
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2019

Hardware IP Classification through Weighted
Characteristics
Brendan McGeehan
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

Part of the Hardware Systems Commons, Information Security Commons, and the VLSI and
Circuits, Embedded and Hardware Systems Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

Recommended Citation
McGeehan, Brendan, "Hardware IP Classification through Weighted Characteristics" (2019). Theses and Dissertations. 3166.
https://scholarworks.uark.edu/etd/3166

https://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3166?utm_source=scholarworks.uark.edu%2Fetd%2F3166&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Hardware IP Classification through Weighted Characteristics

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering

 by

Brendan McGeehan
University of Arkansas

Bachelor of Science in Computer Engineering, 2017

May 2019
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Jia Di, Ph.D.
Thesis Director

___________________________________ ___________________________________
James P. Parkerson, Ph.D. Dale Thompson, Ph.D.
Committee Member Committee Member

ABSTRACT

Today’s business model for hardware designs frequently incorporates third-party

Intellectual Property (IP) due to the many benefits it can bring to a company. For instance,

outsourcing certain components of an overall design can reduce time-to-market by allowing each

party to specialize and perfect a specific part of the overall design. However, allowing third-

party involvement also increases the possibility of malicious attacks, such as hardware Trojan

insertion. Trojan insertion is a particularly dangerous security threat because testing the

functionality of an IP can often leave the Trojan undetected. Therefore, this thesis work provides

an improvement on a Trojan detection method known as Structural Checking which analyzes

Register-Transfer Level (RTL) and gate-level soft IPs. Given an unknown IP, the Structural

Checking tool will break down the design primary ports and internal signals into assets that fall

into six characteristics. These characteristics organize how the IP is structured and provide

information about the unknown IP’s overall function. The tool also provides a library of known

designs referred to as the Golden Reference Library (GRL). All entries in the library are also

broken down into the same six characteristics and are either known to be clean or known to have

a Trojan inserted. An overall percent match for each library entry against the unknown IP is

calculated by first computing a percent match within each characteristic. A weighted average of

these percent matches makes up the final percentage. If the library entry with the best match is

known to have a Trojan inserted, then the unknown design is likely to have a Trojan as well and

vice versa. Due to the structural variability of soft IP designs, it is vital to provide the best

possible weighting of the six characteristics to best match the unknown IP to the most similar

library entry. This thesis work provides a statistical approach to finding the best weights to

optimize the Structural Checking tool’s matching algorithm.

ACKNOWLEDGMENTS

 I would like to thank my advisor, Dr. Jia Di. He has provided me with great support and

guidance throughout my college career as both an undergraduate and graduate student. He is a

perfect example of a great mentor, and I’m glad I got the opportunity to work with him.

 I would also like to thank Dr. Thao Le for her help and support during my graduate

career.

DEDICATION

 To my Mom, Dad, and brothers for supporting me throughout my college career. They

have always given me the support I needed to be successful.

 To my girlfriend, Kristen Tilley, for all her love and support. She provided me with great

advice to help me achieve this degree.

CONTENTS

1. INTRODUCTION ... 1

2. BACKGROUND ... 4

2.1 Assets .. 4

2.1.1 Overview ... 4

2.1.2 Internal Assets ... 4

2.1.3 External Assets .. 5

2.1.4 Asset Filtering ... 5

2.1.5 Asset Pattern and Characteristics .. 7

2.2 Golden Reference Matching ... 8

2.2.1 Overview ... 8

2.2.2 Basic Matching Process .. 8

2.2.3 Partial Matching .. 9

2.2.4 Golden Reference Library ... 10

3. METHODOLOGY AND IMPLEMENTATION ... 12

3.1 Asset Reassignment .. 12

3.2 Statistical Weighting ... 13

3.2.1 Overview ... 13

3.2.2 Assessing Asset Quantity .. 14

3.2.3 Assessing Asset Quality .. 16

4. RESULTS AND ANALYSIS ... 19

4.1 Overview ... 19

4.2 Examples ... 19

4.2.1 RS232, Basic-RSA, AES Modules ... 19

4.2.2 PIC16F84-T100 .. 20

4.2.3 MC8051-T500 Core .. 24

5. CONCLUSION AND FUTURE WORK .. 26

REFERENCES .. 28

GLOSSARY

Abbreviations

RTL Register Transfer Level

IPs Intellectual Properties

Soft IPs Intellectual Properties under RTL or gate-level

GR Golden Reference

GRL Golden Reference Library

SC Structural Checking

HPM Highest percentage matching

EEPROM Electrically Erasable Programmable Read-Only Memory

RAM Random Access Memory

VHDL VHSIC Hardware Description Language

ALU Arithmetic Logic Unit

1

1 INTRODUCTION

Due to the growing number of third-party hardware IP vendors world-wide, the

importance of securing hardware designs has grown significantly. By outsourcing components

of a hardware design to other parties, the integrity of the overall design can be compromised.

One example of how a design can be compromised is through the insertion of a hardware Trojan

into a third-party component. Trojan-infested components often work as intended to hide the

Trojan inserted. Consequently, hardware Trojans are difficult to detect and can lead to very

damaging payloads. Some of these effects include leaking a secret key or shutting down a part

of the hardware during operation. Any compromised design can then end up in applications

where security is vital, such as defense applications. As a result, developing a method for

hardware Trojan detection is very important to guarantee the integrity of all hardware.

