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Abstract 

 As the demand for an energy-efficient alternative to traditional synchronous circuit 

design grows, hardware designers must reconsider the traditional clock tree. By doing away with 

the constrains of a clock, asynchronous sequential circuit designs can achieve a much greater 

level of efficiency. The utilization of asynchronous logic synthesis flows has enabled researchers 

to better implement asynchronous circuit designs which have been optimized using the same 

industry standard tools that are already used in sequential synchronous designs. This thesis offers 

a new flow for such tools which implements the MTNCL asynchronous circuit architecture. 
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1. Introduction 

 Since the invention of Very High-Speed Hardware Design Language, or VHDL, and 

Verilog in the 1980s, logic synthesis has played a key role in the creation of gate-level design 

representations from high-level descriptions. Such logic synthesis tools have become standard in 

the creation of synchronous circuit designs that implement an oscillating clock signal to 

synchronize data flow. Unfortunately, these tools have become so focused on supporting 

synchronous architectures that asynchronous designs tend to have no well-known flow that can 

be used to create gate-level hardware from a high-level description. This leads to the design of an 

asynchronous logic circuit being described in a structural way which is not ideal due to the lack 

of optimizations that can be performed by synthesis tools. By developing a flow for 

asynchronous synthesis, designers can be less strict in their methods of designing components in 

an asynchronous circuit and allow the synthesis tools to make the gate level mapping on their 

behalf. This leads to less leakage and dynamic power being used for a design that performs 

identically to the behavioral model. 

 Behavioral level models are traditionally the source of synthesized circuit designs. These 

models are created using a hardware description language to behaviorally describe the way data 

should flow from input to output and to describe the Boolean logic operations that should be 

applied to the inputs. Boolean algebra can be used with individual data bits to create components 

which are instantiated in a design to create a hierarchy of components that are configured to 

perform computations on data inputs. In VHDL, components are referred to as entities and in 

Verilog they are specified as modules.  
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 For the execution of asynchronous logic code to be implemented in behavioral code, 

modifications need to be made. For example, the flow of data between clock cycles requires a 

special synchronous logic cell known as a Flip Flop or Latch to hold the values of data bits in a 

design for a certain amount of time. Since there is no clock signal to synchronize with in 

asynchronous circuits, these synchronous logic cells cannot be mapped to the custom 

asynchronous library cells. Therefore, for any asynchronous architecture to become 

synthesizable, a flow is created which can be automated to perform the various modifications 

needed. 

 This thesis provides a unique flow for the construction of a gate-level netlist from a 

VHDL behavioral model. Chapter 2 will provide the necessary background for behavioral 

synthesis, MTNCL architecture, and asynchronous synthesis. The step-by-step implementation 

of MTNCL synthesis is defined in Chapter 3. Results of the MTNCL synthesis flow will are 

provided in Chapter 4. A 4-bit ripple carry adder (RCA), pipelined oscillator, 4-bit arithmetic 

logic unit (ALU), 8-bit array multiplier, and finite a state machine from the ISCAS’99/ITC’99 

benchmarks library is presented [1]. A conclusion to the thesis is given in Chapter 5. 
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2. Background 

 This thesis is based on various previous works. Section 2.1 addresses behavioral code 

synthesis from a hardware design language like VHDL or Verilog. The asynchronous circuit 

design paradigm known as Multi-Threshold NULL Convention Logic (MTNCL), is introduced 

in section 2.2. An overview of previously developed asynchronous synthesis software tools are 

described in section 2.3. 

2.1. Synchronous Behavioral Code Synthesis 

 Often, the functionality of digital circuits is described in a human readable hardware 

description language such as VHDL or Verilog. From these languages, the semiconductor 

industry has developed tools to transform high-level descriptions into low-level models 

describing the hardware to be implemented for a certain functionality. Like any other 

programming language, there are syntax rules that must be followed for the behavioral 

description to be compiled into a circuit or functional simulation. For example, VHDL and 

Verilog code is separated into sections that run sequentially and in parallel. Sequential code 

sections are described within a specific section known as process in VHDL. Code that is written 

in the process is performed from top to bottom of the entire process, like other popular 

programming languages like C++. Verilog has a similar label for sequential code operations 

which are performed in an always section. Code that is not included in either of these sections is 

assumed to execute in parallel. 

 Low-level models, typically generated as a gate-level netlist, are produced through a 

process known as logic synthesis. For synchronous designs, a clock signal is used to synchronize 

the data as it flows from input to output. Logic gate inference for synchronous circuits uses the 
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clock signal to place D Flip Flops, D Latches, and other Boolean gates into a design depending 

on a behavioral description. Figure 1 provides an example of an inferred rising edge triggered D 

Flip Flop at the boundary of signals D and Q. 

Process(clock)

Begin

if rising_edge(clock) then

Q <= D;

End if;

End process;

VHDL Behavioral Description

D Q

D Flip Flop

Clock

 

Figure 1: Rising edge triggered D Flip Flop inference 

 

 For any circuit component, or construct, defined with a high-level description, there 

should exist a set of Boolean logic gates able to achieve the described functionality. This set of 

gates is optimized during synthesis to use the least amount of logic gates possible depending on 

the Boolean algebra reduction algorithms used in the synthesis tool while meeting the design 

constraints. Not all design constructs can be optimized using synchronous logic synthesis and 

software tool developers need to handle unsupported constructs such as setting the value of a 

signal outside of a system reset. 

 According to the IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis, the 

three main categories for VHDL constructs are supported, ignored, or not supported [2]. For 

supported constructs, synthesis can correctly map to a hardware representation without issue. 

Ignored constructs are simply left out of the generated low-level model or gate-level description. 

Not supported constructs are left up to the discretion of the synthesis tool designer. Typically, 

synthesis tools make the decision to either ignore or throw out an error depending on whether the 
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functionality of the circuit is dependent on the not supported construct. A construct relevant to 

this thesis is the combinational loop shown in Figure 2 by the red wire which is not gated by a 

clock signal. 

AND

XOR
FFFF

In

Clock

Out
Combinational Loop

 

Figure 2: Combinational loop with D Flip Flops placed at input and output 

 

 Combinational loops cause issues in synchronous behavioral synthesis due to the possible 

unknown value presented on the red wire of Figure 2 under certain circumstances. Concerning 

the circuit in Figure 2, if the In signal is a value of logic ‘0’, then the combinational logic, 

consisting of a single XOR and a single AND gate, will output a value of logic ‘0’ on the red 

wire. This value will be stored by the Out rising edge triggered D Flip Flop (FF) on the next 

clock cycle. Conversely, if the In wire is a value of logic ‘1’, the combinational loop on the red 

wire between the two FFs will oscillate between logic ‘0’ and logic ‘1’. This oscillation will 

cause a value of either logic ‘1’ or logic ‘0’ to be stored by the Out FF on the next clock cycle. 

