
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2019

Asynchronous Circuit Synthesis Using Multi-
Threshold NULL Convention Logic
Nicholas Renoudet Mize
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

Part of the Digital Circuits Commons, and the VLSI and Circuits, Embedded and Hardware
Systems Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

Recommended Citation
Mize, Nicholas Renoudet, "Asynchronous Circuit Synthesis Using Multi-Threshold NULL Convention Logic" (2019). Theses and
Dissertations. 3168.
https://scholarworks.uark.edu/etd/3168

https://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F3168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uark.edu%2Fetd%2F3168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F3168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F3168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3168?utm_source=scholarworks.uark.edu%2Fetd%2F3168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Asynchronous Circuit Synthesis Using

 Multi-Threshold NULL Convention Logic

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Engineering

by

Nicholas Mize

Bachelor of Science in Computer Engineering, 2017

University of Arkansas

May 2019

University of Arkansas

This thesis is approved for recommendation

Jia Di, Ph.D.

Thesis Director

Dale Thompson, Ph.D

Committee Member

Patrick Parkerson, Ph.D.

Committee Member

Abstract

 As the demand for an energy-efficient alternative to traditional synchronous circuit

design grows, hardware designers must reconsider the traditional clock tree. By doing away with

the constrains of a clock, asynchronous sequential circuit designs can achieve a much greater

level of efficiency. The utilization of asynchronous logic synthesis flows has enabled researchers

to better implement asynchronous circuit designs which have been optimized using the same

industry standard tools that are already used in sequential synchronous designs. This thesis offers

a new flow for such tools which implements the MTNCL asynchronous circuit architecture.

Table of Contents

1. Introduction ... 1

2. Background .. 3

2.1. Synchronous Behavioral Code Synthesis ... 3

2.2. Multi-Threshold NULL Convention Logic (MTNCL) .. 6

2.3. Asynchronous Behavioral Code Synthesis .. 11

3. MTNCL Synthesis ... 14

3.1. Software Setup ... 15

3.2. Pre-Processing .. 16

3.3. Single-Rail Synthesis ... 19

3.4. Dual-Rail Synthesis .. 24

3.5. Combining of Pipeline Stages .. 29

4. Results ... 32

4.1. 4-bit RCA ... 32

4.2. Pipelined 4-bit ALU ... 33

4.3. Pipelined Oscillator .. 36

4.4. 8-bit Pipelined Array Multiplier ... 37

4.5. ISCAS’99/ITC’99 Benchmarks ... 39

References ... 43

Table of Figures

Figure 1: Rising edge triggered D Flip Flop inference ... 4

Figure 2: Combinational loop with D Flip Flops placed at input and output 5

Figure 3: MTNCL threshold gate with weighted input .. 8

Figure 4: DATA and NULL propagation ... 9

Figure 5: MTNCL Pipeline architecture with sleep completions and registers [3] 10

Figure 6: MTNCL Synthesis flow from VHDL to gate-level netlist .. 14

Figure 7: D Latch replacement and MUX inference .. 17

Figure 8: D Latch replacement with a MUX in the VHDL process ... 17

Figure 9: Appending pipeline stage outputs to the VHDL port map .. 19

Figure 10: The generated RTL from single-rail synthesis placed into an assign dictionary 21

Figure 11: An example of wire paths as data flows in each pipeline stage 22

Figure 12: The decision flow for evaluating wires in each path from primary output to primary

input .. 23

Figure 13: MTNCL pipeline stage with an MTNCL register placed between the feedback loop 24

Figure 14: The dual-rail assignment of output wire c1(0) in a pipeline stage 25

Figure 15: MTNCL AND tree with seven inputs ... 26

Figure 16: Gate-level MTNCL register with buffer ... 27

Figure 17: MTNCL Completion component with AND tree and inverter 29

Figure 18: MTNCL pipeline stage relationships .. 30

Figure 19: 4-bit RCA waveform ... 33

Figure 20: 4-bit ALU addition waveform ... 34

Figure 21: 4-bit ALU subtraction waveform .. 35

Figure 22: 4-bit ALU AND OR waveform ... 35

Figure 23: 1-bit oscillator waveform .. 36

Figure 24: Generated 8-bit pipelined array multiplier simulated in ModelSim............................ 38

Figure 25: Generated 8-bit pipelined array multiplier simulated in ModelSim............................ 38

Figure 26: ISCAS’99/ITC’99 b01 waveform in MTNCL .. 40

Figure 27: Waveform for b01 stato signal .. 40

Table of Tables

Table 1: Basic MTNCL Threshold Gates [5] ... 6

Table 2: MTNCL Dual-rail State Encodings .. 8

Table 3: Gate utilization of the generated 4-bit RCA ... 33

Table 4: Gate utilization of the generated 4-bit ALU ... 36

Table 5: Gate utilization of the generated oscillator ... 37

Table 6: Gate utilization of structural vs generated 8-bit multiplier ... 39

Table 7: Gate utilization of the generated b01 FSM ... 41

1

1. Introduction

 Since the invention of Very High-Speed Hardware Design Language, or VHDL, and

Verilog in the 1980s, logic synthesis has played a key role in the creation of gate-level design

representations from high-level descriptions. Such logic synthesis tools have become standard in

the creation of synchronous circuit designs that implement an oscillating clock signal to

synchronize data flow. Unfortunately, these tools have become so focused on supporting

synchronous architectures that asynchronous designs tend to have no well-known flow that can

be used to create gate-level hardware from a high-level description. This leads to the design of an

asynchronous logic circuit being described in a structural way which is not ideal due to the lack

of optimizations that can be performed by synthesis tools. By developing a flow for

asynchronous synthesis, designers can be less strict in their methods of designing components in

an asynchronous circuit and allow the synthesis tools to make the gate level mapping on their

behalf. This leads to less leakage and dynamic power being used for a design that performs

identically to the behavioral model.

 Behavioral level models are traditionally the source of synthesized circuit designs. These

models are created using a hardware description language to behaviorally describe the way data

should flow from input to output and to describe the Boolean logic operations that should be

applied to the inputs. Boolean algebra can be used with individual data bits to create components

which are instantiated in a design to create a hierarchy of components that are configured to

perform computations on data inputs. In VHDL, components are referred to as entities and in

Verilog they are specified as modules.

2

 For the execution of asynchronous logic code to be implemented in behavioral code,

modifications need to be made. For example, the flow of data between clock cycles requires a

special synchronous logic cell known as a Flip Flop or Latch to hold the values of data bits in a

design for a certain amount of time. Since there is no clock signal to synchronize with in

asynchronous circuits, these synchronous logic cells cannot be mapped to the custom

asynchronous library cells. Therefore, for any asynchronous architecture to become

synthesizable, a flow is created which can be automated to perform the various modifications

needed.

 This thesis provides a unique flow for the construction of a gate-level netlist from a

VHDL behavioral model. Chapter 2 will provide the necessary background for behavioral

synthesis, MTNCL architecture, and asynchronous synthesis. The step-by-step implementation

of MTNCL synthesis is defined in Chapter 3. Results of the MTNCL synthesis flow will are

provided in Chapter 4. A 4-bit ripple carry adder (RCA), pipelined oscillator, 4-bit arithmetic

logic unit (ALU), 8-bit array multiplier, and finite a state machine from the ISCAS’99/ITC’99

benchmarks library is presented [1]. A conclusion to the thesis is given in Chapter 5.