A significant area of research for hardware Trojan detection comes from side-channel

analysis. Side-channel analysis takes advantage of naturally occurring emissions of a circuit,

such as power and timing delays, to detect modifications to the circuit. Power analysis can be

effective when the Trojan infested circuit emits significantly different power readings compared

to the same circuit that is known to be clean. A drawback from this approach is that Trojans can

be very small and thus do not produce a significant power consumption to raise concerns about

the integrity of the circuit. Introduced in [1], different circuits were first partitioned and then

power analysis was performed. By observing the circuit in smaller portions, the difference in

power readings is more significant and leads to better detection of even small Trojans. Path

delay in [2], or timing analysis, seeks to find significant differences in how long a signal takes to

travel through a specific path within the circuit. However, similar to power analysis, the Trojan

inserted may not be very large which means that path delays alone may not be enough to indicate

2

an inserted Trojan. While power and timing analysis are both valid methods of Trojan detection,

they both focus on detecting Trojans on hard IPs, or already manufactured chips. Even with

correct detection at the hard IP level, the infested chips become unreliable and there is a need for

a trusted hardware.

Hardware Trojan detection methods at the soft IP level are also under research. Soft IPs

include Register-Transfer Level (RTL) code and gate-level netlists. In [3], hardware Trojans are

detected in gate-level netlists using a Random Forrest Classifier. This machine learning

approach takes advantage of features that are commonly known in Trojan nets to then classify

unknown nets. Another machine learning technique used to detect Trojans from netlists is

through a support vector machine classifier [4]. The research conducted in [4] breaks down each

net into 5 characteristics and classifies each net as either Trojan infested or Trojan free based on

the knowledge of known Trojan free and infested nets. In addition to these approaches, there is

research of using Golden Reference Matching for Trojan detection as done in [5]. Golden

Reference Matching breaks down RTL code by labeling primary ports and internal signals with

assets, the signals’ contribution to the overall design. Upon completion of assigning assets, an

unknown IP is compared against the Golden Reference Library, a collection of soft IPs that are

known to be either be clean or Trojan-infested. If the unknown IP matches best with a Trojan-

infested library entry then the unknown IP is likely to contain a Trojan, and vice versa. Building

on the work of [5], [6] introduces a way to use Golden Reference Matching with gate-level

netlists.

The rest of the thesis is organized in the following manner. Chapter 2 will cover

background information on assets, Structural Checking, and the process of Golden Reference

Matching with a Golden Reference Library. Chapter 3 will cover the design and implementation

3

of a statistical based improvements on the Golden Reference Matching algorithm. Chapter 4

provides example soft IPs to prove the effectiveness of the improved algorithm. Chapter 5 will

then conclude the thesis and provide details on future work.

4

2 BACKGROUND

2.1 Assets

2.1.1 Overview

A key component from the Structural Checking tool with Golden Reference Matching is

the concept of assets. Assets provide a description to primary ports and internal signals of soft

IPs. More specifically an asset provides a label to a signal about its purpose/function to the

overall design. For instance, a clock signal would be assigned what is known as a

SYSTEM_TIMING asset because a clock provides timing for the overall circuit. Each signal

can have multiple assets assigned to it to refine how it fits in the overall design. There are two

main categories of assets defined in the Structural Checking tool, internal assets and external

assets.

2.1.2 Internal Assets

Internal assets are intended to describe the function of internal signals in a soft IP, but they

can also be used for primary port signals. Most internal assets used in the tool were developed in

[7] and [8]. The research conducted in [8] added three internal assets specifically for a scan-

chain structure (OBSERVABLE, CONTROLLABLE, and PROTECTED). These three assets

differ from the rest of the internal assets because they require to be manually assigned to signals.

Most internal signals are assigned automatically as the Structural Checking tool parses the

Register-Transfer Level (RTL) code. Some examples of internal assets include

PROCESS_SENSITIVE and CONDITIONAL_DRIVEN. The PROCESS_SENSITIVE asset

describes a signal that is included in the sensitivity list of process from RTL code.

CONDITINAL_DRIVEN describes a signal that is within an “if/case” block in the RTL code

because its value depends on a certain condition to be met.

5

2.1.3 External Assets

External assets are used to describe the function/purpose of primary ports in soft IPs.

Unlike internal assets, all external assets must be manually assigned to each primary port signal

through the use of the Structural Checking tool. These assets are broken up into 5 main

categories: Data, Timing, System Control, Specific System Control, and Miscellaneous. An

example from the Data category includes DATA_MEMORY which is assigned to signals that

are intended to store data for any type of memory. COUNT is an example from the Timing

category and this asset is assigned to signals that keep track of a count value for the IP. An

example from System Control includes HANDSHAKING which is assigned to signals that will

handle any type of handshaking operations for the IP. An example of System Specific Control

includes COMMUNICATION_CONTROL asset and it is assigned to a signal that controls

transmission with another component (such as a UART module). Finally, an example from the

Miscellaneous category includes ADDRESS_SENSITIVE and is assigned to signals that will

store any type of address for the IP, such as a memory address. From the work done in [5] and

[7] the Structural Checking tool currently has 58 external assets available for assignment to

primary ports.

2.1.4 Asset Filtering

The idea of asset filtering is to allow assets assigned on any signal of an IP to propagate

through connected signals. By propagating assets, the tool finds correlations between signals

and potentially finds signals that have conflicting assets. This allows the Structural Checking

tool to raise a flag about a potential Trojan in the circuit. Asset filtering was added to the

Structural Checking tool in [9]. External assets assigned to primary inputs propagate to all

signals that complete the path from the primary input to the dependent primary output.

6

Likewise, external assets assigned to primary outputs propagate backwards through connected

signals to their dependent primary input. For internal assets there are a few exceptions to this

type of filtering process. When filtering a process sensitive asset, the propagation only traverses

to signals that are connected to the original signal and are contained within the same process

block. Another exception to traditional filtering comes from conditional assets

(CONDITIONAL_DRIVEN and CONDITIONAL_DRIVING). Similar to the process sensitive

asset, these assets only propagate within their conditional statements. All other internal assets

work with concurrent statements in soft IPs, and they follow the same asset filtering process as

external assets.