Ideally, every signal looping back from the output of a gate to the input of a previous gate needs 

an FF or D Latch to hold the value for at least one clock cycle to prevent oscillation. Regarding a 

synchronous design, the combinational logic of Figure 2 will need to be redesigned before 

behavioral synthesis can properly occur. 
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2.2. Multi-Threshold NULL Convention Logic (MTNCL) 

 Compared to their synchronous counterparts, circuits designed in an asynchronous way 

tend to benefit from high energy efficiency, more reliable operation, and simplified architecture 

due to the lack of a clock signal and corresponding clock tree. Multi-Threshold NULL 

Convention Logic (MTNCL) features quasi delay-insensitive (QDI) operation and ultra-low 

power consumption [3]. MTNCL itself is a derivative of NULL Convention Logic (NCL), a 

foundational design paradigm for component handshaking and propagation of data throughout 

the circuit [4].  

 Both MTNCL and NCL use custom gate libraries mapped from behavioral-level designs. 

There are 27 gates total for NCL and MTNCL alike. Gate functionality is similar regarding NCL 

and MTNCL with a slight naming difference. The letter “m” is appended to the end of MTNCL 

gate names to denote their multiple threshold voltage MTCMOS transistor design [3]. Table 1 

names and describes the functionality of these gates using Boolean algebra. 

Table 1: Basic MTNCL Threshold Gates [5] 

 

MTNCL Gate Boolean Function 

TH12m A+B 

TH22m AB 

TH13m A+B+C 

TH23m AB+AC+BC 

TH33m ABC 

TH23w2m A+BC 

TH33w2m AB+AC 

TH14m A+B+C+D 

TH24m AB+AC+AD+BC+BD+CD 

TH34m ABC+ABD+ACD+BCD 

TH44m ABCD 

TH24w2m A+BC+BD+CD 

TH34w2m AB+AC+AD+BCD 
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Table 1: (Cont.) 

 

TH44w2m ABC+ABD+ACD 

TH34w3m A+BCD 

TH44w3m AB+AC+AD 

TH24w22m A+B+CD 

TH34w22m AB+AC+AD+BC+BD 

TH44w22m AB+ACD+BCD 

TH54w22m ABC+ABD 

TH34w32m A+BC+BD 

TH54w32m AB+ACD 

TH44w322m AB+AC+AD+BC 

TH54w322m AB+AC+BCD 

THxor0m AB+CD 

THand0m AB+BC+AD 

TH24compm AC+BC+AD+BD 

 

 Like NCL, MTNCL threshold gates contain an M, N, and weight value following the 

“TH” notation. The first value after the “TH” is M, followed by N, and the weight or w. The M 

value specifies the number of inputs required to drive the output to Logic ‘1’ while the value of 

N specifies the number of inputs the threshold gate supports. The weights specify the threshold 

value contributed by each input letter, A through D, with A being the first leftmost weight value. 

For example, the TH54w322m gate shown in Figure 3 needs the threshold value of each wire to 

sum to 5 before output Z becomes Logic ‘1’. Given the weight values in the naming convention, 

the weight of each input is A=3, B=2, C=2, and D=1. Unlike their NCL counterparts, MTNCL 

gates cannot hold their values due to the lack of internal feedback. Because of this, every 

MTNCL gate requires a sleep signal to be created by separate MTNCL completion logic. In this 

way, the outputs of the MTNCL gate can be controlled. The symbol of the MTNCL 

TH54w322m gate is shown in Figure 3.  
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TH54w322m

A

B

C

D

sleep

Zweights

3

2

2

1

 

Figure 3: MTNCL threshold gate with weighted input 

 

 MTNCL makes use of a multi-rail logic encoding for every bit used in a design. The 

incorporation of multiple rails allows a dedicated MTNCL register and its corresponding 

completion logic to determine when the combinational circuit operation is complete. For this 

thesis, dual-rail logic encoding is chosen to encode each bit. When converting from a single-bit, 

the dual-rail terms DATA0 and DATA1 are used to represent the single-bit values of Logic ‘0’ 

and Logic ‘1,’ respectively. An example of this dual-rail encoding would be a signal, A, having 

two wires representing a valid DATA0 or DATA1 state, so that wire A.Rail0 has a value of ‘1’ 

when signal A is DATA0. Conversely, A.Rail1 has a value of ‘0’ when signal A is DATA0. 

Table 2 identifies all possible combinations of the dual-rail MTNCL encoding and the possible 

wavefronts of DATA0, DATA1, NULL, and INVALID. 

Table 2: MTNCL Dual-rail State Encodings 

 

 DATA0 DATA1 NULL INVALID 

Rail0 1 0 0 1 

Rail1 0 1 0 1 
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 Of the four possible dual-rail wavefronts, only three are expected to occur in normal 

circuit operation due to the mutual exclusivity of each rail [5]. An INVALID state is generally 

not expected and is indicative of a design flaw. The NULL state is a spacer in MTNCL designs 

and is only used to determine when a set of output values from the combinational logic has 

finished calculating and is ready to be stored. These wavefronts flow from input to output in 

MTNCL designs over time as in Figure 4. 

Rail1

Rail0

DATA1 DATA0

NULLNULLNULL  

Figure 4: DATA and NULL propagation 

 

 Each dual-rail encoded state is used for handshaking between the MTNCL completion 

components and MTNCL register components. The MTNCL registers hold either DATA or 

NULL wavefronts until the corresponding combinational portion of the circuit is finished with its 

calculation. Due to the uncertainty of DATA and NULL arrival time at the input of every 

MTNCL register in a pipelined design, dedicated logic in the form of MTNCL completion is 

needed. MTNCL completion checks every input to the MTNCL registers to ensure either both 

Rail1 and Rail0 values are ‘0’ for a NULL state, or only one Rail1 or Rail0 value is asserted to 

‘1’ for a DATA state. The state of the entire stage in an MTNCL pipeline will only transition 

when all wires in a stage are either DATA or NULL. In this way, the MTNCL completion logic 

for a stage can alert preceding stages in a pipeline when it expects to receive DATA or NULL.  
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 The request-for-DATA (rfd) and request-for-NULL (rfn) signal is sent to previous stages 

via a Kout handshake signal. When the value of Kout equals Logic ‘1’, it is considered a rfd. 