3

2. Background

 This thesis is based on various previous works. Section 2.1 addresses behavioral code

synthesis from a hardware design language like VHDL or Verilog. The asynchronous circuit

design paradigm known as Multi-Threshold NULL Convention Logic (MTNCL), is introduced

in section 2.2. An overview of previously developed asynchronous synthesis software tools are

described in section 2.3.

2.1. Synchronous Behavioral Code Synthesis

 Often, the functionality of digital circuits is described in a human readable hardware

description language such as VHDL or Verilog. From these languages, the semiconductor

industry has developed tools to transform high-level descriptions into low-level models

describing the hardware to be implemented for a certain functionality. Like any other

programming language, there are syntax rules that must be followed for the behavioral

description to be compiled into a circuit or functional simulation. For example, VHDL and

Verilog code is separated into sections that run sequentially and in parallel. Sequential code

sections are described within a specific section known as process in VHDL. Code that is written

in the process is performed from top to bottom of the entire process, like other popular

programming languages like C++. Verilog has a similar label for sequential code operations

which are performed in an always section. Code that is not included in either of these sections is

assumed to execute in parallel.

 Low-level models, typically generated as a gate-level netlist, are produced through a

process known as logic synthesis. For synchronous designs, a clock signal is used to synchronize

the data as it flows from input to output. Logic gate inference for synchronous circuits uses the

4

clock signal to place D Flip Flops, D Latches, and other Boolean gates into a design depending

on a behavioral description. Figure 1 provides an example of an inferred rising edge triggered D

Flip Flop at the boundary of signals D and Q.

Process(clock)

Begin

if rising_edge(clock) then

Q <= D;

End if;

End process;

VHDL Behavioral Description

D Q

D Flip Flop

Clock

Figure 1: Rising edge triggered D Flip Flop inference

 For any circuit component, or construct, defined with a high-level description, there

should exist a set of Boolean logic gates able to achieve the described functionality. This set of

gates is optimized during synthesis to use the least amount of logic gates possible depending on

the Boolean algebra reduction algorithms used in the synthesis tool while meeting the design

constraints. Not all design constructs can be optimized using synchronous logic synthesis and

software tool developers need to handle unsupported constructs such as setting the value of a

signal outside of a system reset.

 According to the IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis, the

three main categories for VHDL constructs are supported, ignored, or not supported [2]. For

supported constructs, synthesis can correctly map to a hardware representation without issue.

Ignored constructs are simply left out of the generated low-level model or gate-level description.

Not supported constructs are left up to the discretion of the synthesis tool designer. Typically,

synthesis tools make the decision to either ignore or throw out an error depending on whether the

5

functionality of the circuit is dependent on the not supported construct. A construct relevant to

this thesis is the combinational loop shown in Figure 2 by the red wire which is not gated by a

clock signal.

AND

XOR
FFFF

In

Clock

Out
Combinational Loop

Figure 2: Combinational loop with D Flip Flops placed at input and output

 Combinational loops cause issues in synchronous behavioral synthesis due to the possible

unknown value presented on the red wire of Figure 2 under certain circumstances. Concerning

the circuit in Figure 2, if the In signal is a value of logic ‘0’, then the combinational logic,

consisting of a single XOR and a single AND gate, will output a value of logic ‘0’ on the red

wire. This value will be stored by the Out rising edge triggered D Flip Flop (FF) on the next

clock cycle. Conversely, if the In wire is a value of logic ‘1’, the combinational loop on the red

wire between the two FFs will oscillate between logic ‘0’ and logic ‘1’. This oscillation will

cause a value of either logic ‘1’ or logic ‘0’ to be stored by the Out FF on the next clock cycle.

Ideally, every signal looping back from the output of a gate to the input of a previous gate needs

an FF or D Latch to hold the value for at least one clock cycle to prevent oscillation. Regarding a

synchronous design, the combinational logic of Figure 2 will need to be redesigned before

behavioral synthesis can properly occur.

6

2.2. Multi-Threshold NULL Convention Logic (MTNCL)

 Compared to their synchronous counterparts, circuits designed in an asynchronous way

tend to benefit from high energy efficiency, more reliable operation, and simplified architecture

due to the lack of a clock signal and corresponding clock tree. Multi-Threshold NULL

Convention Logic (MTNCL) features quasi delay-insensitive (QDI) operation and ultra-low

power consumption [3]. MTNCL itself is a derivative of NULL Convention Logic (NCL), a

foundational design paradigm for component handshaking and propagation of data throughout

the circuit [4].

 Both MTNCL and NCL use custom gate libraries mapped from behavioral-level designs.

There are 27 gates total for NCL and MTNCL alike. Gate functionality is similar regarding NCL

and MTNCL with a slight naming difference. The letter “m” is appended to the end of MTNCL

gate names to denote their multiple threshold voltage MTCMOS transistor design [3]. Table 1

names and describes the functionality of these gates using Boolean algebra.

Table 1: Basic MTNCL Threshold Gates [5]

MTNCL Gate Boolean Function

TH12m A+B

TH22m AB

TH13m A+B+C

TH23m AB+AC+BC

TH33m ABC

TH23w2m A+BC

TH33w2m AB+AC

TH14m A+B+C+D

TH24m AB+AC+AD+BC+BD+CD

TH34m ABC+ABD+ACD+BCD

TH44m ABCD

TH24w2m A+BC+BD+CD

TH34w2m AB+AC+AD+BCD

7

Table 1: (Cont.)

TH44w2m ABC+ABD+ACD

TH34w3m A+BCD

TH44w3m AB+AC+AD

TH24w22m A+B+CD

TH34w22m AB+AC+AD+BC+BD

TH44w22m AB+ACD+BCD

TH54w22m ABC+ABD

TH34w32m A+BC+BD

TH54w32m AB+ACD

TH44w322m AB+AC+AD+BC

TH54w322m AB+AC+BCD

THxor0m AB+CD

THand0m AB+BC+AD

TH24compm AC+BC+AD+BD

 Like NCL, MTNCL threshold gates contain an M, N, and weight value following the

“TH” notation. The first value after the “TH” is M, followed by N, and the weight or w. The M

value specifies the number of inputs required to drive the output to Logic ‘1’ while the value of

N specifies the number of inputs the threshold gate supports. The weights specify the threshold

value contributed by each input letter, A through D, with A being the first leftmost weight value.

For example, the TH54w322m gate shown in Figure 3 needs the threshold value of each wire to

sum to 5 before output Z becomes Logic ‘1’. Given the weight values in the naming convention,

the weight of each input is A=3, B=2, C=2, and D=1. Unlike their NCL counterparts, MTNCL

gates cannot hold their values due to the lack of internal feedback. Because of this, every

MTNCL gate requires a sleep signal to be created by separate MTNCL completion logic. In this

way, the outputs of the MTNCL gate can be controlled. The symbol of the MTNCL

TH54w322m gate is shown in Figure 3.

8

TH54w322m

A

B

C

D

sleep

Zweights

3

2

2

1

Figure 3: MTNCL threshold gate with weighted input

 MTNCL makes use of a multi-rail logic encoding for every bit used in a design. The

incorporation of multiple rails allows a dedicated MTNCL register and its corresponding

completion logic to determine when the combinational circuit operation is complete. For this

thesis, dual-rail logic encoding is chosen to encode each bit. When converting from a single-bit,

the dual-rail terms DATA0 and DATA1 are used to represent the single-bit values of Logic ‘0’

and Logic ‘1,’ respectively. An example of this dual-rail encoding would be a signal, A, having

two wires representing a valid DATA0 or DATA1 state, so that wire A.Rail0 has a value of ‘1’

when signal A is DATA0. Conversely, A.Rail1 has a value of ‘0’ when signal A is DATA0.

