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ABSTRACT 

Statistical models used for estimating skill or ability levels often vary by field, however their 

underlying mathematical models can be very similar. Differences in the underlying models can 

be due to the need to accommodate data with different underlying formats and structure. As the 

models from varying fields increase in complexity, their ability to be applied to different types of 

data may have the ability to increase. Models that are applied to educational or psychological 

data have advanced to accommodate a wide range of data formats, including increased 

estimation accuracy with sparsely populated data matrices. Conversely, the field of online 

gaming has expanded over the last two decades to include the use of more complex statistical 

models to provide real-time game matching based on ability estimates. It can be useful to see 

how statistical models from educational and gaming fields compare as different datasets may 

benefit from different ability estimation procedures. This study compared statistical models 

typically used in game match making systems (Elo, Glicko) to models used in psychometric 

modeling (item response theory and Bayesian item response theory) using both simulated data 

and real data under a variety of conditions. Results indicated that conditions with small numbers 

of items or matches had the most accurate skill estimates using the Bayesian IRT (item response 

theory) one-parameter logistic (1PL) model, regardless of whether educational or gaming data 

were used. This held true for all sample sizes with small numbers of items. However, the Elo and 

the non-Bayesian IRT 1PL models were close to the Bayesian IRT 1PL model’s estimations for 

both gaming and educational data. While the 2PL models were not shown to be accurate for the 

gaming study conditions, the IRT 2PL and Bayesian IRT 2PL models outperformed the 1PL 

models when 2PL educational data were generated with the larger sample size and item 



 

 

condition. Overall, the Bayesian IRT 1PL model seemed to be the best choice across the smaller 

sample and match size conditions. 
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CHAPTER 1  

INTRODUCTION 

Estimating people’s skill or ability levels and using that information to predict outcomes 

of events are some of the most powerful and practical tools in a statistician’s arsenal. Educational 

researchers use prior performance to predict student academic outcomes (Campbell & Dickson, 

1996). Demographic variables can be analyzed to see how they relate to health outcomes in order 

to determine populations most at risk for certain diseases (Pickett, 2001). 

Industrial/organizational psychologists can measure personality traits to see how they predict job 

performance (Tett, Jackson, & Rothstein, 1991). Even video games estimate players’ abilities 

after matches are completed and use that information in predictive models to match players of 

equal skills for the next game (Véron et al., 2014). 

While ability estimation procedures and predictive models are used in many different 

fields, these fields tend to use different statistical models due to the need to analyze different 

types of data based on their format, structure, and distributional properties. However, there are 

times when the underlying mathematical structures of statistical models in different fields are 

quite similar. One example of this is a comparison of some of the models used for skill 

estimation in gaming data as compared to ability estimation with educational or psychological 

data. Elo, and its many variations, are popular models used to match players from a variety of 

sports and games based on their skills (Coulom, 2007; Glickman, 1995; Hvattum & Arntzen, 

2010). The Elo statistical model for estimating a player’s expected score from a match is 

calculated using a logistic function comparing the difference between the player and their 

opponent’s ability ratings. This model is similar to a component of item response theory (IRT), a 

popular statistical model for the educational field, that estimates a person’s expected score on an 
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item by using a logistic function that compares the difference between a person’s estimated 

ability and an item’s difficulty level (Crocker & Algina, 1986; Lynch, 2007; Stocking & Lord, 

1983). IRT estimation can be done with frequentists’ methods such as maximum likelihood 

estimation (MLE) or with Bayesian estimation methods which here will be called Bayesian IRT. 

The mathematical similarities between many of the gaming and educational models are 

substantial, however the process for applying the models can vary given differences in the 

structure of the data. A comparison of educational and gaming statistical models with different 

types of data is the focus of this research. The following is an expansion on the development of 

the different statistical models that are of interest to this study. 

Background of the Study 

Elo originated in the 1970s and its simplicity was beneficial when there was a lack of 

computer processing power and smaller sample sizes were used to calculate player ratings from 

chess tournaments. There was a need to rank and match players in a way that was standardized 

and applicable across samples of players. Elo used matched comparisons to take into account not 

only the outcome of the game but the skill differences between the players and it could be 

calculated quickly, even by hand (Elo, 1978). Elo and its variations are still popular even when 

the disadvantage of low computer processing power is no longer a concern such as when using 

online game matching (“How does GameKnot’s rating system work?,” 2017). Elo is a relatively 

simple set of mathematical formulas where performance ratings are based on the number of wins 

and losses which are then weighted by the player’s opponents’ ratings. The Glicko formula 

includes an additional parameter that is presented as a standard deviation which takes into 

account the estimated accuracy of the players’ ratings (Glickman, 1995). Many gaming systems 

still rely on the use of Elo and Glicko procedures to estimate player ability, and to pair players 
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for online and in-person tournament games. The use of Elo can be beneficial for ranking 

tournament members in circumstances where the number of players is relatively small as there 

are not as many calculations to compute. However, online gaming sites are no longer limited to 

small sample sizes or lack of processing power, therefore it may be useful to explore how more 

advanced statistical models such as IRT and Bayesian IRT may function with larger, more 

complex gaming data. Elo and Glicko are the two gaming ability estimation models that are the 

focus of this study. 

For ability estimation models that pertain to educational related data, IRT has been a 

popular model used to evaluate test items and how responses to those items can relate to a 

person’s ability level. It was a way to measure difficulties of individual items allowing those 

items to be used in different test batteries and with populations of varying ability levels (Baker, 

2001).  Another statistical model for IRT estimation whose popularity grew with the increasing 

efficiency of computers is Bayesian IRT. While the idea of Bayesian statistics has been around 

since Bayes’ theorem in the 1700s, Bayesian statistics has only recently grown in popularity, 

becoming relevant in a wide variety of fields (Lynch, 2007). The Bayesian approach allows for 

the use of prior information to be included in estimations based on a sample. That is, instead of 

relying only on the sample data, prior values can be used as a starting point in estimation. 

Bayesian approaches also seek to model the whole distribution of the data rather than just the 

best point estimate. The use of Bayesian estimation for IRT models helps improve the 

convergence and allows for a smaller sample size needed than for IRT if the prior assigned is 

relatively accurate (Gelman et al., 2014).  

In practice, when teachers wanted to look at ability estimations, they tend to use 

proportion correct due to smaller sample sizes available to them and possibly limited statistical 
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experience. Proportion correct is how many questions out of the total a participant answered 

correctly (Hambleton, Swaminathan, & Rogers, 1991). However, proportion correct is limited to 

only being appropriate for comparisons when a sample has completed the same set of items.  

All of these models seek to estimate people’s skill levels or abilities and predict the 

chances of success on an outcome whether that outcome is getting an answer right on a test or 

winning a chess match. With increases in computer technology, a wider variety of complex 

statistical models are available to populations of gaming groups and educational professionals. 

Some of the more complex statistical models could assist gaming statisticians in obtaining more 

accurate ability estimates for player matching within large datasets. Conversely, researchers with 

smaller, less comprehensive datasets may benefit from the use of statistical models that have 

fewer model assumptions for evaluating student performance. However, statistical models do not 

always function effectively or accurately under all conditions. Thus, knowledge of how statistical 

models from fields such as education function for gaming data and how gaming statistical 

models function for educational data can assist researchers and practitioners in selecting which 

models to use for their data.  

While each model has its advantages and disadvantages, there have not been many 

studies investigating how these fields can benefit from each other’s models. Some of the studies 

that have compared Elo and IRT have had methodological limitations (Antal, 2016; Pelánek, 

2014; Wauters et al., 2012). For instance, when using a real dataset, researchers used IRT 

estimations on the whole data set as the “true” ability for comparing to Elo estimations (Antal, 

2016; Wauters et al., 2012). This makes the assumption that IRT was the best estimate under all 

conditions which may not have been true.  
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Further, the type of data analyzed can have an impact on the accuracy of the models. 

When simulations are conducted (Pelánek, 2014), a model must be selected for generating the 

data. If data are generated using an IRT 1PL model, it might be reasonable to expect that an IRT 

1PL model might be more effective in estimating the ability levels of persons within that dataset 

as compared to other types of models such as Elo or Glicko. Similarly, if data are generated 

using Elo models, an Elo statistical model might be expected to best estimate the sets of response 

strings. The above studies that compared Elo and IRT models (e.g., Antal, 2016; Wauters et al., 

2012) used educational data to compare these models and little was found that investigated how 

IRT models perform on gaming data. It would be of interest to investigate whether IRT and 

Bayesian IRT models can provide accurate estimations with gaming types of data and to further 

what little research has been done on using gaming statistical models on educational data.  

Study Overview and Research Questions 

According to the literature review, this dissertation aims at comparing how accurately 

two gaming models (Elo and Glicko) and five models commonly used in education (proportion 

correct, IRT 1PL/2PL, and Bayesian IRT 1P/2PL) were able to estimate ability values for 

gaming and educational data. The different assumptions required for gaming and educational 

statistical models and the changing fields of education and gaming research may lead to 

statistical models typically used in one field being beneficial in the other field under some 

circumstances.  

The specific research questions are as follows: 

1. How do estimates of ability using gaming and educational achievement statistical 

models such as proportion correct, Elo, Glicko, IRT 1PL/2PL, and Bayesian IRT 
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1PL/2PL, correlate with true ability using simulated gaming and educational 

achievement type data under varying conditions? 

a. Which ability estimates are most correlated to true ability simulated using a 

gaming data model?  

b. Which ability estimates are most correlated to true ability simulated using an 

educational achievement data model? 

c. Which ability estimates are most correlated to true ability when the number of 

items and game matches vary from small, moderate, to large? 

d. Which ability estimates are most correlated to true ability when sample size 

varies from small to moderate? 

e. Does data generation method influence the correlations between model 

estimations and true ability? 

f. Which ability estimates produce the smallest standard errors in relation to true 

ability estimates for the gaming and educational achievement data under the 

varying item/match size and sample size conditions? 

2. Which statistical models (e.g., gaming models such as Elo, Glicko; educational 

models such as proportion correct, IRT 1PL/2PL, Bayesian IRT 1PL/2PL) best 

predict real data outcomes? 

a. Which ability estimates best predict real outcomes for certain number of 

matches for gaming data?  

b. Which ability estimates best predict real outcomes for certain items in 

educational data?  
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The sections of research question one were investigated through a simulation study, and 

the sections for research question two were investigated using empirical studies. In the 

simulation study, four types of simulated data (Elo, Glicko, IRT 1PL, and IRT 2PL) were used to 

control for differences in model estimations that may occur due to data generation methods. 

Other manipulated conditions include varying the number of participants (50 and 150) and the 

number of matches/items (5, 15, and 30). Various sample sizes were considered because iterative 

estimations used in IRT and Bayesian IRT may not be feasible for small sample sizes (Foley, 

2010; Şahin & Anıl, 2017), while Elo and Glicko may be able to estimate abilities under smaller 

sample size conditions. Additionally, if a gaming dataset has a large enough sample size, it may 

benefit from more advanced models such as IRT as compared to the more simplistic Elo and 

Glicko models.  

While simulations allow for the true ability to be known, generating the data requires a 

decision on a formula in which to generate the data which could bias results. Thus, an empirical 

data section was also included. There were two empirical datasets, one being a dataset of online 

chess matches and the other educational achievement test items from the Trends in International 

Mathematics and Science Study (TIMSS). This allowed for two different types of datasets to be 

evaluated with the statistical models. While the correlations between the ability estimations were 

calculated, a small sample of data was set aside and used to evaluate the predictive power of the 

estimations as a way to obtain a measure that investigated whether certain models have greater 

predictive accuracy under certain conditions. Having both a simulation part of the study and an 

empirical data part of the study should better show trends regarding the statistical models.   

Not only would this study provide support for the usefulness of comparing statistical 

models from the educational and gaming fields, it may help show the importance of 
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understanding statistical models from different fields and encourage comparisons of statistical 

models from fields beyond just gaming and educational models. This study will help provide 

guidelines for the advantages and disadvantages of these models under the situations studied. 

                                                                                                                        

                                      

  



 

9 

CHAPTER 2  

LITERATURE REVIEW 

This literature review will describe a selection of popular ability estimation models for 

both gaming data and social science data. There will be a focus on Elo, Glicko, IRT 1PL, IRT 

2PL, Bayesian IRT 1PL, and Bayesian IRT 2PL models and some related models that fit into 

those categories. Advantages and disadvantages of each will be discussed, and literature that has 

explored how these models compare to each other will be reviewed. 

Statistical Models for Gaming Data 

Statistical models for estimating ability in gaming are often used for matching players 

together for close matches or for qualifications for tournament purposes. Players are also 

interested in quantifiable measures of their own skill. New estimations can be generated after 

every game or after a set of games (Glickman, 1995). While there are many different gaming 

estimations models, the focus of this dissertation will be on Elo and Glicko. 

Elo 

            Uses and origins. The Elo rating system was originally used for chess and named after 

its creator Arpad Elo (Elo, 1978). It was used as a system to assign chess players’ skill levels to 

adequately match them with players of similar skill. While its origins lie in chess, the Elo rating 

system, and its related Bradley-Terry model, has been expanded to other games such as other 

board games, football, tennis, and video games (Coulom, 2007; Glickman, 1999; Lasek, Szlávik, 

& Bhulai, 2013; Véron et al., 2014).  

Rating the skill of chess players happened before the implementation of the Elo system, 

however there were some issues with these rating systems. Previous chess rating procedures 

were more subjective. In fact, it was possible for chess players to lose games and still gain ability 
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rating points. Other systems used in game skill ratings, such as the American Contract Bridge 

League rating system, focused more on a ladder rating where skill rating can only go up but 

cannot adjust back down (Glickman, 1995). The Elo model is typically a purely statistical based 

formula where skill rating is computed based on the aggregated wins and losses of players 

weighted by how likely the win or loss was based on the opponent’s ability. Some have even 

proposed that the adoption of the more objective and useful Elo ratings by the International 

Chess Federation in 1970 may have been one of the key factors of increasing the popularity of 

chess tournaments (Glickman, 1995).  

The uses of Elo in chess have varied purposes. It can be used to match players against 

each other as well as using skill rating to have cut-offs for different skill tiered tournaments. 

Some systems have titles earned in chess tied to Elo ratings. Elo uses in chess may differ from 

other game systems. For instance, tournaments often avoid pairing high skill ranking players 

together early in the tournament and may structure the tournament match in a way to most likely 

allow the “big players” to make it to the finals in order to make the finals more appealing and 

interesting to watch (Glickman, 1995).  

Elo uses in other game systems may be more automated. For instance, Elo related ranking 

systems are popular in multiplayer games. Players in multiplayer games are often placed in a 

queue while the system uses a variety of measures such as ping, time already spent waiting, and 

Elo rating to match players together (Véron et al., 2014).  

While Elo is a popular way to rank players in a variety of games there has been some 

application of Elo to other fields as well. Some researchers developed Elo based models in 

predicting animal behavior while others used Elo for detecting deficiencies in fabric patterns 

(Newton-Fisher, 2017; Tsang, Ngan, & Pang, 2016). Some researchers have also advocated 
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some benefits of using Elo type formulas when evaluating student performance (Brinkhuis & 

Maris, 2009; Pelánek, 2016).  

            Formulation. The Elo formula is a relatively simple but malleable way to rank skill. Its 

main premise is that a win will increase one’s skill rating while a loss will decrease one’s skill 

rating. Additionally, how much a person’s skill rating changes is a function of their calculated 

probability of winning the match which is based on their opponent’s skill rating. If their 

probability of winning is around 50%, the change in the player’s skill rating is relatively equal in 

either the positive (winning) or negative (losing) direction. However if a player with a much 

lower skill rating is competing against a much higher rated player, the lower skilled player will 

gain a higher amount to their skill rating for a win than the higher skilled player to account for 

the lower skilled player’s lower probability of winning (Elo, 1978). 

The way an initial Elo rating is calculated can differ. The World Chess Federation offers 

methods to calculate an unrated player by averaging the skill ratings of fellow players competing 

in the tournament (“FIDE Rating Regulations,” 2014). Online chess game sites may also use a 

different estimation system for the first twenty games before moving to an Elo way of adjusting 

skill rating (“How does GameKnot’s rating system work?,” 2017). Online gaming often assigns 

an unrated player an average skill rating and then adjusts from there using data obtained from the 

player’s activity (Véron et al., 2014).  

Assuming there is an initial skill rating given to the player (even if it is an “average” 

rating), a probability of the player’s chances of winning can be calculated when given the skill 

rating of their opponent. The probability is a logistic function with the typical feature of the 

probabilities of a win less than 100% even when a very high skill player is paired with a very 

low skilled one. Subsequently the chances of a win can never be 0%. If P represents the player’s 



 

12 

current skill rating and O is the opponent’s skill rating, then one calculates E, the expected 

probability of winning, by: 

𝐸 =  
1

1+10−(𝑃−𝑂)/400      (2.1) 

The numbers 10 and 400 are additional parameters that represent the scaling of the skill rating 

being used. The scalers used here relate to the skill rating used for chess which ranges between 

1000 and 3000 with an average of around 1500, although the Elo scale can be changed (Elo, 

1978). The probability of an expected win is then used when calculating the change in skill 

rating to be applied to a person’s current skill estimate. To calculate the new skill rating (New), 

let P represent the current skill rating, let Out be the outcome of the match (1 for a win and 0 for 

a loss), and let E be the probability of winning the match and K is a constant, frequently 32 in 

chess. The formula for the new skill rating is: 

𝑁𝑒𝑤 = 𝑃 + 𝐾(𝑂𝑢𝑡 − 𝐸)        (2.2) 

The above formula shows that the more unexpected the outcome of a match (the greater 

the difference between Out and E), the larger the adjustment to the player’s rating. When a skill 

rating can change also differs. In official tournaments a skill rating is often only updated after all 

of the games of the tournament are completed. This alters the formula making Out change to the 

average of outcomes and E the average probabilities of winning (“FIDE Rating Regulations,” 

2014). Online gaming systems tend to update skill ranking after each game (“How does 

GameKnot’s rating system work?,” 2017; Véron et al., 2014). 

Mathematically, a group of players whose skills are rated using Elo will end up creating a 

normal distribution of skill ratings. While purely using the Elo formula would mathematically 

result in a normal distribution, the World Chess Federation sets the minimum Elo to be 1,000, 

artificially creating a floor effect in the distribution. Players whose skill ratings would 



 

13 

mathematically be lower than 1,000 are considered unranked (“FIDE Rating Regulations,” 

2014). While the US chess rating system also has a minimum score set, for the US system the 

lowest score is 100 instead of 1,000 allowing for a more normal distribution (Glickman & Doan, 

2017). The USCF (United States Chess Federation) system has also implemented other 

restrictions, such as having a skill rating not fall 200 points below their highest ranking. This was 

implemented for a multitude of reasons such as to keep players from manipulating the system in 

order to participate in lower skill tiered tournaments and to keep players encouraged instead of 

having their skill rating drop too much (Glickman & Jones, 1999).  