Figure 1: Simple ALU Asset Filtering

Figure 1 illustrates asset assignment to a simple ALU prior to asset filtering. In the

diagram input “A” contains data from some type of memory which is why it is assigned a

DATA_MEMORY asset. Input “B” stores data intended for computation which is why it is

assigned a DATA_COMPUTATINAL asset. The output of the ALU, “Result”, is assigned a

DATA_COMPUTATIONAL asset because the “Result” signal is the result of the ALU’s

computation. “Sel” is assigned a DATA_OP asset because it controls the operation that is

performed on the data of the ALU. Furthermore, signals “A”, “B”, and “Result” will have

7

PROCESS_SENSITIVE assets assigned to them. This occurs because “Sel” requires a process

block, due to syntax rules in soft IPs, and each of these signals are contained within the same

process block as “Sel”. Finally, a CONDITIONAL_DRIVING asset is assigned to “Sel” and a

CONDITIONAL_DRIVEN asset is assigned to “Result” because “Result’s” value depends on

the value of “Sel”. After asset filtering, “Result” will also be assigned DATA_MEMORY

because the asset comes from filtering input A’s asset to the output. Input “A” will add

DATA_COMPUTATIONAL to its assets because the output’s computational asset filters to A.

Input B will not have an additional DATA_COMPUTATIONAL asset after filtering from the

output to B because there is no need to duplicate assets on one signal. As a result, each signal

becomes more refined in how it fits into the design by filtering assets.

2.1.5 Asset Pattern and Characteristics

Resulting from the work done in [5], an asset pattern, which is written out to an asset file,

is a compilation of all asset traces of a soft IP. Asset traces are created for every port/internal

signal in a design and contain all assets assigned to it. Assets are broken down into six

characteristics. External assets that are assigned to primary input port signals form a

characteristic and they are denoted by “>” within a GRL file. Internal assets that are assigned to

primary input port signals form another characteristic and are denoted by “>*” within a GRL file.

Another characteristic includes external assets that are assigned to primary output ports and they

are denoted by “<” within a GRL file. Internal assets that are assigned to primary output port

signals form another characteristic and they are denoted by “<*” within a GRL file. The final

two characteristics are external assets assigned to internal signals and internal assets assigned to

internal signals. These two characteristics are denoted by “/” and “/*”, respectively, within a

GRL file.

8

2.2 Golden Reference Matching

2.2.1 Overview

The concept of Golden Reference Matching is to take an unknown soft IP, compare it

against a Golden Library of soft IPs, which are known to be Trojan-free or Trojan-infested, and

determine if it contains a Trojan. For each library entry, the algorithm behind the matching

process calculates a percent match against the unknown IP by comparing the similarity of assets

between the designs. Based on the best percent match of the unknown IP against the Golden

Reference entries, Golden Reference Matching can provide a probabilistic result on whether or

not the unknown design contains a hardware Trojan and determine the overall functionality of

the design. Developed in [5], the SC tool uses a Golden Reference Library, which contains a list

of known Trojan free and Trojan infested IPs.

2.2.2 Basic Matching Process

Table 1: Basic Matching Example
Trace Unknown IP Assets GRL Entry Assets Percent Match

1 DATA_COMMUNICATION DATA_COMMUNICATION 100%
2 DATA_SENSITIVE, COUNT,

STATUS
DATA_SENSITIVE,

HANDSHAKING, MEMORY_OP
33%

3 DATA_SENSITIVE DATA_MEMORY 0%

Table 1 provides a simple example of the matching process. Each row of Table 1 contains

the assets assigned to a single signal from the unknown IP and assets assigned to a single signal

from a GRL entry. In the first row the assets are identical which gives a 100% match. Trace

number 2 can only match 1 out of the 3 assets which produces a 33% match. Finally, trace 3 has

no identical assets between the unknown IP and the GRL entry which results in a 0% match.

These three assets traces come from the same characteristic which would result in a 44.33%

match for that characteristic. The same process of matching would be done for the other 5

characteristics with the unknown IP and GRL entries. After computing a percent match for all

9

characteristics, the overall percent match is calculated. To calculate the overall match, an

average is taken of the 6 percent matches from the characteristics. When calculating percent

matches for each of the characteristics, there are special cases such as either the unknown IP or

the GRL entry, or both do not have any assets in a given characteristic. In these special cases,

the characteristic is left out of the overall percent match calculation.

2.2.3 Partial Matching

In [5] the idea of partial matching was added to the Structural Checking tool’s matching

algorithm. Partial matching involved applying a 50% match between assets that were not

identical but shared a similar purpose in a design. For instance, in the Data category of assets,

there is a DATA_SENSITIVE asset that generically classifies a signal to be dependent on some

type of data. Within this same category there are assets such as DATA_MEMORY,

DATA_COMMUNICATION, etc. All of these other assets in the same category are specific

versions of the generic DATA_SENSITIVE asset. Consequently, the algorithm was altered to

provide a partial match if an asset from either the unknown or the Golden Reference Library

entry was generic while the other was specific.

Table 2: Partial Matching Example
Trace Unknown IP Assets GRL Entry Assets Percent Match

1 DATA_COMMUNICATION DATA_COMMUNICATION 100%
2 DATA_SENSITIVE, COUNT,

STATUS
DATA_SENSITIVE,

HANDSHAKING, MEMORY_OP
33%

3 DATA_SENSITIVE DATA_MEMORY 50%

Table 2 provides the same example from Table 1. However, with partial matching, trace

3 now has a 50% match because DATA_SENSITIVE is a generic version of the

DATA_MEMORY asset. In this case the overall percent match for this characteristic is 61%

instead of 44.33%.