Table 2 identifies all possible combinations of the dual-rail MTNCL encoding and the possible

wavefronts of DATA0, DATA1, NULL, and INVALID.

Table 2: MTNCL Dual-rail State Encodings

 DATA0 DATA1 NULL INVALID

Rail0 1 0 0 1

Rail1 0 1 0 1

9

 Of the four possible dual-rail wavefronts, only three are expected to occur in normal

circuit operation due to the mutual exclusivity of each rail [5]. An INVALID state is generally

not expected and is indicative of a design flaw. The NULL state is a spacer in MTNCL designs

and is only used to determine when a set of output values from the combinational logic has

finished calculating and is ready to be stored. These wavefronts flow from input to output in

MTNCL designs over time as in Figure 4.

Rail1

Rail0

DATA1 DATA0

NULLNULLNULL

Figure 4: DATA and NULL propagation

 Each dual-rail encoded state is used for handshaking between the MTNCL completion

components and MTNCL register components. The MTNCL registers hold either DATA or

NULL wavefronts until the corresponding combinational portion of the circuit is finished with its

calculation. Due to the uncertainty of DATA and NULL arrival time at the input of every

MTNCL register in a pipelined design, dedicated logic in the form of MTNCL completion is

needed. MTNCL completion checks every input to the MTNCL registers to ensure either both

Rail1 and Rail0 values are ‘0’ for a NULL state, or only one Rail1 or Rail0 value is asserted to

‘1’ for a DATA state. The state of the entire stage in an MTNCL pipeline will only transition

when all wires in a stage are either DATA or NULL. In this way, the MTNCL completion logic

for a stage can alert preceding stages in a pipeline when it expects to receive DATA or NULL.

10

 The request-for-DATA (rfd) and request-for-NULL (rfn) signal is sent to previous stages

via a Kout handshake signal. When the value of Kout equals Logic ‘1’, it is considered a rfd.

When the value is Logic ‘0’, it is a rfn. For preceding stages, the rfd or rfn signal is read by that

stage’s completion logic as a Kin handshake signal. MTNCL gates are configured to control

whether a gate in the design is active or inactive via a sleep signal input. Gating the output thus

lowers power consumption and leakage current. The sleep signal allows the completion logic of

a stage to turn off components which are inactive during DATA and NULL wavefront

propagation. For example, the MTNCL registers of a pipeline stage currently in a NULL

wavefront as well as the combinational and completion logic of the stage after can be disabled.

The pipelined MTNCL architecture is shown in Figure 5.

sleep

MTNCL

Combinational

Logic

MTNCL

Register

MTNCL

Completion

sleep

MTNCL

Combinational

Logic

MTNCL

Register

MTNCL

Completion

MTNCL

Register

MTNCL

Completion

sleep

Sleep out

Sleep in

KinKout KinKin Kout Kout

sleep

sleep

sleepsleep

sleep

Figure 5: MTNCL Pipeline architecture with sleep completions and registers [3]

 MTNCL benefits greatly from the creation of an asynchronous synthesis flow which

allows hardware designers to create a gate-level design from a high-level description. Structural

VHDL has been used in the past to create MTNCL circuits by instantiating various components

manually in a hierarchy. While offering the best flexibility, this approach is not ideal for

hardware designers with limited knowledge of the MTNCL architecture, and not scalable for

11

large designs. Additionally, the optimizations implemented in modern synthesis tools cannot be

used in designs which were created in a structural way. Using the MTNCL architecture, this

thesis brings to light the possibility of mapping behavioral hardware design language code to an

asynchronous MTNCL gate-level netlist.

2.3. Asynchronous Behavioral Code Synthesis

 Asynchronous behavioral code synthesis tools can be designed to support the same

hardware design languages as the synchronous synthesis tools. The main difference between the

two methods is the lack of a clock signal to synchronize data flow for asynchronous designs.

Since asynchronous designs are purely combinational, loops are supported and are expected in

logic synthesis. There have been many attempts to create logic synthesis tools with the ability to

synthesize from VHDL or Verilog behavioral descriptions into a circuit design implementing

some form of handshaking for data flow as opposed to a clock signal and clock tree.

 Previously developed tools vary in the way they handle the hardware design language

descriptions and in the type of asynchronous netlist they produce. Because of the tremendous

effort required to develop a new synthesis tool, researchers often try to use current industry

standards instead. Likewise, this thesis uses the GENUS Synthesis Solution by Cadence to

optimize and map a behavioral design to an MTNCL gate library [6]. For asynchronous synthesis

tools using industry standards, modifications to the VHDL and generated gate-level netlist are

applied at various steps in the flow. Various other asynchronous logic synthesis tools were

explored which support complete or partial conversion from behavioral hardware description

languages to a custom asynchronous cell library while simultaneously using industry standard

synthesis tools whenever possible.

12

 While varying in terms of complexity and ease of use, Phased-Logic [7], De-

Synchronization [8], Proteus [9], Weaver [10], Unified NULL Convention Logic Environment

(UNCLE) [11], and NCL-X [12] are examples of previously developed asynchronous synthesis

tools. Phased-Logic implements a unique encoding scheme for each while doing away with the

need for a NULL wavefront like NCL and MTNCL at the cost of increased complexity. De-

Synchronization introduces the possibility of mapping standard cell library gates, rather than

custom asynchronous library gates, to a design in an asynchronous way. However, this

implementation is not QDI due to the usage of a combinational delay employed in each control

logic. Proteus and Weaver tools both show similar results. They create asynchronous hardware

from synchronous descriptions which can be faster than their synchronous counterparts. Both

also exhibit larger area overhead due to the extra control logic needed. UNCLE and NCL-X were

created to offer a flow for generating NCL designs given an input RTL behavioral design. Due to

the similarities of NCL and MTNCL, these two tools offer the most insight into how an

asynchronous MTNCL synthesis flow might be created.

 The UNCLE tool, while not end-to-end in its RTL-netlist conversion methods, offers a

great deal of flexibility to hardware designers who are familiar with the NCL architecture [11].

The main drawback of UNCLE is the need for designers to manually add NCL registers at the

boundary of each combinational logic block. For designs implementing Finite State Machines

(FSM) or feedback looping, this step is often complicated and can lead to design errors while

also requiring designer familiarity with NCL. Because of this, the NCL-X tool is created to

provide direct conversion of RTL to a gate-level netlist using several noteworthy steps. One such

step is the grouping of a complementary logic wire (Rail0) with its original logic value (Rail1)

through a method known as Dual-Rail expansion [12]. The now dual-rail design can then be

13

checked for completion whenever the output of a logic gate branches to multiple gates using a

completion logic handshaking signal. Multiple handshaking signals can be grouped together,

typically with a Boolean AND function, to check whether all gates in a section of NCL

combinational logic has completed its computation. With these techniques in mind, an automated

synthesis flow for the generation of MTNCL designs is proposed in this thesis which inputs a

high-level hardware design language description and outputs a gate-level MTNCL circuit.

14

3. MTNCL Synthesis

 This thesis implements an asynchronous synthesis flow to make modifications to RTL,

generic map, and gate-level netlists. Whenever possible, the GENUS Synthesis Solution by

Cadence is used to optimize and map the design to the custom MTNCL gate library. For the

purposes of automating the MTNCL synthesis flow, a python3 script, MTNCLSyn, was created.

