 5.10).  Ellipsometry measurements of 

Figure 5.8:  Comparison plot of growth rate versus deposition temperature for sample grown on 
Si (100) and Si (111). 

A3 B3 C3
15

1

2

4

6

8

10

25 1

SiGe Growth Matrix Si (111) Grown samples shown Precurssor GeH4 F.R. (sccm):   10

Time
F.R. (sccm)of 

Carrier Gas (Ar) 

Growth Pressure 

(Torr)

                                           Temperature          

Precurssor SiH4                                                          

F.R. (sccm)                                    

450 500 550 600 650 700

Table 5.4:  Growth matrix for growths on Si (111). 
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the samples also showed that the absorption cutoff with respect to the wavelength (Figure 5.11) 

shifted toward shorter wavelengths as the incorporation of Si increased in the films when 

Figure 5.9:  Typical Raman plots for samples grown on Si (111) showing shifted Ge-Ge LO 
phonon peak shift and Ge-Si LO phonon peaks near 395 cm-1. 

Figure 5.10:  Comparison XRD-RC plot for samples grown on Si (111) showing improvement in 
quality as temperature increases. 
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compared to data in Table 5.3.  The FWHM of the XRD measurements ranged from 0.07 to 0.09 

degrees using a bi-Gaussian fitting due to the asymmetric peak shape (Figure 5.12).  The 

Figure 5.12: Typical XRD-RC plot showing bi-Gaussian fitting (dotted line). 

Figure 5.11:  Typical absorption coefficient plots from ellipsometry measurements showing 
shifted cutoff wavelengths. 



 

53 
 

 

incorporation of Si ranged from 10 to 13% for the samples and was calculated from fitted peak 

positions using Bragg’s law and incorporation percentages based on Vegard’s law with and 

without bowing parameters (Table 5.5).  However, as these growths were only used to provide 

verification of growth parameters, no further growth work was pursued.  

5.4  Growth of SiGe on sapphire  

The sapphire substrates were first treated with a titanium coating to the backside of the 

wafers.  The surface was then cleaned with methanol and dried with nitrogen prior to loading 

into the reactor load-lock. The titanium coating was applied to a thickness of 1000 nm in stages 

of 250 nm using an electron beam evaporator. The titanium backing was to absorb radiative heat 

from the heating element since wafer heating was noncontact radiative heating in the process 

chamber.  These growths varied in temperature range from 500-600 °C with the flow rates of 

silane varying from 2-6 sccm (Table5.6). These were done to examine the temperature 

dependence and silane flow rate dependence for the material as the recipes were refined to 

accomplish a rhombohedral growth of SiGe on sapphire substrates using the chemical vapor 

deposition method as no such work has been reported. As with the prior growths, these were 

Vegard's 

law 

lattice 

constant

Si% Ge%

Vegard's 

law 

lattice 

constant

Si% Ge%

Si (111) A3 972
0.083  

0.048
27.526 3.238 5.610 19.3 80.7 5.61 22.0 78.0

Si (111) B3 1098
0.094  

0.056
27.407 3.252 5.633 10.2 89.8 5.63 11.4 88.6

Si (111) C3 1161
0.070  

0.062
27.465 3.245 5.621 14.7 85.3 5.62 16.6 83.4

w/ bowing factor Linear

Substrate Sample #
Thickness 

(nm)
FWHM

Fitted 

2Theta 

Position

d-

Spacing

Table 5.5:  Calculated data from XRD rocking curves providing d-spacing and lattice size. 
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done for a fixed time of 15 min. The germane flow rate was set at 25 sccm following the high-

pressure matrix developed during the Si (100) growths. The growth pressure was set at 1.0 Torr 

as was used in the prior growths.  

The films grown during for this portion of the research were characterized using ellipsometry, 

growth rate, absorption coefficient, crystal quality, lattice sizes, and silicon incorporation of each 

of the grown samples. The ellipsometry results from these growths showed that the growth rate 

for the films varied from 33-60 nm/min. The absorption coefficients generated from the fitting of 

ellipsometry data showed that the absorption cutoff wavelength reduced as the percent 

incorporation of silicon increased in the samples (Figure 5.13). The Raman spectroscopy of the 

(b) (a) 

Figure 5.13:  Ellipsometry plots of the absorption coefficient as a function of wavelength for two 
SiGe samples grown on sapphire. 
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Table 5.6:  Refined growth matrix for SiGe on sapphire substrates for deposition temperature and 
SiH4 flow rate dependence. 
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sample showed a Si-Ge peak at a Raman shift of 395 cm-1 which was also observed in the 

growths on Si (100) and Si (111) (Figure 5.14). The XRD rocking curves showed that the 

incorporation increased with an increase in flow rate of silane and that material quality improved 

with increases in temperature. The composition of the films ranged from 5-22 % from the fitting 

of the peak positions of the XRD rocking curves when applied to Equations 1, 2, and 3 (Table 

5.7).  The FWHM of the XRD rocking curve measurements varied from 0.22-0.24 degrees. The 

incorporation of Si in the films varied as the SiH4 flow rate changed as shown in the shifting of 

Figure 5.14:  Comparison of Raman plots for two SiGe samples grown on sapphire at (a) 500 °C 
and (b) 600 °C. 

Vegard's 

law 

lattice 

constant

Si% Ge%
Vegards 

law
Si% Ge%

Sapphire A4 670 0.248 27.454 3.246 5.62 13.9 86.1 5.62 15.7 84.3

Sapphire B4 744 0.241 27.445 3.247 5.63 13.2 86.8 5.62 14.9 85.1

Sapphire C4 755 0.226 27.444 3.247 5.63 13.1 86.9 5.62 14.8 85.2

Sapphire D4 500 0.238 27.340 3.259 5.65 5.0 95.0 5.65 5.6 94.4

Sapphire E4 905 0.236 27.567 3.233 5.60 22.4 77.6 5.60 25.6 74.4

w/ bowing factor linear

Substrate Sample #
Thickness 

(nm)
FWHM

Fitted 

2Theta 

Position

d-Spacing

Table 5.7:  Calculations of d-spacing and lattice constants using Bragg’s Law from the Gaussian 
fit of XRD rocking curve peaks. 
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the peak positions (Figure 5.15). The intensity increases were observed for the samples as the 

temperature increased for a given SiH4 flow rate which was consistent with material quality 

improvement at the same levels of incorporation. The x-ray diffraction rocking curves were 

compared for the growths on Si (111) and sapphire substrates (Figure 5.16).  The peaks for the 

SiGe (111) were in alignment for films on both substrates.  The intensity of the samples grown 

on Si (111) was larger than those grown on sapphire.  This increase in intensity can be explained 

by the lattice parameters of Si (111) being more closely matched to SiGe (111) as both are cubic 

structures with lattice constants of 5.43 and 5.62 Å, respectively.  Whereas, the lattice structure 

of sapphire (0001) is trigonal with a lattice parameter of 4.73 Å.   X-ray diffraction rocking 