While the above shows the most basic Elo formula, there have been a variety of formulas 

that alter it. A popular alteration is to change K from a constant to a number that is based on the 

number of games completed. The US chess rating system employs a K that is not a constant but 

instead is calculated as: 

𝐾 =  
800

𝑁 + 𝑚
 ,                                                                       (2.3) 

where N is the total number of effective games that have been completed and m is the number of 

games in the current tournament that was played. “Effective” games is a measure partly 

depending on the number of games the player has completed or is set at a max of 50 (Glickman, 

1995). Another possible alteration is to change the static scaling variable in the probability 

formula into a moving one. This procedure was adopted due to findings that the expected 

probabilities were biased, that is, they overestimated the probability of a win for very high and 

very low skilled players (Glickman & Jones, 1999). The formula for this varying E value is: 

𝐸 =  
1

1 + 10−(𝑃−𝑂)/𝑎
  ,                                                         (2.4) 
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where a is a non-constant number (Glickman & Jones, 1999). For instance, one study found that 

changing a from 400 to 561 in chess estimates, improved the fit of the model for the data being 

used. They used maximum likelihood methods to find the parameters with the best predictive 

power and then worked backwards from there to determine what value a should be (Glickman & 

Jones, 1999). The value of a changed depending on the skill ranking of the player and helped 

with the issue that the winning probability for high rank players was occasionally overestimated 

by the formula.  

Glicko 

Another variation on Elo is the Glicko formula. The Glicko formula seeks to improve 

estimation accuracy by having a previously fixed constant in the formula be an adjusted value 

(Glickman & Jones, 1999). The Glicko formula adds a standard deviation to the player’s ratings 

in order to give more information about the certainty of the rating. This is called the Rating 

Deviation (RD) and is shown here as RDPNew. To calculate the RD for a player: 

𝑅𝐷𝑃𝑁𝑒𝑤 =  √(𝑅𝐷𝑝
2 + 𝑐2 ∗ 𝑡) ,                                                      (2.5) 

where RDp is the current player rating (a new player would get a constant decided upon), c is a 

constant based on how malleable RD will be over time, and t is based on how long it has been 

since the player has played. The above formula is used with a new rating period, that is after a 

certain amount of time has passed between ratings such as updating RD from one tournament to 

another. The formula for calculating RD between matches is different and will be shown below. 

For match by match Glicko calculations, the probability of a win is very similar to the Elo 

formula but with a few additions: 

𝐸 =  
1

1 + 10−𝑔(𝑃−𝑂)/𝑎
                                                         (2.6) 
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The parameter a can be set to 400 like in the previous Elo formula or it can be changed. Here it 

will mirror the Elo value for our study. The new parameter g is added which is calculated using 

the opponent’s RD (RDO): 

𝑔 =
1

√(1 + 3𝑞2 ∗
𝑅𝐷𝑂

2

𝜋2 )

  ,                                                   (2.7) 

and q is a constant such as:  

𝑞 =  
𝑙𝑛10

400
=  .0057565                                                   (2.8) 

The RD for the player is also updated: 

𝑅𝐷𝑃𝑁𝑒𝑤 =  
1

√
1

𝑅𝐷𝑃
2 + 1/𝑑2

 ,                                              (2.9) 

where d2 is: 

𝑑2 =
1

𝑞2 ∗ 𝑔2 ∗ 𝐸(1 − 𝐸)
                                           (2.10) 

That just leaves the player rating update formula which again is very similar to Elo but with 

added parameters: 

𝑁𝑒𝑤 = 𝑃 + 𝑞𝑅𝐷𝑃𝑁𝑒𝑤
2 𝑔(𝑂𝑢𝑡 − 𝐸)                             (2.11) 

Basically, the Glicko adds a standard deviation to the ratings to allow for the certainty of a 

player’s rating to factor into adjustments made. A player’s rating will change more if their 

opponent’s RD is smaller indicating more certainty that the opponent is accurately ranked 

(Glickman, 1995). Additionally, if enough time has passed between matches, formula 2.5 will be 

used to further update RD. There have even been updates to this formula that add a parameter 

that measures true variability in the player’s ratings. That is, it is a standard deviation that is not 
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based on measurement error but on how erratic the player’s performances are which is called 

volatility (Glickman, 2001).  

Gaming Statistical Models Application 

Like any statistical model, Elo and Glicko have advantages and disadvantages. One of the 

main benefits of Elo and Glicko are their simplicity. Elo was used before computers were readily 

available, so having a simple formula allowed people to easily calculate and update skill ranking. 

Even with computers, there is a benefit for more simple formulas. Multiplayer games update skill 

rankings after every game. A formula that relies on running iterations in order to calculate a new 

skill ranking may take too long to justify its use when gamers do not want to wait more than a 

minute to be matched in a game (Véron et al., 2014; Weng & Lin, 2011). The Elo and Glicko 

formulas do not have that disadvantage making it preferential when one seeks to find a quick 

calculation that avoids using heavy computer resources.  

There are also assumptions allowed in Elo and Glicko that might not apply to other 

statistical models. Elo and Glicko allow for the assumption that a person’s skill rating can and 

will change (Elo, 1978). Many measurement models discussed later have the assumption that the 

skill being measured will not change over the time of the testing. Further, some measurement 

models, such as some IRT testing, occasionally use additional test and item information to 

measure one’s skills (e.g., item parameter estimations from prior samples). This is especially 

prevalent when IRT is used for computer adaptive testing which is when participants are 

matched to items based on their ability levels and the item’s difficulty (Baker, 2001). When 

using Elo and Glicko to match online players, a system similar to computer adaptive testing, 

there is little need for any testing to be completed beforehand as skills are continuously being 

estimated, updated, and matched. Even when someone is being compared to an unranked player, 
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the unranked player can be assigned a starting number which may or may not be based on 

previous information such as the average rating of players (Glickman, 1995). 

There have been attempts to adjust the basic Elo formula to address some of its 

disadvantages. The basic Elo formula has demonstrated that its prediction accuracy varies based 

on skill level and number of games. One possible limitation could be the lack of a variance 

estimator in the Elo statistical model for individuals which the Glicko model attempts to provide.  

Another disadvantage to Elo and Glicko formulas is that researchers tend to subjectively 

alter the use of the formula in order to get a more preferred distribution. Skill rating floors are 

used in both the US Chess Federation and the International Chess Federation (“FIDE Rating 

Regulations,” 2014; Glickman & Doan, 2017), and the value of the a parameter is adjusted for 

certain conditions. Uses of the Elo formula that apply subjective bonus points in order to keep 

the average of the rankings stable may also be a disadvantage since it allows for subjectivity in 

the assigned ability values (Glickman & Jones, 1999). Even the pure Elo formula is subjected to 

bias while more standard social science measurement models tend to be unbiased (Brinkhuis & 

Maris, 2009). 

There are also data that are lost that could be potentially used. The Elo and Glicko 

systems typically rate a win as 1, a draw as .5, and a loss as 0 (Elo, 1978). A close win and a 

clear win provide different information about the player’s skill rankings but each are considered 

equal in the Elo and Glicko formulas. Further, information can also be obtained from a draw or a 

loss with not all draws and all losses being equal though the formula treats them as such.  

Like any paired comparison calculation, there are issues when the comparisons are made 

within only a certain pool of people. This is frequent in chess. A player who only competes in 

junior tournaments is getting their skill rating calculated with only other junior players. This 
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leads to their skill rating being inaccurate when they move to adult tournaments (Glickman & 

Jones, 1999). While this can be fixed by having everyone have an equal chance of competing 

against everyone else rather than grouping players, that solution may not be feasible. Even for 

online games, systems often rely on pairing players by location in order to prevent connection 

issues (Véron et al., 2014), and pairing players of closer ability estimates to make the games 

more interesting (and less discouraging) for the participants. 

Another limitation of Elo and Glicko ratings is that official ratings tend to not be updated 

often unless the chess player is active in many tournaments. If a chess player has played in one 

tournament then spent a few years just playing with friends, their skill ranking would officially 

still be what their tournament rating was while their true skill rating may be much higher due to 

having additional practice that has not been accounted for in official measures (Glickman & 

Jones, 1999). 

Elo and Glicko also assumes that it is one player versus another player. In team-based 

games this assumption is not met. While there are people who treat the whole team as an 

individual or sum the skills of players within a team, the skill ranking results from such uses tend 

to not fit as well as they should ( Herbrich & Minka, 2007; Lasek et al., 2013). As this study 

focused on estimating abilities for individuals, this disadvantage was not a factor however there 

will be other gaming statistical models that will be mentioned later that do not have this 

disadvantage. 

Changes in Elo skill ratings when the players have vastly different skill rankings poses its 

own set of challenges in both a practical and statistical sense. For instance, a player with an Elo 

of 2382 has a 90% chance of winning against a player with an Elo of 2000. However, if they 

played ten games and, as expected, the higher-level Elo player loses one game of those ten, that 
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player actually ends up losing two skill points due to rounding and updating the skill ranking at 

the end of all matches as tournaments often do. This estimation difference gets worse if the 

ratings are updated after each match. If the higher skill player wins the first 9 games then loses 

the 10th, they have a net loss of 5 points while the lower skilled player has a net gain of 5 points. 

There are also practical implications when players of vastly differing skills are matched as one 

player is much more invested in avoiding a loss while the other is more invested in a win.  

With both benefits and disadvantages to Elo and Glicko statistical models, it is useful to 

see how these models compare to other statistical models. When looking at how Elo works, I was 

reminded of IRT models. In Elo for gaming purposes, a player is matched over and over again 

based on their skill ranking while adjustments are made based on the outcomes of the matches. 

This reminded me of the way a person gets matched with item after item in order to obtain and 

estimate their skill rating as is the case for some computer adaptive testing (CAT) systems which 

may use IRT to select from item pools of varying difficulties. There have been some 

comparisons of the two models already and more detail regarding statistical models for 

educational data will be discussed (Antal, 2016; Pelánek, 2014; Wauters, Desmet, & Noortgate, 

2011; Wauters, Desmet, & Van Den Noortgate, 2012).  

Statistical Models for Educational Data 

There are many ways to measure ability using educational data. One popular model is 

IRT. There are also Bayesian estimation methods that can be used with IRT which is called 

Bayesian IRT. One of the simplest ways of estimating ability is calculating the percentage of test 

items a participant has gotten correct known as proportion correct (Baker, 2001). These models, 

used in the field of educational and the social sciences, were selected for this study.  
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IRT 

            Uses and origins. Item Response Theory (IRT), has offered a way to improve upon 

traditional educational and psychological testing measures offered by classical test theory. 

Proportion correct is a way to estimate ability levels using classical test theory and it is 

calculated by taking the number of items correct divided by the total number of items 

administered. While its simplicity gives it some advantages, proportion correct is very limited. 

People’s abilities that are estimated with proportion correct are only comparable to people who 

have taken the same test or an equivalent one. Additionally, if one wanted to use an iterative 

matching system, like many computer tests and game matching systems do, proportion correct 

would not function well as its ability estimations are highly test dependent. Due to these 

disadvantages, IRT was explored as a way to evaluate item level difficulties independent of test 

composition (Crocker & Algina, 1986). 

Similar to Elo, there was a history of the statistics behind the IRT model before the model 

started gaining widespread use. Some of the works of Thurstone and Binet in the early 1900s 

relating to cognitive testing resembles some of the components of IRT models (Bock, 1997). 

However, the big growth in interest in IRT may be linked to Statistical Theories of Mental Test 

Scores (Lord & Novick, 1968), a text published in 1968 that combined works from previous 

researchers’ publications relating to IRT and its various models. That along with an increase in 

computational power helped lead the way to more computationally extensive statistical solutions 

like IRT (Jones & Thissen, 2006).  

Both its origins and current uses have been heavily focused on measuring cognitive 

ability (van der Linden & Hambleton, 1997). However, there are also IRT models focused on 

other types of measurements such as personality traits (e.g., Gray-Little, Williams, & Hancock, 
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1997; Steinberg & Thissen, 1996). Additionally, like Elo, there are multiple formulas and 

variations of IRT.  

One main goal of IRT is to categorize questions used in a measurement tool into differing 

levels of difficulty. Each item has an underlying distribution that shows the likelihood of a 

correct answer depending on a person’s skill level. These items are then used to analyze a 

participant’s knowledge or skill through a process of administering items to participants and 

evaluating their performance. Through iterations, the most likely skill level is calculated for 

participants based on their correct and incorrect responses to the set of items (Hambleton et al., 

1991). 

IRT theory is very popular in tests that use computer adaptive testing (CAT). Computer 

adaptive testing is a process that will estimate a person’s skill level by giving them items with a 

difficulty that will correspond to their skill level or ability. For instance, if a participant misses 

three average difficulty level questions, the computer will start giving questions of lower 

difficulty. If a person answered all three correctly, the computer will give them more difficult 

problems (Hambleton et al., 1991). In this way, you can view the participant and the item as a 

paired comparison, similar to Elo or Glicko. 

Formulation.  While there are many IRT related formulas, the three most notable models 

for dichotomous data are the 1PL model (the one-parameter logistic model, also known as the 

Rasch model), the 2PL model, and the 3PL model. For the 1PL model (Baker, 2001), the only 

parameter allowed to vary for calculating the probability of getting a question right is item 

difficulty (b). Item difficulty is defined as the skill level needed in order to have a 50% 

probability of getting the correct answer on the item. Item discrimination is either set to a value 

of 1 when using the Rasch model, or all items are given the same discrimination value (not 
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necessarily equal to 1) for the 1PL model (van der Linden & Hambleton, 1997). If b is item 

difficulty and  is the person’s ability level, then the formula to calculate the probability of a 

person with a certain ability getting a question right, P(), using the 1PL model with item 

discrimination set to 1 would be: 

𝑃(θ) =
1

1 + 𝑒−1(θ−𝑏)
                                                          (2.12) 

The term e, Euler’s number, is a constant equivalent to approximately 2.71828. If a person has 

average skill ( = 0) and they answer a question with a difficulty of 0 then they would have a 

50% probability of answering the question correctly. The ability ratings are calculated with a 

mean of 0 and a standard deviation of 1. 

The 2PL model adds an additional parameter a that represents item discrimination 

(Hambleton et al., 1991). Item discrimination is how well an item discriminates between people 

of differing skill levels. If the probability of someone with average skill answering a question 

correct is similar to someone with a much higher skill level answering that same question 

correct, then the item would have low item discrimination. If two participants with a small ability 

difference have very different probabilities of answering a question correct, then it would be an 

item with high item discrimination. The 2PL model allows a to vary where the probability of 

answering the question correctly given a certain skill level would now be:  

𝑃(θ) =
1

1 + 𝑒−𝑎(θ−𝑏)
                                                     (2.13) 

The 3PL model adds one more parameter that is based on guessing. While an item that is 

“fill in the blank” may have a near 0% chance of getting the item right by guessing, there is a 

substantial chance of guessing the right answer when the question is multiple choice. If c is the 
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guessing parameter, which represents the chance of getting the question right if the person had a 

skill level nearing negative infinity, then the 3PL model would be:    

𝑃(θ) = 𝑐 +
1 − 𝑐

1 + 𝑒−𝑎(θ−𝑏)
                                                (2.14) 

The item characteristic curve (ICC) is an essential aspect of IRT representing the 

probabilities of answering an item correctly among a variety of skill levels and can help 

demonstrate the three parameters discussed. The ICC is shown in Figure 1. The b parameter of 

item difficulty shows that a theta of -.21 is the point where a participant has a 50% chance of 

answering an item correctly. The a discrimination parameter is the slope of the curve. Here, the c 

parameter is zero, and this is shown by having the lower left tail of the ICC approaching zero. 

The figure shows people with lower skill levels have a lower probability of answering the 

question correctly, while someone with a higher skill level has a higher chance of answering the 

item correctly (Baker, 2001). 
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Figure 1. 3PL IRT model demonstration 

IRT calculates participants’ ability estimations based on their responses to a set of items. 

IRT uses individuals’ response strings to estimate both item parameters and the most likely theta 

or ability estimate for each person based on their response string. The formula for estimating 

ability using a 2PL model would be (Baker, 2001):  

𝜃𝑡+1 =  𝜃𝑡 +  

∑ −𝑎𝑖[𝑢𝑖 − 𝑃𝑖(𝜃𝑡)]

𝑁

𝑖=1

∑ 𝑎𝑖
2𝑃𝑖(𝜃𝑡)𝑄𝑖

𝑁

𝑖=1

(𝜃𝑡)

                                         (2.15) 

Estimated ability for the participant is represented by 𝜃 with the t representing the ability 

estimated in the prior iteration. The first iteration usually puts the person at either an average 

ability or a value based on number correct. Then, based on that ability and their response string, 
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their new ability estimation is adjusted as represented by 𝜃𝑡+1. The recommended change in 

ability is calculated by summing across differences in item score (ui = 1 for correct versus ui = 0 

for incorrect) and the probability of getting a correct response for an item i given the 

participant’s estimated theta (𝑃𝑖(𝜃𝑡), weighted by the discrimination of item i (ai), divided by the 

sum of the products of the probability of getting an item correct given theta, the probability of 

getting an item incorrect given theta (𝑄𝑖(𝜃𝑡)), and the squared discrimination of the item. Ability 

estimations are completed iteratively along with item parameter estimates until changes in 

estimations meet a minimum threshold. Overall, the closer the calculated probabilities for the 

current theta are to the actual outcomes in the set of items, the smaller the adjustment is made in 

theta (Baker, 2001). 

For estimating the item parameters in IRT, a maximum weighted likelihood function is 

used. This is a typical maximum likelihood value where parameters are set to maximize the 

likelihood function, a function that shows the probability of the parameters with the current data. 