Using MTNCLSyn, any limitations which prevent GENUS from mapping to the MTNCL gate

library can be resolved. This script automates as much of the MTNCL synthesis flow as possible

while simultaneously allowing as much designer influence over the output gate-level netlist as

possible. An overview of this flow is shown in Figure 6.

MUX Inference

Stage Outputs

Assigned to Top

Level Port Map

Behavioral

VHDL

Combinational

RTL Generation

Propagation

Backwards from

Outputs

Separation of

Pipeline Stages

Make Stages

Dual-Rail

MTNCL Register

Implementation

MTNCL

Completion

Implementation

Port Map and

Wire Merging

MTNCL Sleep

Domain Control

Gate-Level

Net-List

Figure 6: MTNCL Synthesis flow from VHDL to gate-level netlist

15

 Following are several sections covering the individual steps of MTNCL synthesis in

detail. Section 3.1 addresses the initial setup required for the various tools and libraries.

Modifications applied to the behavioral VHDL during pre-processing are explained in section

3.2. Single-rail synthesis is introduced in section 3.3. The steps pertaining to dual-rail synthesis

are elaborated in section 3.4. Finally, the combination of all pipeline stages into a single gate-

level netlist is explained in section 3.5.

3.1. Software Setup

 The GENUS synthesis tool used in this thesis requires a custom MTNCL cell library to

be input to GENUS as a Liberty library. This Liberty library was created by the SiliconSmart

tool from Synopsys [13] to characterizes each cell for IBM’s 45nm silicon on insulator (SOI)

process. With this data, GENUS can buffer MTNCL cell output wires to ensure target rise and

fall times are achieved. These vary depending on the capacitive load due to the number of

MTNCL cell inputs driven by each wire. The functionality of each MTNCL cell is also provided

to GENUS, so the RTL can be mapped to a gate-level netlist efficiently. It is possible to revert

the buffering on each cell to obtain a generic gate-level netlist to use for manual configuration in

simulations.

 The libraries provided to GENUS only describe the combinational logic used by

MTNCL. Due to their complexity, MTNCL registers and MTNCL completion components are

handled separately from the GENUS synthesis tool. Additionally, D Flip Flops, D Latches, and

other synchronous components are not synthesizable when the custom MTNCL cell library is

used. To resolve this, all synchronous components are replaced with a logically equivalent

MTNCL cell gate. Typically, the logical equivalent is either a TH22m, TH33m, or TH44m

16

MTNCL gate to implement an AND Boolean function. In this way, GENUS synthesizes the

behavioral code by treating it as combinational logic.

3.2. Pre-Processing

 Before the first round of single-rail synthesis can occur, several pre-processing steps must

be applied to the input VHDL behavioral code. The first step is to remove any synchronous logic

described by VHDL processes through a process called multiplexer inference. Multiplexer

inference, or MUX inference, occurs when a VHDL process in a hierarchical design is modified

to infer a MUX instead of a synchronous clock triggered component like a D Flip Flop or D

Latch. For MUX inference to occur in the VHDL behavioral code, each read signal for the entire

VHDL process must be placed into the sensitivity list. Additionally, each signal being written to

must be assigned an initial value of Logic ‘0’. Because VHDL processes are read sequentially

from the top, the initial value of Logic ‘0’ assigned to every written signal can be changed later

in the process block. For example, an if-then statement using the clock as a conditional can

reassign the value of an initially assigned signal if the clock signal is Logic ‘1’.

 Each MUX has two inputs and one output with a single-bit select. The first input is the

same input of the synchronous component being replaced, and the second input is a constant

Logic ‘0’. The select signal is assigned to the clock. Figure 7 shows the replacement of a D Latch

with a MUX and Figure 8 shows the before and after modification of the VHDL process for an

8-bit array multiplier.

17

FF

as0

FF

a

b bs0

clock

a

as0

b

bs0

Clock

=

clock

Clock

=

Clock

=

Clock

=

MUX

MUX

Figure 7: D Latch replacement and MUX inference

 process(reset,clock)

 begin

 if reset = '1' then

 as0 <= "00000000";

 bs0 <= "00000000";

 elsif clock = '1' then

 as0 <= a;

 bs0 <= b;

 end if;

 end process;

 process(clock,reset,a,b)

 begin

 as0 <= "00000000";

 bs0 <= "00000000";

 if clock = '1' then

 as0 <= a;

 bs0 <= b;

 end if;

 end process;

Figure 8: D Latch replacement with a MUX in the VHDL process

18

The modified VHDL process, shown in Figure 8, will infer a MUX rather than a D Latch. Due to

this replacement, the clock signal is no longer interpreted by GENUS as a clock. Rather, it

enables the flow of data from a to as0 and b and bs0 depending on the value of the clock signal.

In most cases, the inferred MUX is represented by a gate which implements a Boolean AND

function for its inputs. From the custom MTNCL cell library, a TH44m, TH33m, or TH22m gate

is used to AND the clock signal with inputs to the VHDL process depending on however many

inputs are needed. For each VHDL process with a clock signal, the if-then reset condition is

removed and added back after MTNCL gate-level netlist generation since it is no longer valid for

MUX inference. Later in the MTNCL synthesis flow, these MUXs will be replaced with

MTNCL registers after gate-level netlist generation.

 While a MUX is enough to convert the flow of data in a synchronous VHDL behavioral

model to an asynchronous flow, additional steps ensure the unique names of each signal assigned

to every MUX output is not lost during synthesis. Valuable information, which can be used to

determine from which MUX a signal was derived, is usually lost in the generated RTL from the

first round of single-rail synthesis. Without knowing this information, it is difficult to determine

where one pipeline stage begins and ends. Thus, it would be impossible to assign correct sleep

inputs and outputs for each pipeline stage in the generated MTNCL gate-level netlist to perform

the handshaking of DATA and NULL wave-fronts. To prevent this, every MUX output signal is

re-assigned to the port map of the top-level entity. By converting the internal MUX outputs into

primary outputs, the names of signals at the boundary between each pipeline stage can be

preserved. Concerning components instantiated in a hierarchy with clocked VHDL processes,

port maps are modified to append the additional pipeline stage output signals if they do not

already exist in the port map as outputs. A unique identifier is also appended to each

19

component’s signal name if more than one of the same components are instantiated by a VHDL

entity. Figure 9 depicts the pipeline stage signals being appended to the top-level VHDL port

map of an 8-bit multiplier.

entity multip_8 is

 port(

 clk : IN std_logic;

 reset : IN std_logic;

 a: IN std_logic_vector(7 downto 0);

 b: IN std_logic_vector(7 downto 0);

 z: OUT std_logic_vector(15 downto 0)

);

end multip_8;

entity multip_8 is

 port(

 reset : in std_logic;

 a: in std_logic_vector(7 downto 0);

 b: in std_logic_vector(7 downto 0);

 z: out std_logic_vector(15 downto 0);

 clk : in std_logic ;

 --ADDED BY MTNCLSyn

 as0 : INOUT std_logic_vector(7 downto 0);

 bs0 : INOUT std_logic_vector(7 downto 0);

 as1 : INOUT std_logic_vector(7 downto 0);

 bs1 : INOUT std_logic_vector(7 downto 0);

 s1 : INOUT std_logic_vector(7 downto 0);

 c1 : INOUT std_logic_vector(6 downto 0);

 comb1 : INOUT std_logic_vector(1 downto 0);

 s13 : INOUT std_logic_vector(7 downto 0);

 c13 : INOUT std_logic_vector(6 downto 0);

 comb13 : INOUT std_logic_vector(7 downto 0)

);

end multip_8;

Figure 9: Appending pipeline stage outputs to the VHDL port map

Regarding pipeline stage outputs appended to the port map, a port direction of INOUT is

preferred to prevent the synthesis tool from simplifying crucial pipeline stage names out of the

RTL. Once the port map modifications are complete for every VHDL entity in the design

hierarchy, single-rail synthesis can begin.