Figure 5.15:  Plot of XRD-RC for growths on sapphire (0001) showing differences in Si 
incorporation as SiH4 flow rates change for a given temperature. 
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curves were obtained over a wide degree range.  The rocking curves showed peaks for SiGe 

(111) at ~ 27.44 degrees, sapphire (006) at ~ 41.68 degrees, sapphire (0012) at ~ 90.72 degrees, 

and a low intensity SiGe (220) peak at~ 45.33 degrees. The peak for SiGe (220) indicates there 

was a polycrystalline structure in the films grown on sapphire (006).  X-ray diffraction phi scans 

were measured along the (004) plane for all of the samples. The results of the phi scans showed 

evidence of crystal twins separated by 60 degrees (Figure 5.17). AFM images where obtained 

from theses samples and the results show that the film surface was rough varying from 39.2-67.4 

nm Rrms (Table5.8).  The imaged surface appeared to have trigonal structures that would 

indicate a three-dimensional growth regime (Figure 5.18).  This growth could be caused by the 

twinning of the crystal resulting in the rough surface.  This type of surface could also be related 

Figure 5.16:  Combined XRD rocking curve plot of SiGe (111) growths on Si(111) and sapphire 
(0001). 
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to the surface roughness of the sapphire substrate which did not have a high heat anneal 

performed prior to the deposition of titanium backing.  

Figure 5.17:  Typical x-ray diffraction phi scans along (004). 
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Table 5.8: Table of measurements from AFM image analysis. 
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Figure 5.18: AFM image of surface showing multiple trigonal structures.  
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Chapter 6 GeSn Growth Work  

6.1 Introduction 

The introduction of the GeSn material system to group IV photonics has provided an 

integrable direct band gap material for photonic use on silicon substrates [25][26].  Devices 

based on direct band gap GeSn such as LEDs, lasers, and photodetectors have shown the 

potential of this material system [27][28][29].  Commercialization of applications based on 

devices developed from this material system could provide new inexpensive and efficient light 

emission and detection systems and components to the photonics market.   

The growth of the GeSn material system is challenged due to the instability of 

semiconductor Sn (α-Sn) at temperatures greater than 13 ℃ and the low solubility of Sn in Ge 

(<1%) [30].  Growth techniques have been developed to face the challenges and provide growth 

of this material system under non-equilibrium conditions such as low temperature growth by 

MBE [31][32][33][34] or CVD [35][36][18][37].  The growth by chemical vapor deposition has 

been studied for more than a decade by multiple groups.  During these studies, many different Ge 

and Sn precursor sources have been tried along with different carrier gases to achieve high 

quality material with high amounts of Sn incorporation [38][39][40][41].  In the early 

development phase for the GeSn material, the growths were performed using SnD4, deuterium 

stabilized stannane, for the Sn source precursor [35]. The high instability and cost of this 

precursor source led to a search for a cheaper and more stable Sn precursor source.  The Sn 

precursor stannic chloride (SnCl4) was first demonstrated and reported in 2011 by Vincent, et al 

[42].  The use of high order hydrides of Ge have been studied as Ge precursors [35].  The use of 

these high order Ge hydrides was common due to their low temperature decomposition [37].  

The low cost of the commercially available precursor, germane (GeH4), has resulted in use 
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recently for the growth and development of Ge and GeSn using UHV-CVD systems 

[37][23][43][29].   

The growth of the GeSn material system will be discussed in this section.  The growth of 

GeSn directly to the silicon substrate, on Ge buffered Si, and the process by which the Sn 

composition and material quality was improved will be covered.  This will cover the effects of 

temperature and pressure on the material system and the necessary adjustments to the growths to 

achieve desired material properties.  The properties of the GeSn material will be explored 

through different optical characterizations to provide information on growth rate, composition, 

uniformity, and material quality.   

6.2 GeSn on Si  

The growth of GeSn on Si substrates provided a basis for the development of the GeSn 

material system by UHV-CVD.  These growths were performed using 4-inch p-type substrates 

that were prepared using a piranha etch solution followed by a HF passivation described by 

Mosleh, et al [23].  The processed wafers were then used for growths in the cold walled UHV-

CVD chamber with a base pressure range of below 10-9 Torr.  These growths used the precursors 

of GeH4, SnCl4, and the carrier gas Ar.   

The growths of GeSn on Si substrates were performed using various temperatures, SnCl4 

flow rates, growth pressures, and times.  The flow rates for the germanium precursor GeH4 and 

the Ar carrier gas were fixed at 10 sccm and 25 sccm, respectively.  The temperatures ranged 

from 300 ℃ to 450 ℃. The flow rate of SnCl4 was varied within the range of 0.02 sccm to 0.5 

sccm. The growth pressure for this series of growths was varied from 100 mTorr to 1 Torr.  The 

time for these growths ranged from 10 to 120 min.  The characterizations from these growths 

provided information on the growth rate dependence on temperature and SnCl4 flow rate, 
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material quality, material composition, and lattice parameters using ellipsometry, Raman 

spectroscopy, PL, and XRD measurements. UHV-CVD growth of GeSn directly on Si was used 

as the basis for the starting point of this work [23].  Most of the work started with known recipes 

that produced Ge on silicon substrates as mentioned in Section 4.2 and, adding a dilute amount 

of SnCl4  (0.02 sccm) to the process, those grown films were compared to Ge films grown using 

the same recipes minus the SnCl4 precursor. The growth rates for the grown films were extracted 

from fits of ellipsometry data that provided film thickness as a function of time (Figure 6.1).  

This provided growth rates for Ge and GeSn that ranged from 1 to 2.8 nm/min and 1.2 to 5.6 

nm/min, respectively. The Raman spectra for the selected growths was used to verify film 

thickness and the incorporation of Sn in GeSn films shown in (Figure 6.2a).  Photoluminescence 

from the selected growths showed no PL for low temperature samples while samples grown at 

temperatures above 350 ℃ show room temperature photoluminescence (Figure 6.2b).  The films 

showed increased PL intensity as the film thickness increased.  Using the results from the 

ellipsometry, Raman spectroscopy, and PL measurements, films were further characterized using 

Figure 6.1:  Growth rates of (a) Ge and (b) GeSn at varying deposition temperatures. 
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XRD.  The XRD of the selected GeSn films provided data on the crystal quality and composition 

as well as the lattice parameters and strain.  X-ray diffraction rocking curves were produced 

using 2θ-ω scans of the samples.  The intensity of the measurements as a function of the 2θ angle 

provided the information on quality by comparing the full-width half-maximum (FWHM) of the 

Ge peak (Figure 6.3a) and the GeSn peak (Figure 6.3b). The FWHM of the GeSn peaks ranged 

Figure 6.3:  XRD-RC plots for (a) Ge and (b) GeSn growths showing improvement in low 
temperature films with the addition of Sn to the crystalline matrix. 