When the value is Logic ‘0’, it is a rfn. For preceding stages, the rfd or rfn signal is read by that 

stage’s completion logic as a Kin handshake signal. MTNCL gates are configured to control 

whether a gate in the design is active or inactive via a sleep signal input. Gating the output thus 

lowers power consumption and leakage current. The sleep signal allows the completion logic of 

a stage to turn off components which are inactive during DATA and NULL wavefront 

propagation. For example, the MTNCL registers of a pipeline stage currently in a NULL 

wavefront as well as the combinational and completion logic of the stage after can be disabled. 

The pipelined MTNCL architecture is shown in Figure 5. 

sleep

MTNCL 

Combinational 

Logic

MTNCL 

Register

MTNCL 

Completion

sleep

MTNCL 

Combinational 

Logic

MTNCL 

Register

MTNCL 

Completion

MTNCL 

Register

MTNCL 

Completion

sleep

Sleep out

Sleep in

KinKout KinKin Kout Kout

sleep

sleep

sleepsleep

sleep

 

Figure 5: MTNCL Pipeline architecture with sleep completions and registers [3] 

 

 MTNCL benefits greatly from the creation of an asynchronous synthesis flow which 

allows hardware designers to create a gate-level design from a high-level description. Structural 

VHDL has been used in the past to create MTNCL circuits by instantiating various components 

manually in a hierarchy. While offering the best flexibility, this approach is not ideal for 

hardware designers with limited knowledge of the MTNCL architecture, and not scalable for 
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large designs. Additionally, the optimizations implemented in modern synthesis tools cannot be 

used in designs which were created in a structural way. Using the MTNCL architecture, this 

thesis brings to light the possibility of mapping behavioral hardware design language code to an 

asynchronous MTNCL gate-level netlist. 

2.3. Asynchronous Behavioral Code Synthesis 

 Asynchronous behavioral code synthesis tools can be designed to support the same 

hardware design languages as the synchronous synthesis tools. The main difference between the 

two methods is the lack of a clock signal to synchronize data flow for asynchronous designs. 

Since asynchronous designs are purely combinational, loops are supported and are expected in 

logic synthesis. There have been many attempts to create logic synthesis tools with the ability to 

synthesize from VHDL or Verilog behavioral descriptions into a circuit design implementing 

some form of handshaking for data flow as opposed to a clock signal and clock tree.  

 Previously developed tools vary in the way they handle the hardware design language 

descriptions and in the type of asynchronous netlist they produce. Because of the tremendous 

effort required to develop a new synthesis tool, researchers often try to use current industry 

standards instead. Likewise, this thesis uses the GENUS Synthesis Solution by Cadence to 

optimize and map a behavioral design to an MTNCL gate library [6]. For asynchronous synthesis 

tools using industry standards, modifications to the VHDL and generated gate-level netlist are 

applied at various steps in the flow. Various other asynchronous logic synthesis tools were 

explored which support complete or partial conversion from behavioral hardware description 

languages to a custom asynchronous cell library while simultaneously using industry standard 

synthesis tools whenever possible. 
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 While varying in terms of complexity and ease of use, Phased-Logic [7], De-

Synchronization [8], Proteus [9], Weaver [10], Unified NULL Convention Logic Environment 

(UNCLE) [11], and NCL-X [12] are examples of previously developed asynchronous synthesis 

tools. Phased-Logic implements a unique encoding scheme for each while doing away with the 

need for a NULL wavefront like NCL and MTNCL at the cost of increased complexity. De-

Synchronization introduces the possibility of mapping standard cell library gates, rather than 

custom asynchronous library gates, to a design in an asynchronous way. However, this 

implementation is not QDI due to the usage of a combinational delay employed in each control 

logic. Proteus and Weaver tools both show similar results. They create asynchronous hardware 

from synchronous descriptions which can be faster than their synchronous counterparts. Both 

also exhibit larger area overhead due to the extra control logic needed. UNCLE and NCL-X were 

created to offer a flow for generating NCL designs given an input RTL behavioral design. Due to 

the similarities of NCL and MTNCL, these two tools offer the most insight into how an 

asynchronous MTNCL synthesis flow might be created. 

 The UNCLE tool, while not end-to-end in its RTL-netlist conversion methods, offers a 

great deal of flexibility to hardware designers who are familiar with the NCL architecture [11]. 

The main drawback of UNCLE is the need for designers to manually add NCL registers at the 

boundary of each combinational logic block. For designs implementing Finite State Machines 

(FSM) or feedback looping, this step is often complicated and can lead to design errors while 

also requiring designer familiarity with NCL. Because of this, the NCL-X tool is created to 

provide direct conversion of RTL to a gate-level netlist using several noteworthy steps. One such 

step is the grouping of a complementary logic wire (Rail0) with its original logic value (Rail1) 

through a method known as Dual-Rail expansion [12]. The now dual-rail design can then be 
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checked for completion whenever the output of a logic gate branches to multiple gates using a 

completion logic handshaking signal. Multiple handshaking signals can be grouped together, 

typically with a Boolean AND function, to check whether all gates in a section of NCL 

combinational logic has completed its computation. With these techniques in mind, an automated 

synthesis flow for the generation of MTNCL designs is proposed in this thesis which inputs a 

high-level hardware design language description and outputs a gate-level MTNCL circuit. 
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3. MTNCL Synthesis 

 This thesis implements an asynchronous synthesis flow to make modifications to RTL, 

generic map, and gate-level netlists. Whenever possible, the GENUS Synthesis Solution by 

Cadence is used to optimize and map the design to the custom MTNCL gate library. For the 

purposes of automating the MTNCL synthesis flow, a python3 script, MTNCLSyn, was created. 

Using MTNCLSyn, any limitations which prevent GENUS from mapping to the MTNCL gate 

library can be resolved. This script automates as much of the MTNCL synthesis flow as possible 

while simultaneously allowing as much designer influence over the output gate-level netlist as 

possible. An overview of this flow is shown in Figure 6. 

MUX Inference

Stage Outputs 

Assigned to Top 

Level Port Map

Behavioral 

VHDL

Combinational 

RTL Generation

Propagation 

Backwards from 

Outputs

Separation of 

Pipeline Stages

Make Stages 

Dual-Rail

MTNCL Register 

Implementation

MTNCL 

Completion 

Implementation

Port Map and 

Wire Merging

MTNCL Sleep 

Domain Control

Gate-Level 

Net-List

 

Figure 6: MTNCL Synthesis flow from VHDL to gate-level netlist 
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 Following are several sections covering the individual steps of MTNCL synthesis in 

detail. Section 3.1 addresses the initial setup required for the various tools and libraries. 

