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ABSTRACT 

The main objective of this effort is to determine points of weakness in the gate network of a high-

performance SiC power module and to offer remedies to these issues to increase the overall 

performance, robustness, and reliability of the technology.  In order to accomplish this goal, a 

highly accurate model of the gate network is developed through three methods of parameter 

extraction: calculation, simulation, and measurement.  A SPICE model of the gate network is 

developed to analyze four electrical issues in a high-speed, SiC-based power module including the 

necessary internal gate resistance for damping under-voltage and over-voltage transients, the 

disparity in switching loss between paralleled devices due to propagation delay, a high-frequency 

oscillatory behavior on gate voltage due to die-to-die interactions, and current equalization in the 

kelvin-source signal path.  In addition, the analysis of parameter variance between paralleled 

MOSFETs and the effects of mismatched threshold voltage and on-state resistance on switching 

loss and junction temperature are investigated.  Finally, three Miller Clamp topologies are 

simulated and assessed for effectiveness culminating in a solution for parasitic turn-on in high 

dv/dt systems such as those utilizing high-performance SiC power modules. 
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CHAPTER 1 

INTRODUCTION 

 Importance of Reliable Power Semiconductor Packaging 

Electrical energy supplied roughly 40% of the world’s power requirements in 2013 and has been 

increasing rapidly as countries migrate to renewable energy sources [1].  Global investment in 

clean energy has increased immensely in the past fifteen years from approximately $62 billion 

dollars spent on renewables in 2004 to a staggering $333 billion dollars in 2017.  As of late, the 

world’s leader in renewable investment, China, has increased its spending on alternative energies 

by 24% in the past year as shown in Figure 1.  In addition, The United States now generates 18% 

of its electricity from renewable energies while its reliance on coal has decreased from 48% in 

2008 to only 30% in 2017 [2].  This clear global trend marks an incredibly important shift in energy 

production and will have a massive impact on the surrounding industries. 

Alternative energy sources such as solar, wind, and hydropower are made possible with the use of 

power electronics, which is the general term for the systems capable of converting and controlling 

 

Figure 1. Total New Investment in Clean Energy by Country or Region 
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the flow of electrical energy [3].  At the core of these power electronics lies the power 

semiconductor, which is traditionally a silicon transistor capable of processing high magnitudes of 

voltage and current.  Even with efficiency ratings of 96% to 99% for modern switch-mode power 

electronics systems [4], it is not feasible to use a single power semiconductor device per switch 

position in a system.  To meet the requirements of the high-power systems responsible for 

converting energy obtained from renewables to consumable power on the grid, multiple power 

semiconductor devices must be operated in parallel inside an electronic package commonly 

referred to as a power module. 

A power module is described as one or more power semiconductor devices in a package, in which 

the package and connection technology are just as important as the characteristics of the power 

semiconductor [3].  During construction and operation of a power module, there exist many 

mechanical, electrical, and thermal factors, which have a large impact on the performance and 

reliability of a system.  According to Infineon, for this technology to be applied, the power modules 

 

Figure 2. Common Power Modules Ranging from 10 A to 3600 A and 600 V to 6.5 kV [5] 
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must be robust and durable; moreover, in traction applications, lifetimes of 20 years or more are 

required with the need for a high-power cycling capability [3].  A few common silicon-based 

power modules from Infineon are displayed in Figure 2 [5]. 

Recently, power electronics are being utilized in applications such as motor drives for industry and 

HVAC, for traction drives in electric vehicles, and for data centers, which now consume over two 

percent of the United States and Europe’s electricity consumption [1].  With these innovative 

utilizations of power electronics, it is crucial that the fundamental building blocks of these systems, 

the power modules, be durable, robust, and reliable for the countless energy conversion 

applications that the future will bring [4]. 

 Next Generation Power Modules Using Wide Bandgap Power Semiconductors 

The demands for high-performance power electronics are quickly surpassing the voltage rating, 

efficiency, and power density limitations governed by the intrinsic properties of silicon-based 

power semiconductors.  Fortunately, a higher-performing alternative is growing in adoption and 

therefore becoming increasingly better understood, more reliable, and less expensive [6].  This 

next generation power semiconductor is Silicon Carbide (SiC), which is considered a wide 

bandgap semiconductor and exhibits an increase in bandgap energy of nearly three times that of 

silicon. 

There are four main elements that differentiate SiC power semiconductors from silicon: bandgap, 

field strength, thermal conduction, and electron mobility [7].  The first, bandgap energy, allows 

the technology to operate at a higher junction temperature, which in turn allows the entire system 

to process more power in less space [8].  Next, SiC’s much higher field strength enables high 

blocking voltages, low leakage currents, and a smaller drift region.  This allows SiC to have a 

greatly reduced specific on-state resistance for an equivalent blocking voltage to Si; moreover, it 
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allows SiC to operate at voltages that were considered impossible in power electronics with Si 

technology.  Third, the thermal conductivity of SiC is 3.7 W/cm∙K while silicon exhibits roughly 

1.6 W/cm∙K [9].  This increase in thermal conductivity leads to higher current-carrying capability 

and more power-dense electronics. Finally, the higher electron mobility as well as the higher 

electron saturation velocity allows for higher frequency operation [7].  As commonly known, the 

increase in switching frequency of a power system directly influences the size of passive 

components and greatly increases power density. 

As described in SiC versus Si—Evaluation of Potentials for Performance Improvement of Inverter 

and DC–DC Converter Systems by SiC Power Semiconductors, one of the most tangible 

advantages of SiC is the significantly reduced switching loss [11].  This is partially due to the lack 

of the current tail found in Si IGBT devices and the ability to eliminate reverse recovery through 

 

Figure 3. Performance Improvements of SiC over Si-based Inverters [10] 
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the use of an anti-parallel SiC Schottky diode [9].   Figure 3 portrays three technology 

demonstrating inverters: one using Wolfspeed’s 1200 V SiC MOSFETs and the other two using 

silicon IGBT technology.  As clearly illustrated in the figure, the SiC inverter exceeds the Si 

versions in switching frequency rating, maximum current rating, power density, maximum bus 

voltage, maximum junction temperature rating, and requries the lowest DC link capacitance [10].  

The large improvements over silicon make SiC a perfect candidate for future power modules and 

power electronic technology.  As stated by Joseph Carr, et al., "This is particularly true at medium-

voltage levels where fast switching devices based on silicon are nonexistent and where new and 

ultra-efficient converter systems are required for future energy distribution networks.” [12].  

Considering the need for power electronics to unleash the full potential of alternative energy 

sources as discussed in the previous section, SiC is the suitable semiconductor technology to fill 

the current voids in power conversion systems. 

 Issues in Silicon Carbide Power Modules 

Significant advancements in semiconductor technology do not come without inherent challenges.  

The same fast-switching behavior that permits power-dense and high-efficiency converters carries 

with it negative side-effects that need to be well understood when designing power modules and 

systems using wide bandgap technology [13].  One key side-effect under investigation in this effort 

is a high-frequency oscillatory behavior measured on the gate node of SiC power modules when 

operated at high-speeds (large dv/dt and di/dt).  Under extreme circumstances this phenomenon 

can become unstable and destroy the switch position in the power module.  An example of these 

high-frequency oscillations can be seen in Figure 4, which was obtained during double-pulse 

testing in a clamped inductive load simulation.  The gate voltage waveform exhibits frequencies 

greater than 100 MHz that begin to grow rapidly during the turn-off of the module.  This event 
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would likely be destructive in a real-world test as the high-frequency oscillations cause parasitic 

turn-on and a brief shoot-through event.  A greater understanding of the variables at play during 

this transition are necessary to reliably utilize the wide bandgap technology. 

While manufacturers are currently able to produce SiC in six-inch-diameter wafers commercially 

with eight-inch-diameter wafers being demonstrated in development, it is still very difficult to 

obtain a silicon carbide wafer without defects [14].  To combat the defect density issues plaguing 

SiC materials, MOSFET manufacturers design relatively small chip areas when compared to 

silicon devices [11].  This process greatly increases the device yield from a SiC wafer and is 

extremely advantageous to decrease the high cost associated with SiC MOSFETs.  Although a 

small chip area is beneficial to yield and to cost, it comes as a tradeoff for a higher on-state 

resistance and therefore a decreased current-carrying capability [14]. 

 

Figure 4. High-Frequency Oscillatory Gate Voltage during Turn-Off of SiC Power Module 
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For the smaller area SiC MOSFETs to be used in high-power electronic systems, many devices 

must be operated in parallel to produce a single switch position.  This practice is commonly carried 

out inside a power module where a single substrate and baseplate assembly can provide low-

impedance connections between the MOSFETs.  The downside of many paralleled devices in a 

single power package stems from the wafer variations of critical parameters such as 

transconductance and threshold voltage [15].  During a high-speed (large dv/dt or di/dt) event, any 

discrepancies in turn-on threshold can lead to one MOSFET turning on first and experiencing the 

full system current before its paralleled counterparts turn on [13] [16].  This can lead to premature 

device failure and negatively affect the reliability of the power module. 

 Proposed Solution 

There are three planned components of the solution to the issues described in Section 1.3.  The 

first includes the reduction of parasitic inductance on the gate and source connection PCB internal 

to the SiC power module.  The second consists of transitioning from a single internal gate resistor 

per MOSFET in the power module to an impedance network comprised of a gate resistor, a source 

resistor and an optional gate-source capacitor per MOSFET.  Finally, with the likely additional 

resistance necessary to combat the high-frequency oscillations, an active clamping circuit, also 

known as a Miller Clamp, will be added to each new impedance network of the MOSFETs’ gate 

and source kelvin connections [13] [15] [17].  This theory is supported in literature as stated by 

Andrew Lemmon et al., “In the case that the reduction of switching speed is accomplished by 

increasing the value of the series gate resistance, this solution also increases the risk of Miller turn-

on (and shoot-through in half-bridge circuits). Clearly, better techniques are needed to reduce the 

susceptibility of applications to self-sustained oscillation without 
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Figure 5. Gate Impedance Network Model with Parasitics and Tunable Components 

 

 

Figure 6. Simplified Circuit of Gate Driver and Power MOSFET with Clamping Device [18] 
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trading away the low-loss switching behavior that is one of the major attractions of WBG devices.” 

[13]  The proposed objectives for this thesis intend to provide solutions for these issues concerning 

the current state of wide bandgap technology. 

The importance of a low inductance gate connection is well known in high-speed power electronics 

as stated by Sadik et al., “…when increasing the switching speeds, it was found that the gate oxide 

was exposed to voltages exceeding the recommended operation values.  This could lead to 

reliability issues, particularly when high switching speeds are targeted. Moreover, a poorly 

designed gate-drive connection leading to high parasitic inductance in the gate loop can also be 

harmful for the device immunity.” [15]  It is critical to guarantee that all of the MOSFETs in a 

power package maintain a safe operating gate voltage.  The lumped-element, parasitic model and 

associated simulations will provide clarity into this matter. 

Figure 5 illustrates the proposed shift from a single gate resistor per MOSFET internal to the SiC 

power module to individual gate impedance networks optimized for high reliability, maximum 

switching speed, and simple drive requirements.  Figure 6 displays the active clamping circuit that 

will be utilized as an integral part of the gate and source impedance network.  The clamping circuit 

will directly connect the gate of the MOSFET to the kelvin source connection; therefore, any gate 

or source resistors used in the network are bypassed, and a very-low-impedance path is created [3] 

[18].  The clamping circuit also has the ability to hold the gate to a known negative potential again 

bypassing any gate or source resistors in the network [18].  Both revisions of the gate and source 

connection PCB are proposed to be investigated during this effort.  

 Objectives of Thesis 

The chief objective of this thesis is to investigate the gate network parasitics of a silicon carbide 

power module, the CAS325M12HM2, featuring a large quantity of paralleled SiC MOSFETs in 
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order to increase performance, to eliminate instabilities, and to simplify the gate drive 

requirements.  This objective will be achieved through the following process: 

1) Accurately model the parasitics in the gate and source connection network of a high-

performance SiC MOSFET power module. 

2) Develop a method for acquiring properly sized gate resistor, source resistor, and gate-

source capacitor values to compensate the network. 

3) Advance the technology described in the author’s patent filing, [18], by expanding the 

use of the Miller Clamping device to each MOSFET inside the SiC power module. 

4) Validate the gate impedance network performance and reliability improvements via 

simulation results in a clamped inductive load test setup. 

 Organization of Thesis 

This thesis will be comprised of six chapters starting with an introduction and theoretical 

background in Chapter 1.  The lumped-element, parasitic model of the gate network in a state-of-

the-art SiC power module will be obtained through theoretical calculations, physics simulations, 

and laboratory measurements in Chapter 2.  In Chapter 3, the lumped-element model will be used 

to conduct circuit simulations to determine oscillation-eliminating gate resistance values in the 

power module.  Chapter 4 will investigate the effects of parameter variances in SiC MOSFETs on 

switching performance.  Three topologies of Miller Clamp circuits will be investigated and 

assessed in Chapter 5.  Chapter 6 will contain the conclusions and discussions of future work. 
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CHAPTER 2 

PARASITIC ELEMENTS OF THE GATE NETWORK 

This chapter presents the procurement of the parasitic elements in the gate-source network of a 

high-performance SiC power module.  The three elements consist of finite material resistance, 

gate-source capacitance, as well as mutual and self-inductance.  Each of the three parasitics are 

crucial for obtaining an accurate model of the gate-source network for the power module; 

therefore, three methods of obtaining the values are discussed in this chapter.  The methods include 

theoretical calculations, simulations using the computer software COMSOL, and physical 

measurements of the circuit in a laboratory.  Furthermore, the gate-source network is separated 

into three distinct sections:  the first consists of the gate driver connector, the second is made up 

of the parallel planes inside the gate-source PCB, and the third comprises of the gate wirebond as 

well as the kelvin source wirebond.  The values obtained in this chapter are used extensively in the 

simulations portrayed in the following chapter. 