Figure 6.2:  Typical plots for (a) Raman spectroscopy for thin films showing both Si-Si and Ge-
Ge LO phonon peaks, and (b) photoluminescence measurements, for samples grown above 350 
℃. 
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from 0.246° to 0.887° with the smaller angles being indicative of higher quality material.  These 

samples also had a reciprocal space map (RSM) measurement performed using XRD along the (-

2-24) plane (Figure 6.4).  This RSM measurement provided the information to calculate the 

strain and composition using the method described by Mosleh, et al [11].  The strain in the 

measured films ranged from 0.06% to 0.13% compressive with the Sn compositions ranging 

from 0.28% to 0.75%.  The low amount of compressive strain in the grown films indicated the 

films were near fully relaxed. These growths provided important information for subsequent 

growths as material quality and compositional improvements were necessary to reach the goal of 

high quality and high Sn composition material.  

6.3 GeSn on Ge buffered Si  

The growth of the GeSn material system has shown challenges due to the lattice 

mismatch of 4.2% between Ge and Si and the incorporation of Sn in the Ge matrix only increases 

the mismatch [37].  This mismatch causes strain to form in the epitaxial alloy film.  This induced 
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Figure 6.4. Typical reciprocal space map plots of GeSn along (-2-24) plane for (a) sample A and 
(b) sample B showing relaxed grown films near pseudomorphic to Si. 
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strain limits the amount of Sn that can be incorporated into the GeSn system [44]. To reduce this 

difference in lattice mismatch, the LT/HT buffer growth method discussed in Section 4.2 was 

grown first followed by the epitaxial growth of GeSn. This series of growths used the 

information discussed in the previous sections to produce recipes for the growth of GeSn on Ge 

buffered Si.  The dilute GeSn on Si growths provided the necessary starting point to greatly 

reduce the number of experiments needed to achieve high quality with increased Sn 

incorporation.  This started by choosing a temperature at the upper end of the targeted growth 

matrix.  This upper limit was chosen so that sufficient temperature range existed below in the 

growth window that Sn incorporation could be increased for the starting low SnCl4 flow rate 

[44].  This series of growths were varied using temperature and SnCl4 and GeH4 flow rates to 

determine the dependence on temperature and SnCl4 flow fractions.  For these growths, 

temperatures below 350 ℃ were chosen to maintain CMOS compatibility of the epitaxial films.   

The time for the growths was varied in two rounds of growths, the first for 30 min and the 

second for 60 min for the GeSn layer.  The growth pressure for these growths was fixed at 2.0 

Torr. These growths were followed by a reduction in the SnCl4 flow rate until the current 

machine configuration could no longer support further SnCl4 dilution. Following the reduction of 

the SnCl4 flow rate to the limit, the growth temperature was further reduced until the surface of 

the produced samples showed visual defects. 

The growths for this study were accomplished using p-type, 4-inch Si wafers that were 

prepared using the previously described method [23].  The growths were characterized using 

ellipsometry, Raman spectroscopy, PL, XRD, and TEM imaging. The first round of growths 

grown at 30 min started at 325 ℃ and the temperature was reduced until growth did not occur at 

240 ℃ using fixed flow rates and pressures.  This series of films was used to define the 
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temperature dependence of Sn composition.  The PL results were used to verify Sn incorporation 

along with results from XRD rocking curves (Figure 6.5). The PL results show that there was a 

definitive shifting to longer wavelengths which was indicative of increased Sn incorporation.  

The results were confirmed using XRD rocking curves at which the GeSn peak shifted to lower 

angles which was indicative of larger amounts of Sn composition in the epitaxial alloy film.  

These rocking curves also indicated an extra peak at growth temperature below 325 ℃ that 

showed no growth temperature dependence.  From the XRD-RC and PL results, samples were 

identified for further characterization by XRD- RSM and TEM (Figures 6.6a, 6.6b, 6.6c).  The 

results indicated that the films contained a near 1% Sn pseudomorphic layer along with a layer 

Figure 6.5:  Comparison plots of GeSn grown at different temps using (a) photoluminescence 
and (b) XRD-RC. 
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that showed temperature dependence on incorporation.  This temperature dependent layer 

Figure 6.6: XRD-RSM plots with corresponding TEM images for samples grown for 30 min at 
(a) 300 ℃, (b) 270 ℃, and for 1 hr. at (c) 270 ℃. 
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showed a maximum Sn incorporation in the range of 8%.  Noted in the TEM imaging is that the 

surface of the films showed a surface segregation of Sn in the form of a droplet and a relatively 

consistent thickness of the Ge buffer layer in the range of 1000 to 1100 nm.  The growths of 60 

min were used to show no significant improvement in film quality or composition with 

significant change in the film thickness.  Another series of growths using a fixed growth 

temperature of 270 ℃ were produced by reducing the SnCl4 flow fraction from the level used in 

the first series of temperature dependent growths.  The flow fraction of SnCl4 was calculated to 

be 2.5 x 10-3 using Equations 6.1 and 6.2.   

; <=>?

>0@A ∗ B < �C
=>?A ∗ 


D <>E�
�C A = F <>E�

>0@A         (Equation 6.1) 

where ; is the gas flow rate in 
=>?

>0@ , B is the density of the gas precursor,  

D is the inverse of the 

molar mass of the precursor, and F is the molar flow rate of the precursor gas. 

>GHIJK
L>MNOKP>GHIJKP >QRS = FTT'�U$V   (Equation 6.2) 

where F/@W�K is the molar flow rate of SnCl4, F23XK is the molar flow rate of GeH4, FYZ is the molar 

flow rate of Ar, and FTT'�U$V is the molar flow fraction of SnCl4.  The flow fraction of the first 

series of growths had a value that was orders of magnitude above that which has been reported 

for commercially grown high quality GeSn [45].   The SnCl4 flow fraction was reduced in three 

steps from the first series of growths.  The reductions in steps 1, 2, and 3 had values that were 

calculated to be 1.4 x 10-3, 4.5 x 10-4, and 2.3 x 10-4, respectively.   These films, along with those 

of the first series, showed a cloudy surface that corresponded to the Sn segregation on the surface 

that could be visually observed to change to a shiny surface indicating a material quality 

improvement in surface segregation of the film.  This visual inspection was also a good 
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indication the reduction in SnCl4 was occurring.  The visual inspection was not a verification 

there was no Sn segregation on the surface and further characterization was needed for 

confirmation.  The SnCl4 flow fraction of 2.3 x10-4 was the limit to which SnCl4 could be 

reduced using the current machine configuration.  For further reductions another method will be 

discussed later in this section (Figure 6.7).   

The results from the ellipsometry and Raman spectroscopy for the SnCl4 reduction series 

of growths are shown in (Table 6.1).  The PL results from this series of film growths showed 

there was no improvement in the PL spectra until the flow fraction for the SnCl4 was in the range 

of mid 10-4 shown in Figure 6.8.  The PL results showed an improvement on the second set of 

growths in the series over that of the first set of growths which was similar in response to the 

initial comparison growth.  The third growth of the series showed further improvement in peak 

intensity indicating improved material quality, however, it was noted that the peak position of the 

third growth was significantly shifted to shorter wavelengths.  The shifting of the peak position 

to shorter wavelengths can be explained from an increase in compressive strain in the sample due 

to a reduced thickness as compared to the second growth as noted in Table 6.1.   