Modifications applied to the behavioral VHDL during pre-processing are explained in section 

3.2. Single-rail synthesis is introduced in section 3.3. The steps pertaining to dual-rail synthesis 

are elaborated in section 3.4. Finally, the combination of all pipeline stages into a single gate-

level netlist is explained in section 3.5. 

3.1. Software Setup 

 The GENUS synthesis tool used in this thesis requires a custom MTNCL cell library to 

be input to GENUS as a Liberty library. This Liberty library was created by the SiliconSmart 

tool from Synopsys [13] to characterizes each cell for IBM’s 45nm silicon on insulator (SOI) 

process. With this data, GENUS can buffer MTNCL cell output wires to ensure target rise and 

fall times are achieved. These vary depending on the capacitive load due to the number of 

MTNCL cell inputs driven by each wire. The functionality of each MTNCL cell is also provided 

to GENUS, so the RTL can be mapped to a gate-level netlist efficiently. It is possible to revert 

the buffering on each cell to obtain a generic gate-level netlist to use for manual configuration in 

simulations. 

 The libraries provided to GENUS only describe the combinational logic used by 

MTNCL. Due to their complexity, MTNCL registers and MTNCL completion components are 

handled separately from the GENUS synthesis tool. Additionally, D Flip Flops, D Latches, and 

other synchronous components are not synthesizable when the custom MTNCL cell library is 

used. To resolve this, all synchronous components are replaced with a logically equivalent 

MTNCL cell gate. Typically, the logical equivalent is either a TH22m, TH33m, or TH44m 
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MTNCL gate to implement an AND Boolean function.  In this way, GENUS synthesizes the 

behavioral code by treating it as combinational logic. 

3.2. Pre-Processing 

 Before the first round of single-rail synthesis can occur, several pre-processing steps must 

be applied to the input VHDL behavioral code. The first step is to remove any synchronous logic 

described by VHDL processes through a process called multiplexer inference. Multiplexer 

inference, or MUX inference, occurs when a VHDL process in a hierarchical design is modified 

to infer a MUX instead of a synchronous clock triggered component like a D Flip Flop or D 

Latch. For MUX inference to occur in the VHDL behavioral code, each read signal for the entire 

VHDL process must be placed into the sensitivity list. Additionally, each signal being written to 

must be assigned an initial value of Logic ‘0’. Because VHDL processes are read sequentially 

from the top, the initial value of Logic ‘0’ assigned to every written signal can be changed later 

in the process block. For example, an if-then statement using the clock as a conditional can 

reassign the value of an initially assigned signal if the clock signal is Logic ‘1’.  

 Each MUX has two inputs and one output with a single-bit select. The first input is the 

same input of the synchronous component being replaced, and the second input is a constant 

Logic ‘0’. The select signal is assigned to the clock. Figure 7 shows the replacement of a D Latch 

with a MUX and Figure 8 shows the before and after modification of the VHDL process for an 

8-bit array multiplier. 
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Figure 7: D Latch replacement and MUX inference 

 

    process(reset,clock)

    begin

        if reset = '1' then

            as0 <= "00000000";

            bs0 <= "00000000";

        elsif clock = '1' then

            as0 <= a;

            bs0 <= b;

        end if;

    end process;

    process(clock,reset,a,b)

    begin

        as0 <= "00000000";

        bs0 <= "00000000";

        if  clock = '1'  then

            as0 <= a;

            bs0 <= b;

        end if;

    end process;

 

Figure 8: D Latch replacement with a MUX in the VHDL process 
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The modified VHDL process, shown in Figure 8, will infer a MUX rather than a D Latch. Due to 

this replacement, the clock signal is no longer interpreted by GENUS as a clock. Rather, it 

enables the flow of data from a to as0 and b and bs0 depending on the value of the clock signal.  

In most cases, the inferred MUX is represented by a gate which implements a Boolean AND 

function for its inputs. From the custom MTNCL cell library, a TH44m, TH33m, or TH22m gate 

is used to AND the clock signal with inputs to the VHDL process depending on however many 

inputs are needed. For each VHDL process with a clock signal, the if-then reset condition is 

removed and added back after MTNCL gate-level netlist generation since it is no longer valid for 

MUX inference. Later in the MTNCL synthesis flow, these MUXs will be replaced with 

MTNCL registers after gate-level netlist generation. 

 While a MUX is enough to convert the flow of data in a synchronous VHDL behavioral 

model to an asynchronous flow, additional steps ensure the unique names of each signal assigned 

to every MUX output is not lost during synthesis. Valuable information, which can be used to 

determine from which MUX a signal was derived, is usually lost in the generated RTL from the 

first round of single-rail synthesis. Without knowing this information, it is difficult to determine 

where one pipeline stage begins and ends. Thus, it would be impossible to assign correct sleep 

inputs and outputs for each pipeline stage in the generated MTNCL gate-level netlist to perform 

the handshaking of DATA and NULL wave-fronts. To prevent this, every MUX output signal is 

re-assigned to the port map of the top-level entity. By converting the internal MUX outputs into 

primary outputs, the names of signals at the boundary between each pipeline stage can be 

preserved. Concerning components instantiated in a hierarchy with clocked VHDL processes, 

port maps are modified to append the additional pipeline stage output signals if they do not 

already exist in the port map as outputs. A unique identifier is also appended to each 
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component’s signal name if more than one of the same components are instantiated by a VHDL 

entity. Figure 9 depicts the pipeline stage signals being appended to the top-level VHDL port 

map of an 8-bit multiplier. 

entity multip_8 is

        port(

        clk : IN std_logic;

        reset : IN std_logic;

        a: IN std_logic_vector(7 downto 0);

        b: IN std_logic_vector(7 downto 0);

        z: OUT std_logic_vector(15 downto 0)

        );

end multip_8;

entity multip_8 is

        port(

        reset : in std_logic; 

        a: in std_logic_vector(7 downto 0);

        b: in std_logic_vector(7 downto 0);

        z: out std_logic_vector(15 downto 0);

        clk : in std_logic ;

        --ADDED BY MTNCLSyn 

        as0 : INOUT std_logic_vector(7 downto 0);

        bs0 : INOUT std_logic_vector(7 downto 0);

        as1 : INOUT std_logic_vector(7 downto 0);

        bs1 : INOUT std_logic_vector(7 downto 0);

        s1 : INOUT std_logic_vector(7 downto 0);

        c1 : INOUT std_logic_vector(6 downto 0);

        comb1 : INOUT std_logic_vector(1 downto 0);

         
        s13 : INOUT std_logic_vector(7 downto 0);

        c13 : INOUT std_logic_vector(6 downto 0);

        comb13 : INOUT std_logic_vector(7 downto 0)

        ); 

end multip_8;

 

Figure 9: Appending pipeline stage outputs to the VHDL port map 

 

Regarding pipeline stage outputs appended to the port map, a port direction of INOUT is 

preferred to prevent the synthesis tool from simplifying crucial pipeline stage names out of the 

RTL. Once the port map modifications are complete for every VHDL entity in the design 

hierarchy, single-rail synthesis can begin.    