10

2.2.4 Golden Reference Library

The GRL is a collection of soft IPS designs that have been collected from Trust-Hub

[10,11], OpenCores [12], and some in-house designs. All entries in the library first go through

the Structural Checking tool to generate an asset pattern for the design. After generating an asset

pattern, a functionality is added to the file to label the overall function of the soft IP. The

combination of the asset pattern and the functionality encompasses all information needed for a

library entry. All GRL entries are guaranteed to be correctly labeled in terms of Trojan-free

(whitelist) or Trojan-infested (blacklist) functionality because all designs come from trusted

sources. Table 3 below lists the functionalities that exist in the GRL.

 Table 3: Functionalities
Whitelist Functionality Blacklist Functionality

SHIFT_REGISTER TROJAN_ENCRYPTION_UNIT
INTERRUPT UNIT TROJAN_TRIGGER

COMMUNICATION TROJAN_COMMUNICATION
ENCRYPTION_UNIT TROJAN_SHIFT_REGISTER
COMPUTATIONAL

TIMING
CONTROL_GENERATION

REGISTER_FILE
PERIPHERAL

DECODER_ENCODER
DEBUG_INTERFACE
TOP_CONTROLLER
MICROPROCESSOR

Unknown IPs that match best with GRL entries with a “whitelist” functionality are given

that same functionality and are labeled as being clean. However, if an unknown IP matches best

with a GRL entry that has a “blacklist” functionality, then the unknown IP is given the same

functionality and is flagged as potentially contains a Trojan.

11

Figure 2: Simple PIC GRL Entry

Figure 2 provides an example of a GRL entry. At the top of the file the entity’s name is

provided along with a breakdown of the type and number of signals used in the design. Then the

file provides a labeled functionality which is “INTERRUPT_UNIT” in the case of Figure 2. The

remainder of the file contains the asset pattern of this entry which is used for the matching

process.

12

3 METHODOLOGY AND IMPLEMENTATION

3.1 Asset Reassignment

The Structural Checking process described in Chapter 2 of this thesis leads to bias that

negatively impacts matching results. All designs that make up the Golden Reference Library,

described in Section 2.2.4, require manual assignment of external assets. Additionally, the

library has continued to grow in the lifespan of the Structural Checking tool. With this in mind,

several developers have contributed entries to the GRL at different stages of the tool’s

development. As a result, designs from later stages of the tool’s development were assigned

assets that did not exist in earlier stages. The manual process of assigning external assets causes

differences in what assets are assigned to signals within soft IPs. One developer may not fully

understand a design due to lack of documentation. Consequently, there could be an abundance

of generic assets assigned in this situation. Previously mentioned in Section 2.2.3, the Structural

Checking tool can handle matching generic assets to their specific asset counterparts with partial

matching. However, this way of matching always reduces the percent match to 50% even when

the assets could theoretically be identical but are not due to bias in asset assignment. In order to

alleviate these issues, the idea of asset reassignment was added to the tool’s matching algorithm.

When comparing external assets, the algorithm will perform a check on both the target

(unknown) IP’s assets and the library entry’s assets to see if one asset is a generic version of the

other. In the case that one asset is a generic version of the other, the more specific asset is

reassigned to the generic asset. For instance, if the target IP has a DATA_MEMORY asset

assigned to a signal and is compared to a DATA_SENSITIVE asset from the GRL entry, then

the target IP’s asset is reassigned to be DATA_SENSITIVE. This replaces partial matching in

the algorithm by now giving a 100% match to assets that are similar instead of 50% because the

13

more specific asset has been reassigned. The process of reassignment does not damage any

original intent of assets assigned because each reassigned asset keeps the same general purpose

as the original assignment. The only change that occurs is that a specific asset changes to its

generic equivalent.

3.2 Statistical Weighting

3.2.1 Overview

As explained in Section 2.2, the overall percent match between the target IP and a GRL

entry is calculated by taking the average of the six percent matches from the six characteristics

that make up an asset pattern. Figure 3 below illustrates the equation used for this process and

denotes the six characteristics as “A” through “F”.

Figure 3: Equal Weight Percent Match

One drawback to averaging all percent matches from the characteristics is that each

characteristic then contributes equal weight to the overall percent match. However, external

assets provide more information to a soft IP’s functionality because external assets currently

offer more specific descriptions of how a signal functions within an IP. While internal assets do

contribute to the signal’s overall asset trace, they do not provide information on what function

the signal provides to the overall design. On the other hand, an external asset, such as

DATA_MEMORY, provides a specific description that the signal is both data and contributes to

some type of memory. In theory, external asset characteristics should be weighted more when

calculating the overall percent match.

14

3.2.2 Assessing Asset Quantity

A common practice in statistical analysis is to weight final results when working with a

subgroup that is either underrepresented or overrepresented relative to the size of the full group.

For example, if the population of the Earth is known to be 51% female and 49% male, but a

survey involving just a small group is made up of 60% male and 40% female, then the final

results should be weighted. The female results should be multiplied by 51 over 40 (greater than

1) to account for females being underrepresented in the poll. Similarly, the male results should

be multiplied by 49 over 60 (less than 1) to account for males being overrepresented in the poll.

Tying in with asset pattern matching, a similar approach was considered to help weight the

six characteristics. For each GRL entry and the target IP, the number of assets per characteristic

was recorded. Next, the GRL entries were split into groups based on their functionalities (Table

3).

Table 4: Asset Quantity Example
GRL Entry # Input

External
Input

Internal
Output

External
Output
Internal

Signal
External

Signal
Internal

1 6 2 4 3 3 5
2 2 2 0 3 0 5
3 5 2 3 3 3 5
4 5 4 3 1 4 10
5 9 5 5 5 5 5
6 8 2 5 3 3 5
7 7 2 5 2 3 8
8 9 7 5 5 2 7
9 4 2 2 4 1 6
10 7 2 6 1 4 2

Table 4 provides an example of breaking down the GRL entries into their functionalities.