To verify the incorporation changes of Sn in the grown films, XRD was performed on the 

samples and compared to the results of the initial SnCl4 state from the first series of growths 

Figure 6.7:  Images of samples grown with varying SiH4 flow fractions of (a) 2.5 x 10-3, (b) 1.4 x 
10-3, (c) 4.5 x 10-4, and (d) 2.3 x 10-4. 
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(Figure 6.9).  The results of the XRD-RC showed that the GeSn peak position of the samples 

were similar in position indicating that the Sn composition was very similar for the samples.  

This indicated that temperature, not SnCl4 flow rate, was the driving factor in the amount of Sn 

composition for the films.   The XRD-RC peak position for the GeSn peak also showed a 

reduction in the FWHM from the comparison growth in the first series to those growths with 

flow fractions in the range of ~10-4.  

Figure 6.8:  Photoluminescence plot of samples for each SnCl4 flow fraction reduction. 

Table 6.1:  Table of characterization results from Raman and ellipsometry. 
Reduction step SnCl4 flow fraction Ellipsometry 

thickness 
Raman shift         
(Ge-Ge LO phonon) 

Step 1 2.5 x 10-3 849 nm -1.0 cm-1 

Step 2 1.4 x 10-3 901 nm -2.0 cm-1 

Step 3 4.5 x 10-4 228 nm -2.0 cm-1 

Step 4 2.3 x 10-4 156 nm -1.0 cm-1 
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 Further characterization was performed using scanning electron microscopy (SEM).  

These images of the surface for the sample in the second series of growths showed that the size 

of the Sn droplets on the surface of the films reduced with each subsequent reduction in SnCl4 

flow fraction. The size of these droplets reduced from ~3 µm to a size of < 1µm as the SnCl4 

flow rate reduced from 2.5 x 10-3 to 2.3 x 10-4 (Figure 6.10).  This characterization indicated that 

at the machine limit of Sn precursor flow, there could be improvement in the Sn composition 

through a further reduction in temperature from the growth temperature of the second series.  

 A third series of growths was performed using the same flow rate, time, and pressure 

conditions of the second series of growths to increase the Sn composition of the grown film 

while maintaining the high material quality achieved during the second series of growths.  These 

Figure 6.9:  Comparison plots of XRD-RC data from growths using different SnCl4 flow 
fractions showing similar positions for GeSn peaks. 

GeSn 
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growths lowered the growth temperature in subsequent steps of 10 ℃ from the growth 

temperature of 270 ℃ of the second series.  These samples were characterized using ellipsometry, 

Raman spectroscopy, PL, and XRD as well as visual inspection.  The initial visual inspection of 

the films indicated that the sample was increasing in Sn segregation in the surface as the 

temperature was further reduced indicating the need to further reduce the Sn precursor flow 

fraction beyond the current capabilities of the UHV-CVD system (Figure 6.11).  The PL 

measurements for the sample showed an increase in wavelength as the growth temperature was 

reduced indicating that the Sn composition of the films was increasing (Figure 6.12).  The XRD-

RC 2θ-ω scans showed further evidence of increased composition of Sn as the GeSn peak 

Figure 6.11.  Images of sample grown using lowest SnCl4 flow fraction showing the cloudy 
surface returning as temperature was decreased. 

Figure 6.10:  SEM imaging of sample surfaces from Sn flow fraction reduction test: a) cloudy 
surface from the initial state, b) hazy surface step 1, and c) clear surface from step 3. 

(a) (b) (c) 
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position shifted lower.  It was also noted an indication of a 1% compositional Sn layer in the plot 

for the 250 ℃ growth.  The material quality of the grown films was shown to decrease when the 

layer of ~1% Sn returned as indicated by an increase in the FWHM of the films that shifted from 

a low of 1.55° for the 260 ℃ growth to 0.242° for the 250 ℃ growth (Figure 6.13).  

Figure 6.12:  Normalized PL results from the temperature reduction growths. 

Figure 6.13:  XRD-RC 2θ-ω scans of the temperature reduction growths. 
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6.4 Summary 

The growth of the GeSn material system has been explored using a cold walled UHV-

CVD reactor.  These growths were produced directly on Si using a dilute Sn precursor mixture to 

provide a basis for subsequent growths. They were compared to Ge growths under the same 

conditions. The results of the comparison showed that the growth rate for GeSn directly on Si 

was increased over that of the Ge films by nearly 2x for the studied temperatures.  The GeSn 

films produced room temperature photoluminescence that increased in intensity with a 

corresponding increase in growth thickness.  The observation of the room temperature PL spectra 

was an indicator for higher relative material quality.  The dilute GeSn films were compared to 

the Ge using XRD-RC. These results showed an increase in material quality for the GeSn films 

over that of the Ge materials for the same growth temperatures as evidenced by a reduction in the 

FWHM of the GeSn peak compared to the Ge peak.  Reciprocal Space Map characterizations 

showed that the GeSn films were nearly fully relaxed.  Subsequent growths on Ge buffered Si 

using the buffer recipe developed in Chapter 4 showed an increase in the PL wavelength and a 

shifting of the XRD-RC peak position to values of 2θ. These results indicated a temperature 

dependence on the composition of Sn as the PL peak position increased to longer wavelengths 

indicating increasing Sn composition. The XRD-RSM confirmed this by showing a temperature 

dependent layer with a maximum of ~8% Sn composition at a growth temperature of 270 ℃.  

The TEM imaging of these samples showed that the buffer layers were relatively consistent in 

thickness and that Sn segregation was occurring on the surface of the films.  A second series of 

GeSn growths showed that temperature was a driving factor for the incorporation of Sn as there 

was little change in the XRD-RC GeSn peak position between the growths.  These films showed 

that a reduction in the SnCl4 flow fraction would improve the material quality by reducing the 
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surface segregation for a single temperature. The growth of this series of films reached the limits 

of the configuration of the UHV-CVD system for the reduction of the SnCl4 flow fraction.  A 

final round of growths was explored to further increase the composition of Sn in the films.  This 

was done by further reducing the growth temperature.  These growths showed an increase in the 

Sn composition to ~ 10% while maintaining high quality until Sn segregation returned as the 

temperature was lowered.  The compositional increase was confirmed using XRD-RC of the 

samples in the third series of growths.  This return of the Sn segregation was attributed to the 

reduction in the decomposition rate of GeH4 near the wafer surface resulting in a Sn overpressure 

condition. 
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Chapter 7 Growth of SiGeSn   

7.1 Introduction  

The SiGeSn ternary alloy material system has gained much interest for silicon photonics 

for their CMOS compatibility and their independent band gap and lattice constant tunability 

[35][46][47].  This tuning capability by varying the Si and Sn composition of the alloy leads to 

optical properties that can be tailored for many different device applications [47].  The SiGeSn 

material system has the possibility for a type-I band alignment for the use in active devices [48].   