3.3. Single-Rail Synthesis 

 The first round of synthesis, called single-rail synthesis, converts the pre-processed 

VHDL behavioral code into a list of combinational wire assignments. These wire assignments 
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can be easily parsed by the MTNCLSyn script to group each wire assignment by pipeline stage. 

After every wire has been assigned to a pipeline stage, the stages are separated into Verilog RTL 

netlist files with the corresponding inputs, outputs, and Boolean logic. 

 The combinational RTL generated by GENUS consists of the flattened design hierarchy 

described in Verilog. To ensure there was no hierarchy created by GENUS during elaboration, 

the “ungroup -all” command from the GENUS command reference documentation [14] was 

passed to the tool. Every internal wire and output wire in the RTL are assigned to a Boolean 

logic function to be mapped to a function of the basic MTNCL threshold gates in Table 1. 

Because synchronous components are replaced with MUXs in the VHDL behavioral code, the 

generated RTL will contain MUX output signals assigned to Boolean logic functions containing 

a clock input. This clock input is not used in MTNCL handshaking, so it can be assigned to a 

constant value of Logic ‘1’. In the steps following single-rail synthesis, this constant Logic ‘1’ 

will be simplified away using Boolean logic to allow the flow of data to occur. For example, if 

an assigned output wire z is assigned to the Boolean logic a & B & clock, where “&” is a 

Boolean AND operation in Verilog, the resulting Boolean logic can be simplified to a & B when 

clock is substituted with a constant Logic ‘1’.  

 The MTNCLSyn script uses each wire to create a dictionary of assigned values. The wire 

being assigned is a key to the dictionary and the calculated Boolean function is the 

corresponding value. This is shown in Figure 10 below; Orange wire names are keys to the 

dictionary and blue Boolean functions are values for each key. 
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...
  assign clk      = 1'b1; -- Logic    

  assign bs0[0] = b[0] & clk;

  assign as0[0] = a[0] & clk;

  assign as0[1] = a[1] & clk;

  assign bs0[1] = b[1] & clk;

...
  assign n_153 = bs0[1] & as0[0];

  assign n_157 = bs0[0] & as0[1];

  assign c1[0]  = clk & n_157 & n_153;

...

KEY

...
as0[0]

as0[1]

bs0[0]

bs0[1]

...
n_153

n_157

c1[0]

...

VALUE

...
b[0] & clk

a[0] & clk

a[1] & clk

b[1] & clk

...
bs0[1] & as0[0]

bs0[0] & as0[1]

clk & n_157 & n_153

...

Assign Dictionary

 

Figure 10: The generated RTL from single-rail synthesis placed into an assign dictionary 

 

The RTL of Figure 10 shows the multi-bit pipeline stage inputs as0 and bs0 are assigned to the 

result of a Boolean AND function using a and b. Then, as0 and bs0 are assigned to intermediary 

wires n_153 and n_157. These intermediary values were created by GENUS and have arbitrary 

names. Finally, the intermediary wires can be assigned to the Boolean AND of a clock wire 

named clk. In this example, wires as0 and bs0 will become primary inputs to the pipeline stage 

and the wire c1[0] will become a primary output to the pipeline stage. Any intermediate wires 

occurring within the pipeline stage, such as n_153 and n_157, are also assigned to the stage 

group. Once the entirety of the generated RTL has been placed into the assign dictionary, 

propagation backwards from primary outputs can begin. 

 Beginning from every primary output bit of the design, backwards propagation iterates 

through each Boolean logic function in the assign dictionary. For example, given a primary 

output in the assign dictionary with a key value of sout and Boolean logic value of a | b, a and b 

are evaluated to determine if they belong to the same pipeline stage group responsible for the 
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value of sout. By propagating through the assign dictionary for each path in the combinational 

logic, a pipeline stage output, primary input, or UNCONNECTED value is reached. Figure 11 

provides an example design with multiple, colored outputs paths for z0, z1, and z2 originating 

from inputs A, B, and C. As propagation from output to input occurs, each path can overlap to 

form a pipeline stage group. Because output wires z0, z1, and z2 share at least one common 

input, the MTNCLSyn script interprets them to be a part of the same MTNCL pipeline stage. 

A

B

C

z0

z1

z2

n_1

Logic    

From 

Previous 

Pipeline 

Stages

To Next 

Pipeline 

Stages

 

Figure 11: An example of wire paths as data flows in each pipeline stage 

 

 The names of pipeline stage outputs are known early in the MTNCL synthesis flow and 

can be matched to wire names found in each Boolean assignment. Primary input signals can be 

matched similarly. As shown by the Logic ‘1’ wire input in Figure 11, dead-end wire constants 

can be found in the assign dictionary values. These wires do not have a key value associated with 

them in the assign dictionary and can be evaluated as UNCONNECTED. When a wire is 

evaluated as UNCONNECTED, it must be added to the top-level primary inputs and controlled 
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manually to ensure MTNCL DATA and NULL wave-front propagation can continue. Otherwise, 

UNCONNECTED signals will output a constant DATA wavefront while the other signals in the 

pipeline stage are outputting a NULL wavefront, effectively stalling the pipeline stage. Figure 12 

provides a flowchart of the steps taken by the MTNCLSyn script to evaluate each wire path from 

primary output to primary input. 

START at Top Level 

Primary Outputs

Is the wire

 a pipeline stage 

output?

Add the wire 

to the current 

stage group 

as an input

No
Is the wire

 a Primary Input?

Evaluate 

each wire 

within the 

Boolean 

assignment

Create a new 

pipeline stage 

group and 

add the wire 

to the new 

group as an 

output

Yes

Evaluate 

other wires 

within the 

Boolean 

assignment

Do other wires

need evaluation?

Yes

Stop further 

propagation 

of this wire 

assignment

STOP at Top Level 

Primary Inputs

No

No

Is the wire 

UNCONNECTED

?