 Gate Driver to PCB Interconnects 

The first section is comprised of the gate driver to gate-source PCB interconnect.  Cree’s 

CAS325M12HM2 features two Samtec connectors, which deliver the gate signals down to the 

PCB inside the power module.  These connectors are composed of ten, vertical, 10 µm flash-gold, 

aluminum pins.  The square pins are 0.51 mm on each side with 2 mm spacing.  Five of the pins 

are designated for the gate connection while the other five pins are designated for the kelvin source 

connection.  Figure 7 indicates the area of interest for this section. 
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Figure 7. Gate Driver to PCB Interconnect 

2.1.1 Calculations 

To calculate the overall parasitic inductance of the gate-source connector, two phenomena must 

be considered: the self-inductance of each pin and the mutual-inductance between the adjacent 

pins.  The first component of the inductance, the self-inductance is identical between the ten pins 

of the connector. The equation governing the self-inductance of a wire with length l and radius r 

is given by the equation below [1].  The length and radius are in millimeters while the resulting 

inductance is in nanohenries. 

 
𝐿𝑠 =  0.2 [𝑙 ln

𝑙 + √𝑙2 + 𝑟2

𝑟
− √𝑙2 + 𝑟2 +

𝑙

4
+ 𝑟] (nH) 

 

 

(2.1) 

The length of each pin is approximately 11.86 mm.  The pins have a square cross-section; 

therefore, a worst-case radius running from the center of the square to the center of one of the sides 

is used.  This provides a radius of 0.255 mm.  Using equation 2.1 to calculate the self-inductance 
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of a single pin, the value is found to be 9.02 nH.  This result is assumed to be valid based on the 

common assumption of approximately 1 nH/mm for wires of this size [2]. 

The self-inductance of the connector is only a part of the actual inductance seen by the gate driver.  

The remaining piece, the mutual-inductance, commonly works in favor of the system impedance 

by providing a cancellation of a portion of the self-inductance.  Two parallel conductors with 

currents flowing in opposite directions exhibit a negative mutual-inductance dependent on two 

parameters of the conductors: their length and their separation distance [2].  Conversely, if two 

parallel conductors have currents flowing in the same direction, they exhibit a positive mutual-

inductance.  These two effects are precisely what occurs in the gate driver connector.  The polarity 

of the mutual-inductance determines if the overall inductance of the element will increase or 

decrease.  This effect is easily visualized in Figure 8 where half of the conductors carry current 

from the gate driver to the power module (×) while the other five pins carry current from the power 

module back to the gate driver (∙).  Therefore, to determine the total mutual-inductance of a single 

pin, every other conductor’s effect on the pin in question must be considered. 

For example, consider the bottom-left (BL) pin of the gate-source connector shown in Figure 8.  

The other nine pins contribute a unique amount of either positive or negative mutual-inductance, 

which sum to attain the total mutual-inductance.  The other four bottom-row pins contribute 

positive mutual-inductance while the five top pins contribute negative mutual-inductance. 

Equation 2.2 narrates this process. 

 𝑀𝐵𝐿 = 𝑀(𝑑6) + 𝑀(𝑑7) + 𝑀(𝑑8) + 𝑀(𝑑9)

− (𝑀(𝑑1) + 𝑀(𝑑2) + 𝑀(𝑑3) + 𝑀(𝑑4) + 𝑀(𝑑5)) 

 

 

(2.2) 
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The mutual-inductance of each pin is modeled with Equation 2.3 where l is the length of a pin in 

millimeters and d is the distance between the two pins in question also in millimeters [1]. 

 

𝑀(𝑑𝑛) =  0.2

[
 
 
 

𝑙 ln
𝑙 + √𝑙2 + 𝑑𝑛

2

𝑑𝑛
− √𝑙2 + 𝑑𝑛

2 + 𝑑𝑛

]
 
 
 

 (nH) 

 

(2.3) 

The distance between each pin is calculated simply with the Pythagorean theorem as the pins are 

aligned in a 2 mm by 2 mm grid.  Using the acquired distances shown in Table 2 as well as a pin 

length of 11.86 mm, each pin’s mutual-inductance contribution is calculated and the results are 

displayed in Table 2 for the bottom-left conductor.  Each of the components are summed to find 

the total mutual-inductance that the bottom-left pin experiences with Equation 2.2.  As each pin is 

affected by five anti-parallel conductors and only four parallel conductors, the overall mutual-

inductance of any pin is negative.  This leads to a decrease in the total amount of inductance that 

the gate-source connector exhibits. 

 

Figure 8. Cross-Section of Gate-Source Connector Portraying Mutual-Inductance 
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The final step for calculating the total inductance of the conductor consists of combining the 

mutual-inductance and the self-inductance of each pin, simplifying each side of the conductor into 

a single inductance by considering the five paralleled conductors, and ultimately summing the two 

inductances from each side of the connector.  The first step is displayed in Table 2 where the self-

inductance of each pin is summed with its mutual-inductance component to give way to the 

effective inductance of each pin.  Pins in the same column exhibit an equal mutual-inductance 

component and have an equal effective inductance; therefore, the outcome for only the bottom row 

of pins is shown. 

 

𝐿𝑅𝑜𝑤 = [ ∑
1

𝐿𝑒𝑓𝑓(𝑥)
 

5

𝑥=1

]

−1

 (2.4) 

The effective inductances of each pin are then paralleled with the simple calculation of paralleled 

inductors as shown in Equation 2.4.  Using this equation, the inductance of one row of five pins is 

1.301 nH.  Considering the other row of five pins, the total calculated inductance of the gate-source 

connector is 2.602 nH. 

Table 1. Distance between Conductors with Corresponding Mutual-Inductance 

Distance (mm) Mutual-Inductance (nH) 

d1 2 M1 (-) 3.878 

d2 2√2 M2 (-) 3.204 

d3 2√5 M3 (-) 2.397 

d4 2√10 M4 (-) 1.865 

d5 2√17 M5 (-) 1.512 

d6 2 M6 (+) 3.878 

d7 4 M7 (+) 2.584 

d8 6 M8 (+) 1.941 

d9 8 M9 (+) 1.550 
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2.1.2 Measurement 

 The inductance calculation obtained in the previous section must be validated through 

measurement to ensure that it is an acceptable value to create an accurate gate network model. In 

order to measure such a miniscule inductance value, extremely precise equipment must be utilized.  

The equipment chosen for this procedure is Agilent’s E4980A 1 MHz precision LCR meter.  Per 

the user manual, the absolute measurement accuracy in the 1 nH – 10 nH range is between 1% and 

10% at a measurement frequency of 1 MHz.  This is the highest operating frequency of this 

precision LCR meter, and it is the frequency at which all the measurements are obtained.  When 

measuring inductances in the few-nanohenry range, it is impossible to obtain accurate results with 

the standard 4-wire alligator-clip probes.  The small movements of the wires during open and short 

calibration nullify the corrections and generate nonsensical results.  To attain meaningful results 

from this equipment, an inductance measurement fixture must be designed.  This fixture keeps the 

coaxial wires and device under test (DUT) in the same position during each calibration as well as 

during the actual measurement, which ensures the most accurate results. 

Table 2. Self-Inductance, Mutual-Inductance, and Total Pin Inductance 

Pin Number (x) Ls (nH) Mx (nH) Leff-x (nH) 

1 (Bottom-Left) 7.4296 -2.9041 4.5255 

2 (Bottom-LC) 7.4296 -2.2689 5.1606 

3 (Bottom-Center) 7.4296 -2.1583 5.2713 

4 (Bottom-RC) 7.4296 -2.2689 5.1606 

5 (Bottom-Right) 7.4296 -2.9041 4.5255 
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The four measurement signals required by the LCR meter include two force connections and two 

kelvin connections.  This is a common 4-wire technique designed to eliminate error from the 

measurement of the wires connecting the device under test.  A relatively large current can flow 

through the force connections during the test; furthermore, this current induces a voltage drop 

across the finite resistance of the conductors.  Using the 4-wire technique, this voltage drop is not 

included in the inductance measurement as the true measurement is performed at the terminals of 

the DUT through the other two conductors.  This is commonly known as a kelvin connection. 

 

Figure 9. Inductance Measurement Fixture and Agilent’s Precision LCR Meter 
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Another requirement of the inductance measurement test fixture is an easily accessible method to 

calibrate the LCR meter.  Calibration is performed via an open measurement followed by a short 

measurement across the location of the DUT.  Following the calibration procedure, the test fixture 

is prepared to accurately measure the gate-source connector.  Finally, the feet of the connector are 

soldered onto the test fixture in the same area where the short measurement is conducted.  The 

connector is open at the top and therefore must be linked to complete the current loop.  As seen in 

Figure 9, a small piece of copper is used to connect the two rows of pins on the open end of the 

connector.  As soon as the measurement loop is closed, the inductance and series resistance values 

are displayed for the test condition of 1 MHz and 20 mA of force current.  The values obtained 

from this measurement are 2.097250 nH and 1.847527 mΩ.  The percent error between the 

calculated value and the measured value is 19.4%, which is obtained using Equation 2.5. 

 
𝐸𝑟𝑟𝑜𝑟 % =  [

𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐿𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝐿𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
] × 100 

 

(2.5) 

While the error percentage is rather high, the measured value is only 0.69 nH from the theoretical 

calculations.  This level of accuracy is acceptable when considering the extremely low values of 

inductance provided by this piece of the system.  When taking into account the larger parasitic 

inductances of the system, this small discrepancy between measured and calculated values is 

considered in the noise floor.  In the next section, a physics-based simulation provides another take 

on the parasitic inductance of the gate-source connector. 
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2.1.3 COMSOL Simulations 

To determine whether the calculation or the measured value of parasitic inductance is more 

accurate, a third method, COMSOL Multiphysics Simulator, is used.  COMSOL is a powerful 

multi-physics solver capable of modeling electromagnetics, structural mechanics, fluid and heat 

transfer, as well as chemical reactions.  For this investigation, an electromagnetic physics solver 

is utilized focusing on magnetic and electric fields, which allows for parasitic inductance, 

capacitance, and resistance extraction of a 3D CAD model. 

The first step of the simulation procedure comprises generating a model optimized for use with 

COMSOL.  A Solidworks model is provided by Samtec, the manufacturer of the gate source 

connector, but the model contains unnecessary information that greatly lengthens the time required 

to simulate the connector.  Only the required information pertinent to the inductance measurement 

needs to be included in the model.  For this reason, the plastic, structural pieces are removed from 

 

Figure 10. Manufacturer’s 3D Model vs. 3D Model Optimized for COMSOL 
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the model as well as the chamfered ends of the pins.  Figure 10 illustrates the manufacturer’s model 

of the connector and the modified model that is simulated in COMSOL.  Additionally, the 

simulation requires a closed path for the current to flow just as described during the measurement 

process.  For this reason, a flat plane is added to the model to create a path for current to flow from 

the bottom of one side of the pins to the bottom of the other set of pins. The plane is displayed in 

Figure 10. 

 

Figure 11. Constructed Mesh of Gate Source Connector 
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Next, the model must be meshed into an array of much smaller shapes, which are used by the 

physics solver to obtain a solution for the system.  In COMSOL, meshing the 3D model is the most 

important step to creating an accurate and efficient model to simulate.  If the mesh elements are 

too small, the solver will take an extremely long time to solve the system or the solver may never 

converge; however, if the mesh elements are too large, the result of the simulation may be 

inaccurate.  The constructed mesh for the gate source connector is shown in Figure 11.  Areas that 

are very thin such as the bottom copper plane have a very fine mesh while the larger pins have a 

coarser mesh.  This mesh is created with COMSOL’s automatic mesh settings set to fine, which 

yielded very good results.  As this is a relatively simple model, the solver takes less than an hour 

to achieve a numerical solution with a 0.001 rated accuracy. 

After the model has been meshed appropriately, the material of the domains must be selected, a 

ground and source boundary must be defined, and a stationary or frequency solver must be 

selected.  The materials used for this simulation are copper for the rows of pins and the bottom 

plane while the remaining domains are set to air with both materials optimized for electromagnetic 

simulation.  The ground boundary is defined as the top faces of five of the pins in one row while 

the source terminal is defined as the top faces of the other five pins.  The source terminal is defined 

as a current source and is set to 1 A.  Finally, a frequency domain solution is required to obtain the 

inductance; therefore, the solver is set to the frequency domain with a value of 1 MHz in order to 

match the point at which the measurements are obtained, and the simulation setup is complete. 

After the solution converges and a result is obtained, COMSOL offers a myriad of visual aids to 

effectively portray the data.  As seen in Figure 12, the surface of the connector contains the current 

density data in A/mm while the arrow-surface on a cut-plane in the air domain portrays the  
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magnetic flux density (µT).  These results are helpful for visualizing the current flow and magnetic 

fields in the simulation.  If the current or field does not appear as expected, the model should be 

re-meshed and solved again.  Finally, a global expression is defined to find the parasitic inductance 

and resistance.  The values obtained from this simulation are 2.6114 nH and 1.3840 mΩ, which 

match very closely to the calculated value.  The percent error between the calculated value and the 

simulated value is 0.35% as per Equation 2.5. 

 

 

Figure 12. Magnetic Flux Density and Current Density of Gate Source Connector 
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 Gate & Kelvin-Source PCB 

The largest contributor to the parasitic inductance of the gate-source network is the printed circuit 

board (PCB).  This section is the physically largest portion of the system and offers the most area 

for improvement between the existing design and one optimized for low-inductance routing.  The 

current layout is composed of a single-layer containing multiple copper planes.  One plane makes 

up the gate net, another creates the kelvin source net, and the remaining shapes create the wirebond 

locations for each MOSFET as displayed in Figure 13.  As these planes are all on a single copper 

layer, they exhibit little benefit from flux cancelation in the form of mutual-inductance.  As in the 

previous section, the three methods of parasitic extraction: calculation, measurement, and 

simulation are described in the following sections. 

2.2.1 Calculations 

To apply standard inductance calculations to the planes of the PCB, small modifications of the 

shapes must be made to allow the equations to apply.  Instead of the 45° corners and angled 

sections of the planes, a rectangular approximation is created to allow Equation 2.6 to be applied.  