This material system has been shown in efficient devices such as light sources [48][49], solar 

cells [50], transistors [51], quantum cascade lasers [52], photodiodes [53], and waveguides[54].  

The solar cell applications have been of interest as the photodiodes using SiGeSn have shown 

collection efficiency of 75%, which exceeds that of state of the art InGaN devices.  The ability to 

tune the band gap provides the ability to cover wavelengths from the near infrared to 12 µm and 

beyond [55].  The property of the material to have both its band gap and lattice constants 

independently engineered would provide for the integration into a multijunction solar cell with a 

direct band gap energy of 1.0 eV and a lattice matching to that of GaAs.  These engineered 

parameters would provide an increased efficiency while allowing for the introduction of Si 

substrates to a III-V junctioned solar cell [56][57].  The material also leads to CMOS 

compatibility with growth temperatures below 400 ℃ [58][57].   

7.2 Growth matrix and results 

 The growth of SiGeSn has been explored using multiple techniques. This material 

system has been shown to be successfully grown using techniques such as UHV-CVD [59], 

MBE [60], and magnetron sputtering [58][61].  The success of these techniques does not lessen 

the difficulty of growths using this material system.  Some of the issues with the growth of 
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SiGeSn include the low solubility <1% of Sn in Ge[62], the instability of α-Sn at temperatures 

above 13 ℃ [23], and the surface energy difference of Si, Ge, and Sn [58].  Alloys of GeSn also 

have a thermodynamic instability that shows improvement with the addition of Si to form the 

ternary alloy [39].   The growth of SiGeSn has been accomplished in CVD growths using many 

different precursors such as SiGeH6 [60] and SiGe2H8 [59] along with SnD4 as well as Si3H8 [57].  

More recently, SiGeSn has been produced using the precursors SiH4, GeH4, and SnCl4 using both 

UHV-CVD and reduced pressure CVD (RPCVD) [47][63].  The planned growths for this section 

were produced by UHV-CVD using silane, germane, and stannic chloride.  The single sample 

was grown on  a p-type inch Si substrate that was prepared using the method described by 

Mosleh, et al [23].  The growth of more samples was planned, however, due to machine technical 

issues only one of these growths was completed.  The growth was performed on Ge buffered Si 

using the buffer growth method previously discussed in Chapter 4.  The planned growth matrix 

for the UHV-CVD SiGeSn growths was based on previous work for GeSn and SiGe on Si (100) 

(Table 5.2).  The planned growth temperature ranged from 250 ℃ to 350 ℃.  The germane 

precursor and Ar carrier gas flow rates were fixed at 20 and 200 sccm, respectively, and the 

growth time was to be fixed at 60 minutes. The planned growth pressure was 2 Torr through the 

growth cycle.  The SiH4 flow rate was to be varied between 1 to 10 sccm.   

The single UHV-CVD grown sample was characterized using visual inspection, 

ellipsometry, Raman spectroscopy and photoluminescence.  The sample was produced using a 

temperature of 270 ℃ and a SiH4 flow rate of 10 sccm.  The visual inspection of the wafer 

showed a ring pattern of cloudy and shiny rings across that surface of the substrate(Figure 7.1).  

The ellipsometry fitting provided a film thickness of 2 nm on a Ge buffer of 1030 nm (Figure 

7.2).  The absorption cutoff wavelength was ~1700 nm.  The plot of the absorption coefficient as 
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a function of wavelength closely follows the plot for the Ge reference sample.  The Raman 

spectroscopy data showed a Ge-Ge LO phonon wavenumber shift to 298 cm-1.  There was no 

indication from the Raman spectroscopy plot of Ge-Sn or Si-Ge LO phonons with this sample 

that could indicate poor material quality and segregation of Si and Sn in the material.  The PL 

was measured at three points along the surface i) the center of the grown sample, ii) ~ 25 mm 

from the sample edge, and iii) ~ 10 mm from the sample edge (Figure 7.3).  The PL data, Figure 

7.4, showed that the peak position for the center of the sample was ~ 1724 nm with an intensity 

Figure 7.1: Image of SiGeSn sample showing "tree ring" pattern indicating competition for 
incorporation between Si and Sn. 
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that was 1/62 of the direct peak intensity of the Ge reference sample.  The second measured 

location (25 mm from the sample edge) provided a PL peak at ~ 1740 nm and an intensity that 

Figure 7.3:  Typical Raman spectroscopy plot for SiGeSn on Ge buffered Si. 

Figure 7.2:  Absorption coefficient plot for SiGeSn on Ge buffered Si from ellipsometry 
measurements. 
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was similar to that of the center position.  The PL peak position of ~1800 nm was indicated at the 

outer measured position and this peak had a reduced intensity that was indicative of reduced 

material quality.  The shifting of the outer peak could have been an indication of reduced Si 

composition resulting from Sn segregation in the film. 
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Chapter 8 Conclusions and Future Work   

8.1 Conclusions   

The critical technologies for growth of the SiGeSn material system was investigated 

using UHV-CVD.  The growths for the ternary alloy drew upon the knowledge gained through 

the growth of the base materials of Ge, SiGe, and GeSn.  The Ge material growths were used to 

refine the growth recipes to narrow the growth window for the GeSn growths.  From the Ge 

growths it was determined the growth rate at low temperatures ranged from 1 to 2.88 nm/min.  

These low growth rates were desirable for the 2-dimensional growth to prevent island formation 

in the film seed layer for Ge low temperature buffers.  The growth of the high temperature Ge 

steps provided a high-quality material growth with sufficient growth rate that a Ge buffer layer 

of ~ 1.1 µm could be deposited with a TDD of ~ 1 x 107 cm-2 without an annealing step (and 

would be expected to improve using a high temperature insitu anneal).  This TDD was within an 

order of magnitude of the TDD of optimized buffer layers that have been reported with an 

annealing step that are in the range of ~105 to 106 cm-2.  Germanium-tin films were produced 

directly on Si substrates to compare the growth behavior of GeSn film to that of Ge.  The fitting 

of the growth rates of the GeSn showed faster growth rates that ranged from1.2 to 5.6 nm/min 

under near identical growth conditions as Ge films.  However, the growth of GeSn took longer to 

initiate film growth.   The GeSn films on Si produced PL at room temperature whereas, the 

equivalent Ge films did not.   

The growth of SiGe was explored on multiple substrates.  The growth was investigated 

across a temperature range from 450 ℃ to 600 ℃, and varying SiH4 flow rates.  The growth rate 

for films varied between substrates with transition from gas phase transport to gas depletion 

noted for film on Si (100) grown at temperatures below 500 ℃.  Films grown on Si (111) and 
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sapphire (0001) indicated that the transition did not occur in the studied temperature range as the 

growth of SiGe was in the <111> direction.  The Raman spectroscopy results showed less 

shifting of the Ge-Ge LO phonon peak as the growth changed from SiGe <100> to SiGe<111>.  