YesNo

Yes

Add the wire 

to the Top 

Level 

Primary 

Inputs

 

Figure 12: The decision flow for evaluating wires in each path from  

primary output to primary input 

 

 It is possible to encounter pipeline stage outputs looping back into the inputs of other 

pipeline stages. To avoid the pipeline stall caused by these loops, the MTNCLSyn script needs to 

check if a feedback loop will be outputting a DATA or NULL wavefront to a pipeline stage 

expecting the opposite. This feedback looping predominantly occurs in pipeline stages with 

outputs that loop to inputs of the same pipeline stage. To fix this problem, additional MTNCL 

pipeline stages need to be placed between the feedback loop signal. In addition, the MTNCL 

register in the middle of the feedback loop is reset to a DATA wavefront instead of a NULL 
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wavefront.  Figure 13 shows the MTNCL feedback loop problem and the suggested fix to allow 

correct DATA and NULL wave-front propagation. 
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Figure 13: MTNCL pipeline stage with an MTNCL register  

placed between the feedback loop 

 

 By following the MTNCLSyn decision flow, the generated RTL from single-rail synthesis 

is separated into multiple pipeline stages. Each pipeline stage is contained in a separate RTL file 

isolated from the other pipeline stages during dual-rail synthesis. In this way, the GENUS synthesis 

tool is constrained to individually evaluate the Boolean logic of each pipeline stage. This prevents 

the merging of Boolean logic between stage inputs and outputs and allows each stage to be 

converted into dual-rail logic in preparation for dual-rail synthesis and MTNCL library gate 

mapping. 

3.4. Dual-Rail Synthesis 

 The second round of synthesis is executed on isolated pipeline stage from the generated 

RTL after conversion to dual-rail logic. As in the NCL-X synthesis tool, Dual-Rail expansion 
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can be used to convert a single-rail logic design into a dual-rail logic design [12]. Dual-Rail 

expansion assigns every single-rail bit in the pipeline stage to Rail1 of the dual-rail logic design. 

Furthermore, the complement of Rail1 is computed and assigned to the Rail0 bit. Because the 

MTNCL handshaking protocol forces the NULL wavefront in each gate through the usage of a 

sleep signal input, the sleep signal is not included in the Boolean function of each fundamental 

MTNCL gate. Because, each pipeline stage is combinational, the MTNCLSyn script assigns 

output wires to a Boolean function using only inputs to the pipeline stage. Figure 14 provides an 

example of the assignment of c1(0) in terms of inputs from an 8-bit array multiplier after 

conversion to dual-rail logic. 

...
  c1(0).RAIL0 <= as0(0).RAIL0 OR as0(1).RAIL0 OR bs0(0).RAIL0 OR bs0(1).RAIL0;

  c1(0).RAIL1 <= as0(0).RAIL1 AND as0(1).RAIL1 AND bs0(0).RAIL1 AND bs0(1).RAIL1;

...
 

Figure 14: The dual-rail assignment of output wire c1(0) in a pipeline stage 

 

 After Dual-Rail expansion, there will no longer be any intermediary wires in the pipeline 

stages, and the pipeline stage RTL can be mapped to fundamental MTNCL logic gates with the 

GENUS synthesis tool. However, the gate-level netlists created by GENUS in this step lack the 

necessary sleep signal ports. Therefore, the MTNCLSyn script will need to append an input sleep 

wire to the port map of every gate in the pipeline stage’s gate-level netlist. For pipeline stages 

with inputs and outputs originating from multiple branching pipelines, a Boolean logic AND tree 

is generated to combine the multiple sleep inputs for each stage. The MTNCL AND tree is 

comprised of TH22m, TH33m, and TH44m gates to combine vectors into a single-bit output. 

The AND tree can also be used to combine multiple Kin and MTNCL completion signals. The 
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circuit design in Figure 15 details the structure of an AND tree combining seven sleep inputs into 

one. 

TH44m

S0
S1

S2
S3

Sleep Input

TH33m

S4
S5

S6

TH22m
Multiple 

Sleep 

Inputs

 

Figure 15: MTNCL AND tree with seven inputs 

 

 After synthesis is completed, MTNCL registers are placed at the inputs of individual 

pipeline stages to maintain the dual-rail values until the MTNCL combinational logic finishes 

computation. The MTNCL register design used in this thesis consists of a TH12nm threshold 

gate with two inputs and a threshold value of one. The functionality of a TH12nm threshold gate 

is identical to the functionality of a fundamental TH12m gate with the only difference being a 

reset input which can be used to set the output value to Logic ‘0’. The first input is a pipeline 

stage input wire while the second is a feedback loop of the output of the TH12nm gate. With this 

configuration, the TH12nm gate can hold the input value it receives at its output until it is forced 

to a Logic ‘0’ by the assertion of the sleep wire input. The outputs from the TH12nm gates used 

for MTNCL registers are also buffered by the MTNCLSyn script to eliminate a possible sleep 

race condition from occurring when a pipeline stage’s combinational logic input has a high 

capacitive load. Thus, the flow for each pipelines stage input is first to the input of an TH12nm 

threshold gate, then to a buffer gate, and finally to the input of the combinational logic cells in 
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the pipeline stage. Figure 16 shows the MTNCL gate-level design of the MTNCL registers used 

in this thesis. 

MTNCL 

Register

TH12nm BUFFER

A.Rail0 Output 

Rail0

Stage 

Inputs

TH12nm BUFFER

Sleep in

A.Rail1 Output 

Rail1

reset
 

Figure 16: Gate-level MTNCL register with buffer 

 

 Uniquely named sleep domains are assigned to each pipeline stage to be combined after 

dual-rail synthesis. For each pipeline stage, the sleep input is the combined sleep output from all 

previous branching stages converging at the current stage. The Kout output is sent from the 

current stage to all previous branching stages as a Kin input. The handshaking of sleep, Kout, and 

Kin wires across each pipeline stage ensures that the previous stages know when the current 

stage expects a DATA or NULL wavefront. 

 MTNCL completion components are implemented to determine when a pipeline stage 

has finished its computation and is ready for the next DATA or NULL wavefront. To determine 

whether the current pipeline stage is ready for DATA or NULL, every output bit from the 

MTNCL combinational logic needs to evaluate to DATA or NULL. Until all output bits 
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evaluate, the Kout wire sent to the previous stages does not change from Logic ‘0’ or Logic ‘1’. 

The MTNCL completion design used in this thesis utilizes the TH12m or TH24compm threshold 

gates with a Boolean AND tree and inverter gate to combine the outputs of Kout and sleep out. 