The rectangular approximations for the shapes are shown in Figure 13, and each rectangle is 

labeled as either G for gate net or S for source net with an A, B, or C identifier. 

As with the gate-source connector, the first element to calculate is the self-inductance and is 

governed by the straight rectangular trace inductance approximation shown in Equation 2.6 [3]. 

 
𝐿 =  

𝜇0𝑙

2𝜋
[ln (

2𝑙

𝑤 + ℎ
) +

𝑤 + ℎ

3𝑙
+ 0.50049] (H) 

 

(2.6) 

Assuming a fixed height or copper thickness of 0.017526 mm, the remaining width and length for 

each rectangle are measured in Allegro PCB and are displayed in Table 3.  Using these 

measurements, the self-inductance of each rectangle can be calculated.  These values are also  
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included in Table 3.  As expected, the planes create a large amount of parasitic inductance with 

the total self-inductance calculated as 155.519 nH.  As the geometry of the copper was 

approximated for ease of calculation, there is likely to be a higher error percentage between the 

calculated and the measured or simulated values.  Next, the mutual-inductance is calculated to 

close this section.  

Table 3. Self-Inductance Calculation of Gate Kelvin PCB 

Segment Width (mm) Length (mm) Height (mm) Inductance (nH) 

G-A 5.594 14.224 0.017526 6.416 

G-B 2.159 7.868 0.017526 4.046 

G-C 4.318 69.850 0.017526 55.794 

S-A 5.334 15.494 0.017526 7.350 

S-B 1.143 9.271 0.017526 6.144 

S-C 0.889 68.580 0.017526 75.770 

Total    155.519 

     

 

Figure 13. Gate Kelvin PCB Layout (Top) and Estimated Area for Calculations (Bottom) 
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The mutual-inductance between two equal parallel conductors can be calculated with Equation 2.7 

[3].  This calculation is appropriate for this application because the two shapes have an equal 

amount of separation for their entire length. 

 

𝑀 = ±
𝜇0𝑙

2𝜋
[ln(

𝑙

𝑠
+ √1 +

𝑙2

s2
) − √1 +

𝑠2

𝑙2
+

𝑠

𝑙
] (H) 

 

 

(2.7) 

There are only two variables necessary for the mutual-inductance calculation: conductor 

separation, s, and the length of the conductors, l.  The separation is a constant 10 mils between the 

shapes, which is equal to 0.254 mm.  The length is total sum of the G rectangles and is 93.218 mm.  

Applying Equation 2.7 produces a mutual-inductance value of -104.4 nH, which is a substantial 

portion of the self-inductance.  Finally, summing the individual components of the total 

inductance, the self-inductance of 155.519 nH and the mutual-inductance of -104.427 nH, a value 

of 51.092 nH is obtained.  When compared to the 2.6 nH provided by the input connector from the 

first section, the PCB delivers significantly more parasitic inductance to the system.  The next 

subsection compares the theoretical calculations to the measured values. 

2.2.2 Measurements 

The DUT in this section is the printed circuit board, but to obtain the inductance measurement 

from the PCB, the connector from the first section is needed for connection to the fixture.  After 

the measurement is complete, the inductance of the connector is subtracted from the measurement 

to compare directly with the theoretical calculation value.  Like the procedure in the previous 

measurement section, the custom, inductance extraction fixture is used to calibrate the LCR meter 

with an open measurement and a short measurement.  After fixture compensation, the DUT is 

prepared by soldering a piece of copper across the farthest wirebond pads in order to complete the 
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loop.  The PCB is soldered to the bottom of the gate-source connector and the fixture is connected 

to the LCR meter and can be seen in Figure 14.  Also shown in Figure 14, the inductance 

measurement is 55.437 nH for the gate-source connector and the PCB.  To ensure accurate results, 

an additional parasitic extraction tool is utilized to verify the results from the Agilent LCR meter.  

Keysight’s E4990A impedance analyzer provided the second measurement, and at 1 MHz, the 

value of 54.161 nH is obtained.  To directly compare the acquired measurement value to the 

calculations, the measured gate-source connector value must be subtracted from the total 

measurement value.   

 55.437 nH + 54.161 nH

2
−  1.903 nH = 52.896 nH 

 

(2.8) 

 

 

Figure 14. Gate Kelvin PCB Mounted on Substrate Assembly 
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As shown in Equation 2.8, the two measured values are averaged, and the gate connector 

inductance is subtracted to find the total inductance of 52.896 nH for the PCB.  When compared 

to the calculated value, of 51.092 nH, the difference is only 1.80 nH and the error percentage is 

3.4%.  The small amount of error between the two methods of parasitic extraction reassure the 

methods in this investigation; moreover; in the next section, the COMSOL simulations provides 

another take on the parasitics of the gate-source PCB. 

2.2.3 COMSOL Simulations 

Following a similar procedure to the connector simulation, the first step of modeling the PCB in 

COMSOL is to create a 3D model optimized for simulation.  The process includes removing any 

unnecessary information such as plastic mechanical features or floating conductive elements that 

 

 

Figure 15. Mesh Construct for Solving COMSOL Electromagnetic Simulation of PCB 
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will render the system unsolvable.  Using the layout software, Allegro PCB, a DXF file is 

generated, which contains the exact dimensions of the copper traces of the PCB.  This file is easily 

imported into Solidworks as a sketch and is extruded to the correct copper thickness of 1 oz. or 

0.0014 inches.  A rectangle equivalent to the size of an 0805-resistor is drawn and extruded to the 

correct height and added to the model in place of the gate resistor.  For this model, the gate source 

connector is added as well to complete the basic 3D CAD model. 

There are as many as fourteen MOSFETs in parallel in the HT-3000 power module under 

investigation.  It is necessary to determine the inductance to each position to create an accurate 

parasitic model for circuit simulation.  For this reason, the simulation begins with the first position 

inside the module as shown in Figure 15.  The 0805-resistor part created previously is re-used to 

close the current loop at the first MOSFET position, which is closest to the input connector.  The 

last element necessary to simulate the model using COMSOL is an appropriately sized air domain.  

For this model, two air domains are used to increase the accuracy of the simulation while 

decreasing the required simulation time.  A small air domain is created around the elements that 

exhibit fine features such as the resistor pad with thermal relief connections while a larger air 

domain surrounds the entire 3D model. 

Next, the generated 3D model is meshed with a procedure enhanced for large, thin planes such as 

copper traces in a PCB.  Each face of the model is meshed independently with a free-triangular 

mesh set to an appropriately selected element minimum and maximum dimension size; in 

particular, the domains with tight spacing require mesh element dimensions with a much smaller 

minimum size than the larger domains.  After the top faces of the PCB have been completed, the 

meshes are copied to their equivalent bottom-side face.  Finally, the two corresponding meshed 

faces of the PCB are swept together and distributed into three-dimensional shapes for simulation.   
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After the PCB has been successfully meshed, the small air domain is meshed with a free-tetrahedral 

mesh algorithm with dimension size set to extremely fine and the large air domain is meshed with  

dimension size set to normal.  The meshed model, which is shown in Figure 15 is now ready for 

electromagnetic simulation. 

The simulation takes several hours to converge to the set relative tolerance of 0.001.  After the 

simulation is complete, the parasitic inductance is determined by adding a global evaluation 

expression comprising of the imaginary component of the impedance divided by the angular 

frequency.  For the first position, an inductance of 19.696 nH was obtained.  This procedure is 

repeated for the final MOSFET position to compare to the simulated inductance to the calculated 

and measured values to determine if the simulation method is accurate.  Starting from the 3D CAD 

model in Solidworks, the small air domain, the resistors, and the wirebond pads are moved to the 

 

Figure 16. Current Density of First Position Shorted at Wirebond Pads 
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last position on the gate-source PCB.  The mesh parameters are updated with the correct boundaries 

and domains, and the simulation is conducted.  The results of the simulation for the final position 

indicate that the inductance is 52.976 nH.  These results match the measured values very well with 

an error percentage of 0.15%.  The simulation method is verified as an effective parasitic extraction 

technique again through this experiment.  Additionally, COMSOL is an extremely valuable 

visualization tool as illustrated in Figure 17, which portrays the magnetic field around the resistor 

and wirebond pads of the model.  The streamline tool is used to visualize the field, and a rainbow 

color chart is applied to show the magnitude of the field. 

  

 

Figure 17. Magnetic Field (A/m) Surrounding Wirebond Pads and Shorting Resistor 
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 Gate & Kelvin Source Wire Bonds 

In stark contrast with the previous section, the wirebond is a much smaller contributor of parasitic 

inductance to the gate network.  That being stated, due to the long and narrow geometry of the 

wirebond, and because there are two wirebonds per MOSFET, the parasitic inductance is non-

negligible.  The major variable governing the inductance of the wirebond is the length, which 

varies widely between the different switch positions.  For this reason, it is difficult to achieve a 

low error percentage between the measured and calculated values while the simulated value 

matches the measured results closely.  As in the previous two sections, the three methods of 

parasitic extraction: calculation, measurement, and simulation are described in the following 

sections. 

2.3.1 Calculations 

Two methods for calculating the inductance of a wirebond will be evaluated in this section.  The 

first, the straight wire inductance approximation, is simply governed by the length and the radius 

of the wire.  For this case, the wire is a 5 mil wirebond, which has a radius of 0.0635 mm.  For 

both methods of calculating inductance, the length will be swept from 5 mm to 50 mm in 5 mm 

increments.  The equation governing the straight wire inductance approximation is shown below 

in Equation 2.9 [3].  The results of this method are displayed in Table 5 on the next page. 

 

𝐿 =  
𝜇0

2𝜋
×  𝑙 [ln(

𝑙

𝑟
+ √1 +

𝑙2

𝑟2
) − √1 +

𝑟2

𝑙2
+

𝑟

𝑙
+

1

4
] (H) 

 

(2.9) 

For the next method, Kazimierczuk in High-Frequency Magnetic Components, has approximated 

the inductance of a wirebond with Equation 2.10.  Again, the equation’s parameters are wirebond 

radius and length, but the equation is far simpler than the straight wire approximation.  As 
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portrayed by the results in Table 5, both methods for calculating the inductance of a wirebond are 

extremely similar with the error percentage shrinking with increasing wirebond length. 

 
𝐿 ≈  

𝜇0

2𝜋
×  𝑙 [ln (

2𝑙

𝑟
) −

3

4
] (H) 

(2.10) 

As there commonly exist multiple wirebonds leading to and from a semiconductor device, it is 

critical to examine the inductive effects shared by two parallel wirebonds [2].  For this study, the 

two wirebonds are used to connect the designated gate and source pads on the PCB to the 

corresponding gate and kelvin source locations on the MOSFETs.  The mutual-inductance between 

two parallel wirebonds is given by Equation 2.11. 

 
𝑀 = ±

𝜇0𝑙

2𝜋
[ln (

2𝑙

𝑠
) +

𝑠

𝑙
− 1] (H) 

(2.11) 

The two parameters controlling the mutual-inductance are s, the separation between the two bonds, 

and l, the length of the bonds. 

Table 4. Self-Inductance Calculation of Wirebonds of Varying Length 

Length (mm) Radius (mm) 
Straight Wire 

Inductance (nH) 

Wirebond Approximation 

Inductance (nH) 

Error 

Percentage 

1 0.0635 0.55 0.54 2.26 

2 0.0635 1.37 1.36 0.92 

3 0.0635 2.29 2.28 0.55 

4 0.0635 3.28 3.27 0.39 

5 0.0635 4.32 4.31 0.29 

10 0.0635 10.02 10.00 0.13 

15 0.0635 16.24 16.22 0.08 

20 0.0635 22.80 22.78 0.06 

25 0.0635 29.61 29.59 0.04 
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The mutual-inductance contributes about 1 nH for a 4 mm wirebond when the two bonds have 1 

mm – 2 mm of separation.  This value is not significant in regard to the total system inductance, 

but it is slightly over one-third of the self-inductance, which will greatly affect the die-to-die 

inductance for the circuit model in the next chapter.  According to the wirebond profile for the HT-

3000 module, the gate and source wirebonds are approximately 3800 µm and 4000 µm 

respectively.  For this reason, 4 mm calculation values are used for comparing to the measured and 

simulated values in the next sections. 

2.3.2 Measurements 

As it is extremely difficult to accurately measure inductances in the few-nanohenry range, the 

wirebonds are placed in their intended locations in an empty module, and the entire gate-source 

loop is measured.  This will ensure the wirebonds have accurate separation and length related to 

their actual operation. The inductance extraction fixture from the previous two measurement 

Table 5. Mutual-Inductance Calculation of Wirebonds of Varying Length 

Length 

(mm) 

Separation 

(mm) 

Mutual-Inductance 

(nH) 

Wirebond Self- 

Inductance (nH) 

Total- 

Inductance (nH) 

3 1 0.675 2.279 1.604 

3 2 0.459 2.279 1.820 

3 3 0.416 2.279 1.863 

4 1 1.064 3.269 2.205 

4 2 0.709 3.269 2.560 

4 3 0.585 3.269 2.684 

5 1 1.503 4.309 2.807 

5 2 1.009 4.309 3.300 

5 3 0.804 4.309 3.505 
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sections is the appropriate tool to extract the full gate-source loop inductance.  As there can be up 

to fourteen MOSFETs in parallel in one switch position in this module, the inductance to each 

position is measured independently.  These results are used to generate the die-to-die parasitic 

values. 