The likelihood function for the 2PL model is: 

𝐿(𝒖|𝜃, 𝑏, 𝑎) ,                                                           (2.16) 

where L indicates the likelihood function and u is a vector of responses to items from a 

participant. The determination of these parameters is calculated by multiple derivatives with 

starting values of the parameters based on the parameters that could be obtained from classical 

test theory. Then estimations are completed in an iterative process that results in increasingly 

better fitting parameters if the data meet the statistical model’s assumptions. The parameter 

estimation process is shown by: 

𝐱𝑖
𝑗+1

=  𝑥𝑖
𝑗

− {𝐻[𝑥𝑖
𝑗
]}

−1
𝑓′[𝑥𝑖

𝑗
] ,                                       (2.17) 
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where vector x is representing the estimation of the two parameters in a 2PL model (Hambleton, 

1991). The iteration number is represented as j and the j+1 means it is over iterations with j 

being the current iteration. The matrix of the second derivatives (noted by {𝐻[𝑥𝑖
𝑗
]} ) is derived 

from the matrix of the first derivatives (𝑓′[𝑥𝑖
𝑗
]). Item parameter values are determined at the 

point the change in the estimation reaches a sufficiently small value (Hambleton et al., 1991). 

As mentioned before, there are many IRT models. The 1PL, 2PL, and 3PL models that 

assume dichotomous outcomes have been presented. The graded response model assumes that 

the answer is not categorized by just a correct or incorrect answer but could have a polytomous 

outcome that could include partial credit (having varying degrees of correctness). An example 

would be an essay question where participants can earn a range of points rather than just being 

marked as correct or incorrect (Hambleton et al., 1991). This model is also used for 

measurements that use Likert type scales that do not assume a right or wrong answer (Gray-Little 

et al., 1997; Steinberg & Thissen, 1996). However, since this dissertation is focused on 

comparing measurement models used in games to more academic statistical models used for 

ability testing which are commonly binary, the polytomous-based models were not explored. 

Further, since the gaming data of focus is on paired comparisons between players, the guessing 

parameter in the 3PL model is not as relevant, therefore the focus of this study was on IRT 1PL 

and 2PL models. 
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            IRT models application. Like Elo and Glicko, there are both advantages and 

disadvantages concerning the use of IRT. One of the most important advantages of IRT, as it 

compares to Elo, may be its increased accuracy. Not only does the IRT model allow for more 

parameters to be estimated, thus allowing for more accuracy in the model if those parameters are 

present in the dataset, IRT estimates parameters using all the data available at once while Elo 

relies on adjusting initial estimates as new data appear. Studies looking at how IRT compares to 

Elo often use the estimates of IRT as the most accurate model to compare with (Pelánek, 2014; 

Wauters et al., 2012). This increased accuracy comes at the cost of computational power. The 

maximum likelihood estimate (MLE) often used in IRT can be slow and strenuous (Wauters et 

al., 2012). Maximum weighted likelihood estimation can be a more accurate method of MLE and 

was used for this study, but similar to MLE it takes just as much time (Warm, 1989).  For many 

games that estimate a new skill ranking after every match, using a formula that takes a 

comparably long time to calculate may not be reasonable especially when it needs to be 

completed with thousands of players at a time.  

An advantage of IRT models over statistical models for gaming data is that, while Elo 

suffers from issues where skill rankings are largely dependent on the people the player surrounds 

themselves with, IRT items can work well on other pools of people the items were not initially 

tested on. Often in IRT, the items used for evaluating a person’s ability are tested on a large 

sample of people that represent a wide range of skills. Subsequently, this makes the participant’s 

ability rating more comparable to others even if they are from different groups (Baker, 2001). 

However, even when item parameters are estimated from a group with an ability distribution that 

is different from the group to which the items will be applied, indeterminacy is built into the 

model such that the new estimates can be rescaled based on differences in estimated difficulty of 
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the items or matches (Wauters et al., 2012). While statisticians can focus on getting a varied 

sample in which to use Elo estimates, the researchers using Elo in practice may not be as 

concerned with the generalizability of their Elo estimates across samples. As mentioned, when 

Elo is used for tournament rankings, those estimations may not be applicable to the player if they 

join other tournaments potentially with a different population whereas the IRT estimates may 

allow for better cross-tournament comparisons. 

However, this advantage comes at a cost. There is extensive effort into testing items 

before they are used to estimate a participant’s ability for computer adaptive testing. Elo does not 

rely on preliminary testing, with skill ranking being calculated when players start completing an 

adequate number of matches or even after their first match.  

IRT also requires a large sample size in order to estimate item parameters with sufficient 

accuracy, and there are increased sample requirements for more complex models. Elo can 

estimate parameters with small samples as it uses a more simple paired comparison approach 

rather than more advanced estimation procedures for parameters (Elo, 1978; Hambleton et al., 

1991). There have been studies looking at how IRT works with smaller sample sizes. Foley’s 

(2010) study using IRT with small sample sizes found that while sample size had minimal 

impact on the correlations between true and estimated abilities, sample size affected the accuracy 

of the item parameters. Though this particular study was looking at an augmentation technique 

that could improve IRT item parameter estimations with smaller sample sizes, it did show that 

even with moderate sample sizes (250) and item sizes (30), the correlations between estimated 

and true ability were usually near .9. However, the root mean square errors (RMSEs) were much 

larger than desired, being around .45 for the same condition (Foley, 2010).  
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Another disadvantage may lie in the assumptions of IRT. IRT assumes that only one 

unidimensional composite of skills is being measured with the 1PL, 2PL, and 3PL models 

(Hambleton et al., 1991). For instance, a geometry question should primarily be measuring skills 

related to geometry. If the question has difficult vocabulary in it, then there might be an issue 

with the question now measuring multiple skills, one language based and one math based. The 

assumption that only one unidimensional skillset is related to the outcome of the question is not 

an assumption Elo makes. The lack of this assumption may be useful when testing for skills that 

could possibly be multidimensional. It is reasonable to infer that many games might take into 

account a variety of skills meaning that the ability estimate for a particular game might not be 

unidimensional.  

IRT also has the assumption of local independence. This is related to how the answer to 

one question should not influence the probability of answering another question correct. This 

assumption is also related to IRT not assuming that a person’s skill or ability can change during 

the process of measurement. Because IRT is used for measurements that usually occur at a 

singular point in time, the assumption that skill does not change over the period of time is 

reasonable (Hambleton et al., 1991). However the process of estimating a player’s skill ranking 

in games is spread out over a much longer period of time and Elo assumes that skill will change 

(Glickman & Jones, 1999). If one wanted to alter IRT to estimate a player’s skill ranking, this 

violated assumption would be a limitation. The different advantages and disadvantages of both 

IRT and Elo lead to a growing alternative in skill rating calculations across a variety of fields in 

the form of increasing the use of Bayesian statistics. 
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Bayesian IRT 

            Bayesian Statistics. The history of Bayesian statistics is a long and interesting one. 

Reverend Thomas Bayes, credited with being the founder of Bayesian statistics, wanted to 

answer a basic question of how to predict the probability of future events based on past events. 

The idea is that new data can be used to improve initial prediction (McGrayne, 2012).  

Pierre-Simon Laplace later expanded upon the idea of Bayesian statistics with a basic 

formula focused on more concrete details about calculating updated probabilities based on 

previous knowledge. However early criticisms of Bayesian statistics viewed the model as too 

subjective, a criticism that followed Bayesian statistics throughout the next few centuries. 

Bayesian statistics came back into favor when it was used in WWII for analyzing codes and was 

also used in the 1950s for medical research (McGrayne, 2012). 

Today the uses of the Bayesian approach are numerous. It is a popular estimation 

procedure for models in the healthcare field and social sciences, such as education, and has even 

been used in predicting presidential elections (Linzer, 2013; Lynch, 2007; Spiegelhalter, 

Abrams, & Myles, 2004). Additionally, there has been a growing interest in using the Bayesian 

approach for predicting gaming outcomes (Coulom, 2008; Herbrich et al., 2007; Weng & Lin, 

2011). 

            Formulation.  The most basic Bayesian formula, known as Bayes’ Theorem, solves for 

the probability that a hypothesis (H) is true given that we have certain data (D), otherwise known 

as a posterior probability (Brewer, 2009). Let likelihood be represented as P(D|H), marginal 

likelihood be P(D), prior probability be P(H), and the posterior probability be P(H|D) then 

Bayes’ theorem is: 

𝑃(𝐻|𝐷) =  
𝑃(𝐻) ∗ 𝑃(𝐷|𝐻)

𝑃(𝐷)
                                               (2.18) 
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One needs to know the probability that, if the hypothesis is true, what are the chances of 

observing that certain data? This is represented as the likelihood P(D|H) as shown in the above 

formula. We also need to know the prior probability, that is what were the chances of the 

hypothesis being true before we observed the data (the prior probability), and the probability of 

observing that certain data regardless of whether the hypothesis is true or not which is known as 

the marginal likelihood (Prieto & Whittaker, 2013). The marginal likelihood, P(D), can then be 

viewed as: 

P(D) = P(H)*P(D|H) + P(~H)*P(D|~H),                        (2.19) 

where P(~H) is the probability of the hypothesis not being true and P(D|~H) is the probability of 

the given data occurring if the hypothesis is not true.  

Looking back on the above formula, let us assume that a test for cancer is 80% accurate, 

that is, if one has cancer, the test is able to detect it 80% of the time. This would be the 

probability of getting certain data (a positive test) while the hypothesis is true (cancer is present) 

thus P(D|H) = .80 (Gelman et al., 2014). If we also have data that the percentage of people with 

this certain type of cancer is 2% then we know P(H), the probability that, without any additional 

data, that one has this type of cancer. That leaves P(D) which is the probability of getting a 

positive result on this cancer test regardless of whether one has cancer. If the chance of getting a 

false positive on the cancer test is 30% then we can calculate the probability of getting a positive 

on a cancer test by taking the proportion of having cancer (.02) times the proportion of a true 

positive (.8) and add it to the proportion of those not with cancer (.98) times the proportion of 

times you get a false positive (.3). This means that, regardless of whether you have cancer or not, 

you have around a 31% chance of getting a positive from the cancer test.  

Filling in the formula we have: 
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𝑃(𝐻|𝐷) =  
.02∗.80

.31
 = .052                                              (2.20) 

That means that even if you did get a positive cancer test, you have only around a 5% chance of 

having cancer barring any other information. As can be seen, we start off with an original 

hypothesis (cancer is present), then alter the chances of that hypothesis being true by adding in 

additional data (results of a cancer test and the proportion of people who have that type of 

cancer). This example shows the general idea of the Bayesian approach. Expected outcomes are 

continually updated by recalculating the probability of a certain hypothesis given the past data 

when new data become available. This process does this by calculating the chances of multiple 

hypotheses with the updated data then seeing which hypothesis is the most probable with the 

current data. With new data being incorporated into prior probabilities to form an estimated 

posterior distribution, this posterior distribution then becomes the prior distribution for the next 

analysis conducted with newer data (Gelman et al., 2014).  

While the example above used a single probability as a starting point for a prior 

distribution, the prior distribution often incorporates other information such as the variance of the 

distribution (Gelman et al., 2014). The prior mean and standard distribution for these parameters 

being estimated can be set either based on previous information or by allowing the standard 

deviation for the prior to be very high. A prior with a very high standard deviation is called an 

uninformed or noninformative prior because this acknowledges that the prior mean chosen may 

not be accurate and the large standard deviation for the prior allows for more fluctuation in 

finding the actual mean when the analysis is completed. This study will use these uninformed 

priors to try and ensure equivalency across the models.  

As mentioned, the Bayesian approach has received criticism for the subjectivity that often 

involves priors. However, this subjectivity can be quantified by establishing priors relating to the 
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variance and mean of the prior distribution. If a prior is used that has strong research backing and 

evidence related to using that prior, then the prior distribution’s variance would be smaller than if 

a prior was not as well supported (Lynch, 2007). The above Bayes’ theorem remains largely the 

same but the singular probability is instead replaced with a distribution of probabilities. If Ɵ 

represents the prior distribution for a vector of parameters, then Bayes’ theorem for computing 

the posterior distribution would be: 

𝑃(Ɵ|𝐷) =  
𝑃(Ɵ) ∗ 𝑃(𝐷|Ɵ)

𝑃(𝐷)
 ,                                           (2.21) 

with D representing the dataset rather than a singular data point. What was previously known as 

the data likelihood, P(D|Ɵ), can now also be known as the sampling density of the data given the 

model parameters. P(D) is a constant representing the marginal probability of the data 

distribution. Because it is a constant, the formula above can be simplified into showing how 

𝑃(Ɵ|𝐷), the posterior distribution, is proportional to the product of the prior distribution, 𝑃(Ɵ), 

and the likelihood, P(D|Ɵ) 

𝑃(Ɵ|𝐷) ∝ 𝑃(Ɵ) ∗ 𝑃(𝐷|Ɵ)) ,                                   (2.22) 

where ∝ means “in proportion to”. The formula can also be substituted with functions instead of 

probabilities which some Bayesian formulas mentioned later will use: 

𝑓(Ɵ|𝐷) ∝ 𝑓(Ɵ) ∗ 𝑓(𝐷|Ɵ)                                          (2.23) 

Basically, the posterior is proportional to the prior times the likelihood.  

Calculating P(D) is not as easy as the above formula would make it appear to be when 

distributions and data are complex as they often are. To approximate the posterior distributions, 

Bayesian sampling methods are used with one of the more popular ones being Markov Chain 

Monte Carlo (MCMC). A Monte Carlo simulation is a way to randomly draw samples based on a 

hypothesized distribution. A Markov chain is a method that allows for calculation of outcomes 
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based on a probabilistic series of events. Put together, the MCMC generates events that are 

dependent on each other based on probabilities making it suitable for Bayesian estimation 

(Brewer, 2009). Sampling from the posterior distributions of parameters (i.e., constructing a 

Markov chain) can be completed in a variety of ways.  

One sampling method used in the data generation of a Markov chain is the Metropolis-

Hastings algorithm. The MH algorithm draws a candidate value from a proposal distribution that 

can be easily sampled and decides to either accept or reject the value as the next value in the 

chain based on the acceptance probability. The acceptance probability is used to determine in 

which direction the distribution should go (Lynch, 2007). This algorithm works under situations 

where the posterior distribution is difficult to obtain through an analytical solution, and the 

proposal distribution is not symmetric. There are also other methods for sampling such as Gibbs 

sampling. This sampling can be used if there is a closed solution, meaning the distribution is 

easier to obtain. In Gibbs, the new value is always accepted (in other words the acceptance rate is 

1) while the MH algorithm will either accept or reject the new value in the chain based on a 

weighted probability (Levy & Mislevy, 2016).  

For this study Gibbs sampling was used. An example of a basic Gibbs sampling formula 

is explained below. 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘),                                                          (2.24) 

The above sets initial values for all parameters where k is the number of parameters. The 

first parameter is estimated as shown below: 

𝑥1
𝑗
~ 𝑝(𝑥1|𝑥2

𝑗−1
, 𝑥3

𝑗−1
, … , 𝑥𝑘

𝑗−1
),                                                          (2.25) 

where j is the current iteration, and j-1 is referring to the values before the current 

iteration. The new value for parameter 1 for the current iteration j is calculated by drawing from 
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a distribution of parameter 1 values conditional on other parameters’ values at the iteration j-1. 

Then the next parameter is estimated: 

𝑥2
𝑗
~ 𝑝(𝑥2|𝑥1

𝑗
, 𝑥3

𝑗−1
, … , 𝑥𝑘−1

𝑗−1
),                                                          (2.26) 

When the next parameter is being estimated, the value for all the previous parameters will 

either be the value estimated in j iteration, or if that value has not been estimated yet the value 

for that parameter will be set to j-1 iteration. This process continues until every parameter has 

been estimated.  

With the new values, the process repeats where j is increased by 1 and then parameters 

are estimated again starting with the first parameter in formula 2.25. Then the formula estimates 

new values for each parameter and the process is repeated until parameters converge. Once 

convergence is reached, additional samples are drawn for use in point estimation of the 

parameters (Gearhart & Kasturiratna, 2018). 

The MCMC method uses an iterative approach as well, and requires convergence of the 

analysis; that is, the posterior distribution needs to reach a stationary distribution. When the 

sampling method has completed enough sampling to represent the desired posterior distribution, 

then it is said that the process has converged. Assessing when that convergence happens is 

needed. This can be as simple as looking at the trace plot, a visual representation of the estimated 

parameter over the many samples and seeing when the parameter estimations become stable. An 

example of a trace plot is shown in Figure 2. A trace plot is also often used to determine burn-in 

sample size. A burn-in is a set of iterations done as a starting point that are then discarded before 

calculations are completed on all the other more stable iterations (Lynch, 2008).   
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Figure 2. A trace plot for a parameter value with 500 iterations being “burned in.” 

More objective ways to assess convergence include analyzing the within chain variability 

of a single chain of iterations to the total variability when multiple chains are run. The idea here 

is that if the within chain variability takes up a large portion of the total variability, it means that 

the multiple different chains are converging to the same point and thus convergence is met. If 

you were to calculate within chain variability as W and the between chain variability as B with T 

being the number of iterations, then you can calculate a number to signify if the sampling is 

converging by: 

�̂� =  √
((𝑇 − 1)/𝑇)𝑊 + (1/𝑇)𝐵

𝑊
 ,                                        (2.27) 

where �̂� is a “reduction factor”, also called the Gelman-Rubin convergence diagnostic. If �̂� is 

closer to one then the chains were able to converge to the desired posterior distribution (Levy & 

Mislevy, 2016). A boundary of �̂� being less than 1.1 is often used to determine if convergence 

has been met (Brooks & Gelman, 1998). For this study, the model was set to auto-converge until 

the suggested boundary of 1.1 was met.  

Finally, after the data have been generated and a posterior distribution has been 

determined, Bayesian estimation procedures use that distribution to make inferences about the 

population distribution simply by calculating the point estimates of the posterior distribution. 
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The parameters estimated from the Bayesian estimation procedures reflect the probabilistic 

properties of the posterior distribution (Levy & Mislevy, 2016). 

One procedure to assist in evaluating the model fit is the posterior predictive model 

checking (PPMC) procedure. This uses the model derived from the observed variables to 

generate new data. This new data is then compared to the data the model was estimated from. If 

the model does well the discrepancy function based on the new data should be similar to the 

discrepancy function based on the original data. There are many ways to define the discrepancy 

function. A posterior predictive p-value is computed, and if significant (e.g., p-value < .05) it 

means the simulated data does not fit the original data and the model is inadequate (Gelman, 

Meng, & Stern, 2010).  

Model selection methods can also be used when looking to see how model fit compares 

across models. Common model selection models that can be used for Bayesian analysis include 

information criteria such as Akaike information criterion (AIC), Bayesian information criterion 

(BIC), deviance information criterion (DIC), and Watanabe-Akaike information criterion 

(WAIC) (Gelman et al., 2014). These information criteria are useful for comparing how well 

certain models work for a dataset while adjusting for overfitting. However, since this research 

was focused on comparing the usefulness of a variety of models, these fit indices have limited 

usefulness for this study as some statistical models that are being investigated do not have fit 

indices.  