3.3. Single-Rail Synthesis

 The first round of synthesis, called single-rail synthesis, converts the pre-processed

VHDL behavioral code into a list of combinational wire assignments. These wire assignments

20

can be easily parsed by the MTNCLSyn script to group each wire assignment by pipeline stage.

After every wire has been assigned to a pipeline stage, the stages are separated into Verilog RTL

netlist files with the corresponding inputs, outputs, and Boolean logic.

 The combinational RTL generated by GENUS consists of the flattened design hierarchy

described in Verilog. To ensure there was no hierarchy created by GENUS during elaboration,

the “ungroup -all” command from the GENUS command reference documentation [14] was

passed to the tool. Every internal wire and output wire in the RTL are assigned to a Boolean

logic function to be mapped to a function of the basic MTNCL threshold gates in Table 1.

Because synchronous components are replaced with MUXs in the VHDL behavioral code, the

generated RTL will contain MUX output signals assigned to Boolean logic functions containing

a clock input. This clock input is not used in MTNCL handshaking, so it can be assigned to a

constant value of Logic ‘1’. In the steps following single-rail synthesis, this constant Logic ‘1’

will be simplified away using Boolean logic to allow the flow of data to occur. For example, if

an assigned output wire z is assigned to the Boolean logic a & B & clock, where “&” is a

Boolean AND operation in Verilog, the resulting Boolean logic can be simplified to a & B when

clock is substituted with a constant Logic ‘1’.

 The MTNCLSyn script uses each wire to create a dictionary of assigned values. The wire

being assigned is a key to the dictionary and the calculated Boolean function is the

corresponding value. This is shown in Figure 10 below; Orange wire names are keys to the

dictionary and blue Boolean functions are values for each key.

21

...
 assign clk = 1'b1; -- Logic

 assign bs0[0] = b[0] & clk;

 assign as0[0] = a[0] & clk;

 assign as0[1] = a[1] & clk;

 assign bs0[1] = b[1] & clk;

...
 assign n_153 = bs0[1] & as0[0];

 assign n_157 = bs0[0] & as0[1];

 assign c1[0] = clk & n_157 & n_153;

...

KEY

...
as0[0]

as0[1]

bs0[0]

bs0[1]

...
n_153

n_157

c1[0]

...

VALUE

...
b[0] & clk

a[0] & clk

a[1] & clk

b[1] & clk

...
bs0[1] & as0[0]

bs0[0] & as0[1]

clk & n_157 & n_153

...

Assign Dictionary

Figure 10: The generated RTL from single-rail synthesis placed into an assign dictionary

The RTL of Figure 10 shows the multi-bit pipeline stage inputs as0 and bs0 are assigned to the

result of a Boolean AND function using a and b. Then, as0 and bs0 are assigned to intermediary

wires n_153 and n_157. These intermediary values were created by GENUS and have arbitrary

names. Finally, the intermediary wires can be assigned to the Boolean AND of a clock wire

named clk. In this example, wires as0 and bs0 will become primary inputs to the pipeline stage

and the wire c1[0] will become a primary output to the pipeline stage. Any intermediate wires

occurring within the pipeline stage, such as n_153 and n_157, are also assigned to the stage

group. Once the entirety of the generated RTL has been placed into the assign dictionary,

propagation backwards from primary outputs can begin.

 Beginning from every primary output bit of the design, backwards propagation iterates

through each Boolean logic function in the assign dictionary. For example, given a primary

output in the assign dictionary with a key value of sout and Boolean logic value of a | b, a and b

are evaluated to determine if they belong to the same pipeline stage group responsible for the

22

value of sout. By propagating through the assign dictionary for each path in the combinational

logic, a pipeline stage output, primary input, or UNCONNECTED value is reached. Figure 11

provides an example design with multiple, colored outputs paths for z0, z1, and z2 originating

from inputs A, B, and C. As propagation from output to input occurs, each path can overlap to

form a pipeline stage group. Because output wires z0, z1, and z2 share at least one common

input, the MTNCLSyn script interprets them to be a part of the same MTNCL pipeline stage.

A

B

C

z0

z1

z2

n_1

Logic

From

Previous

Pipeline

Stages

To Next

Pipeline

Stages

Figure 11: An example of wire paths as data flows in each pipeline stage

 The names of pipeline stage outputs are known early in the MTNCL synthesis flow and

can be matched to wire names found in each Boolean assignment. Primary input signals can be

matched similarly. As shown by the Logic ‘1’ wire input in Figure 11, dead-end wire constants

can be found in the assign dictionary values. These wires do not have a key value associated with

them in the assign dictionary and can be evaluated as UNCONNECTED. When a wire is

evaluated as UNCONNECTED, it must be added to the top-level primary inputs and controlled

23

manually to ensure MTNCL DATA and NULL wave-front propagation can continue. Otherwise,

UNCONNECTED signals will output a constant DATA wavefront while the other signals in the

pipeline stage are outputting a NULL wavefront, effectively stalling the pipeline stage. Figure 12

provides a flowchart of the steps taken by the MTNCLSyn script to evaluate each wire path from

primary output to primary input.

START at Top Level

Primary Outputs

Is the wire

 a pipeline stage

output?

Add the wire

to the current

stage group

as an input

No
Is the wire

 a Primary Input?

Evaluate

each wire

within the

Boolean

assignment

Create a new

pipeline stage

group and

add the wire

to the new

group as an

output

Yes

Evaluate

other wires

within the

Boolean

assignment

Do other wires

need evaluation?

Yes

Stop further

propagation

of this wire

assignment

STOP at Top Level

Primary Inputs

No

No

Is the wire

UNCONNECTED

?

YesNo

Yes

Add the wire

to the Top

Level

Primary

Inputs

Figure 12: The decision flow for evaluating wires in each path from

primary output to primary input

 It is possible to encounter pipeline stage outputs looping back into the inputs of other

pipeline stages. To avoid the pipeline stall caused by these loops, the MTNCLSyn script needs to

check if a feedback loop will be outputting a DATA or NULL wavefront to a pipeline stage

expecting the opposite. This feedback looping predominantly occurs in pipeline stages with

outputs that loop to inputs of the same pipeline stage. To fix this problem, additional MTNCL

pipeline stages need to be placed between the feedback loop signal. In addition, the MTNCL

register in the middle of the feedback loop is reset to a DATA wavefront instead of a NULL

24

wavefront. Figure 13 shows the MTNCL feedback loop problem and the suggested fix to allow

correct DATA and NULL wave-front propagation.

sleep

MTNCL

Combinational

Logic

MTNCL

Register

MTNCL

Completion

sleep

MTNCL

Combinational

Logic

MTNCL

Register

MTNCL

Completion

MTNCL

Register

MTNCL

Completion

sleep

Sleep out

Sleep in

KinKout KinKin Kout Kout

sleep

sleep

sleepsleep

sleep

MTNCL

Register

Feedback Loop

MTNCL

Register

Reset to

NULL

Reset to

NULL

Reset to

NULL

Reset to

NULL

Reset to

NULL

MTNCL

Register

Reset to

DATA

Figure 13: MTNCL pipeline stage with an MTNCL register

placed between the feedback loop

 By following the MTNCLSyn decision flow, the generated RTL from single-rail synthesis

is separated into multiple pipeline stages. Each pipeline stage is contained in a separate RTL file

isolated from the other pipeline stages during dual-rail synthesis. In this way, the GENUS synthesis

tool is constrained to individually evaluate the Boolean logic of each pipeline stage. This prevents

the merging of Boolean logic between stage inputs and outputs and allows each stage to be

converted into dual-rail logic in preparation for dual-rail synthesis and MTNCL library gate

mapping.