In this design, Rail0 and Rail1 of each dual-rail signal is checked by either a TH12m or 

TH24compm threshold gate, depending on the number of dual-rail signals used in the pipeline 

stage. The MTNCLSyn script generates the MTNCL completion design as efficiently as possible 

by pairing multiple dual-rail signals to the same TH24compm threshold gate when possible. For 

dual-rail signals unable to be paired, the TH12m threshold gate is used. Regardless of whether 

the wavefront is DATA0 or DATA1, one rail will be asserted to Logic ‘1’ for every dual-rail 

signal. In this way, the MTNCL TH12m and TH24compm threshold gates can be configured to 

assert a Logic ‘1’ on their outputs when all dual-rail inputs are either DATA0 or DATA1. As 

well as combining each TH12m and TH24compm output, the AND tree combines the Kin wire 

from the subsequent stage. The gate-level MTNCL completion design is presented in Figure 17. 
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Figure 17: MTNCL Completion component with AND tree and inverter 

 

According to Figure 17, two TH24compm threshold gates are generated to handle four of the 

dual-rail logic inputs. Because there is an odd number of dual-rail signals, an additional TH12m 

threshold gate is generated to check the completion of the E.Rail0 and E.Rail1 wires. Once the 

required MTNCL sleep, register, and completion components have been added to the gate-level 

netlist, the pipeline stages can be combined into a single gate-level netlist. 

3.5. Combining of Pipeline Stages 

 When combining several gate-level design files together, various wires and MTNCL gate 

instantiation names will need to be uniquely named to prevent similarly named wires created by 

GENUS from overlapping with other pipeline stages. For example, a generated wire created by 

GENUS is renamed from “n_50” to “n_50_stage_0” to uniquely assign it to only the MTNCL 

logic of stage 0. The same naming technique is applied to MTNCL threshold gates mapped by 
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GENUS. Prior to combining, every pipeline stage will have a set of previous stages and next 

stages used by the MTNCLSyn script to establish how to connect the MTNCL sleep domain 

wires. Figure 18 illustrates an example arrangement of stages in a pipeline to be combined based 

on its previous and next stages. 

PRIMARY INPUTS

PRIMARY OUTPUTS

Previous {Stage 0}

Next {Stage 0} Next {Stage 0}

Previous {} Previous {}

Next {Stage 1}

Previous {Stage2,Stage 3}

Next {Stage 2}

Previous {Stage 4}

Next {}

Stage 0

Stage 2

Stage 1

Stage 3 Stage 4

 

Figure 18: MTNCL pipeline stage relationships 

 

 The port maps of every MTNCL pipeline stage will also need to be checked to determine 

if their wires belong in the primary port map for the design. Additionally, pipeline stages with 

primary inputs must have dedicated Kout and sleep in wires in the primary port map. Pipeline 

stages with a primary output must have a dedicated Kin and sleep out. The MTNCLSyn script 

can handle such cases due to the unique name assigned to each stage prior to unification. 

However, pipeline stages in the middle of a circuit containing primary inputs or outputs will 
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increase the complexity of a design at the top-level because additional sleep in, sleep out, Kin, 

and Kout wires will need to be properly controlled by top-level modules. 
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4. Results 

 Having completed the required pre-processing, single-rail synthesis, dual-rail synthesis, 

and combination of pipeline stages, the MTNCL gate-level netlist generated by the MTNCL 

synthesis flow can be functionally simulated with ModelSim. The MTNCL designs created by 

the MTNCL synthesis flow include a 4-bit ripple carry adder (RCA), pipelined oscillator, 

pipelined 4-bit arithmetic logic unit (ALU), and pipelined 8-bit array multiplier. In addition to 

testing the functionality, the gate utilization of a structural pipelined 8-bit array multiplier is 

compared against a generated gate-level netlist. Results of testing the MTNCL synthesis flow on 

a sample finite state machine from the ISCAS’99/ITC’99 benchmarks library is also provided 

[1]. 

4.1. 4-bit RCA 

 A 4-bit RCA was used to test the MTNCL synthesis flow against a design which has no 

pipeline stages and is purely combinational. For designs without any pipeline stages, the amount 

steps to be performed by the MTNCL synthesis flow is greatly reduced as the handshaking logic 

is no longer needed. Figure 19 shows the waveform results for the generated gate-level netlist 

from the MTNCL synthesis flow. The inputs and outputs have been converted to unsigned 

decimal in the waveform view. 
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Inputs Outputs

A  +  B  +  CIN  = SUM   COUT

7        0          1     =    8           0

 

Figure 19: 4-bit RCA waveform 

 

 For testing, the 4-bit RCA was given a range of values to test the functionality of the 

SUM and COUT or carry out. When the SUM is less than 15 in unsigned decimal, the COUT 

value will remain Logic ‘0’. Since there are no pipeline stages, the entirety of the 4-bit RCA is 

described using MTNCL gates. NCL gates and Inverters are not needed since there is no 

MTNCL completion. Buffers are also not needed in this simple example since there are no 

MTNCL registers whose outputs need to be buffered. Table 3 provides the number of MTNCL 

gates used by the generated gate-level netlist. 

Table 3: Gate utilization of the generated 4-bit RCA 

 

 MTNCL 

gates 

NCL 

gates 

Inverters Buffers Total 

gates 

Generated 

4-bit RCA 

29 0 0 0 29 

 

4.2. Pipelined 4-bit ALU 

 For designs which contain only one pipeline stage, a 4-bit ALU was synthesized. The 4-

bit ALU contains a single pipeline stage to hold the input values for one DATA wavefront 

propagation. A 2-bit select signal SEL is also used to control what operation is to be computed 
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for the input signals a, b, and CIN. For values of SEL “00”, “01”, “10”, and “11” the operation to 

be computed is addition, subtraction, bit-wise AND, or bit-wise OR respectively. Figure 20 

provides the waveform for the 4-bit ALU performing an ADD, Figure 21 shows a waveform of 

the SUB, and Figure 22 shows the ADD and OR operations. The ADD waveform uses unsigned 

decimal, the SUB waveform is binary, and the ADD SUB operations are given in hexadecimal. 