            Bayesian IRT formulation. Bayesian IRT incorporates priors when estimating (Fox, 

2010). A Bayesian IRT 2PL model assigns prior distributions to the two parameters in the model. 

Item difficulty tends to be normally distributed (N) thus that the prior is: 

𝑏𝑗~ 𝑁(𝜇𝑏, 𝜎𝑏
2) ,                                                             (2.29) 
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where j represents a specific item. The discrimination parameter prior can be defined by a log-

normal distribution (Patz & Junker, 1999). This is symbolized by: 

𝑎𝑗~ 𝑙𝑛𝑜𝑟𝑚(𝜇𝑎, 𝜎𝑎
2)                                                          (2.30) 

The prior for the ability (or theta) distribution can also be set: 

𝜃𝑖~𝑁(𝜇𝜃 , 𝜎𝜃) ,                                                        (2.31) 

where theta () is the ability estimate for the individual i. The mean and standard deviation of the 

whole theta is represented by 𝜇𝜃 and 𝜎𝜃. The likelihood of getting a certain response for an item 

is defined by: 

𝑝(𝑥𝑖𝑗| 𝜃𝑖 , 𝜔𝑗  ) ,                                                               (2.32) 

where xij is the response for participant i for item j. The parameters for the individual, i, is 

represented by θi and the parameters for a certain item j is represented by ωj where ωj would be bj 

for 1 PL or aj and bj for a 2 PL model.  One could also set all priors for all items to be the same. 

Using the previous definition of likelihood for this case, the likelihood can be thought of as the 

probability of an individual having a certain outcome on an item given an ability level and item 

parameters and priors.  

Putting all the parts together you would end up with the posterior distribution 

proportionate to the prior distribution times the likelihood: 

𝑝(𝜃, 𝑏, 𝑎 |𝑥)  ∝  ∏ ∏ 𝑝(𝜃𝑖)𝑝(𝑏𝑗)𝑝(𝑎𝑗) × 𝑝 (𝑥𝑖𝑗
|

𝐽

𝑗=1

𝑛

𝑖=1

𝜃𝑖 , 𝑏𝑗, 𝑎𝑗)                (2.33) 

Essentially, the above calculates the posterior distribution by multiplying the priors times 

the likelihood for all individuals (n) and for all items (J) (Levy & Mislevy, 2016).  

The theoretical interpretation for frequentist and Bayesian statistics differs (Lynch, 2007). 

Bayesian statistics seek to estimate the probability distribution rather than a single point 
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probability that frequentists’ statistics estimate. Bayesian statistics view parameters relating to 

the data as random while the data itself is static, whereas frequentists view the data as a random 

sample from a true distribution while the parameters that the data are trying to estimate remain 

static (Lynch, 2007). This means that confidence intervals for Bayesian statistics, termed as 

credible intervals, view the range calculated as containing the parameter being estimated within a 

certain probability while frequentists interpret the confidence interval as the likelihood of 

obtaining the parameters from repeated sampling. While frequentists view the parameter 

distribution as having standard errors, Bayesian statistics view them as having standard 

deviations. Mathematically, these two interval measures are similar but their interpretation 

differs depending on whether the analysis was Bayesian or frequentist (Levy & Mislevy, 2016). 

            Bayesian models application. The use of prior information in Bayesian formulas can be 

either an advantage or disadvantage over more traditional frequentists’ models. The use of 

reliable prior information can help give better estimations than frequentists’ models may provide, 

even with a smaller sample size (Lee, 2007). While accurate prior information can help aid in the 

accuracy and speed of estimating parameters, inaccurate prior information may lead to less 

accurate predictions (Depaoli, 2014). Also as mentioned, Bayesian approaches do not have 

assumptions about the data being normally distributed and may help with datasets that do not 

meet the assumptions frequentist analysis requires (Gelman et al., 2014).  

 While the Glicko approach mentioned in the Elo section could be considered a sort of 

Bayesian upgrade to Elo as it changes a previous static estimation of a parameter to one that 

changes as new data are gained about the player (Glickman & Jones, 1999), Glicko would be 

considered an analytical Bayesian inference as it does not use approximation methods such as 

MCMC, and therefore social scientists may not consider it true Bayesian. Instead, using 
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Bayesian formulas to predict skill ratings of players may look something like this (Coulom, 

2008): 

𝑝(𝛾|𝐺) =  
𝑝(𝛾) ∗ 𝑃(𝐺|𝛾)

𝑃(𝐺)
,                                                   (2.34) 

where 𝑃(𝐺|𝛾) represents the likelihood, in this case the probability of a win, and 𝑝(𝛾|𝐺) is a 

posterior distribution of 𝛾 (player’s ratings) and  𝑝(𝛾) is the prior distribution (Coulom, 2008). 

𝑃(𝐺) is designed to function similarly to the marginal likelihood in the Bayes’ theorem and acts 

as a constant. Essentially, every match the player completes is an additional data point where 

Bayesian estimation procedures use an iterative process that continually updates priors and 

updates the outcomes of these formulas. There are also other formulas that use Bayesian 

approaches to build on the Elo formula such as TrueSkill and Whole-history rating (Coulom, 

2008; Dangauthier et. al., 2007). 

The TrueSkill rating system uses a Bayesian approach in order to predict ability. It also 

adds in additional parameters. As other models mentioned in this study, the TrueSkill model has 

priors that are not only based on the mean estimate for a person’s skill, but also on the variance 

or certainty of that skill estimate similar to what Glicko does. An additional parameter based on 

how much of the game outcome is due to luck is also in this formula (Dangauthier et. al., 2007; 

Herbrich, Minka, & Graepel, 2007). 

Another more advanced gaming statistical model is the Whole-history rating system. This 

model works similarly however it allows for the system to go back and change participants’ skill 

ratings even without additional game information for said participant. The logic being that since 

skill ratings are based on paired comparisons, if more information about one of the pair is 

collected, the formula should go back and update the other pair’s information (Coulom, 2008). 

TrueSkill Through Time (TTT) does something similar (Dangauthier, Herbrich, Minka, & 
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Graepel, 2008). While the TrueSkill models and Whole-history estimations are gaining 

popularity in the gaming fields, this study is focused on the simpler gaming statistical models. 

Future studies may want to look at these more advanced gaming models. 

A Comparison of Elo, Glicko, IRT, and Bayesian IRT Models 

There has been research on comparing Elo, IRT, and Bayesian estimation procedures and 

their prediction results (Antal, 2016; Veldkamp & Matteucci, 2013; Wauters et al., 2011; 

Wauters et al., 2012). While IRT, and by extension Bayesian IRT, are generally accepted as 

more accurate measures of skill than Elo and tend to be most used in the social science fields like 

education, there has been research into how the social science fields can benefit from utilizing 

Elo related models. For instance, one study compared an IRT inspired Elo model, IRT, and 

proportion correct systems for testing purposes (Antal, 2016). The researcher viewed the simpler 

model of Elo as a possible alternative for situations where the extensive testing and sample size 

needed for IRT might not be viable. Elo tended to be highly correlated with IRT ratings (.942). 

However, it took Elo a larger number of matches than IRT to get to a stable skill rating. 

Additionally, the research had a small sample size of 137 students. While the article did have a 

small simulation part, it did not compare proportion correct. The real data analysis did include all 

statistical models of interest, but as mentioned, using just the real data may be a limitation as 

there is no known true ability and the correlations between the estimations makes assumptions 

about which measure is the most accurate across all conditions (Antal, 2016).  

Wauters et al., (2012) also compared Elo and IRT models using a bootstrap study. Again, 

Elo correlated highly with IRT estimations varying from .85 to .90. The value of the correlation 

depended heavily on the weighting used in the Elo calculations, however. The identification of 

the weighting values was made by testing four weighting options in the Elo formula then 
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choosing the option with the highest correlation to true ability level. Additionally, this article 

managed to get IRT estimations to run on incredibly small sample sizes and even reported IRT 

estimates for a sample of 20 with a test of 25 items (Wauters et al., 2012). This indicates that 

either the article may indicate possible errors or that IRT can converge using very small samples 

making the use of Elo for those types of data less appealing.  

A positive view of the above studies might lead us to conclude that Elo models may 

produce similar results to IRT models under certain conditions. However, the above studies have 

a limitation in that IRT is used as the comparison with the assumption of it being the most 

accurate model in all conditions, even in conditions with smaller sample sizes, rather than 

comparing all model estimates to known ability values. Even with studies that used 

bootstrapping on a large dataset, the comparison of Elo and proportion correct were correlated 

with IRT parameters that were calculated on the complete dataset (Wauters et al., 2012).  

There have been few simulation studies looking at Elo and IRT models that compare their 

estimates to known ability values (Pelánek, 2014). One study found that when using simulated 

data comparing Elo to the Rasch model, the Elo estimates were noticeably worse than the Rasch 

model estimates. However, when a variation of the Elo formula was used that replaced the 

constant K with a parameter that included uncertainty, the correlation between the estimates of 

the two models were largely similar with correlations being mostly above .99. This study also 

explored how Elo was similar to Bayesian knowledge tracing and overall this study found Rasch, 

Bayesian knowledge tracing, and Elo to be largely similar (Pelánek, 2014). This study also 

looked at proportion correct and found that while IRT and Elo were both highly correlated with 

the true ability, proportion correct tended to be about .10 less of a correlation to true ability 

across sample sizes. If Elo could outperform proportion correct as mentioned in the one study 
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(Pelánek, 2014), Elo could serve as a possible ability estimation model over classical test theory 

estimation in the event that the data may not be suited for IRT estimation. 

Another study that had a small simulation aspect also had similar findings, where IRT 

and a modified Elo resulted in similar estimates even though it required a higher number of 

questions for Elo to get to those estimations (Antal, 2016).  Antal recommended 25 items being 

the amount of data needed for reliable Elo estimates. This may lead to an interesting property of 

Elo where its strength can be that it can work with small sample sizes but needs a larger set of 

items or matches to get close in accuracy to IRT. Since IRT uses iterations and more complex 

estimation methods, if the sample size is too small, estimates may not converge where the 

simplicity of Elo allows for estimation of abilities even if they may be less accurate. 

Another study compared IRT results with the results of ability estimation parameters 

obtained through various Elo formulas. One formula was the Elo formula that Brinkhuis and 

Maris (2009) used which allowed for a logistic function to be used in the formula for weighting 

rather than have the weight be a static parameter. The Wauters (2011) study compared the 

differing weights that could be used to see how they correlated with the IRT parameters. This 

study changed the base used in the Elo model to more closely resemble the Rasch model 

meaning the expected probability of winning, or E, would be calculated as: 

𝐸 =  
1

1 + 𝑒−1(𝑃−𝑂)
                                                             (2.35) 

Thinking back to the player rating update formula: 

𝑃𝑜𝑠𝑡 = 𝑃𝑟𝑒 + 𝐾(𝑂𝑢𝑡 − 𝐸) ,                                                 (2.36) 

K would no longer be a static number but would be calculated by: 

𝐾 =  
𝐾𝑜

1 + 𝑎 × 𝑒(𝑏∗𝑁𝑖𝑝)′
   ,                                                  (2.37) 
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where a and b are parameters similar to IRT parameters with a and b parameters related to the 

properties of how quickly estimates of ability would converge. Nip is the number of matches or 

items completed before the participants’ current match/item. The ′ indicates a derivative. Overall, 

there were high correlations between the Elo variation formula and IRT estimations ranging from 

.80 to .94. This is additional evidence that an Elo type of formula can be useful in predicting 

ability in instances where IRT might not be feasible. However this study is also cautionary as 

simply changing the weighting parameters in the Elo formula allowed for a variety of estimation 

parameters, some far less accurate than others (Wauters et al., 2011).  

There has also been exploration in combining and comparing Elo and Bayesian 

approaches. One study looked at how the use of a Reference Agent Space in chess games can 

allow for a system that does not have the limitations that Elo has. It can even detect differences 

in skill level within a single game. However, their methods rely on a set definition of what good 

and bad moves in a game can be (Fatta, Haworth, & Regan, 2009). This may be a relatively 

simple thing to determine in chess where there are specific moves one can make that can either 

negatively or positively affect the outcome of the game, but in situations with a more open 

environment it would be very difficult to utilize this model, if even possible. Still, this study is 

just one example of research exploring how to improve traditional game match making systems 

(Fatta, Haworth, & Regan, 2009). 

There have also been studies looking at IRT and Bayesian IRT. One study advocated that 

using prior information in addition to IRT with computer adaptive testing (CAT) could save time 

and money by lowering the number of items needed to obtain an ability estimation with a small 

standard error (Veldkamp & Matteucci, 2013). As mentioned in the article however, there are 

some ethical implications on using information from the participant that is not solely from the 
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data gained from the test. One study that looked at how Bayesian IRT and non-Bayesian IRT 

compares found that Bayesian estimation procedures produced more accurate estimations (Gao 

& Chen, 2005). However, it is worth noting that using Bayesian estimation procedures has an 

advantage over IRT with non-Bayesian estimation procedures, beyond just possibly better 

accuracy, in that prior information can help with achieving convergence in situations where non-

Bayesian IRT may not converge. Use of these different models may depend on the situation 

rather than which model is more accurate with ideal data.  

While the most extensive and complicated statistical models may end up with the most 

accurate estimates, there are situations where using those models may not be ideal. More 

complicated statistical models commonly require larger samples and numbers of responses to 

accurately obtain their estimates. This is why the research above comparing the different 

statistical models often looked at other outcomes such as speed of calculations and how number 

of responses relates to accuracy. As mentioned, even though it may take more items/matches for 

Elo to get a rating as accurate as IRT, Elo can provide estimations for small sample sizes while 

IRT methods may not mathematically converge to provide estimations. Additionally, many of 

the models are conceptually similar to each other with the only differences being having certain 

parameters in the model fixed or not. In particular the Elo and IRT 1PL mathematical models are 

very similar but IRT models generate estimations based on a set of items while gaming models 

like Elo make estimations after every match. Finally, the restriction of model assumptions are a 

factor in determining the appropriateness of models under certain situations. 

Although there has been research comparing IRT, Bayesian IRT, and Elo models, it has 

not been extensive and often is focused on a single outcome such as accuracy in comparison to 

the assumed “best” estimate since it is conducted on empirical data where the true ability is 
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unknown (Antal, 2016; Wauters et al., 2011; Wauters et al., 2012). Using simulation data in 

order to know the “true” ability may be one way to compare these models without the 

assumption that one estimation will always be more accurate than the others. There does not 

seem to be many simulation studies looking at gaming statistical models for analyzing 

achievement or psychological types of data in comparison to more traditional social science 

psychometric models (Antal, 2016; Pelánek, 2014). One weakness of simulation studies is that 

simulation of the data partly relies on which formula you use to predict outcomes which in turn 

is related to the statistical models you are comparing. This may lead to some variation in findings 

as an empirical data study found proportion correct to be a better choice than Elo (Antal, 2016; 

Wauters et al., 2012) while a simulation study found Elo to be a better choice than proportion 

correct (Pelánek, 2014). This shows some need for using both simulation and empirical data to 

complement each method of analysis’ weaknesses and to better identify trends. 

Another gap in the research has been a lack of focus on how educational data and gaming 

data may interact with different statistical models. While educational datasets may benefit from 

simpler gaming statistical models due to limitations such as sample sizes, gaming datasets may 

benefit from the use of more complex social science statistics procedures. As mentioned, many 

popular and commonly used gaming ability estimation models originated in the 1970s with the 

assumption that “easy to compute” calculations were essential to easily updating tournament data 

(Glickman, 1995). With access to better computational power and many gaming datasets having 

very large sample sizes, it would be interesting to see how more complex statistical models, such 

as IRT and Bayesian models, compare with Elo under various conditions.  

This study was designed to compare a variety of models on accuracy and variability 

outcomes using both real and simulated data in order to synthesize research being completed 
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across a variety of fields and provide suggestions as to which models may be the best choice 

depending on the situation. Simulations were focused on comparing the correlations between the 

model estimates and the true ability. The real data analyses were an investigation of the 

correlations between the ability estimates from the different models, with a sample of the real 

data being set aside to compare how well the models predict the outcomes of that subset. This 

research hopes to address some of the short-comings of the literature and to demonstrate how the 

statistical models selected for this study compare to one another under different conditions in 

order to show the potential benefits of each model.  
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CHAPTER 3  

METHODS 

The purpose of this study was to compare a variety of outcomes using ability estimation 

models from social science and gaming fields. This study used both real data and simulated data 

with binary outcomes, such as winning or losing a game or getting an answer right or wrong, to 

investigate the effectiveness of seven models in estimating ability or skill level. The models 

being compared are proportion correct/win, basic Elo, Glicko, IRT 1PL/2PL, and Bayesian IRT 

1PL/2PL.  

Simulation Study 

 The conditions that vary for the simulation study are data generation techniques, sample 

size, and match/item size. The data generation generated Elo, Glicko, IRT 1PL, or IRT 2PL data. 

The sample sizes varied between 50 and 150 for all data generation techniques but also had a 500 

sample size for the IRT 1PL and 2PL generation techniques. The match/item sizes were 5, 15, 

and 30. There were a total of 30 conditions. 

Sample Size 

Data for 50 and 150 individuals were generated. A sample of 50 would be common in a 

smaller gaming tournament or the number of students a teacher might have for a specific area of 

study (e.g., students in pre-algebra). A sample size of 50 would be a small sample for more data 

intensive analysis such as IRT and Bayesian IRT but it might be sufficient for more simple 

analyses like the gaming estimations which are often used in tournaments with smaller sample 

sizes (Flateby, 1996, Sinharay, Johnson, & Stern, 2006; The ACT technical manual, 2017; 

“Upcoming Tournaments,” n.d.). Samples of 150 are likely for smaller research studies, students 

within a school taking a specific course, or mid-size tournaments for games. One hundred and 



 

49 

fifty would be a sample size that may be sufficient, but still small, for more of the advanced IRT 

models (Chang & Davison, 1992; Finch, 2011; “Upcoming Tournaments,” n.d.). To demonstrate 

a trend for the educational data, sample sizes of 500 were also included for the IRT 1PL and 2PL 

data generations.  