3.4. Dual-Rail Synthesis

 The second round of synthesis is executed on isolated pipeline stage from the generated

RTL after conversion to dual-rail logic. As in the NCL-X synthesis tool, Dual-Rail expansion

25

can be used to convert a single-rail logic design into a dual-rail logic design [12]. Dual-Rail

expansion assigns every single-rail bit in the pipeline stage to Rail1 of the dual-rail logic design.

Furthermore, the complement of Rail1 is computed and assigned to the Rail0 bit. Because the

MTNCL handshaking protocol forces the NULL wavefront in each gate through the usage of a

sleep signal input, the sleep signal is not included in the Boolean function of each fundamental

MTNCL gate. Because, each pipeline stage is combinational, the MTNCLSyn script assigns

output wires to a Boolean function using only inputs to the pipeline stage. Figure 14 provides an

example of the assignment of c1(0) in terms of inputs from an 8-bit array multiplier after

conversion to dual-rail logic.

...
 c1(0).RAIL0 <= as0(0).RAIL0 OR as0(1).RAIL0 OR bs0(0).RAIL0 OR bs0(1).RAIL0;

 c1(0).RAIL1 <= as0(0).RAIL1 AND as0(1).RAIL1 AND bs0(0).RAIL1 AND bs0(1).RAIL1;

...

Figure 14: The dual-rail assignment of output wire c1(0) in a pipeline stage

 After Dual-Rail expansion, there will no longer be any intermediary wires in the pipeline

stages, and the pipeline stage RTL can be mapped to fundamental MTNCL logic gates with the

GENUS synthesis tool. However, the gate-level netlists created by GENUS in this step lack the

necessary sleep signal ports. Therefore, the MTNCLSyn script will need to append an input sleep

wire to the port map of every gate in the pipeline stage’s gate-level netlist. For pipeline stages

with inputs and outputs originating from multiple branching pipelines, a Boolean logic AND tree

is generated to combine the multiple sleep inputs for each stage. The MTNCL AND tree is

comprised of TH22m, TH33m, and TH44m gates to combine vectors into a single-bit output.

The AND tree can also be used to combine multiple Kin and MTNCL completion signals. The

26

circuit design in Figure 15 details the structure of an AND tree combining seven sleep inputs into

one.

TH44m

S0
S1

S2
S3

Sleep Input

TH33m

S4
S5

S6

TH22m
Multiple

Sleep

Inputs

Figure 15: MTNCL AND tree with seven inputs

 After synthesis is completed, MTNCL registers are placed at the inputs of individual

pipeline stages to maintain the dual-rail values until the MTNCL combinational logic finishes

computation. The MTNCL register design used in this thesis consists of a TH12nm threshold

gate with two inputs and a threshold value of one. The functionality of a TH12nm threshold gate

is identical to the functionality of a fundamental TH12m gate with the only difference being a

reset input which can be used to set the output value to Logic ‘0’. The first input is a pipeline

stage input wire while the second is a feedback loop of the output of the TH12nm gate. With this

configuration, the TH12nm gate can hold the input value it receives at its output until it is forced

to a Logic ‘0’ by the assertion of the sleep wire input. The outputs from the TH12nm gates used

for MTNCL registers are also buffered by the MTNCLSyn script to eliminate a possible sleep

race condition from occurring when a pipeline stage’s combinational logic input has a high

capacitive load. Thus, the flow for each pipelines stage input is first to the input of an TH12nm

threshold gate, then to a buffer gate, and finally to the input of the combinational logic cells in

27

the pipeline stage. Figure 16 shows the MTNCL gate-level design of the MTNCL registers used

in this thesis.

MTNCL

Register

TH12nm BUFFER

A.Rail0 Output

Rail0

Stage

Inputs

TH12nm BUFFER

Sleep in

A.Rail1 Output

Rail1

reset

Figure 16: Gate-level MTNCL register with buffer

 Uniquely named sleep domains are assigned to each pipeline stage to be combined after

dual-rail synthesis. For each pipeline stage, the sleep input is the combined sleep output from all

previous branching stages converging at the current stage. The Kout output is sent from the

current stage to all previous branching stages as a Kin input. The handshaking of sleep, Kout, and

Kin wires across each pipeline stage ensures that the previous stages know when the current

stage expects a DATA or NULL wavefront.

 MTNCL completion components are implemented to determine when a pipeline stage

has finished its computation and is ready for the next DATA or NULL wavefront. To determine

whether the current pipeline stage is ready for DATA or NULL, every output bit from the

MTNCL combinational logic needs to evaluate to DATA or NULL. Until all output bits

28

evaluate, the Kout wire sent to the previous stages does not change from Logic ‘0’ or Logic ‘1’.

The MTNCL completion design used in this thesis utilizes the TH12m or TH24compm threshold

gates with a Boolean AND tree and inverter gate to combine the outputs of Kout and sleep out.

In this design, Rail0 and Rail1 of each dual-rail signal is checked by either a TH12m or

TH24compm threshold gate, depending on the number of dual-rail signals used in the pipeline

stage. The MTNCLSyn script generates the MTNCL completion design as efficiently as possible

by pairing multiple dual-rail signals to the same TH24compm threshold gate when possible. For

dual-rail signals unable to be paired, the TH12m threshold gate is used. Regardless of whether

the wavefront is DATA0 or DATA1, one rail will be asserted to Logic ‘1’ for every dual-rail

signal. In this way, the MTNCL TH12m and TH24compm threshold gates can be configured to

assert a Logic ‘1’ on their outputs when all dual-rail inputs are either DATA0 or DATA1. As

well as combining each TH12m and TH24compm output, the AND tree combines the Kin wire

from the subsequent stage. The gate-level MTNCL completion design is presented in Figure 17.

29

MTNCL

Completion

TH12nm

TH24compm

TH24compm TH44m

Kout

A.Rail0

A.Rail1

B.Rail0

B.Rail1

C.Rail0

C.Rail1

D.Rail0

D.Rail1

E.Rail0

E.Rail1

Inverter

Stage

Inputs

AND tree

Kin

Sleep in

Sleep out

Figure 17: MTNCL Completion component with AND tree and inverter

According to Figure 17, two TH24compm threshold gates are generated to handle four of the

dual-rail logic inputs. Because there is an odd number of dual-rail signals, an additional TH12m

threshold gate is generated to check the completion of the E.Rail0 and E.Rail1 wires. Once the

required MTNCL sleep, register, and completion components have been added to the gate-level

netlist, the pipeline stages can be combined into a single gate-level netlist.