Each row in Table 4 is a different GRL entry with a COMMUNICATION functionality. The

remaining columns to the right of the GRL entry number column represent the six

characteristics: input ports assigned external assets, input ports assigned internal assets, external

ports assigned external assets, external ports assigned internal assets, internal signals assigned

15

external assets, and internal signals assigned intern assets. The numbers underneath each

characteristic column represent the number of assets defined in the characteristic for these 10

GRL entries.

In the statistical example provided earlier in this section, weight was determined by

taking the known value divided by the sampled value. In the case of soft IPs, there is no known

number of assets that should be in each characteristic because soft IPs can be designed in

numerous ways but still retain the same overall functionality. Therefore, for each GRL entry in

Table 4, weight was determined for each characteristic by taking the larger number of assets

(comparing number of assets in a characteristic between a GRL entry and the target IP) divided

by the smaller number. After calculating individual sets of weights for each GRL entry, a final

set of weights was determined for each functionality by taking an average weight for each

characteristic.

This process of determining a set of weights for each functionality in the GRL proved to

harm the overall percent match by matching target IPs to library entries that did not have the

same functionality. The inefficient nature of this approach relates to the idea that soft IPs can be

designed differently but still retain the same overall functionality. This fact indicates that the

number of assets in a characteristic provides no correlation to an IP’s functionality. The idea of

weighting characteristics was added to the matching process in order to account for the fact that

certain assets provide more information to an IP’s functionality. Consequently, the method for

determining weight should seek to use data that reflects how well assets in the GRL are matching

to the target IP as opposed to the number of assets. In other words, weight should consider the

quality of assets in the GRL.

16

3.2.3 Assessing Asset Quality

Assessing the quality of assets in the GRL focuses on the frequency in which each asset

appears in the library. Matching assets that appear in all entries of the library provides little

information regarding which entry is most similar to the target IP as compared to assets that only

appear in a few entries. For instance, the SYSTEM_TIMING asset is commonly found in most

library entries because most entries have some type of timing component. On the other hand, the

DATA_ENCRYPTION asset is more commonly found in entries with an ENCRYPTION

functionality but is not common to all entries. Therefore, a DATA_ENCRYPTION asset can

provide more information about which entries are most similar to the target instead of a more

common asset, such as SYSTEM_TIMING. With this in mind, weighting should emphasize the

differences in frequency of each asset in the GRL.

In order to determine weight for the six characteristics described in Section 2.1.5, the first

step involves calculating the probability of each asset among all assets of the GRL.

𝑃(𝐴𝑠𝑠𝑒𝑡) = 	
∑ 𝐺𝑅𝐿𝐸𝑛𝑡𝑟𝑦2. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝐴𝑠𝑠𝑒𝑡)8
29:

𝑇𝑜𝑡𝑎𝑙	#	𝑜𝑓	𝐺𝑅𝐿	𝐸𝑛𝑡𝑟𝑖𝑒𝑠

Figure 4: Probability of Asset in GRL

The equation in Figure 4 runs through all “n” GRL entries and will either add one to the

numerator if the GRL entry contains the asset, or zero if the GRL entry does not contain the

asset. If multiple instances of the same asset exist in any one GRL entry, only one is added to

the total because the probability checks only for the presence of an asset. The number of entries

that contain the asset is then divided by the total number of GRL entries to obtain the probability

that a library entry has that asset.

17

Table 5: Example GRL
GRL Entry # Assets

1 SYSTEM_TIMING, DATA_ENCRYPTION, PROCESS_SENSITIVE

2 SYSTEM_TIMING, DATA_MEMORY, PROCESS_SENSITIVE

3 SYSTEM_TIMING, DATA_MEMORY, CONDITIONAL_DRIVEN

4 CONDITIONAL_DRIVEN, ADDRESS_SENSITIVE

5 SYSTEM_TIMING, CONDITIONAL_DRIVEN

Table 5 provides an example GRL to demonstrate calculating asset probability. There are

six unique assets defined in this GRL: SYSTEM_TIMING, DATA_ENCRYPTION,

PROCESS_SENSITIVE, DATA_MEMORY, CONDITIONAL_DRIVEN, and

ADDRESS_SENSITIVE. The probability for SYSTEM_TIMING is equal to four divided by

five because SYSTEM_TIMING is present in four of the five GRL entries. The probability for

the remaining assets would be calculated in the same manner.

With the probability of each asset calculated, the next step involves calculating a weight for

each asset.

𝑊𝑒𝑖𝑔ℎ𝑡BCCDE = 1 − 𝑃(𝐴𝑠𝑠𝑒𝑡)

Figure 5: Asset Weight Calculation

As shown in Figure 5, an asset weight is determined by subtracting the probability of an

asset from one. This type of calculation is thus determining the probability that an asset will not

be in a GRL entry. By assigning weight in this manner, assets that are not commonly found in

GRL entries will have higher weights compared to assets that show up frequently in the GRL.

After determining the weight for each asset in the GRL, one final set of weights for the six

characteristics can be calculated.