Item/Match Characteristics 

Educational testing and gaming match data were simulated for three test lengths and 

number of matches  (5, 15, 30) focusing on assessment of abilities with small numbers of items 

or matches to moderately larger tests or tournaments (e.g., ACT, 2007; Ansley & Forsyth, 1985; 

Finch, 2011; Sinharay, Johnson, & Stern, 2006; “Upcoming Tournaments,” n.d.). Item difficulty 

for the education-type data was generated using a normal distribution (~N(0,1)) with 

discrimination values set at 1 (e.g., Bolt & Gierl, 2006). For the 2PL education data, 

discrimination values were allowed to vary using a log-normal distribution [~lnorm(0, .5)] 

similar to other IRT simulation studies (Miller & Oshima, 1992; Reckase & McKinley, 1991). 

The gaming data included the same number of matches (5, 15, 30) as that generated for 

the educational testing scenario. These numbers were chosen because it would be important for 

games to be able to match players after only a short number of matches (e.g., 5) in order to keep 

the player’s interest, while 15 and 30 matches can be typical of both tournaments and of short to 

moderate cognitive subtest lengths (Ansley & Forsyth, 1985; Flateby, 1996). Fifteen 

matches/questions is a middle ground and past research has found that around 20 items can 

produce estimates of Elo and IRT that tend to be similar (Antal, 2016). 

Data Simulation 

For the educational testing situations, a unidimensional set of initial ability estimates 

(~N(0,1)) were used as the participants’ latent ability skill level for creating a string of responses 
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to sets of items previously described. The true ability response sets were generated using the 

psych package in R version 3.5.1 for the IRT 1PL and 2PL data (Revelle, 2018).    

For the estimation of player ability in the gaming situations, players were randomly 

matched with each other with the player outcome depending on the logistic probability of 

winning based on the latent ability assigned previously using a ~N(0,1) distribution. That is, if 

player 1 had a 2% chance of winning then the player outcome was randomly drawn from a 

distribution that represented that chance using the basic Elo Formula for probability of outcomes. 

Glicko was simulated similarly but the percent chance of a win also included a player rating 

deviation parameter and not just mean difference between the ratings. For the constants present 

in the Elo and Glicko formula when generating and estimating the data, the default parameters 

were used (Glickman, 1995). 

The gaming data included the same number of matches (5, 15, 30) as that generated for 

the educational testing scenario. However, the gaming data are different than educational data in 

that players are not matched with every other player while in the educational data every 

participant answered every item. This means that the gaming matrix of matches is complex and 

sparse with each player matched with different combinations of other players. As such, it was 

currently not realistic for coding purposes for every person to have exactly 5, 15, or 30 matches 

due to how the players’ data were intertwined. Therefore, the data were generated in a way 

where the average number of matches the players had was either 5, 15, or 30 with some players 

having more matches and some having fewer. 

There was one adjustment made in the gaming data to allow for IRT 1PL and 2PL 

estimates to be calculated. Due to the way IRT abilities are estimated using the TAM package in 

R, two dummy players were added to the simulated gaming dataset with one losing all matches 



 

51 

and one winning all matches. When IRT is applied to gaming data, players are considered both 

participants and “items.”  When estimating one player’s ability, all other players are considered 

the “items” that they are matched against. Similarly, when other players’ abilities are being 

estimated, the former player is now the item. This results in an n x n mirrored inverse matrix. 

However, the IRT package does not provide an estimate when everyone gets an item wrong. 

Since players are also items and the number of matches in this simulation could be as low as 5, it 

is likely to have people who won 0 matches which the package would read as an item everyone 

answered wrong. Therefore, two players were added with one winning all matches and one 

losing all matches against all “items” to allow for ability estimates for all other players. The two 

dummy players’ abilities were not included in the simulation results. In the educational data, it is 

unlikely to have an item that all people get incorrect even with the smallest sample size (n = 50) 

and largest number of items (i = 30) condition used in this study. In the event that the educational 

data contained an item where everyone answered it wrong, that iteration was skipped.  

There are a couple of factors to consider in the comparison of the ability estimates using 

the different models with the gaming and educational data. While the gaming estimates update 

ability ratings for participants after every game, IRT and Bayesian IRT estimate ability using a 

complete set of items. As a result, item or match order may show an effect on the estimates in 

gaming statistical models (e.g., Elo, Glicko) while it should not when using IRT and Bayesian 

IRT though order effects with the gaming statistical models should be small. It is also worth 

remembering that the gaming and educational data have different matrix structures. The 

educational data has participants with complete data on the test questions, while for the gaming 

data not every participant was paired with every other participant. This led to the gaming data 
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being sparsely distributed within a population matrix of response strings, while the educational 

data was a matrix of complete response strings.   

 Simulated Data Analysis 

The skill rating estimations from seven gaming and education models (Elo, Glicko, 

proportion correct, IRT 1PL/2PL, Bayesian IRT 1PL/2PL) were compared with the true ability 

ratings. Correlations between true and estimated abilities were provided. The TAM package for 

R version 3.5.1 was used for conducting the IRT 1PL and 2PL analyses and maximum weighted 

likelihood estimation was used (Robitzsch, Keifer, & Wu, 2018). JAGS and an R package that 

runs JAGS (rjags) was used to run Bayesian IRT 1PL and 2PL estimations and Gibbs sampling 

was used (Plummer, Stukalov, & Denwood, 2018). Uninformed priors were used for Bayesian 

IRT 1PL and 2PL for both simulated and empirical data analysis, ~N(0, .01 [precision]). This 

was to test if the basic Bayesian IRT could improve upon other models without certain known 

priors. The PlayerRatings package in R was used for Elo and Glicko estimations (Stephenson & 

Sonas, 2016). There were 500 replications for each condition. For the Bayesian IRT models, all 

models were run to auto-converge according to the convergence criteria of 1.1 (Brooks & 

Gelman, 1998). There were 1000 iterations used for burn-in. An overview of the simulation 

conditions is provided in Table 1.        
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Table 1 

Summary of Simulation Conditions 

Variables Conditions 

Data Generations Procedures Educational Data (IRT 1PL and IRT 2PL); 

Gaming Data (Elo and Glicko) 

Sample Size 50     150     500* 

Match Size 5    15    30 

Estimation Analysis Models 

Gaming Statistical Models Social Science Statistical Models 

Elo Proportion Correct 

Glicko IRT 1PL 

 IRT 2PL 

 Bayesian IRT 1PL 

 Bayesian IRT 2PL 

* Samples of 500 were only conducted for educational data comparisons as gaming matrices 

with 500 matches had too large of a time requirement even when using a high-performance 

computer. 

Real Data Analysis 

Educational Testing Data 

The educational testing data set used in this study was the mathematics data from the 

2011 Trends in International Mathematics and Science Study ([TIMSS], International 

Association for the Evaluation of Educational Achievement, 2011). TIMSS is a collection of 

cognitive, attitudinal, and background data of 4th and 8th graders from a variety of countries. One 

booklet administered to a subgroup of the US participants in the 8th grade was used so that a 

common set of items could be investigated. A booklet with mathematics items was selected. The 
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TIMSS mathematics test has four content areas for items: numerical, algebra, geometry, and 

data/chance. Numbers of items that matched the simulation conditions were used for estimation 

(5, 15, and 30), and 3 items that represent varying difficulty levels were used to identify levels of 

accuracy in correctly predicting a correct answer. 

The models were used to estimate item parameters for all 33 items. Proportion correct 

was used to select an item at medium difficulty (difficulty of or around .5), hard difficulty (.25) 

and easy difficulty (.75). These three items were set aside, along with their item parameter 

estimates to be used in the prediction analysis. For the prediction analyses, 5 items were used for 

the 5 item sample, then 15, and then 30 items for estimating participants’ thetas. The 5, 15, and 

30 items were randomly chosen but in a way that each subset would have a composition of items 

similar to the full 33 questions in regard to content areas. The thetas were then used to calculate 

each participant’s chance of correctly answering the 3 items set aside in order to calculate 

prediction accuracy using the 3 samples of 5, 15, and 30 items. The item parameters for the set 

aside items were the parameters estimated using all 33 items and the model used matched the 

model being analyzed. When predicting the outcome on the set aside items, however, the 

probability of a correct answer for the formula used was always the IRT 1PL formula. This is 

primarily due to real gaming data analysis using values in the dataset as its “true value” and since 

the dataset only gives ability parameters this means formulas with discrimination values (2PL) or 

rating deviations (Glicko) cannot be used to calculate probability of a win. Kappa coefficients 

were calculated to identify the proportion of correct predictions made for the three items beyond 

random chance. The kappa coefficient is often used for comparing classification outcomes on 

multiple test forms (criterion-related reliability) or interrater agreement on dichotomous 

outcomes. When interpreting the kappa, the values are considered a minimal effect being from 
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.01 to .2 and a weak to moderate value being from .21 to .4 (Viera & Garrett, 2005). This process 

was done twice with one subset of three items being algebra and the other subset being from the 

numerical category in order to better see trends. 

For using gaming estimation procedures with the educational data it was similar. Elo and 

Glicko were used to calculate the “players’” abilities, which were actually items being treated as 

players, using the complete data and these were used as the item parameters after being 

standardized. The same three items were set aside, and the players’ abilities were used to predict 

the outcome on the 3 items of varying difficulty using the 5, 15, and 30 item response sets. The 

IRT 1PL formula was still used to calculate the probability of a correct answer for these set aside 

items. Kappa coefficients were again used to calculate prediction accuracy for the different 

conditions. 

Gaming Data 

The empirical gaming data set used for the study is a collection of over 20,000 chess 

games from an online chess game site called Lichess. The data were collected using open source 

API data collection and posted on Kaggle, a dataset sharing website (J, 2017). Skill ratings were 

assigned to the players using four models (Elo, Glicko, proportion correct, and IRT 1PL). As will 

be discussed later, the larger dataset made it difficult to run the 2PL models and the Bayesian 

1PL model. These skill ratings were then used to predict outcomes for the player’s next match. 

The Elo formula was used to predict the probability of a win for the next match by using the 

ability estimates from either the Elo, Glicko, proportion correct, or IRT 1PL models. The models 

made estimations after a certain number of matches (5, 15, 30). The outcome for prediction were 

the outcomes of the 6th, 16th, or 31st game. Only players who completed 31 unique games were 
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used for calculating kappa coefficients. The accuracy of the predictions of the different models 

were compared between the models’ predicted outcomes (win/loss) and actual outcome.  

For more specifics in regard to estimations with gaming data, similar to the process used 

with the IRT estimates, the most accurate ability for the opponent needed to be decided on. 

When predicting player one’s gaming outcome at match 6, 16, and 31, player 2 had their ability 

estimate assigned using the skill value estimated for them in the original dataset of 20,000 

matches while player one’s estimates (the players with at least 31 matches) were their ability 

after 5, 15, or 30 games. This is due to the number of matches the players have in the dataset 

being very positively skewed making it likely that the opponent at the 6th, 16th, or 31st match may 

only have a few games in the dataset. Since the dataset did not have all matches played by every 

player, a decision was made to use the player rating given in the dataset which included other 

matches the player had completed prior to collection of this dataset. These player ratings were 

used for the “opponents” because they were deemed the more stable and most appropriate 

estimate to compare to. The Lichess site used the Glicko 2 skill system and this estimate was 

rescaled for comparison to the other estimations. 

In gaming data, there is a factor called “first move advantage” that exists which is based 

on whether one is assigned to white or black chess pieces. Players were randomly assigned in the 

real dataset as either black or white, therefore “first move advantage” should not be an issue  in 

the current study (Micklich, 2009).  

Similar to the simulated gaming data, the real gaming data included participants that have 

not all played against each other, therefore the matrix was sparse. This means that unlike the 

educational data, three players of differing ability levels cannot be set aside since it is unlikely to 
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find 3 players who have faced all the other players. Therefore, the next players’ match was 

evaluated when predicting match outcome after 5, 15, and 30 games. 

Supplemental Data Analyses 

The amount of time for calculating estimates was evaluated as a practical measure of 

efficiency that is of high interest to the gaming community and likely of secondary interest to the 

educational community. This information should supplement data analyses of accuracy though it 

is important to keep in mind that length of time to run analysis depends on the computer and 

program used and not just the statistical model. 
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CHAPTER 4  

RESULTS 

Starting with the simulation study, the overall trend of how model estimates correlate 

with true ability are provided by aggregating over study conditions. These trends are compared 

in relation to how they varied across different data generation conditions. Variations in these 

trends based on sample size and number of items/matches will then be presented. After 

simulation data results are provided, the results for the two types of empirical data comparisons 

will be made across the models and item/match sizes.  

Simulation Study Results 

Data are first provided by aggregating over sample size conditions of 50 and 150 and 

item/match sizes of 5, 15, and 30 for the different ability estimation models (Elo, Glicko, 

proportion correct, IRT 1PL/2PL, and Bayesian IRT 1PL/2PL). These results are separated by 

data generation methods (Elo, Glicko, IRT 1PL, and IRT 2PL). Table 2 provides a summary of 

the average correlations between true and estimated ability across the six conditions for each of 

the statistical models differentiated by the data generation methods used.  
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Table 2 

Correlations between True and Estimated Ability Averaged across All Sample Size and Item or 

Match Conditions 

 Data Generation Procedure  

Ability Estimation Model  Elo Glicko IRT 1PL IRT 2PL 

Elo .793 .793  .810  .804 

Glicko .731 .731  .689  .671 

Proportion Correct .785 .785  .818  .812 

IRT 1PL .779 .779  .815  .809 

IRT 2PL .670 .670  .783  .787 

Bayesian 1PL .801* .801*  .819*  .813* 

Bayesian 2PL .652 .652  .726  .768 

Notes. Highest correlation for each condition is indicated by a *.  

Results indicate that Bayesian IRT 1PL estimates tended to be the most correlated with 

true ability across data types, while Glicko tends to be on average poorer across data types but 

especially with educational data. Elo, proportion correct, IRT 1PL and Bayesian IRT 1PL tended 

to have similar correlations between estimates and true ability when averaged over all conditions. 

Elo tended to outperform IRT 1PL with the gaming generated data but IRT 1PL tended to 

outperform Elo with the educational data. The educational data overall displayed higher 

estimated and true ability correlations than the gaming generated data. The Elo and Glicko 

generated data resulted in nearly identical correlations with differences between the correlations 

showing only when taken to around 7 decimals. Due to this, in further tables, when the Elo and 

Glicko resulted in identical estimations when using 3 decimals, the Glicko results will be absent 

and the Elo results with be marked with an asterisk. When all of the correlations are aggregated, 
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it appears the 2PL model estimates have the lowest relationship with true ability for the gaming 

type data.  

Sample Size and Number of Items or Matches 

In this section, comparisons are made between ability estimation models distinguishing 

between sample sizes and number of items or matches while aggregating across data generation 

method. Table 3 provides output for correlations between estimated abilities and true abilities for 

each of six sample and number of items/matches condition combinations, averaging across all 

four data generation methods. Similar to Table 2, only sample sizes of 50 and 150 are included, 

making this a comparison for smaller samples. 

Table 3 

Correlations between True and Estimated Ability Based on Number of Items or Matches 

 Sample Size 
                       50 150 

               Number of Items or Matches 

Model    5   15   30    5   15   30 

Elo .665   .840   .904   .654 .835 .901 

Glicko .649   .774   .789   .602 .705 .713 

Prop. Correct .654   .843   .913   .643 .839 .909 

IRT 1PL .637   .844   .915   .625 .839 .912 

IRT 2PL .498   .779   .884   .516 .788 .892 

Bayesian 1PL .668*   .850*   .917*   .656* .846* .915* 

Bayesian 2PL .508   .710   .827   .537 .755 .860 

Notes. Highest correlation for each condition is indicated by a *.  

For all statistical models, an increase in match or item size led to better correlations 

between estimated and true ability. While just 5 matches/items led to poor correlations across 
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models, the 15 match/item condition tended to have moderate correlations between true and 

estimated abilities with the single parameter models having a correlation mean near .85. The 30 

match/item condition had the strongest correlations and the only conditions with correlations 

greater than .90. The models that appeared to be affected most by match/item size were the IRT 

2PL and Bayesian IRT 2PL models. They tended to estimate poorly with small match/item sizes. 

However, with 30 matches/items, the 2PL estimates were closer to, but still less correlated than 

all models other than Glicko.  

This pattern of the correlations between true and estimated ability is similar when looking 

at both sample sizes, that is, an increase in sample size did not increase correlations between 

estimated and true ability in most cases. However, impacts of sample size increases were 

different for the different models and data types. The increase in sample size seemed to have 

little effect, or may even show a decrease, on the correlations for all statistical models except the 

2PL models where an increase in sample size led to an increase in correlations. Sample size 

differences by data generation method will be discussed in the sections where the academic and 

gaming data are investigated separately. 

Looking at Table 3 with both sample sizes we can see that the highest correlations 

occurring overall were for the Bayesian IRT 1PL model. However, with the 30 item/match size 

condition, the IRT 1PL and Bayesian IRT 1PL were very similar with Elo and proportion correct 

being only slightly less than those correlations.  

Figure 3 shows graphs of the model’s correlations by data generation methods and 

match/item sizes, averaged across the sample sizes of 50 and 150, with the Glicko data 

generation excluded due to the correlations having the same results as Elo generated data. Trends 

for increase in true and estimated ability correlations are similar for Elo, IRT 1PL, Bayesian IRT 
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1PL, and proportion correct across the data generation methods as match/item size increases. 

Glicko estimations are best for gaming generated data, but tend to have lower correlations 

overall when compared with most other models. Further, Glicko does not seem to have the 

correlation with true ability increase as much with an increase in item/match size as was 

observed with other models. The 2PL models have low correlations for 5 match/item conditions 

and for data generated using the gaming models. The next sections differentiate results by model 

estimates, sample sizes, number of match/item sizes, and by type of data generated.  