Single crystalline material was indicated from x-ray diffraction results that showed material 

quality improvement as growth temperature increased for all substrates.  A flow rate dependence 

was established for the molar fraction of Si in SixGe1-x films produced on sapphire substrates.  

Phi scans of SiGe on sapphire indicated a near equal distribution of crystalline twins with 60-

degree rotations resulting in material defects. 

The growth of GeSn on Ge buffered Si substrates was explored using UHV-CVD 

techniques.  The films were grown using a temperature range of 325 ℃ to 240 ℃ and varying 

flow rates of stannic chloride.  The results indicated that the Ge buffer recipe was repeatable 

yielding consistent thickness results that ranged from 1 to 1.1 µm. The temperature dependence 

on Sn incorporation showed that the composition of Sn increased as temperature decreased.  

TEM imaging showed Sn segregation that reduced as the Sn flow fraction reduced and visual 

inspection showed that the surface became shiny from a cloudy condition.  The flow fraction was 

reduced to the limits of the current configuration of the UHV-CVD system.  The results of the 

GeSn growths showed that a narrow window for growth of high-quality material exists for a 

given temperature that is dependent on the Sn flow fraction.  

The growth of SiGeSn was explored using UHV-CVD processes.  The initial result 

showed the appearance of Sn and Si segregation. The Raman spectroscopy results showed no 

indication of Si-Ge or Ge-Sn Lo phonons.  The sample produced RT PL that indicated poor 

material quality and a peak shifting that indicated a possible difference of composition across the 

sample surface.  The growth by RP-CVD of SiGeSn was compared to equivalent growths of 
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GeSn with similar Sn compositions.  The results from ellipsometry, PL, and XRD-RC indicated 

that the introduction of Si to GeSn to form the ternary alloy increased the band gap of the alloy.  

This change in band gap energy was indicated by a reduction in absorption wavelength cutoff 

and PL wavelength.  The addition of Si to form the SiGeSn alloy also changed the lattice 

parameters of the crystalline film as indicated by a positive shift in the 2θ-ω scans. 

8.2 Future work 

8.2.1 Improvement in material quality and composition  

The improvement in material quality and Sn composition discussed in Chapter 4 reached 

the limits of the CVD system under its current configuration.  To further improve the material 

quality and composition produced by the system would require further increases in the capacities 

of the mass flow controllers used for the germanium precursor and Ar carrier gas so as to further 

increase the flow fraction of SnCl4. This would also necessitate a larger supply of germane or 

more frequent purchases of the current cylinder size.  Another option would be to premix the 

precursors and carrier gas prior to injection into the CVD reactor.  This could be accomplished 

using a gas mixing system such as the one in Figure 8.1.  This gas mixing system would work by 

first injecting the SnCl4 into the mixing chamber to an indicated pressure. This would be 

followed by an injection of GeH4 into the chamber until a desired pressure is reached.  The final 

injection of carrier gas would complete the process to reach a desired flow fraction.  The mixing 

chamber would be continuously stirred with an impeller to ensure consistency of the gas mixture 

to be delivered to the reactor. Once the chamber is filled, the chamber would be closed and 

isolated while the delivery line is pumped to a pressure in the range of 10-6 Torr so that a residual 

gas analyzer can be used to verify the composition of the mixture. Following the verification of 

the mixture composition the delivery line would be isolated from the turbo pump and the residual 
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gas analyzer. The delivery line would then be reconnected to the mixing chamber by opening the 

isolation valve.  The system would then flow the gas mixture back to the CVD system through an 

MFC to control the rate of injection into the reactor for growth rate control and process 

repeatability. This solution will be built to be used in future growths to improve material quality 

and Sn composition. 

The gas mixing system would consist of an Edwards 75-XD turbo pump that will be 

backed by the UHV-CVD systems QDP40 corrosion resistant mechanical pump, a CC-10 

pressure gauge, a Stanford Research Systems RGA 200 amu residual gas analyzer (RGA), a 10-

inch stainless steel flanged nipple, 10-inch to 2.75 inch reducing flanges, 2.75 inch flanged 

magnetically coupled feed through, an internal custom impeller, a gear reduction stepper drive 

motor, a MKS mass flow controller, pneumatic bellows valves, and pneumatic solenoids.  The 

system was designed to provide the ability to provide designed gas mixtures to the CVD reactor 

with a high degree of control and repeatability.  The system will be controlled by electrical 

Figure 8.1.  Schematic for the gas mixing system. 



 

85 
 

 

switches to provide power to the pneumatic solenoids.  The mixing bottle will be contained in a 

gas cabinet connected to the exhaust system to provide secondary containment of the system in 

case of system integrity failure. 

8.2.2 Design and layout of system 

The gas mixing system will use the 10-inch nipple as a mixing bottle. The bottom flange 

will be sealed using a 10 inch to 2.75 inch reducing flange.  The 2.75-inch connection of the 

bottom flange will have the ½ inch magnetically coupled drive feed through mounted.  This feed 

through will provide the drive connection from the custom four bladed impeller (Figure 8.2) to 

the gear reduction stepper motor.  The stepper motor will provide a designed 40 to 60 revolutions 

per minute set using the drive controller provided with the stepper motor.  The upper flange of 

the bottle will be sealed using a second reducing flange that is identical to the lower unit.  The 

upper 2.75-inch port was designed to have a pneumatically operated 90° bellows valve that acts 

as the chamber isolation valve.  The bellows valve will have a 2.75-inch tee that uses the offset 

flange for the mount of the CC-10 all range pressure gauge. The inline flange will be connected 

Figure 8.2:  Image of custom designed impeller for the gas mixing system. 
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to a 4-way tee that serves as the mounting flanges for the two 2.75-inch bellows isolation valves.  

The upper valve serves as the mounting connection for the (RGA).  The lower isolation valve 

will be the mounting for the turbo pump. The inline flange of the 4-way tee will be sealed with a 

2.75-inch to ¼ inch VCR connection intended to serve as the gas line connection from the 

mixing unit to the mass flow controller.  The mass flow controller used in the initial design will 

require a differential pressure of a minimum 10 psi or 517 Torr.  The mass flow controller from 

the initial design was evaluated to be insufficient for use in the gas mixing system due it’s 

operating pressure requirements and a low differential pressure mass flow controller was 

researched and chosen to replace the original mass flow controller.  The pressure requirements of 

the mass flow controller would result in the waste of large quantities of premixed gases.  The 

new mass flow controller is designed to have a minimum operating differential pressure of 2 

Torr this will result in a reduction of waste mixed gas.  The selected all range pressure gauge has 

a maximum indicated pressure of 990 Torr and a minimum of 10-9 Torr.   