To begin, a clean gate-source PCB is populated with 0 Ω gate resistors and the gate-source 

connectors.  A completed substrate and baseplate assembly provides a base for the PCB and creates 

a realistic air domain for the measurement. The LCR meter is compensated with an open 

measurement and a short measurement to ensure that the result does not include the inductance of 

the fixture.  After fixture compensation, the first MOSFET position of the module is wirebonded  

Table 6. Inductance Measurement of Gate Kelvin PCB 

Position 
Low-Side 

Inductance (nH) 

Low-Side 

Resistance (mΩ) 

High-Side 

Inductance (nH) 

High-Side 

Resistance (mΩ) 

1 22.55 63.78 20.67 65.42 

2 25.95 72.89 24.11 71.88 

3 28.47 74.68 25.95 76.34 

4 32.43 87.64 29.09 82.58 

5 34.70 87.79 33.28 90.73 

6 38.87 97.23 35.98 95.21 

7 41.17 103.69 38.50 101.08 

8 44.20 107.03 41.66 107.43 

9 46.69 112.26 45.69 116.60 

10 50.50 122.98 48.16 120.82 

11 53.16 126.05 50.58 122.64 

12 56.78 136.32 55.26 133.73 

13 60.33 141.48 58.28 140.87 

14 61.93 140.83 60.29 143.57 
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Figure 18. CAS325M12HM2 Gate Network PCB on Substrate Assembly with Wirebonds 
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from the designated pads on the PCB directly to the substrate rather a bare die.  The gate network 

loop is completed through the short on the substrate.  The wirebonded module subassembly is 

displayed in Figure 18.  The measurement is taken at 1 MHz with the maximum source current 

available on the Agilent LCR meter, 20 mA.  The process is repeated for each of the 14 MOSFET 

positions on the high-side and low-side of the module, and the results are displayed in Table 6. 

Examining the last position’s inductance value, the connector, PCB, and wirebonds measurement 

results in an inductance of 60.29 nH for the high-side as shown in Equation 2.12. 

 𝐿𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 + 𝐿𝑃𝐶𝐵 + 𝐿𝐺−𝑊𝑖𝑟𝑒𝑏𝑜𝑛𝑑 + 𝐿𝑆−𝑊𝑖𝑟𝑒𝑏𝑜𝑛𝑑 = 60.29 nH (2.12) 

The measurement of only the PCB and connector produce 55.437 nH as shown in Equation 2.13. 

 𝐿𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 + 𝐿𝑃𝐶𝐵 = 55.437 nH (2.13) 

This equates to a shared inductance of 4.853 nH for the gate and source wirebonds. 

 𝐿𝐺−𝑊𝑖𝑟𝑒𝑏𝑜𝑛𝑑 + 𝐿𝑆−𝑊𝑖𝑟𝑒𝑏𝑜𝑛𝑑 = 60.29 nH − 55.437 nH

=  4.853 nH 

(2.14) 

Assuming that the inductance of the gate wirebond is equal to the source wirebond, the sum of the 

two bonds can be split into two equal parts as shown in Equation 2.15. 

 
𝐿𝐺−𝑊𝑖𝑟𝑒𝑏𝑜𝑛𝑑 = 𝐿𝑆−𝑊𝑖𝑟𝑒𝑏𝑜𝑛𝑑 = 

4.853 nH

2
= 2.427 nH 

(2.15) 

Comparing to the calculated results for a 4 mm wirebond, this result places the spacing between 1 

mm and 2 mm, which is exactly as expected; therefore, the measurement process is proven valid. 
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2.3.3 COMSOL Simulations 

The verification of the measurements begins with the formation of a 3D CAD model optimized 

for accurate and fast simulations.  As the measurements for this section were conducted on the 

entire gate loop, and the previous sections’ measurements were subtracted away to obtain the 

wirebond’s inductance contribution, the same procedure is repeated for the simulation.  Therefore, 

starting with the 3D model from the connector and PCB, a wirebond and MOSFET must be added 

to complete the gate loop. 

First, to create the wirebond, two lines are drawn to represent the feet of the bonds.  They are 

placed 2 mm apart on the z-axis to simulate the difference in height of the MOSFET on the 

substrate and the wirebond pads on the top of the PCB.  Next, with the help of a few construction 

lines, a spline is drawn in between the two feet to simulate the approximate shape of a wirebond.  

A plane is added to the drawing at the end of one of the feet, and a circle with a diameter of 5 mils 

 

Figure 19. 0.005” Diameter Gate and Source Wirebonds Modeled in Solidworks 
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is added to represent the diameter of the bond.  The circle is swept along the spline to give the 

bond its 3-dimensional form, and the two ends are sliced in create flat feet that will connect to the 

pads and the MOSFET. 

To complete the gate loop, the gate and source bonds must have a conductive path between them.  

While the gate would be more accurately modeled with a capacitor, the simulation demands a short 

between the gate and source.  To satisfy this requirement, the MOSFET bare die is modeled as a 

simple rectangle with a depth matching the copper thickness of the PCB and is defined as copper 

material in COMSOL.  With the two additional parts modeled, the assembly is updated to include 

a wirebond from the gate wirebond pad on the PCB to the MOSFET model, which is placed 2 mm 

below the PCB, and a source wirebond is added from the MOSFET up to the PCB as shown in 

Figure 19.  The gate loop and 3D model are now complete, and the model is ready to be imported 

into COMSOL for meshing. 

The model is meshed with a technique enhanced for large, thin planes like those found in this 

model’s PCB.  Each face of the model is meshed independently with a free-triangular mesh, the 

face is then copied to its equivalent bottom-side face, and the two corresponding meshed faces are 

swept together and distributed into three-dimensional shapes for simulation.  After the PCB trace 

meshes are defined, the wirebonds are meshed with an extremely fine free-tetrahedral mesh.  This 

domain sets the minimum element size for the air domain around it; therefore, similar to the PCB 

simulation, a small air domain is place around the tightly spaced, last position of the model.  This 

small air domain creates a transition from the small mesh elements of the wirebonds and thermal 

reliefs to a large element size for the majority of the air domain.  This significantly decreases the 

time required to mesh the system and increases the accuracy in the tightly spaced area.  The 

completed mesh for this model is illustrated in Figure 20. 
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Finally, the simulation is conducted with 1 A of source current at 1 MHz.  The simulation took 

approximately four days to converge due to the extremely fine size of the mesh elements as well 

as the high-frequency source, but the results proved to be worth the wait.  Generating a global 

evaluation for the inductance of the gate loop resulted in a value of 60.292577 nH, which perfectly 

matches the high-side, last-position’s inductance value of 60.29 nH.  Again, the FEA simulation 

proves to be an effective method for extracting the parasitic inductance. 

The simulation method uniquely has the ability to visualize the current density through every 

element of the 3D model.  With this capability, a cross-section of the wirebonds illustrating the 

current density in A/mm2 is displayed in Figure 22.  An interesting aspect of this cross-section is 

the clear presence of the proximity effect as well as the skin effect.  According to Kazimierczuk, 

“When two or more conductors are brought into close proximity, their magnetic fields may add or  

 

Figure 20. Last Position of Meshed 3D CAD Model in COMSOL 
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subtract.  The high-frequency current will concentrate within a conductor, where the magnetic 

fields are additive.” [2].  This causes parallel conductors with currents flowing in the same 

direction to have current crowding on opposite sides, while parallel conductors with currents 

flowing in opposite directions have current crowding towards the middle of the two conductors.  

This phenomenon is known as the proximity effect and can be seen in the cross-sections of the 

wirebonds in Figure 22.  Similarly, the skin effect is a high-frequency phenomenon, which is 

induced by eddy currents within the conductor causing non-uniform current densities [2].  In a 

circular conductor, the current flows uniformly on the outside or skin of the conductor at high-

frequencies when under the influence of the skin effect.  This phenomenon is also present in the 

wirebond and exhibited in Figure 22.  The magnetic flux density is visualized in Figure 21 in the 

 

 

Figure 21. Current Density and Magnetic Flux Density of Wirebonds 
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small, finely meshed air domain around the wirebonds.  The summation of the fields can be seen 

between the two bonds, which generates mutual-inductance and lowers the overall parasitic 

inductance of the bonds. 

 Conclusion 

The internal gate-source network of a high-performance, SiC-based power module was divided 

into three sections: the input connector, the printed circuit board, and the wirebonds.  Three 

parasitic extraction methods were utilized to obtain the inductance values for the three sections of 

the network with great success.  The first, the input connector, contained the greatest error 

percentage between the measured value and the two other methods with a value of 19%, yet there 

was only approximately 0.5 nH difference between the three methods.  The PCB showed extremely 

consistent results with a maximum error percentage of only 3.5% and a maximum difference of 

 

Figure 22. Current Density of Last Position and Proximity Effect of Wirebonds 
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1.88 nH. The wirebond contained the lowest error percentage of 3.17% and a difference of only 

0.074 nH.  Table 7 displays the full list of results from each extraction method.  These values will 

be used extensively in the next chapter to construct an accurate model of the gate-source network 

in SPICE. 

 

 

 

 

 

 

  

Table 7. Comparison of Inductance Extraction Methods 

Parameter Calculated Measured Simulated Units 

Connector 2.602 2.097 2.611 nH 

PCB (Last Position) 51.092 52.896 52.976 nH 

Wirebond (One Bond from Pair) 2.430 2.427 2.353 nH 

Last Position 58.553 60.290 60.293 nH 

    
 



45 

 

 References 

 

 

 

[1]  E. B. Rosa, The Self and Mutual Inductances of Linear Conductors, vol. 4, Washington: 

Bulletin of the Bureau of Standards, 1907, pp. 301-342. 

[2]  M. K. Kazimierczuk, High-Frequency Magnetic Components, Chichester: John Wiley & 

Sons, Ltd, 2009.  

[3]  X. Qi, "High-Frequency Characterization and Modeling of On-Chip Interconnects and RF 

IC Wire Bonds," Dissertation, Stanford University, 2001. 

[4]  J. Kim, J. Fan, A. E. Ruehli, J. Kim and J. Drewniak, "Inductance Calculations for Plane-

Pair Area Fills With Vias in a Power Distribution Network Using a Cavity Model and Partial 

Inductances," in IEEE Transactions on Microwave Theory and Techniques, 2011.  

[5]  W. Choi, D. Son and D. Kim, "Advantages of Low Parasitic Inductance Packages of Power 

MOSFET for Server Power Applications," in International Power Electronics Conference, 

Hiroshima, Japan, 2014.  



46 

 

CHAPTER 3 

GATE NETWORK MODELING AND ANALYSIS 

This chapter presents the construction of the gate network SPICE model of a high-performance, 

SiC-based power module.  The thoroughly investigated parasitic inductance values from the 

previous chapter will be utilized to calculate the lumped element, die-to-die inductances, and the 

acquisition of the parasitic resistances and capacitances will be discussed briefly.  A SPICE model 

of the gate network will be created using these parasitic values, and the model will be exhaustively 

tuned to meet a list of stability and safe-operating-area (SOA) criteria.  Finally, the gate network 

model will be combined with the power-loop model of the module, and the effects of parameter 

variation in SiC MOSFETs will be examined. 

 Parasitic Elements of the Gate Network 

The model-ready parasitic elements of the gate network will be extracted from the values obtained 

in the previous chapter; additionally, the consideration of resistive and capacitive elements will be 

discussed.  First, an overview of the lumped parameters in this study will be illustrated. 

3.1.1 Lumped-Element Parasitic Model Overview 

As there exist infinitesimal parasitic inductances, capacitances, and resistances in the physical 

power module, it is crucial to select only a meaningfully set of elements that significantly 

contribute to the performance in question.  These lumped elements, while fewer than the actual 

number of parasitics in the system, provide an accurate model of the real-world circuit. They also 

make available a myriad of circuit analysis methods including series and parallel RLC circuit 

analysis and rapid simulations using SPICE.  Figure 7 illustrates two of the fourteen MOSFET 

positions in the gate network, lumped-element model.  Many of the parameters shown in  
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Figure 23. Lumped-Element Parasitic Model of Two MOSFET Positions 
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the figure were directly extracted in the previous chapter; however, some of the parameters will 

need to be derived from a system of equations of the measured values.  After all of the parameters 

are defined, the values will be entered into a SPICE circuit simulation of the gate network 

mimicking the circuit in Figure 7. 

3.1.2 Die-to-die Parasitic Inductances 

One of the parameters that must be derived from the obtained measurements is the die-to-die 

inductance values.  These values are represented by LG_(X-1)>X and LG_X>(X+1), LS_(X-1)>X, and L-

S_X>(X+1) in the lumped parameter model in Figure 7.  As each MOSFET position’s inductance and 

resistance values were measured, a system of equations can be crafted to link the individual 

position’s measured value to a combination of the individual inductances of interest in the path.  

For example, the inductance of the first MOSFET position in the module is the combination of the 

inductance of the connector and the inductance of the trace between the connector and MOSFET.  

For the next position, the inductance is the combination of the first position’s value plus the 

additional inductance to the second position.  To obtain the position-to-position inductance, the 

first position’s inductance must be subtracted from the second position’s value.  This process is 

repeated until all of the MOSFET-to-MOSFET inductance values are known.  This process is 

summarized by Equation 3.1 below. 

 
𝐿𝐶𝑂𝑁𝑁 + 𝐿𝐶𝑂𝑁𝑁−1 = 𝐿1 

𝐿𝐶𝑂𝑁𝑁 + 𝐿𝐶𝑂𝑁𝑁−1 + 𝐿1−2 = 𝐿2 

𝐿𝐶𝑂𝑁𝑁 + 𝐿𝐶𝑂𝑁𝑁−1 + 𝐿1−2 + 𝐿2−3 = 𝐿3 

𝐿𝐶𝑂𝑁𝑁 + 𝐿𝐶𝑂𝑁𝑁−1 + 𝐿1−2 + 𝐿2−3 + 𝐿3−4 = 𝐿4 

𝐿𝐶𝑂𝑁𝑁 + 𝐿𝐶𝑂𝑁𝑁−1 + 𝐿1−2 + 𝐿2−3 + 𝐿3−4 + 𝐿4−5 = 𝐿5 

• 

• 

• 

 

(3.16) 
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After applying Equation 3.1 to all of the positions, all of the die-to-die parasitic inductance values 

are known.  As the layout of the printed circuit board is symmetrical for each MOSFET position, 

the inductance between any two neighboring positions should be identical to any other two 

neighboring positions.  For this reason, the average value of the die-to-die inductance is calculated 

as 3 nH and is used in the SPICE model.  It is crucial to determine this value as the die-to-die 

interactions of the high-speed SiC MOSFET must be modeled correctly to simulate unwanted 

high-frequency oscillations caused by paralleling.  If the measured values were simply inserted 

into the model, there would be an enormous amount of inductance between the MOSFETs even 

though the position’s gate-source inductance loop would be correct. 