18

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐴𝑠𝑠𝑒𝑡	𝑊𝑒𝑖𝑔ℎ𝑡 =
∑ 𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝐴𝑠𝑠𝑒𝑡2. 𝑤𝑒𝑖𝑔ℎ𝑡8
29:

𝑇𝑜𝑡𝑎𝑙	#	𝑀𝑎𝑡𝑐ℎ𝑒𝑑	𝐴𝑠𝑠𝑒𝑡𝑠

Figure 6: Characteristic Average Asset Weight

 Figure 6 describes how to calculate the average weight of the matched assets in an

arbitrary characteristic. The numerator keeps a running total of asset weights for each asset that

was matched within a characteristic. The sum of matched asset weights is then divided by the

total number of matched assets in the characteristic to obtain an average weight. If the

calculation shows that a characteristic has a relatively high weight, this indicates that assets

matched within this characteristic tended to have higher weight. As a result, the assets within

this characteristic are less common in the GRL. Therefore, the characteristic should receive a

higher weight relative to the other characteristics when calculating the overall percent match

because the assets within the characteristic provide a more unique identification to the

functionality of the target IP.

𝑊𝑒𝑖𝑔ℎ𝑡LMNO =
𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐LMNO. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑠𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡
∑ 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐2. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑠𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡Q
29B

∗ 100

Figure 7: Characteristic Weight Calculation

 Figure 7 illustrates the final step in calculating the weight for an arbitrary characteristic,

“char.” The average asset weight, determined from the equation in Figure 6, of “char” is divided

by the sum of all characteristics’ average asset weights. The quotient is then converted into a

percentage based on each characteristic’s contribution to the total average asset weight from all

six characteristics. As a result, characteristics with higher average asset weight are weighted

more in the overall percent match calculation, which reflects the idea of weighting characteristics

based on the weight, or quality, of assets matched.

19

4 RESULTS AND ANALYSIS

4.1 Overview

During testing, results from [13] were used to confirm the tool’s ability to maintain correct

classification with the changes made to the matching algorithm. The tested IPs include RS232,

Basic-RSA, and AES. In addition to these relatively smaller designs, a few microcontrollers

were used to test the improved algorithm. Due to the fact that the current state of the GRL

contains very few IPs similar in size to a microcontroller, the statistical based algorithm should

help extract important asset matches to obtain the best classification for each microcontroller.

4.2 Examples

4.2.1 RS232, Basic-RSA, AES Modules

A RS232 Trojan-infested module used during testing includes RS232-T700. RS232-T700

contains a Trojan in its transmitter which produces a denial-of-service attack on the module by

forcing the transmitter’s done signal to be stuck at 0.

Table 6: RS232-T700 Matching Results
 Equal Weight Matching Statistical Based Matching

Target IP Functionality % Match Functionality % Match
Uart.vhd COMMUNICATION 100% COMMUNICATION 100%

U_xmit.vhd TROJAN_COMMUNICATION 99.206% TROJAN_COMMUNICATION 99.490%
U_rec.vhd COMMUNICATION 90% COMMUNICATION 94.641%

Table 6 shows results from both the original and improved matching algorithms. In both

instances the algorithm correctly classifies the transmitter as containing a Trojan and thus

demonstrates the new algorithm’s ability to keep correct results from previous work.

 The Basic-RSA module tested was BasisRSA-T200. This module is another denial-of-

service attack which disables encoding on the transmitter and decoding on the receiver.

20

Table 7: BasicRSA-T200 Matching Results
 Equal Weight Matching Statistical Based Matching

Target IP Functionality %
Match

Functionality %
Match

RSACypher.vhd TROGAN_ENCRYPTION_UNIT 74.900% TROGAN_ENCRYPTION_UNIT 83.426%
Modmult.vhd COMPUTATIONAL 92.5% COMPUTATIONAL 100%

Similar to the results of RS232-T700, this design was correctly classified by both

versions of the matching algorithm.

Finally, AES-T600 was used to further confirm the improved algorithm’s ability to

maintain correct classification. The secret key of the module can be discovered after a certain

plaintext is read. As shown in Table 8, the algorithm correctly classifies the IP as containing a

Trojan.

Table 8: AES-T600 Matching Results
 Equal Weight Matching Statistical Based Matching

Target IP Functionality % Match Functionality % Match
Top.vhd TROJAN_ENCRYPTION_UNIT 45% TROJAN_ENCRYPTION_UNIT 44.017%

Aes_128.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%
Expand_key_128.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%

S4.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%
S.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%

One_round.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%
Table_lookup.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%

T.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%
xS.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%

Final_round.vhd ENCRYPTION_UNIT 100% ENCRYPTION_UNIT 100%
Trojan_trigger.vhd TROJAN_TRIGGER 66.667% TROJAN_TRIGGER 98.694%

TSC.vhd TROJAN_SHIFT_REGISTER 93.75% TROJAN_SHIFT_REGISTER 94.129%

4.2.2 PIC16F84-T100

The benchmark PIC16F84-T100, acquired from Trust-Hub [10, 11], demonstrates

improvement in the overall percent match using the statistical weighting method described in

Section 3.2.3. Additionally, this microcontroller offers the GRL an additional trusted IP that is

relatively larger than most entries in the top-level section of the library. This microcontroller is

made up of two different types of memory (EEPROM and RAM), a watchdog timer, interrupt

ports, and I/O ports. Each of these components of the design are contained within one VHDL

21

file. Once parsed by the SC tool, assets are assigned to the primary input and output ports.

These ports, and their corresponding assets, are provided in Table 9.