8.2.3 Operation and safety systems  

The gas mixing system will be controlled using electrical switches to send power to 

electrically control pneumatic valves that are connected to a nitrogen supply that is regulated to 

40 psig.  The solenoids send nitrogen to the pneumatic bellows and control valves provide mixed 

precursor gas flow control throughout the system.  The system has a three-position electrical 

control switch wired to ensure that the feed valve and fill valve cannot both be open at the same 

time.  The feed/fill interlock switch is needed due to the connection to the gas manifold of the 

CVD system being used to fill the gas mixing system with the individual precursor and carrier 

gases from the manifold. The feed valve will be connected to allow mixed gas from the mixing 

bottle to flow through the mass flow controller to the gas manifold prior to entry to the CVD 
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reactor.  The turbo pump and RGA isolation valve will be closed prior to the filling of the 

system.  The system will be filled, with the impeller rotating, by injecting each precursor gas 

individually based on calculations to a specific pressure indicated on the CC10 all range pressure 

gauge to reach desired gas ratios starting with stannic chloride due to its low vapor pressure at 

room temperature.  The stannic chloride fill will be followed by the injection of germane which 

will be followed by the carrier gas.  After the filling process is complete the feed/fill control will 

be switched to isolation and the gas bottle isolation valve closed.  The section of the mixing 

system between the feed, fill and bottle isolation valves will be pumped in to the 10-6 Torr range 

before the RGA isolation valve is opened.  The RGA will be used to sample the gas mixture 

remaining to confirm the gas ratios in the gas mixing system prior to the start of the growth 

process.  This measurement is to ensure repeatability and precise control over the gas ratios.  

Following the RGA measurement the RGA isolation valve will be closed and the turbo pump 

isolated by closing its isolation valve.  The system will be placed in the growth condition ay 

switching the feed/fill interlock to feed at the start of the growth cycle.   

The safety systems of the gas mixing system include a gas cabinet that will be connected 

to the secondary containment exhaust system that provides air flow through the cabinet of ~ 400 

cfm that is exhausted to atmosphere outside of the facility.  The secondary containment system 

includes a toxic gas sensing module with a gas sensing cartridge installed for the precursor of the 

highest hazard rating.  The gas sensing system will be tied to the building alarm system to 

provide audible and visual indications of a gas leak that is measured in parts per billion.  The gas 

sensing modules will also be tied to valve interlocks that automatically close all stem valves and 

gate valves in the CVD and gas mixing systems to prevent excessive danger to the system, 

facility and lab occupants. The building alarms will also be tied to the outgoing alarms to notify 
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emergency response personnel to a detected leak condition. 
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Appendix A: Description of Research for Popular Publication 

 The revolution in electronics that began with the solid-state transistor has seen electronic 

devices not only advance but become an integral part of everyday life.  There is nearly 

worldwide coverage of electronic devices from cell phones and wearable electronics to medical 

equipment and transportation.  One segment of these electronic devices that have expanded into 

our daily lives is optoelectronics. These light producing or detecting devices can be found in 

cameras, TV remotes, safety systems, and fiber optics systems that have revolutionized the speed 

and capacity at which information can be shared.  This type of device can operate in wavelengths 

from the ultraviolet to the infrared including the visible light ranges that we can see.  The 

infrared wavelengths are beyond what our eyes can detect and are used by devices for fiber optic 

communications, communication with spacecraft, and safety sensors such as motion detectors 

and gas sensors.   

 Since its introduction, silicon has been the main basis for most of the electronic devices 

found in today’s society.  More than 70 years of progress has led to systems that are smaller and 

more powerful in order to keep up with the demands from the individuals who use them.  This, 

however, is a problem for silicon which has poor optical material properties when compared to 

materials such as indium-gallium-arsenide which is one of many III-V materials preferred by the 

optoelectronics industry.  Many of these materials are expensive to produce even though they are 

highly efficient light producers and receivers.  This efficiency has led to silicon-based 

optoelectronic devices to fall behind in the consumer market.  One solution to try and improve 

the competitiveness of silicon-based devices is to create hybrid devices using a III-V material on 

a silicon substrate.  This, however, has been problematic as the III-V material is typically 

incompatible with silicon processing methods.  Another solution is to develop devices and device 
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structures from group IV materials, which are found in the same column on the periodic table of 

elements as silicon, for the infrared wavelengths. In recent decades, researches have made a 

concerted effort to develop optoelectronic devices made of silicon and germanium, though due to 

silicon’s poor electrical it properties limits the efficiency of such devices.   Germanium, 

however, can become a direct band-gap material when placed in a tensile strain condition though 

the wavelength range of operation is limited. 

 At the University of Arkansas, Joshua M. Grant, a Microelectronics -Photonics student of 

Dr. Shui-Qing (Fisher) Yu of the Electrical Engineering department, has recently worked on 

research to clear some of the hurdles needed to bring the next generation of infrared materials 

and devices to everyday life by investigating the technologies that make these advancements 

possible.  Mr. Grant has said, “Imagine an infrared camera in your phone, now there are no more 

dark parking lots, no more dark alleys, nothing hides anymore.  Now, consider if it will fit in 

your cell phone, where else can the device go. One place could be in the front of your car so that 

it enables you to see the deer standing on the side of the road that your headlights missed before 

it totals out your ride and leaves you stranded in the middle of nowhere.”  Achieving a direct 

band-gap material with the benefits of a III-V material has been shown in group IV materials by 

alloying germanium and tin.  This alloy material system has the ability to cover the same 

wavelength spectrum as traditional III-V materials but has the advantage of being compatible 

with the processing methods used for silicon devices and can easily integrated to a silicon 

substrate.   

There have been several reported devices made from the material alloys of germanium 

and tin such as lasers and light emitting diodes as well as photoconductors and photodiodes that 

show promise to reach efficiencies near that of some traditional III-V based devices.  These 
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results have shown that germanium-tin alloys could compete in the market with the traditional 

infrared materials and offer the advantage of a sizeable reduction in cost due to standardized and 

well understood silicon processing methods.  These processing methods have the ability to 

produce a chipset for a digital camera which could fit in a cellular phone effectively bringing true 

night vision technology to the masses.  The processes that produce the materials can be quite 

complicated.  “One method,” Mr. Grant said, “uses solid materials that are heated to extremely 

high temperatures and the material is evaporated and sent towards the substrate that the material 

is to be grown upon.  This is the simplest way I can describe molecular beam epitaxy or MBE for 

short. Another method for producing these materials is through using gas sources that are mixed  

and injected into a vacuum chamber and then use temperature and pressure to break apart the 

gases and deposit the targeted material onto the substrate to grow a single crystal material which 

is the simplistic way to describe chemical vapor deposition or CVD.”  The materials grown by 

MBE tend to be costlier to produce as compared to their chemical vapor deposition counterparts.  

This has led to the development of cheap, commercially available source gases for the CVD 

method which in turn translates into cost efficient materials. 