Table 8. Die-to-die Parasitic Inductance Values 

Parameter High-Side Low-Side Units 

𝐿𝐶𝑂𝑁𝑁−1 19.95 18.07 nH 

𝐿1−2 3.40 3.44 nH 

𝐿2−3 2.52 1.84 nH 

𝐿3−4 3.96 3.14 nH 

𝐿4−5 2.27 4.19 nH 

𝐿5−6 4.17 2.70 nH 

𝐿6−7 2.30 2.52 nH 

𝐿7−8 3.03 3.16 nH 

𝐿8−9 2.49 4.03 nH 

𝐿9−10 3.81 2.47 nH 

𝐿10−11 2.66 2.42 nH 

𝐿11−12 3.62 4.68 nH 

𝐿12−13 3.55 3.02 nH 

𝐿13−14 1.60 2.01 nH 

Average 𝐿𝑥−(𝑥+1) 3.03 3.05 nH 
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3.1.3 Parasitic Resistance and Capacitance Considerations 

Until this point, the parasitic element discussion has focused on inductance, which has the most 

significant influence over the factors examined in the upcoming sections.  However, parasitic 

resistance and capacitance are present in the gate network and should be reviewed and included in 

the model where appropriate.  This section will examine the resistance of the wirebonds using 

theoretical calculations as well as the capacitance of the PCB using measure techniques. 

To determine the resistance of the wirebonds, the material properties and the size of the bond must 

be identified.  Equation 3.2 illustrates this relationship where σ is the conductivity, a is the radius 

of the wirebond, l is the length of the wirebond, and δ is the skin depth of the material [1]. 

 
𝑅 =

𝑙

2𝜋𝑎𝛿𝜎
 

(3.17) 

The conductivity of aluminum is 3.77 × 107 S/m, the average length of the wirebonds in this study 

is 4 mm, and the radius of the bond wire is 5 mils or 0.0635 mm.  The skin depth of aluminum 

must be calculated with Equation 3.3 where fo is the desired frequency of operation, ρ is the 

resistivity of the material, μ0 is the permeability in a vacuum, and μr is the relative permeability of 

the material. 

 

𝛿 = √
𝜌

𝜋𝑓𝑜𝜇𝑟𝜇0
 

 

(3.18) 

An operating frequency of 1 MHz is chosen to match the other measurements and calculations 

from the previous sections.  The resistivity of aluminum is 2.6548 µΩ·cm and the relative 

permeability is 1.00002.  Solving Equation 3.3 for an operating frequency of 1 MHz results in a 

skin depth of 82.0 µm for an aluminum wirebond.  The wirebond resistance equation’s variables 
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are all known; therefore, the result is calculated below and will be included in the SPICE model 

of the gate network. 

 
𝑅 =

4 mm

(2𝜋)(0.0635 mm)(0.082 mm)(37700 S/mm)
= 3.243 mΩ 

 

(3.19) 

The measurement method used in section 2.2.2 will be adjusted to obtain the capacitance between 

the gate and source traces in the printed circuit board.  The custom parasitic extraction fixture for 

the PCB is attached to the Agilent LCR meter and a short calibration is performed on fixture.  Next, 

an open compensation is performed on the fixture to account for the stray capacitance in the 

measurement hardware, which ensures that the measured capacitance will only include the 

connector and the printed circuit board.  Setting the equipment to a CS and RS measurement with 

a 2 V output at 1 MHz, the capacitance value obtained for the connector and PCB was 9.6 pF.  This 

capacitance is negligible will not appear in the model as the input capacitance for a single 

MOSFET is roughly an order of magnitude higher than the measured parasitic capacitance. 

 Safe-Operating-Area and Stability Criteria 

Now that the gathering of parameters is complete, the complete model of the gate network can be 

analyzed.  Four aspects of reliable operation are examined in this section including gate-to-source 

overvoltage avoidance, the effects of the network’s propagation delay on switching performance, 

an inherent oscillatory behavior due to high switching speed, and an investigation of large source 

return current through the gate network.  The SPICE model that was created in the previous 

sections will be extensively utilized to provide evidence for the issues presented and to assist in 

offering solutions to these problems. 
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3.2.1 Gate-to-Source Over-Voltage Deterrence 

The first safe-operating-area parameter to be investigated is the MOSFET’s rated gate-source 

voltage during transient operation of the power module.  In order to guarantee the highest level of 

reliability of the module, an overvoltage must never be induced at the gate of any MOSFET in the 

module.  As each position exhibits different parasitic values, there will be a gradient of transient 

peak voltage levels observed at each of the FET positions.  In this section, series RLC circuit 

analysis is used to determine the passive components required to remove the module’s ability of 

violating the gate-source voltage rating. 

According to Wolfspeed’s CPM3-0900-0010A datasheet, if the MOSFET’s body diode is used, 

the transient VGS maximum range is reduced to +19 V / -4 V [2].  As the recommended gate-

voltage during the off-state is also -4 V, there is no room available for overshoot during transient 

operation.  The body diode must be used during the deadtime of a half-bridge MOSFET 

configuration in order to freewheel the current in the load inductor while both switch positions are 

off.  This fact forces the lack of VGS overshoot on each MOSFET in the HT-3000, half-bridge 

power module under investigation in this effort. 

Using the lumped-element parasitic model of the gate-source network obtained in the previous 

section, series RLC circuit analysis can be applied in order to determine the damping factor 

required to prevent overshoots of VGS at the terminals of the MOSFETs.  The damping of the 

overshoot is accomplished by the addition of extra resistance in the RLC series network.  The extra 

resistance is realized with a surface-mount chip resistor placed in the gate path of each FET.  The 

capacitance represents the input capacitance of the FET, Ciss, which is obtained from the device’s 

datasheet and is highly voltage dependent.  The inductance is realized as the parasitic inductance 
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of the gate source network and is different for each position; therefore, only the worst-case 

inductance value must be considered as it sets the limiting factor. 

When looking into the power module’s gate and source connection points, the impedance seen by 

the gate driver is a series combination of resistors, inductors, and a capacitor.  This series RLC 

circuit has many parameters as illustrated in Figure 24, yet the behavior of its response to a 

transient turn-on or turn-off event is identical to that of a standard, three-element RLC circuit.  

Using this connection, each of the resistances and inductances in Figure 24 are summed to create 

a single resistive and inductive component, and the equivalent circuit is displayed in Figure 25.  

The RG-INT component is left separate from the equivalent resistive component to demonstrate its 

importance as the independent variable in this study.  RG-INT is the parameter that is tuned to 

achieve the desired response of the series RLC circuit. 
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RG_PCB

RS_PCB

LG_PCB
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RG-INT

CGS

RG_Connector

RS_Connector
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Figure 24. Series RLC Circuit of Last MOSFET Position 
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Figure 25. Equivalent Series RLC Circuit of Last MOSFET Position 
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In order to determine the optimal value for RG-INT, series RLC circuit analysis must be performed.  

The characteristic equation for the series RLC circuit is displayed in Equation 3.5 below.  This 

differential equation has two roots, which are shown in Equation 3.6. 

 
𝑠2 +

𝑅

𝐿
𝑠 +

1

𝐿𝐶
= 0 

(3.20) 

 

𝑠1,2 = −
𝑅

2𝐿
± √(

𝑅

2𝐿
)
2

−
1

𝐿𝐶
 

(3.21) 

Two important parameters of the series RLC circuit are the damping attenuation, which is the 

measure of how fast the transient response of the circuit will diminish after subjected to a step 

pulse [3].  The damping attenuation or neper frequency is show in Equation 3.7. 

 
𝛼 =

𝑅

2𝐿
 

(3.22) 

Next, the resonance frequency shown in Equation 3.8 is the frequency at which the RLC circuit 

will oscillate after subjected to a step pulse.  This resonance occurs when the impedance of the 

circuit is at a minimum and is purely real or completely resistive [3]. 

 
𝜔0 =

1

√𝐿𝐶
 

(3.23) 

The damping factor is used to determine if the system will be overdamped, underdamped, or 

critically damped and is the ratio of the damping attenuation, 𝛼, to the resonance frequency, 𝜔0, 

as shown in Equation 3.9. 
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𝛼

𝜔0
=

𝑅

2
√

𝐶

𝐿
 

(3.24) 

A system will be critically damped when the damping factor is equal to one.  “The critically 

damped response represents the circuit response that decays in the fastest possible time without 

going into oscillation.” [3]. 

Not every power module will encompass the same values for R and C due to the many different 

MOSFETs used in the several module variants; therefore, values for three common Wolfspeed 

MOSFETs are used to determine the required critically damping resistance.  The on-chip gate 

resistance and the gate-to-source capacitance are unique for each MOSFET and are displayed in 

Table 9.  Solving Equation 3.9 using the parasitic equivalent values of the last MOSFET position 

and the MOSFET datasheet parameters, the required lumped resistance necessary to achieve 

critical damping is shown in Table 9. 

To verify that the circuit is sufficiently damped, the circuit parameters are inserted into a series 

RLC circuit simulation using SPICE.  The result is displayed in Figure 26 and clearly 

demonstrations adequate damping during the transient turn-on and turn-off events as there is no 

positive or negative overshoot to violate the MOSFET SOA rating. 

Table 9. Critical Damping for Three Common SiC MOSFETs 

Parameter CPM3-1200-0013 CPM2-1200-0025 CPM3-0900-0010 Units 

CGS 7658 2773 4488 pF 

LEQV 60.29 60.29 60.29 nH 

RON-CHIP 5.9 1.1 1.6 Ω 

REQV 0.1436 0.1436 0.1436 Ω 

RG-INT -0.43 8.08 5.59 Ω 
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Now that a value for RG-INT has been selected, it must be verified in the complete gate network 

model.  Using the model shown in Figure 25, the values for RG-INT, CGS, and RON-CHIP are updated  

 

Figure 26. Verification of RG-INT in the Series RLC Circuit of Last MOSFET Position 

 

 

Figure 27. Verification of RG-INT in the Full Gate Network Model 
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to the CPM3-0900-0010A’s values in Table 9.  The simulation is set up to sweep RG-INT over a list 

of resistances including 0 Ω, 1 Ω, 5.59 Ω, 10 Ω, 15 Ω, and 20 Ω to verify that the calculated 

resistance is adequate for damping overshoots at each position.  The resulting waveform of the 

gate-source voltage of the last FET position is displayed in Figure 27.  The waveforms containing 

higher magnitude over and undershoots represent lower RG-INT values with 0 Ω being the largest 

magnitude oscillation reaching nearly +28 V and -16 V.  As the 5.59 Ω parameter simulation 

contains overshoot, the simulation proves that treating each MOSFET position as a unique and 

independent RLC network does not accurately portray the behavior of the position.  According to 

the parametric simulation, an RG-INT value of 15 Ω is required to achieve critical damping on VGS 

at the last MOSFET position for the third generation, 900 V, 10 mΩ MOSFET.  This will be the 

new selected value moving forward with this study. 

3.2.2 Propagation Delay Between MOSFET Positions 

When operating MOSFETs in parallel, the various devices will never turn on or turn off at the 

exact same instance.  This phenomenon is caused by many issues including tolerance differences 

in device parameters such as threshold voltage as well as from the delay of the gate signal 

introduced from parasitics in the gate path [4].  This section examines the effects of the propagation 

delay of the module’s gate network on the individual MOSFET transient times including the 

resulting mismatches in current sharing and switching loss due to dissimilar turn on and turn off 

timing.  The effect of dissimilar voltage threshold due to tolerance differences will be examined 

in a later section. 

The gate network model used in the previous section is used to determine the time at which each 

MOSFET position reaches the rated threshold voltage during both the turn-on and turn-off 
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transitions.  As determined in the previous section, the RG-INT resistance is set to 15 Ω and the 

parameters for the CPM3-0900-0010A MOSFET are entered into the simulation parameters.   

 The simulation is performed and the gate-to-source voltage for each MOSFET is measured on the 

same plot.  Next, the turn-on transient is zoomed into view such that the difference in propagation 

delay can be extracted using cursors for each trace at the MOSFET’s rated threshold voltage of 1.7 

V.  The resulting waveform is shown in Figure 28 below.  As would be expected, the MOSFET 

closest to the gate driver, also known as the first MOSFET and denoted with a 1 in the waveform, 

is the first to turn on just as the last MOSFET, denoted with a 14, is the last device to turn on.  

Using the cursors, the exact time that each MOSFET reaches 1.7 V is extracted and recorded.  

Finally, the difference in time between each position is calculated from this data, and the 

propagation delay is determined for the turn-on transition.  The data is normalized to the first 

position such that there is zero propagation delay at the first position and the second position is the 

first device to exhibit propagation delay.  The data collection is repeated in the same manor at the 

 

Figure 28. Zoomed Turn-On Transient of each MOSFET’s VGS at the Threshold Voltage 
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turn-off transition, and the delays of the two transitions are plotted in Figure 29.  As can be seen 

in the plot, the delay curves are parabolic and exhibit a much higher difference in delay between 

the first few positions when compared to the last few positions.  Also, the turn-on delay is much 

larger than the turn-off delay, which is caused by the level of the threshold voltage in the VGS 

range.  As the threshold voltage of +1.7 V is relatively low in the -4 V to +15 V range that the 

gate-to-source voltage transitions, the delay is longer on the way up and much less on the way 

down.  If the threshold voltage were much higher in the VGS range, the curves would be flipped, 

and the delay would be shorter during the turn-on than during the turn-off.  As the majority of 

MOSFETs operate in a similar way to the devices in this study with a VTH close to the negative 

 

Figure 29. Propagation Delay of each MOSFET for Turn-On and Turn-Off Transitions 
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range of VGS, it is safe to assume that most MOSFET-based power modules will exhibit a larger 

turn-on propagation delay compared to its turn-off delay as shown in Figure 29. 