Table 9: PIC16F84-T100 Asset Assignment
Signal Assets

clk_i SYSTEM_TIMING

clk_o SYSTEM_TIMING

eep_adr_o ADDRESS_SENSITIVE

eep_dat_i DATA_MEMORY

eep_dat_o DATA_MEMORY

existeprom_i MEMORY_OP

int0_i INTERRUPT

int4_i INTERRUPT

int5_i INTERRUPT

int6_i INTERRUPT

int7_i INTERRUPT

mclr_n_i RESET

pon_rst_n_i RESET

porta_dir_o PERIPHERAL_CONTROL

porta_i DATA_PERIPHERAL

porta_o DATA_PERIPHERAL

portb_dir_o PERIPHERAL_CONTROL

portb_i DATA_PERIPHERAL

portb_o DATA_PERIPHERAL

powerdown_o CLOCK_CONTROL

prog_adr_o ADDRESS_SENSITIVE

prog_dat_i DATA_MEMORY

ram_adr_o ADDRESS_SENSITIVE

22

Table 9 (Cont.)
Signal Asset

Ram_dat_i DATA_MEMORY

Ram_data_o DATA_MEMORY

Rbpu_o UNUSED

Rd_eep_ack_i HANDSHAKING, MEMORY_OP, READ

Rd_eep_req_o HANDSHAKING, MEMORY_OP, READ

Readram_o HANDSHAKING, MEMORY_OP

Startclk_o CLOCK_CONTROL

T0cki_i TIMER_CONTROL

Wdt_clk_i SUBSYSTEM_TIMING

Wdt_ena_i CLOCK_CONTROL

Wdt_full_o CLOCK_CONTROL

Wr_eep_ack_i HANDSHAKING, MEMORY_OP, WRITE

Wr_eep_req_o HANDSHAKING, MEMORY_OP, WRITE

Writeram_o HANDSHAKING, MEMORY_OP

 After completing asset assignment, the SC tool filters these assets to connected signals as

described in Section 2.1.4. Finally, the matching process was carried out both with equal

characteristic weights (no asset reassignment) and statistical characteristic weights (with asset

reassignment).

23

Table 10: PIC Original Matching Results
GRL Entry Overall Percent Match

Simple_pic 52.553%

Lcd16x2_ctrl 48.233%

Lcd_controller 44.148%

RSACypher_T100 43.414%

Spi_master_1 40.750%

Table 11: PIC Statistical Matching Results
GRL Entry Overall Percent Match

Simple_pic 47.149%

Lcd16x2_ctrl 36.591%

RSACypher_T100 36.514%

Lcd_controller 31.785%

Spi_master_1 30.211%

Table 10 provides the top five overall percent matches from equal weighting of the

characteristics and no asset reassignment. Table 11 provides the top five overall percent matches

from statistical weighting of the characteristics with asset reassignment. While statistical

weighting did lower all percent matches, the overall results indicate better matching with GRL

entries that are most similar to the target’s functionality. The calculated weights for the

characteristics when matching this microcontroller were 20.908 for “input external”, 8.037 for

“input interal”, 26.276 for “output external”, 8.156 for “output internal”, 26.406 for. “signal

external”, and 9.345 for “signal internal”. As expected, characteristics with external assets were

weighted more due to the fact that they provide assets that produce a better description of each

IP’s functionality. Analyzing the results of Table 10, most GRL entries were within a few

percentage points of the next best match. However, the results from Table 11 show greater

24

disparity among the results which indicates that the algorithm provided more separation based on

assets that were within each library entry. The “simple_pic” entry matched the most assets of

high weight with PIC16F84-T100 which reflects the idea of matching based on quality of assets.

This also proves the effectiveness of the statistical approach because the GRL entry that is most

similar in functionality to the PIC microcontroller is indeed the “simple_pic”.

4.2.3 MC8051-T500 Core

The 8051-microcontroller core tested is known to be Trojan-free. The core is made up of

control units for a finite state machine (FSM) and memory, an ALU (with several specialized

blocks for computations), a serial interface unit (SIU), and a timing unit (also handles interrupt

signals). External assets were assigned to the core’s top module, “MC8051_core.vhd”.

Additionally, external assets were assigned to some of the core’s internal signals because not all

subcomponents of the IP were fully connected to the primary ports of the top module. As

aforementioned, asset filtering would not be able to fully define the signals of subcomponents

without the manual assignment of internal signals. Once asset assignment was complete, asset

filtering was performed, and the matching process was done on the core using both equal weight

and statistical weight for the characteristics.

Table 12: MC8051-T500 Core Matching Results
 Equal Weight Matching Statistical Based Matching

Target IP Functionality % Match Functionality % Match

MC8051_core.vhd COMMUNICATION 35.321% INTERRUPT_UNIT 50.899%

MC8051_control.vhd COMPUTATIONAL 44.871% REGISTER_FILE 54.689%

Control_fsm.vhd COMPUTATIONAL 47.767% REGISTER_FILE 38.913%

Control_mem.vhd INTERRUPT_UNIT 61.576% INTERRUPT_UNIT 62.274%

MC8051_alu.vhd COMPUTATIONAL 22.244% COMPUTATIONAL 29.564%

Alumux.vhd COMPUTATIONAL 55.565% COMPUTATIONAL 46.519%

25

Table 12 (Cont.)
 Equal Weight Matching Statistical Based Matching

Target IP Functionality % Match Functionality % Match

Alucore.vhd COMPUTATIONAL 50.297% COMPUTATIONAL 42.133%

Addsub_core.vhd COMPUTATIONAL 44.250% COMPUTATIONAL 41.169%

Addsub_cy.vhd COMPUTATIONAL 46.875% COMPUTATIONAL 44.748%

Addsub_ovcy.vhd COMPUTATIONAL 46.875% COMPUTATIONAL 44.748%

Comb_mltplr.vhd COMPUTATIONAL 45.833% COMPUTATIONAL 38.863%

Comb_divider.vhd COMPUTATIONAL 37.500% COMPUTATIONAL 35.399%

Dcml_adjust.vhd COMPUTATIONAL 31.718% COMPUTATIONAL 34.492%

MC8051_siu.vhd COMMUNICATION 77.152% COMMUNICATION 70.793%

MC8051_tmrctr.vhd REGISTER_FILE 52.257% INTERRUPT_UNIT 48.587%

When matching the top-level module, “MC8051_core.vhd”, the equal weighting matching

process determined the functionality of the core to be COMMUNICATION while the statistical

based process determined the functionality to be INTERRUPT_UNIT. The INTERRUPT_UNIT

functionality comes from the “simple_pic” GRL entry. Matching the 8051-microcontroller with

another microcontroller proves that the statistical algorithm found the best way to match the top-

level module. The 8051-core and “simple_pic” are still very different which is reflected in the