  
Figure 3. Correlations by data generation, match/item size aggregated by sample size   
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Elo and Glicko Gaming Data Generation 

In Table 4, the results across the six sample and match study conditions are presented for 

the Elo and Glicko data generation procedures. Since the results for the Glicko data generation 

condition are extremely similar to that of the Elo data generation, only Elo is shown. The 

similarity between Elo and Glicko generated data is due to the Glicko procedure only including 

one additional parameter in the ability estimation process called the rating deviation which 

adjusts as additional matches occur. This deviation can be useful in ability estimation by 

beginning as a large value (e.g., 350; Glickman, 1995) for a participant’s first estimate and then 

updating to a smaller value for each subsequent match with the idea being that as more matches 

occur, the rating given to the player is more certain. However, when simulating data, one is 

generating the outcome of a match based on two players’ abilities, where the true ability is 

known. Including a large rating deviation in the estimation process appears counter-intuitive 

when true ability is known. Data were generated using a large deviation and then a smaller 

deviation of 1. When compared, using a large value of 350 resulted in data generation which led 

to all correlations between estimated and true ability being lower, regardless of the estimation 

procedure (Elo, Glicko, proportion correct, IRT 1PL/2PL, and Bayesian IRT 1PL/2PL). Thus, 

since true ability was known, the rating deviation was set to 1 (as small as possible) in order to 

generate data, with the value of 350 maintained for estimation procedures. More will be said 

about the usefulness of generating Glicko data in the Discussion. 
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Table 4 

Correlations between True and Estimated Ability for Elo and Glicko Generated Data 

                 Data Generation Method 

                  Elo* 

                                  50  150 

Model 5   15   30    5   15   30 

Elo .652* .835 .903 .641* .829 .900 

Glicko .642 .796 .821 .623 .743 .760 

Prop. Correct .625 .834 .910 .612 .828 .904 

IRT 1PL .595 .839 .914 .579 .833 .911 

IRT 2PL .395 .747 .877 .393 .737 .871 

Bayesian 1PL .652 .846* .916* .638 .842* .914* 

Bayesian 2PL .478 .675 .803 .475 .672 .807 

Notes. Elo and Glicko resulted in the same correlations up to 3 decimal places; highest 

correlation for each condition is indicated by a *.  

When analyzing the gaming data, an increase in matches leads to increases in correlations 

across all statistical models. The range of correlations for the 5-match condition with the Elo 

generation procedure is .395 to .652 with 50 participants and .393 to .641 for 150 participants. 

When the number of matches increase to 30, the range of correlations increase from .803 to .916 

for 50 participants, and .807 to .914 for 150 participants.  

For the gaming data, the increase in sample size results in similar or slightly lower 

correlations between estimated and true abilities, even for the 2PL models. This decrease in 

correlations by sample size when controlling for match size is likely due to the format of the 

gaming data as an increase in sample size when controlling for match size leads to a sparser 

matrix. This will be discussed in more detail in the next chapter. 
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Overall, Elo tended to be one of the best estimations with the lower match size condition, 

but IRT 1PL and Bayesian IRT 1PL outperformed Elo at 15 and 30 match conditions. This aligns 

with the idea that the simpler gaming model may do better with very small match sizes while 

more complex models may produce better estimations with larger datasets with more matches. 

The Glicko did not provide accurate estimates of the true abilities for gaming data especially at 

higher match sizes when compared to most other models. The 2PL models also tended to do 

poorly with the gaming data and did worse than all the other models including Glicko. 

While sample size seems to have little effect on correlations and may even result in a 

decrease in correlations, the standard deviation of the correlations from the 500 replications were 

affected by sample size as shown in Table 5. As sample size increased, the standard deviations of 

the correlations decreased making them more consistent even if the correlations did not increase 

overall. The effect of increased sample size reduced variability in correlations similarly to the 

effect of an increase in match size. The effect of sample size on the standard deviations of the 

correlations seemed to be consistent across statistical models. 
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Table 5 

Standard Deviations of the Correlations for Elo and Glicko Generated Data 

      Data Generation Method 

           Elo* 

                        50 150 

Model 5   15   30    5   15   30 

Elo .070* .040 .024 .041* .023 .014 

Glicko .077 .052 .044 .046 .037 .036 

Prop. Correct .077 .039 .023 .050 .023 .013 

IRT 1PL .090 .040 .022 .052 .023 .013 

IRT 2PL .111 .058 .033 .059 .036 .021 

Bayesian 1PL .076 .038* .022* .045 .023* .013* 

Bayesian 2PL .100 .083 .062 .057 .050 .036 

Notes. Elo and Glicko resulted in the same correlations up to 3 decimal places;   

the lowest standard deviation for each condition is indicated by a *. 

IRT 1PL and IRT 2PL Data Generation 

When the data are generated to simulate 1PL and 2PL educational data, there are some 

trends that are similar to the gaming data but also some differences. Table 6 shows the 

comparison of IRT 1PL data across the three sample sizes and Table 7 shows the comparison of 

IRT 2PL data across sample sizes. Similar to the gaming data, as number of items increase in the 

IRT data, correlations between true and estimated ability increase. For the IRT 1PL data with 5 

items, correlations are small, ranging from .517 to .689. As items increase to 15, correlations 

increase to .702 to .855. Relatively strong correlations (above .90) are observed for Elo, 

proportion correct, IRT 1PL and Bayesian IRT 1PL in the 30 item condition. Correlations above 

.90 are observed for IRT 2PL and Bayesian IRT 2PL, but only with the samples of 150 and 500. 
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Samples of 50 result in much smaller correlations for the 30 item condition for the 2PL models 

when compared to larger sample sizes. When comparing results for the 1PL and 2PL data 

generations, the correlations for both seem similar. One pattern is that the 1PL models give better 

estimations than the 2PL models on 1PL data across all conditions. However, with the 2PL data, 

the 2PL models begin to estimate better than the 1PL models with the larger number of items (15 

and 30 items) and larger sample size conditions (150 and 500). The Bayesian IRT 2PL model 

had the best estimate for 5 items with a 500 sample size, but it was nearly identical to the 

Bayesian 1PL and proportion correct correlations. While Glicko tended to have lower 

estimations although similar at small item sizes, the increase in item size did not correspond to 

an increase in correlation to true ability estimation as much as the other models leading to Glicko 

performing poorly compared to the other models especially at larger item sizes. 

Contrary to what would be expected, increasing sample size seemed to have little impact 

on most of the correlations. The 2PL models were the only ones where an increase in sample size 

led to a noticeable increase in correlations. While it makes sense that more complicated models 

like the 2PL models would benefit more from an increase in samples size, it was also expected 

that the other statistical models’ correlations would improve with increased sample size. 

However, other research looking at the correlations between true and estimated abilities for IRT 

models with small samples and smaller number of items have found similar results and will be 

discussed in more detail in the Discussion chapter (Foley, 2010). 
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Table 6 

Correlations between True and Estimated Ability for 1PL Generated Data 

                                     Sample Size                    Sample Size                    Sample Size 

                                            50                                   150                                  500 

                                 Number of Items           Number of Items             Number of Items 

Model                        5         15         30          5          15        30         5           15        30 

Elo .684 .847 .907 .674 .843 .904 .678 .843 .903 

Glicko .662 .756 .760 .612 .671 .674 .600 .653 .660 

Prop. Correct .689* .854 .917 .681* .852 .915 .685* .852 .915 

IRT 1PL .685 .851 .916 .677 .849 .915 .681 .848 .915 

IRT 2PL .608 .806 .888 .642 .836 .909 .672 .844 .913 

Bayesian 1PL .689 .855* .918* .681 .853* .917* .685 .853* .917* 

Bayesian 2PL .517 .702 .820 .578 .829 .908 .669 .850 .915 

Notes. Highest correlation for each condition is indicated by a *.  

Table 7 

 

Correlations between True and Estimated Ability for 2PL Generated Data 

                                     Sample Size                  Sample Size                    Sample Size 

                                            50                                 150                                  500 

                               Number of Items            Number of Items             Number of Items 

Model                      5          15         30        5           15         30         5          15        30 

Elo .673 .844 .904 .661 .838 .900 .666 .838 .899 

Glicko .651 .748 .753 .552 .663 .659 .588 .643 .643 

Prop. Correct .678 .851 .915 .669 .847 .912 .672 .848 .912 

IRT 1PL .674 .848 .914 .664 .842 .912 .667 .842 .911 

IRT 2PL .606 .819 .896 .635 .843 .915 .660 .853 .920 

Bayesian 1PL .678* .852* .916* .669* .848* .913 .672 .848 .914 

Bayesian 2PL .557 .786 .880 .618 .848 .920* .672* .866* .926* 

Notes. Highest correlation for each condition is indicated by a *. 
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It should be noted that some replications were not able to provide estimations for 

everyone when the IRT 2PL estimation procedure was used. There was only one replication in 

the gaming dataset that resulted in this, but 68 of the 6000 replications in the educational dataset 

across all twelve conditions resulted in at least one participant not getting an ability estimate. 

When this happened, the correlation for that replication was not calculated since some 

participants’ thetas would be missing and those replications were not included in the above table. 

The IRT 2PL was the only statistical model that results in this and all of these replications were 

with the 50 sample size. With the 50 sample size, IRT 1PL and 2PL data generation, and the 

three item conditions, this resulted in 3,000 replications for that sample size meaning only 2% of 

the replications resulted in the IRT 2PL estimations not being able to calculate an estimate for 

every person. This probably had minimal impact on results but is important to keep in mind 

when considering non-Bayesian IRT 2PL models with small sample sizes. Figure 4 focuses on 

only 2PL data generation and looks at the trend of model estimations by sample size and item 

size. It can be seen that increasing sample size for the 2PL generated data only resulted in higher 

correlations with true ability for the IRT 2PL and Bayesian IRT 2PL models.  
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Figure 4. 2PL data generation correlations by item and sample size 

 

The standard deviations of the correlations were also compared and similar to the 

previous gaming datasets, it appears that sample size shows more of an impact with the standard 

deviations of the correlations than with the means of the correlations. While for most statistical 

models sample size seemed to have minimal impact on the correlation between true and 

estimated ability, nearly all statistical models had lower standard deviations of those correlations 

with an increase in sample size. This can be observed in Table 8.



 

 

 

Table 8. 

Standard Deviations of the Correlations for 1PL and 2PL Generated Data 

 Data Generation Method 

         IRT 1PL                            IRT 2PL 

           Sample Size                                                           Sample Size 

                            50 150                 50               150 

     Number of Items            Number of Items        Number of Items           Number of Items 

Model 5 15 30    5   15   30    5   15   30    5   15   30 

Elo .077 .038 .022 .046 .022 .014 .096 .046 .027 .073 .033 .019 

Glicko .081 .062 .059 .051 .045 .046 .105 .083 .079 .101 .091 .086 

Prop. Correct .076 .036* .019* .044* .020* .012 .094 .043* .023* .072* .031* .016* 

IRT 1PL .077 .037 .020 .045 .021 .013 .094 .044 .024 .073 .033 .016 

IRT 2PL .119 .069 .038 .068 .024 .014 .141 .065 .040 .102 .037 .017 

Bayesian 1PL .076* .037 .019 .045 .021 .012* .094* .043 .023 .072 .032 .016 

Bayesian 2PL .137 .091 .066 .078 .030 .015 .156 .084 .050 .113 .041 .016 

Notes. Lowest standard deviation for each condition is indicated by a *.  

7
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Root Mean Square Error (RMSE) for Gaming Data 

In addition to correlations, the average root mean square errors were compared across the 

study conditions. Root mean square error (RMSE) is an aggregated measure of how far away the 

estimated statistic is to the true statistic with a smaller RMSE indicating greater accuracy 

(Crocker & Algina, 1986). Since the correlations are correlations between true and predicted 

ability and the RMSEs are just another measure looking at the difference between estimated and 

true ability, the RMSEs and correlations were very highly negatively correlated with higher 

errors meaning lower correlations between true and estimated ability. In this study, the 

correlation between the true and predicted correlations and the RMSEs were around -.98 to -.99. 

Table 9 shows the average RMSEs for the Glicko and Elo data. 
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Table 9 

RMSE for Elo and Glicko Generated Data 

         Data Generation Method 

               Elo* 

                              50 150 

Model 5   15   30    5   15   30 

Elo .836 .587 .463 .848* .589 .455 

Glicko .846 .646 .608 .869 .718 .695 

Prop. Correct .866 .588 .448 .882 .591 .446 

IRT 1PL .898 .579 .438 .917 .582 .429 

IRT 2PL 1.093 .717 .513 1.101 .727 .513 

Bayesian 1PL .834* .568* .434* .851 .567* .423* 

Bayesian 2PL 1.017 .805 .633 1.024 .810 .624 

Notes. Lowest RMSEs for each condition is indicated by a *.  
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The Elo and Glicko data had nearly identical RMSEs which follows the trend with the 

correlations between true and estimated ability. The patterns of the statistical models were also 

similar to what was observed for the correlations with the Bayesian 1PL being the most accurate, 

that is having the lowest errors, in nearly all conditions. 

Root Mean Square Error (RMSE) for Educational Data 

The RMSEs for the educational generated data are provided in Table 10. The RMSEs for 

the IRT generated data tend to be smaller than for the gaming generated data, following the 

inverse relationship as seen with the correlations. The RMSEs for the Glicko estimations and 

2PL estimations with small items sizes tended to be the largest, and the RMSEs for the Elo, 

proportion correct, and 1PL models are similar, overall. The 2PL models especially had smaller 

RMSEs with the educational data than with the gaming data. 



 

 

 

Table 10 

RMSE for IRT 1PL and IRT 2PL Generated Data 

 Data Generation Method 

          IRT 1PL                             IRT 2PL 

        Sample Size                                                       Sample Size 

                    50  150                50               150 

     Number of Items           Number of Items          Number of Items          Number of Items 

Model 5 15 30    5 15 30  5 15 30    5 15 30 

Elo .799 .568 .453 .806 .564 .446 .810 .571 .458 .819 .571 .454 

Glicko .826 .705 .698 .879 .811 .807 .836 .712 .703 .940 .816 .823 

Prop. Correct .794 .557 .430 .797 .549 .420 .804* .560 .435 .810* .556 .427 

IRT 1PL .798 .562 .432 .802 .555 .420 .810 .566 .436 .816 .564 .428 

IRT 2PL .885 .631 .488 .843 .576 .435 .885 .610 .472 .846 .563 .419 

Bayesian 1PL .793* .555* .427* .797* .547* .415* .804 .559* .432* .810 .555 .424 

Bayesian 2PL .979 .772 .602 .914 .587 .437 .933 .657 .500 .865 .553* .408* 

Notes. Lowest RMSEs for each condition is indicated by a *.  

7
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The RMSEs seem large especially considering the magnitude of the correlations between 

true and estimated abilities. However, these errors are similar in magnitude to other research that 

has looked at IRT with smaller sample sizes and item sizes (Foley, 2010). Figure 5 shows the 

RMSEs across data generation types by match/item sizes. 

 

Figure 5. RMSE by data type and match size aggregated across sample size 
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Computation Time Analysis 

The time it took to calculate the estimations for the models were also compared. Though 

there are many limitations on these numbers, such as different packages, computers, and 

programs may result in different numbers, they can be a good benchmark to see if the extra time 

of some of these statistical models may be worth the extra accuracy. The Elo and Glicko data 

generation were averaged as were the IRT 1PL and 2PL data generation as they had similar 

times. The average times are provided in Table 11. 

 



 

 

 

Table 11 

Average Number of Minutes to Run One Estimation Analysis 

 Data Generation Method 

            Elo/Glicko                      IRT 1PL/IRT 2PL 

               Sample Size                                                             Sample Size 

                              50 150             50            150 

   Number of Matches          Number of Matches          Number of Items            Number of Items 

Model 5 15 30     5     15 30  5 15 30    5 15 30 

Elo .001 .002 .005 .002 .006 .013 .002 .004 .008 .004 .016 .031 

Glicko .001 .002 .006 .003 .008 .016 .002 .005 .010 .005 .020 .037 

Prop. Correct <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

IRT 1PL .007 .005 .006 .012 .008 .009 .009 .004 .004 .007 .004 .005 

IRT 2PL .244 .237 .194 .365 .352 .324 .139 .125 .138 .044 .049 .118 

Bayesian 1PL .216 .582 1.138 1.552 6.039 12.308 .117 .312 1.128 0.303 .909 2.429 

Bayesian 2PL .641 1.638 3.218 3.934 14.275 29.246 .338 .962 3.014 0.937 3.346 8.854 

7
8
 



 

79 

 

Elo, Glicko, and proportion correct tended to run very fast on all conditions as did the 

IRT 1PL. While the IRT 2PL ran in under a minute for all conditions, some conditions went up 

to a run time of 30 seconds which is minimal for just running the data once, but with multiple 

analyses it might be a concern. The Bayesian models both often took minutes to run but with the 

educational data it rarely ran for over 5 minutes and the Bayesian IRT 1PL usually only took a 

minute. The time issue with Bayesian IRT is very noticeable with the gaming data. With a 

sample size of 150 and 30 matches it takes nearly 30 minutes to run Bayesian IRT 2PL 

estimations for just one iteration and around 12 minutes for Bayesian IRT 1PL. While other 

programs may run these analyses faster, just looking at this data using Bayesian analysis on 

game format data does not seem feasible when one is expecting to run estimations multiple times 

even if Bayesian IRT 1PL was often the best choice for gaming data. 

Comparison of Data Generation Simulation Results 

The educational data tended to result in higher correlations for all statistical models 

overall, but this effect was especially noticeable with smaller numbers of matches/items. The 

educational data also resulted in lower RMSEs than the gaming data. Across all data types and 

sample sizes, an increase in matches or items led to a noticeable increase in correlations, and 

match or item size seemed equally important for both the gaming and educational data. 

For the gaming data, an increase in sample size resulted in slightly lower correlations for 

all statistical models when controlling for match size. However, for the educational data an 

increase in sample size only seemed to affect the 2PL models with an increase in sample size 

leading to an increase in correlations. Otherwise, sample size did not seem to noticeably increase 

or decrease correlations between true and estimated ability. 
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Overall, it seems that match or item size affected the correlations between true and 

estimated ability more than sample size. Other studies looking at the correlations between true 

and estimated abilities for IRT models have also found that sample size had minimal impact on 

those correlations. However, these studies did find that the item parameters, not the ability 

estimates, became more accurate with an increase in sample size (Foley, 2010). Since the gaming 

statistical models did not have a comparison “item” parameter in which to compare to the IRT 

models, this study focused only on the ability parameters.  

Something surprising was how well proportion correct performed in comparison to the 

other ability estimation procedures in this study. Proportion correct is a very simple statistical 

model, but it tended to produce true and estimated ability correlations similar to most of the more 

complex statistical models. The design of the data and the format may explain part of this 

outcome and will be discussed in the Discussion chapter. The Elo, proportion correct, and the 

1PL models all tended to have similar correlations to each other and tended to be the best models 

except for the 2PL educational data. Only in the case of larger item/sample sizes for the 2PL data 

generations did the 2PL models result in conditions where their estimations tended to do the best, 

especially the Bayesian 2PL. Glicko was consistently poorer than most of the other models when 

applied to both the gaming and educational data with the exception of the 5 match gaming data 

in which it was similar to most other estimations.  