With the propagation delay values examined, the next stage is to determine its effect on the 

module’s dynamic behavior including transient current sharing and differences in switching loss.  

Twenty-eight CPM3-0900-0010A MOSFET models are added to the current SPICE model of the 

gate network: fourteen MOSFETs for the positions on the low-side and fourteen MOSFETS to fill 

the positions on the high-side.  A standard double-pulse, clamped-inductive-load test is established 

in the simulation with a load inductor of 10 µH, a DC bus voltage of 600 V, and pulse widths to 

create a switched current of about 20 A per MOSFET or 280 A per module.  The high-side position 

is held at -4 V while the low-side is switched using the third-generation voltage rails of -4 V and 

+15 V.  The simulation is conducted and the individual MOSFET source currents of the low-side 

are measured as well as the drain-to-source voltage across the low-side position. 

 

Figure 30. Turn-Off Transition of 14 Paralleled MOSFETs in Power Module 
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 The source current traces in the two transient waveforms of Figure 30 and Figure 31 illustrate the 

effect of the propagation delay on the individual MOSFETs in a power module.  As Figure 29 

described, the first MOSFET turns on a few nanoseconds before the other MOSFETs; therefore, it 

alone is responsible for carrying the entire current of the module until the next MOSFET reaches 

its threshold voltage.  As the first device has a head start on conducting current, it will exhibit the 

lowest RDSON during the transition and observe the largest peak current resulting from the reverse 

recovery of the high-side position’s body diodes as shown in Figure 31.  Moving down the module, 

the peak currents decrease as the MOSFETs exhibit gradually higher RDSON values when compared 

to the first MOSFET. 

A very similar phenomenon takes place during the turn-off transition.  The first MOSFET begins 

to stop conducting current before the other devices, which forces the other devices to divvy up the 

current that was being carried by the first position.  This behavior continues until the last MOSFET 

is carrying more current than all of the devices turning off before it.  Figure 30 illustrates this effect 

very clearly.  It is now necessary to determine the consequences of this non-uniform dynamic 

 

Figure 31. Turn-On Transition of 14 Paralleled MOSFETs in Power Module 
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current sharing, which will materialize as a difference in switching loss for each MOSFET in the 

module. 

 Using the results shown in Figure 30 and Figure 31, the switching loss of each MOSFET can be 

calculated by multiplying its source current by the VDS across the device and integrating the 

resulting waveform as described in Equations 3.10 and 3.11. 

 
𝐸𝑂𝐹𝐹 = ∫ 𝑖𝑆 ∗ 𝑣𝐷𝑆

𝑡(𝑖𝑆=0)

𝑡(𝑣𝐷𝑆=0)

𝑑𝑡 
(3.25) 

 
𝐸𝑂𝑁 = ∫ 𝑖𝑆 ∗ 𝑣𝐷𝑆

𝑡(𝑣𝐷𝑆=0)

𝑡(𝑖𝑆=0)

𝑑𝑡 
(3.26) 

 

 

Figure 32. Individual MOSFET Switching Loss Values during Turn-On and Turn-Off 
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This is a simple task for SPICE, and the resulting energy values for the turn-on and turn-off 

transitions are plotted in Figure 32.  As expected, the turn-on energy loss is largest for the first 

position MOSFET, which observes the highest peak current while the last position experiences the 

least amount of turn-on loss due to its smallest peak current.  In turn, the opposite effect occurs in 

the turn-off transient as the last position conducts the largest amount of current and therefore 

exhibits the largest amount of switching loss.  Figure 32 illustrates that this effect does not provide 

balancing of the total switching loss values as the difference in turn-on energy greatly outweighs 

the difference in turn-off energy. 

For this example, MOSFET 1 experiences 67 % more switching loss than MOSFET 14, which is 

quite significant when operating at high switching frequencies.  It is commonly known that 

MOSFETs exhibit a positive temperature coefficient in regard to RDSON, which balances the 

conduction losses of paralleled MOSFETs.  This effect only applies to steady-state current 

conduction and does not assist with differences in switching loss [5]. Therefore, applications that 

are switching loss dominated will experience the effects of propagation delay greater than 

conduction loss dominated applications. 

Possible methods to mitigate this effect include individually tuned gate resistors per MOSFET 

position to minimize propagation delay.  This method is realistically impossible as will be shown 

in future sections; the device parameter tolerance distribution outweighs the effects of propagation 

delay and introduces too many variables to accurately tune the gate network to counteract this 

phenomenon.  There is also the limitation of obtainable resistor values as this method would 

require many specific and unobtainable values of resistance.  This issue ultimately results in a 

derating of the power processing capability of the power module. 
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3.2.3 Oscillatory Behavior and Stability Criteria 

As discussed in the previous section, MOSFETS operating in parallel never transition at the exact 

same instance in time, but there are more detrimental effects that can arise other than a mismatch 

in switching loss.  When the fastest MOSFET turns off first, either due to its position in the module 

or its low value of threshold voltage, the voltage across the device rises rapidly.  This large dv/dt 

event on the drain of this MOSFET forces current through the reverse transfer capacitance, CRSS 

or CGD, which can charge the gate-to-source capacitance, CGS, or even induce high-frequency 

oscillations of the other MOSFETs in parallel [6].  The path that allows this oscillation to occur is 

illustrated in Figure 33 below [5].  As the drains of the devices are tightly coupled due to the 

physical structure of the MOSFET and the packaging of the module, the values of LD1 and LD2 are 

very small.  Without any internal gate resistance per device, RG1 and RG2, the parallel combination 

of MOSFETs form a resonant circuit commonly referred to as a Colpitts oscillator [6].  According 

 

Figure 33. Low-Impedance Path of Two Parallel MOSFETs Capable of Inducing Parasitic 

Self-Oscillations 
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to Toshiba in Power Parasitic Oscillation between Parallel Power MOSFETs, “Consequently, 

parallel MOSFETs form a resonant circuit with a high Q factor, which is highly susceptible to 

oscillation because of a high-gain feedback loop.”  This high-gain feedback loop is comprised of 

the transconductance of the MOSFET, gm, the on-state resistance of the FET, RDS-ON, the gate-to-

source capacitance, CGS, and the drain-to-source capacitance, CGD.  This article also provides an 

analysis of the Colpitts oscillator equivalent circuit shown in Figure 34.  The inductance, L1, is a 

substitution for the parallel resonant circuit comprised of the gate-to-drain capacitance, CGD, and 

the drain inductance, LD, between the FETs when oscillating at frequencies below its resonance 

[6].  The gain equation is found below in Equation 3.12. 

 𝑣2

𝑣1
=

−𝑔𝑚 × 𝑟𝐷𝑆−𝑂𝑁

1 − 𝜔2𝐿1𝐶𝐷𝑆 + 𝑗𝜔(𝐶𝐷𝑆 + 𝐶𝐺𝑆 − 𝜔2𝐿1𝐶𝐷𝑆𝐶𝐺𝑆)𝑟𝐷𝑆−𝑂𝑁
 (3.27) 

To ensure that the circuit does not oscillate, the real part of the gain equation must be less than 

one.  Simplifying the gain equation results in Equation 3.13 below, which can be used to determine 

the stability of a power MOSFET and verify its aptitude for paralleling. 

 
𝑔𝑚 × 𝑅𝐷𝑆−𝑂𝑁 ≤

𝐶𝐺𝑆

𝐶𝐷𝑆
 (3.28) 

 

Figure 34. Colpitts Oscillator Formed from Two Paralleled MOSFETs 
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 Using Equation 3.13, the three common SiC MOSFETs are verified for stability.  As the product 

of the on-state resistance, the transconductance, and the ratio of CDS to CGS is much less than one, 

all of the MOSFETs are stable.  This is largely due to the low on-state resistance as well as the 

extremely small CDS to CGS ratio exhibited by the SiC power MOSFETs. 

It is shown throughout literature that the presence of an individual gate resistor per MOSFET is 

crucial for stable, parallel operation of the FETs [5], [6], [7], [8], [9], [10].  This resistor increases 

the impedance of the ‘low-impedance loop’ illustrated in Figure 33 above and serves to circumvent 

high-frequency oscillations from cultivating during turn-on and turn-off transients.  The only 

negative aspect to this resistor is the increased switching loss resulting from slower operation of 

the power FETs.  Commonly, this resistance is small and the increase in switching loss is well 

worth the trade for stable operation and improved reliability.  However, there is another solution 

that allows both the minimal switching loss of a small gate resistance and the elimination of 

oscillatory behavior, which is offered in an Advanced Power Technology application note: “It has 

been found that a ferrite bead combined with a resistor on each MOSFET gate eliminates parasitic 

oscillation while minimizing switching losses. In fact, adding a ferrite bead is more effective than 

using gate resistance alone because the impedance of the ferrite bead is directly proportional to 

Table 10. Stability Verification for Three Common SiC MOSFETs 

Parameter CPM3-1200-0013 CPM2-1200-0025 CPM3-0900-0010 Units 

CGS 7658 2773 4488 pF 

CDS 243 205 338 pF 

RDS-ON 0.013 0.025 0.010 Ω 

gm 76 23.6 97 S 

𝑅𝐷𝑆−𝑂𝑁 × 𝑔𝑚 ×
𝐶𝐷𝑆

𝐶𝐺𝑆
 0.031 0.044 0.073 𝑉

𝑉⁄  

Stability Stable Stable Stable - 
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frequency.”  As the parasitic, high-frequency oscillations that plague parallel-operated MOSFETs 

are in the 100 MHz to 200 MHz range, the ferrite bead is an ideal addition to the ‘low-impedance 

loop’ in Figure 33.  The ferrite bead allows the much lower frequency gate signal to pass through 

at a much lower impedance than seen by the high-frequency oscillations.  From the Advanced 

Power Technology application note, a reduction in switching loss is observed by reducing the 

individual gate resistor from 4.3 Ω to 1 Ω while the parasitic gate oscillations are also eliminated 

by adding a ferrite bead in series with the 1 Ω resistor [11].  One downside to the inclusion of a 

ferrite bead to the gate network, and therefore inside the power module, is the inability to obtain 

beads rated for high temperature (>150°C). 

3.2.4 Kelvin-Source Resistors 

To provide another example of unfavorable performance in the parallel operation of MOSFETs, 

consider the source of one of the devices in the high-side position of a traditional half-bridge power 

module.  If this MOSFET turns on before its paralleled peers, the source of that device will 

transition to the drain voltage, which is commonly the bus voltage, +VDC.  This creates an 

unbalance in the high-side source node, which cannot exist and must be remedied by means of a 

large balancing current.  The high-side is coupled with many, large wirebonds to the midpoint 

trace of the DBC inside the module as well as with smaller, kelvin-source wirebonds in the gate 

network.  The problem arises when the power-source current path through the large bonds and the 

DBC has a similar or larger impedance than the kelvin-source current path through small bonds 

and sensitive, signal traces.  This issue is illustrated in Figure 35 where the power-source current 

path is much longer than the kelvin-source current path, and in-turn exhibits a higher impedance 

than the kelvin-source path as well.  A smaller impedance in the kelvin-source path  
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allows the majority of the large balancing current due to the high-side source imbalance to flow 

through the gate network rather than the power-source path.  The current is capable of being in the 

range of tens to hundreds of amps at very high frequencies, which can be devastating for the 

sensitive signals on the gate network.  Symptoms including high-frequency gate oscillation can be 

observed as well as faults in the form of kelvin-source wirebonds fusing due to the extremely high 

current through the small bonds [12].  Fortunately, there is a simple solution to prevent the large 

balancing current from flowing in the kelvin-source path, which is comprised of individual source 

resistors per MOSFET inside the module. 

The internal source resistor is effectively in series with the internal gate resistor as they both 

provide additional resistance to the gate driver when charging or discharging CGS.  The sum of the 

two resistors determines the R components in the RC time constant of the gate network.  The 

source resistor can also be used to measure the kelvin-source current seen by each MOSFET.  This 

experiment was conducted on the 62 mm power module displayed in Figure 35 to confirm  

 

Figure 35. Kelvin-Source Current Path vs. Power-Source Current Path 
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the presence of the large balancing current.  A Tektronics IsoVu, TIVH05, fiber-optically isolated 

voltage probe was used to measure the precise voltage across the internal source resistance.  Figure 

36 describes the measurement circuit with the internal parasitic components shown as well.  

Equation 3.14 is employed to determine the kelvin-source current seen by the MOSFET under test.  

In order to determine the effectiveness of the internal source resistor at preventing the large 

balancing current from flowing in the gate network, a small source resistor of 0.1 Ω and a larger 

source resistor of 1 Ω are used in the experiment. 

 
𝐼𝑆𝑜𝑢𝑟𝑐𝑒−𝑀𝑥

=
𝑉𝑃𝑟𝑒−𝑅𝑆𝑥

− 𝑉𝑃𝑜𝑠𝑡−𝑅𝑆𝑥

𝑅𝑆𝑥−𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
 (3.29) 

After the experiment is conducted, the data from the oscilloscope is plotted concurrently using 

Excel.  The resulting waveform is shown in Figure 37.  As expected, the 1.0 Ω waveform is slightly 

delayed in time to the 0.1 Ω waveform.  The magnitude of the high-frequency ringing during the 

0.1 Ω test case is substantially higher than the 1 Ω with peaks reaching greater than sixty amps and 

less than negative sixty amps.  The 1.0 Ω source resistor effectively eliminates the current in the 

kelvin-source path confirming the effectiveness of the internal source resistor.   

 

Figure 36. Kelvin-Source Current Measurement Circuit 
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The only remaining factor to consider is the ratio of the internal gate resistor, RG-INT to the internal 

source resistor, RS-INT.  Fortunately, literature has provided a solution to this question as shown in 

Equation 3.15 and 3.16 below [12].   