3.5. Combining of Pipeline Stages

 When combining several gate-level design files together, various wires and MTNCL gate

instantiation names will need to be uniquely named to prevent similarly named wires created by

GENUS from overlapping with other pipeline stages. For example, a generated wire created by

GENUS is renamed from “n_50” to “n_50_stage_0” to uniquely assign it to only the MTNCL

logic of stage 0. The same naming technique is applied to MTNCL threshold gates mapped by

30

GENUS. Prior to combining, every pipeline stage will have a set of previous stages and next

stages used by the MTNCLSyn script to establish how to connect the MTNCL sleep domain

wires. Figure 18 illustrates an example arrangement of stages in a pipeline to be combined based

on its previous and next stages.

PRIMARY INPUTS

PRIMARY OUTPUTS

Previous {Stage 0}

Next {Stage 0} Next {Stage 0}

Previous {} Previous {}

Next {Stage 1}

Previous {Stage2,Stage 3}

Next {Stage 2}

Previous {Stage 4}

Next {}

Stage 0

Stage 2

Stage 1

Stage 3 Stage 4

Figure 18: MTNCL pipeline stage relationships

 The port maps of every MTNCL pipeline stage will also need to be checked to determine

if their wires belong in the primary port map for the design. Additionally, pipeline stages with

primary inputs must have dedicated Kout and sleep in wires in the primary port map. Pipeline

stages with a primary output must have a dedicated Kin and sleep out. The MTNCLSyn script

can handle such cases due to the unique name assigned to each stage prior to unification.

However, pipeline stages in the middle of a circuit containing primary inputs or outputs will

31

increase the complexity of a design at the top-level because additional sleep in, sleep out, Kin,

and Kout wires will need to be properly controlled by top-level modules.

32

4. Results

 Having completed the required pre-processing, single-rail synthesis, dual-rail synthesis,

and combination of pipeline stages, the MTNCL gate-level netlist generated by the MTNCL

synthesis flow can be functionally simulated with ModelSim. The MTNCL designs created by

the MTNCL synthesis flow include a 4-bit ripple carry adder (RCA), pipelined oscillator,

pipelined 4-bit arithmetic logic unit (ALU), and pipelined 8-bit array multiplier. In addition to

testing the functionality, the gate utilization of a structural pipelined 8-bit array multiplier is

compared against a generated gate-level netlist. Results of testing the MTNCL synthesis flow on

a sample finite state machine from the ISCAS’99/ITC’99 benchmarks library is also provided

[1].

4.1. 4-bit RCA

 A 4-bit RCA was used to test the MTNCL synthesis flow against a design which has no

pipeline stages and is purely combinational. For designs without any pipeline stages, the amount

steps to be performed by the MTNCL synthesis flow is greatly reduced as the handshaking logic

is no longer needed. Figure 19 shows the waveform results for the generated gate-level netlist

from the MTNCL synthesis flow. The inputs and outputs have been converted to unsigned

decimal in the waveform view.

33

Inputs Outputs

A + B + CIN = SUM COUT

7 0 1 = 8 0

Figure 19: 4-bit RCA waveform

 For testing, the 4-bit RCA was given a range of values to test the functionality of the

SUM and COUT or carry out. When the SUM is less than 15 in unsigned decimal, the COUT

value will remain Logic ‘0’. Since there are no pipeline stages, the entirety of the 4-bit RCA is

described using MTNCL gates. NCL gates and Inverters are not needed since there is no

MTNCL completion. Buffers are also not needed in this simple example since there are no

MTNCL registers whose outputs need to be buffered. Table 3 provides the number of MTNCL

gates used by the generated gate-level netlist.

Table 3: Gate utilization of the generated 4-bit RCA

 MTNCL

gates

NCL

gates

Inverters Buffers Total

gates

Generated

4-bit RCA

29 0 0 0 29

4.2. Pipelined 4-bit ALU

 For designs which contain only one pipeline stage, a 4-bit ALU was synthesized. The 4-

bit ALU contains a single pipeline stage to hold the input values for one DATA wavefront

propagation. A 2-bit select signal SEL is also used to control what operation is to be computed

34

for the input signals a, b, and CIN. For values of SEL “00”, “01”, “10”, and “11” the operation to

be computed is addition, subtraction, bit-wise AND, or bit-wise OR respectively. Figure 20

provides the waveform for the 4-bit ALU performing an ADD, Figure 21 shows a waveform of

the SUB, and Figure 22 shows the ADD and OR operations. The ADD waveform uses unsigned

decimal, the SUB waveform is binary, and the ADD SUB operations are given in hexadecimal.

ADD

A + B + CIN = SOUT COUT

1 1 0 = 2 0

10 10 1 = 5 1

3 3 1 = 7 0
Inputs Outputs

Figure 20: 4-bit ALU addition waveform

35

Inputs Outputs

SUB

A - B = SOUT

0001 0001 = 1111

1010 1010 = 1111

0101 0011 = 1101

Figure 21: 4-bit ALU subtraction waveform

AND OR

 A AND B = SOUT

0x0 0x0 = 0x0

0xA 0xA = 0xA

0xF 0xA = 0xA

 A OR B = SOUT

0x0 0x0 = 0x0

0xA 0xA = 0xA

0xF 0xA = 0xF
Inputs Outputs

Figure 22: 4-bit ALU AND OR waveform

 Unlike the RCA, the ALU produces its own sleep signal and has MTNCL registers and

MTNCL completion components. These components all attribute to the need for NCL gates,

inverters, and buffers. The MTNCL gate composition of the 4-bit ALU is provided by Table 4.

36

Table 4: Gate utilization of the generated 4-bit ALU

 MTNCL

gates

NCL

gates

Inverters Buffers Total

gates

Generated

4-bit ALU

91 2 1 22 116

4.3. Pipelined Oscillator

 A pipelined oscillator was used to test the functionality of a synthesized circuit

containing a feedback loop from an output of one of its stages. In this design, three MTNCL

registers were placed in series along the wires that feeds back into the previous stage. Figure 13

from Section 3.3 provides a circuit diagram of this implementation. Figure 23 provides the

waveform given a constant input value of Logic ‘1’ for the dual-rail input a.

Inputs Outputs

a XOR zstate = z

1 0 = 1

1 1 = 0

1 0 = 1

1 1 = 0

1 0 = 1
State signal zstate

Figure 23: 1-bit oscillator waveform

 The oscillator implements five total pipeline stages. Two of the stages are used for

holding the input and output values, while the other three stages are used in the feedback loop.

This increase in pipeline stages leads to an increase in MTNCL registers and MTNCL

37

completion components. The amount of NCL gates, inverters, and buffers used in the

handshaking can be seen by the overall gate utilization shown in Table 5.

Table 5: Gate utilization of the generated oscillator

4.4. 8-bit Pipelined Array Multiplier

 The same VHDL testbench was used to evaluate the MTNCL synthesis generated and

MTNCL structural 8-bit multipliers. Both multipliers implement an eight-stage pipeline with

multiple wires combined at the boundaries of each stage. This simulation was used to validate

the MTNCL synthesis flow for large feed-forward pipelined designs. The results of both the

structural and generated behavioral gate-level netlists are functionally identical and follow the

waveforms shown by Figure 24 and Figure 25. Figure 24 evaluates the multiplier for a factor of 1

multiplied by 246 while Figure 25 evaluates for a factor of 2 multiplied by 246.