ADD

A + B + CIN = SOUT COUT

1     1       0    =     2         0

10   10     1    =     5         1

3     3       1    =     7         0
Inputs Outputs

 

Figure 20: 4-bit ALU addition waveform 
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Inputs Outputs

SUB

A      -      B    =    SOUT

0001     0001  =     1111

1010     1010  =     1111

0101     0011  =     1101

 

Figure 21: 4-bit ALU subtraction waveform 

 

AND OR

  A    AND     B   =  SOUT

0x0             0x0  =   0x0

0xA            0xA  =   0xA

0xF             0xA  =   0xA

  A    OR     B   =  SOUT

0x0             0x0  =   0x0

0xA            0xA  =   0xA

0xF             0xA  =   0xF
Inputs Outputs

 

Figure 22: 4-bit ALU AND OR waveform 

 

 Unlike the RCA, the ALU produces its own sleep signal and has MTNCL registers and 

MTNCL completion components. These components all attribute to the need for NCL gates, 

inverters, and buffers. The MTNCL gate composition of the 4-bit ALU is provided by Table 4. 
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Table 4: Gate utilization of the generated 4-bit ALU 

 

 MTNCL 

gates 

NCL 

gates 

Inverters Buffers Total 

gates 

Generated 

4-bit ALU 

91 2 1 22 116 

 

4.3. Pipelined Oscillator 

 A pipelined oscillator was used to test the functionality of a synthesized circuit 

containing a feedback loop from an output of one of its stages. In this design, three MTNCL 

registers were placed in series along the wires that feeds back into the previous stage. Figure 13 

from Section 3.3 provides a circuit diagram of this implementation. Figure 23 provides the 

waveform given a constant input value of Logic ‘1’ for the dual-rail input a. 

Inputs Outputs

a   XOR   zstate   =  z

1                  0       =  1

1                  1       =  0

1                  0       =  1

1                  1       =  0

1                  0       =  1
State signal  zstate 

 

Figure 23: 1-bit oscillator waveform 

 

 The oscillator implements five total pipeline stages. Two of the stages are used for 

holding the input and output values, while the other three stages are used in the feedback loop. 

This increase in pipeline stages leads to an increase in MTNCL registers and MTNCL 
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completion components. The amount of NCL gates, inverters, and buffers used in the 

handshaking can be seen by the overall gate utilization shown in Table 5. 

Table 5: Gate utilization of the generated oscillator 

 

 

4.4. 8-bit Pipelined Array Multiplier 

 The same VHDL testbench was used to evaluate the MTNCL synthesis generated and 

MTNCL structural 8-bit multipliers. Both multipliers implement an eight-stage pipeline with 

multiple wires combined at the boundaries of each stage. This simulation was used to validate 

the MTNCL synthesis flow for large feed-forward pipelined designs. The results of both the 

structural and generated behavioral gate-level netlists are functionally identical and follow the 

waveforms shown by Figure 24 and Figure 25. Figure 24 evaluates the multiplier for a factor of 1 

multiplied by 246 while Figure 25 evaluates for a factor of 2 multiplied by 246. 

 MTNCL 

gates 

NCL 

gates 

Inverters Buffers Total 

gates 

Generated 

Oscillator 

21 7 5 12 45 
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Inputs to 

final stage

Output from 

final stage
inCheckA x inCheckB = outCheck

       1        x      246      = 246

 

Figure 24: Generated 8-bit pipelined array multiplier simulated in ModelSim 

 

Inputs to 

final stage

Output from 

final stage
inCheckA x inCheckB = outCheck

       2        x      246      = 492

 

Figure 25: Generated 8-bit pipelined array multiplier simulated in ModelSim 

 

 In terms of MTNCL gate utilization, the generated and structural multipliers vary greatly. 

Due to the Boolean logic optimizations that are performed by the GENUS synthesis tool, the 

MTNCL synthesis flow was able to create a functionally equivalent design to the structural 
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VHDL multiplier while using less MTNCL library gates. Table 6 compares the gate utilization of 

the generated and structural 8-bit multipliers. 

Table 6: Gate utilization of structural vs generated 8-bit multiplier 

 

 MTNCL  

gates 

NCL  

gates 

Inverters Buffers Total  

gates 

Generated  

8-bit Multiplier 

1,232 8 8 424 1,672 

Structural 

8-bit Multiplier 

1,825 16 16 1,122 2,979 

 

4.5.ISCAS’99/ITC’99 Benchmarks 

 The ISCAS’99/ITC’99 benchmarks include various designs for benchmarking finite state 

machines of different sizes and complexity. One such finite state machine is the b01 design 

which performs a Boolean XOR operation on two inputs for serial comparison. The MTNCL 

synthesis flow was used to convert this state machine from its original behavioral description 

into an MTNCL gate-level netlist This operation is performed until the sixth MTNCL handshake 

where it changes to XNOR as seen in Figure 26. 
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OutputsInputs

XOR XOR XOR XOR XOR XOR XNOR XNOR

State change 

to XNOR

line1 XOR line2 = outp

  0                 0    =    0

  0                 0    =    0

  0                 0    =    0

  1                 0    =    1

  0                 1    =    1

  0                 1    =    0

line1 XNOR line2 = outp

  1                 1       =    1

  1                 1       =    1

 

Figure 26: ISCAS’99/ITC’99 b01 waveform in MTNCL 

 

 The state signal changes with each handshake until a maximum value of “111” is 

reached. Internal state signal stato determines whether an XOR or XNOR operation is to be 

calculated for the two inputs line1 and line2. The Rail1 values for the changing states are shown 

by the waveform in Figure 27. The overall gate utilization for the MTNCL generated b01 finite 

state machine is displayed in Table 7. 

State signal  stato 

 

Figure 27: Waveform for b01 stato signal 
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Table 7: Gate utilization of the generated b01 FSM 

 

 MTNCL 

gates 

NCL 

gates 

Inverters Buffers Total 

gates 

Generated 

b01 FSM 

77 10 4 24 115 
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Conclusion 

 The MTNCL synthesis flow was successfully implemented and tested on various designs 

which were originally described in VHDL behavioral code. By applying logic synthesis to the 

behavioral code, the GENUS synthesis tool was able to improve upon existing asynchronous 

designs which would traditionally need to be described in a structural VHDL model. Hardware 

designers can implement their designs without having to manually place the handshaking wires 

and control logic components that are needed for MTNCL to operate in a sequential circuit. This 

improves the accessibility of MTNCL to hardware designers with a limited understanding of 

how the architecture works. 

 By modifying the syntax of behavioral VHDL code and synthesized RTL, a synchronous 

design can be described in an asynchronous way. Industry standard tools for synthesis were used 

to implement as many steps in the MTNCL synthesis flow as possible to achieve an efficient 

gate-level design. The target MTNCL library used in this thesis is quasi delay-insensitive and 

requires no timing analysis to be performed due to the lack of a clock tree [3]. Data is no longer 

gated on the period of an oscillating clock signal and can instead flow from input to output 

depending on the delay of the combinational logic itself. This leads to an overall simpler design 

that can operate with less constraint. 

 Continuing work will be done on this MTNCL flow to further automate the design 

process and improve reliability. Currently as it is implemented, the MTNCLSyn script can 

completely automate the flow of pipelines in designs that are feed-forward or have no feedback 

signals in its pipeline stages.  
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