 𝑅𝐺 = 𝑅𝐺−𝐼𝑁𝑇 + 𝑅𝑆−𝐼𝑁𝑇 (3.30) 

 
𝑅𝑆−𝐼𝑁𝑇 =

1

3
𝑅𝐺 

(3.31) 

The source resistance is recommended to be one-third of the sum of the internal gate resistance 

and the source resistance.  Therefore, for a 15 Ω total gate resistance, the internal gate resistance 

is 10 Ω while the source resistance is 5 Ω. 

 

 

Figure 37. Kelvin-Source Current for Two Values of RS-Internal 
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Using the parasitic values obtained in Chapter 2, a SPICE model of the gate network was 

developed in this chapter and was used to analyze four pertinent issues in WBG-based power 

modules including internal gate resistance for damping voltage transients at the gate of each 

device, differences in switching loss between paralleled devices due to propagation delay, high-

frequency oscillations on the gate due to low-impedance paths between paralleled MOSFETs, and 

large current equalizing through the kelvin-source signal path, which required the addition of 

internal source resistors. 
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CHAPTER 4 

PARAMETER VARIANCE EFFECTS 

The challenges of designing a high-performance power module don’t cease when the electrical, 

thermal, and mechanical considerations are finished; the processing and manufacturability of the 

product are equally as demanding.  To construct an identical power module thousands of times 

requires close monitoring of how each material and component of the system vary between lots.  

For the electrical considerations, the parameter variance of importance is almost entirely governed 

by the SiC MOSFET, which likely portrays differences in on-state resistance, threshold voltage, 

and transconductance.  In this chapter, the effect of a variance in threshold voltage, VTH, and of 

on-state resistance, RDS-ON, of the paralleled MOSFETs within a high-performance power module 

will be examined through simulation and experiment. 

4.1   SiC MOSFET Parameters: Threshold Voltage (VTH) 

As previously discussed in the section covering propagation delay of the gate network, the turn-

on and turn-off timing of paralleled MOSFETs is incredibly important; a few nanoseconds of delay 

between transitions can cause a large dissimilarity in switching loss.  The delay or advancement 

of transition timing can also originate from parameter variance in the SiC MOSFETs in the form 

of threshold voltage mismatch [1], [2].  If one device exhibits a marginally lower threshold voltage 

than its paralleled associate, it will begin to conduct drain current earlier and therefore consume 

higher switching loss. 

This phenomenon can be demonstrated through simulation using the model created at the 

beginning of this chapter.  First, the die-to-die inductance and resistance values are removed from 

the model to eliminate any effects of propagation delay between the FETs.  This isolates the 
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mismatch in VTH to provide the difference in timing and switching performance.  Next, 

independent DC voltage sources are added to the gates of each MOSFET with values ranging from 

-1.5 V to +1.5 V in 0.25 V increments.  After the simulation is conducted, the drain-to-source 

voltage, VDS, and the drain current, ID, for each MOSFET is multiplied together to obtain the power 

lost during the turn-on and turn-off switching transitions.  The results are displayed in Table 11 

for the VDC = 600 V and IS = 330 A (20 A/die) test condition.  The MOSFET in the center of the 

module provides the control sample and exhibits a switching loss of 527 µJ.  Even comparing to 

the next-best VTH variance of +0.25 V or -0.25 V, there is approximately a 20% decrease or 

increase of switching loss respectively.  Examining the extremes of the VTH mismatch show a 

difference of 150 µJ at the most positive VTH to 1500 µJ at the most negative.  Clearly, this 

difference has a massive impact on temperature disparity and module performance. 

Table 11. Simulated ΔVTH vs. Energy Loss 

ΔVTH EON EOFF EON + EOFF Units 

+1.500 70 17% 84 79% 154 29% µJ 

+1.250 112 27% 84 80% 196 37% µJ 

+1.000 159 38% 85 80% 244 46% µJ 

+0.750 214 51% 86 81% 300 57% µJ 

+0.500 276 65% 88 83% 364 69% µJ 

+0.250 345 82% 94 89% 439 83% µJ 

0.000 421 - 106 - 527 - µJ 

-0.250 506 120% 125 118% 631 120% µJ 

-0.500 599 142% 157 148% 755 143% µJ 

-0.750 699 166% 204 193% 904 171% µJ 

-1.000 809 192% 272 257% 1081 205% µJ 

-1.250 928 220% 366 345% 1293 245% µJ 

-1.500 1055 250% 488 461% 1543 293% µJ 
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Figure 38. Parameter Variance Test Fixture for 3-Pin, TO-247 Discrete Devices 
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Next, the same phenomenon is verified with experimental results using precisely characterized 

bare die packaged into custom, discrete TO-247s.  The MOSFETs used for this study are 

experimental MOSFETs provided by Wolfspeed, and are third-generation, 1200 V MOSFETs with 

very low on-state resistance.  A clamped inductive load (CIL) test fixture was designed for 

paralleling two of the discrete devices per position in a half-bridge configuration.  This test fixture 

is displayed in Figure 38 and consists of the power bussing PCB, an ITGD2-4011 half-bridge gate 

driver from Wolfspeed, and a Tektronix IsoVu optically-isolated voltage probe.  The gold MMCX 

connectors enable measurement of the gate-to-source voltage, VGS, at the terminals of the device 

after the individual gate and source resistors.  Two 300 A Rogowski current probes are used to 

measure the source current of each of the MOSFETs in the low-side position. 

A small sample of devices were selected out of the characterized lot, which exhibited a worst-case 

range of mismatch in threshold voltage and on-state resistance.  With the devices packaged and 

soldered into the test fixture, a double-pulse test was performed on the setup at VDC = 800 V, ID = 

100 A, RG-Ext = 0 Ω, RG-INT = 3, and RS-INT = 1 Ω.  Test 1 comprised closely matched threshold 

voltages with a ΔVTH = 0.001 V, while Test 5 boasted the worst-case ΔVTH = 0.914 V.  The source 

current waveforms of each MOSFET are shown in Figure 39 with the closely matched, Test 1, on 

top and the poorly matched, Test 5, on bottom.  In agreeance with the simulations, the MOSFET 

current waveforms overlap nicely in test with ΔVTH = 0.001 V, while the current waveforms are 

wildly dissimilar for the ΔVTH = 0.914 V case.  The energy loss follows suit with a difference in 

energy loss, ΔELoss, of 0.6 mJ, which correlates to 6% of the total energy loss for Test 1.  For Test 

5, ΔELoss = 4.2 mJ, which compares to 34% of the total energy loss.  The results for the five tests 

are visualized in Figure 40. 



77 

 

 

 

Figure 39. Measured Turn-On Current for Parallel MOSFETs with Closely Matched (Top) and 

Poorly Matched (Bottom) Threshold Voltages 
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The five tests incorporate a wide range of threshold voltage mismatches in order to provide a clear 

trend between ΔVTH and ΔELOSS.  Predictably, the data displays an increase in the difference in 

switching loss between the devices (↑ΔELOSS) when the difference in threshold voltage increases 

(↑ΔVTH).  Figure 40 illustrates this trend as well as provides the difference in on-state resistance 

values as data labels to the right of each marker.  As each parameter of variance cannot be 

completely isolated during physical testing of the devices, the consequence of the other variables 

needs to be considered.  As can be seen in Figure 40, tests with equal ΔVTH can exhibit different 

ΔELOSS when other parameter variances are present.  The next section will describe the effect of 

ΔRDS-ON on ΔELOSS. 

 

Figure 40. Measured Δ in Energy Loss vs. Δ in VTH between Two Parallel MOSFETs 
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4.2  SiC MOSFET Parameters: On-State Resistance (RDS-ON) 

The different on-state resistances of paralleled MOSFETs is not commonly of concern to module 

manufacturers as the intrinsic positive temperature coefficient of RDS-ON provides natural 

protection for the MOSFETs with lower resistance.  These MOSFETs that initially conduct more 

current than the others in parallel, increase in temperature and therefore exhibit a higher RDS-ON, 

which balances the junction temperatures of the FETs.  As stated in [2], “Differential RDS (on) 

will cause current unbalance and extra conduction losses as expected, but these are limited due to 

the positive temperature coefficient for MOSFET resistance. The thermal 'runaway' characteristic 

of other semiconductor technologies does not apply to MOSFETs.”  That being stated, this effect 

only applies during conduction through the MOSFET channel.  Body diode conduction as well as 

switching loss do not behave in the same manner and actually provide a negative temperature 

coefficient.  Also, RDS-ON can fluctuate switching loss by changing the turn-off current that the 

MOSFET must extinguish. 

The experiment described in the previous subsection characterized the ΔRDS-ON for the five tests, 

which included a range from a closely matched case of 0.22 mΩ to a poorly matched case of 4.8 

mΩ for the low-RDS-ON, experimental MOSFET.  As this experiment employed a double-pulse, 

clamped inductive load test, there is little influence of RDS-ON’s positive temperature coefficient as 

the devices do not have enough time to heat during test.  As a precaution, this fact may slightly 

exacerbate the ΔELoss data obtained during this test.  Similar to the trend uncovered in the ΔVTH 

vs. ΔELoss plot, an increase in the difference in switching loss (↑ΔELOSS) is observed when the 

difference in threshold voltage increases (↑ΔRDS-ON) as illustrated in Figure 42.  Studying the 

waveforms provided in Figure 41, it can be observed that the turn-off current is dissimilar in the 

poorly matched case while the closely matched case is relatively uniform. 
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Figure 41. Measured Turn-On Current for Parallel MOSFETs with Closely Matched (Top) and 

Poorly Matched (Bottom) RDS-ON 
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This difference in turn-off current will obviously result in higher energy loss during the off 

transition, EOFF, but for the turn-on transition, the difference in energy loss is largely due to the 

difference in threshold voltage.  For this reason, Figure 40 and Figure 42 display both variance 

parameters in this study; the main parameter is shown on the x-axis while the secondary parameter 

is displayed as a data label next to each point.  Fortunately, the lot of die used for this experiment 

allowed for an isolated comparison of ΔRDS-ON as there were two test cases where ΔVTH = 0.001 

V.  At these two test conditions, the first with a ΔRDS-ON = 0.22 mΩ, and the second with ΔRDS-ON 

= 2.11 mΩ, an increase in ΔELOSS of about 1 mJ is observed with the increase of ΔRDS-ON.  This 

comparison provides strong evidence to the trends described in this section; as MOSFETs exhibit 

larger dissimilar parameters, the loss that they observe is also increasingly dissimilar.   

 

Figure 42. Measured Δ in Energy Loss vs. Δ in RDS-ON between Two Parallel MOSFETs 
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A difference in energy loss is extremely significant when a power electronics designer wants to 

take advantage of the one of the most popular advertised benefits of SiC: high switching frequency.  

To gain a realistic grasp on the consequences described in this section, the difference in switching 

loss can be multiplied by the switching frequency to determine the switching losses as shown in 

Equation 3.17 below. 

 𝑃𝑆𝑊 = (𝐸𝑂𝑛 + 𝐸𝑂𝑓𝑓)  × 𝑓𝑠 (4.32) 

Assume a switching frequency of 40 kHz and the switching loss values measured in Test 5 with 

roughly 8 mJ observed by one MOSFET and 12 mJ observed by the other.  The power loss due to 

switching seen by the first device is 320 W while the second device is 480 W using Equation 3.17.  

Utilizing a junction-to-case thermal resistance, RJC, of a single device in a power module of 0.5 

°C/W, the junction temperature of the first MOSFET is 160 °C while the second device is 240 °C.  

Therefore, a designer may believe that a module is operating within its safe operating area while, 

in fact, one MOSFET is potentially operating at a junction temperature considerably surpassing its 

rating.  This will lead to a premature failure of the device, and likely, the entire power module will 

fail before its expected life time. 

This chapter provides simulated and experimental evidence to support the process of sorting or 

binning devices by their threshold voltage and their on-state resistance for use in power modules.  

To create a reliable and high-performance power module, the paralleled MOSFETs must be of 

similar variance in order to maximize the module’s current carrying capability and to guarantee a 

safe operating temperature of every device.   
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CHAPTER 5 

MILLER CLAMP TOPOLOGIES FOR SIC POWER MODULES 

This chapter presents the theory and simulation of various Miller Clamp (MC) topologies for use 

with SiC power modules.  A brief background on the Miller Clamp is presented followed by the 

investigation of three clamping techniques.  The first, a gate-drive-mounted Miller Clamp, which 

is referred to as an external Miller Clamp, provides a baseline for what is commonly available and 

utilized in the industry at the time of writing.  The next topology moves the clamp inside the SiC 

power module providing a shorter, lower impedance path for the high-frequency, Miller-charge-

up current.  This technique offers better performance at the cost of increased complexity and 

reliability concerns from routing MC gating signals and additional voltage rails into the power 

module.  Finally, an approach for eliminating the Miller-charge-up effect and providing an equal, 

low-impedance path for each MOSFET inside the power module is presented. 

5.1 Theoretical Background 

In a half-bridge circuit, assume there is current flowing through the low-side position’s anti-

parallel diode.  When the high-side MOSFET or IGBT turns-on, there is a reverse recovery event 

of the low-side device’s diode, which allows the low-side device to begin blocking voltage [1].  

As the voltage rises across the low-side device, a change in voltage with respect to time (dv/dt) is 

observed at the midpoint of the half-bridge.  The parasitic capacitance found between the drain 

and the gate of a MOSFET, CDG, or the collector and the gate for an IGBT, CCG, directly 

experiences this dv/dt event.  As the basic equation of capacitor current states, the capacitor current 

is directly proportional to the capacitance and to the magnitude of the dv/dt across the capacitor as 

shown in Equation 4.1 [2]. 
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𝑖 = 𝐶𝐷𝐺

𝑑𝑉𝐷𝑆

𝑑𝑡
 

 

(5.33) 

The current flowing into the drain-to-gate capacitor can take two paths on its way to the source of 

the low-side device.  It can flow through the intended off-state gate drive path including the turn-

off gate resistor or it can flow directly into the parasitic gate-to-source capacitance of the low-side 

device.  As current will take the path of lowest impedance, a large majority of this current, also 

known as the Miller-charge-up current, will flow into the gate-to-source capacitance, CGS due to 

the high-impedance exhibited by the off-state driver path and the turn-off gate resistor.  The 

charge-up current flowing into CGS causes the gate-to-source voltage, VGS, to rise as depicted in 

Figure 43. 