 Through the use of this technology the ability to save and protect lives can become more 

cost effective, enabling disaster volunteers and emergency personnel a tool at their disposal that 

would not be affected by dust, smoke, or fog without burdening these individuals or their 

respective companies with the high cost of current quality infrared equipment.  Mr. Grant said 

“This could allow for more personnel and volunteers available to respond to a disaster when the 

need arises. An example that I can think of was the World Trade Center collapse in 2001 and 

seeing the dust cloud and smoke immediately following the collapse.”  Another benefit of 

infrared technology is in the diagnosis and treatment of internal injuries as a result of an 
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accident.  The ability for some internal injuries to be detected under infrared light allows 

emergency responders to identify internal injuries and provides one more piece of information in 

the treatment of a patient at the scene.  Another benefit for this technology would be in the 

computing and data industries.  Current methods for storing transmitting and processing data is 

done using electronic devices.  These devices use chipsets that require various means of cooling 

such as fans, and even liquid cooling, to dissipate the heat that is generated due to the resistance 

of the wires and connections in the chipset.  Replacing the wires and connections using optical 

waveguides and on-chip infrared optoelectronic lasers and detectors that are silicon-based to 

transfer the information instead of electrons, the cooling requirements would be reduced lending 

to more power efficient systems.  Mr. Grant said, “Think of fiber optic lines that run your 

internet except inside the chips of your computer allowing all of the necessary communications 

to occur at the speed of light.” 
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Appendix B: Executive Summary of Newly Created Intellectual Property 

Newly created intellectual property is as follows:   

i) Plasma enhanced UHV-CVD growth of GeSn directly on silicon or germanium 

buffered silicon substrates. 

ii) Use of the proposed gas mixing system to precisely control the gas flow fraction 

for SnCl4 to increase Sn content as the growth temperature is reduced   
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Appendix C: Potential Patent and Commercialization Aspects of Listed Intellectual 

Property Item 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

Each piece of the intellectual property was examined to determine its patentability. 

i) The plasma enhanced system could be patented. 

ii) The gas mixing for precise control could be patented. 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

i) No, the method of plasma enhancement could easily be replicated or even modified as 

plasma enhancement is used in different variations and has been available for other 

processes in commercial applications.  

ii) No, precise control of gas ratios is well understood and available on commercial 

processes that have larger precursor supplies available and larger mass flow controllers. 

C.3 Possible Prior Disclosure of IP 

i) Not applicable. 

ii) Not applicable. 
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Appendix D: Broader Impact of Research 

D.1 Applicability of Research Methods to Other Problems 

The availability of the (Si)GeSn material system could be a disruptive technology within 

the infrared materials market.  The methods used to research the technologies involved in 

developing these materials could be useful in finding solutions to other issues as well.  One of 

the methods used for this that was most helpful was the same day feedback of characterization 

data that was obtained for each sample that provided information on the sample’s visual surface 

appearance, thickness, composition, and quality.  This feedback was collected and documented 

in both hardcopy and softcopy formats in multiple locations for quick reference.  Those samples 

that showed results that were of interest had further characterization performed on them using 

more in-depth methods.  This method of rapid feedback allowed for team members to share the 

collected information among themselves and allowed for the research to progress toward the 

desired goals by being able to adjust growths early without wasting sample growths while 

waiting for the data from an earlier growth. 

D.2 Impact of Research Results on U.S. and Global Society 

The impact of the (Si)GeSn material system could have a great impact on the U.S. and 

global society.  The infrared optoelectronics market has been dominated by III-V materials for 

decades though their integration into mass markets has been limited due to their high cost.  The 

development of group IV materials, such as GeSn, on silicon substrates has the potential to 

reduce the cost of these devices by 50%.  Throughout the world cellphones, personal electronics, 

and computers have become so common it is more shocking to find someone without than with f 

these items.   

GeSn material on Si has been reported to show the necessary characteristics needed to 
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facilitate the on-chip transfer of data optically.  This would allow for the devices and systems 

that use chipsets with this optical integration to operate faster with less power thereby increasing 

their efficiency while reducing the power requirements on the global energy grids.  This 

reduction in power requirements would lead to a reduction in the demand for the fuels that are 

currently used to produce that power like coal, natural gas, and oil.  Infrared optical devices 

using GeSn would also allow for vision in the night, through smoke and in fog.  This would 

allow for safer travel in these conditions and allow for better response from emergency personnel 

during a time of disaster.   These types of devices could also be applied to new self-driving 

vehicles to allow for better safety by leading to the ability to discern the environment around the 

vehicle in these types of conditions.  This gives devices using the GeSn material the potential to 

disrupt the infrared market with efficient and inexpensive devices.  

D.3 Impact of Research Results on the Environment 

The results from this research has the potential to impact the environment in several 

ways.  The (Si)GeSn materials would reduce the need to mine for rare earth metals that form the 

basis for many III-V materials.  This would lead to a reduction of the impact on local ecosystems 

where these materials are located as their demand decreases.  This would lead to less pollution 

and other effects to the environment in those areas.  The increased power efficiency of devices 

and systems using the on-chip integrated optoelectronics would lead to a reduction in the demand 

for natural gas, oil, and coal as the demand for power on the global power grids is reduced.  The 

integration of these (Si)GeSn materials into solar cell applications has the potential to increase 

solar cell efficiency that would allow for the production of more renewable energy from solar 

applications further reducing the demand for fossil fuels for power generation.  The development 

of these materials beyond their current level has the potential to not only improve how our world 
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communicates and operates but could eventually improve the world as a whole for everyone. 
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Appendix E: Microsoft Project for MS MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Thesis Generation 

Computer #1:  

Model Number: GP70 2QF-486US-GG7472H8G1T0S81M 
Serial Number: GP70 2QF-486USK1503000097 
Location: Personal laptop  
Owner: Joshua M. Grant  

Software #1:  
Name: Microsoft Office 2016  
Purchased by: Electrical Engineering Department, University of Arkansas  

Software #2:  
Name: Microsoft Project 2018  
Provided by: Electrical Engineering Department, University of Arkansas  

Software #3:  
Name: Mendeley 

Purchased by: Free download available from Mendeley.com 

Software #5 
 Name: OriginPro 2018 
 Purchased by Joshua M. Grant 

Software #6 
 Name: Autocad Inventor Design Suite 2018 (student version) 
 Purchased by Joshua M. Grant 

Computer #2:  

Model Number: Dell Vostro  
Serial Number: 52M6XK1  
Location: ENRC Room 2923  
Owner: Dr. Shui-Qing Yu  

Software #1:  
Name: SynerJY with built-in Origin software  
Purchased by: Dr. Shui-Qing Yu 

Computer #3:  

Model Number: Dell Inspiron  
Serial Number: 52M6XK1  
Location: ENRC Room 2923  
Owner: Dr. Shui-Qing Yu  

Software #1:  
Name: SynerJY with built-in Origin software  
Purchased by: Dr. Shui-Qing Yu  
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