TIMSS Data Analysis Results 

The TIMSS data consisted of a sample size of 494 8th grade students from the American 

sample that fully completed the 2011 binary outcomes mathematics questions for booklet 8. This 

included the students’ responses to 33 items consisting of 11 numerical operations questions, 12 

algebra questions, 5 geometry questions, and 5 data and chance questions. The first step was to 
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estimate the thetas for respondents using all 33 questions. The theta estimates for the participants 

were correlated to see how the statistical models relate to each other as shown in Table 12.  

Table 12 

Correlations between Model Estimations of Theta for 33 TIMSS Mathematics Questions  

 Estimation Procedure 

Estimates Elo Glicko Prop. Correct IRT 1PL IRT 2PL  Bayesian 1PL 

Elo 1      

Glicko .793 1     

Prop. Correct .965 .758 1    

IRT 1PL .956 .771 .986 1   

IRT 2PL .948 .760 .975 .990 1  

Bayesian 1PL .965 .767 .998 .995 .983 1 

Bayesian 2PL .959 .756 .988 .985 .993 .990 

Notes. All correlations were significant at the p <.001 level.  

 The correlations for the full 33 questions show that many of the estimations were highly 

correlated from .948 to .998 with Glicko being the only exception and only correlating with the 

other estimation procedures from the .756 to .793 range. The IRT estimations were highly 

correlated to their Bayesian IRT counterparts with the range being .993 to .995. Proportion 

correct was also highly correlated to the IRT models, more so than Elo.  

Theta estimates were calculated for differing numbers of items for comparison to the 

number of items used in the simulation study (5, 15, 30). The correlations between the 

estimations by number of items are provided in Table 13.



 

 

 

Table 13 

Correlations between Model Estimates of Theta by Number of Items in TIMSS Data 

 

 

Estimation 

Elo 

# of Items 

5  15  30 

Glicko 

# of Items 

5  15  30 

Prop. Correct 

# of Items 

5  15  30 

IRT 1PL 

# of Items 

5  15  30 

IRT 2PL  

# of Items 

5  15  30 

Bayesian 1PL 

# of Items 

5  15  30 

Elo 1      

Glicko .871  .819  .802 1     

Prop. Correct .975  .959  .964 .839    .777    .774 1    

IRT 1PL .969  .946  .954 .845    .775    .792 .992  987  .986 1   

IRT 2PL .894  .935  .946 .742    .788    .771 .934  .971  .973 .935  .985  .987 1  

Bayesian 1PL .975  .958  .964 .840    .779    .786 .998  .999  .998 .994  .993  .995 .927  .977  .981 1 

Bayesian 2PL .820  .949  .958 .639    .793    .767 .859  .983  .986 .853  .976  .982 .875  .989  .993 .858  .983  .988 

Notes. All correlations were significant at the p <.001 level. 
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A comparison of the correlations across number of items for the empirical data generally 

resulted in similar correlations for varying item lengths, however there were some exceptions. 

There were lower correlations for the five item conditions for both 2PL models when compared 

to other models’ ability estimations. Conversely, Glicko had higher correlations for five items, as 

compared to more items, when compared to other models’ estimations except when correlating 

with 2PL models. This same trend occurred for Elo estimations, however to a smaller degree. 

Overall, Glicko tended to have the lowest correlations with other statistical models.  

It was expected that with an increase in items, all correlations would be correlated more 

highly with each other since theoretically they should all be more accurately correlated to the 

unknown true ability. However as mentioned, there were some instances where an increase in 

items led to some statistical models becoming less correlated with other statistical models. Elo 

estimations tended to increase in relationship with an increase in items for the IRT 2PL and 

Bayesian IRT 2PL models, going from .820 to .958, but item size does not seem to affect Elo 

correlations with IRT 1PL and Bayesian IRT 1PL models with values around .954 to .975. The 

IRT estimates all seem to increase in correlations with other statistical models as item size 

increases, going from .935 to .995 for most correlations, except for Glicko, but this increase is 

especially noticeable between the IRT 2PL and the Bayesian IRT 2PL models where they went 

from .875 to .993. It is worth noting how highly correlated proportion correct is to the Bayesian 

IRT 1PL model with correlations ranging between .998 to .9998 and indeed, proportion correct 

correlated highly with most IRT models. 

The second step in the empirical data analysis was to use a set of responses to predict 

performance on individual items. Two sets of three comparison items were used with one set 

being three numerical items and one being three algebra items. The questions chosen were based 
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on the percent of people who got the item correct with one item having around 75% of the 

participants answering correctly, one with 50%, and one with 25% correct answers. Items of 

different difficulties (and different content area) were selected as the ability to predict may differ 

based on the match between the item difficulty and the participant’s ability level. Use of multiple 

items should also help show trends as using a single item may not be a consistent measure of 

prediction accuracy. Table 14 shows in more detail how the easy, medium, and hard difficulty 

items compare across the two sets. 

Table 14 

Percent Correct for Items Used in Prediction Analyses 

 Difficulty Level 

Model Easy (75%) Medium (50%) Hard (25%) 

Algebra 71.66% 48.99% 25.10% 

Number 75.71% 48.18% 29.96% 

 

The estimates associated with the three items with both of the full datasets were used 

when calculating the probability of a correct answer for that item using the participants’ theta 

estimates after either 5, 15, or 30 items. The 5, 15, and 30 items were chosen while trying to keep 

the proportion of category items (numerical, algebra, geometry) similar while still being 

randomly selected. This process was completed with both of the algebra and numerical 

prediction item sets. For calculating the probability of a correct answer, the IRT 1PL formula 

was used with all estimates and the estimated thetas were standardized to a z-score distribution.  

The kappa coefficient was used to calculate level of agreement between the prediction 

and the actual outcome of whether the participant got the item correct or incorrect. The kappas 
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found in this study tend to be weak possibly due to applying the procedure to a comparison of 

how predicted item and match outcomes correspond to actual match and item outcomes for 

single items and single matches rather than with composite test scores. Kappa was chosen 

because it provides more information than using percent agreement, which does not account for 

the proportion of correct predictions that would be expected based on a random outcome. The 

kappa coefficients for the algebra questions are shown in Table 15 and the kappa coefficients for 

the numerical questions are shown in Table 16.  
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Table 15 

Kappa Coefficients for Three Algebra Questions by Number of Matches used for Estimation 

                                      Difficulty Level  

 

 

Estimations 

Easy (71.66%) 

Number of Items 

  5      15      30 

Medium (48.99%) 

Number of Items 

 5     15     30 

Hard (25.10%) 

Number of Items  

 5     15     30 

Elo .034  .012  .054 .149  .234  .194 .264  .292  .312 

Glicko .064  .140  .166 .155  .225  .095 .247  .277  .314 

Prop. Correct .191  .359  .434 .141  .186  .178 .254  .356  .395 

IRT 1PL .191  .317  .339 .141  .228  .205 .160  .249  .310 

IRT 2PL .041  .022  .034 .207  .305  .272 .241  .257  .233 

IRT Bayesian 1PL .191  .317  .399 .141  .228  .205 .190  .303  .310 

IRT Bayesian 2PL .239  .354  .385 .150  .224  .241 .246  .316  .320 

 

Table 16 

 

Kappa Coefficients for Three Numerical Questions by Number of Matches used for Estimation 

 Difficulty Level 

 

 

Estimations 

Easy (75.71%) 

Number of Items 

5     15     30 

Medium (48.18%) 

Number of Items 

5     15     30 

Hard (29.96%) 

Number of Items 

5     15     30 

Elo .095  .272  .308 .199  .245  .283 .030  .034  .038 

Glicko .122  .322  .218 .152  .249  .260 .153  .213  .255 

Prop. Correct .099  .269  .367 .297  .354  .372 .264  .366  .383 

IRT 1PL .043  .186  .239 .297  .341  .348 .264  .216  .287 

IRT 2PL .057  .237  .264 .252  .343  .355 .211  .234  .324 

IRT Bayesian 1PL .043  .186  .239 .297  .341  .383 .264  .216  .311 

IRT Bayesian 2PL .043  .239  .273 .235  .353  .341 .211  .234  .324 
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While there are some differences among questions, overall the accuracy of predictions 

tended to increase as number of items used in the prediction increased for most of the models. 

There were some statistical models that had a few items where the kappa was consistently very 

low. These were the Elo and IRT 2PL models with some items only having a kappa between 

.012 and .054 no matter the number of items used. There does not seem to be consistent 

differences in kappa coefficients when varying by item difficulty. The statistical model that 

tended to result in the largest overall kappa coefficients appeared to be the proportion correct 

model. The next best models based on the kappa coefficients were both of the Bayesian IRT 

models and then the IRT models though they all tended to have similar sized kappas.  

Gaming Data Analysis Results 

The gaming data was a dataset with over 20,000 matches and over 14,000 players. It was 

essentially a snapshot of games from the Lichess online gaming site that was put on Kaggle (J, 

2017). The number of matches for the players present in the dataset was positively skewed with 

most players having only 1 or 2 games in the dataset. The analysis focused on 112 players who 

had at least 31 matches with non-duplicating players. The 6th, 16th, and 31st matches of these 

players were used when calculating the kappa coefficient. Since a large number of players had 

few games in the system, the opponents’ skill level used when calculating the matches’ outcome 

was the skill rating given in the database which would be calculated not only on the matches 

present in the dataset, but matches that occurred before the dataset. For the kappa analysis, the 

Elo probability of a win formula was used and scores were rescaled as needed. Similar to the 

empirical educational data analysis, since some models did not estimate all the parameters 

needed to use their respective probability of a win/correct answer formula so the focus was more 

on the thetas generated by the statistical models.  
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It proved difficult to conduct IRT 2PL and IRT Bayesian analyses on the gaming data 

due to the nature of how the data need to be formatted for these analyses to be conducted. An 

approximately 12k by 12k matrix was created for the gaming matches which resulted in memory 

failure for even one of the university’s high performance computers. However, Elo, Glicko, 

proportion correct, and IRT 1PL were able to be used to analyze the data. The correlations 

between the ability estimations by number of matches are shown in Table 17. 

Table 17 

Correlations between Ability Estimations by Number of Matches 

 

 

Estimation 

Elo 

Number of Matches 

5  15  30 

Glicko 

Number of Matches 

5  15  30 

Proportion Correct 

Number of Matches 

5  15  30 

Elo 1   

Glicko .990  .964  .931 1  

Prop. Correct .998  .987  .956 .990  .964  .931 1 

IRT 1PL .287  .591  .789 .300  .559  .787 .287  .602  .829 

Notes. All correlations were significant at the p <.05 level.  

 While some of the correlations between the estimates were consistent across match sizes, 

the correlations to IRT 1PL thetas from the other estimations increased with match size. 

Proportion correct was the most correlated to the IRT 1PL model followed by the Elo estimation 

and these correlations increased with match size. The correlations between Glicko and the Elo 

and proportion correct models decreased with an increase in match size from .990 to .931. Elo 

and Glicko had very low correlations with the IRT 1PL model at the 5 and 15 match sizes but 

correlated at .789 and .787 with 30 matches. Elo and proportion correct were highly correlated 

but the correlation seemed to decrease with an increase in match size.  
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 Since the estimated thetas were used with the Elo model for the gaming data, scores 

needed to be rescaled to the respective models being used to compare the participants’ ability 

estimates. When rescaling there were two options on how to rescale. One was to rescale the 112 

participants’ thetas based on the estimates for the whole sample of around 12,000 players or to 

rescale using just the 112 participants’ values. The means and standard deviations for the 

different estimates for the whole sample and for just the 112 are shown in Table 18. 

Table 18 

Mean and Standard Deviations for Rescaling Estimations for Full Sample and Restricted Range 

 Number of Matches for Estimation  

 Full Sample Rescale 112 Sample Rescale 

 

Estimations 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

Elo .046 29.760 -24.472 130.244 

Glicko 5.437 181.847 -38.112 193.419 

Prop. Correct .518 .475 .466 .174 

IRT 1PL -.121 1.380 -.171 .896 

Notes. Numbers were from the estimates for 30 games. 

Since neither rescaling method seemed ideal, kappa coefficients were calculated using 

both versions for rescaling the 112 participants’ thetas. The trends tended to be fairly consistent 

with both versions, especially for larger match sizes though some statistical models seemed more 

affected by the rescaling method than others. The kappas for the gaming data for both rescaling 

options are shown in Table 19. 
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Table 19 

Kappa Coefficients by Number of Matches 

 
Number of Matches for Estimation 

 5 15 30 

Estimations Full Sample, N = 112  Full Sample, N = 112 Full Sample, N = 112 

Elo .055  .122 .134  .156 .258  .258 

Glicko .033  .153 .137  .230 .265  .268 

Prop. Correct .023  .103 .236  .175 .324  .323 

IRT 1PL .176  .179 .125  .164 .359  .342 

Notes. Numbers on the left are rescaled using the complete gaming dataset of over 12,000, while 

numbers on the right are the restricted rescoring (rescaling using only the N = 112 participants 

with at least 31 matches). 

For almost every estimation, the kappa coefficient increases along with number of 

matches with estimations going from as low as .023 in the 5 match condition to as high as .359 

for the 30 match condition. The IRT 1PL model tends to outperform the other estimations at 

every level of match sizes though the middle match size of 15 shows IRT 1PL actually doing 

worse than it did with the 5 matches. Depending on the rescale method, Glicko and proportion 

correct did better than IRT at this level as well. The IRT 1PL outperforms the other estimations 

at 5 matches with the IRT 1PL kappa being .18 with the next highest being .153. Glicko tended 

to do better here than in other cases, depending on the rescale option, but the reader is reminded 

that the opponents’ theta was taken from the assigned theta in the dataset which is based on 

Glicko 2 (J, 2017). It is possible that this could result in a positive bias in favor of the Glicko 

model.  

Proportion correct outperformed both the gaming estimations overall. Even with some 

matching between participants being present in this data set, proportion correct performed well 
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even though it only outperformed the other estimates when the thetas for the players were 

rescaled using only the 112 players. The IRT and Elo models seemed less susceptible to changes 

in their kappas based on the rescaling option which could be considered when selecting the best 

model. 

Comparison of the Real Data Results 

There are factors to consider when comparing the educational and gaming real data sets. 

The format of the data for the real data analysis is different, even more so than the simulation 

data. The educational data focuses on participants who answered all the questions that were 

being analyzed and is a complete data matrix. The gaming data focuses on only 112 participants 

that had at least 31 unique game matches though thousands of their opponents were including in 

the estimation process. However, all players do not play against all other players, making the 

data matrix relatively sparse. Further, all players were included in calculating theta estimates 

meaning that players that may only have had 1 or 2 matches were included. While this is a 

common occurrence in real gaming data, the fact that real gaming data is much messier than real 

educational data could led to some issues when comparing the analyses. The biggest limitation is 

that three of the model estimations, IRT 2PL and the Bayesian IRT 1PL and 2PL models, were 

not able to be used for conducting the gaming data analysis. Since the gaming data had to be 

transformed into a matrix of n x n where n is the number of players, this results in very large 

matrices that available computers were not able to analyze. 

Using analyses that were possible, the correlations between the theta estimates’ for the 

statistical models were much higher for the educational data across all item sizes and were 

frequently in the .8 and .9 correlation range. The correlations between the theta estimates were 

much weaker for the gaming data, especially at lower match sizes. Additionally, match size 
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seemed to affect the correlations between the estimates more for the gaming data than for the 

educational data. Proportion correct tended to correlate to the other estimates a bit differently 

based on data type. For the gaming data, proportion correct tended to be most correlated with Elo 

but for the educational data it was the most correlated with the IRT estimates.  

With the educational data, Elo, and sometimes Glicko, tended to be as accurate as IRT 

1PL in quite a few cases though there were still issues with Elo being less stable with certain 

items. When using the kappa estimates, IRT 1PL tended to be the best model across almost all 

match sizes with the gaming data. The kappa coefficients were similar in value by match and 

item sizes for the two data sets though the educational data tended to have higher kappas when 

compared to the gaming data especially with the 15 match and item size. While the educational 

data had higher correlations between the statistical models’ thetas than the gaming data set’s 

estimations, the kappas for most of the models tended to be relatively similar and fairly weak. 

This could be due to the instability of using just one item or match for an outcome when 

calculating a kappa coefficient.  

Summary 

The simulation and real data analysis had many similar trends. The generated educational 

data and the empirical educational data tended to have better correlations and predicted outcomes 

than the gaming datasets. The increase in match and item sizes led to better correlations and 

kappas with the simulation and real data analysis with both types of data. The Glicko tended to 

correlate poorly to the true ability in the simulation and to the other estimations in the real data 

analysis but the kappa estimates for Glicko did not seem to do as poorly and were often similar 

to other estimates. The 2PL models did much better with larger sample sizes and item/match 

sizes though this model provided better estimates with the educational data than with the gaming 
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data. The 1PL models, Elo, and proportion correct tended to have similar correlations and kappas 

in both the real data and the simulations for both types of data. Overall, there were differences in 

the performances of the estimations depending on data type and condition and this knowledge 

could help determine the usefulness of these estimations across the education and gaming fields.  
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CHAPTER 5  

DISCUSSION 

The purpose of this study was to compare how a selection of education and gaming 

statistical models function for two types of data with small sample sizes and small numbers of 

items or matches. This study also sought to expand on previous research that has been conducted 

on comparing educational and gaming statistical models. By having both simulated and real data, 

comparisons were possible for both known conditions and real-world estimations. In an attempt 

to further conclusions drawn from the real data analysis, kappa coefficients were calculated to 

attempt to measure accuracy in prediction in addition to correlations between estimations.  

For the discussion, the simulation results will be discussed first, then the empirical data 

analyses, and then a comparison of the statistical models under the different conditions. Finally, 

limitations to the study will be discussed along with recommendations for future research.  

Simulation Study Aggregated Results 

When comparing the aggregated data by data generation methods, Glicko and Elo 

produced similar correlations between true and estimated abilities. Glicko estimation includes a 

deviation parameter when estimating ability, and this deviation was included in the Glicko data 

generation. However, since matrices of matches were being generated based on the true ability, it 

seemed illogical to assign a large rating deviation for generating the results when we know the 

true ability. The starting rating deviation was therefore selected to be small, and it stayed small 

throughout data generation and thus the generated Glicko data ended up being extremely similar 

to the Elo generated data. A comparison was made of generated Glicko data when the original 

rating deviation was set to be larger, and the increased error in the generated data resulted in 

similarly decreased correlations for all statistical models for Glicko data.  
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The educational generation models consistently had higher correlations between 

estimated and true ability across all statistical models. This could be due to educational data 

generation being much cleaner, that is, every participant answered every question leading to a 

complete matrix of data. In contrast, the gaming data did not have every player face every other 

player leading to incomplete matrices. Using the average number of matches for the players in 

the gaming data as compared to educational data where all participants complete the same 

number of items may have also contributed to the lower correlations in the gaming data. 