 MTNCL

gates

NCL

gates

Inverters Buffers Total

gates

Generated

Oscillator

21 7 5 12 45

38

Inputs to

final stage

Output from

final stage
inCheckA x inCheckB = outCheck

 1 x 246 = 246

Figure 24: Generated 8-bit pipelined array multiplier simulated in ModelSim

Inputs to

final stage

Output from

final stage
inCheckA x inCheckB = outCheck

 2 x 246 = 492

Figure 25: Generated 8-bit pipelined array multiplier simulated in ModelSim

 In terms of MTNCL gate utilization, the generated and structural multipliers vary greatly.

Due to the Boolean logic optimizations that are performed by the GENUS synthesis tool, the

MTNCL synthesis flow was able to create a functionally equivalent design to the structural

39

VHDL multiplier while using less MTNCL library gates. Table 6 compares the gate utilization of

the generated and structural 8-bit multipliers.

Table 6: Gate utilization of structural vs generated 8-bit multiplier

 MTNCL

gates

NCL

gates

Inverters Buffers Total

gates

Generated

8-bit Multiplier

1,232 8 8 424 1,672

Structural

8-bit Multiplier

1,825 16 16 1,122 2,979

4.5.ISCAS’99/ITC’99 Benchmarks

 The ISCAS’99/ITC’99 benchmarks include various designs for benchmarking finite state

machines of different sizes and complexity. One such finite state machine is the b01 design

which performs a Boolean XOR operation on two inputs for serial comparison. The MTNCL

synthesis flow was used to convert this state machine from its original behavioral description

into an MTNCL gate-level netlist This operation is performed until the sixth MTNCL handshake

where it changes to XNOR as seen in Figure 26.

40

OutputsInputs

XOR XOR XOR XOR XOR XOR XNOR XNOR

State change

to XNOR

line1 XOR line2 = outp

 0 0 = 0

 0 0 = 0

 0 0 = 0

 1 0 = 1

 0 1 = 1

 0 1 = 0

line1 XNOR line2 = outp

 1 1 = 1

 1 1 = 1

Figure 26: ISCAS’99/ITC’99 b01 waveform in MTNCL

 The state signal changes with each handshake until a maximum value of “111” is

reached. Internal state signal stato determines whether an XOR or XNOR operation is to be

calculated for the two inputs line1 and line2. The Rail1 values for the changing states are shown

by the waveform in Figure 27. The overall gate utilization for the MTNCL generated b01 finite

state machine is displayed in Table 7.

State signal stato

Figure 27: Waveform for b01 stato signal

41

Table 7: Gate utilization of the generated b01 FSM

 MTNCL

gates

NCL

gates

Inverters Buffers Total

gates

Generated

b01 FSM

77 10 4 24 115

42

Conclusion

 The MTNCL synthesis flow was successfully implemented and tested on various designs

which were originally described in VHDL behavioral code. By applying logic synthesis to the

behavioral code, the GENUS synthesis tool was able to improve upon existing asynchronous

designs which would traditionally need to be described in a structural VHDL model. Hardware

designers can implement their designs without having to manually place the handshaking wires

and control logic components that are needed for MTNCL to operate in a sequential circuit. This

improves the accessibility of MTNCL to hardware designers with a limited understanding of

how the architecture works.

 By modifying the syntax of behavioral VHDL code and synthesized RTL, a synchronous

design can be described in an asynchronous way. Industry standard tools for synthesis were used

to implement as many steps in the MTNCL synthesis flow as possible to achieve an efficient

gate-level design. The target MTNCL library used in this thesis is quasi delay-insensitive and

requires no timing analysis to be performed due to the lack of a clock tree [3]. Data is no longer

gated on the period of an oscillating clock signal and can instead flow from input to output

depending on the delay of the combinational logic itself. This leads to an overall simpler design

that can operate with less constraint.

 Continuing work will be done on this MTNCL flow to further automate the design

process and improve reliability. Currently as it is implemented, the MTNCLSyn script can

completely automate the flow of pipelines in designs that are feed-forward or have no feedback

signals in its pipeline stages.

43

References

[1] ITC and ISCAS, "ITC'99 benchmarks developed in the CAD Group at Politecnico di

Torino (I99T) - squillero/itc99-poli," 1999. [Online]. Available:

https://github.com/squillero/itc99-poli.

[2] "IEEE Standard for VHDL Register Transfer Level Synthesis," IEEE Std 1076.6, pp. 1-80,

10 March 2000.

[3] L. Zhou, R. Parameswaran, F. A. Parsan, S. C. Smith and J. Di, "MTNCL: An Ultra-Low

Power Asynchronous Circuit Design Methodology," Journal of Low Power Electronics

and Applications, vol. 5, no. 2, pp. 81-100, 2015.

[4] K. M. Fant and S. A. Brandt, "NULL Convention Logic: A Complete and Consistent Logic

fair Asynchronous Digital Circuit Synthesis," in Proceedings of International Conference

on Application Specific Systems, Architectures and Processors: ASAP '96, Chicago, IL,

USA, , 1996.

[5] S. Smith and J. Di, "Designing Asynchronous Circuits using NULL Convention Logic

(NCL)," in Designing Asynchronous Circuits using NULL Convention Logic (NCL),

Morgan & Claypool, 2009.

[6] Cadence, "Genus Synthesis Solution," 2019. [Online]. Available:

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-

and-signoff/synthesis/genus-synthesis-solution.html. [Accessed 9 April 2019].

[7] D. H. Linder and J. H. Harden, "Phased logic: supporting the synchronous design paradigm

with delay-insensitive circuitry," IEEE Transactions on Computers, vol. 45, no. 9, pp.

1031-1044, September 1996.

[8] J. Cortadella, A. Kondratyev, L. Lavagno and C. P. Sotiriou, "Desynchronization:

Synthesis of Asynchronous Circuits From Synchronous Specifications," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no.

10, pp. 1904-1921, October 2006.

[9] P. A. Beerel, G. D. Dimou and A. M. Lines, "Proteus: An ASIC Flow for GHz

Asynchronous Designs," IEEE Design & Test of Computers, vol. 28, no. 5, pp. 36-51,

Sept.-Oct. 2011.

[10] A. Smirnov, A. Taubin, S. Ming and M. Karpovsky, "An automated fine-grain pipelining

using domino style asynchronous library," in Fifth International Conference on

Application of Concurrency to System Design (ACSD'05), Saint Malo, France, 2005.

44

[11] R. B. Reese, S. C. Smith and M. A. Thornton, "Uncle - An RTL Approach to

Asynchronous Design," in 2012 IEEE 18th International Symposium on Asynchronous

Circuits and Systems, Lyngby, Denmark, 2012.

[12] A. Kondratyev and K. Lwin, "Design of asynchronous circuits using synchronous CAD

tools," IEEE Design & Test of Computers, vol. 19, no. 4, pp. 107-117, 7 August 2002.

[13] Synopsys, "Synopsys SiliconSmart," 2019. [Online]. Available:

https://www.synopsys.com/implementation-and-signoff/signoff/siliconsmart.html.

[Accessed 11 April 2019].

[14] Cadence Design Systems, Inc, GENUS Command Reference, 2016.

[15] S. Davidson, "ITC'99 Benchmark Documentation," [Online]. Available:

https://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html.

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2019

	Asynchronous Circuit Synthesis Using Multi-Threshold NULL Convention Logic
	Nicholas Renoudet Mize
	Recommended Citation

	tmp.1559312877.pdf.QLpeT