50% match at the top-level. The next three control files in Table 12 all matched with

functionalities that differed from expected. In theory, each design should match best with a

CONTROL_GENERATION functionality because each is intended to generate control signals

for the microcontroller. However, the GRL contains very few entries within this functionality

and the entries that do exist are related to program counters. The next few files in Table 12,

starting from “MC8051_alu.vhd” and going to “dcml_adjust.vhd”, are shown to be correctly

classified as COMPUTATIONAL by both matching approaches. Next, “MC8051_siu.vhd” is a

26

serial interface component of the microcontroller which confirms the correct classification of

COMMUNICATION by both matching processes. Finally, “MC8051_tmrctr.vhd” contains

control signals for both timing and interrupt components of the 8051-core. Consequently, this

design theoretically matches best with a TIMING or INTERRUPT_UNIT functionality. In the

equal weight example, this component of the 8051 matches incorrectly with a REGISTER_FILE

functionality due to the large number of data assets that inflated its percent match with register

files in the GRL. However, the statistical based approach extracted a better match with an

INTERRUPT_UNIT functionality which reflects the designs interrupt control signals. The low

percent match in the statistical approach demonstrates that the best match is still different from

the component of the 8051-core.

5 CONCLUSION AND FUTURE WORK

The statistical based matching algorithm, with asset reassignment, proved to enhance the

matching algorithm for the Structural Checking tool. By calculating weights for individual

assets, the tool can better determine how well an asset can uniquely identify a soft IP. Using

asset weights helped facilitate a way to weight the six characteristics by providing a numerical

representation of how important each characteristic is to classification. Characteristics with

relatively high weights contained more assets that provide a more unique identification for a

target IP. The tests done in this thesis indicate that the statistical based algorithm is an effective

approach to matching. In the tests performed in Section 4.2.1, all Trojan test cases were not only

classified correctly but were also given a higher percent match using the statistical matching

process. Furthermore, the microcontrollers tested were able to match with similar library entries

but with relatively low percent matches. The low percent matches reflect the fact that the GRL

does not contain very many TOP_CONTROLLER entries and thus makes it difficult for a

27

microcontroller to find a high percent match. To increase the percent match of soft IPs similar in

size to a microcontroller, more designs of that size can be added to the GRL in the future. In

addition to more GRL entries, the matching algorithm can continue to improve with additional

assets in order to better refine the purpose of each signal within an IP. Finally, future work can

also continue to grow the list of functionalities to provide the matching algorithm with more

options to classify unknown designs.

28

REFERENCES

[1] Hossain, F. S., Shintani, M., Inoue, M., & Orailoglu, A. (2018). Variation-Aware
Hardware Trojan Detection through Power Side-channel. 2018 IEEE International Test
Conference (ITC). doi:10.1109/test.2018.8624866

[2] Esirci, F. N., & Bayrakci, A. A. (2017). Hardware Trojan detection based on correlated

path delays in defiance of variations with spatial correlations. Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. doi:10.23919/date.2017.7926976

[3] Hasegawa, K., Yanagisawa, M., & Togawa, N. (2017). Trojan-feature extraction at gate-

level netlists and its application to hardware-Trojan detection using random forest
classifier. 2017 IEEE International Symposium on Circuits and Systems (ISCAS).
doi:10.1109/iscas.2017.8050827

[4] Inoue, T., Hasegawa, K., Yanagisawa, M., & Togawa, N. (2017). Designing hardware

trojans and their detection based on a SVM-based approach. 2017 IEEE 12th
International Conference on ASIC (ASICON). doi:10.1109/asicon.2017.8252600

[5] Weaver, L., Le, T., & Di, J. (2016). Golden Reference Library Matching of Structural

Checking for securing soft IPs. SoutheastCon 2016. doi:10.1109/secon.2016.7506737

[6] Le, T., & Di, J. (2017). Golden reference matching for gate-level netlist functionality

identification. 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS). doi:10.1109/mwscas.2017.8052986

[7] M. Hinds, J. Brady, and J. Di, "Signal Assets - a Useful Concept for Abstracting Circuit

Functionality," presented at the Government Microcircuit Applications & Critical
Technology Conference (GOMACTech), 2013.

[8] T. Le, J. Di, M. Tehranipoor, and L. Wang, "Tracking data flow at gate-level through

structural," in 2016 International Great Lakes Symposium on VLSI (GLSVLSI), 2016, pp.
185-189.

[9] J. Yust, M. Hinds, and J. Di, "Structural Checking: Detecting Malicious Logic without a

Golden Reference," Journal of Computational Intelligence and Electronic Systems, vol.
1, no. 2, p. 8, 2012.

[10] H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and trust

benchmark development", IEEE Int. Conference on Computer Design (ICCD), 2013.

[11] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, M. Tehranipoor, “Benchmarking of

Hardware Trojans and Maliciously Affected Circuits”, Journal of Hardware and Systems
Security (HaSS), April 2017.

[12] OpenCores. Available: http://opencores.org/

29

[13] Le, T., Weaver, L., Di, J., Zhang, S., & Jin, Y. (2018). Hardware Trojan Detection and

Functionality Determination for Soft IPs. 2018 IEEE 3rd International Verification and
Security Workshop (IVSW). doi:10.1109/ivsw.2018.8494891

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2019

	Hardware IP Classification through Weighted Characteristics
	Brendan McGeehan
	Recommended Citation

	Microsoft Word - McGeehan_MastersThesis.docx