 There were many similarities between both types of gaming and education data when it 

came to the statistical models. Glicko consistently did poorly for both types. Elo, proportion 

correct, and both the 1PL models tended to produce similar correlations between estimated and 

true ability values. While the trends for the statistical models for both types of data were mostly 

similar, the 2PL model seemed to do poorly on the gaming data, even doing worse than the 

Glicko model. It could be that the use of the 2PL model with the sparse gaming data matrices is 

not effective with the small numbers of items and small samples used in the study or that the 

gaming data does not have a parameter similar to the discrimination parameter the 2PL models 

try to estimate.  

Correlations between true and estimated abilities disaggregated by match/item size were 

also compared. Correlations consistently increased as match/item size increased with the 

difference between the 5 and 15 match/item conditions being larger than the 15 and 30 

match/item conditions. This diminishing return on number of items added is consistent with 

previous literature (Crocker & Algina, 1986). However, an increase in sample size did not seem 

to impact the correlations when controlling for match/item conditions. These correlations and 
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sample size findings were similar to studies using an IRT 3PL model to estimate ability with 

small samples and items (Foley, 2010). 

Simulation Study with Gaming Data 

Data were disaggregated by data generation procedure, sample size, and match/item size 

to make more specific conclusions. When comparing across gaming data conditions, an increase 

in matches led to an increase in correlations across all model estimations. While sample size did 

not increase correlations when aggregated across model generation methods, for the gaming data, 

some estimations seemed to be negatively impacted with lower correlations when there was a 

larger sample size. The reason for this may be due to the gaming data format. Since gaming data 

is paired comparisons among players, more overlap between players can result in better 

comparisons between them. If you think of gaming data as being a giant web where lines connect 

players who have been matched together, making comparisons is easier when there are more 

connections between the players. When sample size increases while holding the number of 

matches consistent, there is less overlap between the players’ matches and it makes it harder to 

find the connections between them. 

 Looking at the model estimation results from the simulated data, the 2PL models do not 

seem to do well with the gaming data. The Glicko model, an estimation procedure for gaming 

data also did not produce estimates that correlate highly with true ability. There may be many 

reasons for why the Glicko had poor estimations for the gaming data. The Glicko estimation adds 

an additional variable where the player’s rating changes as a function of both their own and their 

opponent’s “rating deviation”. As described, rating deviation is a standard deviation assigned to 

the player’s rating to reflect how sure one is of this rating. This rating deviation goes down as 

number of matches increases. Since the simulation data tries to have all players have a similar 
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number of matches, this added variable may not be useful in the design of this study. Another 

reason may be due to this data not having a growth parameter set. Both Elo and Glicko were 

designed to accommodate changes in ability levels over the testing period while IRT models 

were not (Glickman, 1995). It is possible that Glicko may perform better when the data have true 

ability levels of the participants change over time. 

Additionally, another reason the Glicko may be underperforming is due to the parameters 

chosen to run the Glicko estimation. Identifying the ideal parameters to use for estimating ability 

can vary based on the type of gaming data being analyzed (Pelánek, 2014). Therefore, the default 

mean and standard deviation typically used for Glicko and Elo estimation with chess data were 

used in this study. It is possible that different parameters may have led to an increase in 

performance of the Glicko estimations but identifying those parameters with certain datasets is a 

study in itself and was not pursued in this research. 

While an increase in sample size did not increase the correlations for the gaming data 

when item sizes are held constant, the standard deviations of the correlations from the replication 

got smaller as sample size increased. This means that an increase in sample size did not lead to 

better correlations, but the correlations of the replications calculated were more stable.  

Overall, the best statistical model for the gaming data seems to be the Bayesian IRT 1PL 

model. At 5 matches, Elo is the best model, though Elo and Bayesian IRT 1PL were very similar 

at 5 matches. From 15 matches to 30 matches, Bayesian IRT 1PL was the better statistical model 

though it was very similar to IRT 1PL with 30 matches. These results may demonstrate that the 

Bayesian IRT 1PL has advantages when being used with smaller match sizes over just the 1PL 

model, and that the Bayesian IRT 1PL statistical model may improve gaming estimations as 

compared to Elo. While the proportion correct model was very similar to the Bayesian IRT 1PL 
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with 5 matches on the gaming data, proportion correct is limited when wanting to match players 

together. Ideally, when selecting players for matches in online gaming situations, the ideal win 

rate for all players should be around 50% meaning that people across all abilities win and lose at 

a relatively equal pace. If proportion correct is very similar for all players, then it would be 

difficult to see which players really have higher (or lower) abilities. The normally distributed 

ability simulated in this study is a factor that probably led to proportion correct performing 

relatively well, but it is important to keep in mind that the other models may be needed when 

working with less normally distributed data. 

Simulation Study with Educational Data 

For the educational data generation there were many similar trends. Primarily, an increase 

in items led to an increase in correlations across all statistical models. The results further indicate 

that ability estimations with 5 items are relatively poor. To achieve a correlation of .90 or 

greater, 30 items appear to be needed with the samples used in the study. Similar to the gaming 

data, though most of the correlations do not seem to increase with an increase in sample size, the 

increase in sample size led to a decrease in the standard deviation of the correlations meaning 

that the correlations were more stable. Although the correlations between true and estimated 

ability did not seem to be related to the sample size in most cases, that does not mean sample size 

is not important. This study did not investigate the item parameter estimations. However, other 

studies which focused on IRT analysis with small sample sizes and item sizes looked at not only 

the correlations between true and estimated ability for IRT analysis, but on the item parameters 

as well (Foley, 2010). While that study also found that the correlations between true and 

estimated ability did not show a meaningful increase with an increase in sample size, the 

estimated item parameters became closer to their true item parameters with an increase in sample 
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size. The magnitude of this effect was similar to the effect that an increase in items had on the 

correlations between true and estimated ability (Foley, 2010).  

The Bayesian IRT 1PL model tended to be the best statistical model across all numbers 

of items studied with the 1PL generated data. The Glicko model did poorly with both the IRT 

1PL and IRT 2PL generated data. The IRT 2PL models did much better on the educational data 

than the gaming data. The IRT 2PL and Bayesian IRT 2PL models were the best estimations 

with the large item sizes (30) and large sample size conditions (150 and 500) with the Bayesian 

IRT 2PL being the best. The IRT 2PL models were also the only statistical models where an 

increase in sample size led to an increase in correlations. For instance, for the IRT 2PL generated 

data, even with the 30 items the IRT 2PL models had the lowest correlations compared to all the 

other models besides the Glicko with a sample size of 50.  However, when sample size increased 

to 150, the IRT 2PL models became the most accurate. The correlations of the IRT 2PL models 

increased even more when comparing the 150 sample size to 500 sample size. If the data are 

assumed to be IRT 2PL data and there is an adequate number of items and a large enough sample 

size (e.g., 150 or larger), the IRT 2PL models, particularly the Bayesian IRT 2PL, seem to be the 

best choice. 

The more advanced IRT 2PL models did not do as well as the IRT 1PL models with 

smaller sample and item sizes, even with IRT 2PL generated data, which has been found by other 

research as well. Sahin and Anil (2016) found that with small item sizes, simpler IRT 1PL 

models have better model fit than IRT 2PL and 3PL models in estimating item parameters. 

However with 30 items, the IRT 2PL and 3PL models tended to have better model fit than the 

IRT 1PL model even with moderate sample size (n = 150). Although their study did not provide 

ability estimates, the trend observed with model fit estimation was similar to this study’s finding 
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that more advanced IRT 2PL models may not perform as well as IRT 1PL models, even on IRT 

2PL data, when there is a small number of items and small sample sizes. 

Root Mean Square Errors for the Simulation Study 

Since both estimated and true abilities were known for the simulation study, RMSEs were 

computed. These were highly negatively correlated with the correlations between true and 

estimated abilities and the trends were similar. When comparing the RMSEs for educational and 

gaming data, the educational data’s RMSEs tended to be smaller than the gaming data. This is 

likely related to the gaming data being messier and less complete than the educational data. The 

data format and design may also contribute to why the correlations for the educational data were 

higher than those for the gaming data as a whole. The Bayesian IRT 1PL model also tended to 

have the lowest RMSEs across most conditions which mirrored what the correlations between 

true and estimated ability showed.  

Empirical Educational Data 

One primary disadvantage to using real data is not knowing the true abilities of the 

participants which would allow for a comparison between estimated and true abilities. The 

previous research investigating empirical data and comparing gaming and achievement 

estimations often looked only at the correlations between those estimations (Antal, 2016; 

Brinkhuis & Maris, 2009; Wauters et al., 2012). This study included those correlations, but also 

included a prediction set of items to further the comparisons. For the complete 33 questions on 

the TIMSS mathematics subtest, the estimated abilities from the seven statistical models were 

correlated with each other. Glicko did not correlate strongly with any other estimations and this 

follows the simulation study results. The other estimations all seemed relatively close in level of 

relationship with proportion correct correlating more with the IRT models than Elo. The 
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correlations of the estimations by item size were also compared. Number of items had little 

impact on the correlations between most estimations from the different statistical models. Elo 

and Glicko however both become more correlated with the 2PL models as the number of items 

increased. This could be due to the 2PL models not estimating very well with a small number of 

items more so than the other statistical models. 

 However, the correlation between estimated thetas provides limited information on what 

is the best model. By using the kappa coefficient to see how well the model predicts a true 

outcome on an item or a match, there can be an attempt to see which model makes the best 

prediction. Proportion correct, 1PL, and 2PL models tended to have the largest kappa 

coefficients. The Bayesian IRT 2PL model tended to have both the largest and most stable 

kappas. The IRT 2PL model had one question where the kappas were very low no matter the 

item size. Elo also had a few items where kappa coefficients were low regardless of the numbers 

of items. Using just one item to look at the kappas may not lead to very stable analyses, and Elo 

and the IRT 2PL model seemed more susceptible to that. The 2PL models in general provided an 

overall better performance for predicting the item-level outcomes, however this may be related to 

the larger sample size. Since sample size was not varied for either of the empirical datasets, the 

TIMSS data having 494 participants would give the 2PL models better estimations than what 

was seen with the 50 and 150 sample sizes for the simulation study.  

Empirical Gaming Data 

More advanced IRT models were not able to be used for the real gaming data. This is due 

to how large the matrix was for the empirical gaming data set. While there may be other ways to 

code the data or code the analysis to make gaming data work more optimally with IRT and 

Bayesian IRT, this was outside the current studies’ purview. One important finding is that when 
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the number of players is too large (e.g., over 150) in gaming data, IRT may not be practical as 

running IRT on such a large and sparse matrix may take hours. IRT 1PL was the only IRT model 

able to run with the empirical gaming data without running out of memory while processing the 

matrix.  

With the real gaming data, the IRT 1PL model tended to outperform the other estimates, 

according to the kappa coefficients, across most match conditions, even the 5 match condition. 

However, proportion correct was similar barring the 5 match condition. While it did not prove to 

be practical to run IRT with a large sample size, the results from the simulation indicate that IRT 

may be useful for gaming data with small samples (e.g., n = 150).  

Limitations of the Study 

There were a number of limitations to this study. One major limitation being that there 

were not model fit or item parameter estimates calculated. The gaming statistical models were 

relatively simple and do not provide item-level or model fit parameters, so there was nothing to 

compare the IRT parameters to. This also led to the limitation that though there are many ways to 

measure a model’s effectiveness, correlation between true and estimated ability was the main 

focus for the simulation. IRT is often not recommended for such small sample sizes but given the 

results from this study it is hard to recommend gaming estimations in some of these instances as 

a suitable replacement. Just because there are not model fit indices for gaming estimations to see 

how they work with small sample sizes, that does not mean one should assume that those models 

would fit better than an IRT analysis. The small correlations between true and estimated abilities 

would warn against their use in certain conditions. 

Generation of the gaming data also involved a lot of variability. As mentioned, gaming 

datasets are very interrelated as they are players being matched to each other. Therefore, coding 
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the data so that each player was matched exactly 5, 15, or 30 times seemed extremely difficult. 

As a result, the data were generated having players with an average of 5, 15, or 30 matches with 

some players having less and some more. Since the IRT packages chosen for IRT analysis did 

not allow for items where everyone answered an item incorrectly, this meant that there could not 

be people who lost all matches and with only 5 matches that is very likely. Two false participants 

were added for the IRT analysis with one answering every question right and one answering 

every question wrong to get thetas for the rest of the participants. Those “dummy people” were 

removed before the correlations were calculated between true and estimated ability. However, 

even though those two people did not seem to alter the thetas of the other participants, it is still 

adding in extra data in order to conduct the analysis. Basically, generating the gaming data was 

less clean than ideal. 

 Although the main improvement of the Glicko formula over the Elo formula is an 

addition of a standard error to the ability parameter, when Glicko was generated this error was 

set to be very small. This was because outcomes generated were based on the true ability 

parameter and having error for an ability parameter that is known seemed illogical. This led to 

the Elo and Glicko generated data being very similar so this study was essentially looking at 

gaming data using only Elo generated data. While there has been research on simulating game 

outcomes based on tournament style data (Aldous, 2017), there seems to be limited research on 

generating outcomes for more chaotic match ups that would likely be experienced in online 

gaming. Other gaming data generation methods should be explored. 

Another limitation is the use of the kappa coefficient. While its use was an attempt to 

measure model effectiveness in predicting a dichotomous outcome, there may have been better 
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estimation procedures to use. The kappa on just one item (or three for the empirical educational 

data) can lead to substantial variability in the results.  

The IRT 2PL and Bayesian IRT models were also not able to be calculated with the 

empirical gaming data leaving only the simulation study having a gaming dataset being analyzed 

by those models. Additionally, since some of the statistical models that calculate a probability of 

a correct answer/win had parameters that were not estimated by the packages chosen, the thetas 

calculated were input into the simple Elo or IRT formulas depending on the data. While the 

kappas shown still seem to follow patterns that are in line with how the statistical models did 

with the simulation, the use of only the thetas from the statistical models being compared in the 

kappas is limiting. However, their use adds information above and beyond the correlations 

among the estimates.   

 Additionally, in this study players were not matched with the same player multiple times 

as to mirror a testing situation where a participant would not answer the same item multiple 

times. However, in online gaming, playing against the same player multiple times may happen. 

For an IRT analysis to be conducted with this type of data, there would need to be additional 

modifications to either the way the gaming dataset is formatted or what model assumptions are 

considered flexible. 

The Glicko tended to perform poorly when correlating it with true ability though the 

kappas did not seem as affected by this. Other research has seemed to conclude that the Glicko 

should be performing better than the Elo (Glickman & Jones, 1999), but the results from this 

research study do not show that. It could be that the data in this study is not the type where 

Glicko can outperform Elo or that other constants for the Glicko formula were needed. As 

mentioned previously, there may be other conditions where the player deviation rating provides 
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more useful additional information such as situations where the number of matches completed by 

players varies significantly. Based on the results from this study, the lower performance of 

Glicko does not seem to be in line with previous research and a clear reason for that has not been 

identified. 

Recommendations and Future Research 

While I feel that future research is needed as comparing gaming and education ability 

estimations has more work to be completed, there are some recommendations that might be 

made. This study demonstrates that there may be situations in which IRT and Bayesian IRT can 

help provide better estimates for gaming data, and situations where the use of Elo for estimation 

might facilitate educational data. The Elo and IRT 1PL models tended to work well with both 

types of data with different strengths depending on the condition. Overall, at lower item sizes Elo 

may do marginally better than IRT 1PL and Bayesian IRT 1PL but their performance was similar 

in both the gaming and educational data. The Bayesian IRT 1PL model tended to do better with 

larger item sizes and sample sizes but was still similar to IRT 1PL and Elo.  

Proportion correct did quite well across many of the conditions. This may be due to the 

abilities and item difficulties all being normally distributed in the simulation data and therefore, a 

proportion correct estimate might be expected to perform fairly well given that random samples 

of items should be an effective sample of the normally distributed difficulties. Further, there was 

no matching system in the simulated data while matching might be found in real online data or 

matching may be used in educational data for CAT tests. If matching was the ultimate goal, 

either with CAT with educational data or matching similarly skilled players against each other 

with gaming data, proportion correct would not be useful as the goal would be to match persons 

with other players of similar ability or items having a difficulty similar to one’s ability. When 
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there are situations where a sample size might not be optimal for IRT analysis and both the item 

difficulty and skills are assumed to be normally distributed, proportion correct may work well 

enough for a less technical solution. 

 While a 150 sample size is not large enough to be recommended for IRT analysis based 

on prior recommendations (Hambleton et al., 1991), the correlations between true and estimated 

ability tended to be sufficiently large to use it in online gaming estimation of 30 matches and 

low-stakes educational testing in the situation of 30 items when group performance is of interest. 

The 30 item condition usually had correlations between true and estimated abilities over .90. Of 

concern would be the large standard errors for estimating an individual’s ability level. It is 

possible that with enough items, IRT may still be useful in less formal situations even with more 

modest sample sizes and when group information is of interest.  

 Gaming datasets may benefit from IRT models as the Bayesian IRT 1PL model tended to 

be the best for the simulation data and the IRT 1PL tended to do well with the kappas in the 

empirical data. However, with the way the data needed to be structured, it makes it impractical to 

use Bayesian IRT analysis with the gaming data with a large sample size. There may be more 

effective procedures for using IRT with gaming data. Additionally, Elo analyses were conducted 

very quickly, but the IRT models and especially the Bayesian IRT models ran slowly with the 

large, sparse matrices of the gaming data. The amount of time required for the Bayesian IRT 1PL 

analysis with only 15 items and 150 sample size was around 6 minutes and around 14 minutes 

for the Bayesian IRT 2PL estimations. These times took even longer with larger sample sizes 

with the Bayesian IRT 2PL model taking nearly 30 minutes to run with a sample size of 150 and 

30 matches. The additional time may not be worth the extra accuracy depending on the 

circumstances. For instance, if estimations needed to be completed only one time, it may not be 
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an issue, but for online gaming where estimations are being calculated consistently, the 

additional time may not allow Bayesian estimations to be viable.  

Overall, the research investigating how educational data may work with gaming 

statistical models is sparse and the research applying IRT estimation to gaming datasets occurs 

even less. It is hoped that these results can facilitate continued work in these fields. Further 

studies would need to be conducted on how IRT packages can work better with gaming data 

before recommendations can be made.  
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