A rise in VGS during the off-state of the low-side device can be incredibly dangerous for the half-

bridge circuit.  If VGS reaches the threshold voltage, VTH, of the device, unintended turn-on can  

 

Figure 43. Miller Charge-Up Phenomenon in High dv/dt Half-Bridge Systems 
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occur leading to a shoot-through event in the half-bridge likely causing catastrophic failure of the 

system.  This problem is compounded with the invent of wide bandgap semiconductors capable of 

switching at considerably faster speeds than Si IGBTs.  The dv/dt experienced by CGD is commonly 

much larger in SiC MOSFETs than in Si half-bridge systems [3].  This creates an important issue 

that much be addressed during the design of the SiC MOSFET and power module [2, 4, 5]. 

In Equation 4.1, it can be observed that the size of the drain-to-gate capacitance directly governs 

how much Miller-charge-up current will flow into the gate network.  From a MOSFET designer’s 

perspective, it is most beneficial to minimize this capacitance as much as possible.  Moreover, the 

same equation also applies to the charging of the gate-to-source capacitance, and therefore, VGS.  

A larger capacitance value for a given Miller-charge-up current will provide a smaller dv/dt across 

CGS.  For this reason, it is most beneficial to create a MOSFET with a large CGS.  Therefore, one 

figure of merit that can be used to determine a SiC MOSFET’s susceptibility to Miller-charge-up 

is the CGS to CGD ratio, which will further be referred to as the Miller Capacitance Ratio (MCR) 

[5].  In Table 12, the MCR value for three common SiC MOSFETs from Wolfspeed are provided.  

It is easily observed that a significant improvement in the SiC MOSFET’s susceptibility to Miller-

charge-up was accomplished between the Generation 2 and Generation 3 MOSFETs.  The MCR 

value of the 900 V, 10 mΩ MOSFET is just over twice the MCR value of the 1200 V, 25 mΩ 

Table 12. Miller Capacitance Ratio for Three Common SiC MOSFETs 

Parameter CPM3-1200-0013 CPM2-1200-0025 CPM3-0900-0010 Units 

CISS 6,909 2788 4500 pF 

CRSS (CGD) 22 15 12 pF 

CGS 6,887 2773 4488 pF 

CGS/CGD 313 185 374 - 
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MOSFET [6, 7, 8].  For this reason, the SiC MOSFET model of the Generation 2, 25 mΩ will be 

used in this chapter.  The Generation 3 MOSFETs do not exhibit enough Miller-charge-up with 

the proposed gate and source resistors from the previous chapter to warrant a meaningful 

investigation on this subject. 

In order to determine the effectiveness of the three various Miller Clamp topologies outlined in 

the introduction, a double-pulse, clamped-inductive-load test in SPICE will be conducted on each 

of the topologies.  An example of the test is portrayed in Figure 44 and Figure 45, which will 

suffice as the control for the experiment as there is no Miller Clamp present in the gate network.  

As can be seen on the second turn-on pulse at roughly 420 A, there is a large voltage spike on the 

high-side VGS plot (top plot), which is induced by the Miller-charge-up effect.  During this time, 

the low-side device is turning on, and the voltage at the midpoint is falling rapidly causing a large 

dv/dt across the high-side MOSFET as described previously.   

 

Figure 44. Double-Pulse Testing with No Miller Clamp 
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Figure 45 provides a zoomed look into the charge-up spike between the gate and source of each of 

the fourteen paralleled MOSFETs inside the SiC power module.  The MOSFETs farther from the 

gate driver’s connection to the module exhibit a larger magnitude of VGS during charge-up.  This 

is expected as the impedance seen by the farther positions is greater than the closer positions 

forcing more of the Miller-charge-up current to flow into the CGS of the device as opposed to the 

intended off-state gate drive path.  With the Generation 2, 25 mΩ MOSFET and the proposed 

values for RG-INT and RS-INT, the charge-up of VGS far exceeds the rated threshold voltage of the 

device at 175 °C.  This result mandates a solution to guarantee reliable operation of the SiC power 

module at its rated junction temperature.  As stated by Andrew Lemmon, et al., “In the case that 

the reduction of switching speed is accomplished by increasing the value of the series gate 

resistance, this solution also increases the risk of Miller turn-on (and shoot-through in half-bridge 

circuits). Clearly, better techniques are needed to reduce the susceptibility of applications to self-

 

Figure 45. High-Side VGS with No Miller Clamp During Low-Side Turn-On (Control) 
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sustained oscillation without trading away the low-loss switching behavior that is one of the major 

attractions of WBG devices.” [5]  One of these better techniques is the Miller Clamp, which is 

investigated thoroughly in the next three sections. 

5.2 External Miller Clamp 

To begin the investigation of various Miller Clamp topologies, the common external Miller Clamp 

is examined.  This circuit arrangement is often found integrated into an all-in-one gate driver IC 

that provides isolation, fault reporting, gate signal buffering, and an active clamp.  When the Miller 

Clamp is located inside the gate driver IC, an alternative off-state path is created around the turn-

off gate resistor.  This clamp topology provides practically no gate-network impedance reduction, 

and is only beneficial for systems with high turn-off gate resistance.  The equivalent schematic for 

this arrangement is visualized in Figure 46.  The external Miller Clamp may also be a discrete 

MOSFET that is located on the gate driver PCB with discrete logic circuitry for control and 

actuation.  As shown in the figure, the difference between the red current path, exemplifying no 

MC, and the blue current path, demonstrating an external MC, is simply RG-External or the turn-off 

 

Figure 46. Schematic of External Miller Clamp Illustrating Difference in Current Paths 
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resistor if separate turn-on and turn-off resistors are present.  For systems utilizing low gate 

resistance or low turn-off resistance, the external Miller Clamp provides little benefit. 

To prove this theory, a simulation is conducted to determine the tangible benefit of the external 

MC.  First, a clamping MOSFET is selected; moreover, a low-on-state resistance and low-

inductance-packaged MOSFET is desired.  STMicroelectronics offers a 30 V, 21 mΩ FET in a 

SOT23-6 package, which meets all of the requirements for this application and will be utilized as 

the active clamp device for all of the following SPICE simulations [9].  ST also provides a SPICE 

model of the part as well as the parasitic inductances of the package.  This MOSFET is inserted 

into the gate-network model from the previous chapter in the location of the external Miller Clamp 

for the high-side of the power module.  Conducting the simulation results in Figure 47, which 

portrays the Miller-charge-up that occurs on the high-side VGS during the turn-on of the low-side 

position at roughly 420 A.  As in the control waveform, the paralleled SiC MOSFETs that are 

 

Figure 47. High-Side VGS with External Miller Clamp During Low-Side Turn-On 
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farthest from the gate driver’s connection to the module exhibit the largest magnitude VGS.  

Comparing the waveform in Figure 47 to the control in Figure 46, it is clear that very little benefit 

is exuded by the external Miller Clamp.  This is due to the external gate resistance in this 

experiment being zero excluding small parasitics in the model.  Operating at this extremely low 

gate resistance is enabled due to the optimizations of the previous chapters that provide sufficient 

damping of the power module through the internal gate and source resistors.  For this reason, the 

external Miller Clamp is rendered practically useless, and a more advanced topology is required. 

5.3 Internal Miller Clamp 

The second topology to be examined is referred to as the internal Miller Clamp, which denotes 

that the clamping MOSFET is located inside the SiC power module.  The advantage of this Miller 

Clamp method is the reduction of parasitic inductance in the clamping path compared to the 

standard, external Miller Clamp as illustrated in Figure 48.  As before, the gate-driver-mounted, 

external gate resistor is bypassed, but for the internal clamp’s case, the inductance produced from 

the gate driver’s connection to the power module is bypassed as well [4].  The disadvantage of this 

 

Figure 48. Schematic of Internal Miller Clamp Illustrating Difference in Current Paths 

Gate

Driver LG-Interconnect LG1-PCBRG-External

SiC MOSFET 1

LG1-Wire Bond

LS1-Wire BondLS1-PCBLS-Interconnect RS1-Internal

RG1-Internal

C-4V

L-4V-Interconnect

+15 V

-4 V

Miller Clamp

 



92 

 

method is that the Miller Clamp’s gating signal and the negative gate voltage rail, -VSS, must be 

routed into the power module.  There is also the reliability concern of the clamping Si MOSFET 

being damaged and rendering the entire power module useless. 

The internal Miller Clamp is added to the SPICE simulation of the gate network and the double-

pulse test is conducted.  The resulting waveform for the VGS of each MOSFET position is portrayed 

in Figure 49.  Similar to the external Miller Clamp, the position closest to the clamp, position 1, 

observes the greatest benefit from the clamp and experiences the lowest peak voltage.  For the 

internal clamp case, the first three positions do not peak above the threshold voltage of the device, 

which indicates that the internal clamp offers better performance than external clamp.  However, 

the internal clamp is not an adequate solution for guaranteeing that all of the positions remain in 

their safe-operating-area below the threshold voltage.  Yet again, another Miller Clamp method 

must be explored. 

 

Figure 49. High-Side VGS with Internal Miller Clamp During Low-Side Turn-On at 420 A 
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5.4 Individual Miller Clamp per MOSFET Position 

The final Miller Clamp topology, the individual Miller Clamp, denotes a clamping MOSFET per 

SiC power MOSFET inside the power module directly next to the wirebonds that connect the gate 

network PCB to the devices.  This strategy provides the highest reduction of parasitic inductance 

in the clamping path as well as the removal of the relatively high-valued internal gate and source 

resistors, which dramatically reduces the off-state impedance.  Figure 50 illustrates the difference 

in the standard turn-off current path through the gate driver in red and the individual Miller Clamp 

current path in blue.  There must also be an individual ceramic, bypass capacitor per device inside 

the module to provide a low-impedance path to -VSS.  With this topology, the only impedance seen 

during the clamped off-state is the parasitic inductance and resistance of the wirebonds from the 

device to the PCB, the ESR and ESL of the bypass capacitor, and the RDS-ON and parasitic 

inductance of the Si MOSFET.  There is also the advantage of an evenly distributed, low-

impedance clamping path at each power MOSFET in the module as opposed to a gradual increase 

in impedance at each position. 

 

Figure 50. Schematic of Individual Miller Clamps Illustrating Difference in Current Paths 

Gate

Driver LG-Interconnect LG1-PCBRG-External

SiC MOSFET 1

LG1-Wire Bond

LS1-Wire BondLS1-PCBLS-Interconnect RS1-Internal

RG1-Internal

C-4V

L-4V-Interconnect

+15 V

-4 V

Miller Clamp

 

L-4V-PCB



94 

 

Figure 51 portrays the simulation results for in the individual Miller Clamp topology.  Noticeable 

differences between this result and the previous two topologies include the completely overlapping 

behavior of all fourteen VGS waveforms, which is due to the matched low-impedance off-state path 

of the individual clamps.  Also, the VGS peak remains very distant from the threshold voltage of 

the power devices; in fact, the VGS peak does not even reach a positive value.  One observation to 

note is the natural ringing of VGS that exceeds the negative recommended operating voltage of the 

SiC device, which is largely due to the parasitic inductance of the clamping MOSFET interacting 

with the parasitic capacitances of the SiC devices.  In order to minimize this ringing, a very low-

inductance Miller Clamp MOSFET should be selected. 

The individual Miller Clamp topology provides a solution to the fortuitous parasitic turn-on of 

SiC power modules with relatively low CDG/CGS ratios.  The addition of several Si MOSFETs 

and ceramic capacitors inside a power module may be a large reliability concern, but the massive 

 

Figure 51. High-Side VGS with Individual Miller Clamp During Low-Side Turn-On 
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reduction in Miller-charge-up from the individual Miller Clamp topology could prove 

advantageous for some high-performance applications that experience extremely high dv/dt. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The main objective of this effort was to determine points of weakness in the gate network of a 

high-performance SiC power module and to offer remedies to these issues to increase the overall 

lifetime and reliability of the technology.  In order to accomplish this goal, a highly accurate model 

of the gate network was required, which was summarized in Chapter 2 with three portions of the 

gate network analyzed through three different methods of parameter extraction: calculation, 

simulation, and measurement.  Using the parasitic values obtained in Chapter 2, a SPICE model 

of the gate network was developed in Chapter 3 and was used to analyze four electrical issues in 

high-speed, WBG-based power modules including adequate internal gate resistance per power 

MOSFET for damping under-voltage and over-voltage transients at the gate of each device, 

disparity in switching loss between paralleled devices due to propagation delay, high-frequency 

oscillatory behavior on VGS due to die-to-die interactions, and large power current equalization in 

the kelvin-source signal path and the addition of internal source resistors per power device.  

Chapter 4 provides experimental results for parameter variance between paralleled MOSFETs and 

outlines the consequences of mismatched threshold voltage and on-state resistance on switching 

loss and junction temperature.  Finally, in Chapter 5, three Miller Clamp topologies were simulated 

and assessed for effectiveness.  A solution for high dv/dt systems was provided in the form of the 

individual Miller Clamp internal to the power module. 
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6.2 Future Work 

6.2.1 MOSFET Binning or Sorting Algorithm Development 

As discussed in Chapter 4, the parameter variance of a MOSFET in a power module must be kept 

to a determined minimum value in order to maximize performance while ensuring each paralleled 

device remains below its rated junction temperature.  This minimum variance amount must be 

determined as well as the complex process of binning or sorting the MOSFETs in an efficient, 

cost-sensitive manner. 

6.2.2 Experimental Testing of the Individual Miller Clamp  

The individual Miller Clamp topology needs to be verified with experimental testing.  For this to 

occur, a gate network PCB must be designed to comprise the clamping MOSFETs, the ceramic 

bypass capacitors, the clamp gate signal, and the -VSS supply rail.  This PCB will also need to 

provide probing points for the fiber-optically isolated IsoVu probe to measure VGS at the gate of 

each power device. 
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